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Abstract

This work aims at addressing two critical security issues residing in the physical layer of wireless

networks, namely, intelligent jamming and eavesdropping.

In the first two chapters we study the problem of jamming in a fixed-rate transmission system

with fading, under the general assumption that the jammer has no knowledge about either the

codebook used by the legitimate communication terminals, or the source’s output. Both transmitter

and jammer are subject to power constraints which can be enforced over each codeword (peak) or

over all codewords (average). All our jamming problems are formulated as zero-sum games, having

the probability of outage as pay-off function and power control functions as strategies. We provide

a comprehensive coverage of these problems, under fast and slow fading, peak and average power

constraints, pure and mixed strategies, with and without channel state information (CSI) feedback.

Contributions to the eavesdropping problem include a novel feedback scheme for transmitting

secret messages between two legitimate parties, over an eavesdropped communication link, pre-

sented in Chapter 4. Relative to Wyner’s traditional encoding scheme, our feedback-based encod-

ing often yields larger rate-equivocation regions and achievable secrecy rates. More importantly,

by exploiting the channel randomness inherent in the feedback channels, our scheme achieves a

strictly positive secrecy rate even when the eavesdropper’s channel is less noisy than the legitimate

receiver’s channel.

In Chapter 5, we study the problem of active eavesdropping in fast fading channels. The active

eavesdropper is a more powerful adversary than the classical eavesdropper. It can choose between

two functional modes: eavesdropping the transmission between the legitimate parties (Ex mode),

and jamming it (Jx mode) – the active eavesdropper cannot function in full duplex mode. We con-

sider two scenarios: the best-case scenario, when the transmitter knows the eavesdropper’s strategy

in advance – and hence can adaptively choose an encoding strategy – and the worst-case scenario,

vi



when the active eavesdropper can choose its strategy based on the legitimate transmitter-receiver

pair’s strategy – and thus the transmitter and legitimate receiver have to plan for the worst. For the

second scenario, we introduce a novel encoding scheme, based on very limited and unprotected

feedback – theBlock-Markov Wyner (BMW) encoding scheme– which outperforms any schemes

currently available.
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Chapter 1
Introduction

As the title suggests, the present dissertation is focused on the physical layer security in wireless

networks. The concept ofcommunication securityis linked to two main desired features. The first

of these is thesystem reliability, which means that a certain message (encoded for transmission and

transmitted over a wireless channel) intended for a specific user (or “legitimate receiver”), should

be reliably received by that user. In practical terms, the legitimate receiver’s decoding error should

satisfy an acceptable specification. The “enemy” of system reliability is called ajammer. The

purpose of a jammer is solely to disrupt the process of communication by increasing the legitimate

receiver’s probability of decoding error, and/or by causing “reliability outage”.

The second of the desired features ismessage secrecy, which means that under certain con-

ditions, a transmitter may want to communicate a secret message to a legitimate receiver. The

“enemy” of message secrecy is called aneavesdropper. The sole purpose of an eavesdropper is to

listen to the transmission, and try to understand the secret messages encoded therein.

In this dissertation, we treat the issues of security at thephysical layerof the Open Systems In-

terconnection (OSI) reference model. Although throughout the following chapters we may some-

times specify simple protocols pertaining to upper layers, our main focus will remain on channel

encoding and power allocation.

In the next two sections we provide a series of brief comments about the evolution and the main

ideas behindsystem reliabilityandmessage secrecy.

1.1 Jamming in Wireless Networks

The problem of jamming in wireless networks started to attract interests in the 80’s when several

works [3, 4] studied simple, point-to-point communication systems affected by intelligent jammers,

as shown in Figure 1.1. The jammer was assumed to have access to either a noise-distorted version

1



of the transmitter’s output [3], or the transmitter’s input message [4]. The jamming problem was

formulated as a two-player, zero-sum game, with the mean-squared error of the decoded message,

relative to the transmitted message, as objective. 
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FIGURE 1.1. A simple point-to-point jamming problem.

The saddle-point policy of the jamming game formulated in [3] consists of an amplifying trans-

mitter and a jammer that performs a linear transformation of the transmitter’s output signal. A de-

terministic problem (shown to display no saddle point) and a probabilistic one are investigated in

[4]. It is interesting to note that for the probabilistic formulation, the saddle point is attained when

the jammer ignores its information about the transmitter’s output. Similar results were obtained

in [5] for correlated jammers suffering from phase/time jitters at acquisition or at transmission.

Again the jamming problem was formulated as a game, but this time having the channel capacity

as objective function.

Relatively few papers on this subject followed until lately, when several extensions to more

complex, multi-user channels with fading were derived in [6–10]. It is shown in [7] that, in the

absence of channel state information (CSI) at both transmitter and jammer, an equilibrium point is

obtained when the jammer completely ignores its information about the encoder’s output.

Broadcast (BC) and multiple access channels (MAC) are investigated in [8] under the assump-

tion of complete CSI and uncorrelated jammer. The sum-rate is used as objective of the jamming

game for the broadcast channel scenario, while this role is played by an arbitrary weighting of

the user’s rates for the MAC. Proofs of existence of multiple Nash equilibria and conditions for

uniqueness are provided. Similar results for the multiple access channel are presented in [9]. The
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paper covers all possible cases in terms of CSI and correlation of the jammer with transmitter’s

output, for a two-transmitter, one jammer scenario.

The general tendency seems to be in favor of an assumption that the jammer has access to either

the transmitter’s output or input and consequently is able to produce correlated jamming signals.

Uncorrelated jammers are often studied only as particular cases of the more complex correlated

jamming scenarios.

Most of the recent works [7, 9] that study the jamming games in fading channels focus on

fast fading, and consequently adopt the ergodic capacity as objective of the game. An interesting

point of view is expressed in [11], where the jamming problem is differently viewed as a special

case of an arbitrarily varying channel. The capacity (when it exists) andλ-capacity (maximum

transmission rate that guarantees a probability of error less thanλ) are given for both peak and

average power constraints, under random coding.

1.2 Eavesdropping in Wireless Networks

The pioneering work in message secrecy at the physical layer belongs to Wyner [12]. In 1975,

Wyner shows that physical layer secrecy is possible without the use of a secret key. The concept

of wire-tap channelis introduced by [12] for the first time. The wire-tapper is a particular form of

eavesdropper, with the specific characteristic that the wire-tapper’s channel is a degraded version

of the legitimate receiver’s channel, as shown in Figure 1.2. 
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FIGURE 1.2. Wyner’s wiretapper channel.

The secrecy, or “equivocation” is defined as the wire-tapper’s conditional entropy (or uncer-

tainty) of the secret message, given its own received signal. Unlike the previous cryptographic

3



approach to message secrecy, which assumes that the eavesdropper is unable to solve certain com-

putational problems, Wyner’s information-theoretic secrecy guarantees the privacy of the transmit-

ted message at the physical layer, without any assumptions on the wire-tapper’s capabilities. In that

sense, physical layer secrecy is the strongest form of secrecy available to communication systems.

It is shown in [12] that for any discrete channels, the secrecy rate is given by the supremum

over all possible input distributions of the difference between two information quantities: the mu-

tual information between transmitter and legitimate receiver, and the mutual information between

transmitter and wiretapper.

The generalization to the case when the eavesdropper’s channel is not necessarily a degraded

version of the receiver’s channel (hence the introduction of the term “eavesdropper”) was tackled

in [13], in the extended context of a broadcast channel, where secret, non-secret and common mes-

sages need to be communicated. The achievable secrecy rate is shown to be always positive only

if the legitimate receiver’s channel is in a certain relationship with the eavesdropper’s channel.

In [13], this relationship was first denoted by saying that the main channel isless noisythan the

eavesdropper’s channel. It is also notable that the results in [13] imply that when secret messages

are transmitted to the legitimate receiver at a rate arbitrarily close to the secrecy capacity, no com-

mon message (i.e. a message intended for both the legitimate receiver and the eavesdropper) can

be successfully transmitted.

However, the results of [13] are mainly formulated in terms of single letter information mea-

sures, which means that for finding the secrecy capacity of a specific eavesdropper channel, one

would have to perform a functional optimization over at least one probability distribution. This is

why we should recognize the importance of more recent works, which elaborate the generic re-

sults of [13] for special, widely used channel models. For example, [14] shows that for any pair

of discrete channels of which the eavesdropper’s channel ismore noisyin the sense of [13], the

secrecy capacity equals the difference between the receiver’s and wiretapper’s channel capacities.

4



An extension to continuous alphabets appears in [15], which uses similar techniques as [12] to

prove that the same result holds for Gaussian wire-tap channel.

A geometrical interpretation of the encoding technique used in [12], [15] for achieving the se-

crecy capacity is shown in Figure 1.3 for Gaussian channels. To understand this description, the

reader should already be familiar to the geometric interpretation of thechannel coding theorem.

 

Cluster  of coset 
representatives 
bear ing the secret 
message. 

Eavesdropper ’s 
noise sphere 

Legitimate receiver ’s 
noise sphere  

FIGURE 1.3. Achieving the secrecy capacity of an eavesdropped Gaussian channel.

In Figure 1.3 a randomly generated Gaussian codebook is divided into equivalent subcodes (or

bins). The transmitter encodes the secret message into the indices of the bins formed in this in way.

A codeword belonging to the chosen bin is picked randomly and transmitted. This corresponds to

randomly picking one of the clusters shown in Figure 1.3, and transmitting the corresponding bin

representative belonging to this cluster. Note that for high-dimensional codebooks, theequiparti-

tion characteristic of Figure 1.3 holds with high probability.
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Note that the noise sphere (represented for convenience as a hexagon in Figure 1.3) of the legiti-

mate receiver permits the asymptotically perfect decoding of the transmitted codeword. Thus, both

the chosen bin (bearing the secret message) and the randomly picked cluster are available to the

receiver. If the “radius” of each cluster is picked such that it equals the eavesdropper’s noise sphere

“radius”, then the eavesdropper’s noise sphere centered around the transmitted codeword contains

a bin representative from each bin. Therefore, from the eavesdropper’s point of view, all secret

messages are asymptotically (as the codeword length approaches infinity) equally likely. More-

over, the eavesdropper cannot even be certain about the cluster to which the transmitted codeword

belongs, and thus no common message can be transmitted while aiming for the secrecy capacity.

A different scenario is that where the secrecy constraint is abandoned in favor of a common

message [13], [16]. This scenario is depicted in Figure 1.4). A similar representation can be found

in [16]. Note that the cluster to which the transmitter codeword belongs can be identified by the

 

Cluster  bear ing the 
legitimate receiver ’s 
message. 

Eavesdropper ’s 
noise sphere 

Legitimate receiver ’s 
noise sphere  

FIGURE 1.4. Transmission of common and private (although not secret) messages.
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eavesdropper. The common message can thus be encoded in the centers of the clusters, while the

legitimate receiver’sprivatemessage can be encoded in the indices of the bins, as before. However,

the receiver’s private message is not perfectly secret to the eavesdropper. For instance, given its

observation, the eavesdropper can compute a short list of possible transmitted codewords. Note

that although we represent the two encoding schemes in Figures 1.3 and 1.4 in a similar way, the

two encoding techniques are fundamentally different. An example of the confusion arising from

the similar geometric interpretation is the wrong encoding scheme of [2], which is discussed in

Chapter 5.

In order to achieve a positive secrecy rate, the receiver’s rate has to be decreased [13], as shown

in Figure 1.5). The “short list” of possible transmitted codewords that is computable by the eaves-

dropper has to contain a representative of the bin corresponding to each secret message.

 

Cluster  of coset 
representatives bear ing the 
secret message. 

Eavesdropper ’s 
noise sphere 

Legitimate receiver ’s 
noise sphere 

Cluster bear ing the 
legitimate receiver ’s 
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FIGURE 1.5. Achieving a positive secrecy rate in the presence of common messages.
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Just like the case of jamming problems, the concept of eavesdropping had escaped much atten-

tion for several decades until lately, when security issues have become one of the biggest concerns

in wireless networks. The flexibility of these networks amounts to a greater risk, but also creates

the optimal environment for multiuser defense strategies.

A recent attempt to extend the eavesdropper problem to Gaussian multiple-access wire-tap chan-

nels (with and without fading) can be found in [17], [2]. In [17], the secrecy is defined in two dif-

ferent ways: individual (which means secrecy is preserved for each user even when the other users

are compromised), and collective (when all users are supposed to trust each other and achieve a

larger overall secrecy rate).

A different multiuser approach [18] investigates the eavesdropper scenario where the transmitter

can request the help of a trusted relay node. The relay can either send independent codewords in

order to confuse the wiretapper (“noise forwarding”), or forward quantized versions of its noisy

observations of the transmitter’s signal to the destination (“compress and forward”). However,

sometimes the relay may not be fully trusted with the secret message. The scenario where the

relay needs to be kept from learning the secret message, but at the same time can still be used for

enhancing communication reliability is discussed in [19].

A different direction in the fight against eavesdroppers, arising from the field of cryptography,

is encryption by means of a secret key. For wireless environments, the secret key needs to be

generated by using the available resources, and in the presence of the eavesdropper. Significant

contributions in this direction were brought in [20], [21]. The main idea behind the secret key

generation process is that the legitimate parties take advantage of some form of “common ran-

domness”. Such randomness could be provided if all terminals decode (with errors) a sequence

of random bits, as for example those transmitted by a satellite at a very low signal to noise ratio

(SNR) [20]. A multi-step protocol is presented in [20], which is designed to put the eavesdropper

at a disadvantage, and thus to make possible the agreement upon a secret key.
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FIGURE 1.6. General framework.

More recent works, like [22], [23], [24] or [25] have been focused on ergodic-fading eavesdrop-

per channels. Although achievable secrecy rates and the benefits of noise injection at the transmitter

are discussed by [22], the secrecy capacity of fast-fading eavesdropper channels remains unknown.

A secrecy capacity is derived in [23], for a modified channel model, which assumes that the ergodic

fading is slow enough to be considered constant for extremely long intervals, each of which may

therefore accommodate an entire codeword. Similarly, [24] and [25], treat the fading broadcast

channel with confidential messages as a particular case of parallel AWGN broadcast channel with

confidential messages.

Slow fading eavesdropper channels with delay constraints have been investigated in [26] and

[27]. Since under block fading (when the channel state information is not available to the trans-

mitter in a non-causal manner) one cannot guarantee either the secrecy or the intelligibility of the

secret message, these works evaluate system performance by quantities like the outage probability

(referring to intelligibility outage), combined with the probability ofsecrecy outage.

1.3 The Big Picture

This dissertation represents the first and most fundamental steps towards creating and developing

a framework in which the eavesdropping and intelligent jamming problems are intertwined. As a
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general scenario, we envision a wireless network with nodes of similar capabilities, where nodes

may create alliances aimed either at sharing confidential messages in the most efficient way, or at

eavesdropping and disrupting an enemy alliance.

The first type of alliance, or the “legitimate users” are fully aware of the existence of enemy

alliances (or simply “enemies”). As a consequence, they attempt to find and implement optimal

strategies against both eavesdropping and jamming. On the other hand, the enemies may collabo-

rate in order to obtain as much information about their opponents as possible, and to use it in an

optimal manner for disrupting the communication.

A very general description of our model is depicted in Figure 1.6. Note that while the enemies’

primary purpose is to eavesdrop and/or jam the legitimate alliance, they may find it optimal to

communicate to each other by sending and receiving “legitimate” messages. In turn, in addition to

communicating legitimate messages, the legitimate users could attempt to intercept and, once the

enemies have been identified and labeled, even disrupt the communication between them.

We begin the present dissertation by a separate treatment of the jamming and the wiretapping

problems. An application-oriented scenario for uncorrelated jamming is first investigated in Chap-

ters 2 and 3. The outage probability is adopted as an objective function, over which the transmitter

aims at minimization and the jammer aims at maximization by selecting their respective optimal

power control strategies. We provide a comprehensive coverage of the problem, by studying multi-

ple scenarios: fast and slow fading, peak and average power constraints, pure and mixed strategies,

with and without channel state information (CSI) feedback.

For the eavesdropping problem, we bring some improvements to the present state of the art,

by developing a novel scheme that can guarantee strictly positive secrecy rates even when the

eavesdropper’s channel is better than the legitimate receiver’s channel. A particular implementation

of the scheme for binary symmetric channels is presented in Chapter 4.

Finally, in Chapter 5 we make the first steps towards the joint jamming and eavesdropping prob-

lem. For the first time in the related literature, we consider the scenario of an “active eavesdropper”
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whose purpose is to decrease the achievable secrecy rate of a pair of legitimate users. We show how

an active eavesdropper can seriously degrade the achievable secrecy rate over a fast fading chan-

nel, and we provide an ingenious sequential secrecy scheme that can significantly ameliorate these

effects.
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Chapter 2
Jamming in Fixed-Rate Wireless Systems with Power
Constraints - Part I: Fast Fading Channels

2.1 Introduction

The importance of designing anti-jamming strategies cannot be overstated, due to the extremely

wide deployment of wireless networks, the very essence of which makes them vulnerable to at-

tacks. Although the bases of jamming and anti-jamming strategies have been set in the 80’s and

90’s [3–5], new interest has been recently generated by the increasing demand for wireless security.

Jamming and anti-jamming strategies were developed for the broadcast channel [8], the multiple

access channel [9], and even studied from the perspective of an arbitrarily varying channel [11].

Under all scenarios, the jamming problem is formulated as a two-player, zero-sum game. The cor-

responding objective functions are the sum-rate [8], the ergodic capacity [9] or theλ-capacity [11].

Although most often the jammer is assumed to have access to either the transmitter’s output or

input [3, 5, 10] and consequently is able to produce correlated jamming signals, the correlation as-

sumption can only be accurate for repeater protocols, or other situations where the jammer gets the

chance to jam a signal about which it has already obtained some information from eavesdropping

previous transmissions.

The approach of [11] is quite relevant to our work. The jamming problem is viewed as a special

case of an arbitrarily varying channel (AVC). Constraints are placed either on the power invested

in each codeword (peak power constraints), or on the power averaged over all codewords (average

power constraints). Theλ-capacity, which is used to evaluate system performance, is defined as

the maximum transmission rate that guarantees a probability of codeword error less thanλ, under

random coding. It is shown that when peak power constraints are imposed on both transmitter and

jammer, theλ-capacity is constant for0 ≤ λ < 1, and therefore is the same as the channel capacity.

No fading is assumed in [11], and consequently no power control strategies are necessary.
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Fading channels are often the more practical models for wireless applications. Traditionally, fast

fading channels are characterized by theirergodic capacity, which is completely determined by

the probability distribution of the channel coefficient and the transmitter power constraints. The

physical interpretation of this measure of channel quality is related to the capabilities of channel

codes. In the fast fading scenario, the codewords are assumed long enough to reveal the long-

term statistical properties of the fading coefficient (in practical systems, this requirement may

be satisfied by the use of interleaving [28]). Implicitly, power constraints are imposed over each

codeword. Therefore, for achieving asymptotic error free communication, all codewords need to

be transmitted at the same rate not exceeding the channel’s ergodic capacity.

However, applications like video streams in multimedia often require fixed data rates that could

exceed the channel’s ergodic capacity, but can tolerate non-zero codeword error probabilities.

Therefore, in situations when the transmitter’s available power is not sufficient for supporting a

certain rate for each codeword in the traditional framework, the transmitter can choose to concen-

trate its power on transmitting only a subset of the codewords, while dropping the others. This

maneuver ensures error free decoding of the transmitted messages, at the cost of a non-zero prob-

ability of message decoding error, which is feasible when power constraints are imposed over the

ensemble of all codewords, instead of over each single codeword. This justifies the evaluation of

fixed rate systems in fast fading channels by a quantity that is best known to characterize slow

fading channels: theoutage probability. Note that unlike the case of slow fading, in fast fading

channels, due to the large codeword length, the channel conditions affecting the transmission of

different codewords are asymptotically identical.

In this chapter, we consider a fast fading AWGN channel where codewords (we denote the span

of a codeword by the termframe) are considered long enough to reveal the long-term statistical

properties of the fading coefficient. Our channel model is depicted in Figure 2.1. It was shown in

[29] that the ergodic capacity of the fast fading AWGN channel can be achieved by a constant-rate,

constant-power Gaussian codebook, provided that when the fading coefficients are available at the

13



 

 
 

Transmitter 
(Tx) 

 
 

Receiver 
(Rx) 

 
 

Jammer 
(Jx) 

AWGN 
2
n

�  
AWGJ 
J(h)  

h

P(h)

{P(h)}EP
hM = {J(h)}EJ

hM =

��

�
�
�

��

�
�
�

��
	



��
�



+
+=

J(h)�

hP(h)
1logEJ(h))C(P(h),

2
n

h

h

 
 

FIGURE 2.1. Channel model

transmitter, the transmitter employs a dynamic scaling of the code symbols, by the appropriate

power allocation function. For this reason we assume in out model that the transmitter uses a

capacity-achieving complex Gaussian codebook. The jammer is assumed to have no knowledge

about this codebook or the actual output of the transmitter, and hence its most harmful strategy is

to transmit white complex Gaussian noise [30].

The channel coefficient is a complex number, the squared absolute value of which will be de-

noted throughout this chapter byh. The average powers invested by the transmitter and jammer in

transmitting and jamming a codeword, respectively, are denoted byPM andJM . The transmitter

and the jammer are subject to either peak power constraints (over each frame, or codeword) of the

formPM ≤ P andJM ≤ J , or average power constraints (over all frames) of the formEPM ≤ P
andEJM ≤ J , where the expectation is taken with respect to the players’ strategies of allocating

the powersP andJ between frames.

A codeword is decoded with strictly positive probability of error (i.e. outage) if the ergodic

capacity calculated over the frame is below the fixed rateR. The probability of this event (the

equivalent ofλ in [11]) will be denoted as theprobability of outagePout. The transmitter aims at

minimizing the probability of outage for a fixed rateR, while the jammer attempts to maximize it.

Our contributions can be summarized as below:
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• We first investigate the scenario where full channel state information (CSI) is available to

all parties. For this case we show that peak power constraints are not efficient for high rate

transmissions or large jammer power;

• We formulate the scenario of average transmitter/jammer power constraints as a two-person,

zero-sum game with the probability of outage as the pay-off function.

• Under average power constraints, we first investigate pure strategies and find the maximin

and minimax solutions, as a result of two levels of power control: one within frames and one

concerning the additional randomization introduced by the transmitter. Optimal strategies

are derived for both levels, and it is shown that a Nash equilibrium of pure strategies does

not exist in general.

• As a result, we investigate mixed strategies and find the (unique) Nash equilibrium by solving

a generalized version of a game that was first discussed by Bell and Cover [31] and then

extended by Hughes and Narayan [11].

• Finally, for comparison purposes, we find the optimal transmitter and jammer mixed strate-

gies for the case when the receiver does not feed back the CSI. Our results show that CSI

feedback only brings slight improvements in the overall transmission quality.

One comment is in order. Note that Nash equilibria of mixed strategies are not always the best

approach to practical jamming situations. An equilibrium of mixed strategies usually assumes that

none of the two players knows exactly when or with what power the other player is going to trans-

mit. While this may generally be true for the legitimate transmitter, a smart jammer might con-

stantly eavesdrop the channel and detect both the legitimate transmitter’s presence and its power

level. Therefore, many real jamming scenarios might be more accurately characterized by the solu-

tions of themaximin problem formulation with pure strategieswhen the jammer tries to minimize

and the transmitter tries to maximize the objective, and the solutions of theminimax problem
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formulation with pure strategieswhen the jammer tries to maximize and the transmitter tries to

minimize the objective (the latter case applies to the present chapter). At worst, these solutions

provide a valid lower bound on system performance.

The chapter is organized as follows. Section 2.2 formalizes the peak power constrained problem

when full CSI is available to all parties. It turns out that this problem has an intuitive solution. Un-

der the same full CSI assumption, Section 2.3 studies the problem of average power constraints and

pure strategies, and is divided into three subsections. The first one presents the optimal strategies

for allocating power over one frame. Using the results therein, the maximin and minimax solutions

are derived in Subsection 2.3.2. Some numerical results are shown in Subsection 2.3.3. Section

2.4 investigates the problem of full CSI, average power constraints and mixed strategies and pro-

vides the Nash equilibrium point. The scenario when the channel coefficients are only known to

the receiver is investigated in Section 2.5. Finally, conclusions are drawn in Section 2.6.

2.2 CSI Available to All Parties. Jamming Game with Peak
Power Constraints

This game represents a more general version of the game discussed in Section IV.B of [9], and its

solution relies on the results therein. The transmitter’s goal is to:





Minimize Pr(C(P (h), J(h)) < R)

Subject to PM = Eh[P (h)] ≤ P ,
(2.1)

while the jammer’s goal is to:





Maximize Pr(C(P (h), J(h)) < R)

Subject to JM = Eh[J(h)] ≤ J ,
(2.2)

where

C(P (h), J(h)) = Eh

[
log

(
1 +

hP (h)

σ2
N + J(h)

)]
.
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is the ergodic capacity, which is completely determined by the p.d.f. of the channel coefficientp(h)

and the transmitter/jammer power control strategiesP (h) andJ(h). The expectation is defined as

Eh[f(h)] =
∫

h
f(h)p(h)dh.

We prove that this game is closely related to the two player, zero-sum game of [9], which has

the mutual information between Tx and Rx as cost/reward function:

Tx





Maximize C(P (h), J(h))

Subject to PM ≤ P ,
(2.3)

Jx





Minimize C(P (h), J(h))

Subject to JM ≤ J .
(2.4)

This latter game is characterized by the following proposition, proved in Section IV.B of [9]:

Proposition 2.1. The game of (2.3) and (2.4) has a Nash equilibrium point given by the following

strategies:

P ∗(h) =





[
1
λ
− σ2

N

h

]
+

if h <
σ2

Nλ

1−σ2
Nν

h
λ(h+λ

ν
)

if h ≥ σ2
Nλ

1−σ2
Nν

(2.5)

J∗(h) =





0 if h <
σ2

Nλ

1−σ2
Nν

h
ν(h+λ

ν
)
− σ2

n if h ≥ σ2
Nλ

1−σ2
Nν

(2.6)

whereλ and ν are constants that can be determined from the power constraints and[x]+ =

max{x, 0}.

The connection between the two games above is made clear in the following theorem, the proof

of which follows in the footsteps of [32] and is given in Section 2.7.
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Theorem 2.2. LetP ∗(h) andJ∗(h) denote the Nash equilibrium solutions of the game described

by (2.3) and (2.4). Then the original game of (2.1), (2.2) has a Nash equilibrium point, which is

given by the following pair of strategies:

P̂ (h) =





P ∗(h) if C(P ∗(h), J∗(h)) ≥ R

Pa(h) if C(P ∗(h), J∗(h)) < R
(2.7)

Ĵ(h) =





Ja(h) if C(P ∗(h), J∗(h)) > R

J∗(h) if C(P ∗(h), J∗(h)) ≤ R,
(2.8)

wherePa(h) andJa(h) are some arbitrary power allocations satisfying the respective power con-

straints. (Note that no particular improvements are obtained by settingPa(h) = Ja(h) = 0, since

only peak power constraints are in effect.)

The results are intuitive: if the ergodic capacity under the optimal jammer/transmitter strategies

is larger than the fixed rateR, reliable communication can be established over each frame, and

hence the probability of outage isPout = 0. In this case, the actual power allocation of the jammer

does not matter anymore, since the jammer has already lost the game.

On the other hand, if the ergodic capacity is less thanR, outage occurs on all frames (Pout = 1),

and the actual transmitter strategy makes no difference. As will be shown in the next section,

enforcing average power constraints in this case gives the transmitter more freedom, and results in

a smaller outage probability.

2.3 CSI Available to All Parties. Jamming Game with Average
Power Constraints: Pure Strategies

In this section power constraints are imposed over a large number of frames rather than on each

frame. The transmitter and jammer may increase their transmission and jamming powers over any

frame fromP to PM , and fromJ to JM , respectively. To satisfy the average power constraints
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imposed byP andJ , less power has to be allocated to other frames. We shall prove that for both

players, the optimal way to control the power allocation between frames is to employ ON/OFF

strategies. Since all frames are equivalent from the point of view of their corresponding channel

realizations, the manner in which the “discarded” codewords are picked is somewhat random.

However, note that this type of randomization only aims at ensuring that a possibly largerPM

or JM is obtained. We don’t consider mixing strategies in this section [33]. Although each player

picks up a frame randomly, we assume this is known by its opponent when considering the maxmin

and minimax problems as formulated below. That is, the maximin scenario assumes the transmitter

has perfect non-causal access to the jammer’s strategy (we say the jammer “plays first”), while the

minimax case assumes the jammer has perfect, non-causal access to the transmitter’s strategy (we

say the transmitter “plays first”). The first player in the minimax or maxmin cases is always more

vulnerable in the sense that the follower has the freedom to adapt its strategy such that it minimizes

the first player’s payoff.

The minimax scenario is the more practical one. In addition to being pessimistic from the sys-

tem designer’s point of view, it accurately models the situation where the jammer (who is not

interested in exchanging any information of its own) listens to the feedback carrying the channel

coefficients and senses the transmitter’s presence and power level, hence estimating the transmit-

ter’s strategy. The maximin scenario is not of less importance, since it is required for determining

the non-existence of a Nash equilibrium and for comparison with the minimax approach.

An important remark should be made here. We shall prove in the sequel that under both the pure

strategies and the mixed strategies scenarios, the optimal power allocation over a frame is done

similarly. Therefore, the major difference between the two cases is in the strategies of allocating

power to different frames. We should note that it is easier for one of the players to detect the

presence of the other player over a frame, than to estimate the other player’s transmission power.

Under the minimax solution of pure strategies, the jammer only needs to detect the presence of

the transmitter (the optimal strategies are of ON/OFF type) to have complete information about
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the transmitter’s behavior. However, if the transmitter chose to use mixed strategies, a complete

characterization of its behavior would require not only knowledge about its presence, but also

about the power it decided to allocate to that frame.

The average power constrained jamming game can be formulated as:

Tx





Minimize Pr(C(P (h), J(h)) < R)

Subject to E[PM ] ≤ P
(2.9)

Jx





Maximize Pr(C(P (h), J(h)) < R)

Subject to E[JM ] ≤ J
(2.10)

wherePM andJM are defined as in (2.1), (2.2), the expectation is taken over all frames with respect

to the power allocation strategies introduced by the transmitter and jammer, andP andJ are the

upper-bounds on average transmission power of the source and jammer, respectively.

2.3.1 Power Allocation within a Frame

The game between transmitter and jammer has two levels. The first (coarser) level is about power

allocation between frames, and has the probability of outage as a cost/reward function. The prob-

ability of outage is determined by the number of frames over which the transmitter is not present

or the jammer is successful in inducing outage. This set is established in the first level of power

control which is investigated in detail in the next two subsections, but which cannot be derived

before the second level strategies are available.

The second (finer) level is that of power allocation within a frame. In this subsection we derive

the optimal second level of power allocation strategies for both maximin and minimax problems,

and show they are connected by a special kind of duality.

Note that decomposing the problem into several (two or three) levels and solving each one sepa-

rately does not restrict the generality of our solution. Our proofs are of a contradictory type. Instead

of directly deriving each optimal strategy, we assume an optimal solution has already been reached
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and show it has to satisfy a set of properties. We first assume these properties are not satisfied,

and then show that under this assumption there is room for improvement. Thus we prove that any

solution not satisfying our set of properties cannot be optimal (i.e. the properties are necessary).

We pick the properties in such a manner that they are sufficient for the complete characterization

of the optimal solution. That is, we make sure that the system of necessary properties has a unique

solution.

In the maximin case (when jammer plays first), assume that the jammer has already allocated

some powerJM to a given frame. Depending on the value ofJM , and its own power constraints,

the transmitter decides whether it wants to achieve reliable communication over that frame. If it

decides to transmit, it needs to spend as little power as possible (the transmitter will be able to

use the saved power for achieving reliable communication over another set of frames, and thus to

decrease the probability of outage). Therefore, the transmitter’s objective is to minimize the power

PM spent for achieving reliable communication over each frame. Note that if the jammer is present

over a frame, the value ofPM required to achieve reliable communication over that frame is a

function ofJM . However, the transmitter should attempt to minimize the requiredPM even when

the jammer is absent. The jammer’s objective is then to allocate the given powerJM over the frame

such that the requiredPM is maximized.

In the minimax scenario (when transmitter plays first) the jammer’s objective is to minimize the

powerJM used for jamming the transmission over a given frame. The jammer will only transmit

if the transmitter is present with somePM . The transmitter’s objective is to distributePM within a

frame such that the power required for jamming is maximized.

The two problems can be formulated as follows:

Problem 1(for the maximin solution - jammer plays first)

max
J(h)≥0

[
min

P (h)≥0
PM = Eh[P (h)], s.t.C(P (h), J(h)) ≥ R

]
s.t.Eh [J(h)] ≤ JM ; (2.11)
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Problem 2(for the minimax solution - transmitter plays first)

max
P (h)≥0

[
min

J(h)≥0
JM = Eh[J(h)], s.t.C(P (h), J(h)) ≤ R

]
s.t.Eh[P (h)] ≤ PM . (2.12)

Let m denote the probability measure introduced by the probability density function (p.d.f.)

of h, i.e., for a setA ⊆ R+, we havem(A ) =
∫

A
p(h)dh. Denotex(h) = J(h) + σ2

N . Note

that the expectation is defined asEh[f(h)] =
∫

h
f(h)p(h)dh. Similarly, we defineEh∈X [f(h)] =

∫
h∈X

f(h)p(h)dh.

Solution of Problem 1

The transmitter’s optimization problem:

min
P (h)≥0

Eh[P (h)], s. t.Eh

[
log

(
1 +

hP (h)

σ2
N + J(h)

)]
≥ R (2.13)

has linear cost function and convex constraints. Write the Lagrangian as:

L1 = Eh[P (h)]− λ

{
Eh

[
log

(
1 +

hP (h)

σ2
N + J(h)

)]
−R

}
. (2.14)

With the notationc = exp(R) , the resulting KKT conditions yield the unique solution [34]:

P (h) =

[
λ− x(h)

h

]

+

, h ∈ R+, (2.15)

where

λ = c
1

m(M′)

{
exp

[
Eh∈M ′

(
log

x(h)

h

)]} 1
m(M′)

, (2.16)

andM ′ ⊂ R+ is the set of channel coefficients over whichλ ≥ x(h)/h, and[z]+ = max{z, 0}.
We say the transmitter is “non-absent” overM ′, and “absent” onR+ \M ′.

The following proposition, the proof of which is given in Section 2.8.1, states that the jammer

should only be present where the transmitter is non-absent.
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Proposition 2.3. The jammer should only transmit where the transmitter is ”non-absent”. Other-

wise, ifJ(h) > 0 andλ < x(h)/h for h in some setS ⊂ R+, the jammer can decreaseJ(h) over

h ∈ S and maintain the same required transmitter power over the frame.

Substituting (2.16) in (2.13), the jammer’s problem can be formulated as:

Find max
x(h)≥σ2

N

c
1

m(M′) m(M ′) ·
{

exp

[
Eh∈M ′

(
log

x(h)

h

)]} 1
m(M′)

− Eh∈M ′

(
x(h)

h

)
(2.17)

subject toEh[x(h)] ≤ (JM + σ2
N) (2.18)

Since the setM ′ depends on the jammer power allocationJ(h), solving the optimization prob-

lem above analytically is difficult. This is why we next provide an alternative method for finding the

solution. Our method examines the properties of the setsM ′ over which the transmitter is present

andM ′′ over which the jammer is present, as well as those of the optimal transmitter/jammer

strategies.

Fixing M ′, the Lagrangian for the jammer’s optimization problem can be written as

L2 = −PM + µ
{
Eh[x(h)]− (JM + σ2

N)
]
. (2.19)

This yields the new KKT conditions:

1

x(h)

{
exp

[
Eh∈M ′

(
log

x(h)

h

)]} 1
m(M′)

c
1

m(M′) − 1

h
− µ = 0 for h ∈ M ′′, (2.20)

Eh∈M ′′x(h) = JM + σ2
Nm(M ′′), (2.21)

µ ≥ 0, (2.22)

whereM ′′ is the set of channel coefficients on which the jammer transmits non-zero power.

For fixedM ′ andM ′′, the jammer’s optimal strategy has to satisfy these KKT conditions. The

resulting optimal strategy is

x(h) =
h

1 + µh

{
c exp

[
Eh∈M ′

(
log

x(h)

h

)]} 1
m(M′)

. (2.23)
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FIGURE 2.2. Optimal second level power control strategies

The expression above states that for any two channel realizations with coefficientshi, hj be-

longing toM ′′, we have

x(hi)

hi

≥ x(hj)

hj

⇔ hi ≤ hj ⇔ x(hi) ≤ x(hj). (2.24)

Note that for any two channel realizationshi, hj /∈ M ′′ (i.e.x(hi) = x(hj) = σ2
N ) we also have

x(hi)

hi

≥ x(hj)

hj

⇔ hi ≤ hj. (2.25)

The following proposition brings more insight into the optimal jamming strategy. Its proof is

deferred to Section 2.8.2.

Proposition 2.4. The optimal jamming strategy is such thatx(h)/h is a continuous decreasing

function ofh over all ofR+, andM ′′ is of the formM ′′ = [h∗,∞). Moreover, this implies that

M ′ is of the formM ′ = [h0,∞).

The optimal transmitter/jammer strategies for allocating power over a frame are described in

Figure 2.2.

Substituting (2.23) into (2.16), we get a new expression forλ:

λ =
x(h)

h
(1 + µh), for h ∈ M ′′ (2.26)

which together with (2.15) yields

P (h) = µx(h), for h ∈ M ′′. (2.27)
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An interesting remark which supports the results of the next subsection is that, for the optimal

solution ofProblem 1, µ has to be strictly greater than zero, hence eliminating the possibility that

the jammer allocates positive power to frames where the transmitter, although “non-absent”, could

allocate zero power. In Section 2.8.2 it is shown how this remark follows from Proposition 2.4.

Taking expectation overh ∈ M ′′ in (2.23), and using the constraint (2.21), we get

x(h) =
JM + m(M ′′)σ2

N
1+µh

h
Eh∈M ′′ h

1+µh

, (2.28)

for h ∈ M ′′ andx(h) = σ2
N for h /∈ M ′′.

To solve forµ, substitute (2.28) into (2.23):

[
JM + m(M ′′)σ2

N

Eh∈M ′′ h
1+µh

]m(M ′)−m(M ′′)

=

= c exp

[
Eh∈M ′′

(
log

1

1 + µh

)]
· exp

[
Eh∈M ′−M ′′

(
log

σ2
N

h

)]
. (2.29)

The second level power allocation solution for the maximin problem is thus completely de-

termined by the triple(M ′,M ′′, µ), or equivalently by(h0, h∗, µ). By Proposition 2.4 above,

x(h∗) = σ2
N (by continuity inh∗), andλ = σ2

N/h
0. Rearranging these two relations, along with

(2.29) in a more convenient form, we obtain the following system of equations, which has to hold

for any solution to our problem:

h0 =
h∗

1 + µh∗
, (2.30)

JM

σ2
N

=

∫ ∞

h∗

(
h

1+µh

h∗
1+µh∗

− 1

)
p(h)dh, (2.31)

R =

∫ h∗

h∗
1+µh∗

log

(
h

1 + µh∗

h∗

)
p(h)dh−

∫ ∞

h∗
log

(
1

1 + µh

)
p(h)dh. (2.32)

The equations above lead to the following result:
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Proposition 2.5. The solution of the maximin second level power allocation problem is unique.

Proof. It is easy to see that the right hand side of (2.31) is a strictly decreasing function ofh∗,

for fixed µ, and a strictly decreasing function ofµ, for fixedh∗, while being equal to a constant.

Hence, for givenJM , (2.31) yieldsµ as a strictly decreasing function ofh∗.

Similarly, the right hand side of (2.32) is a strictly decreasing function ofh∗, for fixedµ, and a

strictly increasing function ofµ, for fixedh∗, while being equal to a constant. Hence, (2.32) yields

µ as a strictly increasing function ofh∗.

Since (2.31) and (2.32) have to be satisfied simultaneously by any solution, the solution has to

be unique.

Another insightful remark that follows from (2.30)–(2.32) is that asJM increases, bothµ andh∗

should be decreasing.

The following proposition, characterizing thePM(JM) function, is necessary for deriving the

optimal power allocation between frames in the next section. The proof is deferred to Section

2.8.3.

Proposition 2.6.Under the optimal maximin second level power control strategies, the “required”

transmitter powerPM over a frame is a strictly increasing, unbounded and concave function of the

powerJM that the jammer invests in that frame.

Throughout the remainder of this chapter, we shall denote byPM(JM) the function that char-

acterizes the “required” transmitter power over a frame where the jammer invests powerJM , in the

maximin case.

Solution of Problem 2

To solve the minimax intra-frame power allocation problem by using the same techniques as in

Problem 1turns out to be more difficult. Instead we use the above solution ofProblem 1and show

that for both problems, the second level power allocation follows the same rules.

26



Theorem 2.7. If JM,1 is the value used for the second constraint inProblem 1above, andPM,1 is

the resulting value of the cost/reward function, then solvingProblem 2with PM = PM,1 yields the

cost/reward functionJM = JM,1. Moreover, any pair of second level power allocation strategies

that makes an optimal solution ofProblem 1, should also make an optimal solution ofProblem 2,

and this also holds conversely.

Proof. The result is a direct consequence of Theorem 2.21 in Section 2.8.4, if we denotex = P (h),

y = J(h), f(x) = Eh[P (h)], g(y) = Eh[J(h)] andh(x, y) = C(P (h), J(h)).

We shall denote byJM(PM) the function that characterizes the “required” jamming power over

a frame where the transmitter invests powerPM , in the minimax case. By Theorem 2.7, we have

thatJM(PM(JM)) = JM andPM(JM(PM)) = PM .

Further comments on the power control within frames

Although the second level optimal power allocation strategies for the maximin and minimax

problems coincide, this result should not be associated to the notion of Nash equilibrium, since the

two problems solved above do not form a zero-sum game, while for the game of (2.9) and (2.10),

first level power control strategies are yet to be investigated.

Instead, the result should be interpreted as a form of duality. In fact, a much stronger result

can be observed as a consequence of Theorem 2.21. Namely, a similar “duality” property links

Problem 1andProblem 2above to the auxiliary problem of (2.3) and (2.4) appearing in the peak

power constraints scenario. This explains the resemblance between the solution of the peak power

constraints auxiliary problem (2.6) and the solution ofProblem1(2.26), (2.27).

Also, this common solution implies thatP (h) = µ(J(h) + σ2
N) over the setM ′′ of channel

realizations where both jammer and transmitter are present. Although the transmitter is also active

over the set of nonzero measureM ′ \M ′′ as in Figure 2.2, under practical conditions the measure

m(M ′ \M ′′) of this set is relatively small. This is the reason why thePM(JM) curve appears to

be linear (although it is not) in Figure 2.3 of the numerical results section.
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2.3.2 Power Allocation between Frames

The Maximin Solution

In this subsection we present the first level optimal power allocation strategies for the maximin

problem. Recall that all frames are equivalent in the sense that they are all characterized by the

same channel realizations (although not necessarily occurring in the same chronological order).

The maximin scenario assumes that the transmitter is completely aware of the jammer’s power

control strategy (only pure strategies are considered in this section). Given a jammer’s strategy that

allocates different jamming powers to different frames, the optimal way of allocating the transmit-

ter’s power is always to ensure that reliable communication is obtained on the frames that require

the least amount of transmitter power. The jammer’s optimal strategy (which is based solely on

this knowledge about the transmitter’s strategy) is presented in the following theorem.

Theorem 2.8. Under the maximin scenario it is optimal for the jammer to allocate the same

amount of powerJM = J to all frames.

Proof. The proof relies on the concavity ofPM(JM). Consider the optimal maximin inter-frame

power allocation strategies. LetS ,X denote the sets of frames over which the transmitter and the

jammer are present, respectively. Note that the jammer can itself compute the optimal transmitter

strategy in response to its own, and hence is fully informed of the transmitter’s response.

We first look at the set of framesS where the transmitter is active. Denote the power invested

by the jammer in this set byJS . Note thatP is the average “required” transmitter power overS .

If the two players’ strategies are both optimal, then by modifying the allocation ofJS over the

frames ofS , the new average “required” transmitter power overS can only be less than or equal

to P. In other words, if we denote byjM the generic power level allocated by the jammer to a

frame inS , then

P = max
jM

∫

S

PM(jM)djM (2.33)
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subject to
∫

S

jMdjM = JS . (2.34)

By writing the KKT conditions for the maximization problem in (2.33) and (2.34) above, it is

straightforward to see that, at an optimum,dPM (jM )
djM

should be constant all overS . Taking into

account the fact thatPM(jM) is concave, we have that a uniform jamming power allocation of

JS overS achieves this optimum.

We next look at the set of framesX \S where the transmitter cannot afford to be active. This

means that the “required” transmitter power overX \ S is greater than or equal toPM(JS ),

or equivalently, the power invested by the jammer is greater than or equal toJS . But since the

jammer already knows the transmitter’s strategy, investing more thanJS in any of the frames of

X \ S would be a waste. Therefore, under the optimal maximin inter-frame power allocation

strategies, the jammer can invest the same amount of power into all the frames ofX
⋃

S (which

meansS ⊂ X ). But since the transmitter decides to match the required transmitter power onS ,

there can be no frames where the jammer is not active, and henceX is the set of all frames.

The jamming power allocated to each frame isJM = J . In this case the transmitter faces an in-

different choice space. The power required for the transmitter to achieve reliable communication is

PM(JM). Hence, the transmitter’s optimal strategy is to randomly pick as many frames as possible

and allocate powerPM(JM) to each of them. This is equivalent to saying the transmitter is present

over a frame with probabilitypt, given bypt = P
PM (J )

. The resulting probability of outage is now

Pout = 1 − pt. Note that ifP ≥ PM(J ), the probability of outage can be reduced to zero. This

corresponds to the case when the ergodic capacity of the channel, computed in the conventional

way, with peak power constraints, is larger than the rateR.

The Minimax Solution

Theorem 2.7 showed that for the minimax problem the power allocation within a frame, as well

as the relationship between the total powers used by transmitter and receiver over a particular
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frame, are identical to the maximin problem. Hence, by rotating thePM(JM) plane, we get the

characteristicJM(PM) curve for the minimax problem.

The minimax scenario assumes that the jammer knows exactly when and with what power level

the transmitter transmits. Given a transmitter’s strategy that allocates different powers to different

(equivalent) frames, the optimal way of allocating the jammer’s power is such that outage is first

induced on the frames that require the least amount of jamming power. Under these conditions, the

transmitter’s optimal strategy is presented in the following theorem.

Theorem 2.9. Under the minimax scenario it is optimal for the transmitter to transmit over a

maximum number of frames, with the same powerPM that minimizes the probability of outage.

Proof. The proof relies on the convexity ofJM(PM). Consider the optimal minimax inter-frame

power allocation strategies, and letS ,X denote the sets of frames over which the transmitter and

the jammer are present, respectively. It is clear in this scenario thatX ⊂ S .

We first look at the set of framesX where the jammer is active. Denote the power invested by

the jammer in this set byJX , and the power invested by the transmitter byPX . Note thatJX is

the average “required” jamming power overX .

If the two players’ strategies are both optimal, then by modifying the allocation ofPX over the

frames ofX , the new average “required” jamming power overX can only be less than or equal

to JX . In other words, if we denote bypM the generic power level allocated by the transmitter to

a frame inX , then

JX = max
pM

∫

X

JM(pM)dpM (2.35)

subject to

∫

X

pMdpM = PX . (2.36)

From the KKT conditions for the maximization problem in (2.35) and (2.36) above, we see

that, at an optimum,dJM (pM )

dpM
should be constant all overX . Taking into account the fact that
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JM(pM) is convex, we have that a uniform transmitter power allocation ofPX overX achieves

this optimum.

We should emphasize here that the above arguments holdunder the assumption that the jammer

is active over the whole setX , i.e. whenJM(pM) > 0 overX . Of course, the overall required

jamming power is increased by increasing the transmitter power over some frames ofX , while

neglecting the others. But this action modifies the setX itself, and thus the initial assumptions.

We next look at the set of framesS \ X where the jammer cannot afford to be active. This

means that the “required” jamming power overS \X is greater than or equal toJM(PX ), or

equivalently, the power invested by the transmitter is greater than or equal toPX . But since the

transmitter already knows the jammer’s strategy, investing more thanPX in any of the frames of

S \X would be a waste.

Therefore, under the optimal maximin inter-frame power allocation strategies, the transmitter

can invest the same amount of power into all the frames ofS .

The frames over which the transmitter allocates the optimalPM can be chosen at random. This

is equivalent to the transmitter being active over a frame with probabilitypt given bypt = P
PM

.

Searching for the optimalPM is equivalent to searching for the optimalpt.

The jammer’s strategy is to attack as many of the frames where the transmitter is present as

possible. In order to induce outage over these frames, the jammer needs to allocateJM(PM) to

each of them. This is equivalent to the jammer transmittingJM(PM) on a frame on which the

transmitter is present, with probabilitypj given bypj = J
ptJM (PM )

. Note thatpj represents the

conditional probability that the jammer transmits over a frame, given that the transmitter is present

over that frame. Outage over a frame occurs in two circumstances: either the transmitter (and

consequently also the jammer) decides to ignore the frame, or the transmitter attempts to transmit

the corresponding codeword, but the jammer is present (and since this is the minimax scenario, it

is also successful).
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The resulting probability of outage isPout = (1− pt) + pjpt or, only as a function ofPM :

Pout = (1− P
PM

) +
J

JM(PM)
. (2.37)

The transmitter finds the optimal value ofPM as the argument that minimizesPout above. A nu-

merical approach should perform exhaustive search with the desired resolution in the interval

[P , PM,max], wherePM,max can be set such that∀PM > PM,max we havePout(PM) > 1 − ε

for a fixedε. SincePout → 1 asPM → ∞ independently of theJM(PM) curve, such a finite

boundPM,max exists for anyε.

Note that if thePM(JM) curve is strictly concave, the jammer can never achieve an outage

probabilityPout = 1. This is because the transmitter can invest all its power over a small enough

set of frames, such that the jamming power required to jam all the frames in this set exceeds the

jammer’s power budget. If however the probability measurem is chosen such thatPM(JM) is an

affine function of the formPM = PM,0 + 1/θJM , and furthermore ifJ ≥ θ(P − PM,0), then

J
JM (PM )

≥ P−PM,0

PM−PM,0
≥ P

PM
for all values ofPM , and the probability of outage becomesPout = 1.

2.3.3 Some Numerical Results

An example of thePM(JM) curve is given in Figure 2.3 for a fixed rateR = 2, noise power

σ2
N = 10 and a channel coefficient distributed exponentially, with parameterλ = 1/6.

For the same parameters used to generate Figure 2.3, the probability of outage was computed

for a jammer power constraintJ = 10 and different values of the transmitter power constraint

P. The results were plotted in Figure 2.4. For comparison, the same figure showsPout(P) for the

case when the jammer does not use any power control strategy (non-intelligent jammer). Since the

jammer’s first level of power control for the maximin scenario reduces to uniformly distributing

the available power to all frames, the only difference between the maximin scenario and the non-

intelligent jammer scenario is in the power allocation within frames. However, as seen from Figure

2.4, this difference is almost negligible.
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FIGURE 2.3.PM vs.JM curve whenR = 2, σ2
N = 10 andh is distributed exponentially, with parameter

λ = 1/6.

Figure 2.5 shows how the outage probability varies with the rateR, for fixed power constraints

P = 30 andJ = 10. ThePout(R) curves delimitate the achievable capacity vs. outage regions for

both peak power constraints and average power constraints (minimax and maximin cases).

Note that even for the minimax solution of the average power constraints problem, there exist

values ofP (Figure 2.4), or of the rateR (Figure 2.5) for which the outage probability is less than

that achievable under peak power constraints.

Also note that the maximin curve coincides with the peak power constraints curve at large trans-

mitter power (in Figure 2.4) or at small rates (in Figure 2.5). Recall that the jammer’s strategy in the

maximin scenario is the same as in the peak power constraints scenario (i.e. the jammer allocates

the same amount of powerJ to each frame). Due to the favorable conditions in the regions charac-

terized by largeP or smallR, the transmitter can also spread its power uniformly over all frames

(just like in the peak power constraints scenario), overcoming the jammer completely (hence the

resulting zero probability of outage).
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FIGURE 2.4. Outage probability vs. transmitter power constraintP whenJ = 10, R = 2, σ2
N = 10 andh

is distributed exponentially, with parameterλ = 1/6.

2.4 CSI Available to All Parties. Jamming Game with Average
Power Constraints: Mixed Strategies

In the previous section we studied the maximin and minimax solutions of the jamming game when

only pure strategies were allowed. Implicitly, we assumed that the power control strategies em-

ployed by the first player are perfectly known to the second player, even if they include a form

of ON/OFF randomization. We made a case that such a situation as the minimax case can emerge

when the jammer does not transmit unless it senses that the transmitter is on (and it can always

serve as a pessimistic scenario for the transmitter).

However,our previous assumption may sometimes be inappropriate from a practical point of

view. For example, if the transmitter does not stick with the optimal minimax solution, the jammer

may have a hard time following the transmitter’s behavior. The reason for this is that, as we have

already mentioned, the jammer would find it much harder to correctly estimate the amount of power

that the transmitter invests in a given frame, than to just detect the presence of the transmitter.
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FIGURE 2.5. Outage probability vs. rate forP = 30, J = 10, σ2
N = 10 andh is distributed exponentially,

with parameterλ = 1/6.

In this section we investigate the jamming game with average power constraints when mixed

(probabilistic) strategies are considered. Similarly to the pure strategies scenario of the previous

section, this game is played on two levels, with the first (coarser) level dealing with power allo-

cation between frames. Its cost/reward function is the probability of outage. We assume that the

jammer’s and transmitter’s randomized strategies consist of picking the power values to be invested

over a frame in a random manner. In our previous notation,PM andJM are now random variables,

and each frame is characterized by a realization(pM , jM) of the pair(PM , JM).

Given this realization, each player has to distribute its power over the frame in an optimal way.

This is the purpose of the second (finer) level of power control. The objective of each player at

this level is to make the best of the available resources (i.e. the powers(pM , jM)). This means

maximizing (or minimizing, respectively) the average rate supported by the frame, in the hope that

the resulting average rate will be above (or below, respectively) the system’s fixed rateR.
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2.4.1 Power Allocation within a Frame

We can formulate the second level of power control similarly to the two-player, zero-sum game of

(2.3) and (2.4) having the ergodic capacity calculated over a frameC(P (h), J(h)) as cost func-

tion. The difference is that under the current scenario, none of the players knows the other player’s

constraints, because(PM , JM) is a random event. Theorem 2.10 below provides the optimal trans-

mitter/jammer strategies for power allocation within a frame.

Theorem 2.10. Given a realization(pM , jM) of (PM , JM), let PM(jM) denote the solution of

Problem 1in Section 2.3 withJM = jM , and JM(pM) denote the solution ofProblem 2in

Section 2.3 withPM = pM .

The transmitter’s optimal strategy is the solution of the game in (2.3) and (2.4), where the jam-

mer is constrained toEh[J(h)] ≤ JM(pM) and the transmitter is constrained toEh[P (h)] ≤ pM .

The jammer’s optimal strategy is the solution of the game in (2.3) and (2.4), where the transmitter

is constrained toEh[P (h)] ≤ PM(jM) and the jammer is constrained toEh[J(h)] ≤ jM .

Note that each of the two players deploys the strategy that results from the most pessimistic

scenario that it can handle successfully.

Proof. Denote the solution of the game in (2.3) and (2.4), where the jammer is constrained to

Eh[J(h)] ≤ JM(pM) and the transmitter is constrained toEh[P (h)] ≤ pM by (P1(h), J1(h)),

and the solution of the game in (2.3) and (2.4), where the transmitter is constrained toEh[P (h)] ≤
PM(jM) and the jammer is constrained toEh[J(h)] ≤ jM by (P2(h), J2(h)).

Denote the solution of the game in (2.3) and (2.4), where the jammer is constrained toEh[J(h)] ≤
jM and the transmitter is constrained toEh[P (h)] ≤ pM by (P0(h), J0(h))..

By the duality property of Theorem 2.21 in Section 2.8.4, we must haveC(P1(h), J1(h)) = R

andC(P2(h), J2(h)) = R.

We will show that (i) even if mixed strategies are considered for the game in (2.3) and (2.4), any

Nash equilibrium has the same value as the Nash equilibrium of pure strategies; (ii) even if the
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jammer’s powerjM is different fromJM(pM), the transmitter’s strategy is still optimal; (iii) even

if the transmitter’s powerpM is different fromPM(jM), the jammer’s strategy is still optimal.

(i): Since the game of (2.3) and (2.4) is a two-person zero-sum game, all Nash equilibria of

mixed strategies yield the same value of the cost/reward function [33]. Moreover, the two players

are indifferent between all equilibria. It was shown in [9] that this game has a Nash equilibrium

of pure strategies. But any equilibrium of pure strategies is also an equilibrium of mixed strategies

[33] and hence it is enough to consider the equilibrium of pure strategies found in [9].

(ii),(iii): Assume the transmitter plays the strategy given byP1(h).

If jM = JM(pM), it is clear that the optimal solution for both transmitter and jammer is the

solution of the game in (2.3) and (2.4), where the jammer is constrained toEh[J(h)] ≤ jM and the

transmitter is constrained toEh[P (h)] ≤ pM . In this case, it is as if each player knows the other

player’s power constraint.

If jM < JM(pM), then by Lemma 2.16 in Section 2.8.3 we have thatJ0(h) < J1(h). Since

C(P (h), J(h)) is a strictly decreasing function ofJ(h) (under the order relation defined in Section

2.8.4), this implies thatC(P1(h), J0(h)) > R. Note thatJ0(h) is the jammer’s strategy when the

jammer knows the transmitter’s power constraintpM . Thus we have shown that when the transmit-

ter playsP1(h) andjM < JM(pM), the jammer cannot induce outage over the frame even if it

knew the value ofpM .

The conditionjM > JM(pM) is equivalent topM < PM(jM) (by Theorem 2.21). In this case,

since the jammer plays the strategy given byJ2(h), a similar argument as above (but this time

applied to the transmitter’s strategy) shows that the transmitter cannot achieve reliable communi-

cation over the frame even if it knew the exact value ofjM .

This accomplishes the proof and shows that(P1(h), J2(h)) is a Bayes equilibrium [33] for the

game with incomplete information describing the power allocation within a frame.
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2.4.2 Power Allocation between Frames

Due to the form of the optimal second level power allocation strategies described in the previous

subsection, the outage probability can be expressed as

Pout = Pr{JM ≥ JM(PM)} = 1− Pr{PM ≥ PM(JM)}, (2.38)

wherePM(JM) is the strictly increasing, unbounded and concave function of Proposition 2.6.

The optimal mixed strategies for power allocation between frames are presented in the following

theorem.

Theorem 2.11.The unique Nash equilibrium of mixed strategies of the two-player, zero-sum game

with average power constraints described in (2.9) and (2.10) is attained by the pair of strategies

(FP (pM), FJ(jM)) satisfying:

FP (PM(y)) ∼ kpU([0, 2v])(y) + (1− kp)∆0(y), (2.39)

FJ(JM(x)) ∼ kjU([0, JM(2v)])(x) + (1− kj)∆0(x), (2.40)

whereU([r, t])(·) denotes the CDF of a uniform distribution over the interval[r, t], and ∆0(·)
denotes the CDF of a Dirac distribution (i.e. a step function), and the parameterskp, kj ∈ [0, 1]

andv ∈ [max{J ,JM(P)/2},∞) are uniquely determined from the following steps:

1. Find the unique valuev0 which satisfies:

PJ = [PM(2v0)−P ](2v0 − J ). (2.41)

2. ComputeS(v0) =
∫ 2v0

0
PM(y)dy − 2v0P.

3. If S(v0) < 0, thenv is the unique solution of

∫ 2v

0

PM(y)dy − 2vP = 0, (2.42)
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kp = 1 (2.43)

and

kj =
JPM(2v)

2v[PM(2v)− P ]
. (2.44)

4. If S(v0) = 0 thenv = v0, kp = kj = 1.

5. If S(v0) > 0, thenv is the unique solution of

∫ 2v

0

PM(y)dy −PM(2v)(2v − J ) = 0, (2.45)

kp =
2vP

PM(2v)[2v − J ]
(2.46)

and

kj = 1. (2.47)

Proof. The proof follows directly from Theorem 2.22 in Section 2.9, by substitutingx = PM ,

y = JM , g(y) = PM(y), g−1(x) = JM(x), a = P andb = J . It is also interesting to note that

the condition
∫ b

0
g(y)dy < limz→∞

∫ g(z)

g(b)
g−1(x)dx− b[g(z)− g(b)] is satisfied becausePM(y) is

unbounded (Proposition 2.6).

2.4.3 Numerical Results

For the same parameters as in subsection 2.3.3 we evaluated numerically the optimal probabilis-

tic power control strategies. Figure 2.6 shows the probability of outage obtained under the mixed

strategies Nash equilibrium, versus the transmitter power constraintP, for a fixed rateR = 2,

noise powerσ2
N = 10, a jammer power constraintJ = 10 and a channel coefficient distributed

exponentially, with parameterλ = 1/6. All the previously obtained curves are shown for compar-

ison.
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FIGURE 2.6. Outage probability vs. transmitter power constraintP whenJ = 10, R = 2, σ2
N = 10 andh

is distributed exponentially, with parameterλ = 1/6.

Figure 2.7 shows the same probability of outage whenP = 30 and the system rateR is varied.

In both figures it can be seen that the system performance under the Nash equilibrium of mixed

strategies is better (from the transmitter’s point of view) than the minimax and worse than the

maximin solutions of the pure strategies game. This is expected since the pure strategies solutions

assume that the second player (the “follower”) is constantly at a disadvantage with the first player

(the “leader”).

2.5 CSI Available to Receiver Only. Jamming Game with
Average Power Constraints: Mixed Strategies

In this section we investigate the scenario when the receiver does not feed back any channel state

information. Since we have already shown that the long term power constraints problem is the more

interesting and challenging one, we further focus only on the scenario of average power constraints

and mixed strategies. As in the previous sections, we have to discuss two levels of power control:

within a frame and between frames.
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FIGURE 2.7. Outage probability vs. rate forP = 30, J = 10, σ2
N = 10 andh is distributed exponentially,

with parameterλ = 1/6.

2.5.1 Power Allocation within a Frame

The jammer and transmitter powers allocated to each frame will be established in the next sub-

section. For now we are concerned with the optimal power allocation within a frame, given the

amounts of power invested in that frame by each one of the players. For a given frame, denote

these powers byPM andJM , to be consistent with our previous notation. Both the transmitter and

the jammer will choose a probability distribution for the randomly variable power levelsP andJ ,

respectively, such thatEPP ≤ PM andEJJ ≤ JM , where the notationsEP andEJ denote the ex-

pectations with respect to these probability distributions. For the generic channel use, the channel

coefficienth, the transmitter’s powerP and the jammer’s powerJ are all independent random vari-

ables, which yield the randomly variable instantaneous mutual informationlog
(
1 + hP

J+σ2
N

)
. For

a frame, this results in the ergodic capacityEh,P,J log
(
1 + hP

J+σ2
N

)
, whereEh denotes expectation

with respect to the channel coefficient.

The transmitter’s purpose is to use the allocated powerPM in an attempt to make this ergodic

capacity larger than the rateR. Similarly, the jammer is concerned with usingJM for making the
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ergodic capacity fall belowR. The problem of allocating the power within the frame can be written

as:

max
P :EP P≤PM

min
J :EJJ≤JM

Eh,P,J log

(
1 +

hP

J + σ2
N

)
. (2.48)

DenoteL(P, J) = Eh log
(
1 + hP

J+σ2
N

)
and let us observe that

dL

dP
= Eh

h

Ph+ J + σ2
N

> 0, (2.49)

dL

dJ
= −Eh

Ph

(Ph+ J + σ2
N)(J + σ2

N)
< 0, (2.50)

d2L

dP 2
= −Eh

(
h

Ph+ J + σ2
N

)2

< 0, (2.51)

d2L

dJ2
= Eh

Ph(Ph+ 2J + 2σ2
N)

[J2 + J(Ph+ 2σ2
N) + σ2

N(Ph+ σ2
N)]2

> 0, (2.52)

which implies thatL(P, J) is a strictly increasing, concave function ofP for fixedJ , and a strictly

decreasing, convex function ofJ for fixedP .

Thus, we can write

Eh,P log

(
1 +

hP

JM + σ2
N

)
≤ Eh log

(
1 +

hPM

JM + σ2
N

)
≤ Eh,J log

(
1 +

hPM

J + σ2
N

)
, (2.53)

and hence the uniform distribution ofPM andJM over the frame achieves a Nash equilibrium. A

frame to which the transmitter allocates powerPM and the jammer allocates powerJM is in outage

if and only if

Eh log

(
1 +

hPM

JM + σ2
N

)
≤ R. (2.54)

The probability of this event depends on the power allocation between frames and is the subject of

the first level of power control treated in the next subsection.

But before we get to that, we need to make several comments. Note that if we force equality in

(2.54) above, we obtain aP ′
M(JM) curve as in Section 2.3. It is straightforward to see that the

42



P ′
M(JM) curve is affine, because solving (2.54) with equality yieldsPM = µ′(JM + σ2

N) where

µ′ is the (unique) solution ofEh log (1 + µ′h) = R. Recall that the curvePM(JM) of Section 2.3

(with full CSI) is almostaffine due to the fact that the measure of the set of channel realizations,

within a frame, over which the transmitter is present but the jammer is not, is often quite small. For

this reason, we expect theP ′
M(JM) and thePM(JM) curves to be very close to each other.

Although the two curves are still different in general, they have the same physical interpretation:

if the jammer invests powerjM over a frame, and the powerpM invested by the transmitter satisfies

pM < P ′
M(jM), then the frame is in outage. Otherwise, ifpM > P ′

M(jM), the frame supports

the asymptotically error-free decoding of the transmitted codeword.

As in Section 2.3, we shall denote byJ ′
M(PM) the “inverse” of theP ′

M(JM) function, or the

symmetric of theP ′
M(JM) curve with respect to the first bisector.

2.5.2 Power Allocation between Frames

The arguments of this subsection are very similar to those of Subsection 2.4.2 and will not be

discussed in great detail. We have seen that the outage probability can be expressed as

Pout = Pr{JM ≥ J ′
M(PM)} = 1− Pr{PM ≥ P ′

M(JM)}, (2.55)

whereP ′
M(JM) is an affine, and hence strictly increasing and unbounded function of the form

P ′
M(JM) = µ′JM +µ′σ2

N . The optimal mixed strategies for power allocation between frames are

presented in the following theorem.

Theorem 2.12.The unique Nash equilibrium of mixed strategies of our two-player, zero-sum game

with average power constraints is attained by the pair of strategies(FP (pM), FJ(jM)) satisfying:

FP (x) ∼ kpU([µ′σ2
N , 2vµ

′ + µ′σ2
N ])(x) + (1− kp)∆0(x),

FJ(y) ∼ 2v

2v + σ2
N

kjU([0, 2v])(y) + (1− 2v

2v + σ2
N

kj)∆0(y),
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whereU([r, t])(·) denotes the CDF of a uniform distribution over the interval[r, t], and ∆0(·)
denotes the CDF of a Dirac distribution (i.e. a step function), and the parameterskp, kj ∈ [0, 1]

andv ∈ [max{J ,J ′
M(P)/2},∞) are uniquely determined from the following steps:

1. If

P ≥ µ′σ2
N +

1

2
µ′J


1 +

√
1 +

2σ2
N

J


 , (2.56)

then

v =
P − µ′σ2

N

µ′
, (2.57)

kp = 1 (2.58)

and

kj =
µ′J (2P − µ′σ2

N)

2(P − µ′σ2
N)2

. (2.59)

2. If

P < µ′σ2
N +

1

2
µ′J


1 +

√
1 +

2σ2
N

J


 , (2.60)

then

v =
1

2
J


1 +

√
1 +

2σ2
N

J


 , (2.61)

kp =
2vP

µ′(2v + σ2
N)(2v − J )

(2.62)

and

kj = 1. (2.63)

Proof. The proof follows directly from Theorem 2.22 in Section 2.9, by substitutingx = PM ,

y = JM , g(y) = P ′
M(y), g−1(x) = J ′

M(x), a = P andb = J . It is also interesting to note that

the condition
∫ b

0
g(y)dy < limz→∞

∫ g(z)

g(b)
g−1(x)dx− b[g(z)− g(b)] is satisfied becauseP ′

M(y) is

unbounded.
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2.5.3 Numerical Results

In this subsection we provide the numerical evaluation of our system’s performance when no chan-

nel state information is fed back by the receiver. The parameters are identical to those used in the

numerical evaluation of the previous sections.

The newPM(JM) curve is given in Figure 2.8. It can be seen that for a given jamming power

allocated to a frame, the transmitter power required to ensure asymptotically error-free transmis-

sion over that frame is only slightly larger if no CSI is fed back than when full CSI is available to

all parties.
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FIGURE 2.8.PM vs.JM curve with and without CSI feedback whenR = 2, σ2
N = 10 andh is distributed

exponentially, with parameterλ = 1/6.

This observation explains the very small difference in achievable outage probabilities that can

be observed in Figures 2.9 and 2.10.

2.6 Conclusions

We have shown that for a high transmission rateR the jammer could have enough power to keep the

ergodic capacity belowR. In this scenario, if the transmitter imposes average power constraints
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FIGURE 2.9. Outage probability vs. transmitter power constraintP with and without CSI feedback when
J = 10, R = 2, σ2

N = 10 andh is distributed exponentially, with parameterλ = 1/6. (Mixed strategies.)

rather than peak power constraints, reliable communication is possible at the cost of a non-zero

probability of outage.

If both transmitter and jammer use average power constraints, their optimal strategies result as

solutions of a two-person zero-sum game. This game is played on two levels of power control. The

second level (power control within a frame) exhibits similar strategies for the pure (maximin and

minimax cases) and mixed strategies scenarios. However in the pure strategies scenario, maximin

and minimax first level power control (between frames) is generally done differently, implying

the non-existence of a Nash equilibrium. A Nash equilibrium was derived for the mixed strategies

scenario, placing the value of the objective function between those of the minimax and maximin

pure strategies solutions.

Although it may seem that the mixed strategies game makes more sense from a practical point

of view, the pure strategies minimax scenario may be a more appropriate model for the case when

the jammer does not attempt to jam unless it senses that the transmitter is on. In any circumstances,

the minimax scenario with pure strategies serves as a lower bound (the pessimistic approach) to

the system’s performance.
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FIGURE 2.10. Outage probability vs. rate with and without CSI feedback forP = 30, J = 10, σ2
N = 10

andh is distributed exponentially, with parameterλ = 1/6.(Mixed strategies.)

The feedback of CSI by the legitimate receiver is known to bring benefits (in terms of achiev-

able transmission rate) when nobody attempts to jam the transmission. However, for a fast fading

AWGN channel, these improvements are shown to be marginal [35]. We have shown that a sim-

ilar conclusion holds (this time in terms of outage probability) for the case when the parties that

communicate over the fast fading AWGN channel are under attack from a jammer. The CSI fed

back can easily be intercepted by the jammer, which can then use this information to the transmit-

ter’s disadvantage. If one should also take into account the loss of bandwidth and the complexity

required for CSI feedback and processing, keeping the transmitter (and jammer) ignorant of the

channel coefficients may seem a better choice.

The same remark cannot be made for a parallel slow fading AWGN channel. It was shown in

[32] that when CSI is fed back and no jamming is present, the improvements in terms of probability

of outage are significant. In Chapter 3 we show that this conclusion also holds if we consider the

jamming scenario. In doing this we exploit the similarities that the parallel slow fading channel

bears to the fast fading channel, and develop new and even more interesting techniques to make up

for the additional complexity incurred by this new model.
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2.7 Additional Results for Peak Power Constraints - Proof of
Theorem 2.2

This proof follows the one described in the Appendix B of [32]. The probability of outage can be

written as:

Pr(C(P (h), J(h)) < R) = E[χ{C(P (h),J(h))<R}], (2.64)

whereχ{A } denotes the indicator function of the setA . Replacing the power allocations by the

solutions of the game described by (2.3) and (2.4), we define

χ∗ = χ{C(P ∗(h),J∗(h))<R}. (2.65)

We next use the fact that the pair(P ∗(h), J∗(h)) determines an equilibrium of the game (2.3),

(2.4). Thus, for any random power allocationP (h) satisfying the power constraint, we can write:

χ∗ ≤ χ{C(P (h),J∗(h))<R},with probability 1. (2.66)

Similarly, for any randomJ(h), we have

χ∗ ≥ χ{C(P ∗(h),J(h))<R},with probability 1. (2.67)

Now pick some arbitrary power allocation functionsPa(h) andJa(h), which satisfy the peak

power constraints, and set

P̂ (h) = (1− χ∗)P ∗(h) + χ∗Pa(h), (2.68)

and

Ĵ(h) = (1− χ∗)Ja(h) + χ∗J∗(h), (2.69)

It is easy to see thatEhP̂ (h) ≤ P with probability 1 , EhĴ(h) ≤ J with probability 1, and

moreover that

χ∗ = χ{C( bP (h), bJ(h))<R}. (2.70)
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Note that transmitter and jammer could pickPa(h) = 0 andJa(h) = 0 respectively, but this

strategy would not improve their performances (power cannot be saved), since the only power

constraints are set over frames.

Now, using (2.64), (2.66) and (2.67), we get:

Pr(C(P (h), Ĵ(h)) < R) ≥ Pr(C(P̂ (h), Ĵ(h)) < R) ≥ Pr(C(P̂ (h), J(h)) < R), (2.71)

which proves the existence of a Nash equilibrium of the original game.

2.8 Additional Results for Average Power Constraints: Pure
Strategies

2.8.1 Proof of Proposition 2.3

In proving the proposition, we take a contradictory approach. It suffices to show that the situation

J(h) > 0 andλ < x(h)/h cannot be part of the solution ofProblem 1.

Assume thatJ(h) > 0 andλ < x(h)/h for h in some setS ⊂ R+. If the jammer decreases

the value ofJ(h) onS , two situations are possible. In the first one,J(h) is reduced to zero onS ,

and the transmitter is still ”absent”. This happens ifσ2
N > λh. In this case, modifying the value of

J(h) has no impact upon the value ofλ, and hence neither upon the outcome.

In the second caseJ(h) is reduced to some positive valueJ ′(h), such that the transmitter decides

to be ”non-absent” overS . This happens ifJ ′(h) + σ2
N = λ′h. Note that the value ofλ might be

changed to someλ′. However, as we shall see briefly, if we considerJ ′(h) that satisfiesJ ′(h) +

σ2
N = λ′h, then we haveλ′ = λ.

To prove this, letλ be given by (2.16), and assume thatλ − x(h)/h ≥ 0 for h ∈ M ′, and

λ− x(h)/h < 0 for h ∈ S . Now modifyx(h) by decreasingJ(h) as above. We have

λ′ = c
1

m(M′ S
S )

{
exp

[
Eh∈M ′ S

S

(
log

x(h)

h

)]} 1
m(M′ S

S )

=
x(h)

h
, for h ∈ S . (2.72)

Note that forh ∈ S we havex(h)
h

= λ′, so

Eh∈S log
x(h)

h
= log λ′m(S ). (2.73)
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Taking logarithm of (2.72):

1

m(M ′) + m(S )

[
log c+ Eh∈M ′

(
log

x(h)

h

)
+ Eh∈S

(
log

x(h)

h

) ]
= log

x(h)

h
, for h ∈ S ,

(2.74)

and noting that the left hand side of (2.74) is independent of the actual realizations ofh, we can

compute the expectation overh ∈ S , and get:

m(S )

m(M ′) + m(S )

[
R + Eh∈M ′

(
log

x(h)

h

)]
=

m(M ′)
m(M ′) + m(S )

Eh∈S

(
log

x(h)

h

)
. (2.75)

Using (2.73), this leads to

log λ =
1

m(M ′)

[
R + Eh∈M ′

(
log

x(h)

h

)]
=

1

m(S )
Eh∈S

(
log

x(h)

h

)
= log λ′. (2.76)

Therefore the outcome is maintained because, although “non-absent”, the transmitter still invests

zero power onS .

Hence if such a situation where the jammer transmits on a set of channel coefficient values

over which the transmitter is “absent” occurs, the jammer can save power and maintain the same

outcome. Meanwhile the new set over which jammer transmits becomes a subset of the new set

over which the transmitter is “non-absent”.

2.8.2 Proof of Proposition 2.4

We already know that the optimalx(h) is a continuous function ofh ∈ M ′′ if M ′ andM ′′ are

fixed.

The following lemma shows that under this scenario the optimalx(h) is also unique.

Lemma 2.13.For fixedM ′ andM ′′, the KKT conditions (2.20)–(2.22) admit a unique solution.

Proof. ConsiderM ′ and M ′′ to be fixed. The constantµ resulting from (2.20)–(2.22) can be

computed as in (2.29). This implies thatJM(µ) is a strictly decreasing function, hence an injection.

Thus, for a givenJM there exists a unique corresponding value ofµ, and sincex(h) is a deter-

ministic function ofµ, a unique solutionx(h).
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Suppose the jammer’s optimal power distributionx∗(h) is not continuous over the wholeR+.

Note that an optimal power distributionx∗(h) obtained for fixedM ′ andM ′′ can only be a

globally optimal solution (i.e. over all possible choices ofM ′ andM ′′), if by keeping the same

M ′ and extendingM ′′ to a setM ′′
n that contains a discontinuity point , the new optimal strategy

is either the same asx∗(h), or violates the constraintx(h) ≥ σ2
N . But an optimal strategy has to be

continuous overM ′′
n, and hence the constraintx(h) ≥ σ2

N has to be violated on the left-most side

of M ′′
n (according to (2.28)).

Also note that if under the optimal strategy the jammer allocates some powerJx over a set

M ⊂ R+, then the distribution ofJx over M should be done optimally, according to (2.28),

(2.29). This implies that by extending the setM by a setN disjoint fromM ′′, and re-allocating

Jx overMx

⋃
N , the constraintx(h) ≥ σ2

N will be violated on the left-most side ofMx

⋃
N .

The arguments above imply the following:

1. The optimal jamming power allocation should be such thatx(h) = σ2
N on the left-most

point of M ′′: otherwise extendM ′′ by an arbitrarily small set to the left and increaseJM

until x(h) = σ2
N on the left-most point of the new setM ′′

n; by continuity ofx(h), the

left-most point ofM ′′ should be arbitrarily close toσ2
N .

2. The optimal jamming power allocation should be such thatM ′′ = [h∗,∞): otherwise take

a subsetMx ⊂ M ′′, such that there exists a setN situated to the right ofMx, and denote

by Jx the jamming power originally allocated toMx. By re-allocatingJx over Mx

⋃
N ,

the constraintx(h) ≥ σ2
N will be violated on the left-most side ofMx. If N is picked of

arbitrarily smallm-measure, by the previous arguments we should havex(h) arbitrarily close

to σ2
N at the left-most point ofMx. But sinceMx is arbitrary, this yields the contradiction

thatx(h) = σ2
N for anyh to the left ofN .

This proves Proposition 2.4.
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Note that ifµ = 0, thenP (h) = 0 overM ′′, and sincex(h)/h is decreasing over the wholeR+,

andM ′′ = [h∗,∞), this implies that the transmitter does not transmit at all. However, this strategy

does not achieve an ergodic capacity larger than the rateR, and hence it results in a contradiction.

2.8.3 Proof of Proposition 2.6

Recall Proposition 2.6:Under the optimal maximin second level power control strategies, the “re-

quired” transmitter powerPM over a frame is a strictly increasing, unbounded and concave func-

tion of the powerJM that the jammer invests in that frame.

The fact thatPM(JM) is strictly increasing follows from Proposition 2.5 and Proposition 2.20.

If JM,1 < JM,2 existed such thatPM(JM,1) = PM(JM,2), then when the jammer’s power constraint

is JM,2, Problem 1would either have two different solutions, or the solution would satisfy the

constraint with strict inequality.

If JM → ∞ then (2.28) implies thatJ(h) → ∞ for anyh. If PM was finite, this would imply

C(P (h), J(h)) → 0, which violates the constraints ofProblem 1. HenceJM(PM) has to be

unbounded.

In proving concavity of thePM(JM) function for the case when the channel coefficienth be-

longs to a continuous alphabet, we first show that the solution of the discretized problem (i.e. when

h belongs to a discrete alphabet, obtained by some discretization of the original continuous alpha-

bet) is unique and converges point-wise to the solution of the continuous problem as the discrete

alphabet converges to the original continuous alphabet.

This approach also serves the purpose of legitimizing numerical evaluations.

Next, we prove that for the discretized problemPM(JM) is concave. Finally, we show that

point-wise convergence of a sequence of concave functions is enough for the concavity of its limit

function.

Consider the uniformly spaced discretizationqZ+ of the interval[0,∞), and a p.m.f. of the

channel coefficienth ∈ qZ+ that converges to the original p.d.f. asq goes to zero.
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The maximin second level power allocation problem can still be written as in (2.11), even though

the integrals representing the expectations can now be written as sums. Moreover, Propositions 2.3–

2.4 and relations (2.15)–(2.29) hold with the only modification that the term “continuous” should

be crossed out.

The second level power allocation solution for the discretized maximin problem is completely

determined by the triple(M ′,M ′′, µ), or equivalently by(h0, h∗, µ). Instead of (2.30)–(2.32) we

can now write

σ2
N

h0
≤ λ <

σ2
N

h0 − q
, (2.77)

σ2
N

1 + µh∗

h∗
≤ λ < σ2

N

1 + µ(h∗ − q)

h∗ − q
, (2.78)

R =

h∗−q∑

h0

log

(
λh

σ2
N

)
p(h)−

∞∑

h∗
log

(
1

1 + µh

)
p(h), (2.79)

or equivalently

QU

[
h∗ − q

1− µ(h∗ − q)

]
≤ h0 ≤ QD

[
h∗

1− µh∗
+ q

]
, (2.80)

∞∑

h=h∗

[
h

1+µh

h∗
1+µh∗

− 1

]
p(h) ≤ JM

σ2
N

≤
∞∑

h=h∗

[
h

1+µh

h∗−q
1+µ(h∗−q)

− 1

]
p(h), (2.81)

h∗−q∑

h=QD[ h∗
1+µh∗+q]

log

(
h

1 + µh∗

h∗

)
p(h)−

∞∑

h∗
log

(
1

1 + µh

)
p(h) ≤ R ≤

≤
h∗−q∑

h=QU [ h∗−q
1+µ(h∗−q) ]

log

(
h

1 + µ(h∗ − q)

h∗ − q

)
p(h)−

∞∑

h∗
log

(
1

1 + µh

)
p(h), (2.82)

whereQD[h] denotes the largest element ofqZ+ that is less thanh andQU [h] denotes the smallest

element ofqZ+ that is larger thanh.
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Lemma 2.14.For a givenJM the solution of the discretized maximin second level power allocation

problem is unique.

Proof. It is straightforward to show that for fixedh∗ the left-most and the right-most terms of

inequality (2.81) (which upper-bound and lower-boundJM/σ
2
N ) are strictly decreasing functions

of µ, and similarly the left-most and the right-most terms of inequality (2.82) are strictly increasing

functions ofµ.

Note that

∞∑

h=h∗

[
h

1+µh

h∗
1+µh∗

− 1

]
p(h) =

∞∑

h=h∗+q

[
h

1+µh

h∗
1+µh∗

− 1

]
p(h), (2.83)

QD

[
h∗ − q

1 + µ(h∗ − q)
+ q

]
= QU

[
h∗ − q

1 + µ(h∗ − q)

]
, (2.84)

and

h∗−q∑

h=QD[ h∗
1+µh∗+q]

log

(
h

1 + µh∗

h∗

)
p(h)−

∞∑

h∗
log

(
1

1 + µh

)
p(h) =

=
h∗∑

h=QD[ h∗
1+µh∗+q]

log

(
h

1 + µh∗

h∗

)
p(h)−

∞∑

h∗+q

log

(
1

1 + µh

)
p(h). (2.85)

These arguments imply that by keepingµ constant and replacingh∗ by h∗ − q in both first terms

of (2.81) and (2.82), we get exactly the last terms of (2.81) and (2.82), respectively. Thus, if (h∗,µ)

satisfy both (2.81) and (2.82), then decreasingh∗ (by more than one step) and maintaining the same

µ violates both (2.81) and (2.82). In order for (2.81) to still hold,µ should be increased, while in

order for (2.82) to still hold,µ should be decreased. But onceh∗ andµ are given,λ and hence

h0 are uniquely determined. Therefore there cannot exist more than one solution to the discretized

problem.

The following lemma deals with the convergence of this solution asq → 0.
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Lemma 2.15. For a givenJM , the solution of the discretized maximin second level power alloca-

tion problem converges to the solution of the continuous problem asq → 0.

Proof. This follows by noticing that asq → 0 (2.77)–(2.79) become arbitrarily close to (2.30)–

(2.32), and the sums involved in the expectations converge to integrals (by the definition of the

Riemann integral).

Next we prove that for the discretized problem, the resultingPM(JM) function is concave.

We first show in Lemma 2.16 that the optimal jammer strategy{x∗(h)}∞h=0 is a continuous func-

tion of the given jamming powerJM . Lemma 2.17 proves thatPM({x(h)}) is continuous and

has continuous first order derivatives. This implies thatPM(JM) is in fact continuous and has a

continuous first order derivative. Finally, Lemma 2.18 shows that for any fixedM ′ andM ′′ the

functionPM(JM) is concave.

Lemma 2.16.The optimal jammer power allocation{x∗(h)}h∈qZ+ within a frame is a continuous

increasing function of the given jamming powerJM invested over that frame.

Proof. It is clear thatx(h) is continuous and increasing as a function ofJM if h∗ andh0 are fixed.

At any point where eitherh∗ or h0 change as a result of a change inJM , the optimal jamming

strategy{x∗(h)}h∈qZ+ maintains continuity as a result of the uniqueness of the solution (Lemma

2.14).

Lemma 2.17. BothPM({x(h)}) and the derivativesdPM

dx(h)
, for h ∈ qZ+ are continuous functions

of {x(h)}h∈qZ+.

Proof. Consider any two points{x1(h)}h∈qZ+ and{x2(h)}h∈qZ+ and any trajectoryT that connects

them.

Without loss of generality, assume that the channel coefficients are always indexed in decreasing

order of the quantitiesx(h)
h

.
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For a given vector{x(h)}h∈qZ+, the required transmitter power is

PM = λ
∑

h∈M ′
p(h)−

∑

h∈M ′

x(h)

h
p(h), (2.86)

while the derivatives are given by

dPM

dx(h)
=

[
λ

x(h)
− 1

h

]
p(h) (2.87)

for h ∈ M ′, with λ given by

λ(M ′) =

[
c

∏

h∈M ′

(
x(h)

h

)p(h)
] 1P

h∈M′ p(h)

. (2.88)

Note thatM ′ depends upon the choice of{x(h)}. For fixedM ′, the continuity and differen-

tiability of PM({x(h)}) are obvious. Thus, it suffices to show that these properties also hold in a

point ofT whereM ′ changes.

If we can show continuity and differentiability whenM ′ is increased by including one channel

coefficienth0, then larger variations ofM ′ can be treated as multiple changes by one channel

coefficient, and continuity still holds.

Let {xk(h)}h∈qZ+ be a point ofT where the transmitter increases the number of frames over

which it transmits as above, and denote byT1 the part of the trajectoryT that is between{x1(h)}
and{xk(h)}, andT2 = T \ T1.

SinceP (h0) = 0 (i.e.λ = x(h0)
h0

), we haveλ(M ′) = λ(M ′ ⋃{h0}), because they both satisfy

∑

h∈M ′

[
λ− x(h)

h

]
p(h) = PM . (2.89)

Define the “left” and “right” limitsPM({xk(h)}−) andPM({xk(h)}+) as:

PM({xk(h)}−) = lim
{x(h)}→{xk(h)}
{x(h)}∈T1

PM({x(h)}), (2.90)

PM({xk(h)}+) = lim
{x(h)}→{xk(h)}
{x(h)}∈T2

PM({x(h)}). (2.91)
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We can now write:

PM({x(h)}+) = λ
∑

h∈M ′ S{h0}
p(h)−

∑

h∈M ′ S{h0}

x(h)

h
p(h) =

= λ
∑

h∈M ′
p(h)−

∑

h∈M ′

x(h)

h
p(h) + λp(h0)− x(h0)

h0

p(h0) = PM({x(h)}−) (2.92)

where the last equality follows sinceλ = x(h0)
h0

. This proves continuity.

Similar arguments can be used to show the continuity of the derivatives in (2.87).

Lemma 2.18. In the discretized case, for fixedh0 andh∗, the functionPM(JM) is concave.

Proof. Write (2.29) explicitly for the discretized problem:

MJM + σ2
N

∞∑

h=h∗
p(h) =

[
c

∞∏

h=h∗

(
1

1 + µh

)p(h)

·

·
h∗−q∏

h=h0

(
σ2

N

h

)p(h)
] 1Ph∗−q

h=h0 p(h) ∞∑

h=h∗

h

1 + µh
p(h), (2.93)

and denote

g(µ) =
∞∏

h=h∗

(
1

1 + µh

) p(h)
Ph∗−q

h=h0 p(h) ·
∞∑

h=h∗

h

1 + µh
p(h). (2.94)

Note that for fixedh0 andh∗, JM is a linear function ofg.

From (2.15), (2.16) and (2.28) a similar relation can be found for the required transmitter power

PM :

MPM +

h∗−q∑

h=h0

σ2
N

hm

p(h) =

[
c

∞∏

h=h∗

(
1

1 + µh

)p(h)

·
h∗−q∏

h=h0

(
σ2

N

h

)p(h)
] 1Ph∗−q

h=h0 p(h)

·

·
[

h∗−q∑

h=h0

p(h)−
∞∑

h=h∗

1

1 + µh
p(h)

]
. (2.95)

Denote

f(µ) =
∞∏

h=h∗

(
1

1 + µh

) p(h)
Ph∗−q

h=h0 p(h) ·
[ ∞∑

h=h0

p(h)−
∞∑

h=h∗

1

1 + µh
p(h)

]
, (2.96)

57



and note that for fixedh0 andh∗, PM is a linear function off .

It suffices to show thatf(g) is concave. For this purpose, the derivativedf
dg

= df
dµ

(dµ
dg

)−1 should

be a decreasing function ofg, and hence an increasing function ofµ.

Computing the derivatives from (2.94) and (2.96) we obtain

df

dg
=

df
dµ

dg
dµ

=

1Ph∗−q

h=h0 p(h)

(∑∞
h=h0 p(h)−

∑∞
h=h∗

1
1+µh

p(h)
)
−

P∞
h=h∗

h
(1+µh)2

p(h)
P∞

h=h∗
h

1+µh
p(h)

1Ph∗−q

h=h0 p(h)

∑∞
h=h∗

h
(1+µh)2

p(h) +

P∞
h=h∗

h2

(1+µh)2
p(h)

P∞
h=h∗

h
1+µh

p(h)

(2.97)

Looking at the right hand side of (2.97) (the “large fraction”), we notice that the first term in

the numerator increases withµ. For the second term in the numerator, it is clear that asµ in-

creases, its numerator decreases faster than its denominator. This implies that the whole numerator

of the “large fraction” is an increasing function ofµ. Similarly, the first term in the denominator is

clearly a decreasing function ofµ. The only thing left is the second term of the denominator. It is

straightforward to show that its derivative with respect toµ can be written as

d

dµ

∑∞
h=h∗

h2

(1+µh)2
p(h)

∑∞
h=h∗

h
1+µh

p(h)
=

1[∑∞
h=h∗

h
1+µh

p(h)
]2 ·

·
{[ ∞∑

h=h∗

h2

(1 + µh)2
p(h)

]2

−
∞∑

h=h∗

h3

(1 + µh)3
p(h) ·

∞∑

h=h∗

h

(1 + µh)
p(h)

}
(2.98)

If we consider the fact that for any two real numbersa andb we have

(a2 + b2)2 − (a+ b)(a3 + b3) = −ab(a− b)2 (2.99)

and the summations in (2.98) are positive, it is easy to see that the second term of the denominator

of the “large fraction” is decreasing withµ. Hence overall the derivative in (2.97) increases with

µ.

Lemma 2.19.The limit of a point-wise convergent sequence of concave functions is concave.
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Proof. Denote the sequence by(fn(x))∞n=1 and its limit byf(x). Point-wise convergence implies

that for anyx and∀ε > 0, ∃N(x) such that|f(x) − fn(x)| < ε, ∀n ≥ N(x). Take two arbitrary

pointsx andy, and pick some arbitraryα ∈ [0, 1]. DenoteN = max{N(x), N(y), N(αx + (1 −
α)y)}. Then forn ≥ N and anyε > 0 we have

f(αx+ (1− α)y) > fn(αx+ (1− α)y)− ε ≥

≥ αfn(x) + (1− α)fn(y)− ε > αf(x) + (1− α)f(y)− 2ε, (2.100)

where the second inequality follows from the concavity offn. This implies thatf is also concave.

2.8.4 On a Special Kind of Duality

Takex, y ∈ L2[R] and define the order relationx > y if and only if x(t) > y(t) ∀t ∈ R. Consider

the continuous real functionsf(x), g(y) andh(x, y) overL2[R], such thatf is a strictly increasing

function ofx, g is a strictly increasing function ofy, andh is a strictly increasing function ofx for

fixedy and a strictly decreasing function ofy for fixedx.

Define the following minimax and maximin problems:

max
y≥0

[
min
x≥0

f(x) s.t.h(x, y) ≥ H

]
s.t.g(y) ≤ G, (2.101)

max
x≥0

[
min
y≥0

g(y) s.t.h(x, y) ≤ H

]
s.t.f(x) ≤ F, (2.102)

min
y≥0

[
max
x≥0

h(x, y) s.t.f(x) ≤ F

]
s.t.g(y) ≤ G. (2.103)

The following result is important in the proof of Theorem 2.21 below.

Proposition 2.20. For any of the three problems above, the optimal solution satisfies both con-

straints with equality.
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Proof. Take problem (2.101). Let(x1, y1) be a solution such thatf(x1) = F , and assume that

h(x1, y1) > H. Sinceh is a continuous, strictly increasing function ofx for a fixedy, we can find

xn < x1 such thath(xn, y1) = H. But thenf(xn) < f(x1), which means that there exists a better

value ofx if y = y1, and hence that(x1, y1) is not a solution.

Therefore, the first constraint has to be satisfied with equality.

Now assume thatg(y1) < G. Then we can findy0 > y1, such thatg(y0) = G. However, since

h(x1, y1) = H, we haveh(x1, y0) < H. In order for the first constraint to be satisfied, we need to

replacex1 by some other valuex0. We prove next that the valuex0 resulting from this modification

will be such thatf(x0) > f(x1), which makes the pair(x1, y1) suboptimal, thus contradicting the

hypothesis that it is a solution, and proving that the second constraint should hold with equality.

Assume that the value ofx0 is such that

f(x0) = F0 ≤ F. (2.104)

Then, replacingy0 by y1, we have that(x0, y1) is either a second solution of Problem 1 (if the

inequality in (2.104) holds with equality), or a better choice (if the inequality in (2.104) holds

with strict inequality). We can readily dismiss the latter case, since(x1, y1) was assumed to be an

optimal solution. For the former case,h is a strictly decreasing function ofy, thush(x0, y1) > R,

which contradicts the first part of this proof. The same arguments work for the problem in (2.102).

Take problem (2.103), and denote by(x3, y3) one of its optimal solutions. Ifg(y3) < G, we can

increasey up to a valueym such thatg(ym) = G. But in turn, this yieldsh(x3, ym) < h(x3, y3),

makingy3 suboptimal. Therefore, the first constraint has to hold with equality.

Similarly, if f(x3) < F , we can increasex up to a valuexm such thatf(fm) = F , yielding

h(xm, y3) > h(x3, y3), and thus resulting in a contradiction. Thus the second constraint also holds

with equality.

The main result of this section is the following theorem, which introduces a special kind of

duality between the three problems in (2.101), (2.102) and (2.103).
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Theorem 2.21. (I) Choose any real values forG andH. Take problem (2.101) under these con-

straints and let the pair(x1, y1) denote one of its optimal solutions, yielding a value of the objective

functionf(x1) = F1. If we set the value of the corresponding constraints in problems (2.102) and

(2.103) toF = F1, then the values of the objective functions of problems (2.102) and (2.103) under

their optimal solutions areg(y) = G andh(x, y) = H, respectively. Moreover,(x1, y1) is also an

optimal solution of all problems.

(II) Choose any real values forF andH. Take problem (2.102) under these constraints and

let the pair(x2, y2) denote one of its optimal solutions, yielding a value of the objective function

g(y2) = G2. If we set the value of the corresponding constraints in problems (2.101) and (2.103)

toG = G2, then the values of the objective functions of problems (2.101) and (2.103) under their

optimal solutions aref(x) = F andh(x, y) = H, respectively. Moreover,(x2, y2) is an optimal

solution of all problems.

(III) Choose any real values forF andG. Take problem (2.103) under these constraints and

let the pair(x3, y3) denote one of its optimal solutions, yielding a value of the objective function

h(x3, y3) = H3. If we set the value of the corresponding constraints in problems (2.101) and

(2.102) toH = H3, then the values of the objective functions of problems (2.101) and (2.102)

under their optimal solutions aref(x) = F andg(y) = G, respectively. Moreover,(x3, y3) is an

optimal solution of all problems.

Proof. (I) Take problem (2.101) and let(x1, y1) be an optimal solution, such thatf(x1) = F . We

need to show that(x1, y1) is also an optimal solution of problems (2.102) and (2.103). Sincex1

andy1 are a solution of problem (2.101), by Proposition 2.20, they satisfy the first constraint in

problem (2.101) with equality, and so they also satisfy the first constraint in problem (2.102).

Since the second constraint of problem (2.102) readsf(x) ≤ F , we note thatx1 andy1 are in

the feasible set. If we evaluate the cost function at this point, we getg(y1) = G. Thus, keeping

x = x1, in problem (2.102), we can only obtaing(y) ≤ G, by minimizing the cost function overy.
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Now take any different valuex0 6= x1, satisfyingf(x0) = F . If the pair(x0, y1) satisfies the first

constraint in problem (2.101), then it is a solution of problem (2.101), and hence the constraints

should hold with equality. This implies that(x0, y1) also satisfies the first constraint of problem

(2.102). If(x0, y1) does not satisfy the first constraint in problem (2.101), then it certainly satisfies

the first constraint of problem (2.102). Either way, the pair(x0, y1) makes a feasible solution of

problem (2.102) (although possibly not optimal) and, by evaluating the cost function at this point,

we getg(y1) = G.

Thus, for any valuex0 we pick, we should always obtain an optimal solution of problem (2.102)

for whichg(y) ≤ G. But any such optimal solution has to satisfy the first constraint with equality,

hence is also a solution of problem (2.101). In turn, this impliesg(y) = G. But then the original

pair (x1, y1) is a solution of problem (2.102), since it is feasible and yields the same cost/reward

function.

Take problem (2.103), and denote by(x3, y3) one of its optimal solutions. By Proposition 2.20

we havef(x3) = F andg(y3) = G. Then eitherh(x3, y3) ≤ H, which implies that(x3, y3) is

an optimal solution of problem (2.102), orh(x3, y3) ≥ H and then(x3, y3) is an optimal solution

of problem (2.101). Either way, the inequality should hold with equality, and hence(x3, y3) is an

optimal solution of both problem (2.101) and problem (2.102), withh(x3, y3) = H. But this also

implies that(x1, y1) is an optimal solution of problem (2.103).

(II) A similar argument can be made if we consider an optimal solution(x2, y2) of problem

(2.102), such thatg(y2) = G.

(III) Consider an optimal solution(x3, y3) of problem (2.103), such thath(x3, y3) = H, and

suppose there exists an optimal solution(x2, y2) of problem (2.102) is such thatg(y2) 6= G. By

Proposition 2.20,(x2, y2) satisfiesf(x2) = F andh(x2, y2) = H. If g(y2) < G, then(x2, y2) is an

optimal solution of problem (2.103) which does not satisfy the constraints with equality, and thus

Proposition 2.20 is contradicted. Ifg(y2) = G2 > G, then if we construct a modified version of

problem (2.103), where the constraintg(y) ≤ G is replaced byg(y) ≤ G2, we know by the first
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part of this proof that(x2, y2) is an optimal solution of this new problem, yieldingh(x2, y2) = H.

But the same objective is attained by(x3, y3), and moreover(x3, y3) satisfies the new problem’s

constraints sinceg(y3) = G < G3, and thus is an optimal solution. However, one of the constraints

is satisfied with strict inequality, thus contradicting Proposition 2.20. Therefore,(x3, y3) has to be

a solution of problem (2.102). A similar argument can be made to prove it is also a solution of

problem (2.101).

2.9 Additional Results for Average Power Constraints: Mixed
Strategies - A Special Two-Player, Zero-Sum Game with
Mixed Strategies

In this section, we present a general form of a special two-player, zero-sum game with mixed

strategies. Particular forms of this game have been investigated by other authors over the last three

decades. The first simplified version was presented by Bell and Cover [31], and a slightly more

general form was later solved by Hughes and Narayan [11].

Problem Statement

Let g(y) : R+ → R+ be a monotone increasing, almost everywhere (a.e.) continuous function

such thatg(0) = 0. For any point of discontinuityy0 such thatg(y−0 ) = x1 andg(y+
0 ) = x2 > x1,

we defineg(y0) = x1 (g is left-continuous) andg−1(x) = y1 for all x ∈ [x1, x2]. For any interval

of non-zero measure(y1, y2) whereg is constant, i.e.g(y) = x0 for all y ∈ (y1, y2), we define

g−1(x0) = y1 (g−1 is also left-continuous). On the rest ofR+, whereg is continuous and strictly

increasing,g−1 is defined as the usual inverse function ofg. Note thatg−1 is a monotone increasing,

a.e. continuous function.

Consider the two-player, zero-sum game with mixed strategies defined as follows. The allowable

strategies for Player 1 are all non-negative, real-valued random variablesX satisfyingE[X] ≤ a.

The allowable strategies for Player 2 are all non-negative, real-valued random variablesY sat-

isfying E[Y ] ≤ b. The payoff function isPr{X ≥ g(Y )}, which Player 1 seeks to maximize,
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while Player 2 seeks to minimize, by properly picking the probability distributions ofX andY

respectively. Throughout the sequel, these probability distributions will be represented by their

corresponding cumulative distribution functions (CDFs)F 0
X(x) andF 0

Y (y).

Problem Solution

Theorem 2.22.(I) If there exists a solution withkx, ky ∈ [0, 1] andv ∈ [max{b/2, g−1(a)/2},∞)

of the following three equations:

kx

(
1− b

2v

)
= 1− ky

(
1− a

g(2v)

)
, (2.105)

kx =
2va∫ 2v

0
g(y)dy

, (2.106)

ky =
g(2v)b∫ g(2v)

0
g−1(x)dx

. (2.107)

then this solution is unique and the unique Nash equilibrium of the two-player, zero-sum game

described above is attained by the pair of strategies(F 0
X(x), F 0

Y (y)) satisfying:

F 0
X(g(y)) ∼ kxU([0, 2v])(y) + (1− kx)∆0(y), (2.108)

F 0
Y (g−1(x)) ∼ kyU([0, g(2v)])(x) + (1− ky)∆0(x), (2.109)

whereU([r, t])(·) denotes the CDF of a uniform distribution over the interval[r, t], and ∆0(·)
denotes the CDF of a Dirac distribution (i.e. a step function).

(II) If g is strictly increasing and continuous on[max{b/2, g−1(a)/2},∞), and
∫ b

0
g(y)dy <

limz→∞
∫ g(z)

g(b)
g−1(x)dx−b[g(z)−g(b)], then the system in (2.105), (2.106) and (2.107) has a unique

solution such thatkx, ky ∈ [0, 1] and v ∈ [max{b/2, g−1(a)/2},∞). Moreover, the parameters

kx, ky andv are uniquely determined from the following steps:

1. Find the unique valuev0 which satisfies:

ab = [g(2v0)− a](2v0 − b). (2.110)
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2. ComputeS(v0) =
∫ 2v0

0
g(y)dy − 2v0a.

3. If S(v0) < 0, thenv is the unique solution of

∫ 2v

0

g(y)dy − 2va = 0, (2.111)

kx = 1 (2.112)

and

ky =
bg(2v)

2v[g(2v)− a]
. (2.113)

4. If S(v0) = 0 thenv = v0, kx = ky = 1.

5. If S(v0) > 0, thenv is the unique solution of

∫ 2v

0

g(y)dy − g(2v)(2v − b) = 0, (2.114)

kx =
2va

g(2v)(2v − b)
(2.115)

and

ky = 1. (2.116)

Proof. Before starting the actual proof, several remarks are in order. First,F 0
X(x) can be computed

from F 0
X(g(y)) by writing x = g(g−1(x)), and thus by evaluatingF 0

X(g(y)) in y = g−1(x). A

similar algorithm works for computingF 0
Y (y) from F 0

Y (g−1(x)).

Second, note that by following this algorithm, for any point of discontinuityy0 of g such that

g(y−0 ) = x1 andg(y+
0 ) = x2 > x1, we have:

F 0
X(x1) = F 0

X(g(g−1(x1))) = F 0
X(g(y0)) = F 0

X(g(g−1(x2))) = F 0
X(x2), (2.117)
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i.e. Player 1 does not allowX to take values in(x1, x2), and

F 0
Y (y0) = F 0

Y (y+
0 ) = F 0

Y (g−1(g(y+
0 ))) = F 0

Y (g−1(x2)), (2.118)

while by the same rationalF 0
Y (y−0 ) = F 0

Y (g−1(x1)), meaning that Player 2 uses a probability mass

point iny0.

Third, for an interval of non-zero measure(y1, y2) whereg is constant, i.e.g(y) = x0 for all

y ∈ (y1, y2), we have:

F 0
Y (y1) = F 0

Y (g−1(g(y1))) = F 0
Y (g−1(x0)) = F 0

Y (g−1(g(y2))) = F 0
Y (y2), (2.119)

i.e. Player 2 does not allowY to take values in(y1, y2), and

F 0
X(x0) = F 0

X(x+
0 ) = F 0

X(g(g−1(x+
0 ))) = F 0

X(g(y2)), (2.120)

while by the same rationalF 0
X(x−0 ) = F 0

X(g(y1)), meaning that Player 1 uses a probability mass

point inx0. We now proceed with the proof of the first part of the theorem.

(I) Since this is a two-player, zero-sum game with mixed strategies, it has a unique Nash equi-

librium. LetX0 ∼ F 0
X andY0 ∼ F 0

Y denote the random variables with the CDFs in (2.108) and

(2.109), andX ∼ FX andY ∼ FY be any arbitrary random variables.

Note thatPr{X ≥ g(Y )} =
∫∞
0

[1 − FX(g(y))]dFY (y) =
∫∞

0
FY (g−1(x))dFX(x). We can

write

Pr{X0 ≥ g(Y )} =

∫ ∞

0

[1− F 0
X(g(y))]dFY (y) =

= 1− kx

∫ ∞

0

U([0, 2v])(y)dFY (y)− (1− kx)

∫ ∞

0

∆0(y)dFY (y) ≥

≥ kx

(
1− 1

2v

∫ ∞

0

ydFY (y)

)
≥ kx

(
1− b

2v

)
, (2.121)
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and

Pr{X ≥ g(Y0)} =

∫ ∞

0

F 0
Y (g−1(x))dFX(x) =

= ky

∫ ∞

0

U([0, g(2v)])(x)dFX(x) + (1− ky)

∫ ∞

0

∆0(x)dFX(x) ≤

≤ 1− ky

(
1− 1

g(2v)

∫ ∞

0

xdFX(x)

)
≤ 1− ky

(
1− a

g(2v)

)
. (2.122)

Note that equality holds in the first inequality of (2.121) ifFY (2v) = 1, and in the second

inequality of (2.121) ifE[Y ] = b. Similarly, equality holds in the first inequality of (2.122) if

FX(g(2v)) = 1, and in the second inequality of (2.122) ifE[X] = a.

SinceF 0
Y (2v) = F 0

Y (g−1(g(2v))) = 1 andF 0
X(g(2v)) = 1 (see (2.108), (2.109)), equalities hold

in (2.121) and (2.122) whenFX = F 0
X andFY = F 0

Y if and only if

a =

∫ ∞

0

xdF 0
X(x) (2.123)

and

b =

∫ ∞

0

ydF 0
Y (y). (2.124)

Although the two CDFsF 0
X(x) andF 0

Y (y) may not be continuous as functions inL1, they admit

derivatives in the distribution spaceD ′ [36], and thus we can write
∫ ∞

0

xdF 0
X(x) =

∫ ∞

0

x
dF 0

X(x)

dx
dx =

∫ ∞

0

g(y)
dF 0

X(g(y))

dg(y)

dg(y)

dy
dy =

=

∫ ∞

0

g(y)
dF 0

X(g(y))

dy
dy = (1− kx)

∫ ∞

0

δ0(y)g(y)dy +
kx

2v

∫ ∞

0

g(y)dy, (2.125)

which along with (2.123) results in (2.106), and similarly
∫ ∞

0

ydF 0
Y (y) =

∫ ∞

0

g−1(x)
dF 0

Y (g−1(x))

dx
dx =

= (1− ky)

∫ ∞

0

δ0(x)g
−1(x)dx+

ky

g(2v)

∫ ∞

0

g−1(x)dx, (2.126)

which together (2.124) yields (2.107). The conditions for(F 0
X(x), F 0

Y (y)) to achieve a saddle-point

is that equality holds between the bounds in (2.121) and (2.122), which translates to (2.105), and

that there always exists a solution of the system given by (2.105), (2.106) and (2.107).
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(II) This part of the theorem provides a general (although not necessary) condition for such a

solution to exist and states that under this condition no more than one such a solution can exist (al-

though the uniqueness already follows as a consequence of the uniqueness of a Nash equilibrium).

By substituting (2.106) and (2.107) in (2.105) we get

a(2v − b)∫ 2v

0
g(y)dy

= 1− b(g(2v)− a)∫ g(2v)

0
g−1(x)dx

. (2.127)

Denote the left hand side of (2.127) byL(v) and the right hand side byR(v) for simplicity. Note

that for any functiong that satisfies the conditions set in the problem formulation we have

∫ 2v

0

g(y)dy = 2vg(2v)−
∫ g(2v)

0

g−1(x)dx. (2.128)

This relation is best observed graphically in Figure 2.11.
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FIGURE 2.11. The relationship between the integrals ofg(y) andg−1(x).

Computing the derivatives ofL(v) andR(v) with respect tov (these derivatives always exist for

v ≥ max{b/2, g−1(a)/2}) we get

dL(v)

dv
=

2a[∫ 2v

0
g(y)dy

]2 ·
[∫ 2v

0

g(y)dy − g(2v)(2v − b)

]
, (2.129)

and

dR(v)

dv
=

2g′(v)b[∫ g(2v)

0
g−1(x)dx

]2 ·
[
2v(g(2v)− a)−

∫ g(2v)

0

g−1(x)dx

]
=

=
2g′(v)b[∫ g(2v)

0
g−1(x)dx

]2

[∫ 2v

0

g(y)dy − 2va

]
, (2.130)
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whereg′(v) > 0 denotes the first derivativedg(y)/dy, evaluated iny = v, and the second equality

in (2.130) follows from (2.128).

Note thatL(v) andR(v) are both probabilities, hence belong to[0, 1]. Therefore, any possible

solution of the system in (2.105), (2.106) and (2.107) should satisfy2v ≥ b andg(2v) ≥ a, or

equivalently:

v ≥ max{b/2, g−1(a)/2}. (2.131)

Therefore, in the sequel of this proof we shall implicitly assume that (2.131) holds true.

DenoteSL(v) =
∫ 2v

0
g(y)dy − g(2v)(2v − b) andSR(v) =

∫ 2v

0
g(y)dy − 2va. Since

d

dv

∫ 2v

0

g(y)dy = 2g(2v), (2.132)

we observe that

d

dv
SL(v) = −2g′(v)(2v − b) < 0 (2.133)

and

d

dv
SR(v) = 2(g(2v)− a) > 0, (2.134)

which imply thatSL(v) is a strictly decreasing function ofv, while SR(v) is a strictly increasing

function ofv, for the domain of interestv ∈ [max{b/2, g−1(a)/2},∞).

Note that d
dv
SR(v) is strictly positive even in the limit asv →∞, and thuslimv→∞ SR(v) = ∞.

By writing SL(v) =
∫ b

0
g(y)dy − ∫ g(2v)

g(b)
g−1(x)dx, we also havelimv→∞ SL(v) = −∞.

A first possible solution:

An extremum ofL(v) is obtained by settingdL(v)
dv

= 0, or equivalently

∫ 2vl

0

g(y)dy = g(2vl)(2vl − b). (2.135)

In our previously introduced notation, this writesSL(vl) = 0. But sinceSL(v) is strictly decreasing

on the domain of interest, the extremum is unique and is a maximum.
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The values ofL(v) andR(v) at this point are given by

L(vl) = R(vl) =
a

g(2vl)
. (2.136)

Moreover, substituting (2.135) and (2.128) back in (2.106) and (2.107) we get

kx,l =
2vla

g(2vl)(2vl − b)
(2.137)

and

ky,l = 1. (2.138)

Therefore(vl, kx,l, ky,l) are a solution of the system given by (2.105), (2.106) and (2.107) if and

only if kx,l ∈ [0, 1]. From (2.131) it is implied that2vl ≥ b, and hence thatkx,l ≥ 0. The condition

kx,l ≤ 1 yields

2vla ≤ g(2vl)(2vl − b). (2.139)

A second possible solution:

An extremum ofR(v) is obtained by settingdR(v)
dv

= 0, or equivalently

∫ 2vr

0

g(y)dy = 2vra. (2.140)

In our previously introduced notation, this writesSR(vr) = 0. When this extremum ofR(v) exists,

it is also unique and is a minimum, sinceSR(v) is strictly increasing on the domain of interest.

The values ofL(v) andR(v) at this point are given by

L(vr) = R(vr) = 1− b

2vr

. (2.141)

Moreover, substituting (2.140) back in (2.106) and (2.107) we get

kx,r = 1 (2.142)
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and

ky,r =
bg(2vr)

2vr(g(2vr)− a)
. (2.143)

Therefore(vr, kx,r, ky,r) are a solution of the system given by (2.105), (2.106) and (2.107) if and

only if ky,r ∈ [0, 1]. From (2.131) it is implied thatg(2vr) ≥ a, and hence thatky,r ≥ 0. The

conditionky,r ≤ 1 yields the same inequality as before:

2vra ≤ g(2vr)(2vr − b). (2.144)

Recall thatL(v) has a unique maximum, whileR(v) has a unique minimum. The immediate

implication of this is that the equationL(v) = R(v) can have a maximum of two solutions. These

are the possible solutions discussed above.

To summarize, we have two sets of relations:

∫ 2vl

0

g(y)dy = g(2vl)(2vl − b),

2vla ≤ g(2vl)(2vl − b) (2.145)

and

∫ 2vr

0

g(y)dy = 2vra,

2vra ≤ g(2vr)(2vr − b) (2.146)

that could each yield a solution of the system in (2.105), (2.106) and (2.107).

In the remainder of this proof, we show that at least one of the sets (2.145) and (2.146) has a

solution and the sets (2.145) and (2.146) cannot both have different solutions.

Let v0 denote the value ofv in [max{b/2, g−1(a)/2},∞) for which

2v0a = g(2v0)(2v0 − b), (2.147)

as in Figure 2.12.
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FIGURE 2.12. Findingv0.

Such a value exists and is unique since (2.147) is equivalent toab = (g(2v0)−a)(2v0−b), where

the term on the right hand side is a strictly increasing function ofv0 on [max{b/2, g−1(a)/2},∞),

with a minimum inv0 = max{b/2, g−1(a)/2} which is0 andlimv→∞(g(2v) − a)(2v − b) = ∞.

Note that this also implies that2va ≤ g(2v)(2v − b) can only be satisfied ifv > v0.

DenoteS = SL(v0) = SR(v0) the common value ofSL andSR in v0. If S = 0, thenvl = vr =

v0. If S < 0 or S > 0, sinceSL(v) is decreasing withv andSR(v) is increasing withv for the

domain of interest, it is not possible to obtain solutions larger thanv0 to both equationsSL(v) = 0

andSR(v) = 0.

However, a solution always exists. IfS < 0, the solution is guaranteed by the continuity ofSR(v)

on the domain of interest, and by the fact thatlimv→∞ SR(v) = ∞. If S > 0, the solution is guar-

anteed by the continuity ofSL(v) on the domain of interest, and by the fact thatlimv→∞ SL(v) < 0,

which follows from the condition
∫ b

0
g(y)dy < limz→∞

∫ g(z)

g(b)
g−1(x)dx− b[g(z)− g(b)]. Note that

this condition is only necessary ifS > 0 and is illustrated in Figure 2.13.
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FIGURE 2.13. The necessary condition for the existence of a solution whenS > 0.
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A similar condition can be written for the case whenS < 0, that islimv→∞ SR(v) > 0 if and

only if
∫ a

0
g−1(x)dx <

∫∞
g−1(a)

g(y)dy. However, sinceg is a function and is defined overR+, this

latter condition can only be violated ifg is constant on[g−1(a),∞). But this is impossible under

the former condition.

We have thus shown that under the condition thatg is strictly increasing and continuous on

[max{b/2, g−1(a)/2},∞), and
∫ b

0
g(y)dy < limz→∞

∫ g(z)

g(b)
g−1(x)dx − b[g(z) − g(b)], the system

given by (2.105), (2.106) and (2.107) always has a solution, and that this solution is unique.

Several additional remarks

Bell and Cover [31] found the solution of our game for the particular case whena = b = 1

andg(y) = y. In the context of Gaussian arbitrarily varying channels, Hughes and Narayan [11]

extended the previous result to the case wherea andb are any positive constants, andg(y) = y+ c,

with c ≥ 0. In the remainder of this section we show that our results can be easily particularized to

obtain the same results as in [11].

 )( yg

y

y

x

)(1 xFX−

))((1 ygFX−

)(vg

v

Values of                            that are 
achievable by Player 2 (by picking a 
distribution consisting of one or two mass 
points), under certain probability 
distributions of Player 1. 

The only achievable value of                                    
(for any distribution of Player2), under 
the optimal probability distributions of 
Player 1. 

)}(Pr{ YgX ≥

)}(Pr{ YgX ≥

0 1

 
 

 FIGURE 2.14. Intuitive explanation for the optimality of the strategy in (2.108).
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FIGURE 2.15. Intuitive explanation for the optimality of the strategy in (2.109).

If we forceg(0) = g(0−) = 0, the functiong(y) = y + c, ∀y > 0 is unbounded, linear, strictly

increasing, and has only one discontinuity iny = 0. Hence, it satisfies all the conditions set in the

problem formulation, as well as those of part (II) of our Theorem 2.22.

Substitutingg(y) = y + c in (2.145), we get (Case 1):

2v2
l − 2vlb− bc = 0 (2.148)

and

a ≤ vl + c, (2.149)

resulting in

vl =
b

2

[
1 +

√
1 +

2c

b

]
(2.150)

under the condition that

a ≤ c+
b

2

[
1 +

√
1 +

2c

b

]
. (2.151)
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The cost function for this case results from (2.136) as

Pr{X ≥ g(Y )} =
a

c+ b
[
1 +

√
1 + 2c

b

] =
a

c

[
1 +

b

c

(
1−

√
1 +

2c

b

)]
, (2.152)

and is also consistent with [11]. Note that althoughky = 1 for this case, this does not mean

that Player 2 is always on. Recall that a discontinuity ofg is translated into a mass point for the

probability distribution ofY . In this case, the discontinuity iny = 0 means thatY = 0 with

probability c
g(2vl)

= 1− b
vl

, which is the same as in [11].

Similarly, substitutingg(y) = y + c in (2.146), we get (Case 2):

vl =
b

2

[
1 +

√
1 +

2c

b

]
(2.153)

under the condition that

a ≥ c+
b

2

[
1 +

√
1 +

2c

b

]
. (2.154)

Note that the two conditions (2.151) and (2.154) are mutually exclusive. The cost function for this

case is

Pr{X ≥ g(Y )} = 1− b

2(a− c)
, (2.155)

and is consistent with [11].

In Figure 2.14 we offer an intuitive explanation of whyF 0
X(g(y)) should be uniform over[0, 2v],

from a maximin point of view. The functiong(y) is taken to be linear, with a discontinuity in0, sim-

ilar to [11]. Assuming that Player 1 plays first (maximin), we note that ifF 0
X(g(y)) is not uniform,

the second player can pick a strategy that decreases the value of the objectivePr{X ≥ g(Y )}.
Therefore, in order to provide the second player with an indifferent choice space (the strategy of

Player 2 can be any probability distribution over[0, 2v]), Player 1 should pickF 0
X(x) such that

F 0
X(g(y)) is uniform over[0, 2v].

Similarly, in Figure 2.15 we offer an intuitive explanation of whyF 0
Y (g−1(x)) should be uniform

over [0, g(2v)], from a minimax point of view. Assuming that Player 2 plays first (minimax), note
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FIGURE 2.16. The resulting strategiesF 0
X(x) andF 0

Y (y) for a linearg(y) with a discontinuity in0.

that ifF 0
Y (g−1(x)) is not uniform, the first player can pick a strategy that increases the value of the

objectivePr{X ≥ g(Y )}.
The optimal distributions resulting from Figures 2.14 and 2.15 are shown in Figure 2.16. They

are consistent with our theoretical results (and the results of [11]) forg(y) = y + c.
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Chapter 3
Jamming in Fixed-Rate Wireless Systems with Power
Constraints - Part II: Parallel Slow Fading Channels

3.1 Introduction

The concept of jamming plays an extremely important role in ensuring the quality and security of

wireless communications, especially at this moment when wireless networks are quickly becoming

ubiquitous. Although the recent literature covers a wide variety of jamming problems [3–5, 9, 11,

37, 38], the investigation of optimal jamming and anti-jamming strategies for the parallel slow-

fading channel is missing.

The parallel slow-fading channel is a widely used model for OFDM transmission [28]. Since

the usual definition of capacity does not provide a positive performance indicator for this model,

a more adequate performance measure is the probability of outage [28], defined as the probabil-

ity that the instantaneous mutual information characterizing the parallel channel, under a given

channel realization, is below a fixed transmission rateR. Under the optimal diversity-multiplexing

tradeoff, the parallel slow-fading channel withM subchannels is known [28] to yield anM -fold

diversity gain over the scalar single antenna channel. However the diversity-multiplexing tradeoff

only gives an approximative analytical evaluation of the probability of outage for a given rateR

and a signal-to-noise ratio (SNR), and this approximation is usually accurate only in the high SNR

region. Thus, for evaluating a system which functions at a moderate SNR, the exact probability-

of-outage vs. transmission-rate curve is often computed numerically. Moreover, the high SNR

assumption is clearly not adequate for studying a practical uncorrelated jamming situation, where

the jammer’s power should be considered at least comparable to the legitimate transmitter’s.

Therefore, we aim at deriving the exact probability of outage achievable in the presence of a

jammer, over our parallel slow fading channel, for a fixed transmission rateR. Our channel model

is depicted in Figure 3.1. The span of a codeword is denoted by “frame”. To model our parallel
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slow fading channel, each frame is divided intoM “blocks” (corresponding to theM subchannels),

each of which consists ofN channel uses, like in Figure 3.2.

The channel fading is slow, such that the corresponding channel coefficients remain constant

over each block and vary independently across different blocks. The channel coefficients are com-

plex numbers, and their squared absolute values are denoted ashm. The vectorh = [h0, h1, . . . , hM−1]

of channel coefficients over a whole frame is assumed to be perfectly known to the receiver, and

can be made available by feedback (if the receiver wishes) to the transmitter (Tx), and jammer (Jx)

before the transmission begins. It was shown in [32] that the feedback of channel state informa-

tion (CSI) (i.e. theM coefficients of a frame) brings moderate benefits for the parallel slow-fading

channel without jamming. Thus, by employing optimal power control strategies, the transmitter

can lower the probability of outage for fixed transmission rate and SNR. In this chapter, we study

both the scenarios when the CSI is fed back by the legitimate receiver – and hence allM channel

coefficients characterizing a frame are available to both transmitter and jammer in a non-causal

fashion (it is only natural to assume that if the transmitter has full CSI, the jammer can get the

same information by eavesdropping) – and the scenario when no feedback takes place and thus the

CSI is only available to the receiver.

In addition to fading, the transmission is affected by additive white complex Gaussian noise

(AWGN), and by a jammer. The jammer has no knowledge about the transmitter’s output, or even
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FIGURE 3.1. Channel model
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the codebook that the transmitter is using, and hence it deploys its most harmful strategy: it trans-

mits white complex Gaussian noise [30] (AWGJ in Figure 3.1).

The transmitter (Tx) uses a complex Gaussian codebook. Over a given frame, it allocates power

Pm to blockm, 0 ≤ m ≤ M − 1, while the jammer (Jx) invests powerJm in jamming the same

block with noise. As assumed in [32], the number of channel uses per block is largeN → ∞ in

order to average out the impact of the Gaussian noise. Under these assumptions, the instantaneous

mutual information characterizing a subchannelm is given byI(hm, Pm, Jm) = log(1 + hmPm

σ2
N+Jm

),

whereσ2
N is the variance of the ambient AWGN. The following denotations will be repeatedly used

in the sequel:

• Power allocated by the transmitter over a frame:

PM = 1
M

∑M−1
m=0 Pm;

• Power allocated by the jammer over a frame:

JM = 1
M

∑M−1
m=0 Jm;

• Instantaneous mutual information between the transmitter and the receiver over a frame:

IM = 1
M

∑M−1
m=0 I(hm, Pm, Jm).

Note thatPM is a function of the channel realizationh, so we often writePM(h) when this

relation needs to be explicitly emphasized.PM(h) can also be interpreted as the function giving

the power distribution across different frames. We also usePM(h) andJM(h) to denote inter-frame
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power allocation for the caseM = 1, since in this case a frame only contains one block. Like in

Chapter 2, throughout this chapter we shall also use the notationc = exp(MR) for simplicity.

As depicted in Figure 3.1, our channel model is similar to that of [9]. The difference, however, is

that we investigate the jamming problem in slow-fading channels and hence the probability of out-

age, defined as the probability that the instantaneous mutual informationIM of the channel is lower

than the fixed transmission rateR [32] is considered as an objective functionPout = Pr(IM < R)

(while [9] assumes fast fading and uses the ergodic capacity as objective). Our problem is still for-

mulated as a two-player, zero-sum game. The transmitter wants to achieve reliable communication

and hence minimize the outage probability, while the jammer wants to induce outage and maximize

the outage probability. Strategies consist of varying transmission powers based on the CSI (i.e. the

perfect knowledge ofh) if available, or solely on the channel’s statistics if CSI is not available. The

properties of our different objective function make our new jamming and anti-jamming problem

much more challenging to solve.

It is easy to find similarities to the fixed rate system with fast fading which was studied in

Chapter 2. In fact, the fast fading scenario of Chapter 2 can be obtained as a particular case of

the current setup, by allowing a large number of blocks per frameM → ∞ (corresponding to

an infinite number of subchannels). In doing so, the different frames are no longer characterized

by their respective channel realizations, but instead they become long enough to display the sta-

tistical properties of the channel coefficient and thus become equivalent. This is why our present

parallel slow fading scenario is more involved than the fast fading model of Chapter 2, especially

when it comes to resolving the optimal power allocation between different frames. Sometimes this

additional complexity leads to an additional level of power control, as we shall see in Section 3.4.

Our contributions are summarized below:

• We first investigate the case where the receiver feeds back the channel state information

(CSI) which becomes available to both transmitter and jammer. For the short-term power
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constraints case we show the existence of and find a Nash equilibrium of pure strategies.

Note that for a two-person, zero-sum game, all Nash equilibria have the same value [33].

Since an equilibrium of pure strategies is also an equilibrium of mixed strategies, our Nash

equilibrium of pure strategies provides the complete solution of the game.

• For the case with long-term power constraints we find the maximin and minimax solutions

of pure strategies, and show they do not coincide (hence the non-existence of a Nash equilib-

rium of pure strategies). Traditional methods of optimization, such as the KKT conditions,

cannot be applied to solve for these solutions completely. Therefore we provide a new, more

intuitive approach based on the special duality property discussed in Section 2.8.4 of Chapter

2. As argued in Chapter 2, Nash equilibria of mixed strategies may not always be the best

solutions to jamming problems. A smart jammer could eavesdrop the channel and detect

both the legitimate transmitter’s presence and its power level. Therefore, we believe that the

maximin and minimax problem formulations with pure strategies are of great importance in

understanding and resolving the practical jamming situations (in the worst case, they provide

upper and lower bounds on the system’s performance).

• The optimal pure strategies of allocating power between frames, for the maximin and min-

imax formulations, are found as the solutions of two simple numerical algorithms. These

algorithms function according to two different techniques which we explain in the sequel

and we dub as “the vase water filling problems”.

• Mixed strategies are discussed next. We show that for completely characterizing this scenario

we need three different levels of power control. We then particularize and obtain numerical

results for the special simple case with only one block per frame (M = 1).

• Finally, we compare our results to the case when the channel state information is only avail-

able to the receiver. We derive a Nash equilibrium forM = 1, and show that unlike in the
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fast fading scenario (where CSI feedback brings negligible improvements), under our cur-

rent parallel slow fading channel model, perfect knowledge about the CSI at all parties can

substantially improve performance.

The chapter is organized as follows. Section 3.2 deals with the short term power constrained

problem when full CSI is available to all parties. Section 3.3 studies the scenario with long term

power constraints and pure strategies under the same assumption of available CSI. Mixed strategies

are discussed in Section 3.4. For comparison purposes, Section 3.5 presents results for the case with

no CSI feedback. Finally, conclusions are drawn in Section 3.6.

3.2 CSI Available to All Parties. Jamming Game with
Short-Term Power Constraints

The game with short-term power constraints is the less complex of the two games we discuss in

the sequel. In this game, the transmitter’s goal is to:



Minimize Pr(IM(h, P (h), J(h)) < R)

Subject to PM(h) ≤ P ,with prob. 1
(3.1)

while the jammer’s goal is to:



Maximize Pr(IM(h, P (h), J(h)) < R)

Subject to JM(h) ≤ J ,with prob. 1.
(3.2)

We shall prove that this game is closely related to a different two player, zero-sum game, which

has the mutual information between Tx and Rx as a cost/reward function:

Tx





Maximize IM(h, P (h), J(h))

Subject to PM(h) ≤ P ,
(3.3)

Jx





Minimize IM(h, P (h), J(h))

Subject to JM(h) ≤ J .
(3.4)

This latter game is characterized by the following proposition:
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Proposition 3.1. The game of (3.3) and (3.4) has a Nash equilibrium point given by the following

strategies:

P ∗(hm) =





( 1
η
− σ2

N

hm
)+ if hm <

σ2
Nη

1−σ2
Nν

hm

η(hm+ η
ν
)

if hm ≥ σ2
Nη

1−σ2
Nν

(3.5)

J∗(hm) =





0 if hm <
σ2

Nη

1−σ2
Nν

hm

ν(hm+ η
ν
)
− σ2

N if hm ≥ σ2
Nη

1−σ2
Nν

(3.6)

whereη andν are constants that can be determined from the power constraints.

Proof. The proof is a straightforward adaptation of Section IV.B in [9], and is outlined in Section

3.7.

The connection between the two games above is made clear in the following theorem, the proof

of which follows in the footsteps of [32] and is given in Section 3.7.

Theorem 3.2. LetP ∗(h) andJ∗(h) denote the Nash equilibrium solutions of the game described

by (3.3) and (3.4). Then the original game of (3.1), (3.2) has a Nash equilibrium point, which is

given by the following pair of strategies:

P̂ (hm) =





P ∗(hm) if h ∈ U(R,P ,J )

Pa(hm) if h /∈ U(R,P ,J )
(3.7)

Ĵ(hm) =





Ja(hm) if h ∈ U(R,P ,J )

J∗(hm) if h /∈ U(R,P ,J )
(3.8)

whereU(R,P ,J ) = {h ∈ RM
+ : IM(h, P ∗(h), J∗(h)) ≥ R}, and wherePa(h) andJa(h) are

some arbitrary power allocations satisfying the power constraints respectively.
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3.3 CSI Available to All Parties. Jamming Game with
Long-Term Power Constraints: Pure Strategies

The long-term power constrained jamming game can be formulated as:

Tx





Minimize Pr(IM(h, {Pm}, {Jm}) < R)

Subject to E[PM(h)] ≤ P
(3.9)

Jx





Maximize Pr(IM(h, {Pm}, {Jm}) < R)

Subject to E[JM(h)] ≤ J
(3.10)

where the expectation is taken with respect to the vector of channel coefficients

h = (h0, h1, . . . , hM−1) ∈ RM
+ , andP andJ are the upper-bounds on average transmission power

of the source and jammer, respectively.

Contrary to the previous short-term power constraints scenario, if long-term power constraints

are used it is possible to havePM(h) > P for a particular channel realizationh, as long as the

average ofPM(h) over all possible channel realizations is less thanP.

Let m denote the probability measure introduced by the probability density function (p.d.f.) of

h, i.e., for a setA ⊆ RM
+ , we havem(A ) =

∫
A
f(h)dh. Integrating with respect to this measure is

equivalent to computing an average with respect to the p.d.f. given byf(h), i.e.,dm(h) = f(h)dh.

Both transmitter and jammer have to plan in terms of power allocation, considering both the

instantaneous realization and the probability distribution of the channel coefficient vector, as well

as their opponent’s strategy.

If the number of blocksM in each frame is larger than1, the game between transmitter and

jammer has two levels. The first (coarser) level is about power allocation between frames, and has

the probability of outage as a cost/reward function. This is the only level that shows up in the case

of M = 1. The second (finer) level is that of power allocation between the blocks within a frame.

An important comment similar to that in Chapter 2 needs to be made. We should point out

that decomposing the problem into several (two or three) levels of power control, each of which
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is solved separately, does not restrict the generality of our solution. In proving our main results

we take a contradictory approach. That is, instead of directly deriving each optimal strategy, we

assume an optimal solution has already been reached and show it has to satisfy a set of properties.

We do this by first assuming that the properties are not satisfied, and then showing that under this

assumption at least one of the players can improve its strategy (and hence the original solution

cannot be optimal). The properties are selected such that they are not only necessary, but also

sufficient for the completely characterizing the optimal solution (i.e. there exists a unique pair of

strategies that satisfy these properties).

3.3.1 Power Allocation between the Blocks in a Frame

In this subsection we only deal with the second (intra-frame) level of power allocation for the

maximin and minimax problems. The first (inter-frame) level will be investigated in detail in the

following two subsections.

The probability of outage is determined by them-measure of the set over which the transmitter

is not present or the jammer is successful in inducing outage. This set is established in the first

level of power control. Note that the first level power allocation strategies cannot be derived before

the second level strategies are available.

In the maximin case (when the jammer plays first), assume that the jammer has already allocated

some powerJM to a given frame. Naturally, the transmitter knowsJM (the maximin problem

assumes that the transmitter is fully aware of the jammer’s strategy). Depending on the channel

realization, the value ofJM , and its own power constraints, the transmitter decides whether it wants

to achieve reliable communication over that frame. If it decides to transmit, it needs to spend as

little power as possible (the transmitter will be able to use the saved power for achieving reliable

communication over another set of positivem-measure, and thus to decrease the probability of

outage). Therefore, the transmitter’s objective is to minimize the powerPM spent for achieving

reliable communication. The transmitter will adopt this strategy whether the jammer is present
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over the frame, or not. The jammer’s objective is then to allocateJM between the blocks such that

the requiredPM is maximized.

In the minimax scenario (when transmitter plays first) the jammer’s objective is to minimize the

powerJM used for jamming the transmission over a given frame. The jammer will only transmit

if the transmitter is present with somePM . The transmitter’s objective is to distributePM between

blocks such that the power required for jamming is maximized.

The two problems can be formulated as:

Problem 1(for the maximin solution - jammer plays first)

max
{Jm≥0}

[
min

{Pm≥0}
PM =

1

M

M−1∑
m=0

Pm, s.t.IM({Pm}, {Jm}) ≥ R
]

s.t.
1

M

M−1∑
m=0

Jm ≤ JM ; (3.11)

Problem 2(for the minimax solution - transmitter plays first)

max
{Pm≥0}

[
min
{Jm≥0}

JM =
1

M

M−1∑
m=0

Jm, s.t.IM({Pm}, {Jm}) ≤ R
]

s.t.
1

M

M−1∑
m=0

Pm ≤ PM . (3.12)

These problems can be solved by methods very similar to those presented in Chapter 2. For the

brevity of this presentation, we shall only point out the main results, and defer all proofs to the

Section 3.8. The following propositions fully characterize the solutions.

Proposition 3.3.The optimal solution of either of the two problems above satisfies both constraints

with equality.

Proposition 3.4. (I) Take the game given by (3.3) and (3.4) and set the constraints toPM(h) ≤
PM,1 andJM(h) ≤ JM,1. Denote the resulting value of the objective byIM(h, P (h), J(h)) = R1.

Then solvingProblem 1above with the constraints1
M

∑M−1
m=0 Jm ≤ JM,1 andIM({Pm}, {Jm}) ≥

R1 yields the objectivePM = PM,1. Moreover, any pair of power allocations across blocks that

makes an optimal solution of the game in (3.3) and (3.4) is also an optimal solution ofProblem 1,

and conversely.
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(II)Take the game given by (3.3) and (3.4) and set the constraints toPM(h) ≤ PM,1 and

JM(h) ≤ JM,1. Denote the resulting value of the objective byIM(h, P (h), J(h)) = R1. Then

solvingProblem 2above with the constraints1
M

∑M−1
m=0 Pm ≤ PM,1 and IM({Pm}, {Jm}) ≤ R1

yields the objectiveJM = JM,1. Moreover, any pair of power allocations across blocks that makes

an optimal solution of the game in (3.3) and (3.4) is also an optimal solution ofProblem 2, and

conversely.

(III) If JM,1 is the value used for the second constraint inProblem 1above, andPM,1 is the

resulting value of the cost/reward function, then solvingProblem 2with PM = PM,1 yields the

cost/reward functionJM = JM,1. Moreover, any pair of power allocations across blocks that

makes an optimal solution ofProblem 1, should also make an optimal solution ofProblem 2, and

conversely.

Proposition 3.5. The optimal solutions ofProblem 1andProblem 2above are unique.

Proposition 3.6. (I) Under the optimal maximin second level power control strategies (Problem

1), the “required” transmitter powerPM over a frame is a strictly increasing, continuous, concave

and unbounded function of the powerJM that the jammer invests in that frame.

(II) Under the optimal minimax second level power control strategies (Problem 2), the “re-

quired” jamming powerJM over a frame is a strictly increasing, continuous, convex and un-

bounded function of the powerPM that the transmitter invests in that frame.

Although under the same transmitter/jammer frame power constraintsPM andJM the second

level optimal power allocation strategies for the maximin and minimax problems coincide, this

result should not be associated with the notion of Nash equilibrium, since the two problems solved

above do not form a zero-sum game, while for the game of (3.9) and (3.10), first level power control

strategies are yet to be investigated.

As in Chapter 2, we shall henceforth denote the function that gives the “required” transmitter

powerPM over a frame where the jammer invests powerJM by PM(JM ,h) and its “inverse”, i.e.
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the function that gives the “required” jamming power over a frame where the transmitter invests

PM by JM(PM ,h). Note that unlike in Chapter 2, these functions are now also dependent on

the channel realizationh. A particular channel realization can be characterized in terms of the

second level power allocation technique. For instance, considering the maximin problem, we can

map each channel vectorh to a unique curvePM(JM) in the plane. That is, for fixedh, we

increase the jamming power allocated to the frame from0 to∞, and compute the transmitter power

PM(JM ,h) required for achieving reliable communication. We have already mentioned that, for

any fixedh, PM(JM) is a strictly increasing, continuous, concave and unbounded function.

Next we take a closer look at thePM(JM ,h) curves. By inspecting the proofs of Propositions

3.3 - 3.6, we notice thatj denotes the index of the first block on which the jammer allocates

nonzero power, whilep is the index of the first block on which the transmitter allocates nonzero

power (the blocks are indexed in increasing order of their squared channel coefficientshm, and

both transmitter and jammer allocate more power to blocks with larger values ofhm). Note also

thatp ≤ j. If for a givenh we havep = j over an interval ofJM , then thePM(JM) curve is linear

over that interval. However, ifp < j, the curve is strictly concave.

We can think of thePM(JM) curve that characterizes a given channel realizationh as being

“built” in the following manner. We increase the jamming power allocated to the corresponding

frame, starting fromJM = 0. We already know that without the jammer’s presence the transmitter

transmits over the “best” blocks , i.e. the ones having the largest channel coefficients. Even as the

jammer starts interfering, its optimal strategy is such that the blocks with the largest coefficients

remain the most attractive for the transmitter. However, they do become worse than before. Hence,

if without the presence of the jammer the transmitter would normally ignore some of the blocks,

as the jammer’s power increases, those blocks may slowly become more attractive. At some point,

the transmitter will choose to increase the number of blocks over which it allocates non-zero power

(i.e. decreasep). Similarly, as the jammer’s powerJM increases, the jammer moves from the best

block to the best two blocks, and so on (i.e. the jammer decreasesj).
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FIGURE 3.3. TypicalPM (JM ) curves, for different channel realizations

The transmitter’s and the jammer’s transitions do not have to be simultaneous. Recall that the

relationship between the values ofp andj decide whether thePM(JM) curve is linear or strictly

concave over an interval ofJM . Therefore, we expect thePM(JM) curves to look like a concate-

nation of linear and strictly concave segments, as in Figure 3.3. AsJM increases, the transmitter

decreases the value ofp whenever the slope of thePM(JM) curve can be decreased by this move

and similarly, the jammer decreases the value ofj whenever the slope can be increased. In other

words, asJM increases, the transitions from linear portions to nonlinear portions are caused by the

transmitter, while the transitions from nonlinear to linear ones are caused by the jammer.

In the remainder of this subsection we provide the simplest example of optimal power allocation

between the blocks of a frame. Namely, we look at the case whenM = 2 – only two blocks per

frame.

Particular case:M = 2

The case ofM = 2 is the simplest and most intuitive illustration of the second-level power

control strategy. Since we have already discussed the nice dual property between the second level

minimax and maximin strategies, the following considerations refer to the maximin scenario only.

The jamming powerJM has to be allocated between the two blocks in a way that maximizes

the transmitter’s expense, should it decide to achieve reliable communication over the frame. The

jammer and the transmitter can each transmit over either one or both blocks. All possible situations

are considered next.
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Let the two channel coefficients beh0 ≤ h1, and denote the transmitter’s and jammer’s powers

allocated to the blocks byP0, P1 andJ0, J1 respectively. Also denotexi = Ji + σ2
N , for i ∈ {0, 1},

andc = exp(2R). If we take a closer look at the solutions (3.5) and (3.6) of the game in (3.3) and

(3.4), and if we recall that the solutions of either of our maximin and minimax second layer power

allocation strategies have a similar form (up to the constantsη andν), it is easy to observe that

x0 ≤ x1 and x0

h0
≥ x1

h1
. This fact is also noted in Section 3.8.3, where the solution ofProblem 1is

given again, with the new notationλ = 1/η andµ = ν/η. Throughout the rest of this subsection

we shall refer to the notation in Section 3.8.3 and the solution in (3.100) and (3.101).

If the transmitter is active over both blocks, then the constraintIM = R yields

(
1 +

h0

x0

P0

)(
1 +

h1

x1

P1

)
= c, (3.13)

and with (3.102) in Section 3.8.3 we obtainλ =
√
cx0

h0

x1

h1
.

Suppose that the jammer is only present on one block of the frame, then that is the block with

coefficienth1. This impliesx0 = σ2
N , andx1 = (2JM + σ2

N). Under these assumptions, the

transmitter will only transmit on the first block, (that isP0 = 2PM andP1 = 0) if and only if

λ =

√
c
x0

h0

x1

h1

<
x0

h0

, (3.14)

which translates toc (2JM+σ2
N )

h1
<

σ2
N

h0
.

Otherwise, the transmitter is present over both blocks, performing water-pouring as in (3.102),

with

λ =

√
c
(2JM + σ2

N)σ2
N

h0h1

. (3.15)

Note that the transmitter cannot be present only on the second block.

If the jammer decides to allocate non-zero power over both blocks, its optimal strategy is such

thatx0/h0 ≥ x1/h1. If we also havex0/h0 ≤ c(x1/h1) (corresponding toλ ≥ x0/h0), then the

transmitter is present over both blocks. In this case, we can particularize (3.102) toM = 2 and
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obtain:

Pm =

√
c
x0

h0

x1

h1

− xm

hm

, for m ∈ {0, 1}. (3.16)

Define the ratior = x0/h0

x1/h1
. Sincex0 + x1 = 2(JM + σ2

N), we can write

PM =
(JM + σ2

N)(2
√
cr − r − 1)

h0r + h1

, if c
x1

h1

≥ x0

h0

. (3.17)

Setting the derivative ofPM with respect tor equal to zero, we get the unique solution

ropt =

(√
(h1 − h0)2 + 4h0h1c− (h1 − h0)

2h0

√
c

)2

, (3.18)

which provides the optimal allocation of the jamming powerJM between the two blocks. The value

of ropt is between1 (for h0 = h1) andc (for h0 = 0). Furthermore,PM(r) is strictly increasing

for r ∈ [1, ropt) and strictly decreasing forr ∈ (ropt, c], henceropt is the maximizing argument in

(3.17).

This also implies that ifropt
(2JM+σ2

N )

h1
<

σ2
N

h1
, the jammer’s optimal strategy is to allocate all of

its power to the second block. If, on the other hand,ropt
(2JM+σ2

N )

h1
≥ σ2

N

h1
, then the jammer’s best

strategy is to allocate the powerJM such that the ratior = (x0/h0)/(x1/h1) equals the optimal

ratio ropt.

The remarks above conclude in the following algorithm:

• If c (2JM+σ2
N )

h1
≤ σ2

N

h0
, both transmitter and jammer will only transmit on the second block.

• If c (2JM+σ2
N )

h1
>

σ2
N

h0
but ropt

(2JM+σ2
N )

h1
≤ σ2

N

h1
, the jammer will allocate all its power to the

second block, while the transmitter will transmit on both blocks.

• If ropt
(2JM+σ2

N )

h1
>

σ2
N

h1
, the jammer will transmit over both blocks such that(x0/h0)/(x1/h1) =

ropt, and the transmitter will also be present on both blocks.
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3.3.2 Inter-Frame Power Allocation

In this subsection we present the first level optimal power allocation strategies.

The Maximin Solution

Under our full CSI, average power constraints scenario, the jammer needs to find the best choice

of the setX ⊂ RM
+ of channel realizations over which it should be present, and the optimal way

JM(h) to distribute its power overX , such that when the transmitter employs its optimal strategy,

the probability of outage is maximized.

We already know that given the jammer’s strategy, the optimal way of allocating the transmitter’s

power is such that reliable communication is first obtained on the frames that require the least

amount of transmitter power. The jammer’s optimal strategy is presented in Theorem 3.7 below.
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FIGURE 3.4. Maximin vase filling.

The theorem is complemented by the numerical algorithm and the intuition-building analogy that

follows its proof.

Theorem 3.7. It is optimal for the jammer to makeJM(h) satisfy the power constraint with equal-

ity. The optimal jammer strategy for allocating power across frames is to increase therequired
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transmitter power, starting with those frames whose channel realizations exhibit the steepest in-

stantaneous slope of the characteristicPM(JM) curve. The jamming power should be allocated

such that therequiredtransmitter power over each channel realization where the jammer is present

does not exceed a pre-defined levelK. The optimal value forK that maximizes the outage prob-

ability can be found numerically, by exhaustive search in a compact interval of the positive real

line.

Proof. Our proof takes a contradictory approach. Instead of deriving the optimal strategy defined

above in a direct manner, we show instead that any other strategy not satisfying the theorem’s

requirements is suboptimal. LetS ,X ⊂ RM
+ denote the sets of channel realizations over which

the transmitter and the jammer are present, respectively.

Suppose the jammer picks a certain strategyJM(h). Since the transmitter’s strategy is pre-

dictable, the jammer already knows the transmitter’s optimal strategy. Under this optimal strat-

egy, the transmitter picks a set of framesS over which it will invest non-zero power. This choice

also results in a maximum level ofrequired transmitter power that will actually be matched by

the transmitter. Denote this level byK. Since the transmitter’s strategy is the optimal response

to the jammer’s strategy, therequired transmitter power should be larger than or equal toK over

the set of framesX \S where the jammer jams, but the transmitter does not afford to transmit.

Otherwise, the transmitter would be wasting power and its strategy would not be optimal.

But since the jammer knows the transmitter’s strategy, and knows that the transmitter will not

transmit overX \S , its optimal strategy should make therequiredtransmitter power overX \S

at most equal toK. Otherwise the jammer would be wasting power.

We have seen how the jammer’s power should be distributed overX \S . Next we show that

if the jammer’s power allocation overS
⋂

X is not done according to the theorem, the jammer’s

strategy is not optimal. For this, we assume that the jammer’s strategy does not satisfy the theorem’s

requirements, and provide a method of improvement (i.e. we prove sub-optimality).
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If the theorem is not satisfied, than there exist two setsA ,B ⊂ S
⋂

X of non-zerom-measure

such thatdPM (h1)
dJM

> dPM (h2)
dJM

∀ h1 ∈ A andh2 ∈ B, and such that the requiredPM is less thanK

onA andJM > 0 onB.

Consider a small enough amount of jamming powerδJM , such that, for any channel realiza-

tion h ∈ A
⋃

B, we can modify the jamming power byδJM without changing the slope of the

PM(JM) curve. SubtractingδJM from all frames inB, the jammer obtains the excess power

δJMm(B), which it can allocate uniformly overA . The jammer’s total average power remains

unchanged. However, the required transmitter power overA
⋃

B is increased (because the slopes

of thePM(JM) curves corresponding toA are all larger than the slopes of thePM(JM) curves

corresponding toB), and thus the modification results in a larger probability of outage.

There exists a closed interval[0, Kmax] ∈ R+ which includes the optimal value ofK. This

observation is vital to the existence of a numerical algorithm that searches for the optimalK.

Once such an interval has been set, we can fix the desired resolution and calculate the numerical

complexity of the algorithm. We next show how the upper limitKmax of this interval can be found.

Consider the set of channel realizationsS0 where the transmitter is active when the jammer does

not interfere with the transmission. Next, find the valueKmax for which, when the jammer allocates

its powerJ according to the rules of the theorem, we obtain a setX0 ⊂ RM
+ \S0. This means that

the jammer’s strategy under anyK ≥ Kmax has no influence upon the transmitter’s strategy. Note

that such a finiteKmax can be found wheneverRM
+ \S0 has non-zerom-measure.

The algorithm in Table 3.1 which we used in generating our numerical results in Subsection 3.3.3

helps shed more light into the practicality of Theorem 3.7. In the description of the algorithm, we

assume discrete jamming power levelsJk
M with k = 0, 1, . . . andJ0

M = 0, as well as a discrete

and finite channel coefficient space. As a consequence, there exists a finite number ofPM(JM)

curves, each characterizing one possible channel realization, and each completely determined by a

finite vector whose components are the values ofPM(Jk
M) for that particular channel realization.
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An intuitive description of the technique is given in Figure 3.4. Consider the problem where the

jammer has to pour water in a number of vases (a vase for each possible channel realization). The

shape of each vase is such that the vertical section of its wall produces a concave curve similar to

the correspondingPM(JM) curve. The jammer can afford to spend a certain volume of water. The

jammer wants to “annoy” the transmitter, which is deeply concerned withthe sum of the heights

that the water levels reach in the vases. Hence, the jammer tries to use its available volume of water,

such that the sum of the water levels’ heights is maximized. However, the jammer cannot pour all

the water in the thinnest vase, because then the transmitter might just ignore that vase. Instead,

the jammer has to set a height limitK which it should not exceed. The jammer pours the water a

cup at a time, starting with the vase in which a cup of water rises the water level the quickest. In

Figure 3.4, the order of adding cups to the vases is shown by numerals from1 to 11. The first cup

is poured into the thinnest vase (vaseA) and incidentally reaches the levelK. Thus, no more water

should be added to vaseA. The next three cups are added to vaseB, and then the next five cups to

vaseC. Then the jammer returns to vaseB, and adds another cup, for this increases the water level

more than it would increase the level in vaseC. Finally, the last available cup is added to vaseC.

The way the numerical algorithm works is illustrated in the right part of Figure 3.4.

The Minimax Solution

In Theorem 3.4 we showed that given the transmitter’s and the jammer’s powersPM andJM

allocated to a frame, the optimal strategies for distributing these powers inside the frame are iden-

tical for the minimax and the maximin problems. Hence, by rotating thePM(JM) plane, we get the

characteristicJM(PM) curves for the minimax problem. We already know that given the transmit-

ter’s strategy, the optimal way of allocating the jammer’s power is such that outage is first induced

on the frames that require the least amount of jamming power.

The transmitter’s optimal strategy is presented in the following theorem, which is complemented

by the numerical algorithm and the analogy that follows its proof.
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TABLE 3.1. Numerical algorithm for deriving the maximin solution.
Let P denote a matrix with each row representing
one of the vectorsPM (Jk

M ), for different channel
realizationsh. Let Preq be the vector of required
powers for the different frames. The initialPreq is
set equal to the first column ofP. Let Kmax be the
upper limit when searching for the optimalK.
Initialize K = 0.
whileK ≤ Kmax

pT = 0.
Let L be an index vector, the same size asPreq.
Initialize all components ofL to be equal to1.
We have the relationshipPreq(j) = P(j, L(j)).

% Jx strategy:
The amount of jamming power spent at each step is
accumulated into the variableJc.

whileJx power constraint is satisfied (Jc ≤ J )
Find rowj of P with the largest difference
between componentsL(j) + 1 andL(j),
and such thatP(j, L(j) + 1) ≤ K.
Preq(j) = P(j, L(j) + 1).
L(j) = L(j) + 1.
WeighJ j

M by probability of rowj and add to
Jc.

end
% Tx strategy (Tx picks frames where required
power is minimum first)
The amount of transmitter power spent at each step
is simulated into the variablePc.

whileTx power constraint is satisfied (Pc ≤ P)
Pick the least component ofPreq.

Add probability of corresponding frame to
pT .

Add value of component, weighted by
probability above, toPc.
Delete component fromPreq.

end
Pout(K) = 1− pT

Increment K.
end
Select K that produces the largestPout.
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Theorem 3.8. It is optimal for transmitter to makePM(h) satisfy the long-term power constraint

with equality. The optimal transmitter power allocation across frames is to increase therequired

jamming power up to some pre-defined levelK, starting with those frames on which the required

transmitter power to achieve this goal is least.

The optimal value forK that minimizes the outage probability can be found numerically by

exhaustive search.

Proof. As in the case of Theorem 3.7, we take a contradictory approach. Instead of directly deriv-

ing the optimal strategy defined above, we show that any other strategy not satisfying the theorem’s

requirements is suboptimal. Recall thatS andX ⊂ RM
+ denote the sets of channel realizations

over which the transmitter and the jammer are present, respectively.

Suppose the transmitter picks a certain strategyPM(h). Since the jammer’s strategy is pre-

dictable, the transmitter already knows the jammer’s optimal strategy. Under this optimal strategy,

the jammer should pick a set of framesX over which it will invest non-zero power. This choice

also results in a maximum level ofrequired jamming power that will actually be matched by the

jammer. Denote this level byK. Since the jammer’s strategy is optimal, therequired jamming

power outside the setX should be larger than or equal toK. Otherwise, the jammer would be

wasting power and hence its strategy would not be optimal. But since the transmitter knows the

jammer’s strategy, it also knows that the jammer will not be present overS \X , so the transmitter

should make therequired jamming power overS \X at most equal toK. Otherwise the trans-

mitter would be wasting power. Hence, overS \ X the transmitter should allocate power such

that the required jamming power is equal toK.

Next we show that if the transmitter’s power allocation overS
⋂

X is not done according to

the theorem, the transmitter’s strategy is not optimal. For this, we assume that the transmitter’s

strategy does not satisfy the theorem’s requirements, and provide a method of improvement (i.e.

we prove sub-optimality).
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If the theorem is not satisfied, than there exist two setsA ,B ⊂ S
⋂

X of non-zerom-measure

such thatPM(h1, K) < PM(h2, K) ∀ h1 ∈ A andh2 ∈ B, and such that the requiredJM is less

thanK on A andJM > 0 on B cannot be part of the minimax solution. Denote the original

transmitter power allocation functions overA andB by PA
M,0(h) andPB

M,0(h) respectively.

For anyh1 ∈ A , h2 ∈ B andJM,1, JM,2 < K, we have:

K − JM,1

PM(h1, K)− PM(h1, JM,1)

a)

≥ K

PM(h1, K)

b)
>

K

PM(h2, K)

c)

≥ JM,2

PM(h2, JM,2)
, (3.19)

where botha) andc) follow from the convexity ofJM(PM) – Proposition 3.6 – andb) follows

from the assumption in the beginning of this proof.

If the transmitter cuts off transmission over a subsetB′ ⊂ B, it obtains the excess power
∫

B′ PM(h)dm(h), which it can allocate to a subsetA ′ ⊂ A such that the requiredJM is equal to

K overA ′, i.e.
∫

B′
PB

M,0(h)dm(h) =

∫

A ′

[
PM(h, K)− PA

M,0(h)
]
dm(h) (3.20)

ReplacingPM(h1, JM,1) by PA
M,0(h) andPM(h2, JM,2) by PB

M,0(h) in (3.19), we see the trans-

mitter improves its strategy by forcing the jammer to allocate more power to the setA
⋃

B, and

hence decreases the probability of outage. Note that sinceB′ ⊂ S
⋂

X , the setB′ is in outage,

regardless of whether the transmitter is present or not. Thus, transmitter does not increasePout by

cutting off transmission onB′.

There exists a closed interval[0, Kmax] ∈ R+ which includes the optimal value ofK. As in

the maximin case, the existence of such a closed interval is required for constructing a numerical

algorithm that searches for the optimalK. The upper limitKmax of this interval can be found and

updated as follows. First solve the problem for an arbitrarily chosenK0, and determine the set

S0 \X0 over which the transmitter achieves reliable communication. We can setKmax equal to

the value ofK that yields a setS of the samem-measure as the setS0 \ X0. Note that ifK is

increased over thisKmax, the outage probability is at least as large as that obtained forK = K0

(and henceK0 is a better choice).

98



 

1

2

3
4

5
6

9

10

11

1
2

3
4

5

6
7

8

9

10

11

K

MP

MJ

Tx

12

7
8

12

A

B

C

C

B

A

 
 

FIGURE 3.5. Minimax vase filling.

The algorithm in Table 3.2 which we used for our numerical results in Subsection 3.3.3 illustrates

the application of Theorem 3.8. In the description of the algorithm, we assume discrete jamming

power levelsJk
M with k = 0, 1, . . . andJ0

M = 0, as well as a discrete and finite channel coefficient

space. As a consequence, there exists a finite number ofPM(JM) curves, each characterizing one

possible channel realization, and each completely determined by a finite vector whose components

are the values ofPM(Jk
M) for that particular channel realization.

A description of the technique is given in Figure 3.5, using the same vase analogy as in the

maximin case. This time, the transmitter does the pouring. Its obsession with the sum of the heights

of the water levels imposes a constraint on this sum. Under this constraint, the transmitter wants to

use as much of the jammer’s water as possible. That is, the transmitter attempts to maximize the

volume of water that can be accommodated by the vases, under the constraint that the sum of the

water levels’ heights is less than some given value. Moreover, if the transmitter pours water only in

the thickest vase, it might not feel that it did enough damage to the jammer. Thus, the transmitter

needs to set a limitK. The optimal strategy is to fill (up to volume levelK) the thickest vase first
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TABLE 3.2. Numerical algorithm for deriving the minimax solution.
Let P denote the matrix with rows representing the
PM (Jk

M ) vectors for different channel realizations
h. Let Kmax be value where searching for the opti-
malK stops.
Initialize K = 0.
whileK ≤ Kmax

% Tx strategy:
The amount of transmitter power spent at each step
is accumulated into the variablePc.

Initialize K = Jk
M .

Initialize Pc = 0, pT = 0.
whileTx power constraint is satisfied (Pc ≤ P)

Find rowj of P with leastk-th component.
Add probability of rowj to pT .
Add value of thek-th component, weighted
by the probability above, toPc.
Delete rowj from matrixP.

end
% Jx strategy (Jx jams frames where Tx is present,
randomly, until it reaches its power constraints):

pJ = J
K .

Pout(K) = pT − pJ .
IncrementK.

end
Select K that produces the leastPout.

(note that “thickest” refers to the fact that when filled up to volume levelK, the vase displays the

lowest water level height, thus “thickest” is defined with respect toK). The order in which the

transmitter adds cups of water to the vases is depicted in Figure 3.5 by numerals from1 to 12. The

way the numerical algorithm works is illustrated in the right part of Figure 3.5.

Particular case:M = 1

For this simple scenario, there is no second level of power allocation. All frames consist of only

one block, and thePM(JM) curves have the particular affine form with parameterh (the squared

channel coefficient corresponding to this block):

PM =
exp(R)− 1

h
(JM + σ2

N). (3.21)
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Since the slopes of thePM(JM) curves are constant withJM and the frames with smaller values

of the channel coefficients have larger characteristic slopes, we can easily particularize Theorems

3.7 and 3.8. With the same notationX ⊂ R+ for the set of channel realizations over which the

jammer invests non-zero power andS ⊂ R+ for the set of channel realizations over which the

transmitter uses non-zero power, we can now define the optimal power allocation strategies. For the

maximin scenario, The jammer should deploy someJM(h) overX such that therequiredPM(h)

is constant over the whole intervalX . The purpose of the jammer being active overX \ S is

to ”intimidate” the transmitter. The transmitter plays second, and hence takes advantage of the

jammer’s weaknesses. It always chooses to be active on the subset ofX on which therequired

PM(h) is least. This is why the optimal jammer strategy is to display no weakness, i.e. to make

PM(h) constant overX . These considerations are formalized in Proposition 3.9 below.

Proposition 3.9. In the maximin scenario, the jammer should adopt such a strategy as to make

the transmitter’s best choice ofS intersectX on the the left-most part ofS , and the required

transmitter power equal to some constantK onX
⋂

S and to(c−1)σ2
N/h onS \X . Transmit-

ting JM(h), satisfying the power constraint with equality, such that the transmitter power required

for reliable communication isPM(h) = K, ∀h ∈ [h∗1, h
∗
2], andPM(h) = (c − 1)σ2

N/h, ∀h ∈
[0,∞)\(h∗1, h

∗
2], for someh∗1 < h∗2 ∈ R+ and some constantK ∈ R+

⋃{∞} is an optimal jammer

strategy for the maximin problem. (Note thatPM(h) should be continuous ath∗1.) The valuesK, h∗1

andh∗2 that maximize the outage probability can be found by solving the following problem:

Find min
K

∫ ∞

h0

f(h)dh, where

h0 is given by
∫ h2

h0

Kf(h)dh+

∫ ∞

h2

c− 1

h
σ2

Nf(h)dh = P, (3.22)

h1 is given byh1 =
c− 1

K
σ2

N , (3.23)

andh2 is given by
∫ h2

h1

(
hK

c− 1
− σ2

N

)
f(h)dh = J . (3.24)
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¥

The power allocation is depicted in Figure 3.6. The convex decreasing curve represents the

original required transmitter power, without the presence of a jammer and satisfies the equation

PM = (c − 1)σ2
N/h. Notice how by picking someK, we can determineh1, h2 andh0 (in this

order), and then find the probability of outage asPout(h1) = 1 − m[(h0,∞)]. The optimalK,

resulting inh∗1, h
∗
2 andh∗0, is the one minimizing them-measure of the set(h0,∞).  
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FIGURE 3.6. Maximin solution forM = 1 - power distribution between frames

For the minimax scenario the jammer will not transmit any power over a frame if outage is

not going to be induced or if the transmitter is not present, i.e.X ⊂ S . The jammer will start

allocating power to the frames over which an outage is easiest to induce, and go on with this

technique until the average power reaches the limit set by its power constraint. Obviously, the

jammer prefers the frames for which the requiredJM(h) is less. The optimal transmitter’s strategy

is to allocate its power such that the requiredJM(h) is constant on the whole setS , and hence to

display no weakness.

These considerations are formalized in Proposition 3.10 below.

Proposition 3.10.For the minimax scenario, the transmitter’s optimal way to allocate its power is

to make the required jamming power remain equal to some constantK on all ofX . Transmitting

PM(h), satisfying the power constraint with equality, such that the requiredJM(h) equalsK for
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h ∈ [h∗x,∞), andJM(h) = 0 ∀h ∈ [0, h∗x), for someh∗x ∈ R+, is an optimal transmitter strategy

for the minimax problem. The valuesK andh∗x that minimize the outage probability can be found

by solving the following problem numerically:

Find max
K

∫ ∞

h0

f(h)dh, where

h0 is given by
∫ h0

hx

Kf(h)dh = J , (3.25)

hx is given by
∫ ∞

hx

(c− 1)(K + σ2
N)

h
f(h)dh = P . (3.26)

¥

The numerical problem is described in Figure 3.7. Notice how by picking someK, we can

determinehx andh0 (in this order), and then find the probability of outage asPout(h1) = 1 −
m[(h0,∞)]. The optimalK, resulting inh∗x andh∗0, is the one maximizing them-measure of the

set (h0,∞). Note that the jammer does not necessarily have to jam on an interval of the form

[hx, h0]. The jammer’s choice space (the set of frames out of which the jammer picks its setX ) is

an indifferent one, i.e. the jammer can randomly pickX ⊂ [hx,∞) as long as its measure satisfies

Km(X ) = J . However, for the purpose of computing the outage probability, the representation

of X as an interval is convenient and incurs no loss of generality. 
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FIGURE 3.7. Minimax solution forM = 1 - power distribution between frames
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3.3.3 Numerical Results

We have computed the outage probabilities for both minimax and maximin problems whenM = 1

andM = 2. The channel coefficients are assumed i.i.d. exponentially distributed with parameter

λ = 1/6. Figure 3.8 shows the outage probability vs. the maximum allowable average transmitter

powerP for fixedJ = 10 whenR = 1. For comparison purposes, we also plotted the results for

the case whenM = ∞, which are readily available from Chapter 2.

Numerical results demonstrate a sharp difference between the minimax solutions and the maxmin

solutions, which demonstrates the non-existence of Nash-equilibria of pure strategies for our two-

person zero-sum game with full CSI. Note the behavior of the outage probability when the number

of blocks per frameM is increased. At low transmitter powers, the increase ofM produces an

increase in the outage probability for both the minimax, and the maximin scenarios.

On the contrary, at higher transmitter powers a lower outage probability is obtained for both the

minimax and the maximin cases whenM is larger. This behavior can be summarized as follows:

the more powerful player will use the available diversity to its own advantage.
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3.4 CSI Available to All Parties. Jamming Game with
Long-Term Power Constraints: Mixed Strategies

We have already seen that the maximin and minimax solutions of the jamming game when only

pure strategies are allowed do not agree, and thus our game has no Nash equilibrium of pure

strategies. However, recall that the solution of the minimax problem with pure strategies can often

be a good characterization of a practical jamming situation (e.g. when the jammer does not transmit

unless it senses that the transmitter is on) and can always serve as a lower bound on the system’s

performance.

This aside, a Nash equilibrium is still the preferred characterization of jamming games, and

since such an equilibrium exists for our problem only when mixed strategies are allowed, the

current section is dedicated to the derivation of such a saddlepoint.

Unlike the fast fading scenario of Chapter 2, the frames in our slow-fading parallel-channels

model are not equivalent. Each frame is characterized by a different realization of the channel

vectorh. This is why our present scenario is even more involved than the one in Chapter 2, and

requires three levels of power control instead of two.

As before, our approach to the problem is a contradictory one. We study the power control

levels starting with the “finest” one, and show that if our conditions for power allocations are

not satisfied, then the strategy is suboptimal. The reason why an additional (third) level of power

control appears here is a combination of the facts that we study mixed strategies and the frames

are not all equivalent as in Chapter 2. Namely, to cover all possible probabilistic strategies, we

need to dedicate a level of power control to the power allocation between frames with the same

channel realizations (i.e. equivalent frames) and an additional level of power control for the power

allocation between frames with different channel realizations. Along with the power allocation

within frames, these problems cover all possible cases.
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3.4.1 Power Allocation within a Frame

The third level of power control deals with the optimal power allocation between the blocks in a

frame, once the transmitter is given the channel vectorh characterizing the frame and allocated

powerPM , and the jammer is given the channel vector and its allocated powerJM .

At this point, the third level of power control resembles the two-player, zero-sum game of (3.3)

and (3.4) having the mutual information calculated over a frameIM as cost function. However,

none of the players knows the other player’s constraints, because(PM , JM) is a random event.

Theorem 3.11 below provides the optimal transmitter/jammer strategies for power allocation within

a frame.

Theorem 3.11.Given a frame with channel vectorh and a realization(pM , jM) of (PM , JM), let

PM(jM) denote the solution ofProblem 1in Section 3.3 withJM = jM , andJM(pM) denote the

solution ofProblem 2in Section 3.3 withPM = pM .

The transmitter’s optimal strategy is the solution of the game in (3.3) and (3.4), where the jam-

mer is constrained to1
M

∑M−1
m=1 Jm ≤ JM(pM) and the transmitter is constrained to1

M

∑M−1
m=1 Pm ≤

pM . The jammer’s optimal strategy is the solution of the game in (3.3) and (3.4), where the transmit-

ter is constrained to1
M

∑M−1
m=1 Pm ≤ PM(jM) and the jammer is constrained to1

M

∑M−1
m=1 Jm ≤

jM .

Proof. The proof is very similar to the proof of Theorem 5 of Chapter 2 and is deferred to Section

3.9.

3.4.2 Power Allocation between Frames with the Same Channel Vector

Due to the form of the optimal second level power allocation strategies described in the previous

subsection, the probability that a given frame is in outage can be expressed as

Pout,h = Pr{JM ≥ JM(PM)} = 1− Pr{PM ≥ PM(JM)}, (3.27)
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wherePM(jM) is the strictly increasing, unbounded and concave function (see Proposition 3.6)

that characterizes the frame. Note that a pair of strategies can only be optimal ifPout,h above

is the Nash equilibrium of a jamming game played over the frames characterized by the same

channel vectorh. This means that if the transmitter and jammer decide to allocate powersPM,h

andJM,h respectively to frames with channel vectorh, they should not allocate the same amount

of power to each of these frames. Instead, they should use power levels given by the realizations

of two random variablesPM andJM with distribution functions(FP (pM), FJ(jM)) given in the

following theorem.

Theorem 3.12.The unique Nash equilibrium of mixed strategies of the two-player, zero-sum game

with average power constraints described by

min
FP (pM ):EFP

PM≤PM (h)
max

FJ (jM ):EFJ
JM≤JM (h)

Pout,h, (3.28)

whereEFP
andEFJ

denote expectations with respect to the distributionsFP (pM) andFJ(jM), is

attained by the pair of strategies(FP (pM), FJ(jM)) satisfying:

FP (PM(y)) ∼ kpU([0, 2v])(y) + (1− kp)∆0(y), (3.29)

FJ(JM(x)) ∼ kjU([0, JM(2v)])(x) + (1− kj)∆0(x), (3.30)

whereU([r, t])(·) denotes the CDF of a uniform distribution over the interval[r, t], and ∆0(·)
denotes the CDF of a Dirac distribution (i.e. a step function), and the parameterskp, kj ∈ [0, 1]

andv ∈ [max{JM,h,JM(PM,h)/2},∞) are uniquely determined from the following steps:

1. Find the unique valuev0 which satisfies:

PM,hJM,h = [PM(2v0)− PM,h](2v0 − JM,h). (3.31)

2. ComputeS(v0) =
∫ 2v0

0
PM(y)dy − 2v0PM,h.
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3. If S(v0) < 0, thenv is the unique solution of

∫ 2v

0

PM(y)dy − 2vPM,h = 0, (3.32)

kp = 1 (3.33)

and

kj =
JM,hPM(2v)

2v[PM(2v)− PM,h]
. (3.34)

4. If S(v0) = 0 thenv = v0, kp = kj = 1.

5. If S(v0) > 0, thenv is the unique solution of

∫ 2v

0

PM(y)dy −PM(2v)(2v − JM,h) = 0, (3.35)

kp =
2vPM,h

PM(2v)[2v − JM,h]
(3.36)

and

kj = 1. (3.37)

Proof. The proof follows directly from Theorem 2.22 in Section 2.9 of Chapter 2, by substituting

x = PM , y = JM , g(y) = PM(y), g−1(x) = JM(x), a = PM,h andb = JM,h. It is also interesting

to note that the condition
∫ b

0
g(y)dy < limz→∞

∫ g(z)

g(b)
g−1(x)dx− b[g(z)− g(b)] is satisfied because

PM(y) is unbounded.

Particular case:M = 1

For M = 1 the first (intra-frame) level of power control is inexistent. For a given channel

realizationh we can readily derive theaffinefunctionPM(jM) in (3.27) as

PM(jM) =
c− 1

h
(jM + σ2

N) (3.38)
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wherec = exp(R). If we use the particularization of the general solution of Theorem 3.12 to affine

functions, as in the last part of Section 2.9 of Chapter 2, we obtain the outage probability as

Pout,h = 1−
hPM (h)

c−1

JM(h)

[
1 +

√
1 + 2

σ2
N

JM (h)

]
+ σ2

N

if
hPM(h)

c− 1
≤ 1

2
JM(h)

[
1 +

√
1 + 2

σ2
N

JM(h)

]
+ σ2

N , (3.39)

and

Pout,h =
1
2
JM(h)

hPM (h)
c−1

− σ2
N

if
hPM(h)

c− 1
>

1

2
JM(h)

[
1 +

√
1 + 2

σ2
N

JM(h)

]
+ σ2

N . (3.40)

The transmitter and jammer strategies that achieve these payoffs are such that

FP (x) ∼ kpU([
c− 1

h
σ2

N , 2v
c− 1

h
+
c− 1

h
σ2

N ])(x) + (1− kp)∆0(x),

FJ(y) ∼ 2v

2v + σ2
N

kjU([0, 2v])(y) + (1− 2v

2v + σ2
N

kj)∆0(y).

The parameterskp, kj ∈ [0, 1] andv ∈ [max{JM(h),J ′
M(PM(h))/2},∞) are uniquely deter-

mined from the following steps:

1. If

hPM(h)

c− 1
≤ 1

2
JM(h)

[
1 +

√
1 + 2

σ2
N

JM(h)

]
+ σ2

N , (3.41)

then

v =
1

2
JM(h)

[
1 +

√
1 +

2σ2
N

JM(h)

]
, (3.42)

kp =
2vPM(h)

c−1
h

(2v + σ2
N)(2v − JM(h))

(3.43)
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and

kj = 1. (3.44)

2. If

hPM(h)

c− 1
>

1

2
JM(h)

[
1 +

√
1 + 2

σ2
N

JM(h)

]
+ σ2

N , (3.45)

then

v =
PM(h)− c−1

h
σ2

N
c−1
h

, (3.46)

kp = 1 (3.47)

and

kj =
c−1
h
JM(h)(2PM(h)− c−1

h
σ2

N)

2(PM(h)− c−1
h
σ2

N)2
. (3.48)

The special form of this solution will be used in the next subsection to derive the overall Nash

equilibrium of the mixed strategies game forM = 1.

3.4.3 Power Allocation between Frames with Different Channel Vectors

In the previous subsections we have described the optimal power control strategies for given par-

ticular channel realizationh, and transmitter and jammer power levelsPM,h andJM,h respectively.

The first level of power control,which is the subject of this subsection, deals with allocating the

powers specified by the transmitter and jammer average power constraintsP andJ between dif-

ferent channel vectors. In other words, we are now concerned with solving the problem

min
PM (h):EhPM (h)≤P

max
JM (h):EhJM (h)≤J

Eh[Pout,h,PM (h),JM (h)] (3.49)

wherePout,h,PM (h),JM (h) (also denoted asPout,h) is the outage probability of a frame characterized

by the channel vectorh and to which the transmitter allocates powerPM(h), and the jammer
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allocates powerJM(h). Note thatPout,h,PM (h),JM (h) can be easily computed according to the second

and third levels of power control already presented.

However, the Nash equilibrium of the game in (3.49) above is highly dependent on the result of

the second level of power control. Since finding a closed form solution for the second level is still

an open problem, a general solution for the first level of power control is not available at this time.

However, we next provide a Nash equilibrium for the particular case whenM = 1.

Particular case:M = 1

We start by pointing out the following important property of the second-level power control

strategies forM = 1.

Proposition 3.13. The outage probabilityPout,h given in (3.39) and (3.40) above is a continuous

function of both arguments. Moreover,Pout,h is a strictly decreasing, convex function ofPM(h) for

fixedJM(h) and a strictly increasing, concave function ofJM(h) for fixedPM(h).

Proof. In the remainder of this section we shall denote the case when

hPM (h)
c−1

≤ 1
2
JM(h)

[
1 +

√
1 + 2

σ2
N

JM (h)

]
+ σ2

N by Case 1and the case when

hPM (h)
c−1

> 1
2
JM(h)

[
1 +

√
1 + 2

σ2
N

JM (h)

]
+ σ2

N by Case 2.

It is straightforward to check that whenhPM (h)
c−1

= 1
2
JM(h)

[
1 +

√
1 + 2

σ2
N

JM (h)

]
+ σ2

N we get

Pout,h = 1

1+

r
1+2

σ2
N

JM (h)

by using either of the relations in (3.39) or (3.40). Thus, the continuity of

Pout,h follows immediately.

If we evaluate the derivatives forCase 1

dPout,h

dPM(h)
= −

h
c−1

JM(h)

[
1 +

√
1 + 2

σ2
N

JM (h)

]
+ σ2

N

(3.50)

and forCase 2

dPout,h

dPM(h)
= −

c−1
h
JM(h)

2(PM(h)− c−1
h
σ2

N)2
(3.51)
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we note that whenJM(h) is fixed,Pout,h is a strictly decreasing function ofPM(h), affine inCase

1 and strictly convex inCase 2. Moreover, dPout,h

dPM (h)
is continuous, which makesPout,h an overall

strictly decreasing, convex function ofPM(h).

Similar (but symmetric) properties hold for the derivatives

dPout,h

dJM(h)
=

h
c−1

JM(h)

[
1 +

√
1 + 2

σ2
N

JM (h)

]
+ σ2

N

· PM(h)

JM(h)
√

1 + 2
σ2

N

JM (h)

, (3.52)

for Case 1and

dPout,h

dJM(h)
=

1

2

1
h

c−1
PM(h)− σ2

N

(3.53)

for Case 2, yieldingPout,h an overall strictly increasing, concave function ofJM(h) (strictly con-

cave inCase 1and affine inCase 2).

The result of Proposition 3.13 implies that the overall outage probabilityEhPout,h is a convex

function of{PM(h)} for fixed {JM(h)} and a concave function of{JM(h)} for fixed {PM(h)}.
Since the set of strategies{PM(h), JM(h)} is convex, there always exists a saddlepoint of the

game in (3.49) [39]. The importance of this result should be noted, since it implies that a Nash

equilibrium of mixed strategies of the two-person, zero-sum game in (3.49) can be achieved by

only looking for pure strategies. Recall that any Nash equilibrium of pure strategies is also a Nash

equilibrium of mixed strategies, and that for a two-person, zero-sum game all Nash equilibria share

the same value of the cost function [33].

Any saddlepoint of (3.49) has to satisfy the KKT conditions associated with the maximiza-

tion and minimization problems of (3.49) simultaneously. The next Proposition shows these KKT

conditions are not only necessary, but also sufficient for determining a saddlepoint. The proof is

deferred to Section 3.9.

Proposition 3.14. For our two-player, zero-sum game of (3.49), any solution of the joint system

of KKT conditions associated with the maximization and minimization problems yields a Nash

equilibrium.
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We can now solve the KKT conditions associated with the maximization and minimization prob-

lems of (3.49) simultaneously. ForCase 1, these are

−
h

c−1

JM(h)

[
1 +

√
1 + 2

σ2
N

JM (h)

]
+ σ2

N

+ λ− γ(h) = 0 (3.54)

and

−
h

c−1

JM(h)

[
1 +

√
1 + 2

σ2
N

JM (h)

]
+ σ2

N

· PM(h)

JM(h)
√

1 + 2
σ2

N

JM (h)

+ µ− δ(h) = 0, (3.55)

whereγ(h) andδ(h) are the complementary slackness conditions satisfyingγ(h)PM(h) = 0 and

δ(h)JM(h) = 0, and whereµ, λ ≥ 0. From (3.55) we get

PM(h) =
µ

λ
JM(h)

√
1 + 2

σ2
N

JM(h)
, (3.56)

resulting in

JM(h) =




√(
λ

µ

)2

PM(h)2 + σ4
N − σ2

N




+

, (3.57)

which in combination with (3.54) yields

PM(h) =

[
h

c− 1

µ

2λ2
− µ(c− 1)

2h
σ4

N

]

+

, (3.58)

where we denote[x]+ = max{x, 0}. Under this solution, the condition for being underCase 1,

hPM(h)

c− 1
≤ 1

2
JM(h)

[
1 +

√
1 + 2

σ2
N

JM(h)

]
+ σ2

N (3.59)

translates to

2µh

λ(c− 1)
≤ 1 +

√
1 + 4σ2

Nµ
2

(
σ2

N +
1

µ

)
= 2(1 + σ2

Nµ). (3.60)

Note thatPM(h) = 0 if and only if JM(h) = 0, and this happens whenh ≤ h0/1, where

h0/1 = λ(c− 1)σ2
N . (3.61)
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Writing the KKT conditions forCase 2under the assumption thatPM(h), JM(h) ≥ 0 we obtain

−
h

c−1
JM(h)

2
(

h
c−1

PM(h)− σ2
N

)2 + λ− γ(h) = 0 (3.62)

and

− 1

2
(

h
c−1

PM(h)− σ2
N

) + µ− δ(h) = 0, (3.63)

which yield

JM(h) =
c− 1

h

λ

2µ2
(3.64)

and

PM(h) =
c− 1

h

(
1

2µ
+ σ2

N

)
. (3.65)

Note that in this case bothPM(h) andJM(h) are strictly positive for finiteh. Under this solution,

the condition for being underCase 2,

hPM(h)

c− 1
>

1

2
JM(h)

[
1 +

√
1 + 2

σ2
N

JM(h)

]
+ σ2

N (3.66)

translates to

2µh

λ(c− 1)
> 1 +

√
1 + 4σ2

Nµ
2

h

λ(c− 1)
. (3.67)

Forcing the right-hand side of (3.60) to equal the right-hand side of (3.67) we get the value ofh

which is at the boundary betweenCase 1andCase 2:

h1/2 = λ(c− 1)(
1

µ
+ σ2

N). (3.68)

A close inspection of the expressions ofPM(h) andJM(h) for the two cases shows that they

are both increasing functions ofh underCase 1and decreasing functions ofh underCase 2, and

moreover, they are both continuous inh1/2. To summarize the results above, the optimal trans-

mitter/jammer first level power control strategies are given in (3.69) and (3.70) below, respec-

tively. The constantsλ andµ can be obtained from the power constraintsEhPM(h) = P and

EhJM(h) = J .
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PM(h) =





0, if h ≤ h0/1

h
c−1

µ
2λ2 − µ(c−1)

2h
σ2

N , if h0/1 < h ≤ h1/2

c−1
h

(
1
2µ

+ σ2
N

)
, if h > h1/2

(3.69)

JM(h) =





0, if h ≤ h0/1√(
λ
µ

)2

( h
c−1

µ
2λ2 − µ(c−1)

2h
σ2

N)2 + σ4
N − σ2

N , if h0/1 < h ≤ h1/2

c−1
h

λ
2µ2 , if h > h1/2

(3.70)

3.4.4 Numerical Results

Figure 3.9 shows the probability of outage obtained under the mixed strategies Nash equilibrium,

versus the transmitter power constraintP, whenM = 1, for a fixed rateR = 1, noise power

σ2
N = 10, a jammer power constraintJ = 10 and a channel coefficient distributed exponentially,

with parameterλ = 1/6. The maximin and minimax solutions of the pure strategies game are

shown for comparison.
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FIGURE 3.9. Outage probability vs. transmitter power constraintP for M = 1 whenJ = 10, R = 2,
σ2

N = 10 andh is distributed exponentially, with parameterλ = 1/6.
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As expected, the solution of the of mixed strategies game is better (from the transmitter’s point

of view) than the minimax and worse than the maximin solutions of the pure strategies game.

3.5 CSI Available Receiver Only. Jamming Game with
Long-Term Power Constraints: Mixed Strategies

In this section we investigate the scenario when the receiver does not feed back any channel state

information. Since we have already shown that the problem with long-term power constraints is the

more interesting and challenging one, and since the purpose of this section is to offer a comparison

with previous results, we further focus only on the scenario of average power constraints and mixed

strategies.

Unlike in the corresponding Section 2.5 of Chapter 2, where all frames were equivalent because

of the fast fading channel, in our present scenario each frame is characterized by a particular

channel realization. Since this channel realization is not known to either the transmitter or the

jammer, they both have to allocate some power over each frame, in a random fashion, such that the

transmitter minimizes and the jammer maximizes the probability that the mutual information over

the frame is less than the transmission rateR. In its most general form, the game can be written as

min
PM :EPM≤P

max
JM :EJM≤J

EPM ,JM

[
min

Pm:
P

Pm≤MPM

max
Jm:

P
Jm≤JM

Pr{
M−1∑
m=0

log

(
1 +

Pmhm

Jm + σ2
N

)
≤MR}

]
, (3.71)

whereEPM ,JM
denotes statistical expectation with respect to the probability distribution ofPM

andJM . The form of (3.71) suggests two levels of power control: a first one which deals with the

allocation of power between different frames, and a second one which allocates the powers within

each frame.

In solving the game, we start as before with the second level of power control. However, this level

requires an exact expression ofPr{∑M−1
m=0 log

(
1 + Pmhm

Jm+σ2
N

)
≤ MR}. Note that this probability
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depends upon the probability distribution of the channel vectorh. A practical way of solving the

problem is the following.

DenoteSm = log
(
1 + Pmhm

Jm+σ2
N

)
the random variable (depending onhm) which characterizes

the instant mutual information over them-th block of the frame. We can write the cumulative

distribution function (c.d.f.) ofSm as

FSm(x) = Pr{Sm ≤ x} = Pr{hm ≤ (ex − 1)
Jm + σ2

N

Pm

} = Fh

(
(ex − 1)

Ji + σ2
N

Pi

)
(3.72)

whereFh(x) is the c.d.f. of the channel coefficienthm and we assume that the channel coefficients

over all the blocks of a frame are independent and identically distributed random variables.

We can now compute the p.d.f. (assuming it exists) ofSm as

fSm(x) =
dFSm(x)

dx
=
dFh

(
(ex − 1)

Jm+σ2
N

Pm

)

dx
. (3.73)

Finally, our probability can be written as

Pr{
M−1∑
m=0

log

(
1 +

Pmhm

Jm + σ2
N

)
≤MR} =

(
FS0 ∗ fS1 ∗ . . . ∗ fSM−1

)
(MR) (3.74)

where∗ denotes regular convolution. Due to the intricate expression of this probability, as well as

its dependence on the statistical properties of the channel, we next focus exclusively on the simple

case whenM = 1.

Particular case:M = 1

ForM = 1, we are only concerned with the first level of power control. The game can be written

as

min
PM :EPM≤P

max
JM :EJM≤J

EPM ,JM
Pr{P ≤ (c− 1)

JM + σ2
N

h
} (3.75)

or equivalently,

min
PM :EPM≤P

max
JM :EJM≤J

EPM ,JM
Pr{h ≤ (c− 1)

JM + σ2
N

PM

}. (3.76)
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In order to provide a good numerical comparison with the results of the previous sections, as-

sume that the channel coefficienth has an exponential probability distribution with parameterλ.

Its cumulative distribution function can thus be written asF (h) = 1 − e−λh, which enables us to

write

Pr{h ≤ (c− 1)
JM + σ2

N

PM

} = 1− exp

[
−λ(c− 1)

JM + σ2
N

PM

]
. (3.77)

DenoteH(PM , JM) = 1− exp
[
−λ(c− 1)

JM+σ2
N

PM

]
.

By computing the derivatives

dH

dPM

= −λ(c− 1)
JM + σ2

N

P 2
M

exp

[
−λ(c− 1)

JM + σ2
N

PM

]
< 0, (3.78)

d2H

dP 2
M

= λ(c− 1)
JM + σ2

N

P 3
M

[
λ(c− 1)

JM + σ2
N

PM

+ 2

]
exp

[
−λ(c− 1)

JM + σ2
N

PM

]
> 0, (3.79)

dH

dJM

= λ(c− 1)
1

PM

exp

[
−λ(c− 1)

JM + σ2
N

PM

]
> 0, (3.80)

and

d2H

dJ2
M

= −(λ(c− 1)
1

PM

)2 exp

[
−λ(c− 1)

JM + σ2
N

PM

]
< 0, (3.81)

we notice thatH is a strictly decreasing, convex function ofPM for a fixedJM , and a strictly

increasing, concave function ofJM for a fixedPM . Hence, a Nash equilibrium is achieved by

uniformly distributing the transmitter’s and jammer’s powers between the frames:

EPM :EPM≤P

{
1− exp

[
−λ(c− 1)

J + σ2
N

PM

]}
≤ 1− exp

[
−λ(c− 1)

J + σ2
N

P
]
≤

≤ EJM :EJM≤J

{
1− exp

[
−λ(c− 1)

JM + σ2
N

P
]}

(3.82)

This saddlepoint is an equilibrium of pure strategies, and hence also an equilibrium of mixed

strategies. Note that the existence of such an equilibrium of pure strategies might no longer hold
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for different probability distributions ofh, and this would demand a search for purely probabilistic

strategies. For example, when the c.d.f. of the channel coefficientF (h) is not concave, thenF ((c−
1)

JM+σ2
N

PM
) is no longer a concave function ofJM , and hence the optimal jammer strategy is not

deterministic.

Numerical evaluations of the system’s performance under the present scenario are presented in

the next subsection.

3.5.1 Numerical Results

The probability of outage as a function of the transmitter’s power constraintP is shown in Figure

3.10 forM = 1, and under the assumption that both the transmitter and the jammer distribute their

powers uniformly over the frames.

For comparison, the maximin and minimax solutions of the pure strategies game and the mixed

strategies Nash equilibrium, all under the scenario that channel state information is fed back by the

receiver, are also shown in the figure.
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FIGURE 3.10. Outage probability vs. transmitter power constraintP for M = 1, with and without CSI
feedback whenJ = 10, R = 2, σ2

N = 10 andh is distributed exponentially, with parameterλ = 1/6.
(Mixed strategies.)
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Note that when the receiver does not feed back the CSI, the system performance suffers degra-

dation. Unlike in the fast fading scenario of Chapter 2, in the present slow fading scenario the

increase in the outage probability is significant. The difference is most visible at low transmitter

powers, when not feeding back the channel state information amounts to worse performance than

the pessimistic (minimax) scenario with full CSI.

3.6 Conclusions

We have studied the jamming game over slow fading channels, with the outage probability as

objective. Similarly to the fast fading scenario, the game with full CSI and average (or long term)

power constraints does not have a Nash equilibrium of pure strategies. Nevertheless, we derived

the minimax and maximin solutions of pure strategies, which provide lower and upper bounds on

the system performance, respectively.

In addition, we investigated the Nash equilibrium of mixed strategies. Compared to the fast

fading scenario Chapter 2, the Nash equilibrium for the slow fading, full CSI game is much more

involved. The difference comes from the fact that frames are not equivalent. In fact, instead of

being characterized by the channel statistics as in Chapter 2, the frames are now characterized by

different channel realizations. This results in the existence of an additional third level of power

control.

We also showed that for parallel slow fading channels, the CSI feedback helps in the battle

against jamming, since if the receiver does not feed back the channel state information, the sys-

tem’s performance suffers a significant degradation. We expect this degradation to decrease as the

number of parallel channelsM increases, until it becomes marginal forM → ∞ (which can be

considered as the case in Chapter 2).

These results, along with our conclusions from Chapter 2, reveal an interesting duality between

the ways that different communication models behave with and without jamming. As remarked in

Chapter 2, under a fast fading channel with jamming, the feedback of channel state information
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brings little benefits in terms of the overall probability of outage. The same tendency is observed for

the fast fading channel without jamming in [35] (although the performance measure therein is the

ergodic capacity). However, [32] shows that for a parallel slow fading channel, the CSI feedback

is quite important. The improvement of the probability of outage when the channel coefficients are

perfectly known to the transmitter is no longer negligible. The results of this chapter demonstrate

that even in the presence of a jammer (which can eavesdrop the feedback channel and hence obtain

the same CSI as the transmitter), CSI feedback improves the transmission considerably.

3.7 Additional Results for Short-Term Power Constraints -
Proofs of Main Results

3.7.1 Proof of Proposition 3.1

The proof is an adaptation of the results in Section IV.B of [9], regarding uncorrelated jamming

with CSI at the transmitter. The only difference is that in our case, the power constraints and

cost function involve short-term, temporal averages, while in [9], they are expressed in terms of

statistical averages. Nevertheless, the same techniques can be applied.

The set of all pairs(P (h), J(h)) satisfying the power constraints is convex, since the power

constraints are linear functions ofP (h) andJ(h), respectively. Moreover, the cost function

IM(h, P (h), J(h)) =
1

M

M−1∑
m=0

log(1 +
hmPm

σ2
N + Jm

)

is a convex function ofJ(h) for fixedP (h), and a concave function ofP (h) for fixedJ(h). These

properties imply that there exists at least one saddle point of the game.

Writing the KKT conditions for both optimization problems we get [9]:

− h

σ2
N + J(h) + hP (h)

+ λ− γ(h) = 0 (3.83)

and

− hP (h)

(σ2
N + J(h))(σ2

N + J(h) + hP (h))
+ ν − δ(h) = 0, (3.84)
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whereγ(h) andδ(h) are the complementary slackness variables forP (h) andJ(h), respectively.

The three possible cases are [9]: Case 1:P (h) > 0, J(h) > 0; Case 2:P (h) > 0, J(h) = 0 and

Case 3:P (h) = J(h) = 0.

For Case 1 both complementary slackness variables are0, and solving (3.83) and (3.84) together

we get

λ

µ
=
J(h) + σ2

N

P (h)
, (3.85)

and

P (h) =
h

λ(h+ λ/µ)
, (3.86)

while for Cases 2 and 3, the solution is plain water-filling [9].

These considerations result in the solutions (3.5) and (3.6).

3.7.2 Proof of Theorem 3.2

This proof follows the one described in the Appendix B of [32]. The probability of outage can be

written as:

Pr(IM(h, P (h), J(h)) < R) = E[χ{IM (h,P (h),J(h))<R}], (3.87)

whereχ{A } denotes the indicator function of the setA . Replacing the power allocations by the

solutions of the game described by (3.3) and (3.4), we define

χ∗(h) = χ{IM (h,P ∗(h),J∗(h))<R}. (3.88)

Then the regionU(R,P ,J ) can be written as:

U(R,P ,J ) = {h ∈ RM
+ : χ∗(h) = 0}. (3.89)

We next use the fact that the pair(P ∗(h), J∗(h)) determines an equilibrium of the game (3.3),

(3.4). Thus, for any random power allocationP (h) satisfying the power constraint, we can write:

χ∗(h) ≤ χ{IM (h,P (h),J∗(h))<R},with probability 1. (3.90)
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Similarly, for any randomJ(h), we have

χ∗(h) ≥ χ{IM (h,P ∗(h),J(h))<R},with probability 1. (3.91)

Now pick some arbitrary power allocation functionsPa(h) andJa(h), which satisfy the short-

term power constraints, and set

P̂ (h) = (1− χ∗(h))P ∗(h) + χ∗(h)Pa(h), (3.92)

and

Ĵ(h) = (1− χ∗(h))Ja(h) + χ∗(h)J∗(h), (3.93)

It is easy to see that1/M
∑M−1

m=0 P̂ (hm) ≤ P with probability1 , 1/M
∑M−1

m=0 Ĵ(hm) ≤ J with

probability1, and moreover that

χ∗(h) = χ{IM (h, bP (h), bJ(h))<R}. (3.94)

Note that transmitter and jammer could pickPa(h) = 0 andJa(h) = 0 respectively, but this

strategy would not improve their performances (power cannot be saved), since the only power

constraints are set over frames.

Now, using (3.87), (3.90) and (3.91), we get:

Pr(IM(h, P (h), Ĵ(h)) < R) ≥ Pr(IM(h, P̂ (h), Ĵ(h)) < R) ≥ Pr(IM(h, P̂ (h), J(h)) < R),

(3.95)

which proves the existence of a Nash equilibrium of the original game.

3.8 Additional Results for Long-Term Power Constraints:
Pure Strategies

3.8.1 Proof of Proposition 3.3

Take Problem 1. Let (P∗, J∗) =
(
(P ∗0 , P

∗
1 , . . . , P

∗
M−1), (J

∗
0 , J

∗
1 , . . . , J

∗
M−1)

)
be a solution such

that
∑M−1

m=0 P
∗
m = PM,1 and

∑M−1
m=0 J

∗
m = JM,1, and assume thatIM(P∗, J∗) > R. SinceIM is a
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continuous, strictly increasing function ofP0, without loss of generality, we can findP ′0 < P ∗0 such

thatIM((P ′0, P
∗
1 , . . . , P

∗
M−1), J

∗) = R.

But thenP ′0 +
∑M−1

m=1 P
∗
m < MPM,1, which means that(P∗, J∗) is suboptimal (from the trans-

mitter’s point of view), and hence not a solution.

Therefore, the first constraintIM ≥ R has to be satisfied with equality, i.e.IM = R.

Now take the solution(P∗, J∗), and assume that1
M

∑M−1
m=0 J

∗
m < JM . Then we can findJ ′0 > J∗0 ,

such thatJ ′0 +
∑M−1

m=1 J
∗
m = MJM . In order for the first constraintIM = R to be satisfied, the value

and distribution ofPM will have to be modified.

We prove next that the value ofPM should be increased, which makes the pair(P∗, J∗) subop-

timal (from the jammer’s point of view), thus contradicting the hypothesis that it is a solution, and

proving that the second constraint should hold with equality.

Assume there is a distributionP′′ = (P ′′0 , P
′′
1 , . . . , P

′′
M−1) that minimizesPM , under the con-

straintIM({Pm}, (J ′0, J∗1 , . . . , J∗M−1)) = R, such that

M−1∑
m=0

P ′′m ≤ PM,1. (3.96)

Then, replacingJ0 by its old valueJ∗0 , we have that(P′′, J∗) is either a second solution of Problem

1 (if (3.96) is satisfied with equality), or a better choice (if (3.96) is satisfied with strict inequality).

We can readily dismiss the latter case. For the former case,IM is a strictly decreasing function of

J0, thusIM(P′′, J∗) > R, which contradicts the first part of this proof. The same arguments work

for Problem 2.

3.8.2 Proof of Proposition 3.4

Proposition 3.4 is a direct consequence of Theorem 2.21 in the Section 2.8.4 of Chapter 2. We

restate the theorem here for completeness. For a complete proof, see Chapter 2.

Theorem 3.15. Takex, y ∈ L2[R] and define the order relationx > y if and only if x(t) >

y(t) ∀t ∈ R. Consider the continuous real functionsf(x), g(y) andh(x, y) overL2[R], such that
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f is a strictly increasing function ofx, g is a strictly increasing function ofy, andh is a strictly

increasing function ofx for fixedy and a strictly decreasing function ofy for fixedx.

Define the following minimax and maximin problems:

max
y≥0

[
min
x≥0

f(x) s.t.h(x, y) ≥ H

]
s.t.g(y) ≤ G, (3.97)

max
x≥0

[
min
y≥0

g(y) s.t.h(x, y) ≤ H

]
s.t.f(x) ≤ F, (3.98)

min
y≥0

[
max
x≥0

h(x, y) s.t.f(x) ≤ F

]
s.t.g(y) ≤ G. (3.99)

(I) Choose any real values forG andH. Take problem (3.97) under these constraints and let

the pair (x1, y1) denote one of its optimal solutions, yielding a value of the objective function

f(x1) = F1. If we set the value of the corresponding constraints in problems (3.98) and (3.99)

to F = F1, then the values of the objective functions of problems (3.98) and (3.99) under their

optimal solutions areg(y) = G and h(x, y) = H, respectively. Moreover,(x1, y1) is also an

optimal solution of all problems.

(II) Choose any real values forF andH. Take problem (3.98) under these constraints and let

the pair (x2, y2) denote one of its optimal solutions, yielding a value of the objective function

g(y2) = G2. If we set the value of the corresponding constraints in problems (3.97) and (3.99)

to G = G2, then the values of the objective functions of problems (3.97) and (3.99) under their

optimal solutions aref(x) = F andh(x, y) = H, respectively. Moreover,(x2, y2) is an optimal

solution of all problems.

(III) Choose any real values forF andG. Take problem (3.99) under these constraints and

let the pair(x3, y3) denote one of its optimal solutions, yielding a value of the objective function

h(x3, y3) = H3. If we set the value of the corresponding constraints in problems (3.97) and (3.98)
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to H = H3, then the values of the objective functions of problems (3.97) and (3.98) under their

optimal solutions aref(x) = F and g(y) = G, respectively. Moreover,(x3, y3) is an optimal

solution of all problems.

3.8.3 Proof of Proposition 3.5

TakeProblem 1. By Proposition 3.4, if there existsPM,1 such that solving the game in (3.3) and

(3.4) with the constraint
∑M−1

m=1 Pm ≤ MPM,1 yields the objectiveIM(h, {Pm}, {Jm}) = R, then

the solution ofProblem 1coincides with the solution of the game in (3.3) and (3.4).

We write this solution as in (3.5) and (3.6), but we denoteλ = 1/η andµ = ν/η:

P ∗m =





(λ− σ2
N

hm
)+ if hm <

σ2
N

λ−σ2
Nµ

µ λhm

1+µhm
if hm ≥ σ2

N

λ−σ2
Nµ

(3.100)

J∗m =





0 if hm <
σ2

N

λ−σ2
Nµ

λhm

1+µhm
− σ2

N if hm ≥ σ2
N

λ−σ2
Nµ

(3.101)

whereλ andµ are constants that can be determined from the constraints
∑M−1

m=1 Jm = MJM and
∑M−1

m=1 I(hm, Pm, Jm) = MR.

We shall use the following conventions and denotations:

• Without loss of generality, we shall assume that the blocks in a frame are indexed in increas-

ing order of their channel coefficients. That is,h0 ≤ h1 ≤ . . . ,≤ hM−1.

• Denotexm = Jm + σ2
N andx∗m = J∗m + σ2

N . Note thatx
∗
0

h0
≥ x∗1

h1
≥ . . . ,≥ x∗M−1

hM−1
.

• Denote byhp the first block on which the transmitter’s power is strictly positive, and byhj

the first block on which the jammer’s power is strictly positive. Note thathp ≤ hj.

Note that

P ∗m =

[
λ− x∗m

hm

]

+

(3.102)
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for all m ∈ {0, 1, . . . ,M − 1}, where[z]+ = max{z, 0}.
Given these and (3.100) and (3.101) above, we can write:

σ2
N

hp

≤ λ <
σ2

N

hp−1

, (3.103)

σ2
N

1 + µhj

hj

≤ λ < σ2
N

1 + µ(hj−1)

hj−1

, (3.104)

MR =

j−1∑
m=p

log

(
λhm

σ2
N

)
−

M−1∑
m=j

log

(
1

1 + µhm

)
, (3.105)

Denote byQU [h] denotes the index of the smallest channel coefficient in the frame that is larger

thanh. With this notation, we can write

p ≥ QU

[
hj−1

1 + µhj−1

]
(3.106)

hp−1 <
hj

1 + µhj

(3.107)

1

M

M−1∑
m=j

[
hm

1+µhm

hj

1+µhj

− 1

]
≤ JM

σ2
N

≤ 1

M

M−1∑
m=j

[
hm

1+µhm

hj−1

1+µhj−1

− 1

]
, (3.108)

j−1∑

m=QU

ů
hj

1+µhj

ÿ
log

(
hm

1 + µhj

hj

)
−

M−1∑
m=j

log

(
1

1 + µhm

)
≤MR ≤

≤
j−1∑

m=QU

ů
hj−1

1+µhj−1

ÿ
log

(
hm

1 + µ(hj−1)

hj−1

)
−

M−1∑
j

log

(
1

1 + µhm

)
, (3.109)
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where (3.108) follows fromJM =
∑M−1

m=j

[
λhm

1+µhm
− σ2

N

]
, and the first inequality in (3.109) follows

sincehp−1 <
hj

1+µhj
impliesp ≤ QU

[
hj

1+µhj

]
because there is no other channel coefficient between

hp−1 andhp.

It is straightforward to show that for fixedhj the left-most and the right-most terms of inequal-

ity (3.108) are strictly decreasing functions ofµ, while the left-most and the right-most terms of

inequality (3.109) are strictly increasing functions ofµ.

Note that

M−1∑
m=j

[
hm

1+µhm

hj

1+µhj

− 1

]
=

M−1∑
m=j+1

[
hm

1+µhm

hj

1+µhj

− 1

]
, (3.110)

and

j−1∑

m=QU

ů
hj

1+µhj

ÿ
log

(
hm

1 + µhj

hj

)
−

M−1∑
m=j

log

(
1

1 + µhm

)
=

=

j∑

m=QU

ů
hj

1+µhj

ÿ
log

(
hm

1 + µhj

hj

)
−

M−1∑
m=j+1

log

(
1

1 + µhm

)
. (3.111)

That is, by keepingµ constant and replacinghj by hj−1 in both first terms of (3.108) and (3.109),

we get exactly the last terms of (3.108) and (3.109), respectively.

Finally, we take a contradictory approach. Suppose there exist two different pairs(hj1, µ1) and

(hj2, µ2) that satisfy both (3.108) and (3.109) and assume, without loss of generality thathj1 < hj2.

Then, in order for(hj2, µ2) to satisfy (3.108) we needµ2 > µ1, while in order for(hj2, µ2) to satisfy

(3.109) we needµ<µ1. Thushj is unique. Note however that the relations above do not guarantee

the uniqueness ofµ.

For the optimalhj, the constraint
∑M−1

m=1 Jm = MJM translates to

M−1∑
m=j

λhm

1 + µhm

= MJM + (M − j)σ2
N . (3.112)
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while the constraintIM(h, {Pm}, {Jm}) = R is already given in (3.105). The left hand side of

(3.112) is a strictly increasing function ofλ for fixedµ and a strictly decreasing function ofµ for

fixedλ, while being equal to a constant.

Again, for a contradictory approach, suppose there exist two different pairs of(µ1, λ1) and

(µ2, λ2) that can generate different solutions. If we assume, without loss of generality thatµ1 > µ2,

then, in order for (3.112) to be satisfied by both pairs, we needλ1 > λ2. But this can only mean

that under(µ2, λ2) the transmitter allocates non-zero power to more channel coefficients than un-

der (µ1, λ1). This remark simply says that the indexp at which the transmitter starts transmitting

is a decreasing function ofλ, and can easily be verified by (3.102). Looking now at (3.105), we

observe that its right hand side is a strictly increasing function ofλ for fixed µ and a strictly in-

creasing function ofµ for fixed λ, while being equal to a constant. In other words, if (3.105) is

satisfied by the pair(µ1, λ1), then it cannot also be satisfied by(µ2, λ2). Thus, the pair(λ, µ) that

satisfies both (3.105) and (3.112) is also unique. But oncehj, λ andµ are given,hp is uniquely

determined. Therefore there cannot exist more than one solution toProblem1. Similar arguments

can be applied to show that the solution ofProblem2is unique.

3.8.4 Proof of Proposition 3.6

Since the solution is unique, it follows thatPM(JM) is a strictly increasing function. By closely in-

specting the form of the solution in (3.100) and (3.101), it is straightforward to see that ifJM →∞,

thenJm → ∞ for all m ∈ {0, 1, . . . ,M − 1}. If the requiredPM were finite, this would imply

IM → 0, which violates the power constraints ofProblem 1. For Problem 1we prove that the re-

sultingPM(JM) function is continuous and concave in several steps. We first show in Lemma 3.16

that the optimal jammer strategy{x∗m}M−1
m=0 is a continuous function of the given jamming power

JM . Lemma 3.17 proves thatPM({xm}) is continuous and has continuous first order derivatives.

This implies thatPM(JM) is in fact continuous and has a continuous first order derivative. Finally,

Lemma 3.18 shows that for any fixedhp andhj the functionPM(JM) is concave.
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Lemma 3.16. The optimal jammer power allocation{x∗m}M−1
m=0 within a frame is a continuous

increasing function of the given jamming powerJM invested over that frame.

Proof. It is clear thatx∗m is continuous and increasing as a function ofJM if hp andhj are fixed. At

any point where eitherhp or hj change as a result of a change inJM , the optimal jamming strategy

{x∗m}M−1
m=0 maintains continuity as a result of the uniqueness of the solution (Proposition 3.5).

Lemma 3.17.BothPM({xm}) and the derivativesdPM

dxm
are continuous functions of{xm}M−1

m=0 .

Proof. Consider any two pointsX1 = (x1,m)M−1
m=0 andX2 = (x2,m)M−1

m=0 and any trajectoryT that

connects them.

For a given vectorX = (xm)M−1
m=0 , the required transmitter power is

PM =
M − p

M


 c(∏M−1

m=p hm

)



1
M (

M−1∏
m=p

xm

) 1
M

− 1

M

M−1∑
m=p

xm

hm

. (3.113)

Note thatp depends upon the choice ofX. For fixedp, the continuity and differentiability ofPM(X)

are obvious. Thus, it suffices to show that these properties also hold in a point ofT wherep changes.

If we can show continuity and differentiability whenp is decreased by1, then larger variations

of p can be treated as multiple changes by1, and continuity still holds.

Recall the assumption that the channel coefficients are always indexed in decreasing order of

the quantitiesxm

hm
. Let Xk = (xk,m)M−1

m=0 be a point ofT where the transmitter decreases the index

of the block over which it starts to transmit frompk to pk − 1, and denote byT1 the part of the

trajectoryT that is betweenX1 andXk, andT2 = T \ T1.

SincePpk−1 = 0, we know thatλ does not change in this point, since

1

M

M−1∑
m=p

[
λ− xm

hm

]
=

1

M

M−1∑
m=p−1

[
λ− xm

hm

]
= PM . (3.114)

Define the “left” and “right” limitsPM(Xk−) andPM(Xk+) as:

PM(Xk−) = lim
X→Xk

X∈T1

PM(X), (3.115)
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PM(Xk+) = lim
X→Xk

X∈T2

PM(X). (3.116)

SinceRM
+ is Hausdorff [40], there exists a small enough neighborhoodU ⊂ RM

+ of Xk, such that

p(X) = pk to the “left” andp(X) = pk − 1 to the “right” of Xk onU. We can now write:

PM(Xk+) = λ
M − pk + 1

M
− 1

M

M−1∑
m=pk−1

xk,m

hm

=

= λ
M − pk

M
− 1

M

M−1∑
m=pk

xk,m

hm

+
1

M
(λ− xk,pk−1

hpk−1

) = PM(Xk−), (3.117)

where the last equality follows becauseλ =
xk,pk−1

hpk−1
. This proves continuity.

Similar arguments can be used to show the continuity of the derivatives

dPM

dxn

=
1

M

(
λ

xn

− 1

hn

)
(3.118)

in Xk (note that λ
xk,pk−1

= 1
hpk−1

).

Therefore,PM(X) is continuous and has first-order derivatives that are continuous along any

trajectoryT between any two pointsX1 andX2.

Finally, for the last part of our proof:

Lemma 3.18.For fixedp andj, the functionPM(JM) is concave.

Proof. We can write

MJM + (M − j)σ2
N =

[
c

j−1∏
m=p

(
σ2

N

hm

) 1
M

·
M−1∏
m=j

(
1

1 + µhm

) 1
M

] M
j−p M−1∑

m=j

hm

1 + µhm

, (3.119)

and denote

g(µ) =
M−1∏
m=j

(
1

1 + µhm

) 1
j−p

M−1∑
m=j

hm

1 + µhm

(3.120)

Note that for fixedp andj, JM is a linear function ofg.
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A similar relation can be found for the required transmitter powerPM :

MPM +
1

M

j−1∑
m=p

σ2
N

hm

=

[
c

j−1∏
m=p

(
σ2

N

hm

) 1
M

·
M−1∏
m=j

(
1

1 + µhm

) 1
M

] M
j−p

·

·
[
M − p

M
− 1

M

M−1∑
m=j

1

1 + µhm

]
. (3.121)

Denote

f(µ) =
M−1∏
m=j

(
1

1 + µhm

) 1
j−p

·
[
(M − p)−

M−1∑
m=j

1

1 + µhm

]
(3.122)

and note that for fixedp andj, PM is a linear function off .

It suffices to show thatf(g) is concave. For this purpose, the derivativedf
dg

= df
dµ

(dµ
dg

)−1 should

be a decreasing function ofg, and hence an increasing function ofµ.

Computing the derivatives from (3.119) and (3.121) we get:

df

dg
=

df
dµ

dg
dµ

=

1
j−p

(
(M − p)−∑M−1

m=j
1

1+µhm

)
−

PM−1
m=j

hm
(1+µhm)2PM−1

m=j
hm

1+µhm

1
j−p

∑M−1
m=j

hm

(1+µhm)2
+

PM−1
m=j

h2
m

(1+µhm)2PM−1
m=j

hm
1+µhm

(3.123)

Arguments similar to those in Chapter 2 apply in proving that above the derivative increases

with µ. Looking at the right hand side of (3.123) (the “large fraction”), we notice that the first

term in the numerator increases withµ. For the second term in the numerator, it is clear that

asµ increases, its numerator decreases faster than its denominator. This implies that the whole

numerator of the “large fraction” is an increasing function ofµ. Similarly, the first term in the

denominator is clearly a decreasing function ofµ. The only thing left is the second term of the

denominator. It is straightforward to show that its derivative with respect toµ can be written as

d

dµ

∑M−1
m=j

h2
m

(1+µhm)2∑M−1
m=j

hm

1+µhm

=
1[∑M−1

m=j
hm

1+µhm

]2 ·

·
{[

M−1∑
m=j

h2
m

(1 + µhm)2

]2

−
M−1∑
m=j

h3
m

(1 + µhm)3
·

M−1∑
m=j

hm

(1 + µhm)

}
(3.124)
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If we consider the fact that for any two real numbersa andb we have

(a2 + b2)2 − (a+ b)(a3 + b3) = −ab(a− b)2 (3.125)

and the summations in (3.124) are positive, it is easy to see that the second term of the denominator

of the “large fraction” is decreasing withµ. Hence overall the derivative in (3.123) increases with

µ.

3.9 Additional Results for Long Term Power Constraints:
Mixed Strategies

3.9.1 Proof of Theorem 3.11

Denote the solution of the game in (3.3) and (3.4), where the jammer is constrained to1
M

∑M−1
m=1 Jm ≤

JM(pM) and the transmitter is constrained to1
M

∑M−1
m=1 Pm ≤ pM by ({Pm,1}, {Jm,1}), and the

solution of the game in (3.3) and (3.4), where the transmitter is constrained to1
M

∑M−1
m=1 Pm ≤

PM(jM) and the jammer is constrained to1
M

∑M−1
m=1 Jm ≤ jM by ({Pm,2}, {Jm,2}).

Denote the solution of the game in (3.3) and (3.4), where the jammer is constrained to1
M

∑M−1
m=1 Jm ≤

jM and the transmitter is constrained to1
M

∑M−1
m=1 Pm ≤ pM by ({Pm,0}, {Jm,0})..

By the Proposition 3.3, we must haveIM({Pm,1}, {Jm,1}) = R andIM({Pm,2}, {Jm,2}) = R,

whereIM({Pm}, {Jm}) = 1
M

∑M−1
m=0 log(1 + Pmhm

Jm+σ2
N

).

We will show that (i) even if the jammer’s powerjM is different fromJM(pM), the transmitter’s

strategy is still optimal; (ii) even if the transmitter’s powerpM is different fromPM(jM), the

jammer’s strategy is still optimal.

Assume the transmitter plays the strategy given by{Pm,1}.
If jM = JM(pM), it is clear that the optimal solution for both transmitter and jammer is the

solution of the game in (3.3) and (3.4), where the jammer is constrained to1
M

∑M−1
m=1 Jm ≤ jM and

the transmitter is constrained to1
M

∑M−1
m=1 Pm ≤ pM . In this case, it is as if each player knows the

other player’s power constraint.
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If jM < JM(pM), then by Lemma 3.16 we have thatJm,0 < Jm,1 ∀m. SinceIM({Pm}, {Jm})
is a strictly decreasing function of{Jm} (under the order relation defined in the Section 2.8.4 of

Chapter 2), this implies thatIM({Pm,1}, {Jm,1}) > R. Note that{Jm,0} is the jammer’s strategy

when the jammer knows the transmitter’s power constraintpM . Thus we have shown that when the

transmitter plays{Pm,1} andjM < JM(pM), the jammer cannot induce outage over the frame even

if it knew the value ofpM .

Assume that the jammer plays the strategy given by{Jm,2}. A similar argument shows that if

pM < PM(jM), or equivalentlyjM > JM(pM), the transmitter cannot achieve reliable communi-

cation over the frame even if it knew the exact value ofjM .

This shows that({Pm,1}, {Jm,2}) is a Bayes equilibrium [33] for the game with incomplete

information describing the power allocation within a frame.

3.9.2 Proof of Proposition 3.14

Take any solution{PM(h)∗}, {JM(h)∗} of the KKT conditions and denote byP ∗out the outage prob-

ability obtained under these strategies. By maintaining{JM(h)∗} constant and changing{PM(h)∗},
the resulting probability of outage can only be greater than or equal toP ∗out, since the original

{PM(h)∗} is the solution of a minimization problem with convex cost function and linear con-

straints.

Similarly, by maintaining{PM(h)∗} constant and changing{JM(h)∗}, the resulting probability

of outage can only be less than or equal toP ∗out, since the original{JM(h)∗} is the solution of a

maximization problem with concave cost function and linear constraints.

These arguments imply that{PM(h)∗}, {JM(h)∗} is a Nash equilibrium of the game.
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Chapter 4
Feedback-Based Collaborative Secrecy Encoding
over Binary Symmetric Channels

4.1 Introduction

In the context of a broadcast channel with confidential messages, it was shown in [13] that a

strictly positive secrecy capacity cannot be achieved for any arbitrary pair of receiver/eavesdropper

channels. In particular, [14] proves that whenever the eavesdropper’s channel isless noisythan the

receiver’s channel, no secret messages can be exchanged between the legitimate transmitter and

receiver by the conventional method of [12].

This motivated several works [41], [20], [21], [42], [1] to focus on alternative methods of achiev-

ing positive secrecy rates even when the legitimate receiver has a worse channel than the eaves-

dropper. All these works exploit the idea of feedback channels.

The simple and interesting method of [41] is based on making the receiver jam the eavesdropper.

The receiver can subtract its own jamming signal from the received signal, while the wiretapper

is kept totally ignorant of the confidential information flowing between the legitimate users. The

drawback of this approach is that the receiver has to function in full duplex mode. Although an

extension to half-duplex mode is presented in [41] for binary symmetric channels, it relies on the

assumption that the transmission of symbol0 is equivalent to the absence of a physical signal. We

believe that under this assumption, the binary symmetric channel is no longer valid as a simplified

model for a physical wireless channel.

More recently, [42], [1] both use a secret key to enhance the secrecy throughput of Wyner’s

scheme. In [42] the secret key is communicated through an error-free secure channel, while in [1]

it is transmitted using Wyner’s scheme on the feedback channels (and thus its secrecy is subject to

Alice’s feedback channel being better than Eve’s). An interesting idea of [1] is to use time-sharing

on the feedback link. Part of the feedback transmission is used to generate the secret key, while
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the remaining channel uses transmit random symbols with the purpose of providing the “common

randomness” necessary for our secrecy encoding scheme described in this chapter. A mixed se-

crecy encoding strategy is proposed in [1]. The main idea behind this strategy is to simultaneously

transmit a combination of secret messages, encoded by different methods. However, while a mes-

sage encrypted by a secret key can be transmitted at the same time as a secret message encoded

by Wyner’s scheme, the additional secret message encrypted with the use of a random feedback

sequence does not maintain secrecy. The exact reasons why the proposed scheme of [1] is incorrect

will be revealed in Section 4.4. None of the previously mentioned works considers the impact of

feedback transmission on the overall bandwidth use. This drawback becomes critical in [1], where

it results in the “secrecy rates” bearing no physical meaning, as will be shown in Section 4.7.

The concept ofcommon randomnessis introduced in [20, 21]. Such randomness can be acquired

if all terminals attempt to decode (note that a necessary condition is that the eavesdropper cannot

decode perfectly) a sequence of random bits, as for example a data stream transmitted by a satellite

at very low signal to noise ratio (SNR) [20]. Both [20] and [21] study the case when the legitimate

users agree on a secret key by employing repetitive protocols, which are not efficient for regular

data transmission.

The idea developed in this chapter is inspired by a particular case in [20]. As an example and

motivation for the feedback approach to secrecy in the classical Alice (transmitter) - Bob (receiver)

- Eve (eavesdropper) scenario, [20] develops a scheme where the common randomness is not re-

ceived from some external source (like a satellite), but introduced by Alice herself, and functions

as a secret key which allows Bob to share a secret message with Alice over a public, error free

channel. Our model changes the roles of Alice and Bob. Although at some point we make use

of the same concept of public error free channel, we show how the techniques that create such a

channel impact the overall secrecy rate. Our results explicitly count the loss in the total rate due to

the transmission of feedback.

136



While sharing functional similarities with the well-knownone-time pad[43] encryption scheme,

our approach is radically different in that it requires no secret key to be shared by the legitimate

parties before the initiation of the transmission protocol (except maybe a small secret key that guar-

antees authenticity as in [20]). Instead it exploits the channel randomness as means of confusing

the eavesdropper.

Our contributions can be summarized as follows:

• We show how an adaptation of Maurer’s scheme [20] can be used to achieve a non-empty

rate-equivocation region and hence a strictly positive secrecy rate over binary symmetric

channels (BSCs) even when the forward channel between Alice and Eve isless noisythan

the forward channel between Alice and Bob, regardless of the feedback channel quality

between Bob and Alice or Bob and Eve.

• Our results also indicate how the forward channel capacities scale the overall secrecy rate

and what penalties are incurred by the transmission of feedback sequences.

• We show that even if the forward channel from Alice to Bob is less noisy than the channel

from Alice to Eve, feedback can sometimes further improve the achievable rate-equivocation

region obtained using Wyner’s classical method [12]. This is done by dividing the transmis-

sion over the forward channel into two parts, as in [13]. Thus, we transmit a secret message

at a rate less than the secrecy capacity [12], and allow room for an additional common mes-

sage, which carries information “encrypted” with the help of the feedback sequence. The

optimal way of splitting the forward message rate is found numerically.

• We prove that, for a two-user broadcast channel with both channels binary and symmetric,

the optimal auxiliary channel of [13], needed to encode both a secret and a common message

into the transmitted sequence is a binary symmetric one, and its optimal input distribution is

uniform.
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• Finally, we take our scheme a step further and implement it on the reverse channel (from

Bob to Alice, rather than from Alice to Bob), in order to generate a secret key. Alice uses

this key as a one-time pad for the transmission of a secret message.
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FIGURE 4.1. System model.

The sequel is organized into seven sections. Sections 4.2.1 and 4.2.2 describe the kernel of our

scheme. Our adaptation of Maurer’s idea [20], including the channel model and the transmission

protocol are presented in Section 4.2.1 under the assumption that the forward channels are error

free. The public error free channel and the overall rate-equivocation region are discussed in Section

4.2.2 for a general value of the forwarding rate. Section 4.3 deals with the special case when the

eavesdropper’s forward channel is less noisy than the legitimate receiver’s forward channel, while

section 4.4 extends the model to the case when the eavesdropper’s forward channel is worse than

the legitimate receiver’s. An alternative scheme, which reverses our protocol to generate a secret

key, is provided in Section 4.5. Finally, conclusions are drawn in Section 4.6.

4.2 The Kernel
4.2.1 The Unscaled Rates

Consider the classical Alice (transmitter) - Bob (receiver) - Eve (eavesdropper) scenario with bi-

nary symmetric channels (BSCs) between any pair of users. We assume that Eve’s only form of
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interfering with the transmission is eavesdropping. Although our present treatment is restrictive to

binary channels, the principles and results therein can be easily extended to more complex models.

A simple extension to additive white Gaussian noise (AWGN) channels is provided in Section 4.9.

The proposed model is depicted in Figure 4.1. The transmitter (Alice) wants to communicate

the outputs of a sourceS of entropyHs to the legitimate receiver (Bob), and maintain some

level of secrecy towards the wiretapper (Eve). The channelA → B from Alice to Bob is a BSC

characterized by its crossover probabilityεf , while the binary symmetric channelA → E from

Alice to Eve is characterized by the crossover probabilityδf . Similarly, the feedback BSCsB → A

(Bob to Alice) andB → E (Bob to Eve) are characterized by their crossover probabilitiesεb and

δb, respectively.

The transmission protocol associated with the channel model in Figure 4.1 is an adaptation of

Maurer’s scheme [20] and is described as follows. Bob feeds back a sequencex of n bits represent-

ing the independent realizations of a Bernoulli random variableX with expectationE[X] = 0.5.

Since the bits are independent and identically distributed (i.i.d), Alice’s and Eve’s estimate of each

bit should be based solely on the corresponding received bit. Therefore, the bit error probabilities

that affect Alice’s and Eve’s decoding areεb andδb respectively. Denote the feedback sequences

received by Alice and Eve asy andz, respectively.

At this point, our feedback-based protocol assumes that Alice can share information with both

Bob and Eve through an error free public channel, just like in [20]. The implications of achieving

such an error free channel are discussed in Section 4.2.2.

Since an error free public channel cannot protect Alice’s information from the eavesdropper Eve,

the protocol has to artificially create a pair of channels that are adequate for the transmission of

secret messages.

For this purpose, if Alice needs to send an n-dimensional sequencev to Bob, she first computes

v ⊕ y, where⊕ denotes addition mod 2, and feeds this signal through the error free channel.
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Sincex is a sequence of i.i.d. symbols with a uniform distribution over{0, 1}, the same property

holds for the BSC outputy and, by theCrypto lemma1 [44], [41], for v ⊕ y.

Both Bob and Eve receivev ⊕ y with no errors. In order to obtain the original messagev, the

optimal strategy for Bob is to computev⊕y⊕x, while Eve’s best strategy is to computev⊕y⊕z

[20].

As a consequence, a bit error probability ofεB = εb will affect Bob’s estimate ofv, while a bit

error probability ofεE = εb + δb− 2εbδb will affect Eve’s estimate [20]. The result is an equivalent

system in which Eve’s channel is a degraded version of Bob’s channel, and which is therefore

adequate for the transmission of secret messages from Alice to Bob. In other words, standard

secrecy encoding can be performed for this equivalent system so that then-sequencev carries a

secret messagesk1 (which will hence forth be represented as a sequence ofk1 source symbols). A

total transmission rate arbitrarily close to

Rt,u = 1− h(εb) (4.1)

can be achieved asn→∞, whereh(·) represents the binary entropy functionh(x) = −x log2(x)−
(1− x) log2(1− x).

We shall now restate some of the definitions in [12] and then show how Theorem 2 of [12] can

be readily applied to our scenario.

Definition 4.1. The equivocation of the sourceS of entropyHs at Eve is defined as:

∆ =
1

k
H(sk|wM

E ), (4.2)

where the sequencesk of k source symbols are encoded into a codewordwM
A of lengthM which is

transmitted over the broadcast channel, and received by Eve aswM
E .

1Special care should be applied when using the Crypto lemma [44]. For instance, ifC is a compact Abelian group andX andE are random
variables overC such thatX is independent ofE and uniformly distributed overC, thenX + E is uniform andindependent ofE. However,E is
not independent of(X, X + E).
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Definition 4.2. The rate-equivocation pair(R, d) is achievable if for anyν > 0 there exists an

(M,k,∆, Pe) code as defined in [12] such that:

kHs

M
≥ R− ν, ∆ ≥ d− ν, Pe ≤ ν (4.3)

wherePe is the average error probability in decoding forsk at Bob.

Theorem 4.3. (Theorem 2 from [12]) A rate-equivocation pair(R, d) is achievable for Wyner’s

scheme withdiscrete memoryless symmetric channelsif and only if

0 ≤ R ≤ CM , 0 ≤ d ≤ Hs, Rd ≤ HsCs, (4.4)

whereCs = CM − CMW is the secrecy capacity (representing the maximum rate at which the

outputs of the sourceS can be conveyed from Alice to Bob, while remaining perfectly secret to

Eve) achievable by Wyner’s scheme in this case,CM is the capacity of Bob’s channel, andCMW is

the capacity of Eve’s channel.

The following corollary, which will prove useful in the sequel, follows directly from Theorem

4.3 and Definition 4.2.

Corollary 4.4. If (R, d) is an achievable rate-equivocation pair, then the number of secret source

symbolsk that can be encoded into theM -sequencewM
A has to satisfy:

k ≤ MCs

d
. (4.5)

Proof. Take an achievable rate-equivocation pair(R, d) such thatRd = HsCs. If k > MCs

d
, then

there existsR′ > R such that the same code that achieves the(R, d) pair satisfiesHsk
M

≥ R′−ν, for

anyν > 0. This implies that(R′, d) is an achievable rate. But thenR′d > HsCs, and this violates

Theorem 4.3.

If we apply Theorem 4.3 to the pair of equivalent channels derived above, we can conclude that

there exists a(n, k1,∆1, Pe,1) code satisfyingk1Hs

n
≥ R− ν, ∆1 ≥ d− ν, andPe,1 ≤ ν if and only
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if 0 ≤ R ≤ Rt,u, 0 ≤ d ≤ Hs, Rd ≤ HsRs,u, whereRs,u is the maximum achievablesecrecy rate

[13, 20]

Rs,u = h(εb + δb − 2εbδb)− h(εb). (4.6)

Several comments are in order. First, note thatRs,u > 0 – and therefore the rate-equivocation

region as defined in [12] is non-empty – unlessδb ∈ {0, 1} (the assumption that feedback channels

exist impliesεb 6= 0.5)

Second, the ratesRt,u andRs,u do not represent theoverall transmission and secrecy rates of our

model, since a pair of binary symmetric channels such as the forwardA→ B andA→ E channels

cannot provide error free transmission at infinite rates. The information encoded in the sequence

v mentioned above has to be passed through one of these channels in order to be available at the

other two terminals. While this “correction” will be considered in Section 4.2.2, we shall denote

the ratesRt,u andRs,u asthe unscaled transmission and secrecy rates, respectively.

Third, note that under the above protocol, an independent feedback sequencex is transmitted

every time for each new information-carrying sequencev. Eve’s resulting error sequence is always

different and independent, and acts like aone-time pad[43]. As is the case with a one-time pad,

the feedback sequence cannot be recycled. If only one feedback sequence is transmitted and used

for a set of several messages, Eve’s equivocation about the whole set will be the same as her

equivocation about any one message in the set.

Therefore, an additional rate penalty has to address the channel uses required for the feedback

of x, as will be shown in Section 4.2.2.

4.2.2 The Overall Rate-Equivocation Region and Secrecy Rate

This section shows how the overall transmission rates of our model depend on theunscaledrates

of the equivalent system presented in Section 4.2.1 and on the transmission rates used over the

forward binary symmetric channels.
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In Section 4.2.1 we showed that, if feedback is allowed, we can artificially form an equivalent

system that allows encoding by Wyner’s scheme [12]. All that is needed is an error free public

channel to support the transmission of then-sequencev⊕ y. By the channel coding theorem, this

channel is readily available ifv⊕ y is transmitted at a rateRAB,fb (the notation stands for the rate

at which the feedback processed signal is transmitted from Alice to Bob) less than the capacity of

theA→ B channelCAB = 1− h(εf ).

For a more formal proof, denote the error sequences introduced by the feedback channels by

ebA – for Alice – andebE – for Eve. According to [12] if the rate of the secret message is less than

Rs,u, then there exists an encoding/decoding technique such that for anyν > 0 there existsN0 > 0

such that the average probability of correctly decoding for the secret messagesk1 is

∑
s

Pr{sk1}
∑
v,ebA

Pr{ebA}Pr{v|sk1} · Pr{ψ(v ⊕ ebA) = sk1} ≥ 1− ν (4.7)

for n > N0, whereψ(·) is Bob’s secrecy decoder.

Moreover, according to Gallager’s second corollary of Theorem 5.6.2. [45], there exists a code

for Bob’s forward channel with the property that if the transmission rate isRAB,fb < CAB, then

for anyν > 0 there existsN1 > 0 such that the average probability of correctly decoding a given

transmitted messaget is

∑
wB,t

Pr{t}Pr{wB|t}Pr{φ(wB) = t} ≥ 1− ν (4.8)

for n > N1, whereφ(·) is Bob’s channel decoder andwB is Bob’s received sequence over

the forward channel (whenwA is transmitted by Alice). Note that our decoding method con-

sists of separate channel and secrecy decoding. That is, Bob estimates the secret messages, as

ŝ = ψ(φ(wB) ⊕ x). There is no guarantee that this separate decoding method is optimal. We

define Bob’s optimal (joint) decoderξ(·), yielding the optimal estimatẽs = ξ(wB). Given the

feedback sequencex, we can lower bound

Pr{ξ(wB) = sk1} ≥
∑

t

Pr{φ(wB) = t}Pr{ψ(t⊕ x) = sk1}. (4.9)
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Thus given the feedback sequencex, Bob’s average probability of correctly decoding for the

secret messagesk1 can be lower bounded as

∑

sk1

Pr{sk1}
∑
v,ebA

Pr{ebA}Pr{v|sk1}
∑
x

Pr{x} ·

·
∑
wB

Pr{wB|v ⊕ ebA ⊕ x}Pr{ξ(wB) = sk1}
(a)

≥

≥
∑

sk1

Pr{sk1}
∑
v,ebA

Pr{ebA}Pr{v|sk1}
∑
x

Pr{x} ·

·
∑
wB

Pr{wB|v ⊕ ebA ⊕ x}
∑

t

Pr{φ(wB) = t} · Pr{ψ(t⊕ x) = sk1}
(b)

≥

≥
∑

sk1

Pr{sk1}
∑
v,ebA

Pr{ebA}Pr{v|sk1}
∑
x

Pr{x} ·
∑
wB

Pr{wB|v ⊕ ebA ⊕ x} ·

· Pr{φ(wB) = v ⊕ ebA ⊕ x} · Pr{ψ(v ⊕ ebA)} = sk1} (c)
=

=
∑

sk1

Pr{sk1}
∑
v,ebA

Pr{ebA}Pr{v|sk1} · Pr{ψ(v ⊕ ebA)} = sk1} ·

·
∑
x

Pr{x}
∑
wB

Pr{wB|v ⊕ ebA ⊕ x} · Pr{φ(wB) = v ⊕ ebA ⊕ x}
(d)

≥

≥ (1− ν)
∑

sk1

Pr{sk1}
∑
v,ebA

Pr{ebA}Pr{v|sk1} · Pr{ψ(v ⊕ ebA)} = sk1}
(e)

≥ (1− ν)2.(4.10)

Inequality(a) follows from (4.9), inequality(b) from the fact that
∑

t F (t) ≥ F (t)|t=v⊕ebA⊕x for

any positive functionF , while the equality(c) from simply re-arranging the terms. In inequality

(d) we used (4.8) and the fact thatPr{v ⊕ ebA ⊕ x} = Pr{x} (due to the Crypto lemma [44]),

while inequality(e) follows directly from (4.7). The resulting average error probability at Bob is

thus

Pe < 2ν − ν2, (4.11)

which goes to zero asν → 0.

DenoteCAE = 1 − h(δf ) the capacity of Eve’s forward channel. Note that ifCAE ≥ CAB,

Eve will also be able to decode the sequencev⊕ y with no errors asymptotically. However, Eve’s

equivocation about the secret messagesk1 is maintained due to the feedback processing. On the
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other hand, ifCAE < CAB, Eve cannot decode for the messagev⊕y. Under this scenario, a secret

message can be transmitted from Alice to Bob by Wyner’s scheme, without using any feedback.

The optimal tradeoff between the rate of encoding a secret message directly through Wyner’s

scheme and the rateRAB,fb at which a feedback-processed secret message should be forwarded to

Bob will be discussed in Section 4.4. In what follows, we prove that Eve’s equivocation about the

feedback-processed secret messagesk1 is maintained regardless of the forwarding rateRAB,fb.

LetwE denote Eve’s received signal over the forward channel andsk1 denote the secret message.

Also, recall the error sequences corresponding to the feedback channels were denoted byebA (for

Alice’s feedback channel) andebE (for Eve’s feedback channel).

Eve’s equivocation about the secret message is

H(sk1|wE,x⊕ ebE) ≥ H(sk1|v ⊕ y,x⊕ ebE) = H(sk1|v ⊕ ebE ⊕ ebA), (4.12)

where the inequality follows sincesk1 → v ⊕ y → wE form a Markov chain, and the equality

is due to the Crypto lemma [44] and the fact that the probability distribution ofx is uniform over

{0, 1}n (implying thatx⊕ebE is independent of(sk1 , v⊕ebE⊕ebA)). Hence Eve’s equivocation

can only increase because of the imperfect forward channels.

The impact of the forward channel finite transmission rate on the overall achievable rates is

reflected in a scaling of theunscaledrates by the rate used over the forward linkRAB,fb. That is,

a sequence ofm1 bits carryingk1 = nRs,u/Hs secret symbols is mapped to ann-sequencev by

Alice’s secrecy encoder, such thatm1

n
≈ Rt,u. Next, Alice computesv⊕y, and feeds this signal to

the channel encoder. Sincev ⊕ y is a sequence of i.i.d. uniform bits (as shown in Section 4.2.1),

its error free transmission requires an approximate number ofM = n
RAB,fb

channel uses. Hence,

them1 source bits are transmitted inM channel uses.

An additional number ofn channel uses have to be considered for the transmission of the re-

quired feedback sequencex. Noting that n
M+n

=
RAB,fb

RAB,fb+1
, we can state the following result.
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Theorem 4.5. For any ν0, by choosingν such thatν0 > max{ν, 2ν − ν2}, we can find a code

comprising the original(n, k1, d, Pe,1) secrecy code, the forward channel code and the feedback,

which encodes thek1-sequencesk1 into theM -sequencewM
A , such that if Bob receiveswM

B and

Eve receiveswM
E , we havek1Hs

M+n
≥ n

M+n
R− ν0, ∆1 ≥ d− ν0, andPe,1 ≤ ν0, as long as

0 ≤ n

M + n
R ≤ RAB,fb

RAB,fb + 1
Rt,u, (4.13)

0 ≤ d ≤ Hs, (4.14)

n

M + n
Rd ≤ Hs

RAB,fb

RAB,fb + 1
Rs,u. (4.15)

This yields an overall secrecy rate of

Rs,0 = Rs,u
RAB,fb

RAB,fb + 1
. (4.16)

4.3 The First Approach: Eavesdropper’s Forward Channel
Less Noisy than Legitimate Receiver’s Channel

In this section we show a first approach to increasing the secrecy rate by using our feedback-

based scheme. We prove that it can achieve a strictly positive secrecy rate and a non-empty rate-

equivocation region even if the eavesdropper’s forward channelA → E is less noisy than the

legitimate receiver’s channelA→ B. The case whenA→ B is less noisy thanA→ E is studied

in Section 4.4.

If Eve’s forward channel is less noisy than Bob’s forward channel, or equivalentlyδf ≤ εf ,

then no messages can be transmitted at any level of secrecy over theA → B channel by Wyner’s

method [12]. If we take the forwarding rateRAB,fb arbitrarily close to Bob’s forward channel

capacityCAB, we obtain the following result which is a straightforward adaptation of Theorem

4.5.

Corollary 4.6. For anyν0 > 0 there exists a code which encodes thek-sequencesk1 into theM -

sequencewM
A , such that if Bob receiveswM

B and Eve receiveswM
E , we havek1Hs

M+n
≥ n

M+n
R − ν0,
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∆1 ≥ d− ν0, andPe ≤ ν0, as long as

0 ≤ n

M + n
R ≤ CAB

CAB + 1
Rt,u, (4.17)

0 ≤ d ≤ Hs, (4.18)

n

M + n
Rd ≤ Hs

CAB

CAB + 1
Rs,u. (4.19)

This yields an overall secrecy rate of

Rs,0 = Rs,u
CAB

CAB + 1
. (4.20)

The following remark is in order. Maurer’s “secrecy capacity with public discussion” [20] is

upper-bounded as follows:

Ĉs(PY Z|X) ≤ max
PX

I(X;Y |Z) (4.21)

whereX, Y andZ denote the input and the outputs of the non-perfect channel (in our case the

input to feedback channel at Bob and the outputs at Alice and Eve, respectively), andPX denotes

the probability distribution ofX input. It is also noted in [20] that in the case of binary symmetric

channels, the upper-bound is achieved. For our case, this means that theunscaledsecrecy rate

Rs,u = h(εb + δb − 2εbδb)− h(εb) can be increased no further.

However, for a practical system with imperfect forward channels, the objective should be to

maximize theoverall secrecy rate rather than theunscaledsecrecy rate. In the remainder of this

section we provide a simple example to prove that by altering the feedback sequence we can

increase the overall secrecy rate of the system over the value

Rs,0 = [h(εb + δb − 2εbδb)− h(εb)]
CAB

CAB + 1
(4.22)

provided by the maximization of the unscaled secrecy rate.

Processing the feedback sequence improves performance

So far we assumed that the feedback i.i.d. uniform sequence of bitsx is transmitted by Bob with

no further processing.
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FIGURE 4.2. The operator corresponding to the repetition coding preprocessing.

Further processing of the feedback sequence results in equivalent feedback channels with altered

error probabilities. Although the overall achievable secrecy rate depends on the rate at which the

feedback is transmitted, an error and rate reducing encoding/decoding scheme for the feedback

sequence implemented among the three parties can improve the system’s performance. One such

simple scheme, which preserves the independence between the symbols ofy after decoding, is

obtained if Bob encodes the feedback sequencex using repetition coding of rate1/N , and Alice

and Eve employ the optimal decoding scheme, which is majority decoding. The scheme results in

equivalent BSCs with crossover probabilities

ε′b =
2K+1∑
i=K+1




2K + 1

i


 εib(1− εb)

2K+1−i (4.23)

and

δ′b =
2K+1∑

i=k+1




2K + 1

i


 δi

b(1− δb)
2K+1−i, (4.24)

whereN = 2K + 1 if N is odd andN = 2K + 2 if N is even, andK ≥ 0.

The optimumN that maximizes the overall secrecy rate can be obtained numerically. The im-

provement in the overall secrecy rate due to repetition coding, as well as the optimal choice ofN

will be shown in Figure 4.4 and 4.5 of Section 4.4. However at this point we note that a processing

method that decreases equivalent crossover probabilities is better whenεb is decreased more than

δb, i.e. when the strength of Bob’s channel is increased relative to that of Eve’s. By inspecting

148



(4.23) and (4.24), we notice that the operator corresponding to our preprocessing method is expo-

nential. It is therefore expected that the method gives better results whenεb < δb, as can be seen

from Figure 4.2 (this phenomenon is indeed observed in our numerical results of Section 4.4) .

Although the above result may seem counter-intuitive (in light of Maurer’s Theorem 4 [20]),

the improvement in our case results exactly from the imperfection of the forward channels, which

translates to scaling coefficients for all achievable rates, as shown in Section 4.2.2.

Note that if a rate1/N repetition coding is used for the transmission of the feedback sequence,

the total number of channel uses needed for feedback isNn, leading to the overall secrecy rate

Rs,c =
nRs,u

n/RAB,fb + nN
= Rs,u

RAB,fb

NRAB,fb + 1
. (4.25)

The unscaled secrecy rateRs,u increases withN , while the correction factor CAB

NCAB+1
decreases

with N , hence the need to find the optimal value ofN that maximizesRs,c.

Some numerical results

Since the secrecy rate is simpler to represent than the rate-equivocation region, throughout this

chapter we focus on illustrating the improvements in the achievable secrecy rate due to feedback.

We first consider a model in which the forward channels have crossover probabilitiesεf = 0.02

and δf = 0.01, respectively. In this scenario, Wyner’s scheme cannot deliver a secret message

from Alice to Bob at any positive rate. However, the secrecy rates achievable by our feedback

based scheme (in Figure 4.3) are strictly positive (except in the pathological cases whenδb = 0 or

εb = 0.5).

In Figures 4.4 and 4.5 we show the additional improvement in the overall achievable secrecy

rate obtained if we use repetition coding for the transmission of the feedback sequence, and the

optimal repetition orderN . Although the improvement is marginal, it proves that Maurer’s upper

bound on the secrecy capacity with public discussion [20] does not hold if the forward channels

are imperfect.
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FIGURE 4.3. Overall secrecy rate achievable by our feedback scheme forεf = 0.02 andδf = 0.01.
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FIGURE 4.5. The optimal value ofN for feedback repetition coding.

4.4 The Second Approach: Legitimate Receiver’s Forward
Channel Less Noisy than Eavesdropper’s Channel

If εf < δf , a non-empty rate-equivocation region and a strictly positive secrecy rate less thanCs =

CAB−CAE are asymptotically achievable without feedback [12]. In this section we show that even

under this scenario, sometimes feedback can improve the achievable secrecy rate. For example,

whenCs is small compared toCAB,and the unscaled secrecy rate achievable with feedbackRs,u is

relatively large (i.e. when the channelB → A is significantly better than the channelB → E, while

the channelA→ B is only slightly better than the channelA→ E) , we can haveCs < Rs,u
CAB

CAB+1
.

However, in general, neither Wyner’s original scheme, nor our feedback based scheme is opti-

mal. Instead, as we shall see shortly, encoding a combination of a secret message and a feedback-

processed message into the forwarded sequencewA can achieve a higher overall secrecy rate.

The method behind the direct part of Wyner’s Theorem 2 [12] assumes the transmission ofm2

bits, containingk2 = n2Cs secret bits, by mapping thek2-bit secret messagesk2 to a specific coset.

The rest ofm2−k2 bits correspond to the index of the randomly picked coset representative which

is transmitted. Since Bob can decode the transmitted codeword perfectly, he has access to allm2

bits. Them2 − k2 non-secret bits are neither secret to, nor can they be decoded by Eve without

errors [13]. It was assumed in [12] that these bits are picked randomly (according to a uniform
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distribution) and carry no information. In their extension of Wyner’s work, Csiszar and Korner

[13] observe that these bits can actually be picked according to the output message of a uniform

source of entropyHx = m2 − k2, which can carry useful information for Bob [13].

At a first glance, it would appear that by encoding the messagev ⊕ y into them2 − k2 non-

secret bits, we could transmit it asymptotically error free to Bob, at a rate arbitrarily close to

CAB − Cs = CAE, in addition to the original secret messagesk2. In this case, even if Eve had

perfect access to these bits (which she has not), the equivocation of both secret messages would

be preserved. This argument is the starting point of the proposed mixed secrecy scheme of [1] (see

Section 4.7 for more remarks on [1]). Unfortunately, the argument above is false. By using the

sequencev⊕ y = v⊕ x⊕ ebA to pick the coset representative to be transmitted over the forward

channel, the equivocation of the secret messagesk2 encoded into the otherk2 bits is compromised.

As shown in Section 4.7, this happens because Eve has access to a distorted version of the feedback

sequencex⊕ ebE, which is correlated withv ⊕ y.

Therefore we need an encoding technique in which Eve’s information about the messagev ⊕
y, obtained throughx ⊕ ebE, does not influence the secrecy ofsk2. Such a technique is readily

provided by [13]: we can treat the sequencev ⊕ y as a common message, intended for both Bob

and Eve. In addition to the common message, a secret messagesk2 can be transmitted to Bob.

Since the common message is designed to be perfectly decoded by Eve, the additional information

contained inx⊕ ebE cannot compromise the secrecy ofsk2. The drawback is that the transmission

of a common message decreases the rate at which the secret messagesk2 can be conveyed to Bob

[13]. However, the transmission of an additional secret messagesk1, encoded in the sequencev,

can make up for this loss and, in many circumstances, bring noticeable improvements over Wyner’s

scheme [12].

In order to pursue this path, we first need to establish what is the optimal tradeoff between the

common message rate and the secret message rate. Denote byWA, WB andWE the input to the

forward channel and the outputs at Bob and Eve, respectively. According to Theorem 1 of [13], the
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two rates have to satisfy:

Re ≤ I(V ;WB|U)− I(V ;WE|U), (4.26)

Rc ≤ min[I(U ;WB), I(U ;WE)], (4.27)

whereRe is the secret message rate,Rc is the common message rate, andU andV are two auxiliary

random variables such thatU → V → WA → WB,WE form a Markov chain.

For our special BSC case, and under the scenario whereεf < δf , we can further simplify (4.27):

Rc ≤ I(U ;WE). (4.28)

Following the proof of Corollary 3 in [13], we can write (4.26) as:

Re ≤ I(V ;WB|U)− I(V ;WE|U) =

= I(V ;WB)− I(V ;WE)− [I(U ;WB)− I(U ;WE)] =

= [I(WA;WB)− I(WA;WE)]− [I(WA;WB|V )− I(WA;WE|V )]−

−[I(U ;WB)− I(U ;WE)], (4.29)

where the equalities follow from the fact that ifX → Y → Z form a Markov chain, then

I(Y ;Z) = I(X;Z)+I(Y ;Z|X) (Lemma 1 in [13]). Note that the term[I(WA;WB|V )−I(WA;WE|V )]

is always positive [13], and is minimized forV = WA. The condition in (4.29) is thus reduced to

Re ≤ [I(WA;WB)− I(WA;WE)]− [I(U ;WB)− I(U ;WE)], (4.30)

or equivalently

Re ≤ I(WA;WB|U)− I(WA;WE|U). (4.31)

At this point we are looking for the auxiliary random variableU , and its relationship with the

channel input random variableWA, that achieve the points on the boundary of the(Re, Rc) region
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described above. The only information aboutU that is provided in [13], is that its alphabet size

may, without loss of generality, be assumed to be at most three letters larger than the alphabet of

WA (in our binary case, the alphabet ofU would have at most five letters). In Theorem 4.7 below,

which is a straightforward adaptation of Theorem 4.8 in the Section 4.8, we present an interesting

result, namely that the optimalU is in fact a binary, uniformly distributed random variable, and

moreover, it is linked toWA through a simple binary symmetric channel.

Theorem 4.7. Any point on the boundary of the(Re, Rc) region described above can be achieved

by a binary random variableU with a uniform distribution over{0, 1}. Moreover, the channel

input random variableWA can be obtained by passingU through a binary symmetric channel of

crossover probabilityγ that satisfies1− h(γ + δf − 2γδf ) = R∗c (whereh(·) is the binary entropy

function).

As a consequence of Theorem 4.7, once we pick the auxiliary channel crossover probabilityγ

we can compute

R∗c = 1− h(γ + δf − 2γδf ) (4.32)

and

R∗e = [h(δf )− h(εf )]− [h(γ + δf − 2γδf )− h(γ + εf − 2γεf )]. (4.33)

Similar arguments to those in the previous section apply to show that the messagesv ⊕ y,

containing the secret messagesk1, can now be transmitted to Bob asymptotically error free at a

rate arbitrarily close toR∗c , in the form of a common message. In addition, another secret message

sk2 can be transmitted simultaneously to Bob at rate close toR∗e. In the remainder of this section

we calculate the resulting overall secrecy rate.

Define the equivocations∆1 = 1
k1
H(sk1|wM

E ,x
n +ebE

n) and∆2 = 1
k2
H(sk2|wM

E ), wheresk2 is

thek2-sequence of secret source symbols that are encoded in the codewordwM
A as a secret message,

andsk1 is a distinctk1-sequence of secret source symbols that are encoded in the sequencev ⊕ y
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by our feedback scheme. The sequencev ⊕ y is in turn mapped into the same codewordwM
A as

a common message. The transmitted codewordwM
A is received by Eve aswM

E . We know that for

anyν > 0 there exists such an encoding technique which satisfies

k2Hs

M
≥ R2 − ν, ∆2 ≥ d2 − ν, Pe,2 ≤ ν, (4.34)

as long as

0 ≤ R2 ≤ CAB, 0 ≤ d2 ≤ Hs, R2d2 ≤ HsR
∗
e, (4.35)

and

k1Hs

M+n
≥ R1 − ν, ∆1 ≥ d1 − ν, Pe,1 ≤ ν, (4.36)

as long as

0 ≤ R1 ≤ CABRt,u, 0 ≤ d1 ≤ Hs, R1d1 ≤ HsRs,u
R∗c

R∗c+1
. (4.37)

The equivocation of the secret message at Eve is now defined as:

∆ =
1

k1 + k2

H(sk1 , sk2|wM
E ,x

n + ebe
n). (4.38)

Sincesk1 andsk2 are independent, we can write

∆ =
k1

k1 + k2

∆1 +
k2

k1 + k2

∆2. (4.39)

Note that the overall rate at which the secret source is transmitted is now(k1+k2)Hs

M+n
. Therefore, a

correction of M
M+n

has to be applied to the rateR2. As a result, the rate-equivocation pair(R, d) is

achievable ifR = min{ M
M+n

R2+R1, CAB} andd = k1

k1+k2
d1+ k2

k1+k2
d2. Note that this impliesR <

CAB andd < Hs. Also, due to Corollary 4.4 we havek2d2 ≤MR∗e andk2d2 ≤ (M +n) R∗c
R∗c+1

Rs,u.

Due to (4.34) and (4.36) we havek1 + k2 ≥ M+n
Hs

( M
M+n

R2 + R1 − ν(1 + M
M+n

)), so we can

upper-bound

d =
k1d1 + k2d2

k1 + k2

≤ Hs
1

R− ν(1 + M
M+n

)

(R∗e +R∗cRs,u)

R∗c + 1
, (4.40)
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and

Rd ≤ Hs
R

R− ν(1 + M
M+n

)

(R∗e +R∗cRs,u)

R∗c + 1
, (4.41)

If we takeν → 0, we get

Rd ≤ Hs
(R∗e +R∗cRs,u)

R∗c + 1
. (4.42)

Equality can be asymptotically achieved (asν → 0) in (4.42) above if the two levels of secrecy

operate atR2d2 = HsC
∗
e andR1d1 = Hs

R∗c
R∗c+1

Rs,u respectively.

To conclude, our scheme yields an overall asymptotically achievable secrecy rate

Rs,0 = max

[
max

γ

(R∗e +R∗cRs,u)

R∗c + 1
,
CABRs,u

CAB + 1

]
, (4.43)

whereR∗e andR∗c are given by (4.32) and (4.33), respectively.

Several comments are in order. Ifγ = 0, we obtainR∗c = CAE, andR∗e = 0. However in this

case, since no secret message is transmitted directly by Wyner’s scheme, we can safely transmit

the feedback-processed message at a rateRAB,fb = CAB just like in (Subsection 4.3). This dis-

continuity in γ = 0 is why in (4.43) we have to compare the result of the maximization over

γ (corresponding to the mixed scheme) with the rate achieved by the pure feedback scheme. If

γ = 0.5, we haveR∗c = 0, andR∗e = CAB − CAE = Cs, resulting in Wyner’s original scheme

[12] – hence no discontinuity inγ = 0.5. Any value ofγ in the open interval(0, 0.5) results in a

combination of the two schemes.

Some more numerical results

To illustrate the performance of our second approach to implementing the feedback-based se-

crecy scheme, we consider a model in which the forward channels have crossover probabilities

εf = 0.01 andδf = 0.02, respectively. The secrecy rate achievable by Wyner’s original scheme is

Cs = 0.06.

In Figure 4.6 we show the overall achievable secrecy rate when we use our feedback scheme,

for different values of the crossover probabilities characterizing the feedback channels. The corre-
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FIGURE 4.6. Secrecy rate achievable by the feedback scheme forεf = 0.01 andδf = 0.02.

sponding optimal value of the parameterγ is given in Figure 4.7. Recall that wheneverγ = 0.5, our

feedback scheme reduces to Wyner’s scheme, and hence the achievable secrecy rate isCs. Also,

whenγ = 0, our scheme uses the whole capacityCAB of Bob’s forward channel to convey a secret

message encoded with the help of the feedback sequence (no additional directly encoded secret

message is present). The improvements are significant.

4.5 The Third Approach: The Reversed Feedback Scheme

The feedback-based scheme discussed in the previous section encodes two secret messages into the

sequence transmitted over the forward channel. The main idea behind this construction is based

on the capability of the legitimate transmitter (Alice) to transmit two types of messages simulta-

neously [13]: a first secret message to Bob, and a common message to both Bob and Eve. In our

case, the common message carries a second secret message, the encoding of which is based on

artificially degrading Eve’s equivalent channel by the use of a feedback sequence. But on a deeper

level, the encoding of both secret messages uses the same principle developed in [12], and none of

them uses an explicit secret key.
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FIGURE 4.7. The optimal value ofγ for the feedback scheme whenεf = 0.01 andδf = 0.02.

In this section, we discuss another approach to increasing the secrecy rate, namely when the

feedback-based scheme is used on the reversed channel (in the sense that the secret message en-

coded with the help of our feedback-based scheme is now transmitted from Bob to Alice instead

of from Alice to Bob) to send a secret key from Bob to Alice, much like in [42] and [1] (in fact the

scenarios of [42] and the correct part of [1] can be considered as special cases of our reversed mixed

feedback scheme.). Alice can subsequently use this secret key as a one-time pad, for transmitting

a secret message of the same entropy [43] to Bob.

Although this new protocol requires more bandwidth than the previous one, it can sometimes

achieve better overall performance in terms of rate-equivocation region and secrecy rate. However,

this can only happen under the (necessary but not sufficient) condition that the rate at which the

secret key is transmitted from Bob to Alice exceeds the secrecy rates achievable by the original

feedback scheme.

Denote byRs,p the supremum of the rates at which Bob can transmit a secret key (or a one-

time pad) to Alice by using the feedback scheme developed in the previous section on the reversed
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channel. Note thatRs,p can be obtained from the expression ofRs,0 in (4.43) by replacingεf by εb,

δf by δb, and vice versa.

To acquire this secret key, Alice and Bob engage in a protocol which is the reversed version of

the one described in the previous sections. Alice broadcasts a random feedback sequence ofn bits.

Bob can then encodek1 secret bits into ann-sequence, which is addedmod 2 to Bob’s received

feedback sequence, and then the result is further encoded into anM -sequence for asymptotically

error free transmission over theB → A andB → E channels.

If CBA > CBE, the sameM -sequence can carry an additional secret message ofk2 bits. A

number ofM + n channel uses are thus required for the transmission of akr = k1 + k2-bit secret

key rkr , and are accounted for in the expression ofRs,p (that is,Rs,p = kr

M+n
).

After adding the secret keyrkr to a secret messagesr
kr of her own (also akr-bit sequence), Alice

encodes the result into anM ′-sequence for the forward channel. Note here that because Alice uses

a secret key, the secrecy ofsr
kr is preserved (by the Crypto lemma [44]) even if Eve has perfect

access to the resultingkr-bit sum sequencerkr ⊕ sr
kr .

At this point, Alice could choose to encrypt everything she transmits to Bob. However, that

strategy would require the generation of a long secret key, and hence cause a large rate loss due to

feedback – recall that in our results we count the bandwidth expenditure due to feedback. Instead,

a mixed secrecy encoding strategy on the forward link may be optimal. For example, a special

adaptation of our reversed feedback scheme is possible whenCAB > CAE. Recall that in Section

4.4 we made a comment about the possibility to transmit a secret message, encoded in the cosets

of a code, at a rate arbitrarily close to the secrecy capacityCs = max{CAB−CAE, 0}, while using

the feedback-processed sequencev⊕y (that was carrying a separate secret message) for selecting

the exact coset representative to be transmitted. In Section 4.4 this was not possible due to the fact

that Eve had some information aboutv ⊕ y, from its received feedback sequencex⊕ ebE. In the

present scenario, however, the messagerkr ⊕ skr is totally unknown to Eve, and can be safely used

for selecting the coset representative.
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Thus, a firstk0-bit secret message – denote it bys0
k0 – can be transmitted from Alice to Bob

using Wyner’s original scheme [12], at a ratek0

M ′ ' Cs. A second secret messagesr
kr can be

transmitted at a ratekr

M ′ ' CF (we denotedCF = min{CAB, CAE}) by using the secret keyrkr

generated through a reversed feedback scheme.

With this notation, and taking into account alln+M+M ′ channel uses involved in the protocol

(i.e.n for the reversed feedback sequence from Alice to Bob,M for the transmission of the secret

key from Bob to Alice, andM ′ for the transmission of the secret message from Alice to Bob), we

can write the overall achievable secrecy rate as

Rs,rf =
k0 + kr

n+M +M ′ =
M ′

n+M +M ′ (Cs + CF ) = CAB
Rs,p

CF +Rs,p

, (4.44)

where in the second equality we used the fact thatCF + Cs = CAB and that

M ′

n+M +M ′ =
kr/(n+M)

kr/M ′ + kr/(n+M)
=

Rs,p

CF +Rs,p

. (4.45)

An observation is now in order. Note that employing Wyner’s original scheme, when possible,

in addition to the encryption by the secret key generated by the reversed feedback-based scheme, is

always optimal. Indeed, Wyner’s scheme guarantees the transmission of a secret message without

wasting any resources other than theM ′ bits of the forward channel sequence, while encrypting

a message by a secret key generated as above requires additional resources that grow linearly

with the size of the secret key. Therefore, for instance, generating a secret key long enough to

encrypt the whole secret message (of sizeM ′CAB bits) yields an achievable secrecy rate equal to

CAB
Rs,p

CAB+Rs,p
, thus is always outperformed by our combination of encryption and Wyner’s scheme.

Numerical Results

For the first data set, of Section 4.3, (εf = 0.02 andδf = 0.01), the achievable secrecy rate and

the optimalγ for the reversed feedback scheme are given in Figures 4.8 and 4.9.

The improvement in the overall secrecy rate when using the reversed feedback scheme instead

of the regular feedback scheme, i.e. the functionmax{0, Rs,rf−R0}, is shown in Figure 4.10. Note
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FIGURE 4.8. Overall secrecy rate achievable by the reversed feedback scheme forεf = 0.02 andδf = 0.01.
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FIGURE 4.9. The optimal value ofγ for the reversed feedback scheme whenεf = 0.01 andδf = 0.02.
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FIGURE 4.10. Improvement in overall secrecy rate when using the reversed feedback scheme instead of the
regular feedback scheme:εf = 0.02 andδf = 0.01. Represented is the functionmax{0, Rs,rf −R0}.

that the reversed mixed feedback scheme is usually a better choice when Eve’s feedback channel

is worse than Alice’s (i.e.δb > εb).

For the second data set, of Section 4.4, (εf = 0.01 andδf = 0.02), the secrecy rateRs,f achiev-

able by the reversed mixed feedback scheme is given in Figure 4.11, and the improvement over

the regular mixed feedback scheme is depicted in Figure 4.9. Once again, the reversed feedback

scheme performs better whenδb > εb. It is also interesting to note the existence of a region in

the (εb, δb) plane (around the diagonalεb = δb), where our regular mixed feedback scheme beats

Wyner’s scheme even whenεb > δb, and it also beats the reversed mixed feedback scheme even

whenεb < δb.

4.6 Conclusions

We presented a scheme that achieves a strictly positive secrecy rate even if the eavesdropper’s

channel is better than the legitimate receiver’s channel, and improves the achievable secrecy rate if

the eavesdropper’s channel is worse.
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FIGURE 4.11. Secrecy rate achievable by the reversed feedback scheme forεf = 0.01 andδf = 0.02.
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FIGURE 4.12. Improvement in secrecy rate when using the reversed feedback scheme instead of the regular
feedback scheme:εf = 0.01 andδf = 0.02. Represented is the functionmax{0, Rs,rf −R0}.
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TABLE 4.1. Possible implementation of our feedback-based secrecy scheme.
Channel conditions Possible implementation

CBA ≤ CBE Pure feedback scheme
CAB ≤ CAE

CBA > CBE Pure feedback scheme OR
CAB ≤ CAE Reversed mixed feedback scheme
CBA ≤ CBE Mixed feedback scheme OR
CAB > CAE Reversed pure feedback scheme
CBA > CBE Mixed feedback scheme OR
CAB > CAE Reversed mixed feedback scheme

We proposed several collaborative secrecy encoding methods, all of which use our feedback

scheme. Depending on the channel conditions, the possible ways in which the feedback-based

scheme can be used are summarized in Table 4.1. The termpure feedback schemein Table 4.1 de-

notes the feedback scheme as implemented in Section 4.3, i.e. without being mixed with Wyner’s

scheme, whilemixed feedback schemerefers to the implementation of Section 4.4, under the opti-

mal mixture between the pure feedback scheme and Wyner’s scheme. Similar considerations hold

for thereversed pure/mixed feedback scheme(see Section 4.5).

Our scheme requires a new random sequence to be fed back from Bob, for each codeword that

Alice wants to send over the forward channel, in a manner similar to the one-time pad. We have

shown that Theorem 4 in [20], which provides an upper bound on the achievable secrecy rate when

the public channel is error free, does not hold if this condition is not satisfied. The derivation of

such an upper bound for the more realistic scenario with imperfect public channels is still under

our investigation.

The main advantage of our scheme is that it makes physical layer security protocols imple-

mentable with only minor restrictions imposed on the eavesdropper’s channel, restrictions which

can be easily ensured by perimeter defense (transmission power is low enough to guarantee a

minimum error probability for any terminal situated outside a safe perimeter).
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4.7 Additional Results. Why the Approach of [1] Is Wrong

Since the ideas of [1] are closely related to our feedback secrecy encoding scheme, and since [1]

suffers from several subtle flaws, we dedicate this section to pointing out the following three.

First, all the rates of [1] are expressed without considering the expense of channel uses due to

feedback. While this may seem like a minor inconvenience as far as the forward channel rates

are involved, it becomes a problem when the forward channel rates are mixed with orthogonal

feedback channel rates, as in sections 3 and 4 of [1]. More specifically, the secrecy rate achievable

by Wyner’s scheme on the forward channel cannot be added to the rate at which the secret key is

generated over the orthogonal feedback channel unless both channels use the exact same codeword

length.

Second, even if both the feedback and forward channels used the same codeword length, the time

sharing idea of [1] is meaningless. It is claimed in [1] that time sharing is performed between two

modes of operation on the feedback channel: Wyner’s regular scheme, and our feedback secrecy

scheme. With the notation of [1], the two modes of operation would normally yield secrecy rates

Cb
s = [h(δb) − h(εb)]

+ (Wyner’s scheme) andRfbs = h(εb + δb − 2εbδb) − h(εb) (our feedback

scheme). Thus, the optimal time sharing between these schemes is to always use our feedback

secrecy scheme (i.e.α = 0 always in [1]) sinceRfbs > Cb
s regardless of the channel parameters.

Third, our secrecy feedback scheme cannot be mixed with Wyner’s secrecy scheme the way that

was claimed in section 4 of [1]. If mixing is desired, special care should be taken to ensure that

Eve’s information about the random feedback sequence, obtained on the feedback channel, does

not compromise the secrecy of Wyner’s scheme. We have already mentioned this in Section 4.4. In

the following, we give a more detailed explanation of this account. With the notation on Section 4.4,

consider the secret message encoded by Wyner’s schemesk2, Alice’s transmitted sequencewM
A ,

and Eve’s received sequencewM
E . The key to Wyner’s secrecy scheme is to employ an encoding

scheme that guarantees thatH(wM
A |wM

E , s
k2) is arbitrarily small, and thatH(wM

A |sk2) is arbitrarily

close toI(wM
A ;wM

E ) [12]. Indeed, this is how the encoding in [1] is performed.
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However, recall that due to the feedback scheme, Eve also has access to a distorted versionz of

Bob’s feedback sequencex. AlthoughH(wM
A |wM

E , z, s
k2) remains arbitrarily small,H(wM

A |sk2)

is not arbitrarily close toI(wM
A ;wM

E , z). This is because

I(wM
A ;wM

E , z) > I(wM
A ;wM

E ) ⇔ H(wM
A |wM

E , z) < H(wM
A |wM

E ).

Note that if we hadH(wM
A |wM

E , z) = H(wM
A |wM

E ), thenz → wM
E → wM

A would form a Markov

chain. But by the very construction of the feedback scheme, we have thatz → wM
A → wM

E form a

Markov chain, and henceH(z|wM
A ) = H(z|wM

E ), which would imply that no information aboutz,

or equivalently aboutx is lost over the forward channel. In other words, Eve has perfect access to

the auxiliary message that picks the exact bin representative to be transmitted by Wyner’s scheme

[12], and this contradicts the results of [13].

4.8 Additional Results. The Optimal Tradeoff between the
Secret Rate and the Common Rate

In Section 4.4 we have already shown that for an eavesdropper channel with input (at Alice)X

and outputsY at the legitimate receiver (Bob) andZ at the eavesdropper (Eve), for which the

Bob’s channel is less noisy than Eve’s channel, a pair of one secret and one common messages can

be transmitted with asymptotically zero average error probability if and only if the rateRe of the

secret message and the rateRc of the common message satisfy

Re ≤ I(X;Y |U)− I(X;Z|U) (4.46)

and

Rc ≤ I(U ;Z), (4.47)

whereU is an auxiliary random variable such thatU → X → Y Z form a Markov chain. This

result is a straightforward particularization of Theorem 1 in [13], for the case when Bob’s channel

is less noisy and we are only concerned with common and secret messages. From an application
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point of view, an efficient communications system that uses the framework in [13] to transmit two

such messages should operate on the boundary of the(Re, Rc) rate region. For example, onceRc

is set to a fixed valueR∗c , the system should aim to use the maximum secrecy rateRe available

under these circumstances. This is equivalent to finding the optimal auxiliary random variableU ,

and the optimal relation (we shall henceforth denote this relation by the term “channel”) between

U andX, that maximizeRe for a given value ofRc.

To the best of our knowledge, at present there exist no studies that solve the above problem, even

for the simplest of cases. In this section, we do just that: we prove that when all channels are binary

and symmetric (BSC), the boundary of the(Re, Rc) rate region is achieved by a binary auxiliary

random variableU , which is connected to the channel input random variableX through a BSC.

Theorem 4.8 below formalizes our results.

Theorem 4.8. Consider a main channel and an eavesdropper channel modeled as BSCs with

crossover probabilitiesε and δ, respectively, such thatε < δ and ε, δ ∈ [0, 0.5]. Any point on

the boundary of the (secret message rate, common message rate) rate region can be written as

(R∗e, R
∗
c), where

R∗c = 1− h(γ + δ − 2γδ), (4.48)

R∗e = [h(δ)− h(ε)]− [h(γ + δ − 2γδ)− h(γ + ε− 2γε)], (4.49)

γ is a parameter that can take values in[0, 0.5], andh(·) is the binary entropy function.

Proof. We prove the theorem in two steps. First we show that no generality is lost by takingU to

be a binary random variable in (4.46) and (4.47). Next we prove that only a uniform distribution
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of U , combined with a binary symmetric channel betweenU andX can achieve a point on the

boundary of our rate region.

Step I: The random variableU can be considered binary

Following the proof of the admissibility of the size constraints in [13], we make the following

denotations:

fx(p) = Pr(X = 0|p) = p(0) = p, (4.50)

fy(p) = H(Y |p) = h(ε+ p− 2εp), (4.51)

fz(p) = H(Z|p) = h(δ + p− 2δp), (4.52)

wherep denotes the probability mass function (p.m.f.) ofX, whilefy(p) andfz(p) are the respec-

tive entropies ofY andZ, whenX has the p.m.f. given byp. In the remainder of this section we

shall denotea → b = a + b − 2ab, as the formula is the same as that of the crossover probability

of a concatenation of two BSCs with respective crossover probabilitiesa andb.

Think of p as a function under the control of the random variableU . Thus, for anyu in the

alphabet ofU , if U = u, then the p.m.f. ofX becomespu. We can now write, as in [13],

Pr(X = 0) =
∑

u

Pr(U = u)fx(pu), (4.53)

I(U ;Z) = H(Z)−H(Z|U) = H(Z)−
∑

u

Pr(U = u)fz(pu), (4.54)

I(X;Y |U) = H(Y |U)−H(Y |X) =
∑

u

Pr(U = u) [fy(pu)− h(ε)] , (4.55)

and

I(X;Z|U) = H(Z|U)−H(Z|X) =
∑

u

Pr(U = u) [fz(pu)− h(δ)] , (4.56)
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where we used the fact thatU → X → Y Z form a Markov chain and thatH(Z|X) andH(Y |X)

are independent of the actual probability distribution ofX (the variables are related through BSCs).

Note thatH(Z) is completely determined by the channel coefficientsε andδ and byPr(X = 0)

defined in (4.53).

Consider the triple(fx(p), fy(p), fz(p)) = (p, h(ε+ p− 2εp), h(δ+ p− 2δp)) and note that all

of the quantities in (4.53) - (4.56) above are expressed in terms of the same convex combination

of one of the members of our triple. In other words, any set of feasible values for the quantities in

(4.53) - (4.56) is uniquely determined by a point in the convex hull of the setC = {(p, h(ε + p−
2εp), h(δ + p− 2δp))|p ∈ [0, 0.5]}, which is a 3D space curve. Note here that for anyp ∈ [0.5, 1]

we can find ap′ ∈ [0, 0.5] that yields the same values forI(U ;Z), I(X;Y |U) andI(X;Z|U).

By Caratheodory’s theorem, sinceC ⊂ R3, any point in the convex hull ofC can be expressed

as a convex combination of only four points belonging toC . Using the same strengthened version

of Caratheodory’s theorem, due to Eggleston (Theorem 18 (ii) on page 35 of [46]), as in [13], we

can state that, sinceC is aconnectedsubset ofR3, any point in its convex hull can be expressed

as a convex combination of only three points belonging toC . In Lemma 4.9 following this proof

we conjecture that, due to the special form of the setC , we can actually express any point in its

convex hull as the convex combination of only two of its points.

This implies that it is enough to consider only two values ofp to be able to produce any triple

of feasible values for the quantities in (4.55) - (4.56). But sincep is controlled by the value of the

auxiliary random variableU , we can therefore letU be binary. This completes the first step of our

proof.

Step II: The optimal distribution of U is uniform and the optimal channel from U to X is

a BSC

We have established that the auxiliary random variableU can be considered binary. LetU belong

to {0, 1}, and denoteq = Pr(U = 0). SinceX is also binary, the channel betweenU andX can
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be completely characterized by two transition probabilities. Denoteα = Pr(X = 1|U = 0) (this

impliesPr(X = 0|U = 0) = 1 − α), andβ = Pr(X = 0|U = 1) (this impliesPr(X = 1|U =

1) = 1− β).

Note that (4.46) and (4.47) can be rewritten as:

Re ≤ [H(Z|X)−H(Y |X)]− [q(H(Z|U = 0)−H(Y |U = 0)) +

+(1− q)(H(Z|U = 1)−H(Y |U = 1))] (4.57)

and

Rc ≤ H(Z)− [qH(Z|U = 0) + (1− q)H(Z|U = 1)], (4.58)

With the notation above, the upper bounds can be written as

Re,u(q, α, β) = [h(δ)− h(ε)]− [q(h(α→ δ)− h(α→ ε)) +

+(1− q)(h(β → δ)− h(β → ε))] (4.59)

and

Rc,u(q, α, β) = h([qα + (1− q)(1− β)] → δ)− [qh(α→ δ) + (1− q)h(β → δ)], (4.60)

wherea → b stands fora(1 − b) + b(1 − a) = a + b − 2ab as before, and we emphasized the

dependence of the upper bounds upon the triple(q, α, β).

In what follows we take a contradictory approach. Consider any triple(q, α, β) and denote

Rx(q, α, β) = 1− [qh(α→ δ) + (1− q)h(β → δ)]. (4.61)

We show that if we replace this triple by the triple(0.5, γ, γ) (corresponding to a uniform distribu-

tion ofU over{0, 1} and a BSC betweenU andX), such that

Rx(q, α, β) = Rx(0.5, γ, γ) (4.62)
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(we also prove that such aγ exists always), we haveRe,u(q, α, β) ≤ Re,u(0.5, γ, γ) andRc,u(q, α, β) ≤
Rc,u(0.5, γ, γ). Therefore, a triple(q, α, β) for which eitherq 6= 0.5 or α 6= β holds cannot be op-

timal, and hence the last part of our theorem is proved.

Note thatRx(q, α, β) = Rx(0.5, γ, γ) translates to

qh(α→ δ) + (1− q)h(β → δ) = h(γ → δ), (4.63)

Sinceqh(α → δ) + (1 − q)h(β → δ) ∈ [0, 1], the binary entropy function is a bijection over

[0, 0.5] andf(γ) = γ → δ with δ ∈ (0, 0.5) is also a bijection over[0, 0.5], we can always find aγ

that satisfies (4.63). Sinceh([qα + (1− q)(1− β)] → δ) ≤ 1 andh([0.5γ + 0.5(1− γ)] → δ) =

h(0.5 → δ) = 0 it is straightforward to see that

Rc,u(q, α, β) ≤ Rx(q, α, β) = Rx(0.5, γ, γ) = Rc,u(0.5, γ, γ). (4.64)

We can now write

Re,u(0.5, γ, γ)−Re,u(q, α, β) = h(γ → ε)− qh(α→ ε) + (1− q)h(β → ε). (4.65)

Defineg(x) = h(γ → x)− qh(α→ x)+ (1− q)h(β → x). From (4.62) we have thatg(δ) = 0,

and it is straightforward to see thatg(0.5) = 0. Since we only discuss the case whenδ < 0.5, we

now know thatg(x) has two different zeros over the interval[0, 0.5]. We need to show that for any

ε < δ we haveg(ε) > 0.

Denoteg′(x) = dg(x)
dx

andg′′(x) = d2g(x)
dx2 the first and second order derivatives ofg. With the

notationµ(x) = x(1−x)
(1−2x)2

, we can writeg′′ as in (4.66) below.

g′′(x) =
q

x(1− x) + µ(α)
+

1− q

x(1− x) + µ(β)
− 1

x(1− x) + µ(γ)
=

=
x(1− x)[µ(γ)− qµ(α)− (1− q)µ(β)] + µ(γ)(qµ(β) + (1− q)µ(α))− µ(α)µ(β)

(x(1− x) + µ(α))(x(1− x) + µ(β))(x(1− x) + µ(γ))
(4.66)

Since the denominator ofg′′ is always positive, the equationg′′(x) = 0 reduces to a second

degree equation inx. Thusg′′ has at most two real zeros, which are symmetric with respect to
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the point0.5, and hence at most one zero (denote it byz′′) in the interval[0, 0.5]. Moreover, since

µ(x) is a strictly convex function ofx, the coefficient−[µ(γ)− qµ(α)− (1− q)µ(β)] of x2 in the

numerator ofg′′ is strictly positive. This implies thatg′′(x) > 0 for x ∈ [0, z′′].

Now suppose thatg(x) had more than two zeros on the interval[0, 0.5]. Theng′(x) would have

at least two zeros on the open interval(0, 0.5), and hence a total of three zeros in[0, 0.5] (it is

straightforward to check thatg′(0.5) = 0). Thusg′′ would need to have at least two zeros in

(0, 0.5). But we have already shown that this is impossible. Therefore,g(x) has only two zeros in

the interval[0, 0.5] (these areδ and0.5).

As a consequence,g′ has at least one zero in(δ, 0.5) – denote this zero byz′. Sinceg′ has a zero

in 0.5, this implies that the zeroz′′ of g′′ is in the interval(z′, 0.5). We can now writeδ < z′ < z′′.

We already know thatg′′(x) > 0 on [0, z′′), thusg′(x) is strictly increasing on[0, z′], and since

g′(z′) = 0, this means thatg′(x) < 0 on [0, δ]. But sinceg(δ) = 0, this means that for anyε < δ

we haveg(ε) > 0.

Our proof is now complete.

At this point, the following lemma remains a conjecture. However, it is stated as a lemma due

to the fact that its proof reduces the problem tackled therein to the much simpler problem stated in

Remark 4.10 below. Although we currently do not have a sound theoretical proof of Remark 4.10,

its validity has been proved numerically for an extensive number of parameters.

Lemma 4.9. Consider the 3D space curve given byC = {(p, h(ε+ p− 2εp), h(δ+ p− 2δp))|p ∈
[0, 0.5]}. Any point in the convex hull ofC can be expressed as the convex combination of only two

points belonging toC .

Proof. Recall the denotationx→ p = x+ p− 2xp. The space curveC , along with its projections

onto the(p, h(ε→ p)) and(p, h(δ → p)) planes, is represented in Figure 4.13. We shall henceforth

call thep axis the “abscissa” axis, because it is the common abscissa axis of both(p, h(ε → p))

and(p, h(δ → p)) planes. Also represented in the figure is a random pointM in the convex hull of
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FIGURE 4.13. The space curve and its projections onto the(p, h(ε → p)) and(p, h(δ → p)) planes.

C , which was obtained as the convex combination of three pointsA,B andC belonging toC . Due

to Eggleston’s extension of Caratheodory’s theorem [46], we know that any point in the convex

hull of C can be obtained in this manner. Note that throughout this proof, we shall denote byPd

the projection of the pointP onto the(p, h(δ → p)) plane, and byPe the projection of the point

P onto the(p, h(ε→ p)) plane, for any pointP ∈ {A,B,C,D,E, F,G,M,X, Y }. Moreover, we

denote byCd andCe the projections of the space curveC on the two planes, respectively.

The present lemma shows that in fact the pointM can be obtained as the convex combination of

only two points ofC - in Figure 4.13 these points were denoted byX andY .

This is equivalent to showing that there exist two valuespx andpy of p, such that if we denote the

pointsXe = (px, h(ε → px)), Xd = (px, h(δ → px)), Ye = (py, h(ε → py)) andYd = (py, h(δ →
py)), thenMe belongs to the line segment connectingXe andYe, and simultaneouslyMd belongs

to the line segment connectingXd andYd. At this point, assume that the following remark is true.
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FIGURE 4.14. Projections of the space curve: simplified problem.

Remark 4.10. (This remark has been checked numerically. However, we currently do not have

a theoretical proof.) Consider four random pointsA,D,B,C on the space curveC , such that

their respective abscissaep1, p4, p2, p3 satisfyp1 < p4 < p2 < p3, and construct their projections

Ae, De, Be, Ce andAd, Dd, Bd, Cd on the planes(p, h(ε → p)) and (p, h(δ → p)), respectively.

Then the abscissa of the intersection of the segmentsAeBe andDeCe is greater than the abscissa

of the intersection of the segmentsAdBd andDdCd. The result is illustrated in Figure 4.14 for two

tuples of points, namely(A,D,B,C) and(A,B, F,C).

Recall that the pointsA,B andC determine our point of interestM , that isM = aA+bB+cC,

wherea, b, c ∈ [0, 1] anda + b + c = 1. This implies that the intersection between the segments

AeBe andCeMe, and the intersection betweenAdBd andCdMd have the same abscissa, namely

ap1+bp2

a+b
. Due to Remark 4.10 above, this means that the segmentCeMe intersects the curveCe at

a pointEe which has an abscissap1,e which is less than the abscissap1,d of the intersectionDd

betweenCdMd andCd, as illustrated in Figure 4.15.
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FIGURE 4.15. Projections of the space curve: existence of a solution.

Denote byDe the point ofCe with the same abscissap1,d asDd. It is clear that the segmentDeCe

passes above the pointMe, whileDdCd passes throughMd.

By a similar rationale, the intersection between the segmentsAeMe andBeCe, and the inter-

section betweenAdMd andBdCd have the same abscissa, namelybp2+cp3

b+c
. Due to Remark 4.10,

this means that the segmentAeMe intersects the curveCe at a pointGe which has an abscissap2,e

which is less than the abscissap2,d of the intersectionFd betweenAdMd andCd (see Figure 4.15).

Denote byFe the point ofCe with the same abscissap2,d asFd. It is clear that the segmentAeFe

passes below the pointMe, whileAdFd passes throughMd.

This implies that there exists a valuepx ∈ [p1, p1,d] of p such that, if we denoteXe = (px, h(ε→
px)) andXd = (px, h(δ → px)), then the segmentsXeMe andXdMd intersect the curvesCe and

Cd, respectively, at pointsYe andYd with the same abscissapy ∈ [p2,d, p3]. HenceXe andXd are

the projections of a pointX ∈ C , andYe andYd are the projections of a pointY ∈ C , and the

segmentXY goes throughM .
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4.9 Additional Results. Extension to AWGN Channels –
Binary Feedback

In this section we provide a simple (although not optimal) way to extend our previous results to the

case where all channels are modeled as AWGN channels. Note that most of our arguments hold

true for any type of forwardA → B andA → E channels. Therefore, since the only difference

is in the feedbackB → A andB → E channels, we shall assume that the forward channels are

error-free, as in Section 4.2.1.

Although modeled as AWGN channels, the actual behavior of the feedback channels depends

on the feedback signal constellation. For simplicity, and as a first step toward an optimal scheme,

we assume that Bob transmits a sequence of independent uniformly distributed bits, via a BPSK

signal constellation. Denote byxb the sequence of random bits transmitted by Bob, and byx the

corresponding BPSK signal.2

Since the transmitted symbols are not correlated, and since Alice needs discrete alphabet se-

quences that act as input messages to her channel encoder, her best strategy is to perform hard

decision on each symbol. Equivalently, theB → A AWGN channel is artificially transformed

into a BSC with crossover probabilityεb = Q(
√

Pb

NBA
), whereQ(x) = 1/

√
2π

∫∞
x
e−x2/2dx, Pb is

Bob’s transmission power andNBA is the variance of the white Gaussian noise characterizing the

B → A channel. We denoteyb = xb⊕eBA,b, whereeBA,b is the error sequence, the components of

which are independent realizations of the binary random variableEBA, havingPr(EBA = 1) = εf .

The rest of Alice’s secrecy encoding works similarly to the binary case.

The actual difference from the all-BSC scenario however is that the hard decision decoding of

the feedback signal is not optimal for Eve. Instead, Eve wants to use both her received feedback

sequencez ∈ Rn (recall Eve’s feedback channel remains an AWGN channel) and her received

2Throughout this section, bold letters will denote sequences, capital letters will denote random variables, and the subscriptb will be used to
emphasize that the sequence or the random variable is binary. For example,x is a continuous waveform,xb is its discrete, binary version,X is a
random variable with an arbitrary alphabet, andXb is a binary random variable.
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FIGURE 4.16. Eve’s hybrid channel.

forward sequenceyb ⊕ vb ∈ {0, 1}n (which is correlated withz through the termyb), for a soft

detection ofvb.

After performing the mod 2 additionyb ⊕ vb ⊕ xb, Bob’s equivalent forward channel yields

v̂b = vb⊕ eBA,b. A more subtle approach will be used to derive Eve’s equivalent forward channel.

Consider Eve’s received forward sequenceyb⊕vb. Givenyb⊕vb, decoding for the data sequence

vb is equivalent to decoding for the noise-distorted feedback sequenceyb, since any one of them is

a deterministic function of the other whenyb ⊕ vb is known. The number of messages that can be

transmitted from Alice to Bob with asymptotically zero probability of error is given by the number

of binary n-sequencesyb that can be supported by Bob’s equivalent BSC. In other words, Bob

estimates the sequenceyb based on the outputxb of his equivalent forward channel and the BSC

crossover probabilityεf (we can writexb = yb ⊕ eBA,b).

Since Eve does not have perfect access tox, she first needs to estimate it from her received

sequencez. Thus, Eve’s equivalent forward channel with inputYb and outputZ can be written as

Z = X +GBE where

X =





PB, if Xb = 1

−PB, if Xb = 0,
, (4.67)

Xb = Yb ⊕ EBA,b andGBE is theB → E additive white Gaussian noise with probability distribu-

tion pG(q) of zero mean and varianceNBE. In other words, Eve’s equivalent channel is a degraded

version of Bob’s equivalent channel, formed by concatenating Bob’s BSC with an AWGN channel

with noise varianceNBE, as in Figure 4.16
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For this “hybrid” channel we can write the conditional probability densities:

p(z|Yb = 0) = (1− εf )pG(z + PB) + εfpG(z − PB), (4.68)

p(z|Yb = 1) = εfpG(z + PB) + (1− εf )pG(z − PB), (4.69)

and denotingα = P (Yb = 0), the entropies:

H(Z|Y ) = −
∫ ∞

−∞

[
αp(z|Yb = 0) log p(z|Yb = 0) +

+ (1− α)p(z|Yb = 1) log p(z|Yb = 1)
]
dz, (4.70)

H(Z) = −
∫ ∞

−∞

[
αp(z|Yb = 0) log[αp(z|Yb = 0)] +

+ (1− α)p(z|Yb = 1) log[(1− α)p(z|Yb = 1)]
]
dz (4.71)

At this point we assume that the conjecture in [13] regarding the extension of all results to infinite

alphabets holds true. This implies that the secrecy capacity of this system of degraded equivalent

channels equals the maximum of the difference of mutual informations:

Cs,u = max
pYb

(y)
[I(Yb;Xb)− I(Yb;Z)] . (4.72)
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Chapter 5
Active Eavesdropping in Fast Fading Channels.
A Block-Markov Wyner Secrecy Encoding Scheme

5.1 Introduction

A great number of recent works have been fueled by the still growing interest in physical layer

secrecy. Most of them attempt to overcome the limitations of the classical wiretapper/eavesdropper

scenarios of [12] or [13] (namely that no secret message can be successfully transmitted if the

eavesdropper’s channel is less noisy than the legitimate receiver’s channel) by using some form of

diversity.

The benefits of the ergodic-fading diversity upon the achievable secrecy rates have been exposed

by works like [22], [23], [24] or [25]. A fast-fading eavesdropper channel is studied in [22] un-

der the assumption that the main channel is a fixed-SNR additive white Gaussian noise (AWGN)

channel. Although the secrecy capacity for fast-fading eavesdropper channels is still unknown,

[22] provides achievable secrecy rates and shows that sometimes noise injection at the transmitter

can improve these rates.

The different approach of [23] models both the main and the eavesdropper channels as ergodicly-

fading AWGN channels. However, the fading is assumed to be slow enough to be considered

constant for infinitely long blocks of transmitted symbols. The secrecy capacity is derived for this

model, and the achievability part is proved by using separate channel encoding for each of the

blocks. A similar approach is taken in [24] and [25], where the fading broadcast channel with

confidential messages (BCC) is considered equivalent to a parallel AWGN BCC.

However, the slow fading ergodic channel model is quite restrictive. Although the model can

be artificially created by a multiplexing/demultiplexing architecture as in [35], it still requires ei-

ther coarse quantization or long delays (e.g. under fine quantization, for a channel state with low
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FIGURE 5.1. Channel model

probability it may take forever to gather a large enough number of transmitted symbols to enable

almost-error-free decoding).

With these considerations, we focus instead on the more practical scenario where both the main

and the eavesdropper’s channel are affected byfaststationary fading. However, unlike [22], we are

concerned with a much stronger adversary: anactive eavesdropper.

In our channel model, depicted in Figure 5.1, the eavesdropper (Eve) has two options: either to

jam the conversation between the legitimate transmitter (Alice) and the legitimate receiver (Bob)

– Jx mode – or to eavesdrop – Ex mode – (our eavesdropper cannot function in full duplex mode,

i.e. she cannot transmit and receive on the same frequency slot, at the same time). Both Alice and

Eve (in Jx mode) are constrained by average (over each codeword) power budgetsP andJ ,

respectively.

Eve’s purpose is to minimize the secrecy rate achievable by Alice, and to that extent she has to

decide on the optimal alternation between the jamming mode and the eavesdropping mode. The

state of each of the main and eavesdropper channels, i.e. the absolute squared channel coefficients

(or simply “the channel coefficients” hence forth), which we denote byhM andhW , respectively,

are assumed to be available to the respective receivers. However, Bob does not know the exact state

of Eve’s channel, nor does Eve have any information about Bob’s channel, except its statistics. In

addition to fading, each channel is further distorted by an independent additive white complex

Gaussian noise of varianceσ2
N . There exists a low-rate, unprotected feedback channel between

Bob and Alice.
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The present chapter is limited to the following simplifying (although not uncommon) assump-

tions: i) Rayleigh fading:hM andhW are exponentially distributed, with parametersλM andλW

respectively; ii) the channel that links Eve (when in Jx mode) and Bob is error free and does not

experience fading [10],[7]; iii) Eve only uses white Gaussian noise for jamming [38], [10], since

this is the most harmful uncorrelated jamming strategy [30]; iv) Eve’s exact jamming strategy

(i.e. when and with what power she jams) is perfectly known to Bob (a posteriori) so that Bob

can employ coherent detection and communicate Eve’s strategy to Alice, via the low-rate feed-

back link; v) the instantaneous state of the main channel cannot be known to the transmitter Alice

non-causally; vi) the codewords are long enough such that not only the channel fading, but also

the combination of channel fluctuation and Eve’s alternation between jamming and eavesdropping

display ergodic properties over the duration of a codeword; vii) Eve employs an ergodic strategy,

i.e. she uses the same statistics for alternating between Jx mode and Ex mode for every codeword.

Our contributions can be stated as follows:

• In Section 5.2 we study the minimax scenario (where the objective – to be minimized by Eve

and maximized by Alice and Bob – is the achievable secrecy rate), orthe best-case scenario,

when Eve’s strategy is known to both Alice and Bob, in advance.

• We show that, even for this scenario, depending on how Eve uses her channel state informa-

tion (about the exact values ofhW ) in elaborating her strategy, the active eavesdropper can

induce moderate to severe degradation of the achievable secrecy rate.

• The maximin scenario, orthe worst-case scenario, when Alice and Bob have to plan for the

situation where Eve can find out their transmission strategy, is studied in Section 5.3.

• We show that Wyner’s scheme [12] performs poorly (if at all) in these conditions, and we

provide a novel block-Markov Wyner secrecy encoding scheme, which requires a low-rate,

unprotected feedback from Bob to Alice and can improve the secrecy rate significantly.
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5.2 The Best-Case Scenario

In this section we study the scenario where the legitimate transmitter (Alice) and the legitimate

receiver (Bob) know Eve’s strategy in advance, i.e. they have access to the exact statistical descrip-

tion of how Eve alternates between jamming and eavesdropping (note that the statistical description

is enough to fully characterize Eve’s strategy under our channel model). Although this is not the

most practical assumption, the present scenario is significant for both comparison purposes and

demonstrating the devastating effect of an active eavesdropper upon the achievable secrecy rate.

The fact that Eve can alternate between jamming and eavesdropping causes a modification of the

channel statistics. In other words, we can view the active eavesdropper’s interference as a change

of the channel coefficients. Indeed, whenever Eve is in Ex mode, the main channel instantaneous

SNR ishMP
σ2

N
, while the SNR of Eve’s channel ishW P

σ2
N

– no change here. However, when Eve is in Jx

mode, the main channel instantaneous SNR ishMP
σ2

N+J
, whereJ is the instantaneous jamming power,

while the SNR of Eve’s channel is zero (recall that whenever Eve jams, she cannot simultaneously

listen on the same frequency slot). We denote theequivalentchannel coefficients as

h̃M =





hM if Ex mode

hMσ2
N

σ2
N+J

if Jx mode
(5.1)

and

h̃W =





hW if Ex mode

0 if Jx mode.
(5.2)

Note that our equivalent channel coefficient approach is similar to the one in [29] which shows

that a fixed codebook can achieve the power-control ergodic capacity of the fast-fading channel.

Also, our equivalent channel coefficients display ergodic properties over a frame, according to

assumptions vi) and vii) of the previous section.

Denote byX the random variable at the input of the two channels, and byY andZ the corre-

sponding random variables received by Bob and Eve, respectively. According to [13], the secrecy
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capacity of our model (if the realizations of the random variables representing the equivalent chan-

nel coefficients̃HM andH̃W are known to Bob and Eve respectively, and hence can be considered

as outputs of the channel) is given by

Cs = max
V→X→Y Z

[
I(V ;Y, H̃M)− I(V ;Z, H̃W )

]
≥

≥ max
V→X→Y Z

[
I(V ;Y |H̃M)− I(V ;Z|H̃W )

]
, (5.3)

where the maximization is over all joint probability distributions ofV andX such thatV →
X → Y Z form a Markov chain. The inequality in (5.3) follows from the independence between

V andHW , and holds with equality ifV is also independent ofHM (i.e. Alice has no channel

state information – CSI). Since the optimal choice ofV andX is presently unknown, we shall

henceforth concentrate on theachievable secrecy rate(instead of secrecy capacity) obtained by

settingV = X and picking a complex Gaussian distribution forX, with zero mean and variance

P . Under these constraints, the achievable secrecy rate becomes:

Rs = EghM ,ghW ,P

[
log(1 +

h̃MP

σ2
N

)− log(1 +
h̃WP

σ2
N

)

]
, (5.4)

whereP is the instantaneous transmitter scaling power [29] and is subject to the constraintEP ≤
P. Note that the statistical information about Eve’s strategy allows Alice and Bob to design a

codebook, based on Wyner’s encoding scheme [12], tailored to this strategy. We have already

mentioned that the only party that has any control upon the actual equivalent channel coefficients

is Eve. Since Alice has no CSI, her only option of being active against the eavesdropper is to

randomize the scaling powerP . However, as we shall see shortly, a constant power allocation is

the optimal strategy for Alice. Eve’s strategy consists of choosing when to eavesdrop and when to

jam, and for the latter case picking a proper distribution (over the channel uses within a codeword)

of her power budgetJ . Depending on whether Eve can use the knowledge about her own channel

coefficienthW for employing her strategy, we have two different cases.
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5.2.1 Channel Coefficients Available to Eve after Decision on Jx or Ex
Mode

In this first case, Eve can know the exact value ofhW only after she made her decision to eavesdrop

(Ex mode), and has no information about the value(s) thathW might take while she is in Jx mode.

This scenario models a situation where the training sequences, which are transmitted by Alice

at a low rate, and are used by Bob to estimate the channel coefficient before the transmission

of a block of symbols, is protected against eavesdropping (for instance, by using some form of

secrecy encoding designed for non-coherent reception). Under these circumstances, Eve has to

take the decision on whether to jam or eavesdrop in the absence of any non-causal channel state

information (i.e. randomly).

Denoteq = Pr{Ex mode} the probability that Eve is in Ex mode. The equivalent channel

coefficients become

h̃M =





hM with probabilityq

hMσ2
N

σ2
N+J

with probability(1− q)
(5.5)

and

h̃W =





hW with probabilityq

0 with probability(1− q),
(5.6)

resulting in the achievable secrecy rate

Rs = EhM ,hW ,P,J

[
q log(1 +

hMP

σ2
N

)− q log(1 +
hWP

σ2
N

) + (1− q) log(1 +
hMP

σ2
N + J

)

]
. (5.7)

At this point we prove our first result regarding the optimal choice of the instantaneous scaling

powerP :

Proposition 5.1. When no channel state information is available to the transmitter, the optimal

transmitter strategy is to allocate constant powerP = P to each symbol.
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Proof. Recall our assumption that bothhM andhW are exponentially distributed, with parameters

λM andλW , respectively. Denote the probability distributions byfM(x) = λMe
−λMx andfW (x) =

λW e
−λW x.

If λM ≥ λW (Eve’s channel is statistically “better”), then by lettingq = 1, Eve can reduce the

achievable secrecy rate to zero. In this case the way Alice distributes her power (without knowledge

of the exact channel coefficients) is irrelevant, and a constant power allocation is as good as any.

Hence we shall concentrate on the case whenλM < λW .

We need to prove that wheneverλM < λW (Bob’s channel is statistically “better”), the function

Rs(P ) = qEhM
log(1 +

hMP

σ2
N

)− qEhW
log(1 +

hWP

σ2
N

) + (1− q)EhM ,J log(1 +
hMP

σ2
N + J

) (5.8)

is a concave
⋂

function ofP . It is easy to see that the third term in the right-hand side of (5.8) is

concave inP . Since bothq and1− q are non-negative, it is enough to show that

F (P ) = EhM
log(1 +

hMP

σ2
N

)− EhW
log(1 +

hWP

σ2
N

) (5.9)

is also concave inP . We can write

F (P ) =

∫ ∞

0

log(1 +
xP

σ2
N

)(fM(x)− fW (x))dx. (5.10)

Note thatfM(x)− fW (x) is negative forx ∈ [0, x0) and positive forx ∈ [x0,∞), wherex0 is the

(unique) solution offM(x) = fW (x). Moreover,
∫∞
0
fM(x)dx =

∫∞
0
fW (x)dx = 1, which results

in

∫ x0

0

[fW (x)− fM(x)]dx =

∫ ∞

x0

[fM(x)− fW (x)]dx. (5.11)

A graphical representation of these functions is given in Figure 5.2, where we used the notation

f1 = fM andf2 = fW . Take anincreasing functionG(x). We can write

∫ x0

0

G(x)[fW (x)− fM(x)]dx ≤
∫ x0

0

G(x0)[fW (x)− fM(x)]dx =

=

∫ ∞

x0

G(x0)[fM(x)− fW (x)]dx ≤
∫ ∞

x0

G(x)[fM(x)− fW (x)]dx. (5.12)
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Now, takingG(x) = log(1 + xP
σ2

N
) we see thatF (P ) is a positive function ofP , takingG(x) =

dF (P )
dP

= x
σ2

N+xP
we seeF (P ) is increasing, and takingG(x) = d2F (P )

dP 2 = −
(

x
σ2

N+xP

)2

we see that

F (P ) is concave.

Note that unlike in [22], where noise injection can increase the achievable secrecy rate, in our

scenario (with both main and eavesdropper channels affected by fading) the injection of additive

white Gaussian noise at Alice – which is equivalent to a proportional reduction of both Bob’s and

Eve’s SNRs – would only make things worse. This is because the achievable secrecy rateRs(P )

is a positive, increasing function ofP and a decreasing function ofσ2
N . Noise injection may only

increase the secrecy rate iffM(x) − fW (x) does not have the particular form of our scenario (i.e.

negative on[0, x0] and positive on[x0,∞) for somex0, as seen in Figure 5.2). This property is quite

restrictive. In fact, in Section 5.2.2 below we study a scenario where the property does not hold

anymore, and we provide an intuitive description of the conditions under which noise injection can

improve the secrecy rate.

A statement similar to Proposition 5.1 can be proved for the distribution of the jamming power

J by Eve:

Proposition 5.2. When in jamming (Jx) mode, Eve’s optimal strategy is to use the same jamming

powerJ = J
1−q

across all channel realizations involved.
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Proof. Recall that Eve adopts the Jx mode with probability1−q. From (5.7) we notice that only the

last term in the expectation depends onJ , and that term is a convex function ofJ . In the remainder

of this proof we take a contradictory approach. Suppose that an optimal strategy is reached, andJ

is not constant over all channel realizations over which Eve is in Jx mode. Since the probability of

the Jx mode(1 − q) is fixed, and for fixedq we have thatRs is a convex function ofJ , Eve can

improve her strategy (i.e. decreaseRs) by using a constant jamming powerJ = J
1−q

whenever in

Jx mode. Thus, the original strategy is not optimal, which creates a contradiction.

The achievable secrecy rate is now simply

Rs = EhM ,hW

[
qopt log(1 +

hMP

σ2
N

)− qopt log(1 +
hW P

σ2
N

) +

+(1− qopt) log(1 +
hMP

σ2
N + J

1−qopt

)

]
, (5.13)

whereqopt is the the optimal value ofq that minimizesRs. Due to Lemma 5.9 of Section 5.5 it

is easy to see thatRs in (5.13) is a convex function ofq (we only need to replacex = hMP
σ2

N
and

y = J
σ2

N
and notice that the middle term of the expectation in (5.13) is a linear function ofq).

Therefore,qopt can be found as the solution of the equationdRs(q)
dq

= 0.

Note that the fact thatRs(q) is convex supports our innitial assumption that Eve uses a fixed

value ofq, instead of picking random values forq, for each new channel use, according to some

probability distribution over[0, 1].

5.2.2 Channel Coefficients Available to Eve before Decision on Jx or Ex
Mode

This second scenario assumes that the eavesdropper channel coefficient is available to Eve before

she makes her decision about jamming or listening to the corresponding time slot. This assumption

is justified if the transmission protocol requires that an unprotected training sequence be transmit-

ted periodically, to give the legitimate receiver the opportunity to estimate its own channel state.

Although this new scenario brings no benefits to either Alice or Bob, it creates a new opportunity
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for Eve. The eavesdropper can now select the better channel realizations for listening (Ex mode)

and use the worse channel realizations for jamming (Jx mode).

Instead of selecting an optimalq and switch to Ex mode with probabilityq randomly (as when

she did not have access to the value ofhW ), Eve can now select a thresholdv and switch to Jx

mode if and only ifhW < v. Note that under our current assumptions, i.e. when Eve does not

know Bob’s instantaneous channel coefficient, and when the channel from Eve to Bob does not

experience fading, Eve’s threshold approach is optimal. Denote byq = e−λW v the probability that

hW > v (the probability that Eve is in Ex mode). Note that this new attack strategy is completely

transparent to Alice, since she has no way of finding out the exact value ofhW . Nevertheless, the

statistics of the new equivalent eavesdropper channel coefficient:

h̃W =





hW if hW ≥ v i.e. with probabilityq

0 if hW < v i.e. w. p.(1− q),
(5.14)

are known to Alice. The new achievable secrecy rate becomes

Rs = EhM ,P,J

[
q log(1 +

hMP

σ2
N

) + (1− q) log(1 +
hMP

σ2
N + J

)

]
−

−EP

[∫ ∞

1
λW

log 1
q

log(1 +
hWP

σ2
N

)fW (hW )dhW

]
. (5.15)

In order to characterize the optimal transmitter and active eavesdropper strategies we need to

prove results similar to those in Subsection 5.2.1. We begin with the most evident of these.

Proposition 5.3. When in jamming (Jx) mode, Eve’s optimal strategy is to use the same jamming

powerJ = J
1−q

across all channel realizations involved.

Proof. The proof is very similar to that of Proposition 5.2 and will be omitted here for brevity.

As far as the optimal distribution of Alice’s power is concerned, this is no longer uniform in

general. With the notation

f1(x) = qfM(x) (5.16)
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and

f2(x) =





0 if x ≤ v

fW (x) if x > v
(5.17)

we can write the difference between the first and the last term in the right-hand side of (5.15) as

F (P ) =
∫∞
0

log(1 + xP
σ2

N
)(f1(x) − f2(x))dx. The shapes off1, f2 andf1 − f2 are given in Figure

5.3.

At this point, we can no longer state that for any increasing functionG(x) we have a positive
∫∞
0
G(x)(f1(x) − f2(x))dx. In fact, in general, the functionF (P ) can be negative, decreasing

and/or convex on certain intervals. Note that the middle term of (5.15) is still a concave, increasing

function ofP , and does not affect our observations. For many situations, including the one in which

Eve’s channel is statistically better (i.e.λW < λM ), the shape ofRs(P ) (whereRs(P ) is defined in

(5.15)) is that of Figure 5.4 (the black lower curve). As a matter of fact, a similar shape is noticed

for some situations in [22].

It now becomes clear how noise injection can improve the achievable secrecy rate. As shown in

[22], if a partN of the total transmitter powerP is used for injecting white Gaussian noise, the
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secrecy rate becomesR′s(P,N) = Rs(P )−Rs(N). To see this,

R′s(P,N) = EhM ,P,J,N

[
q log(1 +

hM(P −N)

σ2
N + hMN

) + (1− q) log(1 +
hM(P −N)

σ2
N + J + hMN

)

]
−

−EP,N

[∫ ∞

1
λW

log 1
q

log(1 +
hW (P −N)

σ2
N + hWN

)fW (hW )dhW

]
=

= EhM ,P,J

[
q log(1 +

hMP

σ2
N

) + (1− q) log(1 +
hMP

σ2
N + J

)

]
−

−EP

[∫ ∞

1
λW

log 1
q

log(1 +
hWP

σ2
N

)fW (hW )dhW

]
−

−EhM ,N,J

[
q log(1 +

hMN

σ2
N

) + (1− q) log(1 +
hMN

σ2
N + J

)

]
−

−EN

[∫ ∞

1
λW

log 1
q

log(1 +
hWN

σ2
N

)fW (hW )dhW

]
.(5.18)

Thus, for example, ifP is large enough and we chooseN such thatRs(N) is minimized

(N = NM in Figure 5.4), thenR′s(P,NM) > Rs(P ), as represented in the red upper curve of

Figure 5.4. Note that even after this improvement, theR′s(P,NM) curve is not concave. There-

fore, an additional improvement would be to randomize the transmitted power between zero and

PM whenever Alice’s power budget satisfiesP ∈ [NM , PM ], wherePM is chosen such that the

straight line through the origin and the point(PM , Rs(PM)) is tangent to the curveR′s(P,NM),

as in Figure 5.4. Although the curve in Figure 5.4 is the most general representation ofRs(P ),

190



for many practical scenarios the actualRs(P ) can be strictly positive, and even concave (see the

two numerical examples in Figures 5.5 and 5.6). Hence, noise injection cannot always improve the

achievable secrecy rates.

The optimal value ofq ∈ [0, 1] that minimizes the achievable secrecy rate in (5.18) can be found

by a numerical algorithm involving exhaustive searching over the interval[0, 1]. However, it would

be helpful if we knew that a unique solution exists, and this solution were reachable by a less

complex algorithm. Although at this point we are not able to prove it, the following conjecture,

which, if true, guarantees the uniqueness of the solution, and the fact that the solution is given by

the equationdR′s(P,N,q)
dq

= 0, is supported by our simulation results.

Conjecture 5.4. The achievable secrecy rate in (5.18) is a quasiconvex function ofq. By definition,

a real scalar functionf : X → R is quasiconvex if its level set[Sc, f ] = {x : x ∈ X, f(x) ≤ c} is

a convex set for anyc ∈ R [47].

Two remarks are in order. First, note that the conjecture above also supports our innitial as-

sumption that Eve uses a fixed threshold, instead of changing the threshold for every new channel

realization, according to some probability distribution ofv over [0,∞). Second, although the con-

jecture is not proved at this time, our results still function as an upper-bound on the achievable

secrecy rate (note that if the conjecture were false, this upper bound would just be looser, but an

upper bound nevertheless).

5.2.3 Numerical Results

In Figure 5.5 we show the achievable secrecy rates vs. transmitter power budget, in the two sce-

narios outlined in this section: when the channel coefficients are available to Eve before deciding

whether to jam or eavesdrop, and when they are not. The main channel coefficienthM is con-

siderably better than Eve’s channel coefficienthW (λM = 0.2 andλW = 0.8). For comparison,

we also show the achievable secrecy rates when Eve employs either the Jx mode or the Ex mode

exclusively.
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FIGURE 5.5. Achievable secrecy rates with an active eavesdropper. Exponentially distributed channel coef-
ficients withλM = 0.2, λW = 0.8, J = 5, σ2

N = 1.

It can be noticed that, in the presence of an active eavesdropper who uses the information about

its own channel to put up a more efficient fight against the transmission of secret messages, the

achievable secrecy rate is seriously reduced. This reduction is even more serious in Figure 5.6,

where the two channel coefficientshM andhW are statistically closer to each other – their param-

eters areλM = 0.2 andλW = 0.27. The benefits of noise injection are also illustrated in Figure

5.6.

5.3 The Worst-Case Scenario and the Block-Markov Wyner
Secrecy Encoding Scheme

In the previous section we considered the scenario when the active eavesdropper “plays first”.

Taking advantage of her a priori knowledge about Eve’s strategy, Alice was able to construct a

codebook for conveying a secret message to Bob. The problem with this approach is that the code-

book used by Alice and Bob (which is a simple Wyner secrecy encoding scheme [12]) needs to be

tailored to Eve’s exact jamming/eavesdropping strategy.

Therefore, under the more practical scenario when Eve’s strategy is not known in advance, the

codebook designed for a specific parameterq0 = Pr{Ex mode} will fail if Eve decides to use any
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different strategy. More precisely, if Eve usesq1 > q0, the perfect secrecy of the message will be

compromised (we call thissecrecy outage), while if Eve usesq2 < q0, the secret message becomes

unintelligible to Bob (we call thisintelligibility outage).

As a result, the legitimate parties have to use a transmission strategy that can protect both the

secrecy and the intelligibility of the secret message, under any strategy that Eve might use. This

problem is best modeled by themaximinscenario, which uses the assumption that Eve knows

Alice’s strategy in advance.

The simplest encoding scheme that may offer this kind of protection is a Wyner-type encoding

strategy, with a forwarding rate low enough to protect the message against the most powerful

attempt to induce intelligibility outage (i.e. when Eve is in Jx mode all the time), and with a secrecy

rate low enough to offer protection against the most powerful attempt to induce secrecy outage (i.e.

when Eve is in Ex mode all the time). The achievable secrecy rate for this kind of scheme is

Rs,wcs =

[
EhM

[
log(1 +

hMP

σ2
N + J

)
]
− qEhW

[
log(1 +

hW P

σ2
N

)
]]+

(5.19)

(the subscript “wcs” stands for “worst-case scenario”), where we assumed for simplicity that Eve

does not use the information about her own channel coefficient to decide when to jam and when to
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eavesdrop as in Subsection 5.2.2, but rather takes that decision in a random fashion as in Subsection

5.2.1. This simplifying assumption will be maintained throughout this section for its relative ease

of manipulation. All our results can be easily extended to the more complex model of Subsection

5.2.2.

Note that under the limiting assumptions above, Eve’s optimal strategy is to pickq = 1, i.e.

to remain in Ex mode all the time. In this case, the achievable secrecy rate in (5.19) is rarely

strictly positive. Recalling that the channel coefficientshM andhW are exponentially distributed,

with parametersλM andλW , respectively, the conditionRs,wcs > 0 holds if and only ifλW >

λM(1 + J
σ2

N
). For a large jamming-power-to-noise ratioJ /σ2

N , this implies that Eve’s channel

needs to be impractically worse than Bob’s.

However, the above scheme does not take full advantage of the model characteristics. Recall

the original assumption that Eve can function only as a half-duplex terminal. Therefore, whenever

Eve is in Jx mode, she cannot eavesdrop – so the whole transmission remains perfectly secret

to Eve – and conversely, if she is in Ex mode, Eve cannot simultaneously jam the transmission.

In the remainder of this section we develop an alternative transmission scheme, which greatly

improves the achievable secrecy rate, and is tuned to specifically exploit the active eavesdropper’s

limitations.

5.3.1 The Block-Markov Wyner (BMW) Encoding Scheme for the Active
Eavesdropper Channel

There are two main reasons why Wyner’s scheme [12] does not work in our model. First, Alice

does not know the statistics of Bob’s channel in advance – Eve has control over the signal-to-noise

ratio of this channel. Therefore, the main channel can be modeled as a compound channel. In order

to reliably transmit a message to Bob, Alice should use a special kind of encoding. It was shown

in [16] that the same layered encoding technique that achieves the points on the boundary of the

capacity region for broadcast channels can also be used for transmission over compound channels.

Our scheme uses the broadcast layered encoding of [16] to ensure that reliable transmission is
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possible between Alice and Bob even in the most unfavorable conditions. However, even if such a

scheme is used, Alice cannot know in advance which messages will actually be decodable by Bob.

The second reason is that Alice does not know the statistics of Eve’s channel in advance – due to

the alternation between jamming and eavesdropping Eve’s equivalent channel is actually weaker

than her physical channel. Therefore, Alice cannot directly transmit a secret message at a rate

larger thanRs,wcs in (5.19), because she is not sure whether the secrecy would be compromised or

not.

Our novel BMW secrecy encoding scheme solves both of these problems: it guarantees both

the intelligibility and the secrecy of the message, for a transmission rate much larger thanRs,wcs.

Our approach is a sequential one, and requires that Bob should be actively involved in the secrecy

encoding process. Bob’s involvement consists of estimating and feeding back to Alice the exact

value of Eve’s strategyq. The detailed description is given below. However, before we get to that,

we first make a brief comment on Wyner’s original encoding scheme [12], which will help build

some intuition regarding the principle of our own scheme.

A short comment on Wyner’s secrecy encoding scheme

We begin this comment by studying a scenario where, before the transmission takes place, Alice

and Bob already share a secret key. Then in addition to the secret message that can be encoded by

Wyner’s scheme, another secret message can be transmitted over the channel. This latter message

is encrypted using the secret key. We provide two encoding schemes that can both achieve the

simultaneous transmission of the two secret messages.

Denote the capacities of the channels from Alice to Bob and from Alice to Eve byCM andCE,

respectively, the achievable secrecy rate (under Wyner’s original scheme) byRk, the rate of the

encrypted message byRs and the codeword length byN .

Scheme 1: Wyner’s scheme with an encrypted message. Alice bins the codebook (containing

2NCM codewords) into2NRk “super-bins”, such thatRk ≤ CM − CE. The first secret message
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FIGURE 5.7. Alternative binning: Wyner’s secrecy encoding scheme with an additional encrypted message,
and the basis of our block-Markov Wyner encoding scheme.

picks the index of a super-bin. The super-bin is then binned again into2N(CM−Rs−Rk) bins (each

containing2NRs bin-words). One of the bins is picked randomly, while a specific codeword in that

bin is picked according to the encrypted message.

Scheme 2: An alternative encoding scheme. The codebook is randomly binned into2N(CM−Rs)

bins – let us denote these as “pre-bins”. Each pre-bin consists of2NRs bin-words. The bins are

then randomly grouped into2NRk “super-bins”, such that each super-bin consists of2N(CM−Rs−Rk)

bins, and whereRk is picked to satisfyRk ≤ CM − CE. The first secret message picks the index

of a super-bin. A bin inside that super-bin is randomly picked, and the transmitted codeword is the

picked by the encrypted message inside this bin.

The two schemes are equivalent, and they are described in Figure 5.7. However, as we shall

see shortly, the applicability ofScheme 2is larger. We should recall here that Wyner’s original

encoding scheme [12] involves a random binning of the codebook into bins which are, each of

them, good codes for Eve’s channel. The actual transmission does not contain any information

about the binning itself. Hence, the same “random” binning needs to be done separately at Alice

(before the transmission takes place) and at Bob (before he can begin decoding). The reason why

Alice performs the binning of the codebook before transmitting is because she needs to send a

meaningfulsecret message over the coming frame. Therefore, the transmitted codeword needs to

belong to the particular bin indexed by the secret message.
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This suggests that if the “secret message” transmitted by Alice had no meaning (i.e. if Alice

picked this message in a random fashion), both Alice and Bob could perform the binning of the

codebook after the transmission ends. The “secret message” generated this way could be thought

of as asecret keyfor encrypting a meaningful message over the next frame.

Suppose that Eve’s channel is unknown to Alice and Bob until the transmission of the current

codeword ends. The first transmitted codeword is randomly selected from the whole un-binned

codebook. After the transmission ends, Alice and Bob realize that the secrecy capacity wasRs.

Both Bob and Alice can now proceed to the (same) binning of the codebook. As a result, the same

single bin will be identified by both legitimate parties as containing the transmitted message, and

its index will be secret to Eve. Clearly, the secret message conveyed by the index of this bin has no

meaning. Nevertheless, it can be used over the next frame, as a secret key. Over the second frame,

Alice and Bob useScheme 2above. The codebook is randomly binned before transmission, into

2N(CM−Rs) bins that could each be regarded as a code for carrying the encrypted message. One of

the bins will be selected randomly, and the encrypted message will select the exact codeword to

be transmitted. This method of transmission ensures that the encrypted message does not overlap

with the secret key that needs to be generated at the end of the frame – the encrypted message

has nothing to do with how the bins are ultimately chosen, as seen in Figure 5.7. The encrypted

message may bedecodable, but not decryptableby Eve. After the transmission of the second frame

takes place, Alice and Bob realize that the secrecy capacity wasRk. The indices of the bins are

“randomly” grouped by both Alice and Bob into2NRk super-bins , and a new secret key is agreed

upon by the legitimate parties. The protocol continues in the same manner.

Three observations are in order. First, the secret key (decided upon at the end of the frame) and

the encrypted message (carried by the frame) cannot overlap and maintain the same equivocation at

Eve – see theone-time pad[43]. Hence, in the above description of the protocol, it is required that

Rs + Rk ≤ CM . Second, if the secrecy capacity is the sameRs = Rk = Cs over each frame, and

our previous condition holds in the formRs < CM/2, the transmission of the meaningful secret
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message can be done at almost the secrecy capacity, with a small initial penalty (due to the fact

that the first frame does not carry an encrypted message) which becomes negligible as the number

of transmitted frames increases.1 Third, our new protocol can be used whenever Alice does not

have a good description of Eve’s channel over a frame until the transmission of the corresponding

codeword ends, which is precisely the case with our current model.

Detailed description of the BMW encoding scheme

Eve’s strategy consists of choosing the parameterq = Pr{Ex mode}. Once the transmission of

a codeword (we shall denote the span of a codeword by “frame”) is finished, Bob can accurately

evaluate the parameterq used by Eve over that frame. Bob can then feed this value back to Alice.

Note that the knowledge ofq provides Alice with the statistical description of both the main channel

– determined by the jamming probability(1 − q) – and the eavesdropper’s channel – determined

by the eavesdropping probabilityq. Before learning Eve’s strategy, the channel between Alice and

Bob appears like a compound channel to the legitimate parties. The possible states of this channel

are given by Eve’s strategyq, which takes values in the interval[0, 1]. To transform this uncountable

set of possible channel states into a finite set, we divide the interval[0, 1] to whichq belongs into

n subintervals such that

[0, 1] = [q0, q1) ∪ [q1, q2) . . . ∪ [qn−1, qn] (5.20)

whereq0 = 0 andqn = 1.

For conveying a message to Bob, Alice uses ann-level broadcast-channel-type codebook, as in

[16]. Level i is designed to deal with a jammer which is on with probability1 − qi−1 over each

channel use. Note thatq0 < q1 < . . . < qn. In the remainder of this chapter, we shall say that level

1Assume that Eve’s channel conditions are always the same. As an example, consider a codebook with10000 codewords, which is used for
transmitting a secret message of lengthlog(50) bits, according to our protocol. Take any random frame. For transmitting the encrypted message, the
codebook is binned into200 bins, each containing50 codewords. One of the bins is picked randomly, and the encrypted message picks one of the
50 codewords in the bin. After the transmission takes place, Alice and Bob both group the original200 bins into50 “super-bins” (each containing4
original bins), using the same “recipe”. The secret key is the index of the super-bin to which the transmitted codeword belongs. Note that the actual
codeword that was transmitted inside this super-bin is picked independently of the choice of the super-bin.
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i is “stronger” than levelj if i < j, i.e. if level i can deal with a jammer which is on more often.

The notation is fully justified by Lemma 5.5 below.

Denote the rates of the different encoding levels as:

R1 = EhM

[
log

(
1 +

(1− α1)PhM

σ2
N + α1PhM + J

)]
(5.21)

for the strongest level, which can deal with the case when Eve is always in Jx mode, i.e.q = q0 = 0,

Ri = EhM

[
qi−1 log

(
1 +

(1− αi)αi−1 . . . α1PhM

σ2
N + αi . . . α1PhM

)
+

+(1− qi−1) log

(
1 +

(1− αi)αi−1 . . . α1PhM

σ2
N + αi . . . α1PhM + J

1−qi−1

)]
, (5.22)

for i = 2, 3 . . . n− 1, and finally

Rn = EhM

[
qn−1 log

(
1 +

αn−1 . . . α1PhM

σ2
N

)
+ (1− qn−1) log

(
1 +

αn−1 . . . α1PhM

σ2
N + J

1−qn−1

)]
,(5.23)

for the weakest level, corresponding to the case when Eve is in Jx mode with probability1 −
qn−1. Note that the encoding levels are designed such that Bob decodes the stronger levels first,

and treats the remaining un-decoded messages as white noise. The codebook for leveli contains

2NRi codewords of lengthN , generated such that each component of each codeword represents an

independent realization of a Gaussian random variable of mean0 and variance(1−αi)αi−1 . . . α1P ,

whereαn = 0 for compatibility.

The relative strength of the encoding levels is established by the following lemma.

Lemma 5.5. If Eve uses a parameterq ∈ [qi−1, qi) over a frame, then the messages encoded in

levels1, 2, . . . , i are intelligible by Bob at the end of the frame. Thus the forwarding rate from Alice

to Bob isRM,i = R1 +R2 + . . .+Ri.

Proof. In order to prove that the encoding levels with lower indices are stronger in the sense that

they can deal with a worse jamming situation, it is enough to show thatRi as defined in 5.22 is an

increasing function ofq. In other words, encoding leveli, transmitting at a rateRi, is intelligible
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by Bob whenever Eve is in jamming mode with a probability less than(1 − qi−1). But this is a

direct consequence of Lemma 5.9 in Section 5.5, if we simply replacex by (1−αi)αi−1...α1PhM

σ2
N+αi...α1PhM

and

y by J

σ2
N+αi...α1PhM

. (see Section 5.5).

Consider a first frame, for which the transmitted message carries no useful information, but

rather its symbols are selected in a random, i.i.d. fashion. Once Alice receives the feedback se-

quence from Bob at the end of the frame, describing Eve’s strategy (i.e. the value ofq – actually, as

we shall see shortly, only the interval[qi−1, qi) that containsq is enough information for Alice, thus

the length of the feedback sequence need not be larger thanlog(n)), Alice and Bob can separately

agree on the same secret message, as described in the protocol above. This message will function

as a secret key for encrypting a meaningful secret message over the next frame. In turn, the secret

message agreed upon at the end of the second frame can function as a secret key for the third frame,

and so on.

To formalize the intuitive description above, we begin by stating several definitions:

• The “encrypted message” is a meaningful secret message, encrypted with the help of a secret

key that was generated in the previous frame.

• The “secret key” is a meaningless random message, which is perfectly secret to Eve, is agreed

upon by both Alice and Bob at the end of the frame, and can be used for the encryption of a

secret message (of at most the same length) over the next frame.

• The term “secret key rate” refers to the rate at which a secret key is generated at the end of a

frame – the correspondent of Wyner’s “secrecy capacity”.

• The term “achievable secrecy rate” refers to the rate of transmission of the encrypted mes-

sage.

Our encoding scheme works as follows. First, then codebooks, indexed byi, with i ∈ {1, 2, . . . , n}
are generated as described above, and are made available to all parties. On a given frame, Alice
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transmits an encrypted message, at a rate

Rs ≤ 0.5R1 (5.24)

(we show in Theorem 5.7 below that this constraint does not incur any loss of performance) – note

that theencrypted messageis encrypted with the help of a secret key generated over a previous

frame. To transmit the encrypted message, Alice randomly bins codebook1 into 2N(R1−Rs) bins.

One of the bins (each containing2NRs codewords) will be picked randomly (uniformly), and the

encrypted message will pick a codeword from this bin for transmission. Recall that the reason

why Alice cannot directly bin the codebook for generating the secret key is because Eve’s strat-

egy (hence her equivalent channel) is unknown until the end of the frame. An additionaln − 1

codewords are also chosen randomly, one from each of the remainingn − 1 codebooks of rates

R2, R3, . . . , Rn. Alice’s transmitted sequence is the sum of then codewords.

At the end of the frame, Bob feeds back to Alice the exact value of Eve’s strategyq over that

frame. In order to agree on a secret key, Alice and Bob first need to know which encoding levels are

decodable by Bob, and which are decodable by Eve. Only the information encoded in those levels

that are decodable by Bob, but are not perfectly decodable by Eve, can contribute to the generation

of the secret key.

Due to the construction of the code (see Lemma 5.5), it is clear that under any jamming/ eaves-

dropping strategy, Bob will be able to decode the strongest level first, treating the other levels as

white noise, and then perform successive interference cancellation to decode increasingly weaker

levels. However, the same statement cannot be made for Eve. Note that Eve’s channel is quite

different from Bob’s. In the general case, it is therefore possible that the order of strength of the

encoding levels, from Eve’s perspective, is not the same as that given by Bob’s perspective. For

example, for a code with7 levels Bob might be able to decode only levels1, 2, 3, 4, while Eve may

be able to perfectly decode only levels1, 4, 6, 7. In this case, we can re-order the levels from Eve’s

perspective, as1, 4, 6, 7, 2, 3, 5. The first four levels are decodable by Eve perfectly, the next two
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FIGURE 5.8. BMW encoding method – most general case, when1 ∈ Ine.

are decodable by Bob, but not by Eve, and the last level is decodable by neither. Hence, only levels

2 and3 can be used for generating the secret key.

For the general case, we shall denote the ordered set of indices corresponding to the encoding

levels specified by their rates in (5.21)-(5.23) byI , and the set of indices corresponding to the

order of strength of the encoding levels from Eve’s perspective byÎ . There exists a bijection

(i.e. a re-ordering)B : I → Î , defined as follows: (1) the set of indices (in arbitrary order)

corresponding to levels that are perfectly decodable by Eve is denotedIe; (2) the set of indices

(in arbitrary order) corresponding to levels that are not perfectly decodable by Eve, but perfectly

decodable by Bob is denotedIk; (3) the set of indices (in arbitrary order) corresponding to levels

that are not perfectly decodable by either Eve or Bob is denotedIn; (4) the ordered set̂I is

defined as

Î = {Ie,Ik,In}. (5.25)

Furthermore, we defineIne = {Ik,In} as the set of indices corresponding to encoding levels

which are not perfectly decodable by Eve. The method of encoding is described in Figure 5.8.

Theorem 5.6 below provides the achievable secret key rate for the general case.
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Theorem 5.6. Suppose that Eve picks a strategyq ∈ [qi−1, qi) over a frame. Then an achievable

secret key rate is

Rk,i =
∑

j∈Ik

[Rj −RE,j], (5.26)

where:

• Rj are defined as in (5.21)-(5.23) forj = 1, 2, . . . , n,

• RE,j, j ∈ Ine are selected such that they satisfy the following set of conditions:

RE,1 ≥ 0.5R1 (5.27)

if 1 ∈ Ine,

RE,j ≤ Rj, (5.28)

∑

j∈S

RE,j ≤ qEhW

[
log

(
1 +

∑
j∈S (1− αj)αj−1 . . . α1PhW

σ2
N

)]
, (5.29)

for any subsetS of Ine, and

∑

j∈Ine

RE,j = qEhW

[
log

(
1 +

∑
j∈Ine

(1− αj)αj−1 . . . α1PhW

σ2
N

)]− ε, (5.30)

with ε positive and arbitrarily close to zero.

The expressions in (5.29) and (5.30) use the conventionαn = 0. Note that the bijectionB defined

above also depends on Eve’s strategyq, and hence on the intervali to whichq belongs. Therefore,

the set of indicesIk depends oni.

Proof. The proof is based on two observations. First, we have already shown that if the secret

message is not a meaningful one, the binning of Wyner’s scheme can be done at the end of the

transmission, when the statistical properties of Eve’s channel are known to both Bob and (through
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feedback) to Alice. To accomplish this, both Alice and Bob will have to memorize a set of “bin-

ning recipes”, one for each possible value of Eve’s strategy (actually only the interval[qi−1, qi) to

which q belongs, and not the exact value ofq, matters in our case). This is a bit different from

Wyner’s original scheme [12] where only one such recipe needed to be memorized. Therefore, in

the remainder of the proof, we can and shall treat the encoding as if Eve’s channel were known to

all parties in advance, without losing any generality.

Second, we shall “encode” a secret keyK =
⋃

j∈Ine
Kj into all encoding levelsj belonging to

Ine, i.e. over bothIk andIn, although Bob cannot decode the levels ofIn. We shall prove that

the whole keyK is secret to Eve. Then, following a simple argument in [2], it is straightforward

to see that this also implies the secrecy of
⋃

j∈Ik
Kj, which can actually be decoded and used by

Bob.

We use a separate secret key encoding for each of Alice’s encoding levels inIne. As a conse-

quence, Eve sees a fast fading multiple access channel, where the transmitters have different power

constraints, but the same channel coefficient. In this context, we note that the conditions set forth

for the ratesRj,E in (5.29) and (5.30) are exactly the conditions necessary for these rates to belong

to the boundary of the capacity region of Eve’s equivalent multiple access channel. The problem

of a multiple access eavesdropper AWGN channel was discussed in [2]. However, neither the main

results, nor the method of encoding of [2] are correct. We provide a simple explanation of this

assertion in Section 5.6. Therefore, we continue with describing a correct encoding method which

yields an achievable secret key rate.

For any level of encodingj ∈ Ine, we encode a secret keyKj according to Wyner’s scheme

[12], [15]. That is, ifj 6= 1, we randomly bin the randomly generatedN -dimensional codebook

of 2NRj codewords into2N(Rj−RE,j) bins. The secret message corresponds to the index of the bin,

while the exact codeword in the bin is randomly picked. The ratesRE,j are selected as in the

statement of the theorem. Ifj = 1 ∈ Ine (recall that codebook1 was already binned once), Bob

generates the bins in two steps: first he identifies the2N(R1−Rs) bins used for transmitting Alice’s
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encrypted message, and then he randomlygroupsthese bins into2N(R1−RE,1) larger bins. A secret

message is encoded into the indices of the resulting larger bins.

Denote the resultingN -dimensional output sequence of levelj byXj, and denote thep-the com-

ponent ofXj by Xj(p). Also denote the union of theN -sequences from all levels (including those

from Ie which do not carry a secret key) byX =
⋃

j∈ bI Xj. The notationX(p) now denotes the

n-dimensional set consisting of thep-th components of the output sequences from every encod-

ing level, that isX(p) =
⋃

j∈ bI Xj(p). Eve’s received sequence is nowZ = HW ·∑j∈ bI Xj + Q,

whereHW is theN -dimensional vector of channel realizations corresponding to theN symbols,Q

is Eve’sN -dimensional additive white Gaussian noise sequence , and(·) denotes component-wise

multiplication. Thep-th scalar components of these vectors will be denoted byZ(p), HW (p) and

Q(p), respectively. The notationXS will be used for the union of the output sequences correspond-

ing to levels with indices inS , i.e.XS =
⋃

j∈S Xj, and the notation for thep-th components is

extended correspondingly.

Eve’s equivocation about the secret key can be written as follows

∆ =
H(K|Z,HW )

H(K)
=
H(K,Z,HW )−H(Z,HW )

H(K)

(a)
=

=
H(K) +H(Z,HW ,X|K)−H(X|Z,HW ,K)−H(Z,HW )

H(K)

(b)
=

=
H(K) +H(Z,HW |X,K) +H(X|K)−H(X|Z,HW ,K)−H(Z,HW )

H(K)
=

= 1− I(X;Z,HW )− I(X;Z,HW |K)

H(K)
, (5.31)

where both(a) and(b) result from the chain rule for entropy.

DenoteD = I(X;Z,HW )− I(X;Z,HW |K). We can now write

I(X;Z,HW ) = H(XIe) +H(XIne)−H(XIe |Z,HW )−H(XIne|XIe ,Z,HW ), (5.32)

H(X|K) = H(XIe) +H(XIne|K), (5.33)
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and

H(X|Z,HW ,K) = H(XIe |Z,HW ,K) +H(XIne|XIe ,Z,HW ,K) ≤

≤ H(XIe |Z,HW ) +H(XIne|XIe ,Z,HW ,K), (5.34)

where we used the fact that{Xj : j ∈ I } are all independent of each other, and that condi-

tioning reduces entropy. Substituting (5.32)-(5.34) in the expression ofD above, and noting that

H(XIne) = H(XIne|XIe), we obtain

D ≤ I(XIne ;Z,HW |XIe)−H(XIne|K) +H(XIne|XIe ,Z,HW ,K). (5.35)

By the code construction, and recalling that the ratesRj,E in the statement of the theorem are

picked such that they belong to the boundary of the capacity region of Eve’s equivalent multiple

access channel, we can use Fano’s inequality and the arguments of [12], to upper bound

H(XIne|XIe ,Z,HW ,K) ≤ |Ine|NδN , (5.36)

where|Ine| ≤ n < ∞ is the cardinality ofIne, andδN → 0 asN → ∞. This is quite intuitive,

since given the secret key, the other information is transmitted by Alice using codes which are

good for Eve’s multiple access channel. In factδN is an upper bound on the probabilities of error

for any of these individual codes. Since the random, complementary-to-the-secret-key information

is carried by these codes at a total rate almost equal to the capacity of the virtual MAC between

Alice and Eve, corresponding to the encoding levels inIne, we also have

H(XIne|K) = NqEhW

[
log

(
1 +

∑
j∈Ine

(1− αj)αj−1 . . . α1PhW

σ2
N

]
−Nε. (5.37)
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To upper bound the first term on the right hand side of (5.35), we write

I(XIne ;Z,HW |XIe) = H(Z,HW |XIe)−H(Z,HW |XI )
(a)
=

= H(Z,HW |XIe)−NH(Z(p),HW (p)|XI (p))
(b)

≤

≤ NH(Z(p),HW (p)|XIe(p))−NH(Z(p),HW (p)|XI (p)) =

= NI(XIne(p);Z(p),HW (p)|XIe(p))
(c)

≤

≤ NqEhW

[
log

(
1 +

∑
j∈Ine

(1− αj)αj−1 . . . α1PhW

σ2
N

]
. (5.38)

Equality in (a) follows from the fact that the channel is memoryless,(b) follows from the chain

rule for entropy and the fact that conditioning does not increase entropy, and(c) is obtained by

using Jensen’s inequality, as in the proof of the converse to the AWGN channel coding theorem in

Section 9.2. of [48].

Putting together (5.36), (5.37) and (5.38), we obtain

D ≤ N(ε+ |Ine|δN), (5.39)

which in turn implies

∆ ≥ 1−N
ε+ |Ine|δN
H(K)

. (5.40)

We have thus proved that the keyK remains secret from Eve as long as the codeword lengthN

goes to infinity. However, note that the entire keyK cannot be understood by Bob. In fact, Bob

and Alice can only agree on the partKIk
of the key. But the secrecy of the entire key guarantees

the secrecy of any part of the key [2]. For the sake of completeness, we restate the following proof

from [2].

H(KIk
|Z,HW )

(a)
= H(KIne|Z,HW )−H(KIn|KIk

,Z,HW )
(b)

≥

≥ H(K)−N(ε+ |Ine|δN)−H(KIn |KIk
,Z,HW )

(c)

≥

≥ H(KIk
) +H(KIn)−N(ε+ |Ine|δN)−H(KIn |KIk

,Z,HW )
(d)

≥

≥ H(KIk
)−N(ε+ |Ine|δN), (5.41)

207



where(a) follows from the chain rule,(b) from (5.40) and the definition of∆, (c) from the inde-

pendence of the keys from different encoding levels, and(d) from the fact that conditioning does

not increase entropy.

This results in

H(KIk
|Z,HW )

H(KIk
)

≥ 1−N
ε+ |Ine|δN
H(KIk

)
→ 1 asN →∞. (5.42)

We have seen the best achievable secret key rate ifq ∈ [qi−1, qi). The next theorem provides

Eve’s optimal strategy under the maximin scenario, and also Alice’s best achievable secrecy rate.

Theorem 5.7. (1) If Eve chooses a strategyq ∈ [qi−1, qi), then it is optimal for her to chooseq

arbitrarily close toqi.

(2) Eve’s optimal strategy under the maximin scenario is the same over all frames.

(3) Denote the achievable secret key rates by{Rk,i : i = 1, 2, . . . , n}, whereRk,i is the best

achievable secret key rate given by Theorem 5.6, underq = qi. Then Eve’s optimal strategy is

qiopt = arg minqi
{Rk,i}, if minqi

{Rk,i} < 0.5R1, andqiopt = q1, otherwise.

(4) Under Eve’s optimal strategy, the maximum achievable secrecy rate (under the current setup)

is

Rs = min{0.5R1, Rk,iopt}. (5.43)

(5) There is no loss of performance incurred by restricting the rate of the encrypted message to

Rs ≤ 0.5R1 in (5.24).

Proof. (1) Using Theorem 5.6, it is easy to check that, givenq ∈ [qi−1, qi), the achievable secret

key rate is a decreasing function ofq. Therefore, ifq ∈ [qi−1, qi), Eve’s optimal strategy is to pick

q arbitrarily close toqi.

(2),(3),(4) We have already seen that the rate at which the encrypted message is transmitted is

restricted toRs ≤ 0.5R1. If minqi
{Rk,i} is achieved byqiopt and is less than0.5R1, then switching
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to a different Eve’s strategyqd will only increase the rate of generation of the secret key, and hence

the rate of transmission of the encrypted message. On the other hand, ifminqi
{Rk,i} ≥ 0.5R1, then

no matter what Eve’s strategy is, the secrecy rate will always equal0.5R1.

(5) Alice has to protect the encrypted message against jamming. But if Eve chooses to constantly

play a strategyq ∈ [0, q1), Bob will only be able to decode level1 of the code. This message,

transmitted at a maximum rate ofR1, has to carry an encrypted message and generate a secret

key, simultaneously. But if Eve’s strategy remains in[0, q1) over the next frames, the rate of the

encrypted message cannot exceed0.5R1 – there would not be enough secret key bits to encrypt it.

Therefore, the strategyq ∈ [0, q1) can function as a “default” state for Eve, where she could take

refuge if the achievable secrecy rate under any other strategy exceeded0.5R1.

Theorems 5.6 and 5.7 above offer a good description of the achievable secrecy rates. However,

in Theorem 5.6 we assumed that the setIne of indices corresponding to the levels that arenot

perfectly decodable by Eveis readily available. However, the characterization of the setIne and

its complementIe is not straightforward. At this time, we conjecture that these sets can be found as

follows. The reasons behind our conjecture, as well as the reasons why it remains just a conjecture,

are presented in Section 5.7.

Conjecture 5.8. The maximal set of indicesIe corresponding to the levels that are perfectly

decodable by Eve is the largest of the setsVe for which

∑

j∈S

Rj ≤ qEhW

[
log

(
1 +

∑
j∈S (1− αj)αj−1 . . . α1PhW

σ2
N +

∑
i∈V c

e
(1− αi)αi−1 . . . α1PhW

)]
, ∀S ⊆ Ve, (5.44)

whereV c
e is the complement ofVe with respect toÎ

On the complexity of the algorithm

Our results so far facilitate the computation of an achievable secrecy rate, given a partition of

the interval[0, 1] expressed in terms of the parameters{q1, q2, . . . , qn−1}, and a power allocation

between the encoding levels, given by the parameters{α1, α2, . . . , αn−1}. If Alice and Bob wish
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to exploit the full secrecy capabilities of the model, they should first perform a maximization of

the achievable secrecy rate with respect to the parameters{(qi, αi) : i = 1, 2, . . . , n− 1}.
Although the optimization problem requires a high complexity numerical algorithm (recall that

for each value of the parameter vector{(qi, αi) : i = 1, 2, . . . , n−1} we need to find the setIne as

in the above Conjecture, which involves combinatorial complexity), it needs to be solved only once

for the desired value ofn. The optimal parameters may then be stored at both legitimate parties.

In an effort to reduce the complexity of the algorithm, we propose to pick the parameters{(qi) :

i = 1, . . . , n−1} such that{q0, q1, q2, . . . , qn−1, qn} are all equally spaced, which corresponds to a

uniform partition (or “quantization”) of the interval[0, 1]. With this rule in place, the optimization

needs to be performed only over the(n − 1) parametersα1, . . . , αn−1, hence the complexity is

reduced by half.

From our numerical results forn = 2 andn = 3 (see Figure 5.11), the loss of optimality due

to the uniform partition of[0, 1] is not very significant. We believe that, asn increases, this loss of

performance should become negligible. Our remark is based on the fact that asn→∞ the optimal

partition of the interval[0, 1] approaches a uniform partition (with a vanishing step).

5.3.2 Numerical Results

In Figures 5.9 and 5.10 we show the improvement of our BMW secrecy encoding scheme over the

worst-case scenario approach of (5.19). Note that if Eve’s channel coefficient is close (statistically)

to Bob’s – the case of Figure 5.9 – the worst-case approach of (5.19) – or equivalently the case

n = 1 – cannot achieve a positive secrecy rate.

However, even by Wyner’s pure scheme (5.19) in Figure5.10 can achieve a positive secrecy rate

if λW > λM(1 + J
σ2

N
), as discussed in Section 5.3. The merit of our novel encoding scheme is sig-

nificant. The minimax solution of Section 5.2 is given in both Figures 5.9 and 5.10 for comparison.

Figure 5.11 depicts the performance of the BMW secrecy encoding scheme when the partition

of the interval[0, 1] into intervals of the form[qi−1, q1) is done uniformly, i.e. the parameters

210



0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

transmitter power P

A
ch

ie
va

bl
e 

se
cr

ec
y 

ra
te

s

Achievable secrecy rates vs. transmitter power constraints. σ
N
2 =1, J=5, λ

M
=0.2, λ

W
=0.8

 

 
sequential scheme, n=2
sequential scheme, n=1
sequential scheme, n=3
minimax solution

FIGURE 5.9. Achievable secrecy rates with our BMW secrecy encoding scheme. Exponentially distributed
channel coefficients withλM = 0.3, λW = 0.8, J = 5, σ2

N = 1.

0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

transmitter power P

A
ch

ie
va

bl
e 

se
cr

ec
y 

ra
te

s

Achievable secrecy rates vs. transmitter power constraint. σ
N
2 =1, J=5, λ

M
=0.2, λ

W
=1.5

 

 
sequential scheme, n=2
sequential scheme, n=1
sequential scheme, n=3
minimax solution

FIGURE 5.10. Achievable secrecy rates with our BMW secrecy encoding scheme. Exponentially distributed
channel coefficients withλM = 0.2, λW = 1.5, J = 5, σ2

N = 1.

211



0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

transmitter power P

A
ch

ie
va

bl
e 

se
cr

ec
y 

ra
te

s

Achievable secrecy rates vs. transmitter power constraint. σ
N
2 =1, J=5, λ

M
=0.2, λ

W
=1.5

 

 

sequential scheme, n=2
sequential scheme, n=3
sequential scheme, n=2 − approximation 
sequential scheme, n=3 − approximation

FIGURE 5.11. Achievable secrecy rates with our BMW secrecy encoding scheme, with uniform and with
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λW = 1.5, J = 5, σ2

N = 1.

q0, q1, q2, . . . , qn are equally spaced, instead of being picked in an optimal way. We note that the

degradation of the achievable secrecy rates is quite small and decreasing asn increases. Figures

5.12 and 5.13 show the design parameters used for obtaining the results of Figure 5.11.

5.4 Conclusions

We have seen how an active eavesdropper can seriously decrease the achievable secrecy rate in a

classical scenario of a fast-fading AWGN channel with an eavesdropper. We have described both

the best-case and the worst-case scenario formulations of the problem in which the objective is the

achievable secrecy rate.

While the best-case scenario formulation is given mostly for completeness and comparison pur-

poses, the importance of the worst-case scenario scenario should not be underestimated. This sce-

nario models the most conservative and most practical approach to the active eavesdropper.

We have seen that, in order to take advantage of the non-duplex nature of the eavesdropper’s

terminal, we need a more elaborate, block-Markov Wyner encoding scheme. While in the classical

eavesdropper scenario the legitimate receiver is completely passive, our scheme relies heavily on
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the cooperation of the receiver. That means that at the end of each frame, Bob is required to

feed back to Alice information about Eve’s strategy, and then, based on this information, replicate

Alice’s efforts to distill a secret key.

The improvement of our BMW scheme over the passive-receiver solution to the maximin sce-

nario is significant.

5.5 Additional Results. A Useful Lemma

The following lemma is used several times in this chapter.

Lemma 5.9. The function

f(q) = q log(1 + x) + (1− q) log

(
1 +

x

1 + y
1−q

)
, (5.45)

wherex, y > 0, is strictly increasing and strictly convex as a function ofq.

Proof. It is straightforward to compute

df(q)

dq
= log

(
(1 + x)

1 + y
1−q

1 + x+ y
1−q

)
− xy

1− q
· 1

(1 + y
1−q

)(1 + x+ y
1−q

)
, (5.46)

and

d2f(q)

dq2
=

xy
(1−q)2

(1 + y
1−q

)(1 + x+ y
1−q

)
·
[
1−

1 + x− ( y
(1−q)

)2

(1 + y
1−q

)(1 + x+ y
1−q

)

]
. (5.47)

Since1 + y
1−q

> 1 and1 + x− ( y
(1−q)

)2 < 1 + x+ y
1−q

, we can state thatd
2f(q)
dq2 > 0. Therefore,

df(q)
dq

is a strictly increasing function ofq. But evaluating the first derivative inq = 0 we get

df

dq
(0) = log

(
(1 + x)(1 + y)

1 + x+ y

)
− xy

(1 + y)(1 + x+ y)
=

= log

(
1 +

xy

1 + x+ y

)
− xy

(1 + x+ y)(1 + y)

(a)

≥

≥ xy

(1 + x)(1 + y)
− xy

(1 + x+ y)(1 + y)

(b)
> 0, (5.48)

where inequality(a) follows from log(1 + β) > β
1+β

for any β > −1, β 6= 0, if we replace

β = xy
1+x+y

, while inequality(b) follows sincex > 0. Thereforedf(q)
dq

is always strictly positive and

strictly increasing, which implies thatf(q) is strictly increasing and strictly convex.
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5.6 Additional Results. Why the Encoding Method of [2] Is
Incorrect

The encoding method of [2] uses a separate secret message encoding for each user, much like our

own encoding scheme. However, unlike the present chapter, the secrecy encoding of [2] employs a

“superposition encoding scheme” (see Section III of [2]). In the following paragraphs, we provide

a brief description of this technique.

Take one user with power constraintP . The user generates two independent codebooks, in the

following manner: the first codebook contains2NRs N -dimensional codewords, and each letter

of each codeword is independently generated, according to the realization of a Gaussian random

variable of zero mean and varianceαP ; the second codebook contains2NR0 N -dimensional code-

words, and each letter of each codeword is independently generated, according to the realization

of a Gaussian random variable of zero mean and variance(1 − α)P . The secret message – trans-

mitted at rateRs – picks a codeword from the first codebook, while another codeword is randomly

picked from the second codebook. The message transmitted by this user is the summation of the

two codewords.

At a first glance, it appears that the transmitted message belongs to a codebook of2N(Rs+R0)

N -dimensional codewords, in which each letter of each codeword is the realization of a Gaussian

random variable of varianceP . Moreover, the codebook is already binned, like in Wyner’s scheme

[12].

However, if the transmitted message is completely decodable by Bob, the ratesRs andR0 should

be situated within the corresponding MAC rate region. For example, if we had a Gaussian eaves-

dropper channel where the AWGN variances were1 for both channels, while the absolute squared

channel coefficients are1 for the main channel andhk for the eavesdropper’s channel, the rates

should satisfyRs ≤ log [1 + αP ], R0 ≤ log [1 + (1− α)P ], andRs + R0 ≤ log [1 + P ]. But the

first two conditions do not appear in [2].
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Even if these conditions were satisfied, the “superposition encoding scheme” of [2] is not equiv-

alent to Wyner’s scheme. The key to Wyner’s scheme is that each bin makes a “good” codebook

for the eavesdropper. That is, given the secret key and the eavesdropper’s received message, the

bin chosen by the secret key conveys information to the eavesdropper at a rate arbitrarily close to

the eavesdropper’s channel capacity.

For the same toy model as above, the rate of each bin should be arbitrarily close tolog [1 + Phk].

However, under the “superposition encoding scheme” of [2], this rate cannot exceedlog [1 + αPhk]
2.

To achieve the capacity of the eavesdropper’s channel,αwould need to be arbitrarily close to1. But

then the codebook associated with the secret message would be generated with arbitrarily small

power. If a positive secrecy rateRs is still desired, the intelligibility of the secret message at the

legitimate receiver is compromised. Therefore, the “superposition encoding scheme” of [2] cannot

work for secrecy encoding.

Also, we believe that the specification of the achievable rate region for the GGMAC-WT of [2]

is too restrictive. This is because a subsetS – the complement of which is denoted byS c – of

users with powersPk and transmitting at ratesRk is not necessarilydecodableby Eve if

∑

k∈S

Rk < log

[
1 +

∑
k∈S Pkhk

1 +
∑

j∈S c Pjhj

]
, (5.49)

as suggested by condition (28) of [2]. In fact, it is possible to transmit a secret message over the

GGMAC-WT of [2] even if
∑

k∈K Pk <
∑

k∈K Pkhk, whereK denotes the set of all users,

as in [2]. E.g., imagine a two-user scenario, where user1 has a large channel coefficienth1 >>

1 to the eavesdropper, while user2 has a channel coefficienth2 < 1. It is intuitive that under

these circumstances a secret message may still be transmitted by user2, since the eavesdropper’s

extremely good channel from user1 cannot yield any additional information about user2.

2Note that although the second codebook has a rate equal tolog [1 + Phk] in [2], this rate is not sustainable by the eavesdropper’s channel with
power constraintαP .
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FIGURE 5.14. The capacity region of a MAC.

5.7 Additional Results. About Our Conjecture on the
Maximal Set of Perfectly Decodable Encoding Levels

As we stated earlier, from Eve’s point of view, the different encoding levels are very similar to

different users. Therefore, Eve’s channel can be seen as a multiple access channel (MAC), withn

users, each with a different power, but all sharing the same channel coefficient. However, to the

best of our knowledge, in the current literature there is no treatment of the achievable rate region

for a set of users when the other users are not decodable.

As an example, we look at the two-user Gaussian MAC, the capacity region of which is given in

Figure 5.14. Denote the two user’sN -dimensional transmitted sequences byX1 andX2, respec-

tively, and the received sequence byZ = X1 +X2 +Q, whereQ is a sequence of i.i.d. realizations

of a Gaussian random variable of varianceσ2
N .

Let the capacity of the first user’s channel (when user2 is absent) beC1 = log(1 +P1/σ
2
N), and

the capacity of the second user’s channel (when user1 is absent) beC2 = log(1 + P2/σ
2
N). We

know that the achievable rate region is given by all pairs(R1, R2) that satisfy

R1 ≤ C1, (5.50)

R2 ≤ C2, (5.51)

and

R1 +R2 ≤ log(1 + (P1 + P2)/σ
2
N). (5.52)
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This implies that when user2 transmits at a rateR2 = C2, user1 should be decoded by treating

the second user as white Gaussian noise, and by performing successive interference cancellation.

Hence, under this scenario, the first user’s maximum decodable transmission rate isR1 = log(1 +

P1/(σ
2
N + P2)).

We know that user1 can always be decoded if the pair of rates(R1, R2) falls within regionΩ2

of Figure 5.14, and similarly, user2 can be decoded if(R1, R2) is in Ω1. It is also clear that no user

is decodable in regionΩ5. We are now concerned with the regionsΩ3 andΩ4 in Figure 5.14.

For example, when user2 cannot be decoded becauseR2 > C2, but it still uses a randomly

generated Gaussian codebook, the first user’s maximum decodable transmission rate may be larger

thanlog(1 + P1/(σ
2
N + P2)). To justify this statement, consider the following “decoding” method.

First, alist of possible codewords is computed for user2, by treating user1 as interference, and

selecting only those codewords of the second user’s codebook that have a non-zero a posteriori

probability. This list may be shorter than the second user’s whole codebook, and the a posteriori

probability of the codewords therein may be non-uniform. Then, using this information about user

2, we attempt decoding for user1. At this moment, we cannot state that this method is no better

than the one which treats user2 as interference.

However, our conjecture is equivalent to stating that the optimal strategy for user1 is to treat user

2 as interference. We base our conjecture on the following arguments. It is clear that ifR2 = C2−ε,
even if we do not aim at decoding user2, the maximum achievable rate of user1 is still log(1 +

P1/(σ
2
N +P2)). To see this, suppose user1 were decodable at a rateR1 > log(1 +P1/(σ

2
N +P2)).

Then the receiver could subtract the first user’s signal from the received sequence, and decode for

user2. Note that decoding for user2 is possible with high probability, since this user employs a

randomly generated Gaussian codebook, with a rate less than the capacityC2. Hence, we would

obtain a pair of rates outside the capacity region [48]. (This comment can also serve to prove that

no user is decodable if(R1, R2) is in ΩN of Figure 5.14.) On the other hand, asR2 increases, the

size of the “list” we might be able to compute for user2 grows (exponentially withR2). Hence, we

218



expect that at some point this list will become useless for decoding the first user. Eventually this

will result in user1 treating user2 as interference.
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Chapter 6
Future Work

While working on the problems treated in the previous chapters, we ran across many intriguing

questions. Although some were answered and presented in this dissertation, several more remain

on our open-problem list. In this final chapter we briefly discuss those which will most probably

become the focus of our research in the near future.

6.1 The Converse to the Channel Coding Theorem and
Transmission at Rates Larger than the Channel Capacity

Due to the nature of the physical layer secrecy problem, transmission has to take place at a rate

larger than the eavesdropper’s channel capacity. In the eavesdropper channel model the emerg-

ing uncertainty phenomenon is studied in the context of Wyner’s special encoding scheme [12].

However, we have often faced the problem of quantifying the receiver’s uncertainty about the trans-

mitted message under a general (non-secrecy) channel encoding scheme with rate exceeding the

channel capacity.

The problem is usually avoided in the related literature. Although sharing similarities with the

concept oflist decoding[49], the implications of this problem are quite deeper. For example,

a simple study of the bounds on the error probability [45], [48] shows that for a random code

with rate larger than capacity, both upper and lower bounds approach1 as the codeword length

approaches infinity. As a consequence, we believe that transmission might be possible at rates

higher than capacity, with acceptable (but non-vanishing) codeword error probability, as long as

the codeword length is not infinitely large.

One of our most recent encounters with this problem is the specification of the achievable rates

under a multiple access channel (MAC) scenario, when not all of the users are perfectly decodable

(see Appendix 5.7 in Chapter 5).
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6.2 Multiuser Extensions of the Active Eavesdropper Channel
Model

As a continuation of our work in Chapter 5, we are planning to extend the active eavesdropper

channel model to multiuser scenarios. These extensions would eventually drive our research to-

wards cooperative jamming and eavesdropping strategies, as we have already mentioned when we

described “the big picture” in Chapter 1.

6.3 Optimal Transmitter-Receiver Collaboration for Secrecy

Although our results in Chapters 4 and 5 describe novel techniques to improve the achievable

secrecy rates by allowing the legitimate parties to work together, we have not yet formulated any

optimality statements. Both the feedback-based secrecy encoding scheme of Chapter 4 and our

BMW scheme in Chapter 5 are suboptimal for several reasons described therein. One common

reson is that the secrecy capacity of an eavesdropper channel with feedback is currently unknown.

We are planning to investigate the optimal collaborative strategies that maximize the secrecy rate.

We believe this might be related to the notion of physical layer secrecy in two-way channels.

6.4 Secrecy and the Rate of Convergence

In the treatment of channel coding [45], therandom coding exponentdescribes the speed at which

the average error probability of random codes approaches zero as the codeword length increases.

The practical importance of this concept is obvious: in a practical scenario, where the codeword

length can be large, but not infinite, therandom coding exponentprovides an indication of what an

“acceptable” codeword length is, with respect to the achievable average error probability. We intend

to define and formalize a similar concept for physical layer secrecy. Our “secrecy exponent” would

show how fast the conditional entropy of the secret message, given the eavesdropper’s received

sequence, approaches the unconditioned entropy of the secret message, as the codeword length

increases. We believe that this kind of framework will bring the physical layer secrecy one step

closer to practical implementation.
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6.5 Secrecy in Slow-Fading Channels

To the best of our knowledge, the current literature deals with secrecy in slow-fading channels in

two ways. The first direction, represented by papers like [23], [25] or [24], assumes that, although

the fading is slow, the application exhibits enough delay tolerance to consider the channel ergodic.

In other words, piece-wise encoding is performed on the sub-blocks of a codeword, such that fading

is slow over each such sub-block. Moreover, it is assumed that there are enough sub-blocks in a

codeword to exhibit the ergodic properties of the channel. The drawbacks of this direction have

been clearly specified in Chapter 5.

A second, more natural direction is represented by papers like [26] and [27], where the slow

fading channel is also delay constrained. Under these assumptions, there is no way to guarantee ei-

ther the secrecy or the intelligibility (by the legitimate receiver) of a secret message under Wyner’s

encoding scheme [12]. Therefore, [26] and [27] both introduce the notion ofsecrecy outage. How-

ever, we see this notion as an oxymoron. Sticking to the notion of “perfect secrecy”, under the

scenario where some secret messages will inevitably be compromised, seems somewhat artificial.

We believe that a more appropriate objective for the scenario of slow-fading, delay-constrained

channels would be asecrecy mask. We define a secrecy mask as a pair of ordered sets: a set

P = {p1, p2, . . . , pn} of probabilities, such that
∑n

i=1 pi = 1, and a setD = {d1, d2, . . . , dn} of

equivocation values, such that0 < d1 < d2 < . . . < dn < 1. To meet the specifications of the

maskmeans to make sure thatPr{∆ ≤ di} ≤ pi ∀i = 1, 2, . . . , n, where∆ is the equivocation of

a secret message, defined as the ratio between the conditional entropy of the secret message, given

the eavesdropper’s received sequence, and the unconditioned entropy of the secret message.

We see this as the most practical approach to secrecy in slow-fading channels so far. However,

our secrecy maskapproach raises some more questions, which remain open at this time. One of

them iswhat are the actual implications of non-perfect secrecy on the intelligibility of the secret

message.
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6.6 Non-Perfect Secrecy

In the early ’90s, [50] notes for the first time that Wyner’s notion of secrecy [12] may not be

the strongest. Indeed, as [50] points out, Wyner’s secrecy definition reduces to1
k
H(Kk|Zn) >

H(K) − ε, for an arbitrarily smallε, asn, k → ∞, wherek is the length of the secret message

Kk, andn is the length of the eavesdropper’s received codewordZn. Here, the secret message is a

sequence of i.i.d. symbols, each distributed according to the random variableK. The argument in

[50] states that asn, k →∞, the amount of information about the secret message that leaks to the

eavesdropper may besignificant– note thatH(Kk) − H(Kk|Zn) < kε. Therefore, they propose

the notion of “strong secrecy”, defined asH(Kk|Zn) > H(Kk)− ε asn, k →∞.

Our questions about the argument in [50] arewhat does significant leakage meanin the first

place andhow can the eavesdropper use this information. These two questions also hold for the

previously discussed slow-fading channel scenario.

We believe that non-perfect secrecy, for example an equivocation∆ = H(Kk|Zn)
H(Kk)

= 0.9, may

lead to the eavesdropper’s ability to generate a list of messages (perhaps smaller than the whole

codebook that the legitimate parties use), with different (a posteriori) probabilities of having been

transmitted. This would be related to the problem oflist decodingin [49].

Even if the eavesdropper could perfectly decode part of the secret message, this information

might not be enough to understand the meaning of the overall secret message. For example, if

the secure transmission of a page of text through multiple channel codewords is desired, and if a

simple interleaving procedure is performed before channel encoding, compromising the secrecy of

the message over only one codeword may reveal several letters randomly spread on the page. But

this would by no means render the content of the page intelligible to the eavesdropper.

We believe that some light needs to be shed on the link between the imperfect secrecy and the

eavesdropper’s intelligibility of the message, and this subject is on our immediate research agenda.

In this short section we talked about themeaningand theintelligibility of the message. We believe

that in order to explore these notions, we first need to link our information theoretical problem to
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a different area, which is strongly connected to the field of communications as part of electrical

engineering: human communication, orsemantics.

6.7 On Semantics and Its Implications in Communications
Engineering

By definition, “semantics” isthe study of the meaning or relationship of meanings of a sign or

set of signs. Since the objective of communications – as part of electrical engineering – is to

facilitate the transmission of meaningful messages at long distance, the composition and structure

of those messages can be used to develop a better understanding of the concepts we use regularly

in engineering.

This fact has been understood from the first mathematical formulation of the theory behind

source and channel coding. Source coding itself is concerned with reducing the redundancy in a

message, such that the size of that message is minimized for efficient storage or transmission over

a channel [48]. The extent to which the size of a message can be reduced by source coding, such

that it can be reproduced from its encoded version, up to some distortion constraint, is studied by

therate distortion theory[48].

However, the rate distortion theory, and the measures of distortion used therein for a particu-

lar type of message, are primarily concerned with thequality of the reproduction. At the other

end, when looking at source coding from the security point of view, we are more interested in the

converse problem:what is the minimum distortion necessary to render the reproduction unintelli-

gible. We believe that the concept of “unintelligibility” is vital to leading the field of information-

theoretic secrecy towards practical implementation. Until this concept is defined, the only notion

of secrecy that makes sense is that of “perfect strong secrecy” [49].

This is the motivation behind our goal to extend the applicability of physical-layer secrecy by

launching our own cross-disciplinary research, and incorporating concepts fromsemanticsand

hermeneutics(the study of interpretation theory) into the already-existing engineering framework.
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