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ABSTRACT

Camera producers try to increase the spatial resolution of a camera by reducing

size of sites on sensor array. However, shot noise causes the signal to noise ratio drop as

sensor sites get smaller. This fact motivates resolution enhancement to be performed

through software. Super resolution (SR) image reconstruction aims to combine de-

graded images of a scene in order to form an image which has higher resolution than

all observations. There is a demand for high resolution images in biomedical imaging,

surveillance, aerial/satellite imaging and high-definition TV (HDTV) technology. Al-

though extensive research has been conducted in SR, attention has not been given to

increase the resolution of images under illumination changes. In this study, a unique

framework is proposed to increase the spatial resolution and dynamic range of a video

sequence using Bayesian and Projection onto Convex Sets (POCS) methods. Incorpo-

rating camera response function estimation into image reconstruction allows dynamic

range enhancement along with spatial resolution improvement. Photometrically vary-

ing input images complicate process of projecting observations onto common grid by

violating brightness constancy. A contrast invariant feature transform is proposed in

this thesis to register input images with high illumination variation. Proposed algo-

rithm increases the repeatability rate of detected features among frames of a video.

Repeatability rate is increased by computing the autocorrelation matrix using the

gradients of contrast stretched input images. Presented contrast invariant feature de-

tection improves repeatability rate of Harris corner detector around %25 on average.

Joint multi-frame demosaicking and resolution enhancement is also investigated in

this thesis. Color constancy constraint set is devised and incorporated into POCS

framework for increasing resolution of color-filter array sampled images. Proposed

method provides fewer demosaicking artifacts compared to existing POCS method

and a higher visual quality in final image.
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CHAPTER I

BACKGROUND

In this section we present essential background information for understanding resolu-

tion and dynamic range enhancement. First we investigate the image formation model

and the artifacts introduced through imaging pipeline. Section B and Section C pro-

vides different resolution and dynamic range enhancement techniques, respectively,

along with existing literature on the subjects. We also provide image registration

techniques in Section D, which is fundamental for multi-frame image enhancement

algorithms since images taken from different point of views should be aligned onto a

common grid.

A. Imaging Model

Image formation is the process where scene radiance is converted to intensity

through camera. Image formation consists of several interdependent steps, each of

which can introduce several artifacts. Although isolating image formation steps in

terms of artifacts is a cumbersome task, we broadly divide image acquisition pipeline

into preprocessing and postprocessing phases.

Lens, aperture rate, shutter speed, sensor array, ISO (sensor array gain), and

camera response function are the camera components and adjustment units (param-

eters) included in preprocessing step. These components are depicted in Figure 1

along with the artifacts introduced. Note that we assumed a Bayer sensor array is

used in the system.

The journey of pixels start by scene radiance passing through aperture then

through camera lens. Aperture behaves as the eye pupil and determines the amount of

light entering camera system. Increase in aperture size might lead not only to decrease

in depth of field but also vignetting in some camera systems. Lens is one of the most

important components in imaging pipeline in terms of visual quality. Improper lenses

introduce optical blur which leads to sharpness (resolution) loss. Color fringing is
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Fig. 1.: Preprocessing Phase of Image Formation Model

another possible lens flaw. Incoming light has several spectral components. A proper

lens system should project light onto on optical axis without refracting the spectral

components to different locations. Lack of this behavior creates color fringing artifacts

in final image. Optical aberration occurs when a lens system radially distorts the

ground truth geometry. Most common types of optical aberrations are barrel and

pincushion distortions. Barrel distortion is a common defect observed in fish eye

lenses. Radiance that passes the lens system is finally projected onto sensor array

and collected as photons in each sensor site. Integration time of photons at a sensor

site is determined by the shutter speed. Inadequate shutter speed may lead to motion

blur in case of high speed movement of an object in the scene. Shutter speed is known

as exposure duration as well. Exposure duration is represented along with ISO as a

multiplicative term (exposure rate) in Figure 1 for visualization purposes. Exposure

duration can be manually adjusted by the user or automatically set by the camera

system. Improper exposure adjustment can lead to over/under exposed images. High

exposure factor can boom up noise since noisy low range values will be amplified by

this process. Shutter speed has an influence on effective frame rate during video mode

since it determines integration time of each frame. Photons collected at a sensor site

during integration time are multiplied by sensitivity (ISO) and converted to electrical

2



charge through camera response function a.k.a opto-electronic conversion function.

Camera response function has generally a non-linear nature to form saturated colors

during photometric conversion[4]. Camera response function not only manipulates the

colors but also define the dynamic range of the final image. Dynamic range is basically

the existing contrast ratio in an image. Dynamic range of an observation depends on

the camera response function, shutter speed, ISO and sensor site dimensions to some

extent. Cameras with larger sensor site sizes yield higher dynamic range allowing to

collect more number of photons.

At the end of preprocessing phase of image formation we obtain a quantity called

exposure value, which can be considered as amount of light received by camera.

Exposure value is determined according to aperture, shutter speed, sensitivity, and

camera response function. Additive imaging noise is introduced by exposure rate,

ISO and possibly by temperature.

Postprocessing phase takes raw Bayer image as input and creates three channel

color image to be stored on camera as illustrated in Figure 2. This assumption is

valid unless a beam splitter is used to decompose incoming light into three spectral

components. Note that there are 3CCD sensor arrays, and three imaging pipelines in

such systems. Instead most cameras produce each spectral component from a single

mosaicked filter array, which is denoted as color filter array (CFA) interpolation or

commonly known as demosaicking. A famous color filter is shown in first stage of

Figure 2, which is known as Bayer pattern.

Color filter array (CFA) mosaic stores one color component at each sensor site.

CFA interpolation decreases the spatial resolution as one color value is present for each

location. Missing color components are estimated from mosaic patter by interpola-

tion. Interpolation leads to sharpness loss, and to decrease in resolution consecutively.

Demosaicking step might introduce color artifacts on highly textured regions during

interpolation. Cameras also perform white balancing on extracted color components

3



 
Fig. 2.: Postprocessing Phase of Image Formation Model

to remove unrealistic colors from final image. Color channels are weighted with differ-

ent coefficients depending on the color temperature estimate to achieve color balance

and preserve true white. Each camera also has internal sharpening to overcome the

blur introduced by the point spreading function of the lens system. Internal over

sharpening can introduce halos at edge locations, while the lack of sharpening may

result in a blurry image. Final image can be saved with or without compression de-

pending on the selection of user. There are cases where compression is applied to the

final image as default i.e cell phone cameras. Block based compression is applied at

the final step. This creates blocking artifacts at block border and lack of variance

within each block depending on the percentage of discrete cosine transform (DCT)

coefficients discarded. Three channel image is saved in memory after going through

preprocessing and postprocessing image formation phases.

Image restoration aims to recover less degraded version of a scene from a single

image with aforementioned blemishes. This approach is limited since accurate in-

formation may be impossible to retrieve from single image while multi-frame image

fusion provides higher immunity to artifacts due to abundance of extra information.

Diversity of information coming from multiple images allows to compensate for the

degradations and artifacts. Extra information might originate from redundancy in
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Fig. 3.: High resolution formation on common grid. Images on left side represent LR
images. Projecting all samples onto common grid and interpolating on this grid yields
resolution increase.

geometric transformation or different tonal range each observation possesses. Multi-

frame techniques are used in literature for noise denoising, demosaicking, dynamic

range enhancement. Panoramic imaging is also a multi-frame fusion method to com-

pensate for the camera angle of view. Super resolution is the name of multi-frame

image fusion technique to increase the inherent (spatial) resolution of an observation.

Previous work on super resolution is based on imaging model that incorporates

only warping, blurring and spatial sampling effects. Blurring and sampling converts

samples lying on a high resolution grid to a low resolution one, while warping changes

the sampling location. Here samples are averaged by a point spreading function (PSF)

and sampled at a certain rate. Aliasing occurs if sampling rate is insufficient. Com-

pensating warping, blurring and spatial sampling in reconstruction allows us to obtain

only spatial resolution enhancement, without any tonal (range) resolution improve-

ment and with possible color artifacts. In this thesis, effect of non-linear camera

response function, exposure rate changes and multi-frame demosaicking techniques

are incorporated into image enhancement framework. This technique yields results

with improved spatial and dynamic resolution, with less color artifacts.
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B. Spatial Resolution Enhancement

In spatial resolution enhancement, imaging process is assumed to consist of geo-

metric transformation, blurring, and additive noise. An oversimplified case of spatial

SR enhancement can be considered when one of the observations is chosen as refer-

ence frame, onto which each observation is geometrically projected, and images are

non-uniformly interpolated on this common grid. This process is depicted in Figure

3. In this figure, LR images are shown on left side. During reconstruction, circle

shaped LR image is chosen as reference on which multi-frame non-uniform interpola-

tion is performed. In spite of its simplicity, this model is useful to demonstrate the

importance of registration. Accurate registration is crucial for the success of SR as

sub-pixel precision is required to increase resolution.

As explained in Section B, blurring may also occur either because of the optical

system (out of focus, diffraction limit) or due to motion (inadequate sampling rate,

fast movement in the scene). Point spreading function (PSF) of the sensor system

causes the discrete valued ground truth image get spatially averaged, and PSF shape

may locally vary depending on motion blur. Spatial sampling is another factor that

decreases the resolution of warped and blurred image. Color filter array (CFA) in-

terpolation causes further spatial sampling where a single CCD camera is used. Set

of observations degraded with aforementioned artifacts is provided in Figure 4 (a) -

(c). Figure 4 (d) has the super resolution (SR) image, formed by multi-frame image

enhancement. Notice that in final SR image artifacts are removed while sharpness is

increased.

First we will present literature on SR assuming color channel information is avail-

able without need for CFA interpolation. SR reconstruction from CFA sampled (raw)

images will be provided in Chapter IV. For mathematical consistency we represent

the LR image formation in matrix form. Denoting x as SR image, kth LR image yk

6
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Fig. 4.: Spatial resolution enhancement of degraded images. 37 images are used in this
experiment, 3 of which are shown in (a),(b),(c). SR image is given in (d).

can be formed from SR image as following

yk = Hkx + nk, (1.1)

where Hk is the multiplication of downsampling, blurring and warping matrices

Hk = DBkMk. Using the notation of [5], matrices are given in Table 1. In this

table, L1 and L2 are the downsampling factors in horizontal and vertical directions.

Number of SR pixels is N = L1N1L2N2, and number of LR pixels is denoted as

M = N1N2. Spatial sampling, which is the main source of aliasing in observations,

is represented by downsampling. Here downsampling (D) is assumed to be same for

all images, leading to a constant enhancement factor in reconstruction. In case of

having a color filter array in imaging process, color filtering will also bring aliasing.

Leaving color filtering to discuss later in Chapter IV, principal components of imag-

ing process can be enumerated as geometric transformation, optical blur, and spatial

sampling (donwsampling). In following paragraphs we present the existing SR work

in literature.
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Table 1.: Matrix representation of imaging model parameters

High Resolution image x = [x1, x2, . . . , xN ]T L1N1L2N2 × 1

kth Observation yk = [yk,1, yk,2, . . . , yk,M ]T N1N2 × 1

Warp Matrix for kth image Mk L1N1L2N2 × L1N1L2N2

Downsampling Matrix D (N1N2)
2 × L1N1L2N2

Blur Matrix for kth image Bk L1N1L2N2 × L1N1L2N2

Joint Matrix Hk (N1N2)
2 × L1N1L2N2

First multi-frame resolution enhancement algorithm is proposed by Tsai and

Huang [6] to be performed in frequency domain. This approach relates the discrete

fourier transform (DFT) coefficients of LR and continuous fourier transform (CFT)

of SR image using shift invariance of fourier transform. Although this method is

computationally efficient, it has some drawbacks. Frequency based SR can only ac-

commodate translational motion and LSI blur. Other frequency based reconstruction

methods are [7, 8, 9, 10]. This approach is then modified to incorporate different

types of motion and regularization parameters.

SR image can be obtained by solving the imaging model given in Equation 1.1

by least squares. In case additive noise is zero mean and Gaussian, problem simplifies

to maximum likelihood (ML) estimation. ML approach solves for SR without any

regularization term. ML solution can be found by the following optimization

xmle = arg min
x

‖y −Hx‖2, (1.2)

where y = [y0
Ty1

T . . .yN−1
T ]T , H = [H0

TH1
T . . .HN−1

T ], and N is the number of

observations. Least squares solution of this system is x̂mle =
(
HTH

)−1
HTy. Solving

SR image by matrix manipulation is inefficient due to size of matrices. Alternatively,

iterative techniques are used to find SR image. An efficient ML solution of SR is

proposed by Irani and and Peleg in [11]. Later Irani and Peleg extended this approach

8



to handle occlusion [12]. Tom and Katsaggelos [13] used ML to estimate SR image

and noise variance together. ML solution has the drawback of noise amplification.

Regularization is proposed in stochastic reconstruction approaches to suppress

noise that occurs in ML solution. Stochastic reconstruction method is mostly pre-

ferred due its easiness to adopt prior knowledge about solution. Bayesian approach,

which is also denoted as maximum a-posteriori (MAP), is the most commonly used

probabilistic method when the distribution of the solution is available. Priori knowl-

edge in MAP acts as a regularization term leading to a stabilized result. Tikhonov

regularization is one of the earliest form of prior knowledge [14, 15]. Hardie et al.

modified MAP scheme to estimate SR and registration simultaneously [16]. Cheese-

man used MAP to increase the resolution of satellite images [17]. Markov random

field (MRF) is a common technique to incorporate prior knowledge into MAP solu-

tion. Gaussian MRF provides priori knowledge by containing nth order difference

operator. Schultz and Stevenson [18] proposed second order derivative for SR recon-

struction. Another constraint is Huber MRF which provides further edge preservation

compared to Gaussian MRF, which is also given in [18]. Huber MRF provides the

sharper results by giving heavier weight to tails compared to the Gaussian weight.

Also scene dependent priors can be used for specific computer vision tasks. Capel

and Zisserman [19] proposed specific priors for face recognition. Similarly, Gunturk

et al. [20] proposed a Gaussian prior for face recognition. MAP has the advantage of

incorporating any prior knowledge including the noise statistics into the solution.

Bayesian estimation modifies ML approach by allowing the incorporation of pri-

ori knowledge. In Bayesian estimation, we seek SR image (x) given the observations

(y). This leads us to find the following conditional distribution P(x|y) to solve

for SR image. Using Bayes rule, this probability can be written in following form

P(x|y)=P(y|x) P(x)/P(y). Assuming that all observations are equally likely to ap-

9



Table 2.: Priors used for image regularization

Median Prior P (x) = 1
Z

exp
(
− |x−xmed|

2σx
2

)

MRF Prior P (x) = 1
Z

exp
(−∑

c∈S ϕc(x)
)

Gaussian MRF Prior ϕc(x) = (Dn(x))2

Huber MRF Prior ϕc(x) =





x2, |x| ≤ α

2α|x| − α2, o.w

pear, MAP solution can be found by optimizing the cost function below

xmap = arg max
x

log P (x) + log P (y|x)

= arg max
x

log P (x)− 1

2σ2
‖Hx− y‖2

2 (1.3)

MAP approach differs according to the prior model used.

P (x) =
1

Z
exp

(−xT LT Lx
)
, (1.4)

where Z is a normalizing constant. In this case, MAP can be found by optimizing

the following

xmap = arg min
x

γ2‖Lx‖2
2 +

N∑

k=1

‖yk −Hkx‖2
2, (1.5)

where L can be the discrete approximation of a derivative operator, Laplacian or

identity matrix. γ in Equation A.1 is the regularization parameter. Here regulariza-

tion term provides a smoother solution for SR image. Regularization parameter (γ)

should be chosen carefully as smoothing operations acting on edges to remove the

sharpness. Robust regularization parameter (γ) estimation is proposed in [21] using

L-curve method.

PSF and regularization parameters are estimated together in [22] using general-

ized cross-validation. Importance of regularization becomes evident in case LR images

are limited or the accuracy of the assumed imaging model is low. Other prior models

are given in Table II, where Dn(·) represents the finite difference operator , α is the
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cutoff value for Huber prior, and ϕc(·) is the potential function that is effective within

spatial range of S.

Minimization of cost function in Equation A.1 leads to the following solution

which is known as Tikhonov regularization xmap =
(
HTH + γ2LTL

)−1
HTy. Due to

the size of the matrices involved we avoid taking matrix inverse. Instead we apply

iterative methods to solve for SR image. Zomet and Peleg [23] gives a detailed

description of conjugate gradient (CG) solution for SR image. SD and CG solution

of SR image is given in Appendix A for derivative prior.

Another alternative SR reconstruction is proposed by Farsiu et al. [24], by rep-

resenting the general cost function in L1 norm instead of L2 and using total variation

(TV) as regularization. Previously the regularization term was proposed to be ‖Lx‖2

while in TV the regularization term becomes ‖∇x‖1. TV based regularization is

claimed to preserve edges far superior than other methods [24]. Using bilateral filter

to implement TV, regularization function becomes

ΥBTV (x) =
P∑

l=−P

P∑
m=−P

α|m|+|l|‖x− Sx
lSy

mx‖1, (1.6)

where α is the regularization constant in the range of [0,1]. Sx and Sy are the shift

operators in x and y directions, respectively. Incorporating the regularization into

the overall cost function becomes

x = arg min

[
N∑

k=1

‖Hkx− yk‖1 + λΥBTV (x)

]
(1.7)

Again this equation can be solved by iterative methods such as SD, or CG.

Projection onto convex sets (POCS) is another approach that solves for SR im-

age which is consistent with predefined constraint sets. Different constraint sets are

proposed to produce a result close to the ground truth image. Final image lies at the

intersection of convex constraint sets. This can be achieved by applying the projection

operations consecutively in an iterative fashion. Although final image is consistent
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with applied constraint sets, final result is dependent on the order of the projections

being applied. Applying m number of constraint sets on input image is formulated

as following.

x(k+1) = PmPm−1 . . . P2P1x
(k), (1.8)

where x0 is the initial SR estimate, Pi is the projection operator according to the ith

constraint set Ci, and k denotes the iteration number.

Data consistency constraint set is most commonly used to provide consistency

with observations. This can be achieved by producing simulated observations from

SR image thorough imaging model. Our aim is to keep the residual difference between

simulated observations and actual observations small as possible. This constraint set

is defined as following

Ci[yi(l1, l2)] =
{
x(n1, n2) :

∣∣r(x)(l1, l2)
∣∣ ≤ Ti(l1, l2)

}
, (1.9)

where the residual is r(x)(l1, l2) = yi(l1, l2)−
∑

n1,n2
hi(n1, n2; l1, l2)x(n1, n2). Thresh-

old Ti(l1, l2) is supposed to be related to the power of noise ni(n1, n2). Here, (n1, n2)

is the discrete coordinate of SR image, whereas (l1, l2) is the coordinates of LR image.

Similarly yi(l1, l2) represents the observation value and x(n1, n2) represents the value

of high resolution image at specified coordinates of (l1, l2) and (n1, n2), respectively.

Convolution kernel that produces simulated LR image out of SR image is represented

as hi(·). SR image can be updated in following fashion

x(k+1)(n1, n2) = x(k)(n1, n2) +





(rx(·)−Ti(·))hi(n1,n2;·)P
o1

P
o1

h2
i (o1,o2;·) , rx(·) > Ti(·)

0, Ti(·) > rx(·) > −Ti(·)
(rx(·)+Ti(·))hi(n1,n2;·)P

o1

P
o1

h2
i (o1,o2;·) , rx(·) < −Ti(·)

(1.10)

where “·” represents the coordinates (l1, l2) and k is the iteration number. Although

POCS is a deterministic approach, prior knowledge can still be incorporated in terms

of additional constraint sets.
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Originally POCS is proposed by Stark and Oskoui [25]. Tekalp et al. incorpo-

rated noise statistics into POCS method [26]. Change in aperture size of camera has

been considered by Patti et al. to remove spatially varying blur using POCS [27].

Validity map is incorporated to compensate possible registration errors, and segmen-

tation map is used to perform object based POCS reconstruction in [28]. Patti and

Altunbasak updated the constraint sets according to the image structure and used

higher order interpolants in POCS [29]. Although POCS is an effective reconstruc-

tion method, slow convergence and non-uniqueness of the solution are the drawbacks

of this approach. Comparative results of MAP and POCS are provided in Figure 5.

Results are obtained after five iterations, using 29 images. Resizing factor is chosen

as two. You can notice that although POCS provides sharp results, ringing artifacts

might occur around edges. MAP provides smoother results due to the regularization.

Hybrid ML/MAP/POCS is another reconstruction approach. This hybrid ap-

proach combines MAP and POCS, such that both prior knowledge and constraint sets

are used to find SR solution. Schultz and Stevenson [18] made the earliest attempt in

the hybrid approach. Elad and Feuer [30] proposed a similar hybrid approach. Hybrid

approach both ensures uniqueness and takes advantage of the prior knowledge.

There are various other fields of research related to super-resolution imaging.

Blur identification is one of the major research topics that aim to estimate the point

spreading function (PSF) of the system. Generalized cross validation (GCV) is a

common technique to estimate the PSF. Reeves and Mersereau demonstrates that

GCV outperforms maximum likelihood in PSF selection [31]. Quality assessment of

super resolution images in the absence is a complicated task due to absence of ground

truth value. Performance estimation of super resolution is an active research area.

Eeekeren et. al used triangle orientation discrimination as a performance measure

[32].
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      (c)       (d) 

 
     (e)       (f) 

Fig. 5.: POCS v.s MAP . (a)-(b) Low resolution images. (c)-(d) MAP results. (e)-(f)
POCS results.
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(a) (b) (c) (d) 

(e) (f) (g) (h) 

Fig. 6.: High dynamic image formation. (a)-(g) Low resolution images with varying
exposure rates. (h) High dynamic image spanning the whole photometric range.

C. Dynamic Range Enhancement

Dynamic range enhancement has been performed in the name of HDR imaging

in literature. Dynamic range is defined as the ratio of the highest and lowest value

of illumination in the scene [33]. Due to the change in camera parameters (exposure

time, aperture size, etc.) and tonal compression in camera systems, only a limited

portion of the dynamic range can be captured in a single frame. HDR imaging aims

to cover the existing tonal range in a scene by combining the images with different

exposure times. An image set consisting of over and under exposed images are given

in Figure 6 (a) through (g), and HDR result of this data set is given in Figure 6-(h).

HDR imaging has been studied extensively in literature. Dynamic range improve-

ment necessitate estimation of camera response function (CRF). Debevec and Malik

estimated CRF by minimizing the cost function consisting of radiance differences

given the exposure durations [34]. Tsin et al. modeled imaging process using sta-

tistical calibration, and estimated both CRF and white balancing parameters jointly

in an iterative manner [35]. Mitsunga and Nayar fit a polynomial function to CRF

iteratively starting from a rough estimate of the exposure ratios of images [4]. Mann

and Candocia approached tonal and geometric registration jointly [36, 37] using a

parametric CRF. All HDR algorithms aim to find the radiance map of the scene us-
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ing CRF. Visualization of radiance map is another issue as current display devices can

be incapable of representing the HDR result. Many algorithms have been proposed

to represent HDR result by range compression. Mainstream radiance map recovery

and display approaches are given in survey of Battiato et al. [33]. We will present

fundamental HDR approaches given in this survey. In essence, HDR algorithms aim

to obtain camera independent scene radiance from the observations that are repre-

sented in intensity value. Photometric inversion from intensity to radiance is given

in following sections in harmony with the notations of the existing works separately.

1. HDR Imaging Using Non-parametric Response Function

Debevec and Malik [34] estimate CRF assuming that the exposure durations of

the images (4tj), j = 1, 2, . . . N , are given. Denoting yij as the ith pixel of the jth

image

yij = f(qi4tj), (1.11)

where f is the CRF, and qi is the radiance value. Taking the inverse logarithm and

substituting g(·) =logf−1(·):

g(yij) = log(qi) + log(4tj). (1.12)

Both radiance values and CRF are unknown in Eq.1.12. Using the second derivative

of the CRF as regularization term, cost function is given as

O =
∑

i

∑
j

{w(zij)[g(yij)− log(qi)− log(4tj)]}2 + λ
∑

[w(z)g
′′
(y)]2, (1.13)

Then radiance map is constructed by weighted average of radiance diferences as such,

log(qi) =

∑
j w(yij)[g(yij)− log(4tj)]∑

j w(yij)
(1.14)

2. HDR Imaging Using Polynomial Response Function

Mitsunga and Nayar [4] calculated CRF and radiance map by estimating expo-

sure ratios instead of using exact exposure durations. Choosing one of the images
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as reference and normalizing the exposure durations by the reference value, exposure

ratio of the jth image becomes ej. Similar to Eq.1.11, intensity value of the ith pixel

of the jth image becomes

yij = f(qiej). (1.15)

substituting g(·) = f−1(·), irradiance values can be extracted by a polynomial as such

qie = g(yi) =
K∑

k=0

cky
k, (1.16)

where K denotes the order of polynomial. Exposure ratio can be extracted by dividing

the irradiance values.

qiej

qiej+1

= Rj,j+1, (1.17)

where Rj,j+1 is the exposure ratio between image pair (j, j + 1). Cost function is

expressed to minimize irradiance differences as such:

O =
N∑

j=1

P∑
i=1

[
K∑

k=0

cky
k
i,j −Ri,j+1

K∑

k=0

cky
k
i,j+1

]2

, (1.18)

where N denotes the number of images and P the number of pixels in an image.

This method is robust in the sense that it doesn’t require exposure durations and

estimate exposure ratios automatically starting from a rough estimate. However,

this method raises u-ambiguity problem: multiple polynomials satisfying Eq.1.18.

Also this method has a small tolerance to noise. Then HDR radiance map can be

reconstructed by weighted averaging

qi =

∑N
j=1 w(yi,j)qi,j∑N

j=1 w(yi,j)
, (1.19)

where i = 1, 2, ..., P . The weighting function w(·) is chosen such as to give more credit

to the region where sensitivity to radiance change is high. Sensitivity to radiance is

achieved by dividing inverse camera response function by its derivative as follows

w(yi,j) =
g(yi,j)

g′(yi,j)
. (1.20)
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3. HDR Imaging Using Parametric Response Function

Mann proposes multiple parametric CRF models in [38]. Mann constructs the

photoquantity (q) value of a scene instead of radiance value. He defines q as the

quantity of light integrated over the spectral response of the particular camera system.

Most famous parametric CRF model is preferred camera model, which converts q to

ith image (zi) as

yi = f(q) =

(
qa

qa + 1

)c

, (1.21)

where a and c are the camera parameters. Denoting k as the exposure ratio between

images, it is easy to see that k directly acts on q. So, change in k results in an image

with different intensity values (yj) which can be related to the previous intensity value

(yi) through a tonal conversion function g(·) as

yj = f(kq) = g[f(q)] =
f(q).kac

[ c
√

f(q).(ka − 1) + 1]c
(1.22)

Mann solved for camera parameters (a, c) using comparagram, which is the joint

histogram of images (yi, yj). Camera parameters can be extracted from compragram

by non-linear regression, such as Levenberg-Marquardt optimization.

Mann proposed using certainty function ĉ(·) to combine quantity values to from

the ground truth quantity of the scene, which is similar to radiance map

q̂(x, y) =

∑
i

ĉi(q(x,y))
ki

f−1(yi(x, y))∑
i ĉi (q(x, y))

(1.23)

Certainty function is designed to give highest weight to the intensity value, which

quickly responds to a quantity value.

ĉi(log(q(x, y))) =
d yi(x, y)

d log q̂(x, y)
(1.24)

This method allows noise tolerance by thresholding the bins of comparagram. Al-

though this method is computationally efficient, it is incapable of modeling arbitrary

shaped CRFs.
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D. Image Registration

Image registration methods can be grouped into three categories according to

the motion model. An image can go through a global geometric transformation, such

that the warping process of all pixels can be characterized by single matrix operation,

i.e affine, perspective. We adopt global geometric transformation in this thesis since

it is currently the most promising approach for real time SR implementation. An-

other registration method is using local geometric transformations, which is known

as elastic or non-rigid transformation. In this technique, transformation parameters

vary depending on the spatial location. Local transformation can be extracted by

computing the geometric transformation of interest points in input and reference im-

age. Last category is the optical flow, in which a dense motion field is computed for

the whole image. In this approach, each pixel has its own motion vector. Optical

flow techniques adopt regularization for motion vector estimation due to the ill posed

nature that raises from aperture problem. Detailed survey of optical flow techniques

is provided in [39].

Image registration is the process of aligning all images onto a common grid for

global parametric motion model. Parametric motion can be estimated either mini-

mizing the intensity error over the whole image or using the salient points. Thevenaz

et al. proposed estimating the affine transformation between images minimizing the

error using Levenberg-Marquardt optimization in a pyramidal approach [40]. An-

other approach for image registration is to use descriptive parts of images (features),

instead of using all pixels. We adopt the feature based registration of Capel [41] for

image alignment due to its robustness to illumination change for the scope of this

thesis. Feature based image registration is a common method used for global image

registration using the salient points. Automatic feature based image registration re-

quires determining correspondences among images. Geometric transformation can be

computed out of putative correspondences using robust estimators, i.e RANSAC. In
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this thesis we adopt feature based registration by planar projective transformation,

also known as homography.

Planar homography, also known as plane projective transformation, is a popu-

lar parametric motion model among the suggested numerous models. This model is

capable of representing the perspective view, which is crucial as movement of pixel

is actually a trajectory of 3-D motion. Projective transformation is the most generic

form of 2-D coordinate transformations: translation, rigid, similarity and affine. Ho-

mographic transformation enables converting 3-D (homogenous) coordinates to 2-D

(inhomogeneous) points [42]. This conversion is achieved by representing a homoge-

neous coordinate (x1, x2, x3) as inhomogeneous point (x1

x3
, x2

x3
). Projective mapping can

be achieved by multiplying homogenous coordinates with a 3×3 matrix as following:



x1
′

x2
′

x3
′


 =




h11 h12 h13

h21 h22 h23

h31 h32 h33







x1

x2

x3


. (1.25)

Homographic coordinate conversion of a point is performed by denoting the kth pixel,

which is (xk, yk), as (xk, yk, 1). Since we have 8 dof, h33 can be selected as 1. Applying

the homography in Equation 1.25, transformed coordinates become

xk
′
=

h11xk + h12yk + h13

h31xk + h32yk + 1
(1.26)

yk
′
=

h21xk + h22yk + h23

h31xk + h32yk + 1
(1.27)

Rewriting Eq.1.26 and Eq. 1.27 for k = 0, 1, 2, 3 we get




x0 y0 1 0 0 0 −x0x0
′ −y0x0

′

x1 y1 1 0 0 0 −x1x1
′ −y1x1

′

x2 y2 1 0 0 0 −x2x2
′ −y2x2

′

x3 y3 1 0 0 0 −x3x3
′ −y3x3

0 0 0 x0 y0 1 −x0y0
′ −y0y0

′

0 0 0 x1 y1 1 −x1y1
′ −y1y1

′

0 0 0 x2 y2 1 −x2y2
′ −y2y2

′

0 0 0 x3 y3 1 −x3y3
′ −y3y3

′







h11

h12

h13

h21

h22

h23

h31

h32




=




x0
′

x1
′

x2
′

x3
′

y0
′

y1
′

y2
′

y3
′




(1.28)

Perspective motion parameters h11 . . . h32 can be computed using pseudo-inverse.

Coordinate couples given in Equation 1.28 are putative matches among images to
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be registered. These putative matches can be estimated from features of input images.

Different type of features can be used to represent image characteristics. Points,

edges, and contours are most commonly used as image features. Features should

be invariant to condition changes in ambient. Harris corner detector is a favorite

choice for feature detection [43]. Unfortunately Harris features are not capable of

handling large illumination changes, and features may not repeat themselves under

these circumstances. We propose a unique contrast invariant feature transform that

produces interest points with high repeatability rate in Chapter II.

Features are the distinctive points in an image where the variance highly varies

with respect to its neighborhood. These salient points are used in homography es-

timation since they have a tendency to occur with high frequency under different

geometric and photometric conditions. Detailed literature survey for feature detec-

tion is provided in Chapter II.

Two images are given in Figure 7 to illustrate the registration of photometrically

and geometrically diverse images. Input and reference images are given in Figure 7

(a) and (b), and invariant features for these images are shown in Figure 7 (c) and

(d), respectively.

There are four main steps in homography estimation:

1. Feature extraction

2. Feature matching by outlier rejection

3. Sub-pixel refinement of matched features

4. Random Sample Consensus (RANSAC)

Features in corresponding images can be matched using any similarity measure.

A window is selected around a feature to measure its similarity to other features.

Feature matching can be done either minimizing the error (i.e MSE) or maximizing

the correlation of feature blocks. Normalized cross correlation (NCC) is the most
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(a) (b) (c) (d) 

(e) (f) 

(g) (h) (i) 

Fig. 7.: Feature based homography estimation. (a) Input image (b) Reference Image (c)
Contrast invariant features of input image (d) Contrast invariant features of reference image
(e) Putative matches using normalized cross correlation (NCC) (f) Inliers estimated using
RANSAC (g) Outliers estimated using RANSAC (h) Residual of input and reference image
without registration (h) Residual of input and reference image after registration

suitable similarity metric to compensate for the photometric change. NCC achieves

this by subtracting the mean values before correlating blocks. This compensates for

the exposure changes as illumination changes directly act on the mean value of the

blocks. To compute the NCC of features in input I1 and reference I2 image we take

a local window with same size as Ω1 and Ω2, respectively. Denoting the local mean

of images as I1 and I2 within the feature neighborhood Ω1 and Ω2, NCC of features

can be computed as following:

NCC(I1, I2, Ω1, Ω2) =

∑
x1∈Ω1

∑
x2∈Ω2

(
I1(x1)− I1

) ⊙(
I2(x2)− I2

)
(∑

x1∈Ω1

∑
x2∈Ω2

(I1(x1)− I1)
) (∑

x1∈Ω1

∑
x2∈Ω2

(I2(x2)− I2)
) ,

(1.29)

where x1 and x2 are spatial location vectors used to span the local window Ω1 and

Ω2 ,and
⊙

denotes element by element multiplication.

Correlated features contains both true matches (inliers) and false matches (out-

liers). A match is considered to be valid if similarity score (NCC) of corresponding

features passes a threshold. Features having NCC scores below a threshold are consid-
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ered to be outliers. Eliminating the feature matches with low NCC scores we obtain

putative matches. These putative matches might still contain outliers that contra-

dict with the actual geometric transformation. However, elimination depending on

NCC scores yield a reasonable starting point. RANSAC [44] can be used to eliminate

outliers and estimate homography out of putative matches.

Feature points are aimed to be classified as inliers and outliers in RANSAC. Al-

gorithm is repeated for certain number of times and iteration returning the highest

number of elements in inlier class is chosen as the winner. In each iteration 4 number

of points are selected for homography computation. Homography is estimated using

the coordinates of these randomly selected features using Equation 1.28. All fea-

ture points in input image are warped onto the reference image using this estimated

homography. A feature is considered to be inlier if its warped location is within a

distance to the spatial location of its putative match.

Constraining the feature matching in a window increases the efficiency of the

method since searching a match all over the image would be exhaustive. Corner

matching procedure is depicted in Figure 7 of Chapter I . Putative matches are given

in Figure 7 (e), which is composed of inliers and outliers. Inliers and outliers are

shown explicitly in Figure 7 (f) and (g), correspondingly. Difference images before

and after registration are shown in Figure 7 (h) and (i), respectively.
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CHAPTER II

ILLUMINATION ROBUST INTEREST POINT DETECTION

Most interest point detection algorithms are highly sensitive to illumination varia-

tions. In this chapter, we present a method to find interest points robustly even

under large photometric changes. The method, which we call contrast invariant fea-

ture transform (CIFT), determines salient interest points in an image by calculating

and analyzing contrast signatures. A contrast signature shows the response of an in-

terest point detector with respect to a set of contrast stretching functions. The CIFT

is generic and can be used with most interest point detectors. We demonstrate that

the CIFT improves the repeatability rate of the Harris corner detector significantly

(by around 25% on average in the experiments).

A. Introduction

Interest point detection is a necessary task in a variety of computer vision applica-

tions, including object recognition, tracking, stereo imaging, and mosaic construction.

Although the term interest point detector is interchangeably used with the term cor-

ner detector; interest points do not necessarily correspond to physical corner points.

The performance of an interest point detector is evaluated in terms of its accuracy

and consistency. An interest point detector should have good spatial localization and

be robust against noise and geometric/photometric changes.

One of the earliest interest point detection algorithms is the Moravec corner

detector [45]. In the algorithm, a patch around a pixel is taken and compared with

the neighboring patches. If the pixel is on a smooth region or an edge, there would be

at least one neighboring patch that is very similar. For a corner point, all neighboring

patches would be different. Therefore, the corner strength at a pixel is defined as the

smallest sum of squared differences between the center patch and its neighboring

patches. The problem with this algorithm is that only a finite number of neighboring
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patches, (patches in horizontal, vertical, and diagonal directions), are considered;

hence, the algorithm is not isotropic.

Harris and Stephens [43] derived a better corner detector by applying Taylor

series expansion to the sum of squared difference between a patch and its arbitrarily

shifted version. This expansion yields a 2×2 autocorrelation matrix, whose eigenval-

ues indicates the magnitudes of two orthogonal gradient vectors. For a corner point,

both magnitudes should be large. Since the calculation of eigenvalues and eigenvec-

tors is costly, a corner strength measure based on the determinant and trace of the

autocorrelation matrix is proposed. The local maxima of the corner strength map

are chosen as the corner points. This method is known as the Harris or the Plessey

corner detector in the literature and it is probably the most popular interest point

detector.

Another important interest point detector is the SUSAN corner detector [46].

The SUSAN operator finds corners based on the fraction of pixels that are similar to

the center pixel within a small circular region. A low value of this fraction indicates

a corner. The cornerness response at a pixel is basically obtained by subtracting the

number of similar pixels from a fixed geometric threshold. A non-maxima suppression

operation determines the corner points. The SUSAN operator is highly robust to

noise. Modifications of the SUSAN operator are used for edge detection and for

image denoising. (The well-known Bilateral filter is indeed same as the SUSAN

image denoising filter.)

In [47], phase congruency is used to detect edges and corners. The method is

based on the local energy model, which postulates that the frequency components

are in phase at corners and edges [48]. One advantage of this method is the relative

insensitivity against illumination changes. The phase congruency method also has

very accurate spatial localization.

Recently, methods to extract scale and affine invariant interest points have been
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proposed. A review of these methods can be found in [49]. A comprehensive evalu-

ation of the interest point detectors is provided in [50]. Among these methods, the

scale invariant feature transform (SIFT) [51] method also presents a region descriptor

based on the local histogram of the gradient vectors to achieve illumination invariance

in addition to scale invariance. In the illumination invariance experiments of [50], the

SIFT method is among the best performers.

In this paper, we present a method, contrast invariant feature transform (CIFT),

to improve the robustness of feature detection against illumination changes. The

CIFT stretches the histogram of an image around a set of pixel intensities; an in-

terest point detector is applied to each contrast-stretched image to produce a three-

dimensional cornerness map. Interest points are determined from this map.

The CIFT is generic and can be combined with a feature detector that creates

feature strength map and then applies non-maxima suppression to it. In this paper,

we show how the CIFT improves the repeatability rate of the Harris corner detector.

Section B reminds the standard Harris corner detector. Section C explains the idea

behind the CIFT and also presents its application on the Harris corner detector. Sec-

tion E compares several interest points detectors experimentally. Section F concludes

the paper.

B. Harris Corner Detector

One of the most commonly used interest point detectors in computer vision

applications is the Harris corner detector [43]. The Harris corner detector is based

on the autocorrelation matrix of the image gradients. The autocorrelation matrix

A(x, y) at a pixel (x, y) is given as follows:

A(x, y) =




∑
(m,n)∈N

(
∂
∂x

I (m,n)
)2 ∑

(m,n)∈N

∂
∂x

I (m,n) ∂
∂y

I (m,n)

∑
(m,n)∈N

∂
∂x

I (m,n) ∂
∂y

I (m,n)
∑

(m,n)∈N

(
∂
∂y

I (m,n)
)2


 , (2.1)
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where ∂
∂x

and ∂
∂y

calculates the gradients in horizontal and vertical directions, respec-

tively; and N is a set of pixels around (x, y). Usually a weighted sum of the gradients

within N is taken using a Gaussian function centered at (x, y) to give more weight to

the pixels that are close to (x, y). Instead of computing the eigenvalues of A(x, y),

[43] proposes a cornerness response function R(x, y) that can be computed efficiently

with the determinant and the trace of the matrix A(x, y):

R(x, y) = detA(x, y)− k(traceA(x, y))2, (2.2)

where k is a small positive constant controlling the cornerness sensitivity of the detec-

tor. After calculating the cornerness response for all pixels, non-maxima suppression

is used to get the corner points.

C. Contrast Invariant Feature Transform

The CIFT is a method to improve illumination invariance of feature detectors.

The underlying idea is to stretch the image contrast as a function of intensity to span

the space of possible photometric transformations. By applying a feature detector to

a contrast-stretched image, the response of the feature detector under a particular

illumination condition is simulated. The collection of the responses under a set of

illumination conditions forms a signature for each pixel. The signatures can then be

used to characterize a pixel and to find illumination-invariant interest points.

The contrast stretching function that we use in our experiments is the sigmoid

function, which has the following form:

fc(I) =
1

1 + e−γ(I−c)
, (2.3)

where I is the normalized intensity value in the range of [0, 1], c is the contrast center

around which the contrast is stretched, and γ determines the slope of the sigmoid

function. Figure 8 illustrates the sigmoid function.

By applying the contrast stretching function at different contrast centers, we
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Fig. 8.: Sigmoid functions at contrast centers c = 0.3 and c = 0.6 are plotted. The
parameter γ controls the slope of the sigmoid.

(a) 

 

                 c=0.2                                    c=0.5                                  c=0.8                                   c=1.0 
                                                                             

(b) 

 

                c=0.05                                  c=0.2                                  c=0.5                                  c=0.8 
 
 Fig. 9.: Contrast stretched versions of two images are displayed at several centers c. (γ = 50

for all.)
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obtain a set of contrast-stretched images. (Figure 9 shows a set of contrast-stretched

versions of two images at various contrast centers. Notice that two different images

produces similar responses at particular contrast centers. For example, c = 0.8 for

Image (a) produces an image that is very similar to the output of c = 0.2 for Image

(b). Likewise, the output of c = 1.0 for Image (a) is similar the output of c = 0.5 for

Image (a). Also, notice how some details in c = 0.05 for Image (b) get apparent as

in Image (a).) A feature detector is then applied to each of these contrast-stretched

images. In case of the Harris corner detector, first, the autocorrelation matrix at each

pixel is found:

A(x, y; c) =




∑
(m,n)∈N

[
∂
∂x

Ic (m,n)
]2 ∑

(m,n)∈N

[
∂
∂x

Ic (m,n)
] [

∂
∂y

Ic (m,n)
]

∑
(m,n)∈N

[
∂
∂x

Ic (m,n)
] [

∂
∂y

Ic (m,n)
] ∑

(m,n)∈N

[
∂
∂y

Ic (m,n)
]2


 ,

(2.4)

where Ic (m,n) ≡ fc (I(m,n)) is the contrast-stretched image at contrast center c.

And then, the cornerness response is calculated:

R(x, y; c) = traceA(x, y; c)− k(traceA(x, y; c))2. (2.5)

Note that the cornerness response is a function of the contrast center c. R(x, y; c)

for all (x, y; c) is a three-dimensional matrix that can be used to analyze the pixels in

terms of their cornerness. By plotting R(x, y; c) as a function of c at a pixel position,

we can obtain the “contrast signature” of that pixel. Figure 10 shows the contrast

signatures at several pixels on an image. Five pixels are selected from the image.

These pixels are enumerated from 1 to 5. Among these pixels, pixel 1 is on a corner

with the highest contrast. When we look at the contrast signature of that pixel, we

see that it has a strong response over a wide range of c. On the other hand, a corner

pixel with low contrast returns a large response over a limited range of c. (Although

not plotted in the figure, pixels that are on edges and smooth regions return a low

response for all values of c.)
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Fig. 10.: Sample pixels and the corresponding contrast signatures are shown.

 

Fig. 11.: Left to right: Cornerness responses of the standard Harris corner detector R(x, y),
CIFT Harris with Rarea(x, y), and CIFT Harris with Rmax(x, y) are displayed for the image
in Figure 2.

We can define different cornerness measures based on the contrast signatures.

Two possible cornerness measures are the area and the peak value of the signatures:

Rarea(x, y) =

1∫

0

R(x, y; c)dc (2.6)

and

Rmax(x, y) = max
c

R(x, y; c). (2.7)

Figure 11 shows these cornerness responses for the image given in Figure 10. As

30



 

Fig. 12.: The intensity of the white patch is reduced from 1 to 0. The cornerness responses
of the standard Harris corner detector R(x, y), CIFT Harris with Rarea(x, y), and CIFT
Harris with Rmax(x, y) as a function of this intensity are plotted for the marked pixel.

seen, the standard Harris corner detector misses the corners with low contrast; on

the other hand, Rarea(x, y) and Rmax(x, y) determines all the corners well. Among all,

Rmax(x, y) has the best distinguishing response.

To test how the cornerness response changes as function of contrast, we set up

the experiment shown in Figure 12. The intensity of the white patch in a black image

is reduced from 1 to 0; and the responses R(x, y), Rarea(x, y), and Rmax(x, y) are

measured at the corner of the white patch. It is observed that the standard Harris

response drops sharply, while the responses based on the contrast signature are more

robust.

D. Experiments

In this section, we report the experiments demonstrating how the CIFT improves

the repeatability rate of the Harris corner detector under large photometric changes

and also compare with several state-of-the-art corner detectors under the same con-

ditions.

There are three data sets, which are shown in figures 13, 14, and 15. There are
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non-uniform illumination changes and severe saturation in these images. In each set,

one image is chosen as the reference image, and the repeatability rate is computed

for each of the remaining images.

There are different measures of repeatability rate for interest point detectors; we

use the following measure. Suppose N1 is the number of interest points in image 1; N2

is the number of interest points in image 2; and N is the number of common interest

points. Then, the repeatability rate is defined as N/min(N1, N2). An interest point

in an image is repeated if there is an interest point within a 3 × 3 neighborhood of

the other image.

In the experiments, we used the following parameters. For the Harris corner

detector, the value of k was 0.04. In calculating the autocorrelation matrix, we used

a Gaussian function with standard deviation of 1 to get the weighted sum of the

gradients within a 7 × 7 local neighborhood. For the non-maxima suppression, the

pixels with cornerness response less than a threshold were eliminated, and the local

maxima within 3×3 regions were found for the remaining pixels. The threshold value,

below which the corresponding pixels are eliminated, was set to 2% of the maximum

value of the cornerness response. For the CIFT Harris algorithm, the signatures were

obtained for c ∈ [0, 1] with step sizes of 0.05 and with γ = 50. These parameters were

decided after some trial-and-error to have a good overall performance. In addition to

the standard Harris and the CIFT Harris, we included results of the Phase Congruency

[47], SIFT [51], and SUSAN [46] methods. The softwares for these methods are

available online from the original authors. For these methods, the parameters were

chosen as the default values given in these softwares.

As mentioned earlier, we have considered two possible CIFT approaches; in the

CIFT Harris with Rarea approach, the area under a signature is used as the cornerness

measure; in the CIFT Harris with Rmax approach, the maximum value of the signature

is used as the cornerness measure. During our experiments, we have noticed that,
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for real images, the Rarea approach yields higher repeatability rate than the Rmax

approach on average. (One possible explanation is that noise which is amplified as a

result of contrast stretching returns a high value for a limited range of c. However,

by taking the maximum of the signature, it is mistaken as a corner point.) Since the

Rarea approach is better than the Rmax for real images, we report the results for the

Rarea approach only.

The results are given in Figure 16. In the figure, both the repeatability rate

and the number of repeated corners are plotted. As seen in the results, the CIFT

improves the repeatability rate of the standard Harris corner detector by around 25%

on average. The improvement is larger for images with large photometric differences.

When the number of repeated corners is examined, it can be seen that the number of

repeated corners is significantly larger for the CIFT Harris compared to the standard

Harris. The number of repeated corners might be important in some applications, for

example, when registering images with relatively small overlapping areas. Also, one

might try to improve the repeatability rate by increasing the threshold of the non-

maxima suppression or by ranking the pixels according to the cornerness strength

and then taking the top, say, M of them. For these scenarios, the CIFT Harris has

larger space for improvement than the standard Harris.

While improving the standard Harris, the CIFT Harris beats the other interest

point detectors as well. In all experiments, the CIFT Harris has higher repeatability

rate than the Phase Congruency, SIFT, and SUSAN methods.

E. Conclusions

In this chapter, we proposed a method, contrast invariant feature transform

(CIFT), to detect interest points robustly under varying illumination conditions and

demonstrated how it improves the repeatability rate of the standard Harris corner

detector. The CIFT Harris also performs better than several other state-of-the-art

corner detection algorithms. An important drawback of the CIFT method is the
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(a) (b) (c) (d) 

(e) (f) (g) 

Fig. 13.: Data set 1. Image in (d) is chosen as reference. Repeatability rates between this
image and the other images are computed. The images in (a),(b),(c),(e),(f), and (g) are
labeled as 1 to 6 in Figure 16. The image size is 300× 400.

computational complexity. In the current implementation, if the contrast center c is

sampled at m points, then the computational complexity of the CIFT is approximately

m times the computational complexity of the method it is applied. As a future work,

we are looking into possible ways to reduce the complexity. One possible approach is

to reduce γ and sample c less densely. Of course, for applications where performance

is more important than computational complexity, the CIFT would be very beneficial.

A second possible future work is to apply the CIFT on affine invariant interest point

detectors to obtain affine and photometric invariant feature detectors. In the paper,

we have presented two cornerness measures based on the contrast signature. A third

possible future work is to define and test alternative cornerness measures to achieve

higher repeatability rates. For example, one might look at the contrast signature

area within a certain range of the peak value as the cornerness measure. Lastly,

the method can be combined with the scale invariant region descriptors to obtain an

interest point detector that is reliable under photometric and geometric variations.

One approach could be to photometrically normalize the local region around a point

based on the contrast signatures, i.e.,
∫

R̄(x, y; c)fc (I (x, y)) dc, where R̄(x, y; c) =

R(x, y; c)/
∫
c

R(x, y; c)dc is the area normalized signature; and then apply, for example,

the SIFT descriptor to these illumination normalized images. (See Figure 17 for an

example of such illumination normalization.).

34



       
                    (a)                                           (b)                                          (c)                                           (d)  
 

Fig. 14.: Data set 2. Image in (a) is chosen as the reference image. Repeatability rates
between this image and the other images are computed. The images in (b),(c), and (d) are
labeled as 1,2, and 3 in Figure 16. The image size is 480× 640.

       
                 (a)                                    (b)                                   (c)                                   (d)  

     
                 (e)                                    (f)                                   (g) 
 

Fig. 15.: Data set 3. Image in (d) is chosen as reference. Repeatability rates between this
image and the other images are computed. The images in (a),(b),(c),(e),(f), and (g) are
labeled as 1 to 6 in Figure 16. The image size is 768× 512.
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Fig. 16.: Top to bottom: Experimental results (the repeatability rates and the number of
repeated corners) for data set 1, data set 2, and data set 3, respectively.
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Fig. 17.: Upper row: Images at two different illumination conditions. The center pixels are
marked. Lower row: Corresponding illumination normalized images based on the contrast
signatures of the center pixels.
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CHAPTER III

SUPER RESOLUTION UNDER PHOTOMETRIC DIVERSITY OF IMAGES

Super resolution (SR) is a well-known technique to increase the quality of an image

using multiple overlapping pictures of a scene. SR requires accurate registration

of the images, both geometrically and photometrically. Most of the SR articles in

the literature have considered geometric registration only, assuming that images are

captured under the same photometric conditions. This is not necessarily true as

external illumination conditions and/or camera parameters (such as exposure time,

aperture size and white balancing) may vary for different input images. Therefore,

photometric modeling is a necessary task for super resolution. In this chapter, we

investigate super-resolution image reconstruction when there is photometric variation

among input images.

A. Introduction

In this chapter, we focus on a new issue in SR: How to perform SR when some

of the input images are photometrically different than the others. Other than a few

recent papers, almost all SR algorithms in the literature assume that input images

are captured under the same photometric conditions. This is not necessarily true in

general. External illumination conditions may not be identical for each image. Images

may be captured using different cameras that have different radiometric response

curves and settings (such as exposure time and ISO settings). Even if the same

camera is used for all images, camera parameters (exposure time, aperture size, white

balancing, gain, etc.) may differ from one image to another. (Almost all modern

cameras have automatic control units adjusting the camera parameters. Low-end

“point-and-shoot” digital cameras determine these parameters based on some built-

in algorithms and do not allow users to change them. A slight repositioning of the

camera or a change in the scene may result in a different set of parameters.) Therefore,
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an SR algorithm should include a photometric model as well as a geometric model

and incorporate these models in the reconstruction.

For accurate photometric modeling, the camera response function (CRF) and the

photometric camera settings should be taken into account. The CRF, which is the

mapping between the irradiance at a pixel to the output intensity, is not necessarily

linear. Charges created at a pixel site due to incoming photons may exceed the holding

capacity of that site. When the amount of charge at a pixel site approaches the

saturation level, the response may deviate from a linear response. When a pixel site

saturates, it outputs the same intensity even if more photons come in. (If photons keep

coming after saturation, the charge starts to fill the neighboring pixels unless there is

an anti-blooming technology in the sensor.) In addition, camera manufacturers may

also introduce intentional nonlinearity to CRF to improve contrast and visual quality.

The CRF saturation and the finite number of bits (typically eight bits per chan-

nel) to represent a pixel intensity limit the resolution and the extend of the dynamic

range that can be captured by a digital camera. Because a real scene typically has

much wider dynamic range than a camera can capture, an image captures only a

limited portion of the scene’s dynamic range. By changing exposure rate, it is possi-

ble to get information from different parts of a scene. In high-dynamic-range (HDR)

imaging research, multiple low-dynamic-range (LDR) images (that are captured with

different exposure rates) are combined to produce a HDR image [52, 34, 53, 54]. This

process requires estimation or knowledge of the exposure rates and CRF. Spatial reg-

istration, lens flare and ghost removal, vignetting correction, compression and display

of HDR images are some of the other challenges in HDR imaging.

Despite the likelihood of photometric variations among images of a scene, there

are few SR papers addressing reconstruction with such image sets. In [55, 41], pho-

tometric changes were modeled as global gain and offset parameters among image

intensities. This is a successful model when photometric changes are small. When
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photometric changes are large, nonlinearity of CRF should be taken into consider-

ation. In [56], we included a nonlinear CRF model in the imaging process, and

proposed an SR algorithm based on the maximum a posteriori probability estima-

tion technique. The algorithm produces the high-resolution irradiance of the scene;

it requires estimation of the CRF and its inverse explicitly. The algorithm derives

a specific certainty function using the Taylor series expansion of the inverse of the

CRF. (As we will see, certainty function controls the contribution of each pixel in

reconstruction. It gives less weight to noisy and saturated pixels than reliable pixels.

It is necessary for a good reconstruction performance.)

We propose an alternative method. The method works in the intensity domain

instead of the irradiance domain as proposed in [56]. It is not necessary to estimate

the CRF or the camera settings; intensity-to-intensity mapping is sufficient. The

spatial resolution of the reference image is enhanced without going to the irradiance

domain. In addition, the photometric weight function is generic in the derivations;

no Taylor series expansion is required.

The rest of the chapter is as follows. In Section B, we compare two photometric

models that have been applied in SR. We show that nonlinear photometric modeling

is necessary when photometric changes are significant. We then investigate two pos-

sible approaches for SR under photometric diversity in Section C. In Section D, we

explain our approach to accurate geometric and photometric registration. We provide

experimental results with real data sets in Section E. Conclusions and future work

are given in Section F.

B. Photometric Modeling

For a complete SR algorithm, spatial and photometric processes of an imaging

system should be modeled. Spatial processes (spatial motion, sampling, point spread

function) have been investigated relatively well; here, we investigate photometric

modeling. As mentioned earlier, in the context of SR, two photometric models have
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been used. The first one is the affine model used in [55, 41], and the second one is

the nonlinear model used in [56]. In this section, we review and compare these two

models.

1. Affine Photometric Model

Suppose that N images of a static scene are captured and these images are

geometrically registered. Let q be the irradiance of the scene, and zi be the ith

measured image.1 According to the affine model, the relation between the irradiance

and the image is as follows:

zi = aiq + bi, i = 1, ..., N, (3.1)

where the gain (ai) and offset (bi) parameters can model a variety of things, including

global external illumination changes and camera parameters such as gain, exposure

rate, aperture size, and white balancing. (In HDR image construction from multiple

exposures, only the exposure rate is manually changed, keeping the rest of the camera

parameters fixed [52]. In such a case, the offset term can be neglected.) Then, the

ith and the jth images are related to each other as follows:

zj = ajq + bj = aj

(
zi − bi

ai

)
+ bj =

aj

ai

zi +
aibj − ajbi

ai

. (3.2)

Defining αji ≡ aj

ai
and βji ≡ aibj−ajbi

ai
, we can in short write (3.2) as

zj = αjizi + βji. (3.3)

The affine relation given in (3.3) is used in [41] to model photometric changes

among the images to be used in SR reconstruction. In [41], the images are first

geometrically registered to the reference image to be enhanced. (A feature-based

registration method is used. Corner points in the images are extracted and matched

using normalized cross correlation. Perspective registration parameters are estimated

1In our formulations, images are represented as column vectors.
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after outlier rejection.) After geometric registration the relative gain and offset terms

with respect to the reference image are calculated with least squares estimation. Each

image is photometrically corrected using the gain and offset terms. This is followed

by SR reconstruction.

Although the affine transformation in (3) can handle small photometric changes,

the conversion accuracy decreases drastically in case of large changes. This is why in

HDR imaging nonlinear photometric modeling is preferred over affine modeling.

2. Nonlinear Photometric Model

A typical image sensor has a nonlinear response to amount of light it receives. Es-

timation of nonlinear camera response function (CRF) becomes crucial in a variety of

applications, including HDR imaging, panoramic image construction [57, 58], photo-

metric stereo [59], bidirectional reflectance distribution function (BRDF) estimation,

and thermography.

According to the nonlinear photometric model, an image zi is related to the

irradiance q of the scene as follows:

zi = f (aiq + bi) , (3.4)

where f(·) is the camera response function (CRF), and ai and bi are again the gain

and offset parameters as in (3.1). Then, two images are related to each other as

follows:

zj = f

(
aj

ai

f−1 (zi) +
aibj − ajbi

ai

)
= f

(
αjif

−1 (zi) + βji

)
. (3.5)

The function f (αjif
−1(·) + βji) is known as the intensity mapping function

(IMF). (Note that in some papers such as [60], the offset term in the above equa-

tion is neglected and the term f (αjif
−1(·)) is called the IMF.) Although IMF can

be constructed using CRF and exposure ratios, it is not necessary to estimate cam-

era parameters to find IMF. IMF can be extracted directly from the histograms of

the images [60]. Another way to estimate IMF is proposed in [61], which estimates

42



IMF from two-dimensional intensity distribution of input images. Slenderizing this

joint intensity distribution results in IMF. [61] also estimates the CRF and exposure

rates using a nonlinear optimization technique. CRF can also be estimated without

finding IMF. In [62], a parametric CRF model is proposed; and these parameters are

estimated iteratively. [63] uses a polynomial model instead of a parametric model.

In [34], a nonparametric CRF estimation technique with a regularization term is pre-

sented. Another nonparametric CRF estimation method is proposed in [35], which

also includes modeling of noise characteristics.

3. Comparison of Photometric Models

Here, we provide an example to compare affine and nonlinear photometric mod-

els. In Figure 1(a, b, c, d), we provide four images captured with a hand-held digital

camera. One of the images is set as the reference image (Figure 1(d)) and the others

are converted to it photometrically using the affine and nonlinear models. (Before

photometric conversion, images were registered geometrically.) The residual images

computed using the affine model (Figure 1(e, f, g)) and the nonlinear model (Figure

1(i, j, k)) are displayed. The affine model parameters are estimated using the least

squares technique and are shown in Figure 1(h). The nonlinear IMFs are estimated

using the method in [38]. The estimated mappings are shown in Figure 1(l). As seen

from the residual images, the nonlinear model works better than the affine model.

The affine model performs well when the exposure ratios are close; the model becomes

more and more insufficient as the exposure ratios differ more. Figure 19 demonstrates

this for a larger set of exposure ratios, ranging from 2 to 50.

A super-resolution algorithm requires an accurate modeling of the imaging pro-

cess. The restored image should be consistent with the observations given the imaging

model. A typical iterative SR algorithm (POCS-based [27], Bayesian [18], iterated

back projection [11]) starts with an initial estimate, calculates an observation using

the imaging model, finds the residual between the calculated and real observations,
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Fig. 18.: Comparison of affine and nonlinear photometric conversion. (a)-(d) are the im-
ages captured with different exposure rates. All camera parameters other than the exposure
rates are fixed. The images are geometrically registered. The relative exposure rates are as
follows: (a) Image z1 with exposure rate 1/16. (b) Image z2 with exposure rate 1/4. (c)
Image z3 with exposure rate 1/2. (d) Image z4 with exposure rate 1. Image z4 is set as the
reference image and other images are photometrically registered to it. The residuals and
the registration parameters are shown. (e) Residual between z4 and photometrically aligned
z1 using the affine model. (f) Residual between z4 and photometrically aligned z2 using
the affine model. (g) Residual between z4 and photometrically aligned z3 using the affine
model. (h) The photometric mappings for (e)-(g). (i) Residual between z4 and photomet-
rically aligned z1 using the nonlinear model. (j) Residual between z4 and photometrically
aligned z2 using the nonlinear model. (k) Residual between z4 and photometrically aligned
z3 using the nonlinear model. (l) The photometric mappings for (i)-(k).
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Fig. 19.: Root mean square error (RMSE) values of photometrically registered images
with relative exposure rates of 2, 4, 8, 16, 32, 50. The RMSE values (green points) for affine
mappings are 14.8, 21.1, 27.8, 34.3, 38.7, 40.7. The RMSE values (blue points) for nonlinear
mappings are 11.2, 11.6, 11.4, 13.5, 15.9, 17.2.

and projects the residual back onto the initial estimate. When the imaging model

is not accurate or registration parameters are not estimated correctly, the algorithm

would fail. In this section, we conclude that nonlinear photometric models should be

a part of SR algorithms when there is a possibility of photometric diversity among

input images.

C. SR under Photometric Diversity

When all input images are not photometrically identical, there are two possible

ways to enhance a reference image: (i) spatial resolution enhancement and (ii) spatial

resolution and dynamic range enhancement. In (i), only spatial resolution of the

reference image is improved. This requires photometric mapping of all input data to

the reference image. In (ii), both spatial resolution and dynamic range of the reference

image are improved. This can be considered as a combination of high-dynamic-range

imaging and super-resolution image restoration.
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1. Spatial Resolution Enhancement

In spatial resolution enhancement, all input images are converted to the tonal

range of reference image. After photometric registration, a traditional SR reconstruc-

tion algorithm can be applied. However, this is not a straightforward process when

the intensity mapping is nonlinear. Refer to Figure 20 that shows various intensity

mapping functions (IMFs). Suppose that z1 is the reference image to be enhanced.

Input image z2 is aimed to be photometrically converted onto z1 in all cases. There

are four cases in Figure 20:

• In case (a), the input image z2 has the same photometric range with the

reference image; so there is no photometric registration necessary.

• In case (b), the IMF is nonlinear; however, there is no saturation. Therefore,

the intensities of z2 can be mapped onto the range of z1 using the IMF without loss

of information.

• In case (c), there is bright saturation in z2. The IMF is not a one-to-one

mapping. The problematic region is where the slope of the IMF is zero or close

to zero. For saturated regions, there is no information in z2 corresponding to z1.

Therefore, perfect photometric mapping from z2 to z1 is not possible. When additive

sensor noise and quantization are considered, small-slope (referring to the slope of

the IMF) regions would also be problematic in addition to the zero-slope (saturation)

regions. In these regions, noise and quantization error in z2 would be amplified when

mapped onto z1, and reconstruction would be affected negatively.

• In case (d), there are regions of small slope and large slope. Large-slope regions

are not an issue because mapping from z2 to z1 would not create any problem. The

problem is still with the small-slope regions (dark saturation regions in z2), where

quantization and noise floor are effective.

One solution to the saturation and noise amplification problems is to use a cer-

tainty function associated with each image. The certainty function should weight
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Fig. 20.: Various photometric conversion scenarios. First row illustrates possible pho-
tometric conversion functions. Second and third rows show example images with such
photometric conversion.

the contribution of each pixel in reconstruction based on the reliability of conversion.

If a pixel is saturated or close to saturation, then the certainty function should be

close to zero. If a pixel is from a reliable region, then the certainty function should

be close to one. The issue of designing a certainty function has been investigated in

HDR research. In [38], the certainty function is defined according to the derivative

of the CRF. The motivation is that for pixels corresponding to low-slope regions of

the CRF, the reliability should also be low. In [56], the certainty function includes

variances of the additive noise and quantization errors in addition to the derivative of

the CRF. In [34], a fixed hat function is used. According to it, the mid-range pixels

have high reliability, while low-end and high-end pixels have low reliability.

We now put these ideas in SR reconstruction. Let x be the (unknown) high-

resolution version of a reference image zr, and define gri (zi) as the IMF that takes zi

and converts it to the photometric range of zr, (therefore, x). Referring to equation

(5), gri (zi) includes the CRF f(·), and gain αri and offset βri parameters:

gri (zi) ≡ f
(
αrif

−1 (zi) + βri

)
. (3.6)
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We also need to model spatial transformations of the imaging process. Define

Hi as the linear mapping that takes a high-resolution image and produces a low-

resolution image. Hi includes motion (of the camera or the objects in the scene),

blur (caused by the point spread function of the sensor elements and the optical

system), and downsampling. (Details of Hi modeling can be found in the special

issue of the IEEE Signal Processing Magazine [5] and the references therein.)

When Hi is applied on x, it should produce the photometrically converted ith

observation, gri (zi). That is, we need to find x that produces gri (zi) when Hi is

applied to it, for all i. The least squares solution to this problem would minimize the

following cost function:

C(x) =
∑

i

‖gri (zi)−Hix‖2. (3.7)

As explained earlier, the problem associated with the saturation of the IMF can

be solved using a certainty function, w(zi). We formulate our equations using a generic

function w(zi). Our specific choice will be given in the experimental results section.

We now define a diagonal matrix Wi whose diagonal is w(zi), and incorporate this

matrix into equation (3.7) to find the weighted least squares solution. The new cost

function is

C(x) =
1

2

∑
i

(gri (zi)−Hix)T Wi (gri (zi)−Hix). (3.8)

Since dimensions of the matrices are large, we want to avoid matrix inversion

and apply the gradient descent technique to find x that minimizes this cost function.

Starting with an initial estimate x(0), each iteration updates x(0) in the direction of

the negative gradient of C(x):

x(k+1) = x(k) + γ
∑

i

HT
i Wi

(
gri(zi)−Hix

(k)
)
, (3.9)

where γ is the step size at the kth iteration. Defining Φ as the negative gradient of
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Fig. 21.: Spatial resolution enhancement framework using IMF. gri(·) is the IMF that
converts input image zi to the photometric range of reference image. Hi applies spatial
transformations, consisting of geometric warping, blurring, and downsampling. Similarly,
Hi

T applies upsampling with zero insertion, blurring, and back-warping. γ is the step size
of the update; it is computed at each iteration.

C(x), the exact line search that minimizes C
(
x(k) + γΦ

)
yields the step size:

γ =
ΦTΦ

ΦT

[∑
i

HT
i WiHi

]
Φ

, (3.10)

with

Φ =
∑

i

HT
i Wi

(
gri (zi)−Hix

(k)
)
. (3.11)

An iteration of the algorithm is illustrated in Fig. 21, and the pseudocode is given

in Table 1. Note that, in implementation, it is not necessary to construct matrices or

vectors to follow the steps of the algorithm. Application of Hi can be implemented as

warping an image geometrically, convolving with the point spread function (PSF), and

downsampling. Similarly, HT
i can be implemented as upsampling with zero insertion,

convolving with a flipped PSF, and back-warping [56]. The step size γ can be obtained

using the same principles.
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Table 3.: Pseudocode of the spatial enhancement algorithm
———————————————————————————————————————
———————————————————————————————————————

1. Requirements:
• Set or estimate the point spread function (PSF) of the camera: h
• Set the resolution enhancement factor: F
• Set the number of iterations: K

2. Initialization:
• Choose the reference image zr

• Interpolate zr by the enhancement factor F to obtain x(0)

3. Parameter estimation:
• Estimate the spatial registration parameters between zr and zi, i = 1, ..., N
• Estimate the IMFs, gri (zi), between zr and zi, i = 1, ..., N

4. Iterations:
• For k = 0 to K − 1

• Create a zero filled initial image Ψ with the same size as x(0)

• For i = 1 to N
• Find Hix(k) with the following steps:

• Convolve x(k) with the PSF h
• Warp and downsample the convolved image onto the input zi

• Find the residual gri (zi)−Hix(k)

• Find the weight image w(zi) and multiply it pixel-by-pixel with the
residual gri (zi)−Hix(k)

• Obtain HT
i Wi

(
gri (zi)−Hix(k)

)
with the following steps:

• Upsample the weighted residual by the factor F with zero insertion
• Convolve the result with the flipped PSF h
• Warp the result to the coordinates of x(k)

• Update Ψ: Ψ ← Ψ + HT
i Wi

(
gri (zi)−Hix(k)

)
• Calculate γ
• Update the current estimate: x(k+1) = x(k) + γΨ

———————————————————————————————————————
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2. Spatial Resolution and Dynamic Range Enhancement

Here, the goal is to produce a high-resolution and high-dynamic range image.

One option is to obtain the high-resolution version of each input image using the

algorithm given in Table 1, and then apply HDR image construction to these high-

resolution images. A second option is to derive the high-resolution irradiance, q,

directly.

This requires formulating the image acquisition from the unknown high-resolution

irradiance q to each observation zi. Adding the spatial processes (geometric warping,

blurring with the PSF, and downsampling) to equation (4), the imaging process can

be formulated as

zi = f (aiHiq + bi) , (3.12)

where Hi is the linear mapping (including warping, blurring, and downsampling op-

erations) from a high-spatial-resolution irradiance signal to a low-spatial-resolution

irradiance signal. f(·), ai, and bi are the CRF, gain, and offset terms as in (4).

This time the weighted least squares estimate of q minimizes the following cost

function:

C (q) =
1

2

∑
i

(
f−1 (zi)− bi

ai

−Hiq

)T

Wi

(
f−1 (zi)− bi

ai

−Hiq

)
(3.13)

This cost function is basically analogous to the cost function in equation (8).

Starting with an initial estimate for q, the rest of algorithms work similar to the

one in Table 1. The only difference is that intensity-to-intensity mapping gri(·) in

(8) is replaced with intensity-to-irradiance mapping f−1(·)−bi

ai
. Unlike the intensity-to-

intensity mapping, intensity-to-irradiance mapping requires explicit estimation of the

CRF, gain and offset parameters.

We write the iterative step to estimate q:

q(k+1) = q(k) + γ
∑

i

HT
i Wi

(
f−1 (zi)− bi

ai

−Hiq
(k)

)
(3.14)
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Fig. 22.: Piecewise linear certainty function used in the experiments. The intensity break-
points in the figure are 15 and 240.

where γ is the step size. It is obtained similar to the one in equation (9). The details

of this approach is trivial given the derivations in the previous section; therefore, we

leave it to the reader.

In [56], we also investigated this joint spatial and dynamic range enhancement

idea. The approach in [56] is similar to the one (irradiance-domain solution) given in

this section. As we mentioned in Section I, in [56], we applied Taylor series expansion

to the inverse of the CRF to end up with a specific certainty function. The algorithm

requires estimation of the CRF and the variances of noise and quantization error.

It also includes a spatial regularization term in the reconstruction. The derivation

in this section can be considered as a generalization of the solution given in [56];

here, the certainty function is not specified. In practice, the methods in [56] and the

irradiance-domain solution of this section work similarly with the proper selection of

certainty functions.

Note that this approach estimates the irradiance q, which needs to be compressed

in dynamic range to display on limited dynamic range displays. Displaying HDR

images on limited dynamic range displays is an active research area [64].
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3. Certainty Function

As we have discussed in Section III-A, the information coming from low-end

and high-end of the intensity range is not reliable due to noise, quantization, and

saturation. If used, these unreliable pixels would degrade the restoration. In [34], a

generalized hat function is proposed to reduce the effect of unreliable pixels. We use

a piecewise linear certainty function in our experiments. The certainty function is

shown in Figure 22. The intensity breakpoints in the certainty function are 15 and

240, and they were determined by trial-and-error.

Figure 23 shows an example to demonstrate the reliability of pixels and the effect

of the certainty function. The first row in the figure shows photometric conversion

from an over-exposed image to an under-exposed image. This is the scenario in Figure

3(c). Figure 23(a) is the reference image, and Figure 23(b) is the geometrically warped

input image which we want to map onto the reference image tonally. Figure 23(c)

shows the residual between the input and the reference image without photometric

registration. Figure 23(d) shows the residual after the application of IMF to the input

image. Clearly, saturated pixels are not handled well: residuals for these pixels are

large. The weights for each pixel in the image are calculated with application of the

certainty function on the input image; they are shown in Figure 23(e). Examining

Figure 23(d) and (e), it can be seen that the weights for unreliable saturated pixels

are low, as expected. Figure 23(f) shows the final residual after the application of the

weight image Figure 23(e) on the residual image Figure 23(d).

The second row in Figure 23 shows an example of tonal conversion from an

under-exposed image to an over-exposed image. This is the scenario in Figure 3(d).

Figure 23(g) is the reference image and Figure 23(h) is the geometrically warped input

image. Here, photometric transformation can be performed without any problem for

high-end of intensity range. The problem is the low-end, dark saturation regions in

the input image. Figure 23(j) shows the residual after tonal conversion. Figure 23(k)
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(a) (b) (c) (d) (e) 

(g) (h) (i) (j) (k) 

(f) 

(l) 

Fig. 23.: Weighting function effect on residuals. First row performs conversion onto low
exposure reference while second row has a reference with high exposure. (a) Reference
image. (b) Geometrically warped input image. (c) Residual image without tonal conversion.
(d) Residual image using nonlinear tonal conversion. (e) Certainty image using hat function
as weighting and image (b) as input. (f) Weighted residual obtained multiplying residual
image in (d) by certainty image in (e). (g) Reference image. (h) Geometrically warped input
image. (i) Residual image without tonal conversion. (j) Residual image using nonlinear
tonal conversion. (k) Certainty image using hat function as weighting and image (g) as
input. (l) Weighted residual obtained multiplying residual image in (j) by certainty image
in (k).

is the certainty image. As seen, the unreliable dark saturation regions are having low

weights. Figure 23(f) and (l) show the weighted residuals obtained by multiplying

the residual images with the corresponding certainty images. In the weighted residual

image, large residual values (that would degrade SR reconstruction) are eliminated

or reduced significantly.

D. Geometric and Photometric Registration

SR requires accurate geometric and photometric registration. If the actual CRF

and the exposure rates are unknown, the images must be geometrically registered be-

fore these parameters can be estimated. On the other hand, geometric registration is

problematic when images are not photometrically registered. There are three possible

approaches to this problem:

• (A1) Images are first geometrically registered using an algorithm that is insen-

sitive to photometric changes. This is followed by photometric registration.
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• (A2) Images are first photometrically registered using an algorithm that is in-

sensitive to geometric misalignments. This is followed by geometric registration.

• (A3) Geometric and photometric registration parameters are estimated jointly.

There are few algorithms that can be utilized for these approaches. In [65], an

exposure-insensitive motion estimation algorithm based on the Lucas-Kanade tech-

nique is proposed to estimate motion vectors at each pixel. Although this method

can be used to estimate large and dense motion field, it has the downside that it re-

quires pre-knowledge of the CRF. Another exposure-insensitive algorithm is proposed

in [66]. It is based on bit-matching on binary images. Although it does not require

knowing CRF in advance, the algorithm is limited to global translational motion.

In [60], an IMF estimation algorithm that does not require geometric registration

is proposed. It is based on the idea that histogram specification gives the intensity

mapping between two images when there is no saturation or significant geometric

misalignment. And finally in [67], a joint geometric and photometric registration

algorithm was proposed. There, the problem is formulated as a global parameter es-

timation, where the parameters jointly represent geometric transformation, exposure

rate, and CRF. Two potential problems associated with this approach are (1) getting

stuck at a local minima and (2) limitation of using parametric CRF.

We take approach (A1) in our experiments. This is also the approach in [56].

[41, 55] takes the same approach except for the photometric model. For geometric reg-

istration, we use a feature-based algorithm, which requires robust exposure-insensitive

feature extraction and matching. In our experiments, feature points are first extracted

using the Harris corner detector [43]. Although the Harris corner detector is not in-

variant to illumination changes in general, it worked well in our experiments. These

feature points are matched using normalized cross correlation, which is insensitive to

contrast changes. The RANSAC method [44] is then used to eliminate the outliers

and estimate the homographies. After geometric registration comes photometric reg-
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(a) (b) (c) 

(d) (e) 

Fig. 24.: Five images of “Facility I” data set that includes 22 images are displayed here.
Exposure durations of (a)-(e) are 1

25 , 1
50 , 1

100 , 1
200 , and 1

400 seconds, respectively.

istration. There are various methods available in the literature to estimate IMF and

CRF as we discussed earlier. In our experiments, we use [62] to estimate IMF, CRF

and the exposure rate.

E. Experiments and Results

We conducted experiments to demonstrate the proposed SR algorithms. (A

MATLAB toolbox can be downloaded from [68].) We captured two data sets with

a hand-held digital camera. These data sets are shown in Figure 24 and 25. The

resolution enhancement factor is four and the number of iterations was set to two

in all experiments. The PSF is taken as a Gaussian window of size [7x7] and of

variance 1.7. The results are shown in Figure 26 and Figure 27. For the spatial-only

enhancement approach, we did experiments when the reference is chosen as an over-

exposed image and also when it is chosen as an under-exposed image to show the

robustness of the algorithm. For the irradiance-domain spatial and dynamic range

enhancement approach, we created an initial estimate by applying a standard HDR

image construction algorithm [34]. The initial estimate is then updated iteratively.
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(a) (b) (c) 

(d) (e) (f) 

Fig. 25.: Six images of “Facility II” data set that includes 31 images are displayed here.
Exposure durations of (a)-(e) are 1

25 , 1
50 , 1

100 , 1
200 , 1

400 , and 1
800 seconds, respectively.

For comparison purposes, we provided cropped regions of results and transformed

input images in Figure 26. Figure 26(a)-(e) are the bilinearly interpolated observa-

tions with different exposure rates chosen from the 22 input images. Each observation

contains a different portion of the existing tonal range. Figure 26(f) is the SR re-

sult obtained when the over-exposed image, Figure 26(a), is chosen as the reference

image. Comparison of figures 26(a) and 26(f) shows the improvement in resolution.

Similarly, Figure 26(g) is obtained when the under-exposed image, 26(e), is set as

as the reference image. The resolution enhancement is again clear. Figure 26(h) is

the result of the resolution and dynamic range enhancement algorithm. Notice that

both spatial resolution and dynamic range are improved. (Note that the result of an

HDR algorithm would have higher dynamic range than a standard display or printing

device. Therefore, an HDR image should be compressed in range to output in such

LDR devices. There are complex display algorithms [64]. In this paper, we used a

simple gamma correction to display the result. The gamma correction parameter is
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0.5.) Figure 2 shows the results for the second data set. The discussion is parallel to

the discussion of first data set, therefore, is excluded for conciseness.

Finally, we wanted to test of the effect of the weighting function in SR recon-

struction. Figure 28(a) and Figure 28(b) aim to increase both spatial resolution and

dynamic range, and differ only in their weighting function. Figure 28(a) shows SR

result using a unity weight. Notice the loss of information in details and color. Color

artifacts occur in this case as the saturated pixels are not handled properly. Strips on

the warehouse can hardly be observed and the sky color is washed out due to fusion

with saturated residuals. There is also contouring artifact. Figure 28(b) shows the

result using the proposed hat function for weighting. Texture and colors are preserved

compared to Figure 28(a).

F. Conclusions

In this paper, we showed how to do SR when the photometric characteristics of

the input images are not identical. We showed two possible approaches, one of them

enhancing spatial resolution only, and the other enhancing spatial resolution and the

dynamic range jointly. We demonstrated that nonlinear photometric modeling should

be preferred to affine photometric modeling. We also discussed that an appropriate

weighting function is necessary to handle saturation. Other SR reconstruction tech-

niques can be modified and applied as long as an appropriate photometric registration

is included.

Although geometric registration is a complicated task for differently exposed

images, we achieved a success using feature-based registration without the need of

CRF. A sequential approach is useful: Similarly exposed images would produce sim-

ilar features; therefore, correct geometric registration would be easier to estimate

among similarly exposed images compared to images with large exposure differences.

Therefore, one may find the homographies among similarly exposed images, and then

combine the homographies to find the homography between any two image. In our
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

Fig. 26.: Cropped regions of observation and SR results. (a)-(e) Input images. (f) SR
when (a) is the reference image. (g) SR when (e) is the reference image. (h) SR using the
technique presented in Section 2.
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(a) (b) 

(c) (d) 

(e) (f) 

(g) 

Fig. 27.: Cropped regions of observation and SR results. (a)-(d) Input images. (e) SR
when (d) is the reference image. (f) SR when (a) is the reference image. (g) SR using the
technique presented in Section 2.
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Fig. 28.: Comparison of weighting function during spatial resolution enhancement. Lowest
exposed image is chosen as reference. (a) SR reconstruction using identity weight, (b) SR
reconstruction using a hat function as weight.

experiments, we chose a reference image from the middle of the tonal range. Ho-

mographies of input images are found with respect to this reference image. The

homography between any two of the input images can then be found by multiplying

the corresponding homography matrices. Photometric registration is trivial after the

geometric registration.

In this paper, we considered static scenes only. Estimation of motion parameters

for non-static scenes is left as a future work. Also, we only considered global photo-

metric changes. In experiments, we only considered the exposure rate change which

acts globally on image. In general, a dense photometric model is necessary to handle

local photometric changes. That is, accurate geometric and photometric registration

of photometrically different images is certainly a problem requiring further research.
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CHAPTER IV

RESTORATION OF BAYER-SAMPLED IMAGE SEQUENCES

Spatial resolution of digital images are limited due to optical/sensor blurring and

sensor site density. In single-chip digital cameras, the resolution is further degraded

because such devices use a color filter array to capture only one spectral component

at a pixel location. The process of estimating the missing two color values at each

pixel location is known as demosaicking. Demosaicking methods usually exploit the

correlation among color channels. When there are multiple images, it is possible not

only to have better estimates of the missing color values but also to improve the spatial

resolution further (using super-resolution reconstruction). In this paper, we propose

a multi-frame spatial resolution enhancement algorithm based on the projections onto

convex sets (POCS) technique.

A. Introduction

In a digital camera, there is a rectangular grid of electron-collection sites laid over

a silicon wafer to measure the amount of light energy reaching each of them. When

photons strike these sensor sites, electron-hole pairs are generated; and the electrons

generated at each site are collected over a certain period of time. The numbers of

electrons are eventually converted to pixel values.

To produce color pictures, this image acquisition process is modified in various

ways. The first method is to use beam-splitters to split the light into several opti-

cal paths and use different spectral filters on each path to capture different spectral

components. This method requires precise alignment of images from each color chan-

nel. Another possibility is to capture multiple pictures with a single sensor; each

time a different color filter placed in front of the whole sensor. The alternative and

less-expensive method is to use a mosaic of color filters to capture only one spectral

component at each sensor site. The color samples obtained with such a color filter

array (CFA) must then be interpolated to estimate the missing samples. Because of
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the mosaic pattern of the color samples, this CFA interpolation problem is also re-

ferred to as “demosaicking” in the literature [69]. Although the last method causes a

loss of spatial resolution in every color channel, it is usually the preferred one because

of its simplicity and lower cost.

The most commonly used CFA pattern is the “Bayer” pattern, which is shown

in Figure 29. In a Bayer pattern, green samples are obtained on a quincunx lattice,

and red and blue samples are obtained on rectangular lattices. The green channel is

more densely sampled than the red and blue channels because the spectral response

of a green filter is similar to the human eye’s luminance frequency response.

If the measured image is divided by measured color into three separate images,

this problem looks like a typical image interpolation problem. Therefore, standard

image interpolation techniques can be applied to each channel separately. Bilinear

and bicubic interpolations are common image interpolation techniques that produce

good results when applied to gray-scale images. However, when they are used for

the demosaicking problem, the resulting image shows many visible artifacts. This

motivates the need to find a specialized algorithm for demosaicking problem. There is

a variety of demosaicking algorithms in the literature, including edge-directed [70, 2],

constant-hue-based [71, 72, 73, 74], Laplacian as correction terms [75], alias canceling

[76], projections onto convex sets based [77], Bayesian [78], artificial neural networks

based [79], and homogeneity-directed [80] interpolation methods. Two important

ideas in these algorithms are avoiding interpolation across edges and exploiting the

correlation among the color channels. These two ideas are put into work in various

ways.

When there are multiple images, spatial resolution can be improved beyond the

physical limits of a sensor chip. This multi-frame resolution enhancement is known

as super-resolution reconstruction. Although there have been a significant amount

of work on super-resolution image reconstruction, there are only few recent efforts
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modeling CFA sampling and addressing issues related to image reconstruction from

CFA-sampled data.

In [3], data fidelity and regularization terms are combined to produce high-

resolution images. The data fidelity term is based on a cost function that consists of

the the sum of residual differences between actual observations and high-resolution

image projected onto observations (simulated observations). Regularization func-

tions are added to this cost function to eliminate color artifacts and preserve edge

structures. These additional constraints are defined as luminance, chrominance, and

orientation regularization in [3]. A similar algorithm is presented in [81].

Among different demosaicking approaches, the POCS-based demosaicking algo-

rithm has one of the best performance [77], [69]. One advantage of the POCS frame-

work is that new constraints can be easily incorporated into a POCS-based algorithm.

Here, we present POCS-based algorithms for multi-frame resolution enhancement of

Bayer CFA sampled images. We investigate two approaches: demosaicking and super-

resolution (DSR) and only super-resolution (OSR). In DSR approach, we separate the

restoration process into two parts. The first part is multi-frame demosaicking, where

missing color samples are estimated. The second part is super-resolution reconstruc-

tion, where sub-pixel level resolution is achieved. In OSR approach, super-resolution

image is reconstructed without demosaicking, using Bayer pattern masks only for

computing the residual of each color channel.

In Section B, we present an imaging model that includes CFA sampling. We in-

troduce our POCS-based multi-frame demosaicking algorithm in Section C. This Sec-

tion includes three constraint sets and corresponding projection operators for multi-

frame demosaicking. In Section D, we explain how to achieve sub-pixel resolution.

Experimental results and discussions are provided in Section E.
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Fig. 29.: Single-chip digital cameras have color filter arrays with specific patterns. The
most commonly used pattern is the “Bayer” pattern, which is illustrated in this picture.

B. Imaging Model

We use an image acquisition model that includes CFA sampling in addition to

motion and blurring. The model has two steps: the first step models conversion of

a high-resolution full-color image into a low-resolution full-color image. The second

step models color filter sampling of full-color low-resolution image.

Let xS a color channel of a high-resolution image, where a channel can be red

(xR), green (xG), and blue (xB). The ith observation, y
(i)
S , is obtained from this high-

resolution image through spatial warping, blurring, and downsampling operations:

y
(i)
S = DCW (i)xS, for S = R, G, B, and i = 1, 2, ..., K, (4.1)

where K is the number of input images, W (i) is the warping operation (to account for

the relative motion between observations), C is the convolution operation (to account

for the point spread function of the camera), and D is the downsampling operation

(to account for the spatial sampling of the sensor).

The full-color image (y
(i)
R ,y

(i)
G ,y

(i)
B ) is then converted to a mosaicked observation

z(i) according to a CFA sampling pattern:

z(i) =
∑

S=R,G,B

MSy
(i)
S (4.2)

where MS takes only one of the color samples at a pixel according to the pattern. For

example, at red pixel location, [MR, MG, MB] is [1, 0, 0].

We investigate two approaches to obtain xS. In DSR approach, each full-color

low-resolution image y
(i)
S is estimated from the multiple observations z(i), and then
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super-resolution reconstruction is applied to these estimates y
(i)
S to obtain xS. In the

OSR approach, xS is obtained directly from z(i) without estimating y
(i)
S .

C. Multi-Frame Demosaicking

In this section, we introduce multi-frame demosaicking, where multiple images

are used to estimate missing samples in a Bayer-sampled color image. The process

is based on the POCS technique, where an initial estimate is projected onto convex

constraint sets iteratively to reach a solution that is consistent with all constraints

about the solution [82].

This algorithm is based on the demosaicking approach presented in [77]. In

[77], we define two constraint sets. The first constraint set stems from inter-channel

correlation. It is based on the idea that high-frequency components of red, green,

and blue channels should be similar in an image. This turns out to be a very effective

constraint set. This constraint set is also used in this paper.

The second constraint set ensures that the reconstructed image is consistent

with the observed data of the same image. This constraint set can be improved when

there are multiple observations of the same scene. A missing sample (due to the CFA

sampling) in an image could have been captured in another image due to the relative

motion between observations. It is possible to obtain a better estimate of a missing

sample by taking multiple images into account. Therefore, we define a constraint set

based on samples coming from multiple images.

In addition to previous constraint sets, we propose a third constraint set in this

paper to achieve color consistency. Consistent neighbors of a pixel are determined

according to both spatial and intensity closeness. Intensity of a pixel is updated

using the weighted average value of its consistent neighbors. These constraint sets

are examined in following sections.
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1. Detail Constraint Set

Let Wk be an operator that produces the kth subband of an image. There are

four frequency subbands (k = LL,LH, HL, HH) corresponding to low-pass filtering

and high-pass filtering permutations along horizontal and vertical dimensions. (A

brief review of the subband decomposition is provided in the Appendix B .)

The “detail” constraint set (Cd) forces the details (high-frequency components)

of the red and blue channels to be similar to the details of the green channel at every

pixel location (n1, n2), and is defined as follows:

Cd =





y
(i)
S (n1, n2) :

∣∣∣
(
Wky

(i)
S

)
(n1, n2)−

(
Wky

(i)
G

)
(n1, n2)

∣∣∣ ≤ Td(n1, n2)

∀ (n1, n2), for k = LH, HL, HH and S = R, B





,

(4.3)

where Td(n1, n2) is a positive threshold that quantifies the “closeness” of the detail

subbands to each other. For details and further discussion on this constraint set, we

refer the reader to [77].

2. Observation Constraint Set

The interpolated color channels must be consistent with the color samples cap-

tured by the digital camera for all images. Even if a color sample does not exist in an

image as a result of Bayer sampling, that particular sample could have been captured

in another frame (due to motion). By warping all captured samples onto the common

frame to be demosaicked, we can obtain a good estimate of the missing samples.

Figure 30 illustrates the sampling idea. In the figure, red channels of three

Bayer-sampled images are shown. The grid locations with “triangles”, “circles”, and

“squares” are the ones that have red samples. We would like to estimate the missing

samples in the middle image. The other two images warped onto the middle image.

The estimation problem now becomes an interpolation problem from a set of nonuni-

formly sampled data. After the interpolation, we obtain an “observation” image, ȳ
(i)
S .
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I 

Fig. 30.: I: Input images are warped onto reference frame. II: Weighted average of samples
are taken to find values on the reference sampling grid.

The demosaicked samples y
(i)
S should be consistent with this observation image ȳ

(i)
S .

To make sure that, we can define the “observation” constraint set Co as follows:

Co =





y
(i)
S (n1, n2) :

∣∣∣y(i)
S (n1, n2)− ȳ

(i)
S (n1, n2)

∣∣∣ ≤ To (n1, n2)

∀ (n1, n2) and S = R,G, B





, (4.4)

where To(n1, n2) is a positive threshold to quantify the closeness of the estimated

pixels to the averaged data.

The observation image ȳ
(i)
S should be interpolated from nonuniformly located

samples. There are different approaches to do nonuniform interpolation. One ap-

proach is to take a weighted average of all samples within a neighborhood of a pixel

in question. For example, if Euclidean distance between a sample and the pixel

in question is d, then the weight of the sample could be set to be proportional to

e−(d/σ)2 , where σ is a constant parameter. This requires accurate geometric regis-

tration as weight of each sample is determined according to the spatial closeness to

the sampling location. In our experiments, we used simple bilinear interpolation to
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estimate the missing samples. That is, all frames are warped onto the reference frame

using bilinear interpolation. These warped images are then averaged to obtain ȳ
(i)
S .

One benefit of using this constraint set is noise reduction. When the input data

is noisy, constraining the solution to be close to the observation image ȳ
(i)
S prevents

amplification of noise and color artifacts.

3. Color Consistency Constraint Set

The third constraint set is the color consistency constraint set. It is reasonable

to expect pixels with similar green intensities to have similar red and blue intensities

within a small spatial neighborhood. Therefore, we define spatio-intensity neighbor-

hood of a pixel. Suppose that green channel xG of an image is already interpolated

and we would like to estimate the red value at a particular pixel (n1, n2). Then, the

spatio-intensity neighborhood of the pixel (n1, n2) is defined as

N (n1, n2) =
{
‖(m1,m2)− (n1, n2)‖ ≤ τS and

∣∣∣y(i)
G (m1,m2)− y

(i)
G (n1, n2)

∣∣∣ ≤ τI

}
,

(4.5)

where τS and τI are spatial and intensity neighborhood ranges, respectively. Fig-

ure 31 illustrates spatio-intensity neighborhood for a one-dimensional signal. In that

figure, we would like to determine the spatio-intensity neighbors of the pixel in the

middle. The spatial neighborhood is determined by τS; and the intensity neighbor-

hood is determined by τI . The yellow region shows the spatio-intensity neighborhood.

The spatio-intensity neighbors of a pixel should have similar color values. One

way to measure color similarity is to inspect color differences between red and green

channels (and blue and green channels). These differences are expected to be similar

within the spatio-intensity neigborhood N (n1, n2). Therefore, the color consistency
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Fig. 31.: Spatio-intensity neighborhood of a pixel is illustrated on a one-dimensional image.
The yellow region is the neighborhood of the pixel in the middle.

constraint set can be defined as follows:

Cc =





y(i)
S (n1, n2) :

∣∣∣∣
(
y(i)

S (n1, n2)− y(i)
G (n1, n2)

)
−

(
y(i)

S (n1, n2)− y(i)
G (n1, n2)

)∣∣∣∣ ≤ Tc (n1, n2)

∀ (n1, n2) and S = R, B





,

(4.6)

where (·) is averaging within the neighborhood N (n1, n2), and Tc(n1, n2) is a positive

threshold. We perform the averaging operation (·) using the bilateral filter concept

[83]. Using a gaussian filter near edges causes interpolation across different regions,

which leads to blurring. Bilateral filter was proposed to perform image smoothing

without blurring across images. It performs averaging in both spatial domain and

intensity range of the neighborhood and can be formulated as follows

I(n1, n2) =
1

Z

∑

m1,m2∈N (n1,n2)

exp

(
− d

2σS
2

)
exp

(
−(I(m1,m2)− I(n1, n2))

2

2σI
2

)
I(m1, m2),

(4.7)

where Z is the normalizing constant, and d is the euclidian distance between

coordinates, (m1 − n1)
2 + (m2 − n2)

2 . Note that when τI and τS are kept relatively

large, σI and σS become the real governing parameters. Also note that we have

defined the spatio-intensity neighborhood within a frame. This can be extended to

multiple images using motion vectors. The idea is illustrated in Figure 32.

An issue to be considered with all these constraint sets is the selection of the

threshold values Td (n1, n2), To (n1, n2), and Tc (n1, n2). The detail constraint set

should be tight (i.e. Td (n1, n2) should be small) when the inter-channel correlation
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Fig. 32.: The spatio-intensity neighborhood of a pixel can be defined for multiple images.
The corresponding point of a pixel is found using motion vectors; using the parameters τS

and τI , the neighborhood (yellow regions) is determined.

is high [77]. When the images are noisy, a strict observation constraint that forces the

solution towards the average image ȳ
(i)
S would prevent color artifacts. Therefore, noise

variance and the number of images used to obtain ȳ
(i)
S should be considered during

the selection of To (n1, n2). If the images were noise-free and the warping process was

perfect, then we would keep To (n1, n2) very small. The color consistency threshold

Tc (n1, n2) determines how much the color difference smoothness is enforced. The

selection of the spatio-intensity neighborhood is also critical in this constraint set.

When the spatial range τS is too large, local spatial neighborhood assumption could

be violated. When τS is too small, noise might become an issue. On the other hand,

the intensity range τI should not be too large not to take unrelated pixels into account.

In our experiments, we determined optimal parameters by trial-and-error. Selecting

the size of the spatio-intensity neighborhood window is a research topic by itself.

Spatio-temporal activity of a video plays an important role in parameter selection for

color consistency set. We leave the robust and automatic parameter selection issue

as a future work.

4. Projection Operations

In this section, we define projection operators for the aforementioned constraint

sets. These projection operations will form the basis of joint demosaicking and super-

resolution, which will be presented in following sections.
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a. Projection onto detail constraint set

We write the projection Pd

[
y

(i)
S

]
of a color channel y

(i)
S onto the detail constraint

set Cd as follows [77]:

Pd

[
y

(i)
S

]
= ULLWLLy

(i)
S +

∑

k=HL,LH,HH

UkW ′
ky

(i)
S (4.8)

where

W ′
ky

(i)
S =





Wky
(i)
G + Td, if

(
Wky

(i)
S −Wky

(i)
G

)
> Td

Wky
(i)
S , if

∣∣∣Wky
(i)
S −Wky

(i)
G

∣∣∣ ≤ Td

Wky
(i)
G −Td, if

(
Wky

(i)
S −Wky

(i)
G

)
< −Td

(4.9)

Detail projection can be implemented efficiently in wavelet domain. Wk corresponds

to decomposing the signal into kth subband, and Uk is the synthesis filter for the kth

subband. Decomposition and synthesis filters should satisfy the perfect reconstruction

condition, which is given in Appendix B . Remember that detail projection is applied

to red and blue channel, as S = R,B for detail projection.

b. Projection onto observation constraint set

Although detail projection provides consistency of high frequency components

of color channels, this forced correlation may result in deviation from actual values.

In order to prevent this possible deviation, intermediate result is also projected onto

each observations as such

Po

[
y

(i)
S

]
=





ȳ
(i)
S + To, if

(
y

(i)
S − ȳ

(i)
S

)
> To

y
(i)
S , if

∣∣∣y(i)
S − ȳ

(i)
S

∣∣∣ ≤ To

ȳ
(i)
S −To, if

(
y

(i)
S − ȳ

(i)
S

)
< −To

c. Projection onto color consistency constraint set

Color consistency constraint takes advantage of the fact that correlation of green

samples in a small window implies the correlation among red and blue samples. This

constraint set provides noise elimination for highly degraded images with noise. Keep-
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Fig. 33.: DSR reconstruction approach is illustrated for the iterated back-projection algo-
rithm. The algorithm starts with a high-resolution image estimate. Simulated observations
are obtained by forward imaging operations. The observations y(i)

S are obtained using
single-frame or multi-frame demosaicking. The full-color residuals are then back-projected
to update the current estimate of high-resolution. The notation in the figure is as follows.
W (i): Spatial warping onto ith observation, C: Convolution with the PSF, D: Down-
sampling by the resolution enhancement factor, U : Upsampling by zero insertion, W

(i)
b :

Back-warping to the reference grid.

ing window size large may lead to artifacts in final result, as correlation is valid for

a local neighborhood. Realization of color consistency constraint is exhaustive as it

is implemented in a moving window fashion for each pixel on the grid. Consistency

projection is implemented with the following operation

Pc

[
y

(i)
S

]
=





y
(i)
G +

(
y

(i)
S − y

(i)
G

)
+ Tc, if

(
y

(i)
S − y

(i)
G

)
−

(
y

(i)
S − y

(i)
G

)
> Tc

y
(i)
S , if

∣∣∣∣
(
y

(i)
S − y

(i)
G

)
−

(
y

(i)
S − y

(i)
G

)∣∣∣∣ ≤ Tc

y
(i)
G +

(
y

(i)
S − y

(i)
G

)
−Tc, if

(
y

(i)
S − y

(i)
G

)
−

(
y

(i)
S − y

(i)
G

)
< −Tc

where S = R, B. The overall procedure of multi-frame demosaicking is provided in

Algorithm 1.

D. Achieving Subpixel Resolution

Using multiple images, it is possible to achieve subpixel resolution. This process

is known as super-resolution reconstruction. We consider two approaches for CFA-

sampled images: demosaicking and super-resoultion (DSR) and only super-resolution

(OSR).
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Fig. 34.: OSR reconstruction approach is illustrated. The algorithm starts with a high-
resolution image estimate. Simulated observations are obtained by forward imaging opera-
tions, including the CFA sampling. The residuals are computed on Bayer pattern samples
for each channel, and then back-projected. The notation in the figure is as follows. W (i):
Spatial warping onto ith observation, C: Convolution with the PSF, D: Downsampling by
the resolution enhancement factor, U : Upsampling by zero insertion, W

(i)
b : Back-warping

to the reference grid.

1. Demosaicking Super-Resolution (DSR) Approach

In DSR approach, demosaicking is first performed on each frame, and then super-

resolution reconstruction is applied to the demosaicked images. For demosaicking,

either single-frame demosaicking or multi-frame demosaicking (as presented in this

paper) can be applied. For super-resolution reconstruction, each color channel can

be treated separately using any of the super-resolution algorithms in the literature.

Figure 33 illustrates this idea for the iterated back-projection super-resolution algo-

rithm [11]. Starting with an initial estimate for the high-resolution image, warping,

blurring and downsampling operations are applied to produce a simulated observa-

tion. The residual between the simulated observation and the actual observation y
(i)
S

is then back-projected. The back-projection operation includes upsampling by zero

insertion, blurring, and back-warping. This is done for each channel separately. The

process is repeated for a fixed number of iterations or until convergence.
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2. Only Super-Resolution (OSR) Approach

The other approach is to perform demosaicking and super-resolution reconstruc-

tion jointly. That is, a high-resolution image is reconstructed from the input data

z(i) without estimating full-color low-resolution images y
(i)
S . Figure 34 shows an illus-

tration of this approach. The reconstruction process is based on the iterated back-

projection algorithm: A high-resolution image estimate is warped, blurred, down-

sampled, and CFA sampled to create a simulated observation. The residual between

this simulated observation and the actual observation is computed, and then back-

projected as explained previously. Note that in this approach the samples are more

sparsely located than the DSR approach. This may create a problem (reconstruc-

tion artifacts) when there is not sufficient number of input images. The convolution

kernels should have larger basis to compensate for the sparse sampling.

E. Experiments

1. Comparison of Single-Frame Demosaicking Algorithms

We would like to show the contribution of the spatio-intensity based constraint set

to the alternating projections framework of [77]. Figure 35 shows the merit of spatio-

intensity constraint set. Mean square error with and without consistency constraint

set is 16.85 and 16.90, and mean square error of [1] is 16.34. Although there is a

slight decrease in objective error, proposed constraint set makes algorithm superior

in visual reconstruction as shown in Figure 35 (d) compared to earlier method, which

is shown in Figure 35 (c). Proposed method is also visually comparable to [1] ,whose

result is given in Figure 35 (b).

We compare several demosaicking algorithms. These include single-frame de-

mosaicking algorithms such as bilinear interpolation, edge-directed interpolation [2],

alternating projections [77] and adaptive homogeneity directed demosaicking [1] in

comparison with our proposed demosaicking algorithm. In this section proposed al-

gorithm is applied using single image framework as existing demosaicking algorithms
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(a) (b) 

(c) (d) 

Fig. 35.: Merit of consistency constraint set. (a) Original image. (b) Adaptive homogeneity-
directed demosaicking [1]. (c) Demosaicked without consistency constraint set in 4 itera-
tions, Td = 5, To = 0. (d) Demosaicked with consistency constraint set in 4 iterations,
σI = 1.41, σS = 1.41, Td = 5, To = 0, Tc = 2, domain window is [5x5].
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are applied on single frame, and it is fair to make comparison on same basis. Multi-

frame demosaicking in conjunction with the resolution enhancement will be performed

in next section.

Another demosaicking comparison is provided in Figure 36. You can notice the

merit of the consistency constraint set in Figure 36-(e). The result of the proposed

method is visually similar to the method of [1]. Mean square error of [1], POCS

with and without consistency constraint set are 14.80, 15.74, and 15.90, respectively

for images in 36. The POCS framework is suitable to incorporate any additional

constraint set. POCS code with all the constraint set applied is available in [68].

2. Super Resolution Experiments

In this section we compare several approaches for demosaicking and super-resolution

reconstruction. We first captured a video sequence of length 21 using CanonG5 dig-

ital camera. The size of each frame is 240× 320. These images are then downscaled

by two and then further sampled with the Bayer pattern to produce the input data

of size 120 × 160. Figure 37 shows six of these input data. The motion parameters

are estimated using feature-based image registration technique [84]. The motion pa-

rameters are estimated from the interpolated green channels due to its high sampling

rate, and it turns out that images are related with affine transformation. Our second

data set contains 50 images taken from a video sequence while camera is allowed to

move only in x and y directions. These images are originally of size 120 × 160 and

they are Bayer sampled to produce mosaic input patterns, 6 of which are shown in

Figure 38.

We compared several super-resolution reconstruction approaches. We provide

resolution enhancement results for two different data sets. In first experiment we used

the Bayer pattern images given in Figure 37. Demosaicked and multi-frame enhanced

results are given in Figure 39. Cropped regions of same results are given in Figure

40. In Figure 39 and Figure 40 , (a), (b), (c), and (d) show single frame demosaicking
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(a) (b) 

(c) (d) (e) 

Fig. 36.: Single frame POCS comparisons. (a) Bilinear interpolation (b) Edge directed
interpolation [2]. (c) Adaptive homogeneity-directed demosaicking [1]. (d) POCS based
demosaicking without consistency set, Td = 5, To = 0. (e) POCS based demosaicking with
consistency set, σI = 1.41, σS = 1.41, Td = 5, To = 0, Tc = 2, domain window is [5x5],
demosaicking iteration number is 3.
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(a) (b) (c) 

(d) (e) (f) 

Fig. 37.: First data set. (a)-(f) Bayer pattern input images

results. (e) is multi-frame demosaicking result, which is visually superior and has less

color artifacts compared to single frame demosaicking results. (f) is the OSR result

using single frame demosaicking. (g) and (h) are DSR results without and with color

consistency constraint sets using single frame demosaicking approach, respectively.

(i) is resolution enhancement with consistency set using multi frame demosaicking

approach. Note that border artifacts may occur in super resolution with multi-frame

demosaicking due to the fact that backwarped residuals have non-overlapping regions.

Final result should be evaluated in the intersecting region of warped residuals. These

artifacts can be handled using only single frame demosaicking in non-overlapping

parts. This approach is not implemented as it is out of the scope of the paper.

As seen in these figures, OSR has worse performance among multi-frame ap-

proaches. DSR with spatio-intensity outperforms others. Although multi-frame de-

mosaicking approach outperforms single-frame methods, it does not have any signif-

icant contribution in case of super-resolution enhancement due to averaging effect.

Comparing Figure 40 (g) and (h) and shows that spatio-intensity constraint removes

the zipper artifacts. In these initial experiments, the reconstruction parameters were
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(a) (b) (c) 

(d) (e) (f) 

Fig. 38.: Second data set. (a)-(f) Bayer pattern input images

chosen by trial-and-error. As a future work, we will look into the parameter selection

issue in more detail.

For second data set we provide comparison with the work of [3], which performs

demosaicking and super-resolution jointly, using default parameters provided in their

software. Results for this data set is given in Figure 41. Multi-frame approach

outperforms the single-frame method as results indicate. Merit of spatio-intensity

can be seen in Figure 41 (h) as zipper effects are less compared to Figure 41 (g).

Although work of [3] produces results with less noise, it contains jagged artifacts

as shown in Figure 41 (f). Matlab user interface of our DSR is provided in [68] to

conduct DSR experiments using proposed constraint sets.

F. Conclusions

In this section, we present a POCS-based framework for resolution enhancement

of Bayer-sampled video sequences. We defined three constraint sets to be used in

single or multi-frame demosaicking. Additional constraint sets can be incorporated

easily within the POCS framework. Multi-frame demosaicking algorithm performed

better than single-frame demosaicking algorithms. We also investigated two different

approaches for super-resolution reconstruction. The DSR approach performs demo-
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 39.: Demosaicking and super-resolution results. (a) Single frame demosaicking by
bilinear interpolation. (b) Single frame demosaicking by edge directed interpolation [2]. (c)
Single frame demosaicking by adaptive homogeneity directed interpolation [1]. (d) Proposed
single frame demosaicking by all constraints applied, σI = 1.41, σS = 1.41, Td = 5, To =
0, Tc = 2, domain window is [5x5], number of iterations is 3. (e) Multi-frame demosaicking,
all constraints applied. Demosaicking is applied in 3 iterations, σI = 1.41, σS = 1.41, Td =
5, To = 0, Tc = 2, domain window is [5x5]. (f) OSR result using single frame demosaicking
in 3 iterations. (g) DSR without consistency set using single frame demosaicking in 3
iterations , Td = 5, To = 0. (h) DSR with all constraint sets applied in 3 iterations,
σI = 1.41, σS = 1.41, Td = 5, To = 0, Tc = 2, domain window is [5x5]. (i) DSR using
multi frame demosaicking with all constraint sets applied in 3 iterations, σI = 1.41, σS =
1.41, Td = 5, To = 0, Tc = 2, domain window is [5x5]. Iteration number for super resolution
is set to 3 during the experiment.
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

Fig. 40.: Demosaicking and super-resolution results. (a) Single frame demosaicking by
bilinear interpolation. (b)Single frame demosaicking by edge directed interpolation [2]. (c)
Single frame demosaicking by adaptive homogeneity directed interpolation [1]. (d) Proposed
single frame demosaicking by all constraints applied, σI = 1.41, σS = 1.41, Td = 5, To =
0, Tc = 2, domain window is [5x5], iteration number is 3. (e) Multi-frame demosaicking,
all constraints applied. Demosaicking is applied in 3 iterations, σI = 1.41, σS = 1.41, Td =
5, To = 0, Tc = 2, domain window is [5x5]. (f) OSR result using single frame demosaicking
in 3 iterations. (g) DSR without consistency set using single frame demosaicking in 3
iterations , Td = 5, To = 0. (h) DSR with all constraint sets applied in 3 iterations,
σI = 1.41, σS = 1.41, Td = 5, To = 0, Tc = 2, domain window is [5x5]. (i) DSR using
multi frame demosaicking with all constraint sets applied in 3 iterations, σI = 1.41, σS =
1.41, Td = 5, To = 0, Tc = 2, domain window is [5x5]. Iteration number for super resolution
is kept 3 during the experiment.
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(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 

(j) 

Fig. 41.: Demosaicking and super-resolution results. (a) Single frame demosaick-
ing by bilinear interpolation. (b)Single frame demosaicking by edge directed interpola-
tion [2]. (c) Single frame demosaicking by adaptive homogeneity directed interpolation
[1]. (d) Proposed single frame demosaicking by all constraints applied, σI = 1.41, σS =
1.41, Td = 5, To = 0, Tc = 2, domain window is [5x5], iteration number is 3. (e) Multi-
frame demosaicking, all constraints applied. Demosaicking is applied in 3 iterations,
σI = 1.41, σS = 1.41, Td = 5, To = 0, Tc = 2, domain window is [5x5]. (f) OSR result
using single frame demosaicking in 3 iterations. (g) Multi-frame demosaicking and super
resolution of [3] with default parameters. (h) DSR using single frame demosaicking without
consistency set in 3 iterations , Td = 5, To = 0. (i) DSR using single frame demosaicking
with all consistency sets applied in 3 iterations, σI = 1.41, σS = 1.41, Td = 5, To = 0, Tc = 2,
domain window is [5x5]. (j) DSR using multi frame demosaicking with all constraint sets
applied in 3 iterations, σI = 1.41, σS = 1.41, Td = 5, To = 0, Tc = 2, domain window is [5x5]
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saicking and reconstruction of images together. The OSR approach performed worse

than the DSR approach because no inter-channel correlation was utilized. In OSR

approach, image is reconstructed in an iterated back-projection framework without

demosaicking. The latter method is provided for comparison purposes. Another

important observation is that when super resolution is applied, it did not matter

much whether the demosaicking was performed using the single-frame or multi-frame

approach.

84



Algorithm 1 Multi-Frame Demosaicking

Ensure: Total number of images are K

Require: Initialize parameters

• Set the maximum number of iterations (N)

• Set threshold values (Td, To, Tc)

• Set spatio-intensity neighborhood parameters (τS, τI , σS, σI )

1: for i = 1 : K do

2: Apply single-frame demosaicking to each input data z(i) to obtain y
(i)
S

3: Estimate and save motion parameters using the interpolated green channels

y
(i)
G

4: end for

5: for i = 1 : K do

6: Obtain the average image ȳ
(i)
S by warping all input images y

(1)
S , y

(2)
S , ..., y

(K)
S

7: y
(i)
G ← ȳ

(i)
G

8: for n = 1 : N do

9: y
(i)
S ← Pd[y

(i)
S ], for S = R, B

10: y
(i)
S ← Po[y

(i)
S ], for S = R, B

11: y
(i)
S ← Pc[y

(i)
S ], for S = R, B

12: end for

13: end for
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CHAPTER V

CONCLUSIONS

Digital camera industry had the tendency to squeeze more number of pixels into

sensor array for the last decade. This approach has been adapted not only to boost

sharpness but also motivated by a competitive marketing point of view. Number of

pixels in a camera, which is mistakenly conjectured as indication of sharpness, had

been the leading decision factor for consumers. However, decrease in size of sensor site

leads to increase in shot noise and a loss in dynamic range due to less photon collecting

capability. This phenomenon led camera producers reconsider visual quality instead

of struggling to boost up specifications. As a consequence, dynamic range criterion

increased its rank among visual quality assessment methods.

Visual quality captured by a camera is degraded through imaging pipeline, during

network transmission or due to compression scheme being applied. Image enhance-

ment techniques aims to compensate for aforementioned degradations. Although

joint spatial resolution and dynamic range increase has become a concern for camera

producers, this technique has not been applied by image enhancement community.

Multi-frame image fusion has been either used for spatial resolution enhancement or

to increase dynamic range. Main contribution of this thesis was to perform joint

tonal range improvement and spatial resolution enhancement over degraded image

sequences. This challenging goal forced us to revise and redesign fundamental pro-

cesses in image processing that are taken for granted. We believe that algorithms

devised during our research will be vital for image enhancement and computer vision

tasks.

Image formation pipeline is modelled to relate ground truth value to degraded

images in Chapter 1. Photometric modelling has not been incorporated into image

acquisition model up to now. Precision of our image model improves the success
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of photometric and geometric image registration, which are fundamental for super-

resolution dynamic range enhancement.

Chapter 2 presents contrast invariant feature transform (CIFT) to increase re-

peatability rate of salient points among different images under illumination change.

CIFT is applied as feature detection algorithm for registering a high dynamic range

image sequence. Repeatability rates of regular feature detectors fall drastically when

video sequence consists of under-exposed and over-exposed images. Proposed feature

detector is contrast invariant compared to the existing work in literature. CIFT con-

siders possible contrast variations in addition to the spatial variations. Repeatability

rate of CIFT is compared to state of art corner detection algorithms on real and

synthetic images. Although CIFT is used for corner detection in this thesis, it can be

extended for detecting other features i.e edge, contours [85].

Chapter 3 establishes the framework for super resolution under photometric di-

versity. The only photometric alignment in super resolution (SR) literature has been

a gain and offset model to our knowledge [55]. Our proposed photometric alignment

is based on camera response function and yields superior results compared to [55].

Bayesian (MAP) framework is used for reconstructing an SR image with high dynamic

range (HDR) in irradiance domain [86]. We also demonstrate that it is possible to

preserve the photometric range of reference image by computing intensity mapping

function from camera response function and selecting a proper weighting function.

SR-HDR and saturation elimination using weighting function is demonstrated on

real data sets. Projection onto convex sets (POCS) was also successfully applied to

SR-HDR image reconstruction in our various works [87] [56].

Chapter 4 focused on super resolution using color filter array (CFA) sampled

images. CFA interpolation imposes challenges on image enhancement by introducing

color artifacts. Correlation among color channels are incorporated into SR frame-

work to produce high resolution images without demosaicking artifacts. POCS based
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demosaicking of Gunturk et. al is extended to multi-frame by incorporating a color

constancy constraint set [69]. Color constancy constraint forces pixels with spatio-

intensity neighborhood to be used in SR reconstruction with bilateral filtering ap-

proach. Color constancy together with detail and observation constraint sets produces

sharper results with less color artifacts [88] [89].

Although wide variety of problems in SR were addressed in this thesis, there is

still much to be investigated in area of multi-frame image enhancement. Geometric

registration methods in SR are limited to parametric models, which limit the ap-

plication areas. A geometric alignment procedure to handle occlusion and generic

movements have not been proposed yet. Computational cost of SR algorithms should

also be reduced to make existing algorithms suitable for real-time applications. Par-

allel programming will contribute heavily to the efficiency of SR algorithms in future.

Prior selection is also an area to be investigated for regularization in Bayesian frame-

work. Priors that consider the compression scheme and network conditions will lead

to results with superior visual quality. Blur identification is another topic that is

crucial for successful reconstruction. Estimated blur parameters can be think of as

prior information to be used by reconstruction.
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APPENDIX A

ITERATIVE IMAGE ENHANCEMENT

Steepest descent (SD) and conjugate gradient (CG) solution of SR image are

provided in this chapter. MAP solution of SR can be obtained by following mini-

mization.

xmap = arg min
f

γ2‖Lx‖2
2 +

N∑

k=1

‖yk −Hkx‖2
2, (A.1)

where L is the discrete approximation of a derivative operator, Laplacian or identity

matrix. Here regularization term provides a smoother solution for HR. Regularization

parameter (γ) should be chosen carefully as smoothing operations acting on edges

remove the sharpness. Taking the derivative of Eq .A.1 with respect to x

[
N∑

k=1

HT
k Hk + γ2LTL

]
x =

N∑

k=1

HT
k yk (A.2)

This equation can easily be solved using steepest descent (SD) algorithm. The n + 1th

estimate of HR is as follows using SD:

xn+1 = xn + λnpn, (A.3)

where pn =
[∑N

k=1 HT
k (yk −Hkx

n)− γ2LTLxn
]

and λn is the step size which de-

termines the convergence. For quadratic forms step size is suggested as following by

Capel[55]:

λn =
pn

Tpn

pn
TCpn

, (A.4)

where C is the Hessian matrix of the quadratic form i.e J(x) = a + bTx + 1
2
xTCx.

Step size in Eq .A.4 ensures that J(xn + λnpn) <J(xn). SD is a slow iterative

method in terms of convergence. Conjugate gradient (CG) is a fast method that

provides convergence in a fast manner compared to SD. In CG, descent directions

are chosen to be conjugate to the previous search directions, i.e pn
TCpj = 0, for ∀j.
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Convergence is guaranteed for a finite number of steps. Denoting ∇J(xn) as ∇Jn,

new search direction becomes

pn = ∇Jn +

( ∇Jn
T∇Jn

∇Jn−1
T∇Jn−1

)
pn−1 (A.5)

Zomet and Peleg gives a detailed description of CG solution for SR image [23].

The outline of the CG algorithm for solving y = Hx0 is given below for the sake of

completeness.

1. Initialize maximum iteration number (mMax), and closeness threshold (ε). Form the
initial estimate for SR (x0).

2. r = y −Hx0, ρ0 = ‖r‖2, m = 1

3. Do While √ρm−1 > ε‖y‖2 and m < mMax

(a) if m = 1 then p = r
else β = ρm−1

ρm−2
and p = r + βp

(b) w = HTHp

(c) α = ρm−1

pT w

(d) f̂m = f̂m + αp, r = r− αw, ρm = ‖r‖2, m = m + 1.

Initial residual is found as r =
∑N

n=1 HT
n (yn −Hnx

0) and w =
∑N

n=1 HT
nHnp. De-

sired prior information can be incorporated in (d) step of the algorithm. The way

we update SR image using residuals effect the convergence of both SD and CG.

Residuals can be updated in either incremental or batch mode. In incremental mode

SR image is updated by presenting each observation and its corresponding residual.

This approach makes final SR result dependent on the order which observations are

presented. In batch mode residual of each observation is computed using current es-

timate of SR image, and these residuals are accumulated. SR image is updated after

all observations are presented. Batch mode provides superior results compared to

incremental mode.
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APPENDIX B

SUBBAND IMAGE DECOMPOSITION

Here, we define the subband decomposition notation. We use a set of filters

to decompose an image into its frequency subbands and then reconstruct it back.

The filter bank performs an undecimated wavelet transform, with H0(z) and H1(z)

denoting low-pass and high-pass filters, respectively. These analysis filters (H0(z) and

H1(z)) constitute a perfect reconstruction filter bank with the synthesis filters G0(z)

and G1(z). The perfect reconstruction condition can be written as:

H0(z)G0(z) + H1(z)G1(z) = 1. (B.1)

By denoting h0(·) and h1(·) as the impulse responses of H0(z) and H1(z), re-

spectively, we can write the four subbands of a two-dimensional signal S(n1, n2) as

follows:

(WLLS) (n1, n2) = h0(n1) ∗ [h0(n2) ∗ S(n1, n2)] (B.2)

(WHLS) (n1, n2) = h1(n1) ∗ [h0(n2) ∗ S(n1, n2)] (B.3)

(WLHS) (n1, n2) = h0(n1) ∗ [h1(n2) ∗ S(n1, n2)] (B.4)

(WHHS) (n1, n2) = h1(n1) ∗ [h1(n2) ∗ S(n1, n2)] , (B.5)

where (WLLS) is the approximation subband, and (WHLS), (WLHS), (WHHS) are

the horizontal, vertical, and diagonal detail subbands, respectively.

We can similarly define the filtering operations in the synthesis stage of the filter

bank. Letting g0(·) and g1(·) denote the impulse responses corresponding to G0(z)

and G1(z), we can write the four filtering operations on a two-dimensional signal

X(n1, n2) as follows:

(ULLX) (n1, n2) = g0(n1) ∗ [g0(n2) ∗X(n1, n2)] (B.6)
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(UHLX) (n1, n2) = g1(n1) ∗ [g0(n2) ∗X(n1, n2)] (B.7)

(ULHX) (n1, n2) = g0(n1) ∗ [g1(n2) ∗X(n1, n2)] (B.8)

(UHHX) (n1, n2) = g1(n1) ∗ [g1(n2) ∗X(n1, n2)] , (B.9)

where ULL, UHL, ULH , UHH are the synthesis filtering operators. As stated earlier,

these form a perfect reconstruction filter bank with the analysis filtering operators

WLL, WHL, WLH , WHH :

S(n1, n2) = ULL (WLLS) (n1, n2) + UHL (WHLS) (n1, n2) +

+ULH (WLHS) (n1, n2) + UHH (WHHS) (n1, n2) (B.10)
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