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ABSTRACT 

 

Dealing with different misclassification costs has been a big problem for classification. 

Some algorithms can predict quite accurately when assuming the misclassification costs 

for each class are the same, like most rule induction methods. However, when the 

misclassification costs change, which is a common phenomenon in reality, these 

algorithms are not capable of adjusting their results. Some other algorithms, like the 

Bayesian methods, have the ability to yield probabilities of a certain unclassified example 

belonging to given classes, which is helpful to make modification on the results 

according to different misclassification costs. The shortcoming of such algorithms is, 

when the misclassification costs for each class are the same, they do not generate the 

most accurate results. 

 

This thesis attempts to incorporate the merits of both kinds of algorithms into one. That is, 

to develop a new algorithm which can predict relatively accurately and can adjust to the 

change of misclassification costs. 

 

The strategy of the new algorithm is to create a weighted voting system. A weighted 

voting system will evaluate the evidence of the new example belonging to each class, 

calculate the assessment of probabilities for the example, and assign the example to a 

certain class according to the probabilities as well as the misclassification costs. 

 

The main problem of creating a weighted voting system is to decide the optimal weights 

of the individual votes. To solve this problem, we will mainly refer to the monotonicity 

property. People have found the monotonicity property does not only exist in pure 

monotone systems, but also exists in non-monotone systems. Since the study of the 

monotonicity property has been a huge success on monotone systems, it is only natural to 

apply the monotonicity property to non-monotone systems too. 

 

This thesis deals only with binary systems. Though such systems hardly exist in practice, 

this treatment provides concrete ideas for the development of general solution algorithms. 

 

After the final algorithm has been formulated, it has been tested on a wide range of 

randomly generated synthetic datasets. It has also been compared with other existing 

classifiers. The results indicate this algorithm performs both effectively and efficiently. 
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CHAPTER 1. INTRODUCTION 

 

1.1 Data Mining and Classification Algorithms 

There are many definitions for data mining. One of the most popular definitions is: data 

mining, also known as Knowledge Discovery in Databases (KDD), is "the nontrivial 

extraction of implicit, previously unknown, and potentially useful information from data" 

(Frawley, et al., 1992). That is to say, data mining is nothing but "the science of 

extracting useful information from large data sets or databases" (Hand, et al., 2001). 

 

A central problem in data mining is how to assign data examples to one of several 

predefined classes and infer some key patterns. This kind of problem in data mining is 

referred to as the classification problem. An algorithm designed to solve this type of 

problem is consequently called classification algorithm, or classifier. 

 

Usually an analyst will be given a set of examples whose classes are already known. 

Then the analyst will need to classify some new examples, based on the knowledge 

he/she has learned from the given examples. It is a pervasive problem that encompasses 

many diverse applications. With the help of a classifier, analysts can identify different 

classes of customers, behaviors, or activities, and take actions based on their classes. 

 

For instance, a doctor may have a pile of past medical records of a certain disease, and a 

new patient to be seen. After taking measurements of the new patient, the doctor needs to 

decide whether this new patient has the disease or not. With the assistance of a classifier, 

the doctor can make use of all the past records to obtain knowledge about the pattern of 

the existence of that disease. Thus, the pattern inferred from the given records provides a 

predictive model. This predictive model will help the doctor to decide if the patient is 

sick or not, it might even tell the doctor at what stage the disease is. Therefore, the doctor 

can decide what kind of action should be taken next, maybe an operation needs to be 

performed, or a more conservative treatment should be given. 

 

Credit card companies have been using classifiers to detect potentially fraudulent credit 

card transactions. Since credit card companies have the records of their customers’ past 

behavior, as well as those fraud activities that have been found out in the past, a classifier 

can be applied to analyze these data and yield a predictive model. Next time when a 

credit transaction is executed, the transaction and all its data elements describing this 

transaction are analyzed to determine whether or not the new transaction is a potentially 

fraudulent charge. Apparently this is of great interest to those companies, because it can 

help the credit card issuers, along with their customers, to decrease and mitigate losses 

due to fraudulent charges. 
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Manufacturing companies can use classifiers not only to identify the defective products, 

but also to find out the possible cause or characteristics of defective products. For 

example, on what day of a week or what time of a day produced the most defective 

products, and what components were used and which individuals were working on the 

assembling line. By understanding these characteristics, changes can be made to the 

manufacturing process to improve the quality of the products being produced. High-

quality products lead to improved reputation of the organization within its industry and 

help to drive sales. In addition, profitability improves through the reduction of returned 

materials and field service calls. 

 

A few practical uses of classifiers have been highlighted here. In fact, there are many 

more other ways that classification algorithms can be applied to provide great insight into 

business analysis, science projects or medical research. All in all, the valuable knowledge 

that classification algorithms can provide is patterns or events that one may not see 

through his/her eyes. As data storage technology advances and information systems 

continue endlessly to collect and process data, a treasure is amassing and is waiting to be 

discovered. 

 

1.2 Misclassification Costs 

A big problem in classification is how to evaluate the performance of a classifier. The 

misclassification rate, i.e., the number of examples being misclassified, is certainly an 

important criterion. In real life applications, however, mere misclassification rate is 

simply not good enough of a criterion to decide how a classifier performs. More often 

than not, we also need to incorporate a concept called misclassification cost (Michie, 

1994). 

 

Think of the case of medical diagnostics. Imagine two doctors that both sort out tumors 

into the "benign" and "malicious" classes (Triantaphyllou, 2008). Suppose the first doctor 

is correct on 98% cases, and the second one is only correct on 90% cases. But the first 

one misdiagnoses all malicious cases, while the second only makes mistakes on benign 

cases. Which doctor is considered better? Despite of the fact that the first doctor has 

lower rate of misclassification, the second doctor is the one considered to give better 

medical advice. This is because of different costs of misclassification. In our scenario, 

there are two types of misclassification: 

 

o assign a truly "benign" case to the "malicious" class; 

o assign a genuine "malicious" case to the "benign" class. 

 

Whereas the first type of misclassification is just annoying, the second type could 

be disastrous. In other words, the misclassification cost of the first type is relatively low, 

while the misclassification cost of the second type could be too high to afford. If the two 

doctors are two classifiers that we are evaluating, clearly, one would rather bias the 

classifier which makes fewer errors of the second type, even if that means making more 

mistakes of the first type. Of course, even though the cost of the second type of 



3 
 

misclassification is much higher, we cannot go to the other extreme to announce every 

case to be "malicious" just to be on the safe side. Such a classifier is practically of no use 

and such a doctor will lose credit from his patients. A good classifier should be able to 

tell a "benign" case when it reaches a certain confidence level. 

 

The same situation happens when the government tries to decide whether or not to issue a 

hurricane alert. They, too, face two types of errors: 

 

o issue a hurricane alert but nothing really happens; 

o fail to issue an alert before the hurricane really comes. 

 

The first type of misclassification will cause people to move around in vain, while the 

second type could cost people’s lives. So, there again, the two types of misclassification 

have different costs. We certainly do not want to sacrifice people’s lives. However, we 

also do not want to issue an alert every time there is only a slight chance of having a 

hurricane, because the cost of having people evacuate everyday is also high. It is a huge 

waste of time and money. Therefore, we must find a balance between the two types of 

misclassification rates, and the two types of rates are in every way related to their 

misclassification costs. 

 

For a credit card company, a classifier is expected to help make the decisions that will 

minimize the risk while trying to issue credit cards to more people. In such decisions, 

they take the risks of: 

 

o offering someone a credit card but the card holder is not capable of paying off; 

o not offering someone a credit card but lose a potential customer. 

 

In this case, the misclassification costs may vary from company to company. There are 

some risk-taking companies; while there are also some conservative ones. In such 

circumstances, we would prefer to have a classifier that can deliver an assessment of 

probabilities, i.e., the probabilities of a certain applicant belonging to given classes. Then 

the decision is left to the companies themselves. For instance, a classifier may announce 

some applicant to be 35% likely of being financially capable, and 65% likely of being 

non-capable. Then the companies will decide themselves whether or not to issue this 

applicant a card, based on their own judgment of misclassification costs. 

 

After examining the above illustrating cases, we can see that the root to the problem of 

different misclassification costs is how to find a balance between overfitting and 

overgeneralization. Overfitting is the situation where a classifier learns very well on the 

training examples but makes poor predictions on new test examples (Mitchell, 1997). An 

extreme case of overfitting is when a classifier only accepts examples that are exactly the 

same as the given examples and rejects all the new examples. Such a classifier is not 

capable of making any predictions at all. On the other hand, overgeneralization, also 

known as underfitting, is exactly the opposite of overfitting. It will classify too many 

examples even if it does not have adequate information of how to classify. An extreme 
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case of overgeneralization is when a classifier accepts all new examples to be in a certain 

class. This classifier cannot be very useful in practical situations either. 

 

1.3 Importance of This Problem 

As mentioned above, dealing with different misclassification costs is an important 

problem in classification. Some classifiers can predict quite accurately when assuming 

the misclassification costs for each class are the same. This is the case of most rule 

induction methods. However, when the misclassification costs for different classes take 

different values, which is a common phenomenon in reality, these classifiers are not 

capable of adjusting their results. 

 

Some other classifiers, like the Bayesian methods, have the ability to yield an assessment 

of probabilities for each unclassified example. This assessment of probabilities is a tuple 

of numbers that indicate the probability of a certain example belonging to each class. It 

can help us to make modification on the results according to the change of 

misclassification costs. It is also useful to decide where the balance between overfitting 

and overgeneralization is. However, the shortcoming of such classifiers is, though it can 

yield an assessment of probabilities, comparing to other classifiers, they have a relatively 

high misclassification rate. 

 

Therefore this thesis attempts to incorporate the merits of both kinds of classifiers into 

one, i.e., to develop a new classifier which can both predict relatively accurately, and 

calculate an assessment of probabilities at the same time. 

 

Next is the layout of this thesis. Some notation and an illustrative problem will be 

described in Chapter 2. Then some background information and the relevant literature 

will be reviewed in Chapter 3. In Chapter 4, some new notation are introduced, and in 

Chapter 5, the proposed methodology for solving this problem is presented. There will be 

24 different schemes for the final algorithm. In Chapter 6, after describing the process of 

generating synthetic datasets, the 24 proposed schemes will be compared on 10 randomly 

generated synthetic datasets. On analyzing the results, the scheme that has performed the 

best will form the new algorithm, called the M* algorithm. In Chapter 7, the pseudo code 

of M* algorithm and its complexity analysis will be given. Next, an extensive illustrative 

example will be elaborated in Chapter 8. In Chapter 9, we will compare the M* algorithm 

to other 75 existing classifiers, and analyze the results. Chapter 10 will explain the 

rationale of the newly developed algorithm, and Chapter 11 will give the concluding 

remarks. In the last, Chapter 12 will present a few directions of future research. 
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CHAPTER 2. NOTATION AND ELEMENTARY PROBLEM DESCRIPTION 

 

2.1 Notation 

2.1.1 The Binary System 

Suppose we use attributes x1, x2, x3, … to describe an example, and each attribute only 

takes two values. For instance, attribute "sex" takes values {male, female}, attribute 

"humidity" takes values {high, low}, and attribute "cancer" takes values {yes, no}. Then 

these attributes are called binary attributes. Since binary attributes take only two values, 

we can always arbitrarily assign one value to be "1", and the other to be "0". Suppose we 

have n such binary attributes <x1, x2, x3, …, xn> for each example. Since every attribute 

takes 2 values, then n attributes can define a total of 2
n
 examples. Now imagine each of 

the 2
n
 examples is attached with another binary attribute, c. This attribute defines which 

class the corresponding example belongs to, and hence it will be called the class attribute. 

The two values of the class attribute c can also be represented by "1" and "0". Moreover, 

if an example has class attribute "1", we will say the example belongs to class "1", or, the 

example is positive. Similarly, if an example has class attribute "0", we will say the 

example belongs to class "0", or, the example is negative. All these 2
n
 examples, together 

with their class attribute c, form a binary system, and this binary system has dimension n. 

 

Apparently, in a deterministic setting, there exists a mapping f between the 2
n
 examples 

and the class attribute c, that is, a mapping f: {0,1}
n
→{0,1}. This mapping, or pattern, is 

exactly the knowledge we want to find out, normally it is not known to us. Provided with 

some classified examples, i.e., examples whose classifications are already known to us, 

we hope our classifier can simulate this mapping. Note that every mapping of f: 

{0,1}
n
→{0,1} can be represented as a Boolean function, and every Boolean function can 

be transformed into conjunction normal form (CNF) or disjunction normal form (DNF) 

(Koppelberg, 1989). In this thesis, we will use CNF to represent the hidden mapping of 

each application system. 

 

To get a sense of what a classification problem would be like, here is an illustration. 

Suppose in a binary system of dimension 3, each example is described by a tuple <x1, x2, 

x3>. We are given four classified examples, two positive examples <1, 1, 1>, <1, 1, 0>, 

and two negative examples <0, 0, 1>, <0, 0, 0>. Since this binary system has dimension 3, 

the system has a total of 2
3
 = 8 examples. We already know the classification of half of 

them. We still want to know the classification of the rest. Suppose the hidden mapping f 

of this binary system is f = (x1 ⋎ x2) ⋏ (x2 ⋎ x3). The Boolean function’s value is the class 

attribute’s value of the corresponding examples, then the actual classifications for the rest 

of the four unclassified examples <1, 0, 1>, <0, 1, 1>, <1, 0, 0>, <0, 1, 0> should be 1, 1, 

0, 1, respectively. Suppose a classifier infers these unclassified examples have 

classifications 1, 1, 0, 0, respectively. Then this classifier gets 3 out 4 classifications 



6 
 

correct. It misclassifies the last example <0, 1, 0>, which is predicted to be negative, 

while its actual classification should be positive. 

 

Throughout this thesis, we will mainly discuss binary systems. Though pure binary 

systems are rare in practice, this is not a real limitation to the application of our 

discussion, because any non-binary system, no matter what its data type is, can be easily 

transferred into a binary one, through a binarilization process (Bartnikowski, et al., 2006). 

In fact, binary systems are the basis of all other systems. The treatment of binary systems 

can provide concrete and fundamental insights into the development of non-binary 

systems. Since binary systems are the simplest models, we can easily study their main 

properties without being distracted by other factors. 

 

2.1.2 The Probability Pair (p1, p0) 

The probability pair (p1, p0) of an example of a binary system is the probabilities of the 

corresponding example belong to both classes. To be more specific, p1 is the probability 

of the corresponding example belonging to class "1", while p0 is the probability of the 

corresponding example belonging to class "0". Since a binary system has only two 

classes, the probability pair must satisfy the following condition: 

p1 + p0 = 1 

 

For instance, examples v1 through v5 are assumed to have the probability pairs shown in 

the following table: 

Table 2.1 Sample Probability Pairs. 

Example Probability Pair 

v1 (0.9, 0.1) 

v2 (0.7, 0.3) 

v3 (0.55, 0.45) 

v4 (0.5, 0.5) 

v5 (0.4, 0.6) 

 

Apparently, v1, v2, v3 have higher probability of belonging to class "1"; v4 has equal 

probability of belonging to either class; while v5 is more likely to belong to class "0". 

 

Moreover, if we classify v1, v2, v3 to be positive, then v1 is more likely to be correct, and 

v3 is more likely to be wrong. Therefore if we are trying to shrink class "1", we will drop 

v3 first, and keep v1 last. 

 

2.1.3 The Misclassification Probability Pair (p0, p1) 

Another implication of the probability pair is, if we decide v1 to be class "1", it is 90% 

likely that we have made the correct decision. There is still 10% chance that we have 
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misclassified it. On the other hand, if we decide v1 to be class "0", it is 90% probable that 

we made the wrong decision. 

 

In general, if we classify an example to be class "1", (1 – p1) represents the probability 

that the corresponding example is misclassified; if we classify an example to be class "0", 

(1 – p0) represents the probability that the corresponding example is misclassified. 

 

Therefore, we can say that the pair ((1 – p1), (1 – p0)), or (p0, p1), is the pair of the 

misclassification probabilities if the corresponding example is classified to class "1" and 

"0", respectively. 

 

2.1.4 The Misclassification Costs (c1, c0) 

Now, suppose we have a pair of misclassification costs (c1, c0), where c1 is the cost of an 

example being misclassified to be of class "1", or the cost of a false-positive case, while 

c0 is the cost of an example being misclassified to be of class "0", or the cost of a false-

negative case.  

 

Misclassification costs can be any real numbers, such as (4.5, 0.5). But we can always 

normalize these numbers so that, 

c1 + c0 = 1, and c1, c0 ≥ 0. 

This is valid because in the end what really matters is the ratio between c1 and c0. Hence 

(4.5, 0.5) means a false-positive costs 9 times more of a false-negative. Thus the 

misclassification costs can be normalized to (0.9, 0.1) according to the two above 

conditions. From now on, we will assume to use normalized misclassification costs. 

 

2.1.5 The Expected Misclassification Costs (s1, s0) 

If we take the Cartesian product of the misclassification probabilities (p0, p1) and the 

misclassification costs (c1, c0), the result will be the expected misclassification costs of 

classifying a certain example to a certain class (s1, s0). In other words, 

 

 

To be more specific, for example v, if it has misclassification probability pair (p0, p1), and 

misclassification costs (c1, c0), then s1 = p0 × c1 represents the expected misclassification 

cost of assigning v to be class of "1", and s0 = p1 × c0 represents the expected 

misclassification cost of assigning v to be of class "0". This is the case because if we 

classify v to be of class "1", it is p1 probable that we have correctly classified it, then 

there will be no cost of misclassification. On the other hand, it is p0 probable that we have 

incorrectly classified it. Then since the misclassification cost of a false-positive is c1, the 

expected misclassification cost of classifying v to be of class "1" is p0 × c1. The same 

(s1, s0) = (p0, p1) × (c1, c0) = (p0 × c1, p1 × c0) 
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reasoning applies to the case when v is classified to be of class "0", the expected 

misclassification cost should be p1 × c0.  

 

The notion of expected misclassification costs combines the two most important factors, 

the misclassification probability pair and the misclassification costs. It shows us the 

expected costs of classifying an example to each class. In our algorithm, we will try to 

assign examples to a certain class so that the expected misclassification cost will be 

minimum, and generally the actual cost of misclassification will turn out to be minimized 

as well. 

 

For instance, for example v, if we have expected misclassification costs (s1, s0) = (0.1, 

0.9), it means assigning v to class "1" has a much lower expected cost than assigning it to 

class "0". Therefore in our final result, example v will be assigned to class "1" according 

to the comparison of s1 and s0. 

 

Now that we are acquainted with the notions of the probability pair (p1, p0), the 

misclassification probability pair (p0, p1), the misclassification costs (c1, c0), and the 

expected misclassification costs (s1, s0), we will examine some scenarios to get a better 

insight of how these factors will affect our classification process. 

 

Suppose we are provided with some classified examples, and five new unclassified 

examples v1 to v5. Through our calculation, we get the probability pairs of the five 

unclassified examples as shown in Table 2.1. Now assume we have misclassification 

costs of (0.5, 0.5), the results are shown in the following table. 

 

Table 2.2 Classification of Table 2.1 When Misclassification Costs (c1, c0) are (0.5, 0.5). 

Ex 
Probability Pair 

(p1, p0) 

Misclassification 

Probability Pair 

(p0, p1) 

Expected 

Misclassification Costs 

(s1, s0) 

Class 

v1 (0.9, 0.1) (0.1, 0.9) (0.05, 0.45) 1 

v2 (0.7, 0.3) (0.7, 0.3) (0.35, 0.15) 1 

v3 (0.55, 0.45) (0.45, 0.55) (0.225, 0.275) 1 

v4 (0.5, 0.5) (0.5, 0.5) (0.25, 0.25) 1/0 

v5 (0.4, 0.6) (0.6, 0.4) (0.3, 0.2) 0 

 

The misclassification costs of (0.5, 0.5) means a false-positive costs the same as a false-

negative. This is the case, for instance, when we are trying to guess someone’s gender. 

Either kind of mistake costs equally. Since the misclassification costs are the same, 

choosing the class that yields the smaller expected misclassification cost is the same as 

choosing the class that has a lower misclassification probability, or as choosing the class 

that has a higher probability. So we will assign an example to the class that it is more 
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probable to belong to. Therefore v1, v2, v3 are assigned to class "1", while v5 is assigned to 

class "0". 

 

A special case here is v4, whose expected misclassification costs are the same (0.25, 0.25). 

In this situation, there are two ways to settle this problem. We can refer to a random 

function and assign whatever class the random function generates for this example, or we 

can mark this example as an "undecidable" one (not to be confused with the unclassified 

ones). In the algorithm we discuss later, we will use the first method, a random function, 

to decide a tied case. 

 

In the second scenario, for the same set of examples, we have different misclassification 

costs, say (0.8, 0.2). As it can be seen in Table 2.3 that now the result is very different 

from what we get from Table 2.2, where we have misclassification cost (0.5, 0.5). The 

reason is that now we have a much higher cost of a false-positive than a false-negative. 

Thus, we want to classify more examples to be negative to reduce the false-positives. But 

which examples should we change their classes to negative and which examples we still 

want to keep as positive? That will need the help of the probability pair. For v2 and v3, 

which previously were classified as positive, their expected misclassification cost to be a 

positive are now higher than their expected misclassification cost to be a negative, they 

will change their classes to be negative. However, for v1, since it is highly probable to be 

positive, its expected misclassification cost to be a positive is still smaller than its 

expected misclassification cost to be a negative, v1 will remain to be classified as positive. 

Table 2.3 Classification of Table 2.1 When Misclassification Costs (c1, c0) are (0.8, 0.2). 

Ex 
Probability Pair 

(p1, p0) 

Misclassification 

Probability Pair 

(p0, p1) 

Expected 

Misclassification Costs 

(s1, s0) 

Class 

v1 (0.9, 0.1) (0.1, 0.9) (0.08, 0.18) 1 

v2 (0.7, 0.3) (0.7, 0.3) (0.56, 0.06) 0 

v3 (0.55, 0.45) (0.45, 0.55) (0.36, 0.11) 0 

v4 (0.5, 0.5) (0.5, 0.5) (0.4, 0.1) 0 

v5 (0.4, 0.6) (0.6, 0.4) (0.48, 0.08) 0 

 

The third scenario is when the misclassification costs are (0.2, 0.8), which is the opposite 

situation of case 2. Now a false-positive costs a lot less than a false-negative.  

Table 2.4 Classification of Table 2.1 When Misclassification Costs (c1, c0) are (0.2, 0.8). 

Ex 
Probability Pair 

(p1, p0) 

Misclassification 

Probability Pair 

(p0, p1) 

Expected 

Misclassification Cost 

(s1, s0) 

Class 

v1 (0.9, 0.1) (0.1, 0.9) (0.02, 0.72) 1 

(table con'd.) 
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v2 (0.7, 0.3) (0.7, 0.3) (0.14, 0.24) 1 

v3 (0.55, 0.45) (0.45, 0.55) (0.09, 0.44) 1 

v4 (0.5, 0.5) (0.5, 0.5) (0.1, 0.4) 1 

v5 (0.4, 0.6) (0.6, 0.4) (0.12, 0.32) 1 

 

After comparing the expected misclassification costs of each class, we will choose the 

class that costs less. The results are shown in Table 2.4, as we can see, all five examples 

are now classified to be positive. 

 

From the above three scenarios, we also get a glimpse of the classification process, which 

is as follows: 

o get the probability pair (p1, p0) of each unclassified example; 

o reverse the probability pair (p1, p0) to get the misclassification probability pair (p0, 

p1) of each unclassified example; 

o take the Cartesian product of the misclassification probability pair (p0, p1) and the 

misclassification costs (c1, c0) to get the expected misclassification costs (s1, s0) of 

each unclassified example; 

o compare s1 and s0, find the corresponding class that has the smaller expected 

misclassification cost for each unclassified example. 

 

Since the misclassification costs (c1, c0) are provided by each application system, all we 

need to calculate is the probability pair (p1, p0) of each unclassified example, then we can 

get the misclassification probability pair (p0, p1) as well as the expected misclassification 

costs (s1, s0), and hence the class of each unclassified example. Therefore this thesis aims 

at finding a classifier which can calculate the probability pair (p1, p0) for each 

unclassified example. 

 

2.2 Elementary Problem Description 

Assume there is a binary system B that has dimension n, and available are two sets, T1 

and T2, of binary examples of system B. T1 is called the training data and T2 is called the 

testing data. As suggested by their names, the training data T1 will be used to feed the 

classifier and build a predictive model, then the testing data T2 will be used to evaluate 

the performance of that classifier. 

 

Other parameters are as follows: m1 is the total number of examples in T1; m1
+
 is the 

number of positive examples in T1; m1
-
 is the number of negative examples in T1; m2 is 

the total number of examples in T2; m2
+
 is the number of positive examples in T2; and m2

-
 

is the number of negative examples in T2. Apparently, the following equations are true: 

m1 = m1
+
 + m1

-
, and m2 = m2

+
 + m2

-
. 
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Suppose a classifier has generated results for certain training data T1 and testing data T2. 

If we compare the predicted class of each example in testing data T2 with its actual class, 

we will get the number of false-positive R1, and the number of false-negative R0. Suppose 

the misclassification costs are (c1, c0). Then the actual cost of false-positive is the product 

of R1 × c1, the actual cost of false-negative is the product of R0 × c0. If we sum up both 

products, we will the actual total cost C, 

 

 

Therefore, the goal of this thesis is to formulate a new classifier that has the ability to 

generate a probability pair as well as a predicted class for every unclassified example in 

testing dataset T2, such that the actual total cost C will be the minimum. 

 

The way we evaluate the performance of different classifiers will be, 

o run different classifiers on training data T1 and testing data T2; 

o compare the predicted class of each example in testing data T2 with its actual class, 

count the numbers of false-positive R1,  and the number of false-negative R2; 

o multiply the number of false-positive by the cost for false-positive, and the 

number of false-negative by the cost for false-negative respectively, then sum up 

both products, i.e., get the value of the actual total cost C = (R1 × c1) + (R2 × c2). 

o Compare the value of C for different classifiers. 

We will repeat this process for different training datasets and testing datasets. 

 

Since we would like to compare our new classifier with other existing classifiers, and not 

all classifiers have the ability to adjust to the change of misclassification costs, for now 

we will assume the misclassification costs take the same value, i.e., (c1, c0) = (0.5, 0.5). 

 

Let us use an illustrative problem to see our classification process. Suppose we have a 

binary system of dimension n = 6. The hidden Boolean function of this binary system is 

assumed to be given by, 

𝑓 =  𝑥1 ⋎ 𝑥3 ⋏  𝑥2 ⋎ 𝑥3 ⋎ 𝑥4 ⋏ (𝑥4 ⋎ 𝑥5 ⋎ 𝑥6) 

As mentioned before, we will use CNF to represent the mapping between {1,0}
n
 → {1,0}, 

and this is not a limitation to the representation. 

 

Since this binary system has dimension 6, it means we have a total of 2
6
 = 64 examples. 

Among them, 32 examples (i.e., half of them) are classified, or are the training data. 

There are 20 positive examples and 12 negative examples. In other words, m1 = 32, m1
+
 = 

20, and m1
-
 = 12. The remaining 32 examples are the testing data. We will treat them as 

the unclassified examples before we get their predicted classes. After we run the 

classifiers on the testing data, we will refer to the hidden Boolean function f, and find out 

the actual classes of the testing data. In such a way, we can compare the predicted class 

C = R1 × c1 + R0 × c0 
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with the actual class of each example in the testing data. There are 32 examples in T2, 20 

of them are positive, and the remaining 12 of them are negative, i.e., m2 = 32, m2
+
 = 20, 

and m2
-
 = 12. Note that m1 and m2, m1

+
 and m2

+
, m1

-
 and m2

-
 happen to be the same 

numbers, this is not usually the case in general situations. However, if the training data 

and the testing data are selected randomly, the corresponding parameters do tend to be 

proportioned. That is: 

𝑚1

𝑚2
≈

𝑚1
+

𝑚2
+ ≈

𝑚1
−

𝑚2
− 

 

All the 64 examples are shown below. T1
+
 is the set of classified positive examples, T1

-
 is 

the set of classified negative examples, T2
+
 is the set of unclassified positive examples, 

T2
-
 is the set of unclassified negative examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Throughout this thesis, this illustrative problem will be used to highlight some key 

concepts. After we have formulated the classifier, the illustrative problem will be 

analyzed in Chapter 8.  
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CHAPTER 3. LITERATURE REVIEW 

 

3.1 Review of Some Well Known Classifiers 

As Michie's book (1994) suggests, there has been a lot of different approaches to 

classification. But all these approaches can be categorized into three groups, which are 

statistical methods, machine learning methods, and neural networks. The author will 

briefly describe all three categories and introduce some representative classifiers of each 

category. 

 

3.1.1 Statistical Methods 

Statistical approaches are generally characterized by having an explicit underlying 

probability model, which provides a probability of being in each class rather than simply 

a classification. There are several subcategories of statistical methods, such as classical 

statistical methods, Bayesian methods, kNN methods, and so on. In this section we will 

mainly introduce Bayesian methods and kNN methods. Because Bayesian methods 

provide the basis for learning algorithms that directly manipulate probabilities and kNN 

methods have a resemblance, in some way, to the new classifier in this thesis. A thorough 

treatment of statistical procedures is given in (McLachlan, 1992), (Schalkoff, 1992), and 

(O'Hagan, 2003). 

 

3.1.1.1Bayesian Methods 

All Bayesian methods are based on Bayes’ theorem, 

𝑃  𝐷 =
𝑃 𝐷  𝑃()

𝑃(𝐷)
 

In this theorem, D is the training data, and h is a hypothesis. P(h) denotes the initial 

probability that hypothesis h holds, before we have observed the training data. P(h) is 

often called the prior probability of h and may reflect any background knowledge we 

have about the chance that h is a correct hypothesis. If we have no such prior knowledge, 

then we might simply assign the same prior probability to each candidate hypothesis. P(D) 

denotes the prior probability that training data D will be observed. P(h|D) denotes the 

probability of observing data D given some world in which hypothesis h holds. In this 

scenario we are interested in probability P(h|D) that h holds given the observed training 

data D. P(h|D) is called the posterior probability of h, because it reflects our confidence 

that h holds after we have seen the training data D. Notice the posterior probability P(h|D) 

reflects the influence of the training data D, in contrast to the prior probability P(h), 

which is independent of D. Bayes theorem is the cornerstone of Bayesian learning 

methods because it provides a way to calculate the posterior probability P(h|D), from the 

prior probability P(h), together with P(D) and P(D|h). 

 

Important Bayesian methods include Naïve Bayes (John, et al., 1995), Naïve Bayes 

Simple (Duda, et al., 1973), AODE Bayes (Webb, et al., 2005), AODEsr (Zhang et al., 
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2006), HNB Bayes (Zhang, et al., 2005), NaiveBayesUpdateable (John, et al., 1995), and 

WAODE (Jiang, et al., 2006). 

 

In Bayesian methods, each observed training example can incrementally decrease or 

increase the estimated probability that a hypothesis is correct. This provides a more 

flexible approach to learning than algorithms that completely eliminate a hypothesis if it 

is found to be inconsistent with any single example. Prior knowledge can be combined 

with observed data to determine the final probability of a hypothesis. In Bayesian 

methods, prior knowledge is provided by asserting a prior probability for each candidate 

hypothesis, and a probability pair over observed data for each possible hypothesis. 

Bayesian methods can accommodate hypotheses that make probabilistic predictions. New 

instances can be classified by combining the predictions of multiple hypotheses, weighted 

by their probabilities. Even in cases where Bayesian methods prove computationally 

intractable, they can provide a standard of optimal decision making against which other 

practical methods can be measured. 

 

One practical difficulty in applying Bayesian methods is that they typically require initial 

knowledge of many probabilities. When these probabilities are not known in advance 

they are often estimated based on background knowledge, previously available data, and 

assumptions about the form of the underlying distributions. A second practical difficulty 

is the significant computational cost required to determine the Bayes optimal hypothesis 

in the general case. 

 

For more information on Bayesian methods, refer to (Jensen, 1996), (Berger, 1999), 

(Bolstad, 2004), (Gelman, 2003), (Lee, 1997), and (Winkler, 2003). 

 

3.1.1.2 k-Nearest Neighbor (kNN) Methods 

The k-nearest neighbor algorithm is amongst the simplest of all data mining algorithms. 

An object is classified by a majority vote of its neighbors, with the object being assigned 

to the class most common amongst its k nearest neighbors. k is a positive integer, 

typically small. If k = 1, then the object is simply assigned to the class of its nearest 

neighbor. In two-class systems, it is helpful to choose k to be an odd number as this 

avoids tied votes. 

 

In order to identify neighbors, the objects are represented by position vectors in a 

multidimensional feature space. It is usual to use the Euclidean distance, though other 

distance measures, such as the Manhattan distance could in principle be used instead. The 

k-nearest neighbor algorithm is sensitive to the local structure of the data. It can be useful 

to weight the contributions of the neighbors, so that the nearer neighbors contribute more 

to the average than the more distant ones. 
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There are a number of ways to classify the new vector to a particular class. One of the 

most used techniques is to predict the new vector to the most common class amongst the 

k-nearest neighbors. A major drawback to using this technique to classify a new vector to 

a class is that the classes with the more frequent examples tend to dominate the prediction 

of the new vector, as they tend to come up in the k-nearest neighbors when the neighbors 

are computed due to their large number. One of the ways to overcome this problem is to 

take into account the distance of each k-nearest neighbor with the new vector that is to be 

classified and predict the class of the new vector based on these distances. 

 

The best choice of k depends upon the data; generally, larger values of k reduce the effect 

of noise on the classification, but make boundaries between classes less distinct. A good k 

can be selected by various heuristic techniques, for example, cross validation. 

 

The naive version of the algorithm is easy to implement by computing the distances from 

the test sample to all stored vectors, but it is computationally intensive, especially when 

the size of the training set grows. Many nearest neighbor search algorithms have been 

proposed over the years; these generally seek to reduce the number of distance 

evaluations actually performed. Some optimizations involve partitioning the feature space, 

and only computing distances within specific nearby volumes. 

 

Important kNN methods include a branch and bound kNN rule (Fukunaka, et al., 1975), a 

condensed kNN rule (Hart, 1968), a reduced kNN rule (Gates, 1972), an edited kNN rule 

(Hand, et al., 1978), and KStar (Cleary, 1995). 

 

For more information on kNN methods, refer to (Devijver, et al., 1982), (Davies, 1988), 

(Todeschini, 1989), (Aha, et al., 1991), (Scott, 1992), (McLachlan, 1992), (Dasarathy, 

1991), and (Shakhnarovish, 2005). 

 

3.1.2 Neural Networks 

Generally, neural networks consist of layers of interconnected nodes, each node 

producing a non-linear function of its input. The input to a node may come from other 

nodes or directly from the input data. Also, some nodes are identified with the output of 

the network. Therefore, the complete network represents a very complex set of 

interdependencies which may incorporate any degree of nonlinearity, allowing very 

general functions to be modeled. 

 

In the simplest networks, the output from one node is fed into another node in such a way 

as to propagate information through layers of interconnecting nodes. More complex 

behavior may be modeled by networks in which the final output nodes are connected with 

earlier nodes, and then the system has the characteristics of a highly nonlinear system 

with feedback. It has been argued that neural networks mirror to a certain extent the 

behavior of networks of neurons in the brain. 
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Neural network approaches combine the complexity of some of the statistical techniques 

with the machine learning objective of imitating human intelligence. However, this is 

done at a more “unconscious” level and hence there is no accompanying ability to make 

learned concepts transparent to the user. 

 

To formulate a new network, the first step is to design a specific network architecture that 

includes a specific number of layers each consisting of a certain number of neurons. The 

size and structure of the network needs to match the nature of the investigated 

phenomenon. Because the latter is obviously not known very well at this early stage, this 

task is not easy and often involves multiple trials and errors. 

  

The new network is then subjected to the process of training. In that phase, neurons apply 

an iterative process to the number of inputs to adjust the weights of the network in order 

to optimally predict the sample data on which the training is performed. After the phase 

of learning from an existing data set, the new network is ready and it can then be used to 

generate predictions.  

 

The resulting network developed in the process of learning represents a pattern detected 

in the data. Thus, in this approach, the "network" is the functional equivalent of a model 

of relations between variables in the traditional model building approach. However, 

unlike in traditional models, in the "network," those relations cannot be articulated in the 

usual terms used in statistics or methodology to describe relations between variables. 

Some neural networks can produce highly accurate predictions; they represent, however, 

a typical a-theoretical (one can say, "a black box") research approach. That approach is 

concerned only with practical considerations, that is, with the predictive validity of the 

solution and its applied relevance and not with the nature of the underlying mechanism or 

its relevance for any theory of the underlying phenomena. 

 

One of the major advantages of neural networks is that, theoretically, they are capable of 

approximating any continuous function, and thus the researcher does not need to have 

any hypotheses about the underlying model, or even to some extent, which variables 

matter. An important disadvantage, however, is that the final solution depends on the 

initial conditions of the network, and, as stated before, it is virtually impossible to 

"interpret" the solution in traditional, analytic terms, such as those used to build theories 

that explain phenomena.  

 

For more information on neural networks, see (Hertz, et al., 1991), (Bhagat, 2005), 

(Bishop, 1995), (Duda, et al., 2001), and (Egmont-Petersen, et al., 2002). 
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3.1.2.1 Multilayer Perceptron Networks 

The most widely used neural classifier today is the Multilayer Perceptron (MLP) network 

(Haykin, 1998) which has also been extensively analyzed and for which many learning 

algorithms have been developed. An MLP is a feedforward artificial neural network 

model that maps sets of input data onto a set of appropriate output. It is a modification of 

the standard linear perceptron in that it uses three or more layers of neurons with 

nonlinear activation functions, and is more powerful than the perceptron in that it can 

distinguish data that is not linearly separable, or separable by a hyperplane. 

 

Learning occurs in the perceptron by changing connection weights (or synaptic weights) 

after each piece of data is processed, based on the amount of error in the output compared 

to the expected result. This is an example of supervised learning, and is carried out 

through backpropagation, a generalization of the least mean squares algorithm in the 

linear perceptron. The complexity of the MLP network can be changed by varying the 

number of layers and the number of units in each layer. Given enough hidden units and 

enough data, it has been shown that MLPs can approximate virtually any function to any 

desired accuracy. MLPs are valuable tools in problems when one has little or no 

knowledge about the form of the relationship between input vectors and their 

corresponding outputs.  

 

3.1.2.2 Radical Basis Function Networks  

Radical Basis Functions (RBF) are powerful techniques for interpolation in 

multidimensional spaces. An RBF is a function which has built into a distance criterion 

with respect to a center. RBF networks have two layers of processing: In the first, input is 

mapped onto each RBF in the hidden layer. The RBF chosen is usually a Gaussian. In 

classification problems, the output layer is typically a sigmoid function of a linear 

combination of hidden layer values, representing a posterior probability. Performance is 

often improved by shrinkage techniques, known as ridge regression in classical statistics 

and known to correspond to a prior belief in small parameter values (and therefore 

smooth output functions) in a Bayesian framework (Buhmann, 2003) (Yee, 2001). 

 

RBF networks have the advantage of not suffering from local minima in the same way as 

MLP. This is because the only parameters that are adjusted in the learning process are the 

linear mapping from the hidden layer to the output layer. Linearity ensures that the error 

surface is quadratic and therefore has a single easily found minimum. In classification 

problems the fixed non-linearity introduced by the sigmoid output function is most 

efficiently dealt with using iteratively re-weighted least squares. 

 

RBF networks have the disadvantage of requiring good coverage of the input space by 

radical basis functions. RBF centers are determined with reference to the distribution of 

the input data, but without reference to the prediction task. As a result, representational 

resources may be wasted on areas of the input space that are irrelevant to the learning 

task. A common solution is to associate each data point with its own center, although this 

can make the linear system to be solved in the final layer rather large, and requires 

shrinkage techniques to avoid overfitting. 
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3.1.3 Machine Learning Methods 

As a broad class of techniques can come under this heading, this thesis will mainly 

introduce two types of machine learning methods. These are decision tree methods and 

rule induction methods. For a thorough understanding, refer to (Weiss, et al., 1991), 

(Alpaydın, 2004), (Bishop, 2007), and (Mitchell, 1997). 

 

3.1.3.1 Decision Tree Methods 

The problem of constructing a decision tree can be expressed recursively. First, select an 

attribute to place at the root node and make one branch for each possible value. This 

splits up the example set into subsets, one for every value of the attribute. Now the 

process can be repeated recursively for each branch, using only those instances that 

actually reach the branch. If at any time all instances at a node have the same 

classification, stop developing that part of the tree. 

 

Decision tree induction is a nonparametric approach for building classification models. In 

other words, it does not require any prior assumptions regarding the type of probability 

pairs satisfied by the class and other attributes. 

 

Finding an optimal decision tree is an NP-complete problem. Many decision tree 

algorithms employ a heuristic-based approach to guide their search in the vast hypothesis 

space. For example, the algorithm might use a greedy, top-down, or a recursive 

partitioning strategy for growing a decision tree. 

 

Decision trees, especially smaller-sized trees, are relatively easy to interpret. The 

accuracy of the trees is also comparable to other classification techniques for many 

simple data sets. The presence of redundant attributes, i.e., attributes that are strongly 

correlated with another attribute, does not adversely affect the accuracy of decision trees. 

One of the two redundant attributes will not be used for splitting once the other attribute 

has been chosen. However, if the data set contains many irrelevant attributes, i.e., 

attributes that are not useful for the classification task, then some of the irrelevant 

attributes may be accidently chosen during the tree growing process, which results in a 

decision tree that is larger than necessary. Feature selection techniques can help to 

improve the accuracy of decision trees by eliminating the irrelevant attributes during 

preprocessing. 

 

Important Decision Tree algorithms include ADTree (Freund, et al., 1999), BFTree 

(Friedman, et al., 2000) (Shi, 2007), Id3 (Quinlan, 1986), J48 (Quinlan, 1993), J48graft 

(Webb, 1999), LMT (Landwehr, et al., 2005) (Sumner, et al., 2005), NBTree (Kohavi, 

1996), Random Forests (Breiman, 2001), and Simple Cart (Breiman, et al., 1984). 
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3.1.3.2 Rule Induction Methods 

Rule induction considers each class in turn and seeks a way for covering all instances in it, 

at the same time excluding instances not in the class. This is called a covering approach 

because at each stage one identifies a rule that “covers” some of the instances. Covering 

algorithms operate by adding tests to the rule that is under construction, always trying to 

create a rule with maximum accuracy. While a decision tree algorithm chooses an 

attribute to maximize the separation between the classes (using some information gain 

criterion), the covering algorithm chooses an attribute-value pair to maximize the 

probability of the desired classification. 

 

This kind of learning has been examined intensively. Here is just a few references, 

(Kovalerchuk, et al., 1995), (Kovalerchuk, et al., 1996), (Nieto Sanchez, et al., 2001), 

(Triantaphyllou, et al., 1996a), and (Triantaphyllou, et al., 1996b).  

 

Many rule induction methods can achieve high accuracy. The disadvantage is that most 

of them do not have the ability to adjust to the change of misclassification cost. 

 

Important rule induction algorithms include the Decision Table Method (Kohavi, 1995), 

JRip (Cohen, 1995), NNge (Martin, 1995) (Roy, 2002), OneR (Holte, 1993) PART 

(Frank, et al., 1998), Prism (Cendrowska, 1987), Ridor (Gaines, et al., 1995), and a B&B 

approach (Triantaphyllou, 1994). 

 

3.2 Weka: A Library of Data Mining Algorithms 

Weka, short for Waikato Environment for Knowledge Analysis, is a collection of data 

mining algorithms and data preprocessing tools. It includes virtually all the algorithms 

described above. It is designed so that one can quickly try out existing methods on new 

datasets in flexible ways. It provides extensive support for the whole process of 

experimental data mining, including preparing the input data, evaluating learning 

schemes statistically, and visualizing the input data and the result of learning. Besides a 

wide variety of learning algorithms, it includes a wide range of preprocessing tools. This 

diverse and comprehensive toolkit is accessed through a common interface so that its 

users can compare different methods and identify those that are most appropriate for the 

problem at hand. A more detailed guide of using weka can be found in (Kaufmann, 2005).  

 

Most algorithms we described above are implemented in Weka. In this thesis, the author 

will compare a newly developed algorithm with all the other applicable classification 

algorithms provided in Weka. A Weka 3.5.7 version will be used in this thesis. 
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CHAPTER 4. FORMAL PROBLEM DESCRIPTION 

 

4.1 Binary System and Partially Ordered Set 

 

4.1.1 Partially Ordered Set (Poset) 

In general, a partially ordered set, or poset, consists of a set S together with a partial order, 

such as "greater than or equal to" (≽) defined on the set. The partial order "≽" should 

satisfy the following conditions, 

 

 

 

 

 

 

 

 

Sometimes, for convenience, we will also use the expression b ≼ a (a, b ∊ S), which 

reads "b is less than or equal to a". This means exactly the same as a ≽ b (a, b ∊ S). The 

two expressions can be seen as a pair of opposite relations, just as their analogous 

arithmetic operations "≤" and "≥".  

 

The partial order defined above is called a non-strict partial order. In some other 

occasions, we need to use the strict partial order "greater than" (≻), which is defined as,  

 

 

 

 

 

 

 

 

 

Similarly, we sometimes use its opposite relation "less than" (≺) at our convenience. 

 

There is a one-to-one correspondence between all non-strict and strict partial orders. This 

means if one of the two relations is defined, the other is determined too. 

 

 

 

 

 

 

 

Definition 4.1 General Definition of the Non-strict Partial Order "≽": 

 

For any a, b, and c in set S, we have that: 

           a ≽ a (reflexivity); 

           if a ≽ b and b ≽ a then a = b (anti-symmetry); 

           if a ≽ b and b ≽ c then a ≽ c (transitivity property). 

Then, "≽" is a non-strict partial order; the set S combined with "≽" is a partially 

ordered set. 

Definition 4.2 General Definition of the Strict Partial Order "≻": 

 

For any a, b, and c in P, we have that: 

          ¬(a ≻ a) (irreflexivity); 

          if a ≻ b then ¬(b ≻ a) (asymmetry); 

          if a ≻ b and b ≻ c then a ≻ c (transitivity). 

 Then, "≻" is a strict partial order; when the set S combined with "≻" is a partially 

ordered set. 

Definition 4.3 An Alternative Definition of the Strict Partial Order "≻" 

(Based on the Non-Strict Partial Order "≽"): 

 

If "≽" is a non-strict partial order, then its corresponding strict partial order 

"≻" is, 

            a ≻ b,    iff a ≽ b  and  a ≠ b. 
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On the other hand, 

 

 

 

 

 

 

 

A poset can often be visualized through a directed Hasse diagram. For example, 

 
Figure 4.1 An Example of a Poset. 

 

In the above diagram, each vertex corresponds to an example and each directed edge 

represents a partial relation. For instance, the directed edge (a, c) denotes a ≻ c or c ≺ a. 

Partial relations that are transitively implied by other relations are not shown in the 

diagram. For example, there is no directed edge between a and f, but their relation a ≻ f is 

implied by relations a ≻ c and c ≻ f. 

 

4.1.2 Poset Expression of Binary Systems 

A partial order "≽" on binary systems is defined as follows, 

 

 

 

 

 

It can easily be proved that the relation defined above satisfies all three conditions 

mentioned by the general definition of a non-strict partial order in Definition 4.2. 

 

Accordingly, a strict partial order "≻" on binary systems is defined as follows, 

 

 

 

 

Definition 4.5 Definition of the Non-strict Partial Order "≽" on Binary Systems: 

 

Let v1 = (x11, x12, x13, …, x1n), and v2 = (x21, x22, x23, …, x2n). Then we say 

v1 ≽ v2,  iff   x1i ≥ x2i  ∀ i = 1, 2, 3, …, n. 

Definition 4.6 Definition of a Strict Partial Order "≻" on Binary Systems: 

 

For two examples v1 and v2 of the same dimension, 

           v1 ≻ v2,    iff v1 ≽ v2  and  v1 ≠ v2. 

Definition 4.4 An Alternative Definition of the Non-Strict Partial Order "≽" 

(Based on the Strict Partial Order "≻"): 

 

If "≻" is a strict partial order, then its corresponding non-strict partial order 

"≽" is, 

            a ≽ b,      iff a ≻ b  or  a = b. 
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Note that, unlike the general case of a strict partial relation "≻" that has two sets of 

definitions, the strict partial relation "≻" on binary systems does not have an alternative 

definition like "For v1 = (x11, x12, x13, …, x1n), and v2 = (x21, x22, x23, …, x2n), we say v1 ≻ 

v2 iff x1i > x2i, ∀ i = 1, 2, 3, …, n." A simple example is that if v1 = <111>, and v2 = 

<110>, then v1 and v2 satisfy Definition 4.6, therefore v1 ≻ v2. However, v1 and v2 does 

not satisfy the above quoted statement. 

 

As mentioned before, there exist two opposite orders "≼"，"≺" to each of the above, 

respectively. For instance, <1110> is greater than or equal to examples <1110>, <1100>, 

and <0010>. On the other hand <0100> is less than or equal to examples <0100>, 

<1100>, and <0111>. 

 

A binary system when it is combined with a partial order forms a poset. We say it is a 

poset on {1, 0}
n
, which can be depicted by a diagram shaped like a diamond. Figure 4.2 

shows the poset diagram when n = 4. 

 

 
 

Figure 4.2 A Poset on {1, 0}
4
. 

 

Because of the special characteristics of the set {1, 0}
n
, we organize the poset in different 

levels. Two examples are at the same level if they have the same number of 1s, and hence, 

the same number of 0s. A binary system of dimension n, or a poset on {1, 0}
n
, have n+1 

levels. From top to bottom, we call them level 0, level 1,…, and up to level n+1, 

according to the number of 0s in the examples of that level. Note that v1 ≻ v2 only if v1 is 

at some level above v2. 

 

Since the partial relations between two examples can be specifically decided by the 

partial order definitions, we do not draw those directed edges as in Figure 4.1 anymore. 

Suppose we are provided with some classified examples. Then we color an example blue 

if it is positive, red if it is negative. Thus, we can have the following diagram: 
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Figure 4.3 A Poset on {1, 0}
4
 with some hypothetically classified examples. 

 

While the colored examples are classified, the blank examples represent unclassified ones. 

From now on, we will use this kind of poset diagrams to illustrate the binary systems we 

have. Since we assume we are always provided with some classified examples, we will 

omit the part "with some classified examples" in the caption, and simply call them posets 

on {1, 0}
n
. 

 

4.2 Binary Systems and the Monotonicity Property 

 

4.2.1 The Monotonicity Property 

In general, the definition of the monotonicity property is given as follows: 

 

 

 

 

 

 

 

 

 

 

As stated in the book (Triantaphllou, 2008), the monotonicity property is "inherently 

frequent in applications", "simple and intuitive", and "can represent relatively complex 

knowledge and still be validated". Throughout this thesis, we will be mainly exploring 

this property on binary systems.  

 

4.2.2 The Monotonicity Property of Binary Systems 

Since we already have a partial relation "≽" defined on {1,0}
n
, we can now define the 

monotonicity property on binary systems. Making a small revision to Definition 4.8, we 

get a definition as follows: 

Definition 4.8 General Definition of the Monotonicity Property: 

 

For a function  f : S→ℝ defined on a poset S, 

if for any v1, v2 ∊ S, we have  𝑣1  ≽  𝑣2 ⟹ 𝑓(𝑣1) ≥ 𝑓(𝑣2) 

then we say function f is increasingly monotone on S. 

If for any v1, v2 ∊ S, we have 𝑣1  ≽  𝑣2 ⟹ 𝑓(𝑣1) ≤ 𝑓(𝑣2) 

then we say function f is decreasingly monotone on S. 

In both cases function f is called monotone on S, or equivalently, function f has the 

monotonicity property on S, and the set S is called a monotone set. 



24 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition 4.9 is not only the definition of the monotonicity property on binary systems, 

but also the definition of monotone binary systems. We already know that, if a Boolean 

function can be transformed into a CNF/DNF that has no negated variables, then this 

Boolean function is a monotone function (Koppelberg, 1989). The following is an 

example of a Boolean monotone function, 

𝑓 = (𝑥1 ⋎ 𝑥2) ⋏ (𝑥3 ⋎ 𝑥4) 

 

If a monotone function is defined on a binary system {1,0}
n
, then the binary system is a 

monotone binary system. For instance, when all the classes of all the examples are known, 

a binary system {1,0}
4
  with the above monotone function has a poset diagram as follows: 

 

Figure 4.4 A Poset on {1,0}
4
 with monotone function 𝑓 = (𝑥1 ⋎ 𝑥2) ⋏ (𝑥3 ⋎ 𝑥4). 

It can be seen from this diagram, that the entire binary system can be separated into two 

parts. One part is all the examples which are less than or equal to <1111> and greater 

than or equal to either one of <1010>, <1001>, <0110>, and <0101>. The other part is all 

the examples which are less than or equal to either one of <1100> and <0011>, and 

greater than or equal to <0000>. The first part is all examples of class "1", while the 

second part is all examples of class "0". In fact, all monotone binary systems can be 

separated in such a way into two parts, where each part is of the same class.  

Definition 4.9 Definition of the Monotonicity Property on Binary Systems: 

 

For a function  f : {1,0}
n
→{1,0} defined on a binary system B, 

if for any v1, v2 ∈ {1,0}
n
, we have   𝑣1  ≽  𝑣2 ⟹ 𝑓(𝑣1) ≥ 𝑓(𝑣2) 

then we say function f is increasingly monotone on {1,0}
n
. 

If for any v1, v2 ∈ {1,0}
n
, we have   𝑣1  ≽  𝑣2 ⟹ 𝑓(𝑣1) ≤ 𝑓(𝑣2) 

then we say function f is decreasingly monotone on {1,0}
n
. 

 

In both cases function f is called monotone on {1,0}
n
, or equivalently, function f 

has the monotonicity property on {1,0}
n
, and binary system B is called a 

monotone binary system. 
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So far we have defined monotone binary systems. But what happens with non-monotone 

binary systems? Let us look at the following real function as an analogy.  

          
Figure 4.5 The Partial Monotonicity Property on a Non-Monotone Real Function. 

The left function is apparently non-monotone, because y goes up and down with x 

increasing. However on the right, the same function appears to be monotone, or has the 

monotonicity property, on sub-intervals [x0, x1], [x1, x2], [x2, x3], and so on. This 

observation inspires us that even if the monotonicity property cannot be found on the 

whole system, we can always break a system into several sub-systems that are monotone. 

Based on this thought, we can define the monotonicity property on the subsets of non-

monotone binary systems. 

 

 

 

 

 

 

 

 

 

 

 

4.2.3 Some Important Implications of the Monotonicity Property 

o Any binary system can be entirely separated into a certain number of monotone 

subsets, though the monotone subsets could be very small. 

 

o In a monotone subset of a binary system, for a certain unclassified example z, if 

the examples that are greater than and less than z are all positive, then z is positive; 

if the examples that are greater than and less than z are all negative, then z is 

negative. 

 

4.3 A Weighted Voting System 

A weighted voting system contains a series of rules for valid voting. It allows voters, the 

classified examples in our case, to vote between two classes with regard to a target 

Definition 4.10 Definition of the Monotonicity Property on Subsets of a Non-

Monotone Binary System: 

 

For a function f: {1,0}
n
→{1,0} defined on a binary system B, if there exists a subset 

S of B such that, 

for any v1, v2 ∈ S     have  𝑣1  ≽  𝑣2 ⟹ 𝑓(𝑣1) ≥ 𝑓(𝑣2) 

            or,       for any v1, v2 ∈ S      have 𝑣1  ≽  𝑣2 ⟹ 𝑓(𝑣1) ≤ 𝑓(𝑣2) 

Then we say function f is monotone on subset S, or equivalently, function f has the 

monotonicity property on subset S. 
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example. Based on the results of voting, we can calculate the evidence of the unclassified 

example belonging to each class, and hence, the probabilities the unclassified example 

belongs to each class. 

 

The most important two questions in deciding the voting rules are, 

o "Which example gets to vote?"  

o "What are the weights of each vote?" 

We will answer the above two questions through the process for developing the new 

classifier.  

 

4.4 The Poset Description of the Illustrative Problem 

For the convenience of future discussion, there is a need to re-describe the illustrative 

problem mentioned in Chapter 2 in terms of a poset diagram. 

 

Recall that the illustrative problem has dimension n = 6, a total of 2
6
 = 64 examples, 20 

classified positive examples, 12 classified negative examples, and 32 unclassified 

examples. As before, the blue colored examples are classified positive, the red colored 

examples are classified negative, and the blank examples are the unclassified ones. To 

distinguish classified and unclassified examples, we will not color the unclassified 

examples in the diagram. Therefore, the poset diagram for this illustrative problem is as 

follows: 

 
Figure 4.6 The Poset Diagram of the Illustrative Problem. 

 

To learn the classification of the unclassified examples, we will refer to the hidden 

function 

𝑓 =  𝑥1 ⋎ 𝑥3 ⋏  𝑥2 ⋎ 𝑥3 ⋎ 𝑥4 ⋏ (𝑥4 ⋎ 𝑥5 ⋎ 𝑥6). 
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CHAPTER 5. PROPOSED METHODOLOGY 

 

5.1 Different Types of Examples 

To answer the first important question in building a voting system, "which example gets 

to vote?", we will need to define some different types of examples with regard to the 

example we are trying to classify, also to be referred as the target example z. We will use 

the illustrative problem to describe these different types of examples. 

 

5.1.1 The Ordered Relation 

Suppose the first unclassified example <111110> is the target example z. We can take z, 

as well as all the examples that are greater than or less than z, from the original poset 

diagram, and arrange them into a different diagram as follows: 

 

Figure 5.1 All the Examples in Ordered Relation with <111110>. 

To distinguish the target example z, we use a colored frame. Here a blue frame denotes 

that this example is the target example and its actual class should be "1". Similarly, if we 

have a red framed example, it denotes that this example is the target example and its 

actual class should be "0". 

 

The rest of the examples in Figure 5.1 are the ones that are either greater than or less than 

the target example z, or as we will call them from now one, they are in an ordered relation 

with z. 

 

 

 

 

 

 

 

Definition 5.1 Definition of an Ordered Relation: 

 

In a binary system, for any two examples x and y, if 

                                    x ≻ y    or    x ≺ y 

then we say x and y are in an ordered relation. 
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A useful concept related to the ordered relation is the concept of a path. Imagine there 

were invisible edges between adjacent levels depicting the relation of "≻" (or "≺"). Then 

there must exist one or more path(s), i.e., a sequence of examples, between two examples 

that are in ordered relation. 

 

 

 

 

 

 

 

Note that, whenever two examples are in an ordered relation, there must exist at least one 

path between them. Moreover, for any two ordered examples, every path(s) between 

them must have the same length. This is true because every example in a path is one level 

above its previous example. Therefore the length of every path between v1 and vk is equal 

to the difference of the levels of v1 and vk. 

 

 

 

 

 

 

 

5.1.2 Direct and Indirect Relations 

When we take a closer look at pairs of examples in an ordered relation, we realize that 

some of them may have a different property than the others. For instance, in Figure 5.1, 

let us consider the classified example <100110> and the target example <111110>. There 

are two paths of length 2 between the two examples, namely, 

path 1:  -   -  

path 2:  -  -  

Notice that both paths contain only positive examples and unclassified examples (the 

target example is considered to be an unclassified example). 

 

Next, we will check examples <010100> and the target example <111110>. There are six 

paths of length 3 between the two, namely, 

path 1:  -  -   -  

path 2:  -  -   -  

path 3:  -  -   -  

path 4:  -  -   -  

 

Definition 5.2 Definition of a Path: 

 

In a binary system, if v1, v2, v3, …, vk is a sequence of examples such that, 

vi is one level above vi+1, and vi ≻ vi+1,  ∀ i = 1, 2, …, k – 1 

then we say v1, v2, v3, …, vk is a path between v1 and vk, and the path has 

length k – 1. 

 

Definition 5.3 Definition of Distance of Two Ordered Examples: 

 

In a binary system, if example x is at level i, y is at level j, and x ≻ y, then 

the distance d of x and y is the length of the path(s) between x and y, or 

d = |i – j|. 
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path 5:  -   -   -  

path 6:  -   -   -  

Intuitively, unlike the previous case, we find that there are some red examples present in 

the paths. In other words, there exist some paths which contain not only positive 

examples and unclassified examples but also negative examples. 

 

We will call that example <100110> in the former case is in direct relation with the target 

example z; and example <010100> in the latter case is in indirect relation with the target 

example z. Moreover, the negative example <011100> in the paths of the latter case is 

called a cutting example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Therefore, according to the previous definition, the negative example <011100> is in 

direct relation with z. This is the case because every path between <011100> and z 

contains only negative examples and unclassified examples. The negative example 

<101010> is in indirect relation with z, since there are two cutting examples of the 

opposite class of <101010>, namely positive examples <111010> and <101110>. 

 

Note that we do not need to find out all the cutting examples. For a classified example v, 

as soon as we find one cutting example in any path between v and the target example z, 

we can decide that v is in indirect relation with z. 

 

Another notion is that both classified and unclassified examples can be considered in 

some ordered relation with the target example. However, examples in direct/indirect 

relations with the target example can only be classified examples. It is meaningless to 

talk about unclassified examples in terms of direct/indirect relations. 

 

Definition 5.4 Definition of a Direct Relation: 

 

For a classified example v and a target example z, if every path connecting 

v and z contains only examples of the same class of v and unclassified 

examples, then v is in direct relation with z. 

 

Definition 5.5 Definition of an Indirect Relation and a Cutting Example: 

 

For a classified example v and a target example z, if there exists at least 

one path connecting v and z which contains example(s) of the opposite 

class of v, then v is in indirect relation with z. The example(s) of the 

opposite class is/are called cutting example(s). 
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5.1.3 Examples at the Same Level 

The examples that are at the same level of the target example z clearly cannot be in 

ordered relation with z, and hence not in direct or indirect relation with z. Even though 

this thesis attempts to build a voting system based on the monotonicity property, hence 

the ordered relation, we still want to discuss the possibility that examples at the same 

level of z might have an impact on deciding the class of z. Therefore, these examples will 

form another type of relation with the target example. For instance, if <111110> is the 

target example, then the examples at the same level include <111101>, <111011>, 

<110111>, <101111>, and <011111>. All these examples have the same number of 1's 

and 0's. 

 

5.1.4 The Rest of the Examples 

With regard to a certain target example z, there could still be some examples that do not 

fall in any of the above categories. These are examples neither in ordered relations with z, 

nor at the same level of z. All these examples will form another type of relation, termed 

"the rest of the examples". For instance, if <111110> is the target example, then 

examples <101011>, <000111>, and <100001> are in the group of "the rest of examples". 

 

We have described several types of relations with the target example z. Once we have 

specified z, we can categorize all the classified examples into different types. 

 

Figure 5.2 Different Types of Relations with the Target Example. 

 

The above figure can also be shown in a poset diagram. In Figure 5.3 shown below, the 

space between the dashed straight lines depicts all the examples at the same level as z. 

All classified exmaples

Positive or negative 
examples at the same 

level of z

Positive or negative 
examples that are in 

ordered relations with z

Positive or negative 
examples that are in 

direct relations with z.

Positive or negative 
examples that are in 

indirect relations with z.

The rest of the 
examples
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The space within the dashed contour depicts all the examples in ordered relations with z. 

Ordinarily, all these ordered examples can be arranged in a shape of a sandglass, or two 

diamonds, as shown in the following figure. The arrows in the contour denote a path, or 

equivalently, an ordered relation. 

 
Figure 5.3 Different Types of Examples in a Poset Diagram. 

 

From Figure 5.3, we can see that 

v1, v2, v3, v4, v5, v6 are in ordered relations with z.  

v2, v3, v4, v5 are in direct relations with z. 

v1 is in an indirect relation with z, with v2 as one of the cutting examples. 

v6 is also in an indirect relation with z, with v4 as one of the cutting examples. 

v7, v8 are at the same level as z. 

v9, v10 are in the group called "the rest of the examples". 

 

5.2 Twenty-Four Weighting Schemes 

Now that we have identified different types of relations with the target example, we will 

proceed to solve the second important question in building a voting system. That is, 

"what are the appropriate weights for each vote?" To be more specific, we have four 

types of examples: examples in direct relations, examples in indirect relations, examples 

at the same level, and the rest of the examples. We will examine these four types of 

examples one by one, and discuss some key options in developing weighting schemes for 

each type. 

 

5.2.1 Weights for Examples in Direct Relations 

This is the main type of examples and may have the most impact on determining the class 

of the target example z. These are the examples that are either greater than or less than z, 
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with no examples of the other class in the paths leading to z. As shown in Figure 5.4, 

examples v1 to v7 are all in a direct relation with z. 

 
Figure 5.4 Examples in Direct Relation with the target example z. 

 

The assumption here is that the target example z might be in a small subset of the binary 

system which exhibits the monotonicity property locally. Therefore, if the examples that 

are greater than and less than z are all positive, then z is most probably positive. If the 

examples that are greater than or less than z are all negative, then z is most probably 

negative. In practice, often times exist both positive and negative examples in direct 

relations with z. Therefore, we need to weigh the evidence of z belonging to each class. 

 

Intuitively, we assume the closer an example is to the target example z, the more likely is 

for z to belong to the same class as that example. This means that an example at the most 

adjacent level of z should have the most weight of its vote. The farther level an example 

is from z, the less weight the example's vote should have. This implies that the weights 

we are looking for should be a function of the distance between a voting example and z. 

  

 
Figure 5.5 Examples in Ordered Relations with the target example z. 
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Based on the above criterion, we need to find the relation between the weights and the 

distances. Figure 5.5 shows all the examples in ordered relations with z. They all can be 

in direct relation or indirect relation with z. Thus we will later assign weights to these 

examples based on the layout of this diagram. 

 

We have two key options on the way the weights will change with regard to the distance. 

The first key option is that the weights change linearly.  We will let the examples at the 

farthest level have weight of 1, and then the weights of examples at the next closer level 

increase by one and so on. Also we will make sure examples at the two levels that are 

above and below z have the same weights if the examples are of the same distance to z. 

 
Figure 5.6-1 Weights of Examples in Ordered Relation Changing Linearly (when i ≥ j). 

 

 
Figure 5.6-2 Weights of Examples in Ordered Relation Changing Linearly (when i < j). 
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In Figures 5.6-1 and 5.6-2, the weights of examples are shown on the right hand side to 

each level. Obviously, examples at the same level are assigned the same weight. 

 

In the second option the weights will change exponentially.  Again, we will let the 

examples at the farthest level have weights of 2
0
 = 1, and then the exponent of the 

weights of examples at the next farthest level will increase by one, i.e., 2
1
, 2

2
, 2

3
, and so 

on. We will make the examples at the two levels that are above and below z to have the 

same weights if the examples are of the same distance to z. 

 
Figure 5.7-1 Weights of Examples in Direct Relation Changing Exponentially (when i ≥ j). 

 
Figure 5.7-2 Weights of Examples in Direct Relation Changing Exponentially (when i < j). 
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In summary, there are two key options in calculating the weights of "voting" examples in 

direct relations with the target example z: 

1) The weights change linearly with regard to the distance of a "voting" example to z 

(refer to Figures 5.6-1 and 5.6-2); 

2) The weights change exponentially with regard to the distance of a "voting" 

example to z (refer to Figures 5.7-1 and 5.7-2). 

 

5.2.2 Weights for Examples in Indirect Relations 

Examples in indirect relations are the examples that are greater than or less than the target 

example z, but have one or more cutting example(s) of the opposite class in path(s) 

leading to z. As shown in Figure 5.8, v1, v2 and v5 are all examples in indirect relations 

with z, and v3 and v4 are the corresponding cutting examples. 

 
Figure 5.8 Examples in Indirect Relations with the target example z. 

 

This type of examples may or may not have an impact on determining the class of the 

target example. Therefore, the first key option is for the weights of such examples to be 

equal to 0. In other words, these examples do not play any role in the voting system. 

 

If these examples do play a role in the voting system, their weights will be decided in 

relation to the weight options of the direct relation type. This is because the importance of 

examples in indirect relation cannot be stronger than that of examples in direct relations.  

 

Therefore, if the weights of examples in direct relations change linearly, the weights of 

examples in indirect relations cannot change exponentially. In this situation, the weights 

can change linearly or to be equal to some constant. If the weights of examples in indirect 

relations change linearly, then they will take the same weights as in Figures 5.6-1 and 

5.6-2. If the weights are a constant number, we will use the constant 1 as their value. 

 

If the weights of examples in direct relations change exponentially, then the weights of 

examples in indirect relations can change exponentially as well, or change linearly. 

Taking a constant number is also an option, but comparing to the increases of the 

exponential scheme, constant numbers are considered relatively insignificant. Therefore, 
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taking a constant number is not a key option of the weighting schemes to be explored. If 

the weights change linearly, the weights are the same as in Figures 5.6-1 and 5.6-2. If the 

weights change exponentially, the weights are the same as in Figures 5.7-1 and 5.7-2. 

 

In summary, there are four key options for the weights of examples in indirect relations 

with the target example: 

1) The weights are all equal to 0; 

2) The weights are a constant number (i.e., all equal to 1), when the weights of 

example in direct relations change linearly; 

3) The weights change linearly with regard to the distance of a "voting" example to z, 

when the weights of example in direct relations change linearly or exponentially 

(refer to Figures 5.6-1 and 5.6-2); 

4) The weights change exponentially with regard to the distance of a "voting" 

example to z, when the weights of examples of direct relations change 

exponentially (refer to Figures 5.7-1 and 5.7-2). 

 

5.2.3 Weights for Examples at the Same Level 

The weights for examples at the same level might not have a role in the voting systems 

either, which is the first key option. If they have, however, the weights will depend on the 

weighting scheme of examples in direct relations. If the weights of examples in direct 

relations change exponentially or linearly, the weights of examples at the same level will 

also change exponentially or linearly, but with a different weighting scheme. 

 

Since each level has a different number of examples, it is reasonable to think that the 

more examples z has at the same level, the less weight each example will have; while the 

less examples z has at the same level, the higher weight each example will have. 

Therefore, it is assumed that examples at the middle level have the lowest weight, and the 

other weights increase linearly or exponentially when we move farther from the middle. 

 
Figure 5.9-1 Weights of Examples at the Same Level Changing Linearly (when n is even). 
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Figure 5.9-2 Weights of Examples at the Same Level Changing Linearly (when n is odd). 

 

The previous figures show the positions that the target example might appear in, and 

hence the positions where the examples at the same level might appear in. The top and 

bottom level do not have a weight. This is because if the target example happens to be at 

these two levels, there will be no other examples at the same level. 

 

Figures 5.9-1 and 5.9-2 show the second option of the weighting schemes of examples at 

the same level, having n being even and odd numbers respectively. Assume examples at 

the middle level have the lowest weights (=1), and increase linearly (by 1), when the 

distance to the middle goes up. 

 

Similarly, we have a third option of the weighting schemes of examples at the same level. 

It is assumed that examples at the middle level have the lowest weights, i.e., 2
0
 = 1, and 

increase exponentially, i.e., the exponent increases by 1, when the distance to the middle 

goes up. Figures 5.10-1 and 5.10-2 show the third option. There are also two scenarios as 

n can be even or an odd number. 

 
Figure 5.10-1 Weights of Examples at the Same Level Changing Exponentially (when n is even). 
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Figure 5.10-2 Weights of Examples at the Same Level Changing Exponentially (when n is odd). 

 

In summary, there are three key options of the weights of examples at the same level as 

the target example z: 

1) The weights are all equal to 0; 

2) The weights change linearly with regard to the distance of an example to z, when 

weights of example of direct relation change linearly (refer to Figures 5.9-1 and 

5.9-2); 

3) The weights change exponentially with regard to the distance of an example to z, 

when weights of example of direct relation change exponentially (refer to Figures 

5.10-1 and 5.10-2). 

 

5.2.4 Weights for the Rest of the Examples 

This is the easiest type to decide. In this thesis, we assume that the other examples have 

no or very little impact on determining the class of the target example. Therefore, the 

weights are 0 for the rest of the examples. In summary, there is only one key option of the 

weights of the rest of the examples: 

1) The weights are equal to 0. 

 

To put the key options for weights of the four types of examples together, we derive the 

following table: 

Table 5.1 Key Options for Weights of the Different Types of Examples. 

Type of Examples Key Options for Weights 

Direct Relations 

1) The weights change linearly with regard to the distance of a 

"voting" example to z (refer to Figures 5.6-1 and 5.6-2); 

2) The weights change exponentially with regard to the 

distance of a "voting" example to z (refer to Figures 5.7-1 

and 5.7-2) 

(table con'd) 
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Indirect Relations 

1) The weights are equal to 0; 

2) The weights are a constant number (i.e., all equal to 1), 

when the weights of examples in direct relations change 

linearly; 

3) The weights change linearly with regard to the distance of a 

"voting" example to z, when the weights of examples in 

direct relations change linearly or exponentially (refer to 

Figures 5.6-1 and 5.6-2); 

4) The weights change exponentially with regard to the 

distance of a "voting" example to z, when the weights of 

examples of direct relations change exponentially (refer to 

Figures 5.7-1 and 5.7-2). 

Examples at the 

Same Level 

1) The weights are equal to 0; 

2) The weights change linearly with regard to the distance of 

an example to z, when weights of examples of direct 

relation change linearly (refer to Figures 5.9-1 and 5.9-2); 

3) The weights change exponentially with regard to the 

distance of an example to z, when weights of examples of 

direct relation change exponentially (refer to Figures 5.10-1 

and 5.10-2). 

The Rest of the 

Examples 

1) The weights are equal to 0. 

 

Aside from dealing with the four types of examples, there is another possible action we 

might need to take. Imagine the situation that we are given 100 positive examples, and 10 

negative examples. For a certain target example z, 20 positive examples and 10 negative 

examples participate in voting. Even though there are more positive examples voting, it is 

just 20% of all the positive examples. On the other hand, though the number of the voting 

negative examples is smaller, all of them have participated in the voting. Hence it is 

possible that the weights of the negative examples should be somewhat higher than that 

of the positive examples. Therefore we might want to multiply a factor to each vote. In 

such a way, we can modify on the weights of positive and negative votes. 

 

Suppose that after calculating the votes of the four types of examples, we have (V1, V0), 

where: 

𝑉1 =  the weights of positive "voting" examples 

𝑉0 =  the weights of negative "voting" examples  

We need to multiply some factors to V1 and V0, respectively. 

 

There are two possibilities for the values of these factors. Each possibility also has two 

factors, one for modifying the positive vote, the other for modifying the negative vote.  In 

the first possibility, these factors are equal to (1, 1), meaning we do not change the 
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calculated positive or negative votes. In the second possibility, these factors are equal to 

(F1, F0), where:  

𝐹1 =
the number of participating positive examples

the total number of all positive examples 
 

 

𝐹0 =
the number of participating negative examples

the total number of all negative examples 
 

 

When we take the Cartesian product of (V1, V0) and the factors (1, 1) or (F1, F0), we will 

get the final positive and negative votes, denoted by PositiveVote and NegativeVote, 

respectively. 

 

When combining the information in Table 5.1 and the option of multiplying by these 

factors, we get the following table of all possible key weighting schemes: 

Table 5.2 Twenty-Four Weighting Schemes. 

Scheme Direct Relation Indirect Relation Examples on the Same Level Factors 

A linear 0 0 (1, 1) 

B linear 0 0 (F1, F0) 

C linear 0 linear (1, 1) 

D linear 0 linear (F1, F0) 

E linear 1 0 (1, 1) 

F linear 1 0 (F1, F0) 

G linear 1 linear (1, 1) 

H linear 1 linear (F1, F0) 

I linear linear 0 (1, 1) 

J linear linear 0 (F1, F0) 

K linear linear linear (1, 1) 

L linear linear linear (F1, F0) 

M exponential 0 0 (1, 1) 

N exponential 0 0 (F1, F0) 

O exponential 0 exponential (1, 1) 

P exponential 0 exponential (F1, F0) 

Q exponential linear 0 (1, 1) 

R exponential linear 0 (F1, F0) 

S exponential linear exponential (1, 1) 

T exponential linear exponential (F1, F0) 

U exponential exponential 0 (1, 1) 

V exponential exponential 0 (F1, F0) 

W exponential exponential exponential (1, 1) 

X exponential exponential exponential (F1, F0) 

 

Finally, the probability pair (p1, p0) is calculated by 
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𝑝1 =
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒 + 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒
 

𝑝0 =
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒 + 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒
 

where PositiveVote + NegativeVote ≠ 0. 

 

If  PositiveVote + NegativeVote = 0, then (p1, p0) = (0.5, 0.5). 
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CHAPTER 6. COMPUTATIONAL EXPERIMENTS AND ANALYSIS 

OF THE RESULTS 
 

According to the twenty-four weighting schemes described in the previous chapter, we 

will next test these weighting schemes on some synthetic datasets. Next we will try to 

determine which scheme gives the best result, and that scheme will lead to the final 

algorithm. 

 

6.1 Data Preparation 

Since there are not so many real binary datasets available in practice, we need to generate 

some synthetic datasets. Consequently, we want to make these datasets as random as 

possible. The following are the steps that are taken to prepare unbiased random datasets. 

 

For the first step we use a Random Number Generator (RNG) developed by (Devilly, 

2004) to generate random decimal numbers. When n is given, this generator can provide 

us with a certain amount, say m, 1 ≤ m ≤ 2
n
, of decimal numbers within the range [0, 2

n
 – 

1]. Notice that these decimal numbers must not have duplicates. In this thesis we will 

generate 10 such datasets, five of them with n = 10, and the other five of them with n = 

15. For the datasets with n = 10, we will generate m = 500 decimal numbers. For the 

datasets with n = 15, we will generate m = 8,000 decimal numbers. Figure 6.1 shows 

Decimal Dataset 1 with n = 10, and m = 500, i.e., 500 decimal numbers within the range 

[0, 1,023]. 

 
Figure 6.1 Data Preparation Step 1: Decimal Dataset 1. 
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For the second step we will generate 10 random Boolean functions in the conjunctive 

normal form (CNF), one for each dataset. We will make sure these Boolean functions 

vary on the number of clauses, and length of the longest/shortest clauses. We will also 

make sure that these Boolean functions have used up all the attributes that are available. 

That is, for a dataset with n = 10, we do not use a function like the following, 

)()( 4321 xxxxf   

where only 4 out of 10 attributes are used. Instead, we want to use all attributes from x1 to 

x10, for instance, a function such as this one: 

)()( 10987654321 xxxxxxxxxxf   

The situation of irrelevant attributes does happen sometimes in practice. However, we 

will not discuss that situation in the scope of this thesis. 

 

In particular, the Boolean function we will use for the first dataset is, 

)()(

)()()(

1098649753

10632107431985211

xxxxxxxxx

xxxxxxxxxxxxxxf




 

 

For the third step we will use the decimal datasets generated in the first step and their 

corresponding Boolean functions generated in the second step to create datasets of 

classified binary examples. Next we will take Decimal Dataset 1 and Boolean function f1, 

for instance, to do the following: 

o Take the first decimal number in Decimal Dataset 1, which is 635 (see Figure 6.1), 

and convert it to an n-digit binary number. After the conversion, we get the binary 

number 1001111011. Note, for some small decimal numbers which do not need n-

digit-long binary expressions, we will add 0s to the left, so that every binary 

number has exactly n digits. 

o For each binary number, assume the leftmost digit is the value of attribute x1, the 

second leftmost digit is the value of attribute x2, and so on. Then these binary 

numbers can be seen as binary examples of dimension n. For instance, the binary 

number 1001111011 becomes binary example <1001111011>, with attributes x1 = 

1, x2 = 0, x3 = 0, …, x10 = 1. 

o Feed the values of attributes to the corresponding Boolean function, and get the 

classification of each binary example. For instance, feeding <1001111011> to f1 

will generate the classification value "0". To distinguish the classification value 

from the values of the binary attributes, we will put classification value "1" as 

"yes", and "0" as "no". 

o Take the next decimal number and repeat this process. 

 

The binary Dataset 1 in Figure 6.2 was derived from the Decimal Dataset 1 and Boolean 

function f1.  
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Figure 6.2 Data Preparation Step 3: Binary Dataset 1. 

 

Note, as shown in Figure 6.2, our binary datasets are written in Weka ARFF file format, 

so these dataset files can later be used on Weka. The ARFF format has two sections. In 

the first section is the Header information, and in the second is the Data information 

(Witten, 2005). The Header section of the ARFF file contains the name of the relation, a 

list of the attributes, and their types. The Data section has all the examples and 

classifications that we have determined in the third step. 

 

In the fourth step we separate each dataset into two sets. We use the first 80% examples 

to be training data T1 and the rest 20% examples to be testing data T2. To be specific, for 

the datasets with m = 500, the first 400 examples form the training data, and the rest 100 

examples form the testing data. For the other five datasets with m = 8,000, take the first 

6,400 examples form the training data and the rest 1,600 examples form the testing data. 

Figures 6.3.1 and 6.3.2 show the Training Dataset 1 and the Testing Dataset 1, 

respectively, after splitting Binary Dataset 1. 

 

With the above four steps, we get 10 pairs of training datasets and testing datasets. Now 

we can start with our journey on algorithm developing. 
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Figure 6.3-1 Data Preparation Step 4: Training Dataset 1. 

 
Figure 6.3-2 Data Preparation Step 4: Testing Dataset 1. 
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6.2 Test Results 

Since we need to compare with other existing classifiers later, and not all classifiers have 

the ability to adjust to the change of misclassification costs, we will assume the 

misclassification costs take the same value, i.e., (c1, c0) = (0.5, 0.5). 

 

Dataset 1: 

We have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 391 ; m1

-
 = 109; m2 = 100; m2

+
 = 78; m2

-
 = 23. 

 

)()(

)()()(

1098649753

10632107431985211

xxxxxxxxx

xxxxxxxxxxxxxxf




 

 

Table 6.1-1 Test Results of Weighting Schemes on Dataset 1. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 77 15 92 1 7 8 

B 76 15 91 2 7 9 

C 78 4 82 0 18 18 

D 77 7 84 1 15 16 

E 77 13 90 1 9 10 

F 78 14 92 0 8 8 

G 78 1 79 0 21 21 

H 78 9 87 0 13 13 

I 78 8 86 0 14 14 

J 65 14 79 13 8 21 

K 78 0 78 0 22 22 

L 67 15 82 11 7 18 

M 77 15 92 1 7 8 

N 74 16 90 4 6 10 

O 78 10 88 0 12 12 

P 78 14 92 0 8 8 

Q 73 14 87 5 8 13 

R 72 14 86 6 8 14 

S 77 8 85 1 14 15 

T 76 11 87 2 11 13 

U 78 12 90 0 10 10 

V 75 7 82 3 15 18 

W 78 6 84 0 16 16 

X 75 10 85 3 12 15 

 

In the above table, 

o "Type" -- is the different types of weighting schemes; 
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o "CorrectPos" -- is the number of correctly classified positive examples (meaning 

the actual class is positive and the predicted class is also positive); 

o "CorrectNeg" -- is the number of correctly classified negative examples (meaning 

the actual class is negative and the predicted class is also negative); 

o "Correct" -- is the number of all correctly classified examples (meaning the actual 

class and the predicted class are consistent); 

o "WrongPos" -- is the number of misclassified positive examples (meaning the 

actual class is positive but the predicted class is negative); 

o "WrongNeg" -- is the number of misclassified negative examples (meaning the 

actual class is negative but the predicted class is positive); 

o "Wrong" -- is the number of all misclassified examples (meaning the actual class 

and the predicted class are not consistent). 

 

Clearly, in the previous table, the following equations exist: 

"CorrectPos" + "CorrectNeg" = "Correct"…….………….(1) 

"WrongPos" + "WrongNeg" = "Wrong"………………….(2) 

"CorrectPos" + "WrongPos" = m2
+
…………………….….(3) 

"CorrectNeg" + "WrongNeg" = m2
-
…...……………….….(4) 

    where m2
+
 is the number of the actual positive examples in the testing data; 

   m2
-
 is the number of the actual negative examples in the testing data. 

 

From Table 6.1-1, we can rank these weighting schemes according to the increasing order 

of the number of misclassified examples. 

Table 6.1-2 Ranks of Weighting Schemes on Dataset 1. 

Scheme Wrong Rank Scheme Wrong Rank Scheme Wrong Rank 

A 8 1 I 14 6 Q 13 5 

B 9 2 J 21 10 R 14 6 

C 18 9 K 22 11 S 15 7 

D 16 8 L 18 9 T 13 5 

E 10 3 M 8 1 U 10 3 

F 8 1 N 10 3 V 18 9 

G 21 10 O 12 4 W 16 8 

H 13 5 P 8 1 X 15 7 

 

From Table 6.1-2, we can see that, for Dataset 1, some weighting schemes perform better, 

while some do not do that well. Schemes A, F, M, and P perform the best on Dataset 1. 

They all correctly classified 92 examples and misclassified 8 examples. Schemes B, E, N, 

U misclassified 9 or 10 examples. These are acceptable results as well. At the same time, 

schemes C, D, G, V, and W rank at the bottom. They might not be the candidates of our 

final algorithm. 
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However, performing the best on one dataset does not guarantee a scheme is the optimal 

one. On the other hand, even the best scheme might not perform the best on all datasets. 

Therefore we would like to test these 24 weighting schemes on the rest 9 datasets, so we 

can get the ranks of the schemes on each datasets. 

 

Dataset 2: 

We have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 325; m1

-
 = 175; m2 = 100; m2

+
 = 60; m2

-
 = 40. 
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Table 6.2-1 Test Results of Weighting Schemes on Dataset 2. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 57 32 89 3 8 11 

B 50 31 81 10 9 19 

C 59 13 72 1 27 28 

D 58 21 79 2 19 21 

E 57 28 85 3 12 15 

F 58 30 88 2 10 12 

G 59 11 70 1 29 30 

H 59 26 85 1 14 15 

I 49 21 70 11 19 30 

J 35 29 64 25 11 36 

K 59 4 63 1 36 37 

L 39 29 68 21 11 32 

M 58 33 91 2 7 9 

N 52 32 84 8 8 16 

O 59 26 85 1 14 15 

P 59 26 85 1 14 15 

Q 44 29 73 16 11 27 

R 45 31 76 15 9 24 

S 58 21 79 2 19 21 

T 56 26 82 4 14 18 

U 57 28 85 3 12 15 

V 54 18 72 6 22 28 

W 59 21 80 1 19 20 

X 56 24 80 4 16 20 

 

 

 



49 
 

Table 6.2-2 Ranks of Weighting Schemes on Dataset 2. 

Scheme Wrong Rank Scheme Wrong Rank Scheme Wrong Rank 

A 11 2 I 30 13 Q 27 11 

B 19 7 J 36 15 R 24 10 

C 28 12 K 37 16 S 21 9 

D 21 9 L 32 14 T 18 6 

E 15 4 M 9 1 U 15 4 

F 12 3 N 16 5 V 28 12 

G 30 13 O 15 4 W 20 8 

H 15 4 P 15 4 X 20 8 

 

Dataset 3: 

We have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 228; m1

-
 = 272; m2 = 100; m2

+
 = 43; m2

-
 = 57. 
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Table 6.3-1 Test Results of Weighting Schemes on Dataset 3. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 40 56 96 3 1 4 

B 38 53 91 5 4 9 

C 37 53 90 6 4 10 

D 35 50 85 8 7 15 

E 39 53 92 4 4 8 

F 40 53 93 3 4 7 

G 36 54 90 7 3 10 

H 38 55 93 5 2 7 

I 33 52 85 10 5 15 

J 33 50 83 10 7 17 

K 31 52 83 12 5 17 

L 36 52 88 7 5 12 

M 40 56 96 3 1 4 

N 39 53 92 4 4 8 

O 40 55 95 3 2 5 

P 38 52 90 5 5 10 

Q 38 52 90 5 5 10 

R 38 52 90 5 5 10 

S 34 50 84 9 7 16 

T 36 52 88 7 5 12 

U 38 53 91 5 4 9 

(table con'd) 
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V 31 49 80 12 8 20 

W 36 53 89 7 4 11 

X 34 52 86 9 5 14 

 

Table 6.3-2 Ranks of Weighting Schemes on Dataset 3. 

Scheme Wrong Rank Scheme Wrong Rank Scheme Wrong Rank 

A 4 1 I 15 10 Q 10 6 

B 9 5 J 17 12 R 10 6 

C 10 6 K 17 12 S 16 11 

D 15 10 L 12 8 T 12 8 

E 8 4 M 4 1 U 9 5 

F 7 3 N 8 4 V 20 13 

G 10 6 O 5 2 W 11 7 

H 7 3 P 10 6 X 14 9 

 

Dataset 4: 

We have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 206; m1

-
 = 294; m2 = 100; m2

+
 = 36; m2

-
 = 64. 
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Table 6.4-1 Test Results of Weighting Schemes on Dataset 4. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 35 64 99 1 0 1 

B 35 61 96 1 3 4 

C 35 64 99 1 0 1 

D 32 61 93 4 3 7 

E 33 64 97 3 0 3 

F 35 64 99 1 0 1 

G 32 64 96 4 0 4 

H 35 64 99 1 0 1 

I 29 61 90 7 3 10 

J 29 51 80 7 13 20 

K 26 63 89 10 1 11 

L 32 54 86 4 10 14 

M 36 64 100 0 0 0 

N 35 62 97 1 2 3 

O 36 64 100 0 0 0 

(table con'd) 
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P 36 62 98 0 2 2 

Q 33 60 93 3 4 7 

R 34 61 95 2 3 5 

S 31 61 92 5 3 8 

T 35 62 97 1 2 3 

U 34 63 97 2 1 3 

V 29 57 86 7 7 14 

W 34 63 97 2 1 3 

X 34 61 95 2 3 5 

 

Table 6.4-2 Ranks of Weighting Schemes on Dataset 4. 

Scheme Wrong Rank Scheme Wrong Rank Scheme Wrong Rank 

A 1 2 I 10 9 Q 7 7 

B 4 5 J 20 12 R 5 6 

C 1 2 K 11 10 S 8 8 

D 7 7 L 14 11 T 3 4 

E 3 4 M 0 1 U 3 4 

F 1 2 N 3 4 V 14 11 

G 4 5 O 0 1 W 3 4 

H 1 2 P 2 3 X 5 6 

 

Dataset 5: 

We have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 300; m1

-
 = 200; m2 = 100; m2

+
 = 70; m2

-
 = 30. 
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Table 6.5-1 Test Results of Weighting Schemes on Dataset 5. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 65 27 92 5 3 8 

B 66 24 90 4 6 10 

C 65 24 89 5 6 11 

D 63 25 88 7 5 12 

E 67 24 91 3 6 9 

F 67 25 92 3 5 8 

G 66 21 87 4 9 13 

H 66 24 90 4 6 10 

(table con'd) 
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I 61 16 77 9 14 23 

J 57 16 73 13 14 27 

K 69 13 82 1 17 18 

L 59 19 78 11 11 22 

M 65 27 92 5 3 8 

N 67 25 92 3 5 8 

O 66 27 93 4 3 7 

P 65 28 93 5 2 7 

Q 64 23 87 6 7 13 

R 65 22 87 5 8 13 

S 62 22 84 8 8 16 

T 64 24 88 6 6 12 

U 66 21 87 4 9 13 

V 63 18 81 7 12 19 

W 67 20 87 3 10 13 

X 64 22 86 6 8 14 

 

Table 6.5-2 Ranks of Weighting Schemes on Dataset 5. 

Scheme Wrong Rank Scheme Wrong Rank Scheme Wrong Rank 

A 8 2 I 23 13 Q 13 7 

B 10 4 J 27 14 R 13 7 

C 11 5 K 18 10 S 16 9 

D 12 6 L 22 12 T 12 6 

E 9 3 M 8 2 U 13 7 

F 8 2 N 8 2 V 19 11 

G 13 7 O 7 1 W 13 7 

H 10 4 P 7 1 X 14 8 

 

Dataset 6: 

We have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 4,763; m1

-
 = 3,237; m2 = 1,600; m2

+
 = 999; m2

-
 = 

601. 
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Table 6.6-1 Test Results of Weighting Schemes on Dataset 6. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 967 546 1513 32 55 87 

B 966 480 1446 33 121 154 

C 998 239 1237 1 362 363 

D 978 406 1384 21 195 216 

E 977 497 1474 22 104 126 

F 977 541 1518 22 60 82 

G 998 172 1170 1 429 430 

H 979 515 1494 20 86 106 

I 965 226 1191 34 375 409 

J 942 264 1206 57 337 394 

K 994 31 1025 5 570 575 

L 950 380 1330 49 221 270 

M 976 556 1532 23 45 68 

N 972 495 1467 27 106 133 

O 979 539 1518 20 62 82 

P 981 552 1533 18 49 67 

Q 965 436 1401 34 165 199 

R 972 468 1440 27 133 160 

S 980 362 1342 19 239 258 

T 982 535 1517 17 66 83 

U 972 434 1406 27 167 194 

V 980 229 1209 19 372 391 

W 975 397 1372 24 204 228 

X 978 444 1422 21 157 178 

 

Table 6.6-2 Ranks of Weighting Schemes on Dataset 6. 

Type Wrong Rank Type Wrong Rank Type Wrong Rank 

A 87 5 I 409 21 Q 199 13 

B 154 9 J 394 20 R 160 10 

C 363 18 K 575 23 S 258 16 

D 216 14 L 270 17 T 83 4 

E 126 7 M 68 2 U 194 12 

F 82 3 N 133 8 V 391 19 

G 430 22 O 82 3 W 228 15 

H 106 6 P 67 1 X 178 11 

 

Dataset 7: 

We have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 4,325; m1

-
 = 3,675; m2 = 1,600; m1

+
 = 872; m2

-
 = 

728; 
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Table 6.7-1 Test Results of Weighting Schemes on Dataset 7. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 844 682 1526 28 46 74 

B 840 646 1486 32 82 114 

C 864 603 1467 8 125 133 

D 808 603 1411 64 125 189 

E 845 659 1504 27 69 96 

F 846 683 1529 26 45 71 

G 868 567 1435 4 161 165 

H 855 679 1534 17 49 66 

I 802 449 1251 70 279 349 

J 791 447 1238 81 281 362 

K 850 372 1222 22 356 378 

L 800 559 1359 72 169 241 

M 849 693 1542 23 35 58 

N 840 649 1489 32 79 111 

O 856 692 1548 16 36 52 

P 851 694 1545 21 34 55 

Q 823 606 1429 49 122 171 

R 835 630 1465 37 98 135 

S 814 593 1407 58 135 193 

T 851 677 1528 21 51 72 

U 818 622 1440 54 106 160 

V 789 519 1308 83 209 292 

W 831 614 1445 41 114 155 

X 823 623 1446 49 105 154 

 

Table 6.7-2 Ranks of Weighting Schemes on Dataset 7. 

Scheme Wrong Rank Scheme Wrong Rank Scheme Wrong Rank 

A 74 7 I 349 22 Q 171 17 

B 114 10 J 362 23 R 135 12 

C 133 11 K 378 24 S 193 19 

D 189 18 L 241 20 T 72 6 

E 96 8 M 58 3 U 160 15 

(table con'd) 
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F 71 5 N 111 9 V 292 21 

G 165 16 O 52 1 W 155 14 

H 66 4 P 55 2 X 154 13 

 

Dataset 8: 

We have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 3,768; m1

-
 = 4,232; m2 = 1,600; m2

+
 = 761; m2

-
 = 

839; 
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Table 6.8-1 Test Results of Weighting Schemes on Dataset 8. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 698 807 1505 63 32 95 

B 700 740 1440 61 99 160 

C 446 815 1261 315 24 339 

D 426 757 1183 335 82 417 

E 696 781 1477 65 58 123 

F 705 797 1502 56 42 98 

G 454 809 1263 307 30 337 

H 696 810 1506 65 29 94 

I 647 584 1231 114 255 369 

J 658 506 1164 103 333 436 

K 434 754 1188 327 85 412 

L 679 627 1306 82 212 294 

M 704 806 1510 57 33 90 

N 707 738 1445 54 101 155 

O 699 817 1516 62 22 84 

P 689 816 1505 72 23 95 

Q 694 688 1382 67 151 218 

R 708 718 1426 53 121 174 

S 428 738 1166 333 101 434 

T 688 811 1499 73 28 101 

U 680 750 1430 81 89 170 

V 410 698 1108 351 141 492 

W 664 779 1443 97 60 157 

X 659 758 1417 102 81 183 
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Table 6.8-2 Ranks of Weighting Schemes on Dataset 8. 

Scheme Wrong Rank Scheme Wrong Rank Scheme Wrong Rank 

A 95 4 I 369 18 Q 218 14 

B 160 10 J 436 22 R 174 12 

C 339 17 K 412 19 S 434 21 

D 417 20 L 294 15 T 101 6 

E 123 7 M 90 2 U 170 11 

F 98 5 N 155 8 V 492 23 

G 337 16 O 84 1 W 157 9 

H 94 3 P 95 4 X 183 13 

 

Dataset 9: 

We have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 4,611; m1

-
 = 3,389; m2 = 1,600; m1

+
 = 895; m2

-
 = 

705; 
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Table 6.9-1 Test Results of Weighting Schemes on Dataset 9. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 861 613 1474 34 92 126 

B 865 514 1379 30 191 221 

C 894 233 1127 1 472 473 

D 849 387 1236 46 318 364 

E 874 531 1405 21 174 195 

F 874 606 1480 21 99 120 

G 894 139 1033 1 566 567 

H 885 567 1452 10 138 148 

I 876 165 1041 19 540 559 

J 853 201 1054 42 504 546 

K 894 20 914 1 685 686 

L 855 349 1204 40 356 396 

M 866 630 1496 29 75 104 

N 872 521 1393 23 184 207 

O 880 600 1480 15 105 120 

(table con'd) 
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P 871 615 1486 24 90 114 

Q 865 420 1285 30 285 315 

R 873 486 1359 22 219 241 

S 857 322 1179 38 383 421 

T 875 591 1466 20 114 134 

U 873 464 1337 22 241 263 

V 865 184 1049 30 521 551 

W 881 415 1296 14 290 304 

X 871 468 1339 24 237 261 

 

Table 6.9-2 Ranks of Weighting Schemes on Dataset 9. 

Scheme Wrong Rank Scheme Wrong Rank Scheme Wrong Rank 

A 126 4 I 559 21 Q 315 14 

B 221 9 J 546 19 R 241 10 

C 473 18 K 686 23 S 421 17 

D 364 15 L 396 16 T 134 5 

E 195 7 M 104 1 U 263 12 

F 120 3 N 207 8 V 551 20 

G 567 22 O 120 3 W 304 13 

H 148 6 P 114 2 X 261 11 

 

Dataset 10: 

We have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 4,288; m1

-
 = 3,712; m2 = 1,600; m2

+
 = 852; m2

-
 = 

748; 
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Table 6.10-1 Test Results of Weighting Schemes on Dataset 10. 

Scheme CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

A 822 660 1482 30 88 118 

B 820 585 1405 32 163 195 

C 842 580 1422 10 168 178 

D 758 608 1366 94 140 234 

(table con'd) 
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E 826 613 1439 26 135 161 

F 828 653 1481 24 95 119 

G 843 529 1372 9 219 228 

H 834 648 1482 18 100 118 

I 804 358 1162 48 390 438 

J 793 363 1156 59 385 444 

K 837 300 1137 15 448 463 

L 800 474 1274 52 274 326 

M 826 670 1496 26 78 104 

N 826 600 1426 26 148 174 

O 830 667 1497 22 81 103 

P 824 678 1502 28 70 98 

Q 816 529 1345 36 219 255 

R 825 571 1396 27 177 204 

S 761 589 1350 91 159 250 

T 827 652 1479 25 96 121 

U 815 561 1376 37 187 224 

V 749 460 1209 103 288 391 

W 821 554 1375 31 194 225 

X 810 572 1382 42 176 218 

 

Table 6.10-2 Ranks of Weighting Schemes on Dataset 10. 

Scheme Wrong Rank Scheme Wrong Rank Scheme Wrong Rank 

A 118 4 I 438 21 Q 255 18 

B 195 10 J 444 22 R 204 11 

C 178 9 K 463 23 S 250 17 

D 234 16 L 326 19 T 121 6 

E 161 7 M 104 3 U 224 13 

F 119 5 N 174 8 V 391 20 

G 228 15 O 103 2 W 225 14 

H 118 4 P 98 1 X 218 12 

 

6.3 Analysis of the Test Results 

Now we have the ranks of each weighting schemes on 10 datasets separately, we want to 

put them together and see which scheme performs the best over all. What we do is we 

add up the ranks of the 10 datasets for each weighting schemes, then we can have the 

total rank according to the increasing order of the sum of the ranks. 

Table 6.11 Total Rank of Weighting Schemes on Datasets 1 to 10. 

Type D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Sum Total Rank 

A 1 2 1 2 2 5 7 4 4 4 32 4 

B 2 7 5 5 4 9 10 10 9 10 71 9 

(table con'd) 
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C 9 12 6 2 5 18 11 17 18 9 107 14 

D 8 9 10 7 6 14 18 20 15 16 123 16 

E 3 4 4 4 3 7 8 7 7 7 54 6 

F 1 3 3 2 2 3 5 5 3 5 32 4 

G 10 13 6 5 7 22 16 16 22 15 132 17 

H 5 4 3 2 4 6 4 3 6 4 41 5 

I 6 13 10 9 13 21 22 18 21 21 154 20 

J 10 15 12 12 14 20 23 22 19 22 169 22 

K 11 16 12 10 10 23 24 19 23 23 171 23 

L 9 14 8 11 12 17 20 15 16 19 141 19 

M 1 1 1 1 2 2 3 2 1 3 17 1 

N 3 5 4 4 2 8 9 8 8 8 59 8 

O 4 4 2 1 1 3 1 1 3 2 22 2 

P 1 4 6 3 1 1 2 4 2 1 25 3 

Q 5 11 6 7 7 13 17 14 14 18 112 15 

R 6 10 6 6 7 10 12 12 10 11 90 11 

S 7 9 11 8 9 16 19 21 17 17 134 18 

T 5 6 8 4 6 4 6 6 5 6 56 7 

U 3 4 5 4 7 12 15 11 12 13 86 10 

V 9 12 13 11 11 19 21 23 20 20 159 21 

W 8 8 7 4 7 15 14 9 13 14 99 13 

X 7 8 9 6 8 11 13 13 11 12 98 12 

 

From the above table, we can see that, among the 24 weighting schemes, the M-th 

scheme performed the best. It ranks no higher than the third place on all datasets. 

Therefore the M-th scheme will become our final algorithm. From now on we will call it 

the M* algorithm. 

 

For an easy reference, we will present the table of weighting schemes here as follows: 

Table 6.12 Twenty-Four Weighting Schemes. 

Algorithm Direct Relation Indirect Relation Examples on the Same Level Factor 

A linear 0 0 (1, 1) 

B linear 0 0 (F1, F0) 

C linear 0 Linear (1, 1) 

D linear 0 Linear (F1, F0) 

E linear 1 0 (1, 1) 

F linear 1 0 (F1, F0) 

G linear 1 Linear (1, 1) 

H linear 1 Linear (F1, F0) 

I linear linear 0 (1, 1) 

J linear linear 0 (F1, F0) 

K linear linear Linear (1, 1) 

(table con'd) 
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L linear linear Linear (F1, F0) 

M exponential 0 0 (1, 1) 

N exponential 0 0 (F1, F0) 

O exponential 0 Exponential (1, 1) 

P exponential 0 Exponential (F1, F0) 

Q exponential linear 0 (1, 1) 

R exponential linear 0 (F1, F0) 

S exponential linear Exponential (1, 1) 

T exponential linear Exponential (F1, F0) 

U exponential exponential 0 (1, 1) 

V exponential exponential 0 (F1, F0) 

W exponential exponential Exponential (1, 1) 

X exponential exponential Exponential (F1, F0) 

 

As it can be seen from this table, the M* algorithm is the one where examples in direct 

relation with the target example have weights that change exponentially (refer to Figures 

5.5, 5.7-1, and 5.7-2), and all the other examples have weights equal to 0. Moreover, this 

algorithm does not need to multiply the final voting scores by any factor to adjust the 

positive and negative votes. 
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CHAPTER 7. COMPUTATION EXPRESSION 

 

7.1 Pseudocode 

Input: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Output: 

 

 

 

 

 

Algorithm: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1) A pair of probabilities (p1, p0) for every example zj in the testing dataset T2. 

 

2) Predicted class Aj,n+1 for every new example zj in the testing dataset T2. 

 

1) The number of attributes n. 

 

2) Training data T1: a set of examples xi = (Ai,1, Ai,2, ..., Ai,n, Ai,n+1), where 

i = 1, 2, 3, ...; 

Ai,1, Ai,2, ..., Ai,n are binary attributes, take value 1 or 0; 

Ai,n+1 is the classification attribute, take value 1 or 0. 

 

3) Testing data T2: a set of examples zj = (Aj,1, Aj,2, ..., Aj,n), where 

 j = 1, 2, 3, …; 

 Aj,1, Aj,2, ..., Aj,n are binary attributes, take value 1 or 0; 

 

4) A pair of misclassification costs (c1, c0), where c1 + c0 = 1, and c1, c0 ≥ 0 

For every example zj in testing data T2, 

 

1. Calculate PositiveVote and NegativeVote for zj 

 
Initialize PositiveVote = 0, NegativeVote = 0, 

For every example xi in training data T1, 

{ 

 If example xi has direct relation with zj 

 { 

L = level of zj; 

E = max {L, n – L }; 

d = distance of xi to zj; 

Weight = 2
E-d

; 

 } 
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2. Calculate the pair of probabilities (p1, p0) for zj 

 

 

 

 

 

 

 

 

 

3. Calculate the predicted class Aj,n+1 for zj 

 

 

 

If x is positive, 

 { 

PositiveVote = PositiveVote + Weight; 

 } 

 else, 

 { 

NegativeVote = NegativeVote + Weight; 

 } 

} 

 

If PositiveVote + Negative ≠ 0, 

{ 

 𝑝1 =
𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒 +𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒
; 

 𝑝0 =
𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒

𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑉𝑜𝑡𝑒 +𝑁𝑒𝑔𝑎𝑡 𝑖𝑣𝑒𝑉𝑜𝑡𝑒
; 

} 

else, 

{ 

 p1 = p0 = 0.5; 

} 

 

Let s1 = p0 × c1; s0 = p1 × c0; 

If s1 < s0, 

{ 

 Aj,n+1 = 1; 

} 

else if s1 > s0, 

{ 

 Aj,n+1 = 0; 

} 

else, 

{ 

 Aj,n+1 = rand(); // rand() randomly generates 0 or 1. 

} 
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7.2 Computational Complexity 

For every target example zj, we have to take the following three steps: 

1. Calculate PositiveVote and NegativeVote for zj; 

2. Calculate the pair of probabilities (p1, p0) for zj; 

3. Calculate the predicted class Aj,n+1 for zj. 

The second and third steps cost constant execution time, i.e., O(1).The first step needs to 

go through all the classified examples and find out the ones that are in direct relations 

with the target example zj. 

 

To find out all the examples in direct relations with zj, in the most straightforward and 

brute force way, we can do the following: For every xi in T1 which is in an ordered 

relation with zj, go through the rest of the examples besides xi in T1, if there is no other 

example y such that, y is in the opposite class of xi, and xi ≺ y ≺ zj or xi ≻ y ≻ zj (i.e., y is 

in the path between xi and zj), then xi is in a direct relation with zj. We stop search as soon 

as we find one cutting example. Note that the number of xi, examples in ordered relations 

with zj, cannot exceed m1. In fact, most cases this number will be much smaller than m1. 

The number of y, examples from the opposite class of xi and in ordered relations with zj, 

is even smaller than the previous number. It has an upper bound m1 – 1. Therefore the 

upper bound of the execution time will be O(m1·( m1 – 1)) = O (m1
2
). 

 

If we could achieve a small improvement to the above algorithm, before we start to 

process the training data, we can separate it into four groups. The first group K1 is the 

positive examples that are greater than zj; the second group K2 is the positive examples 

that are less than zj; the third group K3 is the negative examples that are greater than zj; 

the fourth group K4 is the negative examples that are less than zj. Suppose the number of 

examples of the four groups are k1, k2, k3, and k4, respectively. Then to check if any 

example in group K1 is in a direct relation with zj, we only need to go through examples 

in K3. This is because only a negative example that is greater than zj could serve as a 

cutting example for a positive example that is greater than zj. Similarly, to check if any 

example in group K2 is in a direct relation with zj, we only need to go through examples 

in K4; to check if any example in group K3 is in a direct relation with zj, we only need to 

go through examples in K1; to check if any example in group K4 is in a direct relation 

with zj, we only need to go through examples in K2. We also stop search as soon as we 

find one cutting example. Therefore, in this case, the upper bound of the execution time 

will be max{O(k1 · (k3 – 1)), O(k2 · (k4 – 1)), O(k3 · (k1 – 1)), O(k4 · (k2 – 1))} = 

max{O(k1 · k3), O(k2 · k4)}. 

 

Furthermore, if we could make some change to the way we store the data, we could make 

the algorithm more efficient. Suppose we store the training data according to their levels. 

Then for each example xi which is in an ordered relation, we only need to check the 
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examples which are from the opposite class of xi and at levels between xi and zj. The 

reason is only examples at levels between xi and zj could serve as a cutting example. By 

doing this, we will be able to reduce the execution time even more. 

 

Nevertheless, the upper bound for finding all the examples that are in direct relations with 

zj will have the execution time at most quadratic to the number of training data, i.e., 

O(m1
2
). In most cases, it does not cost nearly as much time. 

 

Now if we will go through all the examples in the testing data, the execution time will be 

no more than O(m1
2
 · m2), where m1 is the number of examples in training data, and m2 is 

the number of examples in testing data. 
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CHAPTER 8. AN EXTENSIVE ILLUSTRATIVE PROBLEM 

 

Now we will apply the M* algorithm on the illustrative problem. Please recall that we 

have the following binary system with dimension n = 6. The system has 2
6
 = 64 valid 

examples, and we are provided with the 32 classified examples as shown in the diagram 

below. Its hidden Boolean function is 

)()()( 65443231 xxxxxxxxf 

 

 

 

Figure 8.1 Poset Diagram of the Illustration Problem. 

 

Our demo program returns a result table as follows: 

 

Table 8.1 Result of the M* Algorithm on the Illustrative Problem. 

# z P-Vote N-Vote Actual Predicted Wrong Probability Distribution 

1 111110 48.000 28.000 1 1  (0.632, 0.368) 

2 111011 32.000 64.000 0 1  (0.333, 0.667) 

3 011111 40.000 54.000 0 0  (0.426, 0.574) 

4 111100 20.000 14.000 1 1  (0.588, 0.412) 

5 110110 34.000 0.000 1 1  (1.000, 0.000) 

6 011110 4.000 28.000 0 0  (0.125, 0.875) 

7 110101 47.000 0.000 1 1  (1.000, 0.000) 

8 011101 12.000 26.000 0 0  (0.316, 0.684) 

9 101011 28.000 16.000 1 1  (0.636, 0.364) 

10 100111 52.000 0.000 1 1  (1.000, 0.000) 

11 001111 24.000 26.000 0 0  (0.480, 0.520) 

12 111000 0.000 14.000 0 0  (0.000, 1.000) 

13 101100 13.000 2.000 1 1  (0.867, 0.133) 

14 110010 8.000 10.000 0 1  (0.444, 0.556) 

15 011010 0.000 20.000 0 0  (0.000, 1.000) 

16 010110 13.000 2.000 1 1  (0.867, 0.133) 

(table con'd) 
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17 110001 13.000 4.000 1 1  (0.765, 0.235) 

18 011001 0.000 18.000 0 0  (0.000, 1.000) 

19 010101 16.000 0.000 1 1  (1.000, 0.000) 

20 100011 17.000 4.000 1 1  (0.810, 0.190) 

21 001011 6.000 14.000 0 0  (0.300, 0.700) 

22 000101 26.000 8.000 1 1  (0.765, 0.235) 

23 010001 30.000 4.000 1 1  (0.882, 0.118) 

24 000110 22.000 16.000 1 1  (0.579, 0.421) 

25 010010 26.000 12.000 0 1 + (0.684, 0.316) 

26 001100 0.000 32.000 0 0  (0.000, 1.000) 

27 100100 43.000 0.000 1 1  (1.000, 0.000) 

28 101000 12.000 20.000 1 0 + (0.375, 0.625) 

29 110000 26.000 8.000 1 1  (0.765, 0.235) 

30 100000 60.000 28.000 1 1  (0.682, 0.318) 

31 000100 70.000 16.000 1 1  (0.814, 0.186) 

32 000001 82.000 24.000 1 1  (0.774, 0.226) 

 

On 32 testing examples, the M* algorithm classifies 30 of them correctly, and 2 of them 

wrongly. To see how we get the above results, we will next examine the unknown 

example one by one.  

 

For the 1st unknown example <111110>: 

 

 

Figure 8.2 Examples in Ordered Relations with <111110>. 

Again,  is the unknown example z that we want to classify. The blue frame 

means its actual classification should be positive. All the rest examples are the examples 

that are in monotonic relation with z. At this time, we only need to consider the blue 

colored examples and the red colored examples, which means their classification are 

known to us. 

: "Direct relation" type, weight 2
4
 = 16; 
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: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
4
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 16 + 16 + 8 + 8 = 48; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 16 + 8 = 24; 

 

Therefore, probability p1 = 48 / (48 + 24) = 0.632, and p0 = 8 / (64 + 8) = 0.368. 

Expected misclassification cost s1 = p0 × c1 = 0.184, and s0 = p1 × c0 = 0.316. 

Since the s1 is smaller, we will assign  to be positive, which is correct. 

 

Note that we only list one "cutting example" here, because as long as we know there 

exists one, the corresponding example will be decided to be in an indirect relation. 

 

For the 2nd unknown example <111011>: 

 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 
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Positive Vote = 16 + 16 = 32; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 16 + 16 + 16 + 8 + 4 = 60; 

 

 

Figure 8.3 Examples in Ordered Relations with <111011>. 

 

Therefore, probability p1 = 32 / (32 + 60) = 0.333, and p0 = 60 / (32 + 60) = 0.667. 

Expected misclassification cost s1 = p0 × c1 = 0.3335, and s0 = p1 × c0 = 0.1665. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 3rd unknown example <011111>: 

 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 
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: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 16 + 16 + 8 = 40; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 16 + 8 + 8 + 8 + 4 + 4 + 4 + 2 = 54; 

 

 
Figure 8.4 Examples in Ordered Relations with <011111>. 

 

Therefore, probability p1 = 40 / (40 + 54) = 0.426, and p0 = 54 / (40 + 54) = 0.574. 

Expected misclassification cost s1 = p0 × c1 = 0.287, and s0 = p1 × c0 = 0.213. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 4th unknown example <111100>: 

 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 
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: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 4 + 8 + 8 = 20; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

Negative Vote = 8 + 4 + 2 = 14; 

 

 
Figure 8.5 Examples in Ordered Relations with <111100>. 

 

Therefore, probability p1 = 20 / (20 + 14) = 0.588, and p0 = 14 / (20 + 14) = 0.412. 

Expected misclassification cost s1 = p0 × c1 = 0.206, and s0 = p1 × c0 = 0.294. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 5th unknown example <110110>: 

 

 

Figure 8.6 Examples in Ordered Relations with <110110>. 

: "Direct relation" type, weight 2
2
 = 4; 
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: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 4 + 8 + 8 + 8 +4 + 2 = 34; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 0; 

 

Therefore, probability p1 = 34 / (34 + 0) = 1.000, and p0 = 0 / (34 + 0) = 0.000. 

Expected misclassification cost s1 = p0 × c1 = 0.000, and s0 = p1 × c0 = 0.500. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 6th unknown example <011110>: 

 

 

Figure 8.7 Examples in Ordered Relations with <011110>. 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 



72 
 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
1
 = 2; 

Negative Vote = 8 + 8 + 4 + 4 + 2 + 2 = 28; 

Therefore, probability p1 = 4 / (4 + 28) = 0.125, and p0 = 28 / (4 + 28) = 0.875. 

Expected misclassification cost s1 = p0 × c1 = 0.4375, and s0 = p1 × c0 = 0.0625. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 7th unknown example <110101>: 

 

 

Figure 8.8 Examples in Ordered Relations with <110101>. 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
0
 = 1; 

Positive Vote = 4 + 8 + 8 + 8 + 8 + 4 + 4 + 2 + 1 = 47; 

Negative Vote = 0; 

 

Therefore, probability p1 = 47 / (47 + 0) = 1.000, and p0 = 0 / (47 + 0) = 0.000. 

Expected misclassification cost s1 = p0 × c1 = 0.000, and s0 = p1 × c0 = 0.500. 

Since s1 is smaller, we will assign  to be positive, which is correct. 
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For the 8th unknown example <011101>: 

 

 

Figure 8.9 Examples in Ordered Relations with <011101>. 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 4 + 8 = 12; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

Negative Vote = 8 + 8 + 4 + 4 + 2 = 26; 

 

Therefore, probability p1 = 12 / (12 + 26) = 0.316, and p0 = 12 / (12 + 26) = 0.684. 

Expected misclassification cost s1 = p0 × c1 = 0.342, and s0 = p1 × c0 = 0.158. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 9th unknown example <101011>: 

 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 
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: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 4 + 8 + 8 + 4 + 4 = 28; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 8 + 4 + 4 = 16; 

 

 

Figure 8.10 Examples in Ordered Relations with <101011>. 

 

Therefore, probability p1 = 28 / (28 + 16) = 0.636, and p0 = 16 / (28 + 16) = 0.364. 

Expected misclassification cost s1 = p0 × c1 = 0.182, and s0 = p1 × c0 = 0.318. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 10th unknown example <100111>: 

 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 
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: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 4 + 8 + 8 + 8 + 8 + 8 + 4 + 4 = 52; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 0; 

 

 

Figure 8.11 Examples in Ordered Relations with <100111>. 

 

Therefore, probability p1 = 52 / (52 + 0) = 1.000, and p0 = 0 / (52 + 0) = 0.000. 

Expected misclassification cost s1 = p0 × c1 = 0.000, and s0 = p1 × c0 = 0.500. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 11th unknown example <001111>: 

 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 4 + 8 + 8 + 4 = 24; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 
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: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 8 + 8 + 4 + 4 + 2 = 26; 

 

 
Figure 8.12 Examples in Ordered Relations with <001111>. 

 

Therefore, probability p1 = 24 / (24 + 26) = 0.480, and p0 = 26 / (24 + 26) = 0.520. 

Expected misclassification cost s1 = p0 × c1 = 0.26, and s0 = p1 × c0 = 0.24. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 12th unknown example <111000>: 

 

 

Figure 8.13 Examples in Ordered Relations with <111000>. 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 
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Positive Vote = 0; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

Negative Vote = 4 + 4 + 4 + 2 = 14; 

 

Therefore, probability p1 = 0 / (0 + 14) = 0.000, and p0 = 14 / (0 + 14) = 1.000. 

Expected misclassification cost s1 = p0 × c1 = 0.500, and s0 = p1 × c0 = 0.000. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 13th unknown example <101100>: 

 

 

Figure 8.14 Examples in Ordered Relations with <101100>. 

: "Direct relation" type, weight 2
0
 = 1; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 1 + 2 + 2 + 4 + 4 = 13; 

: "Direct relation" type, weight 2
1
 = 2; 

Negative Vote = 2; 

 

Therefore, probability p1 = 13 / (13 + 2) = 0.867, and p0 = 2 / (13 + 2) = 0.133. 

Expected misclassification cost s1 = p0 × c1 = 0.0665, and s0 = p1 × c0 = 0.4335. 

Since s1 is smaller, we will assign  to be positive, which is correct. 
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For the 14th unknown example <110010>: 

 

 
Figure 8.15 Examples in Ordered Relations with <110010>. 

 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 2 + 4 + 2 = 8; 

 : "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

Negative Vote = 4 + 4 + 2 = 10; 

 

Therefore, probability p1 = 8 / (8 + 10) = 0.444, and p0 = 10 / (8 + 10) = 0.556. 

Expected misclassification cost s1 = p0 × c1 = 0.278, and s0 = p1 × c0 = 0.222. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 15th unknown example <011010>: 

 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 0; 

 : "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 
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: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
1
 = 2; 

Negative Vote = 4 + 4 + 4 + 4 + 2 + 2 = 20; 

 

 

Figure 8.16 Examples in Ordered Relations with <011010>. 

 

Therefore, probability p1 = 0 / (0 + 20) = 0.000, and p0 = 20 / (0 + 20) = 1.000. 

Expected misclassification cost s1 = p0 × c1 = 0.500, and s0 = p1 × c0 = 0.000. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 16th unknown example <010110>: 

 

 

Figure 8.17 Examples in Ordered Relations with <010110>. 

: "Direct relation" type, weight 2
0
 = 1; 

: "Direct relation" type, weight 2
1
 = 2; 
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: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 1 + 2 + 4 + 4 + 2 = 13; 

: "Direct relation" type, weight 2
1
 = 2; 

Negative Vote = 2; 

 

Therefore, probability p1 = 13 / (13 + 2) = 0.867, and p0 = 2 / (13 + 2) = 0.133. 

Expected misclassification cost s1 = p0 × c1 = 0.0665, and s0 = p1 × c0 = 0.4335. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 17th unknown example <110001>: 

 

 

Figure 8.18 Examples in Ordered Relations with <110001>. 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
0
 = 1; 

Positive Vote = 2 + 4 + 4 + 2 + 1 = 13; 

: "Direct relation" type, weight 2
2
 = 4; 

Negative Vote = 4; 
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Therefore, probability p1 = 13 / (13 + 4) = 0.765, and p0 = 4 / (13 + 4) = 0.235. 

Expected misclassification cost s1 = p0 × c1 = 0.1175, and s0 = p1 × c0 = 0.3825. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 18th unknown example <011001>: 

 

 

Figure 8.19 Examples in Ordered Relations with <011001>. 

 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 0; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

Negative Vote = 4 + 4 + 4 + 4 + 2 = 18; 

 

Therefore, probability p1 = 0 / (0 + 18) = 0.000, and p0 = 18 / (0 + 18) = 1.000. 

Expected misclassification cost s1 = p0 × c1 = 0.500, and s0 = p1 × c0 = 0.000. 

Since s0 is smaller, we will assign  to be negative, which is correct. 
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For the 19th unknown example <010101>: 

 

 

Figure 8.20 Examples in Ordered Relations with <010101>. 

: "Direct relation" type, weight 2
0
 = 1; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 2; 

: "Direct relation" type, weight 2
2
 = 1; 

Positive Vote = 1+ 2 + 2 + 4 + 4 + 2 + 1 = 16; 

Negative Vote = 0; 

 

Therefore, probability p1 = 16 / (16 + 0) = 1.000, and p0 = 0 / (16 + 0) = 0.000. 

Expected misclassification cost s1 = p0 × c1 = 0.000, and s0 = p1 × c0 = 0.500. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 20th unknown example <100011>: 

 

: "Direct relation" type, weight 2
0
 = 1; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 
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Positive Vote = 1 + 2 + 2 + 4 + 4 + 4 = 17; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 4; 

 

 

Figure 8.21 Examples in Ordered Relations with <100011>. 

 

Therefore, probability p1 = 17 / (17 + 4) = 0.810, and p0 = 4 / (17 + 4) = 0.190. 

Expected misclassification cost s1 = p0 × c1 = 0.095, and s0 = p1 × c0 = 0.405. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 21st unknown example <001011>: 

 

 

Figure 8.22 Examples in Ordered Relations with <001011>. 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 
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Positive Vote = 2 + 4 = 6; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 4 + 4 + 4 + 2 = 14; 

 

Therefore, probability p1 = 6 / (6 + 14) = 0.300, and p0 = 14 / (6 + 14) = 0.700. 

Expected misclassification cost s1 = p0 × c1 = 0.350, and s0 = p1 × c0 = 0.150. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 22nd unknown example <000101>: 

 

 

Figure 8.23 Examples in Ordered Relations with <000101>. 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

Positive Vote = 2 + 4 + 8 + 8 + 4 = 26; 

: "Direct relation" type, weight 2
3
 = 8; 
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Negative Vote = 8; 

 

Therefore, probability p1 = 26 / (26 + 8) = 0.765, and p0 = 8 / (26 + 8) = 0.235. 

Expected misclassification cost s1 = p0 × c1 = 0.1175, and s0 = p1 × c0 = 0.3825. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 23rd unknown example <010001>: 

 

 
Figure 8.24 Examples in Ordered Relations with <010001>. 

 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

Positive Vote = 2 + 4 + 4 + 8 + 8 + 4 = 30; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

Negative Vote = 4; 

 

Therefore, probability p1 = 30 / (30 + 4) = 0.882, and p0 = 4 / (30 + 4) = 0.118. 

Expected misclassification cost s1 = p0 × c1 = 0.059, and s0 = p1 × c0 = 0.441. 

Since s1 is smaller, we will assign  to be positive, which is correct. 
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For the 24th unknown example <000110>: 

 

 

Figure 8.25 Examples in Ordered Relations with <000110>. 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 2 + 4 + 8 + 8 = 22; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

Negative Vote = 8 + 8 = 16; 

 

Therefore, probability p1 = 22 / (22 + 16) = 0.579, and p0 = 16 / (22 + 16) = 0.421. 

Expected misclassification cost s1 = p0 × c1 = 0.2105, and s0 = p1 × c0 = 0.2895. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 25th unknown example <010010>: 

 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 
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: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 2 + 4 + 4 + 8 + 8 = 26; 

 : "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
3
 = 8; 

Negative Vote = 4 + 8 = 12; 

 

 

Figure 8.26 Examples in Ordered Relations with <010010>. 

 

Therefore, probability p1 = 26 / (26 + 12) = 0.684, and p0 = 12 / (26 + 12) = 0.316. 

Expected misclassification cost s1 = p0 × c1 = 0.158, and s0 = p1 × c0 = 0.342. 

Since s1 is smaller, we will assign  to be positive, which is wrong. Its actual 

class should be negative. 

 

For the 26th unknown example <001100>: 

 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

Positive Vote = 0; 
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: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

Negative Vote = 8 + 8 + 8 + 8 = 32; 

 

 

Figure 8.27 Examples in Ordered Relations with <001100>. 

 

Therefore, probability p1 = 0 / (0 + 32) = 0.000, and p0 = 32 / (0 + 32) = 1.000. 

Expected misclassification cost s1 = p0 × c1 = 0.500, and s0 = p1 × c0 = 0.000. 

Since s0 is smaller, we will assign  to be negative, which is correct. 

 

For the 27th unknown example <100100>: 

 

 

Figure 8.28 Examples in Ordered Relations with <100100>. 

: "Direct relation" type, weight 2
0
 = 1; 

: "Direct relation" type, weight 2
1
 = 2; 
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: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

Positive Vote = 1 + 2 + 2 + 2 + 4 + 4 + 8 + 8 + 8 + 4 = 43; 

Negative Vote = 0; 

 

Therefore, probability p1 = 43 / (43 + 0) = 1.000, and p0 = 0 / (43 + 0) = 0.000. 

Expected misclassification cost s1 = p0 × c1 = 0.000, and s0 = p1 × c0 = 0.500. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 28th unknown example <101000>: 

 

 

Figure 8.29 Examples in Ordered Relations with <101000>. 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 
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Positive Vote = 4 + 8 = 12; 

 : "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

Negative Vote = 4 + 8 + 8 = 20; 

 

Therefore, probability p1 = 12 / (12 + 20) = 0.375, and p0 = 20 / (12 + 20) = 0.625. 

Expected misclassification cost s1 = p0 × c1 = 0.3125, and s0 = p1 × c0 = 0.1875. 

Since s0 is smaller, we will assign  to be negative, which is wrong. Its actual 

class should be positive. 

 

For the 29th unknown example <110000>: 

 

 

Figure 8.30 Examples in Ordered Relations with <110000>. 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
2
 = 4; 

Positive Vote = 2 + 4 + 8 + 8 + 4 = 26; 

 : "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 
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Negative Vote = 4 + 4 = 8; 

 

Therefore, probability p1 = 26 / (26 + 8) = 0.765, and p0 = 8 / (26 + 8) = 0.235. 

Expected misclassification cost s1 = p0 × c1 = 0.1175, and s0 = p1 × c0 = 0.3825. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 30th unknown example <100000>: 

 

 

Figure 8.31 Examples in Ordered Relations with <100000>. 

 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
4
 = 16; 

Positive Vote = 4 + 8 + 8 + 8 + 16 + 16 = 60; 

 : "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
4
 = 16; 
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Negative Vote = 4 + 8 + 16 = 28; 

 

Therefore, probability p1 = 60 / (60 + 28) = 0.682, and p0 = 28 / (60 + 28) = 0.318. 

Expected misclassification cost s1 = p0 × c1 = 0.159, and s0 = p1 × c0 = 0.341. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 31st unknown example <000100>: 

 

 

Figure 8.32 Examples in Ordered Relations with <000100>. 

 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
4
 = 16; 

Positive Vote = 2 + 4 + 8 + 8 + 8 + 8 + 16 + 16 = 70; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

Negative Vote = 8 + 8 = 16; 
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Therefore, probability p1 = 70 / (70 + 16) = 0.814, and p0 = 16 / (70 + 16) = 0.186. 

Expected misclassification cost s1 = p0 × c1 = 0.093, and s0 = p1 × c0 = 0.407. 

Since s1 is smaller, we will assign  to be positive, which is correct. 

 

For the 32nd unknown example <000001>: 

 

 

Figure 8.33 Examples in Ordered Relations with <000001>. 

 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
1
 = 2; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Direct relation" type, weight 2
2
 = 4; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
4
 = 16; 

: "Direct relation" type, weight 2
4
 = 16; 

Positive Vote = 2+ 4 + 4 + 8 + 8 + 8 + 16 + 16 + 16 = 82; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Indirect relation" type (cutting example ), weight 0; 

: "Direct relation" type, weight 2
3
 = 8; 

: "Direct relation" type, weight 2
4
 = 16; 

Negative Vote = 8 + 16 = 24; 
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Therefore, probability p1 = 82 / (82 + 24) = 0.774, and p0 = 24 / (82 + 24) = 0.226. 

Expected misclassification cost s1 = p0 × c1 = 0.113, and s0 = p1 × c0 = 0.387. 

Since s1 is smaller, we will assign  to be positive, which is correct. 
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CHAPTER 9. COMPARISON WITH EXISTING ALGORITHMS 

 

9.1 Results of Comparison 

Now we will run the 10 synthetic datasets we generated in Chapter 6 on Weka, and 

compare the results with the M* algorithm. There are, in total, 75 classifiers in Weka that 

can be applied to binary systems, including 8 Bayesian methods, 7 Function methods, 5 

Lazy methods, 29 Meta methods, 5 Miscellaneous methods, 12 Decision Tree methods, 

and 9 Rule Induction methods. We will compare the M* algorithm result to all of these 

75 existing classifiers. All the classifiers that need parameters were run on their default 

parameters. 

 

As mentioned earlier, because not all classifiers have the ability to adjust to the change of 

misclassification costs, here we assume the misclassification costs take the same value, 

i.e., (c1, c0) = (0.5, 0.5). 

 

For Dataset 1: 

Please recall that we have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 391 ; m1

-
 = 109; m2 = 100; m2

+
 = 78; m2

-
 = 23. 

 

)()(

)()()(

1098649753

10632107431985211

xxxxxxxxx

xxxxxxxxxxxxxxf




 

 

Table 9.1-1 Comparison with Weka Results on Dataset 1. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 77 15 92 1 7 8 

Bayes 

AODE 74 8 82 4 14 18 

AODEsr 74 8 82 4 14 18 

BayesNet 74 9 83 4 13 17 

HNB 75 9 84 3 13 16 

NaiveBayes 74 9 83 4 13 17 

NaiveBayesSimple 74 9 83 4 13 17 

NaiveBayesUpdateable 74 9 83 4 13 17 

WAODE 74 11 85 4 11 15 

Function 

Logistic 70 11 81 8 11 19 

MultiLayerPerceptron 68 12 80 10 10 20 

RBFNetwork 72 10 82 6 12 18 

SimpleLogistic 77 5 82 1 17 18 

SMO 77 5 82 1 17 18 

VotedPerceptron 70 7 77 8 15 23 

Winnow 42 19 61 36 3 39 

(table con'd) 
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Lazy 

IB1 69 17 86 9 5 14 

IBk 78 15 93 0 7 7 

KStar 78 15 93 0 7 7 

LBR 75 12 87 3 10 13 

LWL 78 0 78 0 22 22 

Meta 

AdaBoostM1 67 13 80 11 9 20 

AttributeSelectedClassifier 78 9 87 0 13 13 

Bagging 77 10 87 1 12 13 

ClassificationViaClustering 62 12 74 16 10 26 

ClassificationViaRegression 77 5 82 1 17 18 

CostSensitiveClassifier 78 0 78 0 22 22 

CVParameterSelection 78 0 78 0 22 22 

Dagging 78 2 80 0 20 20 

Decorate 76 16 92 2 6 8 

END 75 11 86 3 11 14 

EnsembleSelection 78 9 87 0 13 13 

FilteredClassifier 75 11 86 3 11 14 

Grading 78 0 78 0 22 22 

LogitBoost 73 11 84 5 11 16 

MetaCost 78 0 78 0 22 22 

MultiBoostAB 78 0 78 0 22 22 

MultiClassClassifier 70 11 81 8 11 19 

MultiScheme 78 0 78 0 22 22 

OrdinalClassClassifier 75 11 86 3 11 14 

RacedIncrementalLogitBoost 78 0 78 0 22 22 

RandomCommittee 77 15 92 1 7 8 

RandomSubSpace 78 0 78 0 22 22 

Stacking 78 0 78 0 22 22 

StackingC 78 0 78 0 22 22 

ThresholdSelector 70 11 81 8 11 19 

Vote 78 0 78 0 22 22 

ClassBalancedND 75 11 86 3 11 14 

DataNearBalancedND 75 11 86 3 11 14 

ND 75 11 86 3 11 14 

Misc 

HyperPipes 78 0 78 0 22 22 

MinMaxExtension 49 20 69 29 2 31 

OLM 63 15 78 15 7 22 

OSDL 49 21 70 29 1 30 

VFI 56 15 71 22 7 29 

Trees 

ADTree 60 13 73 18 9 27 

BFTree 76 13 89 2 9 11 

DecisionStump 78 0 78 0 22 22 

Id3 74 16 90 4 6 10 

J48 75 11 86 3 11 14 

J48graft 75 11 86 3 11 14 

LMT 73 14 87 5 8 13 

NBTree 78 12 90 0 10 10 

(table con'd) 
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RandomForest 77 14 91 1 8 9 

RandomTree 69 11 80 9 11 20 

REPTree 75 11 86 3 11 14 

SimpleCart 76 11 87 2 11 13 

Rules 

ConjunctiveRule 78 0 78 0 22 22 

DecisionTable 78 0 78 0 22 22 

JRip 78 22 100 0 0 0 

NNge 74 17 91 4 5 9 

OneR 78 0 78 0 22 22 

PART 78 17 95 0 5 5 

Prism 72 18 90 0 4 10* 

Ridor 72 11 83 6 11 17 

ZeroR 78 0 78 0 22 22 

 

*Note: Classifier Rules.Prism has got 4 of unknowns wrong, and 6 of them were assigned 

as "unclassified" type. Since other classifiers do not have an "unclassified" class, for 

uniformity reason, 10 instead of 4 is put in the "wrong" column. 

 

In summary, among all 76 classifiers, the best result gets 0 of all unknown examples 

wrong. The worst result gets 39 of all unknown examples wrong. The M* algorithm gets 

8 of all unknown examples wrong, and it ranks at the 5th place. Of all the 4 classifiers 

that outperform M*, the distribution is: 

Table 9.1-2 Outperforming classifiers on Dataset 1. 

Bayes Function Lazy Meta Misc Tree Rules 

0 0 2 0 0 0 2 

 

For Dataset 2: 

Recall that we have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 325; m1

-
 = 175; m2 = 100; m2

+
 = 60; m2

-
 = 40. 

 

)()()(

)()()(

10985109764753

1065287654329812

xxxxxxxxxxxx

xxxxxxxxxxxxxxf




 

 

Table 9.2-1 Comparison with Weka Results on Dataset 2. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 58 33 91 2 7 9 

Bayes 

AODE 57 22 79 3 18 21 

AODEsr 57 22 79 3 18 21 

BayesNet 55 16 71 5 24 29 

HNB 59 25 84 1 15 16 

NaiveBayes 55 16 71 5 24 29 

(table con'd) 
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NaiveBayesSimple 55 16 71 5 24 29 

NaiveBayesUpdateable 55 16 71 5 24 29 

WAODE 56 24 80 4 16 20 

Function 

Logistic 52 20 72 8 20 28 

MultiLayerPerceptron 59 32 91 1 8 9 

RBFNetwork 55 22 77 5 18 23 

SimpleLogistic 51 20 71 9 20 29 

SMO 52 19 71 8 21 29 

VotedPerceptron 54 16 70 6 24 30 

Winnow 43 20 63 17 20 37 

Lazy 

IB1 57 26 83 3 14 17 

IBk 60 29 89 0 11 11 

KStar 60 30 90 0 10 10 

LBR 56 19 75 4 21 25 

LWL 60 9 69 0 31 31 

Meta 

AdaBoostM1 53 19 72 7 21 28 

AttributeSelectedClassifier 58 27 85 2 13 15 

Bagging 58 30 88 2 10 12 

ClassificationViaClustering 35 24 59 25 16 41 

ClassificationViaRegression 60 29 89 0 11 11 

CostSensitiveClassifier 60 0 60 0 40 40 

CVParameterSelection 60 0 60 0 40 40 

Dagging 56 12 68 4 28 32 

Decorate 59 30 89 1 10 11 

END 60 30 90 0 10 10 

EnsembleSelection 60 29 89 0 11 11 

FilteredClassifier 60 30 90 0 10 10 

Grading 60 0 60 0 40 40 

LogitBoost 53 19 72 7 21 28 

MetaCost 60 0 60 0 40 40 

MultiBoostAB 56 9 65 4 31 35 

MultiClassClassifier 52 20 72 8 20 28 

MultiScheme 60 0 60 0 40 40 

OrdinalClassClassifier 60 30 90 0 10 10 

RacedIncrementalLogitBoost 60 0 60 0 40 40 

RandomCommittee 57 27 84 3 13 16 

RandomSubSpace 60 23 83 0 17 17 

Stacking 60 0 60 0 40 40 

StackingC 60 0 60 0 40 40 

ThresholdSelector 54 14 68 6 26 32 

Vote 60 0 60 0 40 40 

ClassBalancedND 60 30 90 0 10 10 

DataNearBalancedND 60 30 90 0 10 10 

ND 60 30 90 0 10 10 

Misc 

HyperPipes 60 0 60 0 40 40 

MinMaxExtension 0 40 40 60 0 60 

OLM 34 24 58 26 16 42 

OSDL 0 40 40 60 0 60 

(table con'd) 
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 VFI 46 30 76 14 10 24 

Trees 

ADTree 57 26 83 3 14 17 

BFTree 60 28 88 0 12 12 

DecisionStump 60 0 60 0 40 40 

Id3 57 34 91 3 6 9 

J48 60 30 90 0 10 10 

J48graft 60 30 90 0 10 10 

LMT 56 30 86 4 10 14 

NBTree 60 34 94 0 6 6 

RandomForest 59 31 90 1 9 10 

RandomTree 46 24 70 14 16 30 

REPTree 60 29 89 0 11 11 

SimpleCart 60 30 90 0 10 10 

Rules 

ConjunctiveRule 60 0 60 0 40 40 

DecisionTable 56 28 84 4 12 16 

JRip 60 40 100 0 0 0 

NNge 54 33 87 6 7 13 

OneR 60 0 60 0 40 40 

PART 60 37 97 0 3 3 

Prism 58 35 93 0 5 7* 

Ridor 59 36 95 1 4 5 

ZeroR 60 0 60 0 40 40 

 

In summary, among all 76 classifiers, the best result gets 0 of all unknown examples 

wrong. The worst result gets 60 of all unknown examples wrong. The M* algorithm gets 

9 of all unknown examples wrong, and it ranks at the 6th place. Of all the 5 classifiers 

that outperform M*, the distribution is: 

Table 9.2-2 Outperforming classifiers on Dataset 2. 

Bayes Function Lazy Meta Misc Tree Rules 

0 0 0 0 0 1 4 

 

For Dataset 3: 

Recall that we have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 228; m1

-
 = 272; m2 = 100; m2

+
 = 43; m2

-
 = 57. 

 

)()()()(

)()()(

1087610739854392

10986542871543213

xxxxxxxxxxxxxx

xxxxxxxxxxxxxxxf




 

 

Table 9.3-1 Comparison with Weka Results on Dataset 3. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 40 56 96 3 1 4 

Bayes AODE 35 45 80 8 12 20 

(table con'd) 



100 
 

 AODEsr 35 45 80 8 12 20 

BayesNet 32 45 77 11 12 23 

HNB 40 50 90 3 7 10 

NaiveBayes 32 45 77 11 12 23 

NaiveBayesSimple 32 45 77 11 12 23 

NaiveBayesUpdateable 32 45 77 11 12 23 

WAODE 36 42 78 7 15 22 

Function Logistic 34 44 78 9 13 22 

MultiLayerPerceptron 41 54 95 2 3 5 

RBFNetwork 34 41 75 9 16 25 

SimpleLogistic 33 45 78 10 12 22 

SMO 34 40 74 9 17 26 

VotedPerceptron 32 41 73 11 16 27 

Winnow 43 0 43 0 57 57 

Lazy IB1 32 49 81 11 8 19 

IBk 41 51 92 2 6 8 

KStar 40 54 94 3 3 6 

LBR 35 51 86 8 6 14 

LWL 43 30 73 0 27 27 

Meta AdaBoostM1 32 44 76 11 13 24 

AttributeSelectedClassifier 39 42 81 4 15 19 

Bagging 40 53 93 3 4 7 

ClassificationViaClustering 12 38 50 31 19 50 

ClassificationViaRegression 38 46 84 5 11 16 

CostSensitiveClassifier 0 57 57 43 0 43 

CVParameterSelection 0 57 57 43 0 43 

Dagging 33 42 75 10 15 25 

Decorate 39 50 89 4 7 11 

END 40 56 96 3 1 4 

EnsembleSelection 39 48 87 4 9 13 

FilteredClassifier 40 56 96 3 1 4 

Grading 0 57 57 43 0 43 

LogitBoost 33 43 76 10 14 24 

MetaCost 0 57 57 43 0 43 

MultiBoostAB 32 42 74 11 15 26 

MultiClassClassifier 34 44 78 9 13 22 

MultiScheme 0 57 57 43 0 43 

OrdinalClassClassifier 40 56 96 3 1 4 

RacedIncrementalLogitBoost 0 57 57 43 0 43 

RandomCommittee 41 48 89 2 9 11 

 

RandomSubSpace 29 48 77 14 9 23 

Stacking 0 57 57 43 0 43 

StackingC 0 57 57 43 0 43 

ThresholdSelector 37 30 67 6 27 33 

Vote 0 57 57 43 0 43 

ClassBalancedND 40 56 96 3 1 4 

DataNearBalancedND 40 56 96 3 1 4 

ND 40 56 96 3 1 4 

(table con'd) 
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Misc 

HyperPipes 43 0 43 0 57 57 

MinMaxExtension 2 57 59 41 0 41 

OLM 18 35 53 25 22 47 

OSDL 2 57 59 41 0 41 

VFI 33 43 76 10 14 24 

Trees 

ADTree 36 49 85 7 8 15 

BFTree 40 54 94 3 3 6 

DecisionStump 26 41 67 17 16 33 

Id3 37 56 93 6 1 7 

J48 40 56 96 3 1 4 

J48graft 40 56 96 3 1 4 

LMT 39 53 92 4 4 8 

NBTree 41 56 97 2 1 3 

RandomForest 39 51 90 4 6 10 

RandomTree 30 42 72 13 15 28 

REPTree 39 48 87 4 9 13 

SimpleCart 40 55 95 3 2 5 

Rules 

ConjunctiveRule 26 41 67 17 16 33 

DecisionTable 38 44 82 5 13 18 

JRip 41 45 86 2 12 14 

NNge 37 50 87 6 7 13 

OneR 26 41 67 17 16 33 

PART 42 56 98 1 1 2 

Prism 42 49 91 0 8 9* 

Ridor 43 57 100 0 0 0 

ZeroR 0 57 57 43 0 43 

 

In summary, among all 76 classifiers, the best result gets 0 of all unknown examples 

wrong. The worst result gets 57 of all unknown examples wrong. The M* algorithm gets 

4 of all unknown examples wrong, and it ranks at the 4th place. Of all the 3 classifiers 

that outperform M*, the distribution is: 

Table 9.3-2 Outperforming classifiers on Dataset 3. 

Bayes Function Lazy Meta Misc Tree Rules 

0 0 0 0 0 1 2 

 

 

For Dataset 4: 

Recall that we have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 206; m1

-
 = 294; m2 = 100; m2

+
 = 36; m2

-
 = 64. 
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Table 9.4-1 Comparison with Weka Results on Dataset 4. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 36 64 100 0 0 0 

Bayes 

AODE 32 62 94 4 2 6 

AODEsr 32 62 94 4 2 6 

BayesNet 28 58 86 8 6 14 

HNB 36 61 97 0 3 3 

NaiveBayes 28 58 86 8 6 14 

NaiveBayesSimple 28 58 86 8 6 14 

NaiveBayesUpdateable 28 58 86 8 6 14 

WAODE 35 62 97 1 2 3 

Function 

Logistic 29 54 83 7 10 17 

MultiLayerPerceptron 36 63 99 0 1 1 

RBFNetwork 27 56 83 9 8 17 

SimpleLogistic 29 54 81 7 12 19 

SMO 29 57 86 7 7 14 

VotedPerceptron 30 57 87 6 7 13 

Winnow 15 51 66 21 13 34 

Lazy 

IB1 30 51 81 6 13 19 

IBk 36 59 95 0 5 5 

KStar 36 62 98 0 2 2 

LBR 35 60 95 1 4 5 

LWL 34 45 79 2 19 21 

Meta 

AdaBoostM1 28 58 86 8 6 14 

AttributeSelectedClassifier 27 62 89 9 2 11 

Bagging 36 62 98 0 2 2 

ClassificationViaClustering 27 27 54 9 37 46 

ClassificationViaRegression 36 64 100 0 0 0 

CostSensitiveClassifier 0 64 64 36 0 36 

CVParameterSelection 0 64 64 36 0 36 

Dagging 31 57 88 5 7 12 

Decorate 35 63 98 1 1 2 

END 35 64 99 1 0 1 

EnsembleSelection 36 63 99 0 1 1 

FilteredClassifier 35 64 99 1 0 1 

Grading 0 64 64 36 0 36 

LogitBoost 29 55 84 7 9 16 

MetaCost 0 64 64 36 0 36 

MultiBoostAB 29 58 87 7 6 13 

MultiClassClassifier 29 54 83 7 10 17 

MultiScheme 0 64 64 36 0 36 

OrdinalClassClassifier 35 64 99 1 0 1 

RacedIncrementalLogitBoost 0 64 64 36 0 36 

RandomCommittee 34 55 89 2 9 11 

RandomSubSpace 28 60 88 8 4 12 

Stacking 0 64 64 36 0 36 

StackingC 0 64 64 36 0 36 

(table con'd) 
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ThresholdSelector 33 49 82 3 15 18 

Vote 0 64 64 36 0 36 

ClassBalancedND 35 64 99 1 0 1 

DataNearBalancedND 35 64 99 1 0 1 

ND 35 64 99 1 0 1 

Misc 

HyperPipes 36 0 36 0 64 64 

MinMaxExtension 0 62 62 36 2 38 

OLM 15 47 62 21 17 38 

OSDL 0 62 62 36 2 38 

VFI 30 55 85 6 9 15 

Trees 

ADTree 36 63 99 0 1 1 

BFTree 35 64 99 1 0 1 

DecisionStump 28 48 76 8 16 24 

Id3 34 63 97 2 1 3 

J48 35 64 99 1 0 1 

J48graft 35 64 99 1 0 1 

LMT 36 63 99 0 1 1 

NBTree 36 64 100 0 0 0 

RandomForest 36 63 99 0 1 1 

RandomTree 30 54 84 6 10 16 

REPTree 36 61 97 0 3 3 

SimpleCart 36 60 96 0 4 4 

Rules 

ConjunctiveRule 28 48 76 8 16 24 

DecisionTable 36 60 96 0 4 4 

JRip 36 64 100 0 0 0 

NNge 34 63 97 2 1 3 

OneR 28 48 76 8 16 24 

PART 36 64 100 0 0 0 

Prism 36 63 99 0 1 1 

Ridor 36 63 99 0 1 1 

ZeroR 0 64 64 36 0 36 

 

In summary, among all 76 classifiers, the best result gets 0 of all unknown examples 

wrong. The worst result gets 64 of all unknown examples wrong. The M* algorithm gets 

0 of all unknown examples wrong, and it ranks at the 1st place. There are no classifier 

outperforms M*, the distribution is: 

Table 9.4-2 Outperforming classifiers on Dataset 4. 

Bayes Function Lazy Meta Misc Tree Rules 

0 0 0 0 0 0 0 

 

For Dataset 5: 

Recall that we have the following parameters for this dataset: 

n = 10; 2
n
 = 1,024; m1 = 400; m1

+
 = 300; m1

-
 = 200; m2 = 100; m2

+
 = 70; m2

-
 = 30. 
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Table 9.5-1 Comparison with Weka Results on Dataset 5. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 65 27 92 5 3 8 

Bayes 

AODE 55 23 78 15 7 22 

AODEsr 55 23 78 15 7 22 

BayesNet 50 18 68 20 12 32 

HNB 62 21 83 8 9 17 

NaiveBayes 50 18 68 20 12 32 

NaiveBayesSimple 50 18 68 20 12 32 

NaiveBayesUpdateable 50 18 68 20 12 32 

WAODE 54 22 76 16 8 24 

Function 

Logistic 48 19 67 22 11 33 

MultiLayerPerceptron 64 21 85 6 9 15 

RBFNetwork 55 20 75 15 10 25 

SimpleLogistic 50 18 68 20 12 32 

SMO 48 20 68 22 10 32 

VotedPerceptron 53 17 70 17 13 30 

Winnow 65 5 70 5 25 30 

Lazy 

IB1 53 22 75 17 8 25 

IBk 67 25 92 3 5 8 

KStar 66 27 93 4 3 7 

LBR 59 19 78 11 11 22 

LWL 43 24 67 27 6 33 

Meta 

AdaBoostM1 46 21 67 24 9 33 

AttributeSelectedClassifier 65 23 88 5 7 12 

Bagging 64 22 86 6 8 14 

ClassificationViaClustering 44 15 59 26 15 41 

ClassificationViaRegression 67 23 90 3 7 10 

CostSensitiveClassifier 70 0 70 0 30 30 

CVParameterSelection 70 0 70 0 30 30 

Dagging 56 11 67 14 19 33 

Decorate 64 24 88 6 6 12 

END 67 23 90 3 7 10 

EnsembleSelection 61 21 82 9 9 18 

FilteredClassifier 67 23 90 3 7 10 

Grading 70 0 70 0 30 30 

LogitBoost 50 18 68 20 12 32 

MetaCost 70 0 70 0 30 30 

MultiBoostAB 55 11 66 15 19 34 

MultiClassClassifier 48 19 67 22 11 33 

MultiScheme 70 0 70 0 30 30 

(table con'd) 
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OrdinalClassClassifier 67 23 90 3 7 10 

RacedIncrementalLogitBoost 70 0 70 0 30 30 

RandomCommittee 66 24 90 4 6 10 

RandomSubSpace 66 10 76 4 20 24 

Stacking 70 0 70 0 30 30 

StackingC 70 0 70 0 30 30 

ThresholdSelector 68 3 71 2 27 29 

Vote 70 0 70 0 30 30 

ClassBalancedND 67 23 90 3 7 10 

DataNearBalancedND 67 23 90 3 7 10 

ND 67 23 90 3 7 10 

Misc 

HyperPipes 70 0 70 0 30 30 

MinMaxExtension 8 29 37 62 1 63 

OLM 19 21 40 51 9 60 

OSDL 8 29 37 62 1 63 

VFI 41 24 65 29 6 35 

Trees 

ADTree 50 16 66 20 14 34 

BFTree 66 24 90 4 6 10 

DecisionStump 38 22 60 32 8 40 

Id3 68 27 95 2 3 5 

J48 67 23 90 3 7 10 

J48graft 67 23 90 3 7 10 

LMT 67 26 93 3 4 7 

NBTree 66 22 88 4 8 12 

RandomForest 66 22 88 4 8 12 

RandomTree 52 18 70 18 12 30 

REPTree 53 22 75 17 8 25 

SimpleCart 67 24 91 3 6 9 

Rules 

ConjunctiveRule 70 0 70 0 30 30 

DecisionTable 64 16 80 6 14 20 

JRip 68 30 98 2 0 2 

NNge 62 23 85 8 7 15 

OneR 38 22 60 32 8 40 

PART 68 26 94 2 4 6 

Prism 69 25 94 0 5 6* 

Ridor 66 25 91 4 5 9 

ZeroR 70 0 70 0 30 30 

 

In summary, among all 76 classifiers, the best result gets 2 of all unknown examples 

wrong. The worst result gets 63 of all unknown examples wrong. The M* algorithm gets 

8 of all unknown examples wrong, and it ranks at the 7th place. Of all the 3 classifiers 

that outperform M*, the distribution is: 

Table 9.5-2 Outperforming classifiers on Dataset 5. 

Bayes Function Lazy Meta Misc Tree Rules 

0 0 1 0 0 2 3 
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For Dataset 6: 

Recall that we have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 4,763; m1

-
 = 3,237; m2 = 1,600; m2

+
 = 999; m2

-
 = 

601. 
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Table 9.6-1 Comparison with Weka Results on Dataset 6. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 976 556 1532 23 45 68 

Bayes 

AODE 865 361 1226 134 240 374 

AODEsr 865 361 1226 134 240 374 

BayesNet 831 331 1162 168 270 438 

HNB 905 428 1333 94 173 267 

NaiveBayes 831 331 1162 168 270 438 

NaiveBayesSimple 831 331 1162 168 270 438 

NaiveBayesUpdateable 831 331 1162 168 270 438 

WAODE 862 365 1227 137 236 373 

Function 

Logistic 808 346 1154 191 255 446 

MultiLayerPerceptron 985 527 1512 14 74 88 

RBFNetwork 806 366 1172 193 235 428 

SimpleLogistic 814 344 1158 185 257 442 

SMO 818 340 1158 181 261 442 

VotedPerceptron 813 333 1146 186 268 454 

Winnow 553 337 890 446 264 710 

Lazy 

IB1 841 483 1324 158 118 276 

IBk 956 499 1455 43 102 145 

KStar 974 541 1515 25 60 85 

LBR 976 502 1478 23 99 122 

LWL 713 383 1096 286 218 504 

Meta 

AdaBoostM1 803 337 1140 196 264 460 

AttributeSelectedClassifier 797 445 1242 202 156 358 

Bagging 986 547 1533 13 54 67 

ClassificationViaClustering 405 403 808 594 198 792 

ClassificationViaRegression 970 537 1507 29 64 93 

CostSensitiveClassifier 999 0 999 0 601 601 

CVParameterSelection 999 0 999 0 601 601 

Dagging 840 323 1163 159 278 437 

Decorate 961 554 1515 38 47 85 

(table con'd) 
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END 976 542 1518 23 59 82 

EnsembleSelection 985 540 1525 14 61 75 

FilteredClassifier 976 542 1518 23 59 82 

Grading 999 0 999 0 601 601 

LogitBoost 826 331 1157 173 270 443 

MetaCost 999 0 999 0 601 601 

MultiBoostAB 747 326 1073 252 275 527 

MultiClassClassifier 808 346 1154 191 255 446 

MultiScheme 999 0 999 0 601 601 

OrdinalClassClassifier 976 542 1518 23 59 82 

RacedIncrementalLogitBoost 839 298 1137 160 303 463 

RandomCommittee 963 473 1436 36 128 164 

RandomSubSpace 991 371 1362 8 230 238 

Stacking 999 0 999 0 601 601 

StackingC 999 0 999 0 601 601 

ThresholdSelector 931 228 1159 68 373 441 

Vote 999 0 999 0 601 601 

ClassBalancedND 976 542 1518 23 59 82 

DataNearBalancedND 976 542 1518 23 59 82 

ND 976 542 1518 23 59 82 

Misc 

HyperPipes 999 0 999 0 601 601 

MinMaxExtension 220 581 801 779 20 799 

OLM 468 470 938 531 131 662 

OSDL 220 581 801 779 20 799 

VFI 677 416 1093 322 185 507 

Trees 

ADTree 939 343 1282 60 258 318 

BFTree 962 557 1519 37 44 81 

DecisionStump 602 398 1000 397 203 600 

Id3 957 581 1538 42 20 62 

J48 976 542 1518 23 59 82 

J48graft 977 542 1519 22 59 81 

LMT 958 561 1519 41 40 81 

NBTree 976 559 1535 23 42 65 

RandomForest 988 562 1550 11 39 50 

RandomTree 822 436 1258 177 165 342 

REPTree 963 538 1501 36 63 99 

SimpleCart 978 537 1515 21 64 85 

Rules 

ConjunctiveRule 602 398 1000 397 203 600 

DecisionTable 956 492 1448 43 109 152 

JRip 999 601 1600 0 0 0 

NNge - - - - - - 

OneR 602 398 1000 397 203 600 

PART 998 599 1597 1 2 3 

Prism 979 577 1556 0 24 44* 

Ridor 999 591 1590 0 10 10 

ZeroR 999 0 999 0 601 601 

 

Note: Classifier Rules.NNge could not generate a result due to the size of the dataset. 
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In summary, among all 76 classifiers, the best result gets 0 of all unknown examples 

wrong. The worst result gets 799 of all unknown examples wrong. The M* algorithm gets 

68 of all unknown examples wrong, and it ranks at the 9th place. Of all the 8 classifiers 

that outperform M*, the distribution is: 

Table 9.6-2 Outperforming classifiers on Dataset 6. 

Bayes Function Lazy Meta Misc Tree Rules 

0 0 0 1 0 3 4 

 

For Dataset 7: 

Recall that we have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 4,325; m1

-
 = 3,675; m2 = 1,600; m1

+
 = 872; m2

-
 = 

728. 
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Table 9.7-1 Comparison with Weka Results on Dataset 7. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 849 693 1542 23 35 58 

Bayes 

AODE 685 515 1200 187 213 400 

AODEsr 685 516 1201 187 212 399 

BayesNet 654 475 1129 218 253 471 

HNB 767 594 1361 105 134 239 

NaiveBayes 654 475 1129 218 253 471 

NaiveBayesSimple 654 475 1129 218 253 471 

NaiveBayesUpdateable 654 475 1129 218 253 471 

WAODE 691 537 1228 181 191 372 

Function 

Logistic 641 485 1126 231 243 474 

MultiLayerPerceptron 872 714 1586 0 14 14 

RBFNetwork 675 517 1192 197 211 408 

SimpleLogistic 643 481 1124 229 247 476 

SMO 642 478 1120 230 250 480 

VotedPerceptron 643 482 1125 229 246 475 

Winnow 693 325 1018 179 403 582 

Lazy 

IB1 755 597 1352 117 131 248 

Ibk 836 628 1464 36 100 136 

Kstar 852 690 1542 20 38 58 

LBR 864 663 1527 8 65 73 

(table con'd) 
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 LWL 578 490 1068 294 238 532 

Meta 

AdaBoostM1 614 501 1115 258 227 485 

AttributeSelectedClassifier 616 634 1250 256 94 350 

Bagging 858 685 1543 14 43 57 

ClassificationViaClustering 498 403 901 374 325 699 

ClassificationViaRegression 846 683 1529 26 45 71 

CostSensitiveClassifier 872 0 872 0 728 728 

CVParameterSelection 872 0 872 0 728 728 

Dagging 660 473 1133 212 255 467 

Decorate 832 690 1522 40 38 78 

END 852 685 1537 20 43 63 

EnsembleSelection 857 680 1537 15 48 63 

FilteredClassifier 852 685 1537 20 43 63 

Grading 872 0 872 0 728 728 

LogitBoost 640 467 1107 232 261 493 

MetaCost 872 0 872 0 728 728 

MultiBoostAB 578 484 1062 294 244 538 

MultiClassClassifier 641 485 1126 231 243 474 

MultiScheme 872 0 872 0 728 728 

OrdinalClassClassifier 852 685 1537 20 43 63 

RacedIncrementalLogitBoost 624 487 1111 248 241 489 

RandomCommittee 840 624 1464 32 104 136 

RandomSubSpace 811 552 1363 61 176 237 

Stacking 872 0 872 0 728 728 

StackingC 872 0 872 0 728 728 

ThresholdSelector 794 290 1084 78 438 516 

Vote 872 0 872 0 728 728 

ClassBalancedND 852 685 1537 20 43 63 

DataNearBalancedND 852 685 1537 20 43 63 

ND 852 685 1537 20 43 63 

Misc 

HyperPipes 872 0 872 0 728 728 

MinMaxExtension 204 719 923 668 9 677 

OLM 398 627 1025 474 101 575 

OSDL 204 719 923 668 9 677 

VFI 602 507 1109 270 221 491 

Trees 

ADTree 785 493 1278 87 235 322 

BFTree 849 684 1533 23 44 67 

DecisionStump 578 484 1062 294 244 538 

Id3 833 703 1536 39 25 64 

J48 852 685 1537 20 43 63 

J48graft 852 685 1537 20 43 63 

LMT 843 704 1547 29 24 53 

NBTree 867 673 1540 5 55 60 

RandomForest 866 690 1556 6 38 44 

RandomTree 664 545 1209 208 183 391 

REPTree 849 667 1516 23 61 84 

SimpleCart 847 684 1531 25 44 69 

(table con'd) 
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Rules 

ConjunctiveRule 578 484 1062 294 244 538 

DecisionTable 859 625 1484 13 103 116 

JRip 871 728 1599 1 0 1 

NNge - - - - - - 

OneR 578 484 1062 294 244 538 

PART 870 721 1591 2 7 9 

Prism 856 712 1568 0 16 32* 

Ridor 869 661 1530 3 67 70 

ZeroR 872 0 872 0 728 728 

 

In summary, among all 76 classifiers, the best result gets 1 of all unknown examples 

wrong. The worst result gets 728 of all unknown examples wrong. The M* algorithm gets 

58 of all unknown examples wrong, and it ranks at the 8th place. Of all the 7 classifiers 

that outperform M*, the distribution is: 

Table 9.7-2 Outperforming classifiers on Dataset 7. 

Bayes Function Lazy Meta Misc Tree Rules 

0 1 0 1 0 2 3 

 

For Dataset 8: 

Recall that we have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 3,768; m1

-
 = 4,232; m2 = 1,600; m2

+
 = 761; m2

-
 = 

839. 
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Table 9.8-1 Comparison with Weka Results on Dataset 8. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 704 806 1510 57 33 90 

Bayes 

AODE 524 654 1178 237 185 422 

AODEsr 524 654 1178 237 185 422 

BayesNet 491 629 1120 270 210 480 

HNB 599 690 1289 162 149 311 

NaiveBayes 491 629 1120 270 210 480 

NaiveBayesSimple 491 629 1120 270 210 480 

NaiveBayesUpdateable 491 629 1120 270 210 480 

WAODE 523 660 1183 238 179 417 

(table con'd) 
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Function 

Logistic 490 624 1114 271 215 486 

MultiLayerPerceptron 748 738 1486 13 101 114 

RBFNetwork 519 620 1139 242 219 461 

SimpleLogistic 487 624 1111 274 215 489 

SMO 490 618 1108 271 221 492 

VotedPerceptron 493 619 1112 268 220 488 

Winnow 430 569 999 331 270 601 

Lazy 

IB1 628 692 1320 133 147 280 

IBk 708 728 1436 53 111 164 

KStar 701 807 1508 60 32 92 

LBR 708 718 1426 53 121 174 

LWL 541 608 1149 220 231 451 

Meta 

AdaBoostM1 537 580 1117 224 259 483 

AttributeSelectedClassifier 500 612 1112 261 227 488 

Bagging 707 796 1503 54 43 97 

ClassificationViaClustering 507 390 897 254 449 703 

ClassificationViaRegression 687 770 1457 74 69 143 

CostSensitiveClassifier 0 839 839 761 0 761 

CVParameterSelection 0 839 839 761 0 761 

Dagging 499 614 1113 262 225 487 

Decorate 695 799 1494 66 40 106 

END 691 770 1461 70 69 139 

EnsembleSelection 689 775 1464 72 64 136 

FilteredClassifier 691 770 1461 70 69 139 

Grading 0 839 839 761 0 761 

LogitBoost 499 612 1111 262 227 489 

MetaCost 0 839 839 761 0 761 

MultiBoostAB 513 536 1049 248 303 551 

MultiClassClassifier 490 624 1114 271 215 486 

MultiScheme 0 839 839 761 0 761 

OrdinalClassClassifier 691 770 1461 70 69 139 

RacedIncrementalLogitBoost 492 623 1115 269 216 485 

RandomCommittee 676 746 1422 85 93 178 

RandomSubSpace 633 676 1309 128 163 291 

Stacking 0 839 839 761 0 761 

StackingC 0 839 839 761 0 761 

ThresholdSelector 659 375 1034 102 464 566 

Vote 0 839 839 761 0 761 

ClassBalancedND 691 770 1461 70 69 139 

DataNearBalancedND 691 770 1461 70 69 139 

ND 691 770 1461 70 69 139 

Misc 

HyperPipes 761 0 761 0 839 839 

MinMaxExtension 84 822 906 677 17 694 

OLM 279 703 982 482 136 618 

OSDL 84 822 906 677 17 694 

VFI 516 594 1110 245 245 490 

(table con'd) 
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Trees 

ADTree 559 644 1203 202 195 397 

BFTree 691 766 1457 70 73 143 

DecisionStump 454 482 936 307 357 664 

Id3 702 781 1483 59 58 117 

J48 691 770 1461 70 69 139 

J48graft 691 770 1461 70 69 139 

LMT 703 781 1484 58 58 116 

NBTree 737 780 1517 24 59 83 

RandomForest 734 787 1521 27 52 79 

RandomTree 566 655 1221 195 184 379 

REPTree 685 769 1454 76 70 146 

SimpleCart 689 774 1463 72 65 137 

Rules 

ConjunctiveRule 454 482 936 307 357 664 

DecisionTable 636 661 1297 125 178 303 

JRip 704 770 1474 57 69 126 

NNge - - - - - - 

OneR 454 482 936 307 357 664 

PART 750 836 1586 11 3 14 

Prism 737 800 1537 0 39 63* 

Ridor 754 810 1564 7 29 36 

ZeroR 0 839 839 761 0 761 

 

In summary, among all 76 classifiers, the best result gets 14 of all unknown examples 

wrong. The worst result gets 839 of all unknown examples wrong. The M* algorithm gets 

90 of all unknown examples wrong, and it ranks at the 6th place. Of all the 5 classifiers 

that outperform M*, the distribution is: 

Table 9.8-2 Outperforming classifiers on Dataset 8. 

Bayes Function Lazy Meta Misc Tree Rules 

0 0 0 0 0 2 3 

 

For Dataset 9: 

Recall that we have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 4,611; m1

-
 = 3,389; m2 = 1,600; m2

+
 = 895; m2

-
 = 

705. 
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Table 9.9-1 Comparison with Weka Results on Dataset 9. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 866 630 1496 29 75 104 

Bayes 

AODE 754 395 1149 141 310 451 

AODEsr 754 395 1149 141 310 451 

BayesNet 721 337 1058 174 368 542 

HNB 756 443 1199 139 262 401 

NaiveBayes 721 337 1058 174 368 542 

NaiveBayesSimple 721 337 1058 174 368 542 

NaiveBayesUpdateable 721 337 1058 174 368 542 

WAODE 752 395 1147 143 310 453 

Function 

Logistic 710 349 1059 185 356 541 

MultiLayerPerceptron 865 527 1392 30 178 208 

RBFNetwork 713 409 1122 182 296 478 

SimpleLogistic 719 328 1047 176 377 553 

SMO 707 350 1057 188 355 543 

VotedPerceptron 692 360 1052 203 345 548 

Winnow 675 285 960 220 420 640 

Lazy 

IB1 741 561 1302 154 144 298 

IBk 853 574 1427 42 131 173 

KStar 866 621 1487 29 84 113 

LBR 854 543 1397 41 162 203 

LWL 708 405 1113 187 300 487 

Meta 

AdaBoostM1 721 318 1039 174 387 561 

AttributeSelectedClassifier 769 443 1212 126 262 388 

Bagging 884 597 1481 11 108 119 

ClassificationViaClustering 509 405 914 386 300 686 

ClassificationViaRegression 862 593 1455 33 112 145 

CostSensitiveClassifier 895 0 895 0 705 705 

CVParameterSelection 895 0 895 0 705 705 

Dagging 728 328 1056 167 377 544 

Decorate 839 620 1459 56 85 141 

END 862 611 1473 33 94 127 

EnsembleSelection 877 577 1454 18 128 146 

FilteredClassifier 862 611 1473 33 94 127 

Grading 895 0 895 0 705 705 

LogitBoost 721 313 1034 174 392 566 

MetaCost 895 0 895 0 705 705 

MultiBoostAB 750 256 1006 145 449 594 

MultiClassClassifier 710 349 1059 185 356 541 

MultiScheme 895 0 895 0 705 705 

OrdinalClassClassifier 862 611 1473 33 94 127 

RacedIncrementalLogitBoost 688 357 1045 207 348 555 

RandomCommittee 851 547 1398 44 158 202 

RandomSubSpace 823 377 1200 72 328 400 

Stacking 895 0 895 0 705 705 

StackingC 895 0 895 0 705 705 

(table con'd) 
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ThresholdSelector 837 139 976 58 566 624 

Vote 895 0 895 0 705 705 

ClassBalancedND 862 611 1473 33 94 127 

DataNearBalancedND 862 611 1473 33 94 127 

ND 862 611 1473 33 94 127 

Misc 

HyperPipes 895 0 895 0 705 705 

MinMaxExtension 268 657 925 627 48 675 

OLM 449 540 989 446 165 611 

OSDL 268 657 925 627 48 675 

VFI 574 491 1065 321 214 535 

Trees 

ADTree 780 271 1051 115 434 549 

BFTree 843 620 1463 52 85 137 

DecisionStump 532 446 978 363 259 622 

Id3 830 647 1477 65 58 123 

J48 862 611 1473 33 94 127 

J48graft 863 613 1476 32 92 124 

LMT 836 641 1477 59 64 123 

NBTree 869 633 1502 26 72 98 

RandomForest 878 608 1486 17 97 114 

RandomTree 686 472 1158 209 233 442 

REPTree 847 555 1402 48 150 198 

SimpleCart 868 602 1470 27 103 130 

Rules 

ConjunctiveRule 532 446 978 363 259 622 

DecisionTable 786 495 1281 109 210 319 

JRip 895 705 1600 0 0 0 

NNge - - - - - - 

OneR 532 446 978 363 259 622 

PART 886 691 1577 9 14 23 

Prism 859 661 1520 0 44 80* 

Ridor 894 676 1570 1 29 30 

ZeroR 895 0 895 0 705 705 

 

In summary, among all 76 classifiers, the best result gets 0 of all unknown examples 

wrong. The worst result gets 705 of all unknown examples wrong. The M* algorithm gets 

104 of all unknown examples wrong, and it ranks at the 6th place. Of all the 5 classifiers 

that outperform M*, the distribution is: 

Table 9.9-2 Outperforming classifiers on Dataset 9. 

Bayes Function Lazy Meta Misc Tree Rules 

0 0 0 0 0 1 4 

 

For Dataset 10: 

Recall that we have the following parameters for this dataset: 

n = 15; 2
n
 = 32,768; m1 = 6,400; m1

+
 = 4,288; m1

-
 = 3,712; m2 = 1,600; m2

+
 = 852; m2

-
 = 

748; 
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Table 9.10-1 Comparison with Weka Results on Dataset 10. 

Algorithm CorrectPos CorrectNeg Correct WrongPos WrongNeg Wrong 

M* 826 670 1496 26 78 104 

Bayes 

AODE 643 463 1106 209 285 494 

AODEsr 643 463 1106 209 285 494 

BayesNet 601 440 1041 251 308 559 

HNB 732 513 1245 120 235 355 

NaiveBayes 601 440 1041 251 308 559 

NaiveBayesSimple 601 440 1041 251 308 559 

NaiveBayesUpdateable 601 440 1041 251 308 559 

WAODE 654 444 1098 198 304 502 

Function 

Logistic 600 437 1037 252 311 563 

MultiLayerPerceptron 839 622 1461 13 126 139 

RBFNetwork 638 443 1081 214 305 519 

SimpleLogistic 608 439 1047 244 309 553 

SMO 535 483 1018 317 265 582 

VotedPerceptron 605 431 1036 247 317 564 

Winnow 409 446 855 443 302 745 

Lazy 

IB1 694 588 1282 158 160 318 

IBk 805 618 1423 47 130 177 

KStar 818 683 1501 34 65 99 

LBR 806 628 1434 46 120 166 

LWL 535 483 1018 317 265 582 

Meta 

AdaBoostM1 599 444 1043 253 304 557 

AttributeSelectedClassifier 609 571 1180 243 177 420 

Bagging 843 655 1498 9 93 102 

ClassificationViaClustering 523 299 822 329 449 778 

ClassificationViaRegression 810 631 1441 42 117 159 

CostSensitiveClassifier 852 0 852 0 748 748 

CVParameterSelection 852 0 852 0 748 748 

Dagging 535 483 1018 317 265 582 

Decorate 804 690 1494 48 58 106 

END 813 644 1457 39 104 143 

EnsembleSelection 839 642 1481 13 106 119 

FilteredClassifier 813 644 1457 39 104 143 

Grading 852 0 852 0 748 748 

(table con'd) 
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LogitBoost 600 431 1031 252 317 569 

MetaCost 852 0 852 0 748 748 

MultiBoostAB 535 483 1018 317 265 582 

MultiClassClassifier 600 437 1037 252 311 563 

MultiScheme 852 0 852 0 748 748 

OrdinalClassClassifier 813 644 1457 39 104 143 

RacedIncrementalLogitBoost 620 373 993 232 375 607 

RandomCommittee 797 597 1394 55 151 206 

RandomSubSpace 772 506 1278 80 242 322 

Stacking 852 0 852 0 748 748 

StackingC 852 0 852 0 748 748 

ThresholdSelector 744 281 1025 108 467 575 

Vote 852 0 852 0 748 748 

ClassBalancedND 813 644 1457 39 104 143 

DataNearBalancedND 813 644 1457 39 104 143 

ND 813 644 1457 39 104 143 

Misc 

HyperPipes 852 0 852 0 748 748 

MinMaxExtension 148 730 878 704 18 722 

OLM 345 574 919 507 174 681 

OSDL 148 730 878 704 18 722 

VFI 542 482 1024 310 266 576 

Trees 

ADTree 852 318 1170 0 430 430 

BFTree 802 648 1450 50 100 150 

DecisionStump 535 483 1018 317 265 582 

Id3 789 681 1470 63 67 130 

J48 813 644 1457 39 104 143 

J48graft 813 643 1456 39 105 144 

LMT 788 679 1467 64 69 133 

NBTree 833 673 1506 19 75 94 

RandomForest 833 654 1487 19 94 113 

RandomTree 659 553 1212 193 195 388 

REPTree 796 627 1423 56 121 177 

SimpleCart 808 655 1463 44 93 137 

Rules 

ConjunctiveRule 535 483 1018 317 265 582 

DecisionTable 777 505 1282 75 243 318 

JRip 852 748 1600 0 0 0 

NNge - - - - - - 

OneR 535 483 1018 317 265 582 

PART 845 732 1577 7 16 23 

Prism 823 703 1526 0 45 74* 

Ridor 852 704 1556 0 44 44 

ZeroR 852 0 852 0 748 748 

 

In summary, among all 76 classifiers, the best result gets 0 of all unknown examples 

wrong. The worst result gets 778 of all unknown examples wrong. The M* algorithm gets 

104 of all unknown examples wrong, and it ranks at the 8th place. Of all the 7 classifiers 

that outperform M*, the distribution is: 
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Table 9.10-2 Outperforming classifiers on Dataset 10. 

Bayes Function Lazy Meta Misc Tree Rules 

0 0 1 1 0 1 4 

 

9.2 Analysis of Comparison Results 

If we summarize the ten Outperforming Classifiers Tables, we will get the following 

table: 

Table 9.11 Summary of Outperforming Classifiers. 

Dataset Bayes Function Lazy Meta Misc Trees Rules 

D1 0 0 2 0 0 0 2 

D2 0 0 0 0 0 1 4 

D3 0 0 0 0 0 1 2 

D4 0 0 0 0 0 0 0 

D5 0 0 1 0 0 2 3 

D6 0 0 0 0 0 3 4 

D7 0 1 0 1 0 2 3 

D8 0 0 0 0 0 2 3 

D9 0 0 0 0 0 1 4 

D10 0 0 1 1 0 1 4 

 

From the above table, the easiest conclusion we can draw upon is, the M* algorithm has 

performed better than all the classifiers in Bayesian and Miscellaneous categories on all 

10 datasets. 

 

For the rest of the categories, there are at least one classifier which has performed better 

than the M* algorithm for at least one time. Now we will take a closer look at these 

classifiers in each category. 

Table 9.12 Details of Outperforming Classifiers. 

Algorithm D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 Times 

Function MultiLayerPerceptron       X    1 

Lazy 
IBk X          1 

KStar X    X     X 3 

Meta Bagging       X   X 2 

Trees 

Id3     X X     2 

LMT     X  X    2 

NBTree  X X   X  X X X 6 

RandomForest      X X X   3 

Rules 

JRip X X   X X X  X X 7 

PART X X X  X X X X X X 9 

Prism  X   X X X X X X 7 

Ridor  X X   X  X X X 6 
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The above table means, there are in total 12 classifiers of 5 categories which have 

outperformed M* algorithm at least once. Among them, Classifier "MultiLayer 

Perceptron" of category "Function" has outperformed M* algorithm once on Dataset 7; 

Classifier "IBk" of category "Lazy" has outperformed M* algorithm once on Dataset 1; 

and so on. 

 

Among the 12 classifiers in Table 9.12, 5 classifiers have outperformed the M* algorithm 

for more than five times, i.e., half of the times. These are classifier "NBTree" from 

Decision Tree methods, classifiers "JRip", "PART", "Prism", and "Ridor" from Rule 

Induction methods. We will now examine the detailed results of these five classifiers 

more closely, and compare them with the detailed result of the M* algorithm. We will use 

Dataset 1 as an illustrative example. Though the analyses on the rest datasets have not 

been shown in this thesis, they all exhibit the same properties. 

 

What we want to see is, if the examples which are misclassified by the M* algorithm are 

also misclassified by other classifiers; and if the probabilities generated by these 

classifiers are distributed in a wide range. 

 

For the M* algorithm: 

A total of 8 examples were classified wrongly. They are: 

Table 9.13 Partial Detailed Result of the M* Algorithm on Dataset 1 

 # z (p1, p0) 

Wrong Positive 12 <0111000010> (0.450, 0.550) 

Wrong Negative 

5 <1000100100> (0.571, 0.429) 

18 <0010011110> (0.806, 0.194) 

32 <1101010011> (0.671, 0.329) 

34 <0110011110> (0.677, 0.323) 

39 <1100001010> (0.735, 0.265) 

49 <1010011110> (0.684, 0.316) 

59 <1101011010> (0.765, 0.235) 

 

A complete detailed result can be drawn in a diagram. In the following figure the 

horizontal axis is the number of examples. The vertical axis is the probability p1. The 

blue points depict the examples which have actual class "1", while the red points depict 

the examples which have actual class "0". The horizontal line p1 = 0.5 separates all the 

examples into two sections. The examples in the above section are predicted to be 

positive, while the examples in the below section are predicted to be negative. In other 

words, the blue examples in the above section and the red examples in the below section 

are correctly classified. While the blue examples in the below section and the red 

examples in the above section are incorrectly classified. The blue examples in the below 



119 
 

section correspond to the "Wrong Positive" rows in the table. The red examples in the 

above section correspond to the "Wrong Negative" rows in the table.  

 

Figure 9.1 The Distribution of probability p1 for the M* Algorithm on Dataset 1. 

 

For Classifier NBTree: 

Weka has generated assessments of probabilities for every classifier. Therefore we will 

take a look at these probabilities for the other classifiers. For classifier NBTree, 10 

examples were classified wrongly. There are no wrong positive examples, and 10 wrong 

negative examples. They are: 

Table 9.14 Partial Detailed Result of Classifier NBTree on Dataset 1. 

 # z (p1, p0) 

Wrong Positive - - - 

Wrong Negative 

7 <0001110111> (0.520, 0.480) 

18 <0010011110> (0.598, 0.402) 

19 <0001100111> (0.809, 0.191) 

32 <1101010011> (0.779, 0.221) 

39 <1100001010> (0.653, 0.347) 

41 <0000010110> (0.674, 0.326) 

49 <1010011110> (0.544, 0.456) 

55 <1101010010> (0.644, 0.356) 

59 <1101011010> (0.718, 0.282) 

67 <0001100011> (0.853, 0.147) 
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Figure 9.2 The Distribution of probability p1 for Classifier NBTree on Dataset 1. 

 

For Classifier JRip: 

None of the examples were classified wrongly. 

Table 9.15 Partial Detailed Result of Classifier JRip on Dataset 1. 

 # z (p1, p0) 

Wrong Positive - - - 

Wrong Negative - - - 

 

 
Figure 9.3 The Distribution of probability p1 for classifier JRip on Dataset 1. 
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For Classifier PART: 

A total of 5 examples were classified wrongly. There are no wrong positive examples, 

and 5 wrong negative examples. They are: 

Table 9.16 Partial Detailed Result of Classifier PART on Dataset 1. 

 # z (p1, p0) 

Wrong Positive - - - 

Wrong Negative 

18 <0010011110> (1, 0) 

39 <1100001010> (0.933, 0.067) 

41 <0000010110> (1, 0) 

49 <1010011110> (1, 0) 

59 <1101011010> (0.933, 0.067) 

 

 
Figure 9.4 The Distribution of probability p1 for classifier PART on Dataset 1. 

 

For Classifier Prism: 

A total of 4 examples were classified wrongly. There are no wrong positive examples, 

and 4 wrong negative examples. In addition, there are 6 examples classified as 

"undecidable" ones. (i.e., the blank ones in the middle). They are: 
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Table 9.17 Partial Detailed Result of Classifier Prism on Dataset 1. 

 # z (p1, p0) 

Wrong Positive - - - 

Wrong Negative 

18 <0010011110> (1, 0) 

39 <1100001010> (1, 0) 

49 <1010011110> (1, 0) 

59 <1101011010> (1, 0) 

Undecidable 

2 <0111110110> (0.5, 0.5) 

24 <1111111110> (0.5, 0.5) 

38 <0101111110> (0.5, 0.5) 

42 <1111100111> (0.5, 0.5) 

66 <1111110111> (0.5, 0.5) 

72 <0010010010> (0.5, 0.5) 

 

 

Figure 9.5 The Distribution of probability p1 for classifier Prism on Dataset 1. 

 

For Classifier Ridor: 

A total of 17 examples were classified wrongly. There are 6 wrong positive examples, 

and 11 wrong negative examples. They are: 
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Table 9.18 Partial Detailed Result of Classifier Ridor on Dataset 1. 

 # z (p1, p0) 

Wrong Positive 

2 <0111110110> (0, 1) 

21 <1011000101> (0, 1) 

23 <1010010011> (0, 1) 

26 <0010110011> (0, 1) 

54 <1011010010> (0, 1) 

94 <0011010100> (0, 1) 

Wrong Negative 

18 <0010011110> (1, 0) 

32 <1101010011> (1, 0) 

34 <0110011110> (1, 0) 

39 <1100001010> (1, 0) 

41 <0000010110> (1, 0) 

49 <1010011110> (1, 0) 

50 <0010010110> (1, 0) 

55 <1101010010> (1, 0) 

59 <1101011010> (1, 0) 

64 <1001101110> (1, 0) 

79 <0000000100> (1, 0) 

 

 
Figure 9.6 The Distribution of probability p1 for classifier Ridor on Dataset 1. 

 

9.3 Conclusions 

In summary, 

o On datasets 1 to 10, the M* algorithm ranks from the 1st to the 8th places. 



124 
 

o Most of the misclassified examples by the M* algorithm are also misclassified by 

other fine classifiers (i.e., the classifiers that have outperformed the M* algorithm). 

o The M* algorithm generates probabilities that are distributed in a wide range. It 

has the ability to adjust to the change of misclassification costs. 
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CHAPTER 10. RATIONALE 

 

10.1 Analysis of the Rationale 

Though the M* algorithm gives good results, we still need to know the rationale. Is it just 

coincidental or there is some reason behind it? 

 

To answer this question, at first we need to transform all the Boolean functions into 

disjunction normal form. We already know that every Boolean function can be converted 

into conjunction normal form (CNF) or disjunction normal form (DNF). Moreover, CNF 

and DNF can be converted to each other by applying the distribution rule. For instance, 

the hidden function f for our illustrative problem can be written in DNF as f ': 

)()()( 65443231 xxxxxxxxf 
 

 

)()()()()()(' 63534341621521 xxxxxxxxxxxxxxf   

 

The above DNF function means as long an examples satisfies one of the six clauses, the 

Boolean function will have value "1", i.e., the example will become positive. To satisfy a 

clause, an example must satisfy all the values of the attributes in that clause. Take the 

first clause for instance. Satisfying clause )( 521 xxx   means an example must have "1" 

for the value of x1, and "0" for the values of x2 and x5. Now we keep the values of 

attributes x1, x2, and x5 as 1, 0, and 0, respectively. Then by filling in the values of the rest 

of the attributes, we will have all the examples that satisfy the clause )( 521 xxx  . If we 

arrange these examples according to their levels, we will have the following diagram: 

 

Figure 10.1 All the Examples Satisfying the Clause )( 521 xxx  . 

 

There are three important observations based on the above figure: 

o All the examples are positive or unclassified examples. 

o All the examples form a monotone subset. 
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o All the unclassified examples are actually positive too, according to the hidden 

function. 

 

Similarly, we can find out all the examples that satisfy the rest five clauses. 

 

For clause )( 621 xxx  : 

 

Figure 10.2 All the Examples Satisfying the Clause )( 621 xxx  . 

 

For clause )( 41 xx  : 

 

Figure 10.3 All the Examples Satisfying the Clause )( 41 xx  . 

 

For clause )( 43 xx  : 

 

Figure 10.4 All the Examples Satisfying the Clause )( 43 xx  . 
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For clause )( 53 xx  : 

 

Figure 10.5 All the Examples Satisfying the Clause )( 53 xx  . 

 

For clause )( 63 xx  : 

 

Figure 10.6 All the Examples Satisfying the Clause )( 63 xx  . 

 

Based on Figures 10.1 to 10.6, there are some important observations to make: 

o All the actual positive examples (including classified and unclassified ones) must 

be included in one of the above monotone subsets. 

o All the examples which are not included in one of the above monotone subsets 

must be non- positive examples. 

o These monotone subsets may overlap with each other, or may be isolated. 

 

To explain the third observation, we can see that the monotone subsets in Figures 10.1 to 

10.6 all overlap with each other. For instance, example <100101> is included in all these 

monotone subsets. Our example above does not have isolated subsets. However, imagine 

a hidden function as the following: 

)()( 3121 xxxxf   

Then the subsets implied by the first and second clauses must not have any example in 

common. That is because the examples in the first subset must have value "1" for 
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attribute x1, while the examples in the second subset must have value "0" for attribute x1. 

Therefore they cannot be the same sets of examples. 

 

Now if we draw all these positive subsets together in one diagram, we get the following: 

 
Figure 10.7 The Group of Positive Monotone Subsets. 

 

Similarly, we can have the group of negative subsets. First we negate the original 

function f, then every example that satisfies f  must have class value "0", or, the example 

will be negative. 

)()()( 65443231 xxxxxxxxf   

Same as before, all the examples satisfying one of the three clauses must also satisfy the 

whole function. All the examples satisfying one of the clauses must form a monotone 

subset. All these monotone subsets must only contain positive examples or unclassified 

examples which are actually positive. 

 

Therefore, for clause )( 31 xx  : 

 

Figure 10.8 All the Examples Satisfying the Clause )( 31 xx  . 
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For clause )( 432 xxx  : 

 

Figure 10.9 All the Examples Satisfying the Clause )( 432 xxx  . 

 

For clause )( 654 xxx  : 

 

Figure 10.10 All the Examples Satisfying the Clause )( 654 xxx  . 

Similar to positive subsets, all the negative examples must fall in one of the negative 

subsets. Any example which is not included in the group of the negative subsets must not 

be in the negative class. The group of negative subsets can be drawn as follows: 

 
Figure 10.11 The Group of Negative Monotone Subsets. 
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Now we know all classified or unclassified examples in the positive class must be 

included in the group of positive subsets, and all classified or unclassified examples in 

the negative class must be included in the group of negative subsets. Since there are only 

two classes in binary systems, then the two groups must complement each other. In other 

words, in Figure 10.7, what is not included in one of the blue regions must be part of the 

negative subsets. Similarly, in Figure 10.11, what is not included in one of the red regions 

must be part of the positive subsets. 

 

According to the above reasoning, in the following figure, v1, an unclassified example 

which falls in one of the blue region, must have actual class value "1". While v2, a 

positive example, must fall in one of the blue regions. v3, a negative example, must fall 

out of the blue region; and v4, an unclassified example which falls out of the blue regions, 

must have actual class value "0". 

 
Figure 10.12 The Complement Property of Groups of Positive and Negative Subsets. 

 

Now we know there exist two groups of monotone subsets in every binary system. 

Suppose we have a target example z. Then the ordered examples of z will be in the area 

of the dashed lines as follows: 

 
Figure 10.13 A Target Example z and the Ordered Examples with Relation to the Group 

of Monotone Positive Subsets. 
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When we are trying to determine the class of z. An ideal case would be if we knew the 

classes of all the examples besides z. Therefore the ideal case would be like follows: 

 
Figure 10.14 The Ideal Case for Determining the Class of the Target Example z. 

 

If all the information needed for the ideal case is given, then in the above figure: 

Area 1 will be the positive examples in indirect relations with z; 

Area 2 will be the negative examples in indirect relations with z; 

Area 3 will be the positive examples in direct relations with z; 

Area 4 will be the positive examples in direct relations with z; 

Area 5 will be the negative examples in indirect relations with z. 

 

It is obvious that in the ideal case, the class of the target example z can be decided by the 

examples which are in direct relations with z. This explains why the "direct relation" type 

has become the basis of our voting system. 

 

As for the indirect relation type, they could be in the same class as the target example z, 

as examples in area 1; and they also could be in the opposite class as the target example z, 

as examples in areas 2 and 5. This explains why the "indirect relation" type has not 

played any part in our voting system. 

 

Now suppose we are in a not-so-ideal-case, which means some information is not given 

to us. In that situation, if we already have found out that a certain example is in indirect 

relation with the target example z, then this example must truly be in indirect relation 

with z. Therefore, this example will be assigned to weight 0. On the other hand, if we 

have found out that a certain example is in direct relation with z, due to the lack of 

information, this example might be truly in a direct relation type or it still could be in an 

indirect relation type. See Figure 10.15 for an illustration.  
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Figure 10.15 The "Direct Relation" Type in a Not-so-ideal-case. 

 

As shown in the above figure, because the classes of v2 and v4 are unknown to us right 

now, v1 and v3 are both decided to be in direct relations with the target example z. 

However, neither v1 nor v3 are in fact in direct relation with z. Meanwhile, v5 and v6 are 

truly of the "direct relation" type. Therefore, our assumption here is, the subset(s) that 

include z might be very small, hence the closer an example is to z, the more likely it is in 

the same subset as z. This explains why the examples that are closer to the target example 

should have higher weights. 

 

10.2 Conclusions 

From above analysis, we can see that the accuracy of the M* algorithm is decided by the 

"depth" of the monotone subsets. By "depth", we mean the number of levels in a subset. 

For instance, for clause )( 521 xxx  , we have a monotone subset with depth 3: 

 

Figure 10. 16 A Monotone Subset with Depth 3. 

Meanwhile, for another clause )( 41 xx  , we have a monotone subset with depth 4: 
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Figure 10.17 A Monotone Subset with Depth 4. 

In other words, the depth of a subset is the difference of the number of attribute 

subtracting the number of attributes specified in the corresponding clause. The deeper the 

monotone subset where the target example is in, the more examples there are in direct 

relations with the target example, hence the more accurate the result of the M* algorithm 

will be. 

 

Suppose a Boolean function takes the simplest form. If the number of attributes contained 

in a clause is relatively small, then the corresponding monotone subset will have greater 

depth. This means the target example that fall in this monotone subset tend to have more 

examples in direct relations with it, which helps to determine the class of the target 

example. If the number of attributes contained in a clause is relatively small, then we 

have the opposite case. 

 

The number of clauses in a Boolean function also affects the accuracy of the M* 

algorithm. This is the case because, if we negate the Boolean function to get the Boolean 

expression of the negative subsets, then the number of attributes contained in each clause 

is decided by the number of clauses in the original Boolean function. 

 

Suppose there are two binary systems along with two Boolean functions in their simplest 

form. We have the same size of training datasets and testing datasets for both systems. 

Besides that, all the examples are randomly selected from both systems. Then the 

performance of the M* algorithm on both systems is completely decided by how the 

hidden Boolean functions are like. Suppose one of the Boolean functions have a lot of 

clauses and each clause contain a large number of attributes, and the other Boolean 

function have a relatively small number of clauses and each clause contain a fewer 

number of attributes. Then, the performance of the M* algorithm on the first system is 

definitely worse than the second case. 

 

Led by the above reasoning, we can see what the worst case would be for the M* 

algorithm. That is when all the examples at odd levels belong to one class, and all the 



134 
 

examples at the even levels have the other class. In this case, each monotone subset will 

contain only 1 example, and hence all the subsets will have depth 1. However, this will 

only happen when the classification attribute is generally irrelevant with the descriptive 

attributes. This would imply that the selection of the descriptive attributes is wrong. 

Therefore we would not worry about this situation happening in a well pre-processed 

system. 
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CHAPTER 11. CONCLUDING REMARKS 

 

We will summarize what we have concluded so far as follows: 

o An upper bound of the execution time for the M* algorithm is O(m1
2
 · m2), where 

m1 is the number of examples in training data, and m2 is the number of examples 

in testing data. This is relatively a loose upper bound. In most cases, the algorithm 

does not cost that much time. 

 

o On datasets 1 to 10, the M* algorithm ranks from the 1st to the 8th places 

compared the other 75 classifiers provided by Weka 3.5.7. 

 

o There are 12 classifiers of 5 categories which have outperformed M* algorithm at 

least once. Among them, 5 classifiers have outperformed the M* algorithm for 

more than half of the times. These are classifier "NBTree" from Decision Tree 

methods, classifiers "JRip", "PART", "Prism", and "Ridor" from Rule Induction 

methods. 

 

o Most of the misclassified examples by the M* algorithm are also misclassified by 

other fine classifiers (i.e., the classifiers that have outperformed the M* algorithm). 

 

o While all the rule induction classifiers that have outperformed the M* algorithm 

mostly generate probability pairs (1, 0) or (0, 1), the M* algorithm generates 

probability pairs that are distributed in a wide range, which implies the M* 

algorithm has the ability to adjust to the change of misclassification costs. 

 

o The performance of the M* algorithm is decided by the Boolean function which is 

unknown to us. When the Boolean function take the simplest form, the smaller 

number of attributes each clause contains, and the smaller number of clauses the 

Boolean function has, the better performance the M* algorithm will have. 

 

o The worst case for the M* algorithm is when all the examples at odd levels belong 

to one class, and all the examples at the even levels have the other class. In this 

case, each monotone subset will contain only 1 example, and hence all the subsets 

will have depth 1. However, this situation should not happen in a well pre-

processed system. 
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CHAPTER 12. SOME POSSIBLE FUTURE RESEARCH DIRECTIONS 

 

12.1 Modification of the Weights 

The author still does not think the current weighting scheme is the optimal one. For 

instance, we only know that the closer certain example is to the target example, the more 

impact that example has on determining the class of the target example. But we are not 

sure if increasing weights exponentially according to the distance to the target example is 

the best way. Or for the examples at the same level as the target example, maybe they 

have some other options of weight schemes too. 

 

12.2 How to Iterate 

Iterations often generate better results, and many good algorithms do have iterates. For 

now, the M* algorithm does not iterate at all. Maybe it could run once, and based on the 

probability pair it gets from the previous run, make adjustment to the results. For instance, 

suppose at first we do not have much information of the classes of the closely related 

examples of a target example z, then after we run the first iteration, we find out that all 

the closely related examples have a high probability of belonging to the same class, 

therefore at the second iteration, we might want to raise the probability for z of belonging 

to that class. 

 

12.3 Effect of Irrelevant and Marked Attributes 

An irrelevant attribute is an attribute that does not play any role in the hidden function. 

For instance, suppose in a binary system of dimension 4 we have the following hidden 

function: 

𝑓 = (𝑥1 ⋎ 𝑥2) ⋏ (𝑥1 ⋎ 𝑥3) 

Then in this case x4 is an irrelevant attribute. Many classifiers degrade their performance 

when there is an irrelevant attribute present. We need to find out what exactly is the 

impact of an irrelevant attribute on the M* algorithm. 

 

A marked attribute is just the opposite. Suppose this time we have a binary system of 

dimension 2, and we have the same hidden function as above. Then under this situation, 

x3 is a marked attribute. It does play a role in the hidden function, but it is not recognized 

in the binary system. A marked attribute will also affect the performance of the classifiers. 

We want to be able to identify such cases and study them in depth. 

 

12.4 A More General Application 

So far, we have seen the M* algorithm as it has been applied to binary systems where 

either descriptive attributes or classification attribute can only take values 0 or 1. 

However, in reality, such binary systems are relatively few. Real systems might have 

descriptive attributes and classification attribute that can take any data type. So, can the 

M* algorithm be applied to these systems? A complete answer is yet to be found. Next 



137 
 

we can show the application of the M* algorithm on the Iris dataset where the descriptive 

attributes can take real values and the classification attribute could be nominal and have 

more than two values. 

 

12.4.1 The Iris Dataset 

The dataset we are going to use next is a famous one in the data mining world. It was 

created by R.A. Fisher and donated by M. Marshall in July of 1988. There have been 

many notable analyses on this dataset. To name a few, (Fisher, 1950), (Duda, 1973), and 

(Gates, 1972), their publications have been frequently referenced to this day. This dataset 

contains 3 classes, and each class refers to a type of iris plant, namely, "Iris Setosa", "Iris 

Versicolour", and "Iris Virginica". Class "Iris Setosa" is linearly separable from the other 

two. But "Iris Versicolour" and "Iris Virginica" are not linearly separable from each other. 

The Iris dataset has four continuous descriptive attributes, i.e., "sepal length", "sepal 

width", "petal length", and "petal width", all measured in centimeters. It has 150 

classified examples, 50 in each of three classes. Part of the Iris dataset is shown as 

follows: 

Table 12.1 Part of the Iris Dataset. 

Ex # Sepal length Sepal width Petal length Petal width Class 

1 5.1 3.5 1.4 0.2 Iris-setosa 

2 4.9 3.0 1.4 0.2 Iris-setosa 

3 4.7 3.2 1.3 0.2 Iris-setosa 

4 4.6 3.1 1.5 0.2 Iris-setosa 

5 5.0 3.6 1.4 0.2 Iris-setosa 

6 5.4 3.9 1.7 0.4 Iris-setosa 

7 7.0 3.2 4.7 1.4 Iris-versicolor 

8 6.4 3.2 4.5 1.5 Iris-versicolor 

9 6.9 3.1 4.9 1.5 Iris-versicolor 

10 5.5 2.3 4.0 1.3 Iris-versicolor 

11 6.5 2.8 4.6 1.5 Iris-versicolor 

12 5.7 2.8 4.5 1.3 Iris-versicolor 

13 6.3 3.3 6.0 2.5 Iris-virginica 

14 5.8 2.7 5.1 1.9 Iris-virginica 

15 7.1 3.0 5.9 2.1 Iris-virginica 

16 6.3 2.9 5.6 1.8 Iris-virginica 

17 6.5 3.0 5.8 2.2 Iris-virginica 

18 7.6 3.0 6.6 2.1 Iris-virginica 

… … … … … … 

 

12.4.2 Data Preparation on the Iris Dataset 

As it was mentioned before, attributes in any data type can be transformed into binary 

ones. This process is called Data Binarization. Therefore, our first intuition is to binarize 

the Iris dataset, and then apply the M* algorithm on it. 
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Here, we will use the method describe in (Triantaphyllou, 2008) to binarize the dataset. 

We will not describe the whole method thoroughly, but we will use the Iris dataset as an 

illustration to show this binarization process. 

 

First step: find Val(Aj) for all continuous descriptive attributes Aj, where Val(Aj) is an 

ordered set with all the different values of attribute Aj in an increasing order. 

 

Val("sepal length") = {Vi("sepal length"), for i = 1, 2, 3, …, 35} = 

= {4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 

6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.6, 7.7, 7.9} 

 

Here, the cardinality of Val("sepal length") is 35. Similarly, we get 

 

Val("sepal width") = {Vi("sepal width"), for i = 1, 2, 3, …, 23} = 

= {2.0, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3.0, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 

3.9, 4.0, 4.1, 4.2, 4.4} 

 

Val("petal length") = {Vi("petal length"), for i = 1, 2, 3, …, 43} = 

= {1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.9, 3.0, 3.3, 3.5, 3.6, 3.7, 3.8, 3.9, 4.0, 4.1, 

4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6.0, 

6.1, 6.3, 6.4, 6.6, 6.7, 6.9} 

 

Val("petal width") = {Vi("petal width"), for i = 1, 2, 3, …, 22} = 

 = {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1,      

2.2, 2.3, 2.4, 2.5} 

 

Second step: for each continuous descriptive attributes Aj, introduce i binary attributes 

Aj,iʹ, i = 1, 2, 3, …, K, where K is the cardinality of the set Val(Aj), such that 

 

𝐴𝑗 ,𝑖
′ =  

1, if and only if 𝐴𝑗 ,𝑙 ≥ 𝑉𝑖 𝐴𝑗  , for 𝑖 = 1,2,3, … , 𝐾

0, otherwise
  

 

where Aj,iʹ is the i-th binary attribute for Aj, Aj,l is the value of attribute Aj for the l-th 

example, Vi(Aj) is the i-th value of Val(Aj). Therefore, for every continuous number Aj,l, 

we can find an i-digit series of 0/1's to replace it. 

Table 12.2-1 The Binary Representation of the First Attribute "Sepal length". 

Ex # A1,l Series of 0/1 to replace A1,l 

1 5.1 11111111100000000000000000000000000 

2 4.9 11111110000000000000000000000000000 

                                                                      (table con'd) 
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3 4.7 11111000000000000000000000000000000 

4 4.6 11110000000000000000000000000000000 

5 5.0 11111111000000000000000000000000000 

6 5.4 11111111111100000000000000000000000 

7 7.0 11111111111111111111111111110000000 

8 6.4 11111111111111111111110000000000000 

9 6.9 11111111111111111111111111100000000 

10 5.5 11111111111110000000000000000000000 

11 6.5 11111111111111111111111000000000000 

12 5.7 11111111111111100000000000000000000 

13 6.3 11111111111111111111100000000000000 

14 5.8 11111111111111110000000000000000000 

15 7.1 11111111111111111111111111111000000 

16 6.3 11111111111111111111100000000000000 

17 6.5 11111111111111111111111000000000000 

18 7.6 11111111111111111111111111111111100 

… … … 

 

Table 12.2-2 The Binary Representation of the Second Attribute "Sepal width". 

Ex # A2,l Series of 0/1 to replace A2,l 

1 3.5 11111111111111100000000 

2 3.0 11111111110000000000000 

3 3.2 11111111111100000000000 

4 3.1 11111111111000000000000 

5 3.6 11111111111111110000000 

6 3.9 11111111111111111110000 

7 3.2 11111111111100000000000 

8 3.2 11111111111100000000000 

9 3.1 11111111111000000000000 

10 2.3 11100000000000000000000 

11 2.8 11111111000000000000000 

12 2.8 11111111000000000000000 

13 3.3 11111111111110000000000 

14 2.7 11111110000000000000000 

15 3.0 11111111110000000000000 

16 2.9 11111111100000000000000 

17 3.0 11111111110000000000000 

18 3.0 11111111110000000000000 

… … … 
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Table 12.2-3 The Binary Representation of the Third Attribute "Petal length". 

Ex # A3,l Series of 0/1 to replace A3,l 

1 1.4 1111100000000000000000000000000000000000000 

2 1.4 1111100000000000000000000000000000000000000 

3 1.3 1111000000000000000000000000000000000000000 

4 1.5 1111110000000000000000000000000000000000000 

5 1.4 1111100000000000000000000000000000000000000 

6 1.7 1111111100000000000000000000000000000000000 

7 4.7 1111111111111111111111110000000000000000000 

8 4.5 1111111111111111111111000000000000000000000 

9 4.9 1111111111111111111111111100000000000000000 

10 4.0 1111111111111111100000000000000000000000000 

11 4.6 1111111111111111111111100000000000000000000 

12 4.5 1111111111111111111111000000000000000000000 

13 6.0 1111111111111111111111111111111111111000000 

14 5.1 1111111111111111111111111111000000000000000 

15 5.9 1111111111111111111111111111111111110000000 

16 5.6 1111111111111111111111111111111110000000000 

17 5.8 1111111111111111111111111111111111100000000 

18 6.6 1111111111111111111111111111111111111111100 

… … … 

 

Table 12.2-4 The Binary Representation of the Fourth Attribute "Petal width". 

Ex # A4,l Series of 0/1 to replace A4,l 

1 0.2 1100000000000000000000 

2 0.2 1100000000000000000000 

3 0.2 1100000000000000000000 

4 0.2 1100000000000000000000 

5 0.2 1100000000000000000000 

6 0.4 1111000000000000000000 

7 1.4 1111111111100000000000 

8 1.5 1111111111110000000000 

9 1.5 1111111111110000000000 

10 1.3 1111111111000000000000 

11 1.5 1111111111110000000000 

12 1.3 1111111111000000000000 

13 2.5 1111111111111111111111 

14 1.9 1111111111111111000000 

15 2.1 1111111111111111110000 

16 1.8 1111111111111110000000 

17 2.2 1111111111111111111000 

18 2.1 1111111111111111110000 

… … … 



141 
 

Now, we can just concatenate the four sequences of 0/1 and call them representations of 

the original examples. For instance, the first three examples will become, 

 

<5.1, 3.5, 1.4, 0.2> => 

<1111111110000000000000000000000000011111111111111100000000111110000000

00000000000000000000000000000001100000000000000000000> 

 

<4.9, 3.0, 1.4, 0.2> => 

<1111111000000000000000000000000000011111111110000000000000111110000000

00000000000000000000000000000001100000000000000000000> 

 

<4.7, 3.2, 1.3, 0.2> => 

<1111100000000000000000000000000000011111111111100000000000111100000000

00000000000000000000000000000001100000000000000000000> 

 

However, there are some drawbacks in using this representation. First of all, the four 

descriptive attributes have become (35+23+43+22) = 123 descriptive attributes. With the 

growing number of different values of each attributes, the binary representations will 

become extraordinarily long. Secondly, these examples will form a very sparse poset. 

Notice that the binary representations are concatenated by four sequences of 0/1's, and 

each sequence is formed by a sub-sequence of 1's followed by a sub-sequence of 0's. This 

means a lot of 0/1 series that do not follow this pattern will never become a valid 

example. For instance, the example of all 0's will never be used, nor the example formed 

by repeating the string 01. 

 

So, how do we fix these problems? Well, a little revision shall be made. We can take 

advantage of the fact that these 0/1 sequences have patterns as we mentioned before, i.e., 

the binary representations are concatenated by four sequences of 0/1's, and each sequence 

is formed by a sub-sequence of 1's followed by a sub-sequence of 0's. We can replace 

<1111111110000000000000000000000000011111111111111100000000111110000000

00000000000000000000000000000001100000000000000000000> with <9, 15, 5, 2>, 

and will lose no information. The value 9 means in the binary sequence that represent the 

first continuous attribute there are 9 1's. 9 also means the original continuous number 5.1 

takes the 9-th place in the ordered set Val(A1). Recall that Val(A1) = {Vi(A1), for i = 1, 2, 

3, …, 35} = {4.3, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9, 5.0, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 

6.0, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7.0, 7.1, 7.2, 7.3, 7.4, 7.6, 7.7, 7.9}. Of course, 

similarly with above, the second number 15 means in the representation of A2 that there 

are 15 1's, or the original continuous number 3.5 takes the 15-th place in the ordered set 

Val(A2). 
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In this way, we have 

<5.1, 3.5, 1.4, 0.2> => <9, 15, 5, 2> 

<4.9, 3.0, 1.4, 0.2> => <7, 10, 5, 2> 

 <4.7, 3.2, 1.3, 0.2> => <5, 12, 4, 2> 

We will use this new representation <A1ʹ, A2ʹ, A3ʹ, A4ʹ>. Attribute A1ʹ can take natural 

numbers from 1 to the cardinality of Val(A1) = 35; A2ʹ can take natural numbers from 1 to 

the cardinality of Val(A2) = 23; A3ʹ can take natural numbers from 1 to the cardinality of 

Val(A3) = 43; A4ʹ can take natural numbers from 1 to the cardinality of Val(A4) = 22. 

 

The ordered relation "≻" is defined as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

According to the definition of the ordered relation "≻", we have 

<35, 23, 43, 22> ≻ <1, 1, 1, 22> 

<15, 15, 15, 15> ≻ <14, 15, 15, 15> 

<15, 15, 15, 15> ≻ <10, 10, 10, 10> 

 

This diagram has <35, 23, 43, 22> as the maximal example, <1, 1, 1, 1> as the minimal 

example, and every example in between is valid.  

 

Now, we are ready to apply the M* algorithm method! The performance of the M* 

algorithm on such real datasets needs to be found out next. 

 

 

 

 

 

  

𝑎1ʹ > 𝑏1ʹ,𝑎2ʹ ≥ 𝑏2ʹ,𝑎3ʹ ≥ 𝑏3ʹ,𝑎4ʹ ≥ 𝑏4ʹ

𝑎1ʹ ≥ 𝑏1ʹ,𝑎2ʹ > 𝑏2ʹ,𝑎3ʹ ≥ 𝑏3ʹ,𝑎4ʹ ≥ 𝑏4ʹ
𝑎1ʹ ≥ 𝑏1ʹ,𝑎2ʹ ≥ 𝑏2ʹ,𝑎3ʹ > 𝑏3ʹ,𝑎4ʹ ≥ 𝑏4ʹ

𝑎1ʹ ≥ 𝑏1ʹ,𝑎2ʹ ≥ 𝑏2ʹ,𝑎3ʹ ≥ 𝑏3ʹ,𝑎4ʹ > 𝑏4ʹ

 

<a1ʹ, a2ʹ, a3ʹ, a4ʹ> ≻ <b1ʹ, b2ʹ, b3ʹ, b4ʹ>, iff at least one of the attribute(s) is greater 

that the corresponding attribute(s), and the rest attribute(s) are greater than and 

equal to the corresponding attribute(s). 

 

That is, <a1ʹ, a2ʹ, a3ʹ, a4ʹ> ≻ <b1ʹ, b2ʹ, b3ʹ, b4ʹ>, iff one of the following conditions 

holds: 
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