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ABSTRACT 

 Among brushless permanent magnet machines, the torus motors (also called Axial Flux 

Double-Rotor Permanent Magnet (AFTR PM) motors) are most compact and highly efficient. A 

cylindrical counterpart of this motor is a newly proposed Radial Flux Double-Rotor Permanent 

Magnet (RFTR PM) motor. 

 The objectives of this thesis are to optimize the magnetic circuit of both AFTR PM and 

RFTR PM motors and to compare their electromechanical parameters on the basis of the results 

obtained from magnetic field simulation using Finite Element Method (FEM). 

 To reach these objectives, FEM models are developed for both the motors, for particular 

given data. Applying the magnetic field simulation with the help of FEMM 4.0 software 

package, optimized stator and rotor core dimensions were determined as well as 

electromechanical parameters such as electromechanical torque, electromotive force, resistance 

and inductance of the stator windings. Next, the efficiency and torque to volume ratio along with 

the torque to mass ratio were calculated. 

 Comparing the parameters of both motors, the following conclusions are obtained: 

• Both slot-less motors developed electromagnetic torque with very low torque ripple 

contents. 

• The torque to mass ratio of RFTR PM motor is almost equal to the torque per mass of 

AFTR PM machine. 

• AFTR PM motor is more compact than its cylindrical counterpart because its torque to 

volume ratio is higher. 

• The efficiency of RFTR PM motor is relatively higher than that of AFTR PM motor, 

particularly if multi disc motor is considered, mainly due to the smaller percentage of end 

connection in the entire volume of the winding. 
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CHAPTER 1:  INTRODUCTION 

1.1 Overview of the Thesis 

The Brushless Permanent Magnet Motors (BPMMs) are more and more applied in 

different types of electric drives. They are characterized by high efficiency and high value of 

developed electromagnetic torque to motor mass ratio [1].  

 If motor geometry is considered, cylindrical shape motors are most often met. Among 

motors with a flat geometry, disc motors are applied where the longitudinal dimensions of the 

mechanical device is limited. The wheel chair or an electric car may be considered as an 

example, where motor is embedded in the wheel rim (see Figure 1.1). Another example is an 

elevator where the drive is placed aside the moving cabins (see Figure 1.2). 

 
 
 
 
 
 
 
 
 
 
 
 

hub motors

3

2

1

6

4

7
8

5

 

Fig.1.1 (a): Car driven by two in-wheel-
motors 

Fig.1.1 (b) Wheel with Hub motor: 1 – 

torus motor, 2 – wheel rim, 3 – 

rotor, 4 - stator, 5 – permanent 

magnet, 6 – tire, 7 – wheel axel, 8 – 

supply wires 

Figure 1.1: In-wheel-motor of an electric car  
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disc motor

 

 

Figure 1.2: Elevator with the drive placed aside the cabin [2] 

Among the disc type motors, the most compact structure has the motor with twin rotor 

and Gramme’s type winding. These motors built in the version with slotless stator are called 

torus motors. They develop a relatively constant electromagnetic torque with the negligible 

contents of higher harmonics. These motors with “noiseless” operation are used in the 

mechanisms where the torque ripple cannot be tolerated, e.g. wheelchairs and elevators. 

 A counterpart of torus motor, but with cylindrical structure is twin rotor BPMM. Both 

torus motor and twin rotor cylindrical motor are the objects of the study. 
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1.2 Objectives of the Thesis 

The objectives of this thesis are: 

• To optimize the dimensions of disc-type and cylindrical motors with slot-less stator. 

• To determine and compare the electromechanical parameters of both the motors 

mentioned above. 

The tasks to be accomplished are as follows: 

• A literature study on: 

o Double-rotor PM brushless motors 

o Finite Element Method 

• Developing a 2-D model of the disc-type and cylindrical shape PM brushless motors 

using the software package FEMM 4.0 

• Determining the motor core dimensions and the electromechanical parameters of both the 

motors using the FEMM models 

• Comparison of the simulation results obtained from FEMM to evaluate the performance 

of the motors 

1.3 Outline of the Thesis 

• Chapter 2 provides an introduction to the PM brushless motors, its principle of operation 

and the design types. The disc-type and the cylindrical shape double-rotor PM brushless 

motors are briefly discussed. 

• Chapter 3 discusses the Finite Element Method used to solve the Maxwell equations. 

Information about creating the models and analyzing the results is also included in this 

chapter. 
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• Chapter 4 presents the FEMM model for disc-type double-rotor PM brushless motor, 

based on the design data provided. The motor core dimensions and electromechanical 

parameters are then determined. 

• Chapter 5 provides the simulation model for cylindrical shape double-rotor PM brushless 

motor in FEMM. Also, the dimensions of rotor and stator; and the torque distribution 

curves are obtained from the model. 

• Chapter 6 compares the parameters obtained for disc-type and cylindrical shape PM 

brushless motors and presents a conclusion to this thesis and points to the direction of 

future research. 
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CHAPTER 2:  DOUBLE-ROTOR PM BRUSHLESS MOTORS 

The motor feature that distinguishes the Permanent Magnet Motors (PMM) from any 

other machines is the excitation. The PMMs are excited by permanent magnets, while all other 

machines by excitation winding. 

2.1 PM Brushless Motors: Principle of Operation and Design Types 

Among PMMs, if the type of winding supply is considered, two groups of machines may 

be specified: 

• Commutator PMMs (with brushes) 

• Brushless PMMs (no commutator) 

The commutator PMMs are DC commutator motors. The commutator is the part of these 

machines, which essentially differs them from brushless PMMs. Another feature that differs 

them from all brushless PMMs is that the permanent magnets are placed on the stator. In 

brushless PMMs, these PMMs are mounted on the rotor. Figure 2.1 shows the differences and 

similarities which characterize these two machines. 

 

N

S

+_

ak

nT,
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commutator
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a
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Figure 2.1 (a): Schematic of a DC commutator motor 
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Figure 2.1(b): Schematic of a brushless permanent magnet motor 

  Figure 2.1 (a) shows the scheme of commutator PMM. The rotor winding, simplified to 

three coils connected in series, is supplied from a DC source through the commutator and 

brushes. The resultant flux, Φa obtained as a sum of three coil fluxes is perpendicular to the axis 

of the PM flux axis. Despite the rotor rotation, it does not change its position due to the 

commutator. The interaction of the two magnetic fluxes gives electromagnetic torque, Tem which 

may be expressed as follows: 

afTem KT Φ×Φ×=      (2.1) 

where    KT is the proportionality constant 

   Φf is the excitation flux of PMs 

   Φa is the armature (rotor) magnetic flux 

The two fluxes Φa and Φf are stationary. 

 In brushless DC PMM, the rotor flux rotates. Thus the flux of the stator should rotate too 

with the same speed. To do this, the three phases of the stator should be supplied alternatively as 

shown in Figures 2.2 and 2.3. Figure 2.2 (b) shows the transistors 1 and 6 closed, thus phases A 
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and C are supplied. After ωt = 60°, the phases A and B are supplied as shown in Figure 2.3 (b) 

and the two magnetic fluxes Φa and Φf changed their position by angle θ = 60°. Figures 2.2 (a) 

and 2.3 (a) show how the rotor winding of commutator PM motor is supplied through the 

commutator, at two different rotor positions adequate to the change of rotor position of brushless 

DC PM motors. 

 

(a) 

 

(b) 

Figure 2.2: Position of the rotor and stator fluxes at time instant t1: (a) commutator PM 
motor, (b) brushless DC PM motor 
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(a) 

 

 

(b) 

Figure 2.3: Position of the rotor and stator fluxes at time instant t2 (ωt2 = ωt1 + 60°): (a) 
commutator PM motor, (b) brushless PM motor 
 

The advantages and disadvantages of a conventional DC motor and a brushless DC motor are 

discussed in Table 2.1. 
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Table 2.1: Comparison of conventional and brushless DC motors [3] 

 Conventional motors Brushless motors 

Mechanical structure Field magnets on the stator Field magnets on the rotor 

Winding connections Ring connection 

The simplest: ∆ connection 

∆ or Y-connected three-phase 

winding or a two-phase 

connection 

Commutation method Mechanical contact between 

brushes and commutator 

Electronic switching using 

transistors 

Detecting method of rotor’s 

position 

Automatically detected by 

brushes 

Hall element, optical encoder, 

etc 

Reversing method By reversal of terminal 

voltage 

Rearranging logic sequencer 

Distinctive features Quick response and excellent 

controllability 

Long-lasting and easy 

maintenance 

 

To supply the appropriate phase of the brushless PMM, a position sensor should be 

applied. A signal from this sensor gives information to the controller about which phases should 

be supplied. The controller then switches these phases. It means the brushless DC PM motor 

operates with the position feedback loop as shown in Figure 2.4 (a). The frequency the three 

phases are supplied depends on the speed of the rotor. 

falownik

mikro-
kontroler

sygna³
po³o¿enia

+
-

DC/AC
converter

   Micro
controller

 Rotor  position
       signal

 

Figure 2.4 (a): Supply circuit scheme of the brushless DC PM motor [1] 
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The brushless PM motor can operate without position feedback loop as shown in Figure 

2.4 (b). In this case, the controller switches the three phase winding with the reference frequency. 

This type of operation of brushless PM motor is similar to the operation of synchronous machine. 

The rotor is forced to rotate synchronously with the stator magnetic flux, whose speed ω1 is 

related to the supply frequency f, according to the equation 

2

2
1 p

fπω =       (2.2) 

where p is the number of poles. 

falownik

mikro-
kontroler

+
-

sygna³
czêstotliwoœci

DC/AC
converter

   Micro
controller

Frequency
    signal

 

Figure 2.4 (b): Supply circuit scheme of the synchronous permanent magnet motor 

From above reasoning, it is seen that brushless DC PM motor does not differ in 

construction from brushless synchronous PM motor. The difference between these two motors 

lies in the control of supply circuit. This influences the motor performance of these two motors. 

One of the major difference in their operation is that brushless DC PM motor operates with the 

speed that varies with the load, while the speed of brushless synchronous PM motor is constant 

at the variable load. Another difference is that the brushless DC PM motor develops the starting 

torque while the synchronous motor does not. 

A PM DC motor is basically the same machine as a shunt or separately excited dc motor, 

except that the flux of a PMDC motor is fixed. Therefore, it is not possible to control the speed 
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of a PMDC motor by varying the field current or flux. The only methods of speed control 

available for a PMDC motor are armature voltage control and armature resistance control. 

The use of permanent magnets in construction of electrical machines brings the following 

advantages over the electromagnets: 

• Since these motors do not require an external field circuit, they do not have the field 

circuit copper losses (the excitation losses) and thus the efficiency of these motors is 

significantly higher than that of the wound-field motors. 

• Because no field windings are required, they can be smaller than corresponding shunt dc 

motors, also resulting in simplification of construction and maintenance. 

• Higher torque and/or output power per volume and better dynamic performance than 

motors using electromagnetic excitation [4]. 

• In very small ratings, use of permanent magnet excitation results in lower manufacturing 

cost. 

• Low voltage PMDC motors produce less air noise and also little radio and TV 

interference. 

A good material for the poles of a PMDC motor should have as large a residual flux density Br as 

possible, while simultaneously having as large a coercive magnetizing intensity Hc as possible, 

see Figure 2.5.  

 There are basically three different types of permanent magnets which are used in DC 

motors: 

i. Alnico magnet – very high flux density but low coercive force 

ii. Ferrite or ceramic magnet – low flux density but high coercive force 
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iii. Rare-earth magnet (samarium-cobalt and neodymium-iron-cobalt magnets) – both high 

magnetic remanence and high coercive force 

The third type of magnets are used in brushless PM motors. The parameters of these magnets are 

shown in Table 2.2. 

Normal loop obtained
from measurements - B(H)

Intrinsic loop - J(H)

B

0

B  =   H  O O

Br

Hc Hs H

µ.

residual magnetism - 

coersive force - 

 

Figure 2.5: The magnetization curve of a typical ferromagnetic material [1] 

Table 2.2: Parameters of permanent magnet materials [1] 

 (B·H)max 

[kJ/m3] 

Br 

[T] 

Hc 

[kA/m.] 

Ceramics 

Alnico 

Rare earth magnets: 

- SmCo5 

- Sm2Co17 

- Nd-Fe-B 

27 – 35 

70 - 85 

 

160 – 200 

205 - 240 

190 - 385 

0.4 

1.1 

 

0.9 – 1.0 

1.04 – 1.12 

1.0 – 1.4 

240 

130 

 

660 – 750 

760 – 820  

760 – 980  
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PMDC motors with ceramics or Alnico magnets also have disadvantages: 

• Permanent magnets cannot produce a flux density as high as an externally supplied shunt 

field, so PMDC motor will have a lower produced torque per ampere of armature current 

than a shunt motor of the same size and construction. 

• A more serious disadvantage is that the permanent magnets can be demagnetized by 

armature reaction mmf causing the motor to be inoperative.  

These disadvantages do not concern the motors with rare earth magnets. 

The armature current in a DC machine produces an armature magnetic field of its 

own. The armature mmf subtracts from the mmf of the poles under some portions of the 

pole faces and adds to the mmf of the poles under other portions of the pole faces, 

reducing the overall net flux in the machine. This is the armature reaction effect. 

Demagnetization can result from: (a) improper design, (b) excessive armature current 

caused by a fault or transient or improper connection in the armature circuit, (c) improper 

brush shift and (d) temperature effects, like excessive heating which can occur during 

prolonged periods of overload [5]. 

• Another disadvantage with the conventional PMDC motor is the requirement of 

maintenance caused by the mechanical wear out of brushes and commutator.  

 The advantage of synchronous and DC brushless motors over DC commutator motors is 

that the armature current of the former is not transmitted through brushes, thus reducing the wear 

and need for maintenance. Another advantage of brushless motor is the fact that the power losses 

occur in the stator, where heat transfer conditions are good. Consequently the power density can 

be increased as compared with a DC commutator motor. In addition, considerable improvements 

in dynamics of brushless PM motor drives can be achieved since the rotor has a lower inertia and 
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there is a high air gap magnetic flux density and no-speed dependent current limitation. Thus, the 

volume of a brushless PM motor can be reduced by more than 40% while still keeping the same 

rating as that of a PM commutator motor. 

2.2 Disc-Type Double-Rotor PM Motor 

Among several types of disc type permanent magnet DC brushless motors, two 

constructions have been most frequently proposed: 

• Motor with axial flux in the stator 

• Torus type motor 

Axial flux PM (AFPM) motors can be designed as double-sided or single sided machines, 

with or without armature slots, with internal or external PM rotors and with surface mounted or 

interior type PM’s [4]. A common type of AFPM motor is torus type motor. A disc-type 

brushless dc motor with double sided stator and twin rotors, is called a torus motor. Figure 2.6 

shows a schematic of the torus motor. 

 

 

 

Figure 2.6: Scheme of a torus motor [6] 

 In a torus motor, the stator core is positioned between two rotors and each rotor disc 

carries axially-magnetized permanent magnets which are mounted radially on the surface turned 

Permanent magnets

Rotor discs
Stator
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to stator structure. The stator consists of a slot-less core, made of laminated iron and the 

Gramme’s type winding. The rotor disc is made of solid iron. As a result of this arrangement, the 

permanent magnets on the rotor disc force the flux to pass through air-gaps into the stator; the 

flux then travels circumferentially along the stator core, back across the air-gap and PM, and 

then back through the back iron. The distribution of magnetic flux in the disc shape torus motor 

is shown in Figure 2.7. 

 

Figure 2.7: Magnetic flux distribution in a disc shape torus motor 

 The stator is equipped with Gramme’s type winding consisting of coils wound on the 

toroidal stator core. Having this type of winding, the two working surfaces of core are used. This 

results in a higher percentage of the stator winding that produce torque compared with 

conventional machines having winding placed in slots. The current flowing through each coil 

interacts with the flux generated by magnets producing a force tangential to the machine axis. 

Figure 2.8 shows a working prototype of a slotless stator double-rotor disc shape torus motor. 

Furthermore, the two rotating discs act naturally as fans, so that the rotor structure can be 

suitably designed in order to remove the machine heating due to copper and iron stator losses. 

The task related to heat removal can be achieved by means of holes positioned near the 
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mechanical shaft, so that a flow of air is sustained radially through the machine air-gap and 

cooling is provided thereby. 

 

(a)              (b) 

Figure 2.8: Prototype  of the slotless stator double-rotor disc shape torus motor: (a) two 
disc rotors and stator between, (b) wheel with torus motor [17] 
   

The features of the motors with disc rotors are small axial dimensions and, at larger rotor 

diameters, these motors have better parameters than in the motors with cylindrical rotors. 

Moreover, the disc motors can be designed in such a way that mechanical speed reducers become 

unnecessary. High-energy permanent magnets enable obtaining of high magnetic flux density in 

machine working air gaps in the presence of simultaneously low values of permeability. Flat 

structure of disc rotors is more advantageous technologically and favors an application of 

elements made of hard magnetic materials in the form of plate.  

To increase the torque developed by the motor, multi-layer disc motor can be used 

(Figure 2.9). Multi-layer disc motors have better magnetic field distribution and minimal leakage 

magnetic flux than cylindrical ones [7]. Thus, the multi-layer disc motor has increased torque 

and output mechanical power. Besides, the control windings of the multi-layer disc motor have 
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much better thermal conditions, and, for the same torque and size, the efficiency of this motor is 

much higher, since the current density can be three or four times lower. 

 

Figure 2.9: Multi-layer disc motor: 1-stator core, 2-stator winding, 3-rotor, 4-magnets [6] 

However, the reasons for shelving the axial flux machine may be summarized as follows: 

• Strong axial (normal) magnetic attraction force between the stator and rotor 

• Difficulties in assembling the machine and keeping the uniform air gap between the 

stator and rotor 

• Fabrication difficulties, such as cutting slots in laminated cores and other methods of 

making slotted stator cores 

• High costs involved in manufacturing the laminated stator cores 

2.3 Cylindrical Shape Double-Rotor PM Motor 

The cylindrical motors which are commonly used have one stator and one rotor. The 

stator winding usually embraces the rotor which is an inner part of the motor. Sometimes the 

rotor is an outer part of the motor. This type of motor is applied in gearless drives. Figure 2.10 
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shows the scheme of the cylindrical motor embedded in the wheel rim used in gearless drive of 

electric vehicles.  

2
1

6

4

7

3

5

 

Figure 2.10: Cylindrical PM motor attached to the wheel rim: 1 - tire, 2 - wheel rim, 3 - 
rotor, 4 - stator, 5 - permanent magnets, 6 - wheel axle, 7 - supply wires 

 

Referring to torus motors which have the Gramme’s type winding with short end 

connections, the conventional cylindrical motors have the winding with much longer end 

connections. This, of course, contributes to much bigger use of copper wire and an increase of 

winding losses. To reduce these deficiencies, a cylindrical motor with two sided stator and twin 

rotor has been proposed by the supervisor of this MS thesis. 

The cylindrical motor with twin rotor (CMTR) is a modified version of the torus motor 

(see Figure 2.11). The cylindrical version may be obtained in the way in which the torus motor is 

extended in axial direction and shortened in radial direction and the side rotors are moved to 

radial location. 

This CMTR has also Gramme’s type winding with short end connections which ensure 

the small winding losses. Among the elements that differ this motor from AFTR PM motor is the 
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type of lamination of stator core. Since the magnetic flux of both rotors is crossing the air gap in 

radial direction and then is passing through the stator core in circumferential direction (see 

Figure 2.11), the stator core has to have the lamination in axial direction as all conventional 

cylindrical motors. 

shaft

rotor back iron

permanent magnet

stator winding
stator  core

motor hausing

(a) (b)

 

Figure 2.11: Cylindrical motor as a modified version of torus motor 

The structure of RFTR PMM considered in this project is shown in Fig 2.12. The motor 

has inner and outer part of the rotor connected firmly together by the side disc. The permanent 

magnets are attached to the rotor cylindrical surfaces adjacent to the stator coils. The stator slot-

less core is attached to the motor housing. 
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 shaft
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(a) 

 
Figure 2.12: Scheme of radial flux twin rotor permanent magnet motor: (a) perpendicular 
cross-section, (b) longitudinal cross-section 
 
              (Figure continued) 
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(b) A - A 

 
The coils are connected in the three phase system as shown in Figure 2.13. 

 

Figure 2.13: Three phase winding arrangement of the RFTR PM motor 

The torque of a conventional RFPM machine is scaled as the square of the diameter times 

the length while that of an AFTR PM machine scale as the cube of the diameter. Hence, the 

benefits associated with axial flux geometries may be lost as the power level or the geometric 
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ratio of the length to diameter of the motor is increased. The transition occurs near the point 

where the radius equals twice the length of RFTR PM machine [7]. In such cases, clearly the 

radial flux motor may be preferred for higher power generation than a single stage axial flux 

motor. However, the comparative studies that are carried on cylindrical and multi-layer disc-type 

motors having the same volume indicate that the values of torque and consequently, of the output 

mechanical power, are higher in multi-layer disc-type motors [9]. The applications of radial flux 

motors are limited due to the following reasons: 

• the bottle-neck feature for the flux path at the root of the rotor tooth in the case of the 

induction and dc brushless machines with external rotors 

• much of the rotor core around the shaft is hardly utilized as a magnetic circuit 

• heat from the stator winding is transferred to the stator core and then to the frame, that is, 

there is poor heat removal through the stator air gap, rotor and shaft without forced 

cooling arrangements. 

In general, the special properties of AFTR PM machines, which are considered advantageous 

over conventional RFPM machines in certain applications, can be summarized as follows [7]: 

• AFTR PM machines have much larger diameter to length ratio than RFPM machines 

• AFTR PM machines have a planar and somewhat adjustable air gap 

• Capability of being designed to possess a higher power density with some saving in core 

material 

• The topology of an AFTR PM machine is ideal to design a modular machine in which the 

number of same modules is adjusted to power or torque requirements 
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• The larger the outer diameter of the core, the higher the number of poles that can be 

accommodated, making the AFTR PM machines a suitable choice for high frequency or 

low speed operations. 

The above comparison is made between the conventional RFPM machine and AFPM machine. 

The comparison between the AFTR PM machine and the newly proposed RFTR PM machine 

will be done after the analysis of motor performance in the following chapters. 
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CHAPTER 3: FINITE ELEMENT METHOD (FEM) FOR ELECTROMAGNETICS 

The finite element analysis is a flexible, reliable and effective method for the analysis and 

synthesis of power-frequency electromagnetic and electromechanical devices. The Finite 

Element Method (FEM) packages that are now available are user friendly and eliminate need of 

performing numerous calculations, to determine the electromechanical parameters, by using the 

analytical or semi-empirical formulae. These packages thus provide a simple way to obtain the 

electromagnetic field distribution and integral parameters to the user even without having the 

knowledge of applied mathematics. 

3.1 Finite Element Method Magnetics (FEMM) [10] 

 FEMM [10] is a suite of programs for solving low frequency electromagnetic problems 

on two-dimensional planar and axisymmetric domains. FEMM may be divided into three parts: 

interactive shell (femm.exe), mesh generator (triangle.exe) and the solvers.  

• The interactive shell is a multiple document interface which consists of a pre-processor 

and a post-processor. The pre-processor may be used for laying out the geometry of the 

problem to be solved and for defining the material properties and boundary conditions. 

The post-processor displays the field solutions in the form of contour and density plots, 

also allowing the user to inspect field at arbitrary points and plot various quantities of 

interest along user-defined contours. The results can be post-processed in order to derive 

the machine integral quantities and associated parameters. 

• The mesh generator breaks down the solution region into large number of triangles which 

is a vital part of the finite element process, that is, FEMM discretizes the problem domain 

using triangular elements. The solution is approximated by a linear interpolation of the 

values of potential at the three vertices of the triangle of each element. The advantage of 
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breaking the domain into a number of small elements is that the problem becomes 

transformed from a small but difficult to solve problem into a big but relatively easy to 

solve problem. 

• The data files that define the problem are acquired by each of the solvers and it solves the 

relevant Maxwell’s equations to obtain values for the desired field throughout the 

solution domain. 

The magnetics problems solved by FEMM are low frequency problems, in which displacement 

currents can be ignored. These currents are relevant to magnetics problems at radio frequencies. 

The converse is true for electrostatic problems, where the electrostatics solver considers only the 

electric field and magnetic field is neglected. 

• Maxwell’s equations: 

For magneto static problems in which fields are time-invariant, the field intensity H and flux 

density B must obey: 

∇ × H = J         (3.1) 

∇ ⋅ B = 0                               (3.2) 

The field intensity and flux density of a material may be related as:  

B = µH                                (3.3) 

FEMM finds a field that satisfies the above the equations (3.1), (3.2) and (3.3) via a magnetic 

vector potential approach. The flux density may be written in terms of the vector potential, A as: 

B = ∇ × A         (3.4) 

This definition of B always satisfies equation (3.2) and hence equation (3.1) can be rewritten as: 

JA
B
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⎠
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µ
        (3.5) 
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The Finite Element Method Magnetics retains the form of equation (3.5) so that magnetostatic 

problems with a nonlinear B-H relationship can be solved. In the general 3-D case, A is a vector 

with three components. However, in the 2-D planar and axisymmetric cases, two of these three 

components are zero, leaving just the component in the “out of page” direction. The advantage of 

using vector potential formulation is that all the conditions to be satisfied have been combined 

into a single equation. If A is found, B and H can then be deduced by differentiating A. 

3.2 Description of FEMM 4.0 Program 

The version 4.0 of Finite Element Method Magnetics (FEMM) package is used in this 

thesis. The parameters of the three-phase permanent magnet brushless disc type and cylindrical 

shape twin rotor motors are obtained by using the two-dimensional finite element method. For 

this purpose, first, a model of each of the motors to be analyzed is to be drawn in the interactive 

shell of the FEMM 4.0 software. In other words, the outline, dimensions and materials of the 

motors are to be specified on a 2-D plane. As said earlier, the interactive shell consists of 

preprocessor and postprocessor drawing modes. 

• Preprocessor drawing modes: 

The preprocessor is always in one of the five modes: Point mode, Segment mode, Arc 

Segment mode, Block mode, Group mode. The point mode is used to pin nodes that define all 

corners of the geometrical model. The segment or arc segment mode may be used to join the 

nodes with line segments or arcs respectively. The block mode helps to define the materials and 

their properties in each solution region. The group mode glues different objects together into 

parts so that entire parts can be manipulated more easily. The default drawing mode is the point 

mode, but it is easy to switch between the different modes by just clicking on the corresponding 

mode. Figure 3.1 shows all these modes. 
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Figure 3.1: Preprocessor drawing mode toolbar buttons 

The user can size or move the view of problem geometry displayed on the screen by 

using the view manipulation toolbar buttons shown in Figure 3.2. The four arrow buttons help to 

move the view in the direction of the arrow approximately half of the current screen width. The 

“+” and “-“ buttons zoom in and zoom out the current view. The screen can be scaled to fit the 

entire problem geometry by using the “blank page” button. To zoom a specific part of the screen, 

the “page with magnifying glass” button may be used. 

 

Figure 3.2: View manipulation toolbar buttons 

The grid manipulation toolbar buttons (Figure 3.3) may be used to display or hide the 

grid on the screen, to specify the grid size and to snap the pointer to the closest grid point. The 

coordinates defining the problem may be specified in cartesian or polar form. 

 

Figure 3.3: Grid manipulation toolbar buttons 

An existing geometry may be modified by using the editing buttons provided on the 

toolbar. The last addition or deletion to the model’s geometry may be undone by using the 

“undo” button. A region may be selected by dragging the pointer over the specified area and 

performing operations like moving, copying, scaling or deleting the selected area is simple. The 

selected objects may be horizontally or vertically displaced and may be rotated according to our 

necessity. These icons are shown in Figure 3.4. 
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Figure 3.4: Toolbar buttons for editing operations 

For creating geometry, the problem has to be defined by using the “Problem Definition” 

dialogue box. The problem type (planar or axisymmetric), length units, frequency, depth (length 

of geometry in the “into the page” direction), solver precision and the minimum angle for the 

triangle meshing can be specified before drawing the model of the problem to be solved. To 

make a solvable problem definition, the user must define the properties of the material used in 

each solution region and identify the boundary conditions by specifying the properties of line 

segments or arcs that are to be the boundaries of the solution domain. The existing materials may 

modified or deleted later and new properties may be added at any time. The material can be 

chosen to have a linear or non-linear B-H curve according to the requirement of user. Similarly, 

the current density, electrical conductivity and special attributes like lamination and wire type 

may be specified. The user can access and add materials to his model from the materials library. 

The circuits in model can be defined as parallel or series and the circuit current can be assigned. 

Triangular mesh can be created over the whole model at a single click and the model can 

be simulated or analyzed using the “hand-crank” icon on the toolbar. Figure 3.5 shows these 

icons. The solution time varies depending on the size and complexity of the problem. Generally, 

linear magneto static problems take the least amount of time. The slowest problems to analyze 

are nonlinear time-harmonic problems, since multiple successive approximation iterations must 

be used to converge on the final solution. The “big magnifying glass” icon is used to display the 

results in a post processing window once the analysis is competed. 

 

Figure 3.5: Analysis toolbar buttons 
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• Postprocessor modes: 

 Like the preprocessor, the postprocessor can be operated in the point mode, contour mode 

or the block mode and the view manipulation toolbar buttons can be put to use as needed. The 

additional icons in this mode are the graph mode toolbar buttons (Figure 3.6), which can be used 

to obtain the plots to display the results. The flux lines can be viewed over a specified contour of 

the model by using the “contour plot” icon. The user can choose to plot the flux density or 

current density with the help of “density plot” icon and the “vector plot” icon is a good way to 

get an indication of the direction (by arrows) and magnitude of the field. 

 

Figure 3.6: Graph mode toolbar buttons 

The values of the desired quantities are computed and X-Y graph is plotted by the “line 

plot” icon. The integral values of certain parameters over a defined closed contour can be 

obtained by using the “integral” icon on the toolbar. If circuit properties are used in the model, 

then a number of useful properties relative to the circuit are automatically available in the 

postprocessor mode and they can be viewed using the “circuit results” icon. These icons are 

illustrated in Figure 3.7. 

 

Figure 3.7: Line plot, integration and circuit results toolbar buttons 

 To summarize, the various steps in constructing a model and obtaining the results are as 

follows: 

1) Specify the problem definition and draw the model using nodes, line and arc segments. 
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2) Assign block labels to each solution region, add materials and define the properties of 

materials. 

3) Provide the circuit properties to model and assign the circuit currents. 

4) Define and apply boundary conditions. 

5) Analyze the problem and view results. 

6) Graphs may be plotted with a legend, to illustrate the results obtained and values of 

various electromechanical parameters may be noted down. 

FEMM 4.0 is user friendly software to create the model of the problem to be solved and to 

analyze it. The results are obtained in a few simple steps, as described in this chapter. 
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CHAPTER 4:  DISC-TYPE DOUBLE-ROTOR PM BRUSHLESS MOTOR:  
OPTIMIZATION OF CORE DIMENSIONS AND DETERMINATION OF ELECTRO-
MECHANICAL PARAMETERS 

 
This chapter gives an insight into the design specifications of one of the objects of the 

thesis, the disc type twin rotor brushless PM motor. The objective of this chapter is to optimize 

the thickness of stator and rotor core for the given main dimensions of the motor and the winding 

data. Having this data, the next objective is to determine winding resistance and inductance and 

the torque for the given supply voltage and current. To do this, a FEMM model is developed. 

4.1 Design Data of the Motor 

The disc type motor to be analyzed is a three phase motor with sixteen magnetic pole 

pieces on the rotor. The stator winding carries fourteen turns per coil on each phase. Figure 4.1 

(a) shows the base data marked on the model of the disc type twin rotor PM motor. The angle 

subtended by each magnetic pole piece and the three phase winding at the shaft of the motor is 

indicated in Figure 4.1 (b). 

The rotor is made of steel and the stator is laminated. The rotor speed, thickness of 

permanent magnets on the rotor and the details of the winding on the stator are provided. Table 

4.1 gives the data for the disc type double-rotor permanent magnet motor whose performance is 

to be evaluated. 

The parameters of the disc type motor to be evaluated, using the data provided above, are 

as follows: 

• Design parameters to optimize: 

- Thickness of the stator core (laminated steel) 

- Thickness of the rotor discs (solid iron) 
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Figure 4.1 (a): Disc type double-rotor PM motor with the base data indicated 
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Figure 4.1 (b): Trapezoidal magnetic pole pieces and stator coils 
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Table 4.1: Specifications for the disc type double-rotor PM motor 

Assumed data 

Magnetic pole number 

Winding: 

- Number of phases 

- Number of coils/phase/pole  

- Coil number 

- Turn number/coil 

- Wire diameter Dw 

- Coil cross-section area Ac=12x8 

- Wire cross-section area Aw 

- 608.0
96

14168.4
=

×
=

×
=

C

ww
Cu A

NA
k  

Rotor speed  

Magnet thickness 

Flux density in the rotor discs (permissible) 

Flux density in the stator discs (permissible) 

Rotor core  

Stator laminated core 

16 

 

3 

1 

48 

14 

AWG11 – Dw=2.30378mm 

96 mm2 

4.168 mm2 

 

 

822 rpm (86.08 rad/s) 

12 mm 

1.5 T 

1.8 T 

Steel 1117 (Figure 4.2 (a)) 

US Steel type 2-S, 0.018 

inch thickness(Figure 4.2 

(b)) 
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 (a) 

 

(b) 

Figure 4.2: Magnetization characteristic of (a) rotor core, (b) stator core 



 36

• Electromechanical parameters to determine: 

- Electromagnetic torque 

- Electromotive force 

- Resistance 

- Self inductance 

- Mutual inductance 

- Voltage across terminals 

4.2 Motor Model and Simulation in FEMM 4.0 

 In order to analyze a magnetic field of the disc motor, a 3-D motor model has to be used. 

Since the FEMM 4.0 software allows calculating in 2-D space, the actual motor had to be 

modified to the flat model, in which all curvatures are developed with respect to the average 

radius placed in the middle of the stator core. 

 With the data provided on the angle subtended by the magnetic poles at the center of 

motor, the length of each magnet piece and the distance between two adjacent pieces is 

calculated. In a similar way, the length of the coil winding on the stator for each phase and the 

distance between two phases is obtained. The motor model is developed in FEMM 4.0 and the 

thickness of rotor and stator are adjusted such that the desired flux density is achieved in them. 

The corresponding materials and circuit currents are assigned to each block of the model as 

shown in Fig 4.2. Since the 2-D model of the motor is symmetric, the FEMM model is created 

for eight magnetic pole pieces and for one rotor. The calculation results obtained from this model 

may be later manipulated to obtain the values for the entire motor. However, Figure 4.2 indicates 

only a part of the FEMM model. With this working model of disc motor, calculations were 

carried out and the results are discussed in the following sections of this chapter. 
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Figure 4.3: FEMM 4.0 model for the disc motor 

4.3 Magnetic Flux Distribution 

 The magnetic flux density distribution in the motor plays a decisive role in the 

electromagnetic torque developed by the motor. Thus it is necessary to determine it and to 

examine how the stator current influences it. Figure 4.4 shows the current distribution and 

magnetic field lines generated by the permanent magnets and currents for a particular time 

instance. The relatively symmetrical distribution of the magnetic field lines with respect to the 

radial symmetrical axis of the magnets indicates a negligible influence of currents on resultant 

magnetic field. 

In Figure 4.5, a magnetic flux density distribution is shown for the case when the angle 

between the rotor flux vector and current vectors equals 90°. The current vector is equal to the 

rated current in both diagrams (Figure 4.4 and Figure 4.5). The maximum flux density is higher 

in stator core than in the rotor because the stator core is made of laminated steel which goes into 

saturation at much higher values (see Figure 4.2 (b)). 
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Figure 4.4: Current density and magnetic field lines plot for the disc type motor 

 

Figure 4.5: Flux density distribution for the disc type motor model 

To show how the position of the stator with respect to the rotor influences the magnetic 

flux density distribution in the motor, calculations were done at three different angles between 

the rotor flux vector and current space vector equal to 90°, 60° and 30°. The results are presented 

in Figure 4.6. 
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Figure 4.6: Flux density plots for the power angle of: (a) 90°, (b) 60° and (c) 30° degrees 
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In Figure 4.7 are the plots for the normal component of the magnetic flux density 

determined in the air gap between permanent magnet and stator winding over the length of one 

pole pitch. These characteristics were determined for the same conditions as those in Figure 4.6. 

 

 

(a) 

 

(b) 

 
Figure 4.7: Magnetic flux density distribution in the air gap for power angle of: (a) 90°, (b) 
60° and (c) 30° 
 
              (Figure continued) 
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(c) 

 
The presented results show negligible influence of magnetic flux generated by currents 

on PM flux. More visible changes are on Figure 4.7. The flux density distribution has different 

values at the edge of magnets. For absence of currents in the winding, the distribution of flux 

density would be symmetrical. 

4.4 Determination of Motor Parameters 

4.4.1 Stator and Rotor Thickness 

Considering the fact to stick to the values of permissible magnetic flux densities, the 

thickness of each of the rotor discs of the disc type twin rotor motor is found to be 12.5 mm and 

that of stator as 13 mm. These values are obtained by changing the FEMM model until a 

magnetic flux density value of 1.5 T is achieved in the rotor and a value of 1.8 T is attained in 

the stator core. It is assumed that above these values, both stator and rotor cores are saturated 

(see Figure 4.2). 

4.4.2 Stator Winding Parameters 

• Phasor resistance 

 The phase resistance of the stator winding coil is calculated with the help of data 

provided and by using the following formula: 
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awgCWavc RNNLR ×××= ,      (4.1) 

where avcL ,  is the average length of the coil in km 

 WN  is the number of turns per coil  

 CN  is the number of coils per phase 

 awgR  is the resistance per kilometer of the AWG wire [11] 

For the values of avcL , =171 mm, WN =14, CN =16 and awgR =4.1328 Ω, the phasor 

resistance of the stator coil winding is found to be R = 0.1584 Ω. 

• Self inductance 

 The self inductance of each phase of the stator winding is calculated by following a 

simple procedure and the FEMM model of the disc motor. First, the permanent magnets on the 

rotor are changed to air and the current is assigned only to the phase whose self inductance is to 

be found. The other phases are given a zero current. The FEMM model is then analyzed and the 

flux/current value for Ia is noted down by clicking on the circuit icon. This value indicates the 

self inductance value for the stator coils under eight magnetic pole pieces. Hence, the value 

obtained is doubled. It is further multiplied by 2 (the second side of the motor) to obtain the self 

inductance of the phase considered.  

22)/( ××= currentfluxL      (4.2) 

where L is the self inductance. 

The results achieved are as follows: 

Self inductance of phase A, LA = 0.2863 mH 

Self inductance of phase B, LB = 0.2925 mH 

Self inductance of phase C, LC = 0.2927 mH 
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• Mutual inductance 

 The procedure followed to obtain the mutual inductance between any two phases of the 

stator winding is almost similar to that followed for calculating the self inductance values, except 

for a few modifications. First, the permanent magnets on the rotor are changed to air as done 

before. For calculating the mutual inductance between phases A and B, the current is assigned 

only to phase A and the currents in phase B and phase C are zero. The motor model is then 

analyzed and the flux linkage value for winding IB is read by clicking the circuit icon. This flux 

linkage value is divided by current IA, which is then multiplied by 4. This gives the mutual 

inductance between phases A and B. A similar procedure is followed to obtain the mutual 

inductance value between the other phases.  

4×=
A

AB I
linkagefluxM      (4.3) 

where ABM  is the mutual inductance between phase A and B. 

The values obtained are indicated below. 

Mutual inductance between phase A and phase B, MAB = 0.1015 mH 

Mutual inductance between phase B and phase C, MBC = 0.1025 mH 

Mutual inductance between phase C and phase A, MCA = 0.1011 mH 

• Synchronous inductance 

The synchronous inductance is a sum of the average self inductance and a half of the 

average value of mutual inductance. 

avavs MLL
2
1

+=       (4.4) 

The value of synchronous inductance obtained in this method is Ls = 0.3418 mH. 
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4.5 Electromagnetic Parameters of the Motor 

 The variation of torque and emf with the change in rotor angle is observed and plots are 

made for the same. 

4.5.1 Electromagnetic Torque 

 An interaction of normal component of the magnetic field and stator current contributes 

to the electromagnetic torque. The value of the torque is proportional to the current i  and flux 

density B according to the following equation: 

)()( θθ iBKT Tem ×=      (4.5) 

 Both current and flux are function of space angle θ. Since the distribution of magnetic 

flux and current along the stator periphery varies, the torque developed by the motor will vary 

too if the rotor would change its position with respect to stator. To examine this variation, three 

cases are considered: 

1) Phase A is supplied by the constant current of 35.5A, while the currents in phases B and 

C are equal to zero.  

The rotor position is changing starting from angle θ = 0° (see Figure 4.8). Using 

the FEMM model, the Lorentz’s Force Fem is calculated at different angle θ and then the 

torque is calculated from the equation given below: 

avemem rFT ××= 4                     (4.6) 

where rav = 0.16 m is the average radius of the stator core. 

The electromagnetic torque determined in this way is plotted in Figure 4.9. This is 

the characteristic of torque developed by a single phase for the constant current value. 

The torque changes nearly sinusoidally because there are no slots in the stator core. 
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Figure 4.8: Rotor position and stator winding currents for case 1 
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Figure 4.9: Electromagnetic torque developed by the rated current in phase A at 
different rotor positions 
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2) Phases A, B and C are supplied with the DC currents of 35.5A, -17.75A and -17.75A 

respectively according to the phasor diagram drawn for time instant t1 as shown in Figure 

4.10. The rotor is moving in positive direction.  

The torque is produced by the resultant current vector is and the characteristic 

)(θfTem =  correspond to the torque-power angle characteristic known in the theory of 

synchronous motor [12].  

The torque - space angle characteristic determined in a similar way as that in 

Figure 4.9 is presented in Figure 4.11. This characteristic is nearly sinusoidal, which is 

the usually desired change in synchronous motors. 

 

      

Figure 4.10: Rotor position and phasor diagram of stator currents at time instant t1 

3) Phases A, B and C are supplied by the three phase sinusoidal currents and the rotor flux 

Br, displaced by 90° with respect to the current space vector is, moves synchronously as 

Br, shown in Figure 4.12. 
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Figure 4.11: Electromagnetic torque developed by the motor at different rotor 
positions with respect to the stator current space vector 

 

In this case, the rotor flux density vector and current vector move synchronously, 

being displaced from one another by 90°, as in brushless DC motors. The torque 

developed by such vectors changes with the position of both vectors. This change is 

shown in Figure 4.13.  

Since the angle is changing in time, the characteristic can be regarded also as 

waveform of the torque of brushless DC motor. The torque as one can see changes within 

the range NmTNm em 9064.1395106.134 ≤≤ . This change is caused by not sinusoidally 

distributed stator winding. Thus, the torque ripple is negligible. In general, there is no 

cogging torque caused by slots in case of toothed stator core. 
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(a) 

                                

(b) 

Figure 4.12: Change of space currents synchronously with rotor flux at two time 
instants t1 and t2 
 
              (Figure continued) 
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(c) 
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Figure 4.13: Electromagnetic torque vs. space angle θ determined at power angle 
(angle between current and rotor flux space vectors) of 90° 
 

4.5.2 Electromotive Force 

 When the rotor magnetic flux rotates, it induces electromotive force (emf) in the stator 

winding. Thus, emf depends on rotor speed ωm and flux linkage λ according to the following 

equation: 
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( )θλωme =           (4.7) 

 Since the torque depends also on flux linkage as sem iT ×= λ , the electromotive force of 

phase A can be determined from the torque using the relation given below: 

ph

phem
mph i

T
e ,ω=          (4.8) 

 Using this procedure, the emf was determined for the phase A and its characteristic, as a 

function of space angle, is plotted as shown in Figure 4.14. This characteristic is similar to the 

emf waveform in case of constant stator speed. 
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Figure 4.14: EMF induced plot as a function of space angle θ 

4.5.3 Terminal Voltages 

 To determine the voltage across winding terminal, the equivalent circuit of synchronous 

motor is used which is shown in Figure 4.15. 
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Figure 4.15: Equivalent circuit of synchronous motor 

For PM motor operating as a brushless DC motor, the space vector diagram at t = 0 for R = 0 is 

as shown in Figure 4.16. 

 

Figure 4.16: Space vector diagram at t = 0 and for R = 0 

The phasor diagram of phase A related to the space vector diagram is shown in Figure 4.17. 

 

Figure 4.17: Phasor diagram of phase A 
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If the resistance is included, the corresponding phasor diagram looks like the one shown in 

Figure 4.18. 

 

Figure 4.18: Phasor diagram with resistance included 

The corresponding voltage equation is as follows: 

asaphph IjXRIEV ++=          (4.9) 

For the analyzed motor, the values of equivalent circuit parameters are: 

 R = 0.1584 Ω 

 Ls = 0.3418 mH 

For the rated speed ωm = 86.08 rad/sec, Ω==== 235.0,/6.688
2 sesme LXsradp ωωω  the emf 

Eph = 141 V and for rated current Ia = 35.5/√2 = 25.10 A,  

 Vph = 145ej2.33° V 
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CHAPTER 5:  CYLINDRICAL SHAPE DOUBLE-ROTOR PM MOTOR: 
OPTIMIZATION OF CORE DIMENSIONS AND DETERMINATION OF ELECTRO-
MECHANICAL  PARAMETERS 

 

This chapter focuses on the design specifications for the cylindrical shape twin rotor PM 

motor and a working model is obtained in FEMM to optimize the motor core dimensions like 

rotor and stator core thickness. The results are further used to calculate the winding resistances 

and inductances and to plot the electromechanical characteristics of the motor like torque, emf 

and terminal voltage, for a given supply current. 

5.1 Design Data of the Motor 

A new concept of twin rotor cylindrical motor with slotless stator is introduced in this 

thesis. Each rotor carries sixteen magnetic pole pieces with three phase winding on the stator. 

The motor has been designed initially using the simplified magnetic circuit model. The motor 

dimensions determined this way are shown in Figure 5.1.  

The aim of this project is to verify and optimize some of the motor elements like 

thickness of stator and rotor cores. The dimensions shown in Figure 5.1 (a) and Figure 5.1 (b) are 

used to construct the motor model in FEMM 4.0 software package.  

The rotor core is made of solid steel and the stator core is laminated. To optimize the 

stator and rotor cores, it was assumed that the magnetic flux density in rotor should be around 

1.5 Tesla and that in stator core to be 1.8 Tesla. The same material is used for the construction of 

rotor and stator cores of the cylindrical motor as the ones used for disc motor. Refer to Figure 4.2 

in the previous chapter for the magnetization properties of the rotor and stator core materials. 

The design specifications of the cylindrical shape double-rotor PM motor under 

consideration are stated in Table 5.1. 
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Figure 5.1(a): Scheme of the cylindrical shape double-rotor PMM with the dimensions 
marked 
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Figure 5.1(b): Perpendicular cross-section of the RFTR PM motor 

Table 5.1: Design criteria for cylindrical shape double-rotor PM motor 

Assumed data 

Magnetic pole number 

Winding: 

- Number of phases 

- Number of coils/phase/pole  

16 

 

3 

1 

              (Table continued) 
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- Coil number 

- Turn number/coil 

- Wire diameter Dw 

- Coil cross-section area Ac=14.4x8 

- Wire cross-section area Aw 

- 6.63 10 0.592
112

w w
Cu

C

A Nk
A
× ×

= = =  

Rotor speed  

Permanent magnet: 

979 / ,
1.049,

1.2905

C

r

r r C o

H kA m

B H T
µ

µ µ

=
=
= =

 

Magnet thickness 

Flux density in the rotor discs (permissible) 

Flux density in the stator discs (permissible) 

Rotor core  

Stator laminated core 

48 

10 

AWG9 – Dw=2.90575 mm, 

112 mm2 

6.63 mm2 

 

 

822 rpm (86.08 rad/s) 

 

 

 

 

 

12 mm 

1.5 T 

1.8 T 

Steel 1117 

US Steel type 2-S, 0.018 

inch thickness 

 

The motor elements and electromechanical parameters of the cylindrical double-rotor PM 

motor that are to be determined are: 

• Design parameters to determine 

- Thickness of the stator core (laminated steel) 

- Thickness of the rotor discs (solid iron) 
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• Electromechanical parameters to determine 

- Electromagnetic torque 

- Electromotive force 

- Phase Resistance 

- Self inductance 

- Mutual inductance 

- Voltage across terminals 

5.2 Motor Model and Simulation in FEMM 4.0 

 Similar to the disc motor, as FEMM 4.0 allows only the construction of a 2-D model, the 

cylindrical shape double-rotor PM motor model is developed. 

While drawing the model, an arbitrary value is assigned to the stator core thickness and to 

the inner and outer rotors core thickness, as well. This thickness is later scaled so as to obtain the 

desired magnetic flux density values in the rotors and stator. Once this is achieved, the final 

model of the motor is arrived at and this final model is analyzed to perform the remaining 

calculations. The magnetic poles and stator coils are marked by calculating their coordinates on 

the X-Y plane according to the angle subtended by them at the motor shaft. In other words, the 

radius and the angle subtended are translated to the Cartesian coordinates to be able to construct 

the motor model. The material properties and block labels, along with the circuit currents are 

assigned to each of the blocks in the model. A part of the FEMM 4.0 model of the RFTR PM 

motor with slot-less stator is shown in Figure 5.2 (a). Figure 5.2 (b) shows the model mesh, 

which depicts the triangulation in FEMM. Unlike the FEMM model of the disc shape double-

rotor PM motor, this model is created for the entire cylindrical motor with all the sixteen 

magnetic poles. Hence, the results obtained are final and there is no need of manipulating them 
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as is the case with disc shape double-rotor PM motor. The results obtained are discussed in the 

subsequent sections of this chapter. 

 

 

Figure 5.2 (a): FEMM 4.0 model for the RFTR PM motor  

5.3 Magnetic Flux Distribution 

 In this subsection, the magnetic flux density distribution of the motor is determined and 

examined as to how the stator currents influence it. This study helps to analyze the torque 

developed by the motor. Figure 5.3 shows the current distribution in the stator coils. The 

magnetic field lines are generated by the permanent magnets and stator currents at a particular 

time instant. A more close up view of the current density distribution is shown in Figure 5.4, 

where the direction of the magnetic field is indicated by arrows and it can be observed that it is 

mainly a radial field in the air gap. 
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Figure 5.2 (b): Mesh of the FEMM 4.0 model of RFTR PM motor 

 

Figure 5.3: Current density distribution in the stator coils along with magnetic field lines 
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Figure 5.4: Direction of magnetic field in the motor 

 The magnetic flux density distribution in the motor, when the angle between rotor flux 

vector and current vector is 90°, is shown in Figure 5.5.  

The stator core is made of laminated steel which goes into saturation at a higher flux 

density than solid iron, the material used for construction of rotor discs (Refer to Figure 4.2 in 

the previous chapter for the magnetization characteristics of the stator and rotor materials). 

Hence, one can observe that the flux density in stator core is higher than the flux density in rotor 

discs. 

 Figure 5.6 shows the magnetic flux density distribution for three different positions of the 

rotor with respect to stator.  

The angle between the rotor flux vector and the current space vector is equal to 90°, 60° 

and 30° respectively for the following three plots. The presented results show negligible 

influence of magnetic flux generated by currents on PM flux. 
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Figure 5.5: Flux density distribution for the cylindrical shape motor 

 

(a) 

Figure 5.6: Flux density plots for the power angle of: (a) 90°, (b) 60° and (c) 30° degrees 

                                               (Figure continued) 
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(b) 

 

(c) 

The normal component of magnetic flux density in the air gap between permanent 

magnet of the outer rotor and stator winding over the length of one pole pitch is determined and 

the plots are shown in Figure 5.7.  

The three plots indicate the flux density distribution at power angles of 90°, 60° and 30° 

between the rotor flux and current space vector. No significant differences in flux density 

distribution are visible. It means that the stator current magnetic reaction on PM magnetic field is 

negligible. 
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(a) 

 

(b) 

 

(c) 

Figure 5.7: Magnetic flux density distribution in the air gap for power angle of: (a) 90°, (b) 
60° and (c) 30° 
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5.4 Determination of Motor Parameters 

5.4.1 Stator and Rotor Thickness 

 Keeping in mind the permissible magnetic flux density values to be achieved in the rotor 

discs and the stator core, the dimensions of each of these is adjusted in the FEMM motor model 

until the required values are obtained and the thickness of outer rotor is found to be 14.5 mm, 

inner rotor as 10.25 mm and that of the stator to be 13 mm. This way, it is made sure that the 

rotor flux density is around 1.5 T and the stator flux density is about 1.8 T. 

5.4.2 Stator Winding Parameters 

• Phase resistance 

The phase resistance of the stator winding coil is calculated with the help of the following 

relation: 

awgCWavc RNNLR ×××= ,          (5.1) 

where avL  is the average length of the coil 

 WN  is the number of turns per coil  

 CN is the number of coils per phase 

 awgR  is the resistance per kilometer of the AWG wire [11] 

For the values of avcL ,  = 371.133 mm, WN  = 10, CN  = 16 and awgR = 2.598 Ω, the phasor 

resistance of the stator coil winding is found to be 0.1543 Ω. 

• Self inductance 

 The self inductance of each phase of the stator winding of cylindrical motor is calculated 

in a similar way as for the disc motor. The permanent magnets of the FEMM model are turned 

into air and current is assigned only to the phase whose self inductance is to be found. The 
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FEMM model is analyzed with zero currents in the other phases and the flux/current value is 

noted down, which is the value of self inductance of the phase considered. Hence, self 

inductance L is given by: 

current
fluxL =           (5.2) 

The self inductance values for each of the phases are obtained as follows: 

Self inductance of phase A, LA = 0.3747 mH 

Self inductance of phase B, LB = 0.3735 mH 

Self inductance of phase C, LC = 0.3737 mH 

• Mutual inductance 

 Like the case of self inductance, the permanent magnets are turned to air for calculating 

mutual inductance. The mutual inductance between phase A and phase B is obtained by 

assigning current to phase A and retaining zero currents in phase B and phase C. The flux 

linkage value for phase B is found by analyzed the motor model. This value divided by the phase 

A current gives the mutual inductance, MAB. 

A
AB I

linkagefluxM =          (5.3) 

The mutual inductance values obtained between any two phases are given below: 

Mutual inductance between phase A and phase B, MAB = 0.1381 mH 

Mutual inductance between phase B and phase C, MBC = 0.139 mH 

Mutual inductance between phase C and phase A, MCA = 0.1379 mH 

• Synchronous inductance 

 Synchronous inductance is the sum of self inductance and half of the value of mutual 

inductance (see equation 4.4). The synchronous inductance is thus obtained as follows: 
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LS = Lav + 0.5Mav = 0.443 mH.        (5.4) 

5.5 Electromagnetic Parameters of the Motor 

5.5.1 Electromagnetic Torque 

 The torque of a motor is proportional to the magnetic flux density, B and stator current, i 

which are in turn the functions of the space angle, θ.  

)()( θθ iBKT Tem ×=                      (5.5) 

Hence, a study is done on how the torque varies with the change of rotor position with 

respect to stator while keeping the current constant. The values are noted down and then, the 

stator currents are changed and the calculation is repeated by noting down the torque values as 

the space angle is changed. Finally, the stator currents are changed simultaneously as a function 

of the rotor mechanical angle and the pattern of the torque values is observed. The three cases are 

discussed in this subsection. 

1) A current of magnitude 35.5A is supplied to phase A and the currents in phase B and 

phase C are maintained at zero.  

In the case of disc motor, a flat model of the motor is designed in FEMM where the 

curvatures are replaced by equivalent linear values, and hence the torque values are noted 

down with the change of electrical angle between the rotor and stator from θ = 0° to 360° 

for every 10° increment in the electrical angle (section 4.5.1). For the cylindrical motor in 

discussion, the entire motor model is developed in FEMM where the curvatures and 

angles subtended by the rotor magnetic pieces and stator coils at the shaft are represented 

as the data indicates. Hence, the torque values are obtained with the change of rotor 

mechanical angle from θ = 0° to 45°, for every 1.25° increment in the mechanical angle. 

The relation between the electrical angle θe and mechanical angle θm is given as follows: 
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2
p

e
m

θ
θ =          (5.6) 

 where p/2 is the number of pole pairs of the motor. 

Once the corresponding phase currents are assigned to the motor model, the model 

can be analyzed by changing the rotor angle and the torque values can be noted down 

directly from the FEMM analysis. The plot is shown in Figure 5.8. It can be observed that 

the change in values follows a nearly sinusoidal pattern. This can be attributed partly to 

the slot-less stator core. 
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Figure 5.8: Electromagnetic torque developed by the rated current in phase A at 
different rotor positions 
 

2) Phase A, B and C are supplied with DC currents of magnitude 35.5A, -17.75A and -

17.75A respectively. The torque produced, by the resultant current vector and the rotor 
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magnetic flux, is noted down for various rotor angles. Figure 5.9 gives the corresponding 

plot. It can be noted that the change in torque is almost sinusoidal, which is the desired 

pattern as in the case of synchronous motors. 
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Figure 5.9: Electromagnetic torque developed by the motor at different rotor 
positions with respect to the stator current space vector 
 

3) In this case, the phases A, B and C are supplied with the three phase sinusoidal currents 

according to the position of the rotor, that is, the rotor flux density vector (which is 

perpendicular to the current vector) and the current vector both move synchronously, as 

in the case of brushless DC motors. Thus, the torque changes with the position of both 

vectors, and has a range of NmTNm em 254246 ≤≤ , as indicated in Figure 5.10. The 

torque ripple is negligible, as a slot-less stator is used and no cogging torque is produced. 
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Please refer to Figure 4.12 in the previous chapter for the corresponding phasor and space 

vector diagrams. 
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Figure 5.10: Electromagnetic torque vs. space angle θ determined at power angle of 
90° 

 

5.5.2 Electromotive Force 

 When the rotor rotates with respect to the stationary stator, an electromotive force is 

induced in the stator winding by the magnetic flux. Thus, the emf of any phase, which is a 

function of the rotor speed is given by the following equation: 

Ke mph ω=           (5.7) 

where ωm is the rotor speed in radians per second. 

and 
ph

phem

I
T

K ,=  
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 To plot the emf as a function of the space angle, a DC current of 35.5A is supplied only 

to phase A of the motor model and the model is analyzed to obtain the values of torque at 

different rotor positions. These torque values are used to calculate the emf in phase A according 

to the equation stated above. The corresponding emf plot is shown in Fig 5.11. 
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Figure 5.11: EMF induced plot as a function of space angle θ 

5.5.3 Terminal Voltages 

 Similar to the theory stated for disc motor operating as a brushless DC motor, the voltage 

equation for the cylindrical shape double-rotor PM motor is given below (see Fig 4.15 for the 

equivalent circuit): 

asaphph IjXRIEV ++=         (5.8) 

where Eph is the emf induced in phase A of stator winding 



 71

 RIa is the voltage drop across the resistance of phase A winding 

 jXsIa is the voltage drop across the phase A inductance 

 The voltage drops across the resistance and inductance are calculated with the help of 

design data provided and the results from FEMM analysis. These values are later added to the 

emf to obtain the total voltage drop across the terminals of the stator windings (see equation 4.9). 

For the values of R= 0.154 Ω and Ls= 0.443 mH, at the rated rotor speed of ωm= 86.08 rad/sec, 

Ω==== 305.0,/6.688
2 sesme LXsradp ωωω , emf Eph= 257.61 V and for the AC current of 

Ia= 35.5/√2 = 25.10 A, the voltage across the terminals, Vph has a value of 262ej1.68° V. 

 The phasor diagram corresponding to the above voltages is shown in Figure 5.12. 

 

 

Figure 5.12: Phasor diagram for current and voltages of RFTR PM motor 

 

 

 

 

 

 

 



 72

CHAPTER 6: CONCLUSIONS AND FUTURE SCOPE OF STUDY 

 This chapter provides the conclusions to this thesis, offering a comparative study and 

analysis of the results obtained for the disc type double-rotor PM motor and the cylindrical shape 

double-rotor PM motor. A few of the possible avenues for further study on this topic are briefly 

discussed. 

6.1 Comparison of Motors’ Parameters 

 In the previous two chapters, the design parameters and the electromechanical parameters 

of both disc type and cylindrical shape double-rotor PM motors are calculated by developing 

FEMM models of the motors. The parameters which are most significant to the analyzed motors 

are given in Table 6.1. 

Table 6.1: Parameters of disc type and cylindrical shape double-rotor PM motors 

Motor parameters Disc Motor Cylindrical Motor 

Supply voltage (V) 256 459 

Current (A) 25 25 

Speed (rpm) 822 822 

Torque (Nm) 

(average value) 
137 250 

Mechanical power (KW) 12.00 21.50 

Efficiency (%) 94.93 98.66 

Motor volume (m3) 0.0065 0.015 

Motor mass (kg) 44.23 80.24 

Torque/Volume (Nm/m3) 21.06 16.23 

Torque/Mass (Nm/kg) 3.10 3.11 
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Some of the parameters enclosed in Table 6.1 have been determined earlier. The others 

are calculated in the following way: 

• Supply voltage (line to line voltage) of the three phase winding connected in Y is given by: 

phVV ×= 3       (6.1) 

• Power (mechanical power on the motor shaft): 

emmTP ω=       (6.2) 

• Efficiency: The motor efficiency is calculated from the following equation: 

100×=
inP

PEff      (6.3) 

where: P is the output power on the motor shaft 

         Pin is the input power given by win PPP ∆+=  

         ∆Pw is the power loss in the winding given by 23 IRP phw ××=∆  

• Motor volume: To calculate the motor volume, the outer dimensions and the active elements 

of the machine are taken into account as shown in Fig 6.1. 

• Motor mass (mass of the active elements of the motor): To calculate the mass of the active 

elements of the motors, the following parts are considered. 

o For disc motor:  

- The two rotor rings of the double-rotor, whose dimensions are shown in Fig 

6.2 (a): The volume of the rotor rings is Vr = 51052.122 −×  m3. With specific 

mass of steel, σFe,r = 7850 kg/m3, the total mass of the rotor rings is given 

by: 

kgVM rFerr 62.9, =×= σ     (6.4) 

 



 74
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         (a)          (b) 

Figure 6.1: Main dimensions of: (a) disc motor, (b) cylindrical motor 

- Magnets with dimensions shown in Fig 6.2 (b): The volume of a single 

magnet is obtained from FEMM as V1m = 51064.8 −×  m3. The total volume 

of all magnets is 35
1 1048.27632 mVV mm

−×=×= . Since the specific mass 

of the magnetic material is σm =7650 kg/m3, the total mass is obtained as: 

kgVM mmm 15.21=×= σ     (6.5) 
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Figure 6.2: Dimensions of the active elements of disc motor: (a) rotor 
discs, (b) permanent magnet 
 

- Stator ring, shown in Fig 6.2 (c): The volume of the stator ring is Vs = 

41037.6 −×  m3. For specific mass of stator core, which is made of 

laminated steel, σs = 7693 kg/m3, the total mass of stator core is: 

kgKVM ssss 90.4=××= σ         (6.6) 

 where: Ks = 0.98 which is a multiplicative factor for laminated steel. 
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Figure 6.2. (c): Dimensions of stator core 

- Copper winding: The wire used for the winding is AWG 11. Its diameter is 

31030.2 −×  mm. The average coil length is calculated as Lc = 310171 −× m. 

The total length of the wire per phase is Lph = cwc LNN ×× = 38.33 m. The 

copper volume per phase is obtained as: 

36
2

1058.3192
2

m
d

LV w
phCu

−×=×⎟
⎠
⎞

⎜
⎝
⎛= π       (6.7) 

For the copper specific mass, σCu = 8930 kg/m3, the mass of wire per 

phase is: 
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kgVM CuCuph 85.2=×= σ        (6.8) 

The total copper mass for the three phase motor is given by: 

kgMM phCu 56.83 =×=        (6.9) 

o For cylindrical motor: 

- Two rotor cylinders (see Fig 6.3 (a)): The total volume of the cylinders is 

Vr = 31031.3 −×  m3. The total mass is calculated with the equation: 

kgVM rFerr 26, =×= σ      (6.10) 

- Permanent magnets (Fig 6.3(b)): The volume of all the permanent magnets 

on the outer rotor is Vm, out = 31059.1 −× m3 and the volume of PMs on the 

inner rotor is Vm, in = 31012.1 −× m3. Hence, the total volume of PMs is 

31071.2 −× m3. The total mass of applied PMs is: 

kgVM mmm 72.20=×= σ      (6.11) 

- Stator core (Fig 6.3 (c)): The volume of the stator core is Vs = 

31065.1 −× m3 and its mass is given by: 

kgKVM ssss 43.12=××= σ      (6.12) 

- Copper winding: The wire used for winding is AWG 9, which has a 

diameter of dw = 31091.2 −× mm. The length of the wire per phase is Lph = 

59.38 m. The volume of copper per phase is VCu = 31079.0 −×  m3. The 

total mass of three phase winding is thus obtained as: 

kgVM CuCuCu 10.213 =××= σ      (6.13) 
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Figure 6.3: Dimensions of the active elements of cylindrical motor: (a) 
rotor cylinders, (b) permanent magnets, (c) stator core 
 
                       (Figure continued) 
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6.2 Conclusions 

From the results obtained, the following conclusions can be arrived at.  

• Both motors develop a torque which changes slightly in time at a constant 

supply current and constant speed (see Fig 4.13 and Fig 5.10). These changes 

however, are not significant. So, the motor can be applied to the drives where 

large torque ripple cannot be tolerated, for example, gearless drives for light 

electric vehicles or elevators. 

• The efficiencies of both motors are high due to low power losses in the winding. 

These power losses are expected to be higher if the conventional winding with 

overlapping coils would be applied, which have much longer end connections. 
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These end connections do not contribute to the torque production but only to the 

copper power losses. 

• However, it can be noticed that the efficiency of cylindrical motor is higher than 

that of disc motor. The relatively high efficiency of cylindrical motor may be 

contributed to low power losses because of shorter end connections of the 

windings than in the disc motor. It is anticipated that a multistage disc motor 

will have higher power losses due to more end connections and hence might not 

have higher efficiency than a cylindrical motor. 

• Both the disc motor and cylindrical motor have almost equal torque/mass ratio. 

This means that they use almost same amount of material for their construction, 

for the production of torque. The torque to mass ratio is an important factor if 

the weight limit of the particular drive is crucial.   

• The torque to volume ratio of the cylindrical motor is lower than that of the disc 

motor. It means that the disc motor is more compact and can be used in 

situations where the space limit is crucial (for example, elevator drive). 

6.3 Future Scope of Study 

  The analysis carried out in this thesis is based on the motor magnetic field models 

developed in FEMM software package. It allowed to optimize the motor dimension and to 

determine the rated torque. The next stage, around which the future work should concentrate, is 

to analyze the performance of the motors in dynamic and steady-state conditions. This analysis 

should be done using the circuit models of the motors whose parameters (resistances and 

inductances) are determined in this research. To model the motor dynamics, the 

MATLAB/Simulink software package may be used. 
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APPENDIX A: M-FILES FOR DISC TYPE DOUBLE-ROTOR PM MOTOR 

(a) M-file for plotting torque waveform in Fig 4.9 

 theta=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 

200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360]; 

torque=[0.036, 21.5168, 39.9743, 55.008, 65.5965, 72.5805, 77.2268, 80.1765, 81.7538, 

82.2158, 81.8573, 80.391, 77.7053, 73.1415, 66.1943, 55.584, 40.2848, 21.453, 0.0623, -

21.6173, -40.2923, -55.452, -66.1853, -73.0103, -77.6505, -80.4593, -81.8535, -82.2233, -

81.7515, -80.1323, -77.3235, -72.645, -65.6003, -55.1348, -39.9878, -21.5708, 0.036]; 

plot(theta,torque,theta,0); 

title('Torque plot for disc motor with no current in phases B and C'); 

xlabel('Rotor angle (degrees)'); 

ylabel('Torque (Nm)'); 

(b) M-file for plotting torque waveform in Fig 4.11 

theta=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 

200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360]; 

torque=[0.0263, 24.684, 46.8278, 67.0418, 84.834, 100.6628, 115.6943, 128.328, 136.9358, 

139.968, 137.1675, 128.901, 116.5058, 101.6168, 85.686, 67.7685, 47.3295, 24.741, -0.0458, -

24.8783, -47.2935, -67.701, -85.674, -101.4203, -116.4795, -129.0105, -137.2208, -140.0093, -

136.8368, -128.3198, -115.7445, -100.8345, -84.8265, -67.0935, -46.8945, -24.7448, 0.0263]; 

plot(theta,torque,theta,0); 

xlabel('rotor angle (in degrees)'); 

ylabel('Torque (in Nm)'); 

title('Torque vs rotor angle with Ia=35.5A, Ib=Ic=-17.75A'); 
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(c) M-file for plotting torque waveform in Fig 4.13 

theta=[0, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330, 360]; 

torque=[134.5106, 139.9064, 134.5106, 139.9064, 134.5106, 139.9064, 134.5106, 139.9064, 

134.5106, 139.9064, 134.5106, 139.9064, 134.5106]; 

plot(theta,torque,theta,0); 

title('Torque plot with change of rotor angle and phase currents'); 

xlabel('Rotor angle (degrees)'); 

ylabel('Torque (Nm)'); 

(d) M-file for plotting emf waveform in Fig 4.14 

theta=[0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190, 

200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360]; 

emf=[0.0873, 52.1739, 96.9297, 133.3834, 159.0584, 175.9932, 187.2596, 194.412, 198.2366, 

199.3569, 198.4876, 194.9321, 188.4198, 177.3535, 160.5079, 134.7801, 97.6826, 52.0192, 

0.1511, -52.4176, -97.7008, -134.46, -160.4861, -177.0354, -188.2869, -195.0977, -198.4784, -

199.3751, -198.231, -194.3048, -187.494, -176.1496, -159.0676, -133.6909, -96.9624, -52.3049, 

0.0873]; 

plot(theta,emf,theta,0); 

title('EMF plot for phase A of Disc Motor'); 

xlabel('Rotor angle (degrees)'); 

ylabel('EMF (Volts)'); 
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APPENDIX B: M-FILES FOR CYLINDRICAL SHAPE DOUBLE-ROTOR PM MOTOR 

(a) M-file for plotting torque waveform in Fig 5.8 

theta=[0, 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10, 11.25, 12.5, 13.75, 15, 16.25, 17.5, 18.75, 20, 

21.25, 22.5, 23.75, 25, 26.25, 27.5, 28.75, 30, 31.25, 32.5, 33.75, 35, 36.25, 37.5, 38.75, 40, 

41.25, 42.5, 43.75, 45]; 

torque=[0.05936, 40.668, 75.8975, 103.367, 122.331, 134.412, 142.152, 146.879, 149.398, 

150.225, 149.465, 146.909, 142.362, 134.704, 122.693, 103.754, 76.2918, 40.9079, -0.01186, -

40.9593, -76.3191, -103.78, -122.704, -134.709, -142.352, -146.993, -149.443, -150.208, -

149.406, -146.815, -142.121, -134.416, -122.323, -103.412, -75.9697, -40.6496, -0.008643]; 

plot(theta,torque,theta,0); 

title('Cylindrical motor: Torque plot with single phase supply'); 

xlabel('rotor mechanical angle in degrees'); 

ylabel('torque in Nm'); 

(b) M-file for plotting torque waveform in Fig 5.9 

theta=[0, 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10, 11.25, 12.5, 13.75, 15, 16.25, 17.5, 18.75, 20, 

21.25, 22.5, 23.75, 25, 26.25, 27.5, 28.75, 30, 31.25, 32.5, 33.75, 35, 36.25, 37.5, 38.75, 40, 

41.25, 42.5, 43.75, 45]; 

torque=[0.04815, 46.7849, 89.2284, 126.528, 158.796, 187.134, 212.966, 234.229, 248.283, 

253.561, 248.529, 234.44, 213.369, 187.715, 159.361, 127.082, 89.7085, 47.0699, -0.01645, -

47.1076, -89.7473, -127.091, -159.414, -187.752, -213.432, -234.529, -248.505, -253.493, -

248.327, -234.139, -212.887, -187.171, -158.79, -126.55, -89.2948, -46.7647, -0.007787]; 

plot(theta,torque,theta,0); 

title('Cylindrical motor: Torque plot with three phase supply'); 
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xlabel('rotor mechanical angle in degrees'); 

ylabel('torque in Nm'); 

(c) M-file for plotting torque waveform in Fig 5.10 

theta=[0, 3.75, 7.5, 11.25, 15, 18.75, 22.5, 26.25, 30, 33.75, 37.5, 41.25, 45]; 

torque=[246.166, 253.562, 246.166, 253.562, 246.166, 253.562, 246.166, 253.562, 246.166, 

253.562, 246.166, 253.562, 246.166]; 

plot(theta,torque,theta,0); 

xlabel('Rotor mechanical angle (degrees)'); 

ylabel('Torque (Nm)'); 

title('Torque of CM with change of rotor angle and change of stator currents simultaneously'); 

(d) M-file for plotting emf waveform in Fig 5.11 

theta=[0, 1.25, 2.5, 3.75, 5, 6.25, 7.5, 8.75, 10, 11.25, 12.5, 13.75, 15, 16.25, 17.5, 18.75, 20, 

21.25, 22.5, 23.75, 25, 26.25, 27.5, 28.75, 30, 31.25, 32.5, 33.75, 35, 36.25, 37.5, 38.75, 40, 

41.25, 42.5, 43.75, 45]; 

emf=[-0.02096, 98.6118, 184.0363, 250.6443, 296.6282, 325.9222, 344.6902, 356.1522, 

362.2603, 364.2656, 362.4227, 356.2249, 345.1994, 326.6303, 297.506, 251.5827, 184.9924, 

99.1935, -0.0288, -99.3181, -185.0586, -251.6457, -297.5327, -326.6424, -345.1751, -356.4286, 

-362.3694, -364.2244, -362.2797, -355.997, -344.615, -325.9319, -296.6088, -250.7534, -

184.2113, -98.5672, -0.02096]; 

plot(theta,emf,theta,0); 

xlabel('Rotor mechanical angle (degrees)'); 

ylabel('EMF (Volts)'); 

title('EMF plot for phase A of Cylindrical motor'); 
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