
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2007

Application-specific reliable data transfer in wireless
sensor networks
Damayanti Datta
Louisiana State University and Agricultural and Mechanical College, ddatta8@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Datta, Damayanti, "Application-specific reliable data transfer in wireless sensor networks" (2007). LSU Doctoral Dissertations. 904.
https://digitalcommons.lsu.edu/gradschool_dissertations/904

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/904?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F904&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

APPLICATION-SPECIFIC RELIABLE DATA

TRANSFER IN WIRELESS SENSOR NETWORKS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Computer Science

by
Damayanti Datta

B.E., Jadavpur University, 1996
M.S., Georgia Southwestern State University, 2001

August 2007

Acknowledgements

I am very grateful to those people who have made this dissertation possible and to those who

have made my experience in the graduate school one that I will always remember fondly.

I want to deeply thank my major professor Dr. Sukhamay Kundu for his patient

guidance throughout the doctoral study. Without his knowledge, expertise, patience and

guidance, this work would not have been possible. He challenged me to do my best in

learning, thinking, writing, research and personal growth and his support provided me with

the motivation and determination to complete this degree.

My committee members Dr. Doris Carver, Dr. Subhash Kak, Dr. Jianhua Chen and

Dr. Young H. Chun, deserve my deepest thanks and appreciation for their time and willing-

ness to endure this long journey with me.

I want to thank my friends Alina Trifas and Lulin Zhang in the graduate school for

always being there for me.

Last but not the least, I want to express my gratitude to two very dear friends Ms.

Vera Watkins and Ms. Lynette Jackson for loving and encouraging me always through out

this long journey.

ii

Table of Contents

Acknowledgements . ii

List of Tables . v

List of Figures . vi

Abstract . viii

1 Introduction . 1
1.1 Overview of Wireless Sensor Networks (WSNs) 1

1.1.1 Application Areas of WSNs . 1
1.1.2 Architecture of WSNs . 5

1.2 Overview of Data Transfer Scenarios in WSNs 19
1.3 Reasons for Data Loss or Unreliable Data Transfer in WSNs 20

1.3.1 Collision between Transmitting Nodes 21
1.3.2 Congestion . 21
1.3.3 Barriers to Electromagnetic Signals 22
1.3.4 Environmental Disturbances . 22
1.3.5 Dead Nodes, Mobile Nodes and Human Interference 22

1.4 Problem Definition: An Application-Specific Reliable Data Transfer Require-
ment in WSNs . 22

2 Literature Review . 25
2.1 TCP: Transport Control Protocol . 25
2.2 PSFQ: Pump Slowly, Fetch Quickly . 28
2.3 RMST: Reliable Multi-Segment Transport 30
2.4 ESRT: Event-to-Sink Reliable Transport . 34
2.5 CODA: COngestion Detection and Avoidance 37
2.6 DTNLite: Delay Tolerant Networking Lite 39
2.7 End-to-End Reliable Event Transfer in WSNs 41
2.8 A WSN for Structural Monitoring . 43
2.9 STCP: Sensor Transmission Control Protocol 44
2.10 A Bidirectional Reliable Transport Mechanism for WSNs 46
2.11 A Scalable Approach for Reliable Downstream Data Delivery in WSNs . . . 48

3 A New Protocol for Application-Specific Reliable Data Transfer in WSNs 51
3.1 Key Features of the Protocol . 51

3.1.1 Non-acknowledgement of Packets Received at a Node 51
3.1.2 Hop-by-hop Detection and Recovery of Lost Packets 57
3.1.3 Out-of-Sequence (OS) Forwarding of Packets at a Node 59
3.1.4 A Priority Order for Sending Different Types of Messages at a Node . 59
3.1.5 Delay in Requesting Packets Missing at a Node 61

3.2 Components of Each Message Type . 63
3.3 Assumptions about the Local Data at a Node 65
3.4 Description of the New Protocol (OSDRMP) 66

3.4.1 Message Processing at a Node . 66
3.4.2 Nodes Selected for Message Transmission 67

iii

3.4.3 Processing of Input . 68
3.5 A Method for Ensuring At Least One Packet Delivery to a Node 68
3.6 A Reporting Method Indicating Delivery of All Packets to At Least One Des-

tination Node . 71

4 Simulation Environment, Software and Results . 73
4.1 Simulation Environment and Software . 74
4.2 Simulation Results . 79

4.2.1 Simulation Results of OSDRMP vs. PSFQ-based Protocols for s = 40,
h = 5 and n = 10 Varying RMPdelayFactor and P 82

4.2.2 Simulation Results of OSDRMP vs. PSFQ-based Protocols for s = 40,
h = 5 and RMPdelayFactor = 3 Varying Number of Packets (n) and P 86

4.2.3 Simulation Results of OSDRMP vs. PSFQ-based Protocols for s = 0,
h = 14 and n = 10 Varying RMPdelayFactor and P 88

4.2.4 Simulation Results of OSDRMP vs. PSFQ-based Protocols for s = 0,
h = 14 and RMPdelayFactor = 3 Varying Number of Packets (n) and P 88

4.2.5 Simulation Results Demonstrating the Time Taken to Fill the DC of
Nodes during Execution of OSDRMP(rRMP) Protocol. 88

4.2.6 Simulation Results of Varying the Methods of Calculation of Delay in
Sending RMP s in OSDRMP(rRMP) Protocol 92

4.2.7 Simulation Results of Varying the Priority Orders for Sending Different
Types of Messages at Nodes in OSDRMP(rRMP) Protocol 95

4.2.8 Simulation Results Demonstrating the Number of New Packets Sent by
Upstream Neighbors of Nodes during Execution of OSDRMP(rRMP)
Protocol . 98

4.2.9 Simulation Results Demonstrating the Effect of a Node Selectively
Responding to RMP s in OSDRMP(rRMP) Protocol 100

5 Conclusions . 112

Bibliography . 116

Appendix: Permission Letters . 121

Vita . 123

iv

List of Tables

4.1 Time taken to fill DC for s=40, h=5, P=0.3, n=10. 104

4.2 Time taken to fill DC for s=40, h=5, P=0.6, n=10. 105

4.3 Time taken to fill DC for s=40, h=5, P=0.9, n=10. 106

4.4 Time taken to fill DC for s=0, h=14, P=0.3, n=10. 107

4.5 Time taken to fill DC for s=0, h=14, P=0.6, n=10. 108

4.6 Time taken to fill DC for s=0, h=14, P=0.9, n=10. 109

4.7 # packets from upstream neighbors at s=40, h=5, P=0.3 & 0.6, n=100 . . . 110

4.8 # packets from upstream neighbors at s=40, h=5, P=0.9, n=100 111

v

List of Figures

1.1 Applications of wireless sensor networks. 2

1.2 Sensor nodes used to monitor the behavior of storm petrel. 3

1.3 Enclosure to protect sensor nodes used to monitor the behavior of storm petrel. 4

1.4 Placement of sensor nodes on a redwood tree. 5

1.5 A wireless sensor network. 6

1.6 MICA mote. 7

1.7 Internal structure of a sensor node. 8

1.8 Network communication model for wireless sensor networks. 9

1.9 Hidden terminal problem. 10

1.10 RTS-CTS messaging system. 12

1.11 Slot allocation for transmission in TDMA. 13

1.12 Bluetooth Smart Sensor Systems. 14

1.13 Routing in wireless sensor networks. 16

1.14 Flat routing: directed diffusion. 17

1.15 Hierarchical or cluster based routing. 18

1.16 A 10-node network for demonstrating the problem discussed in this dissertation. 23

2.1 TCP/IP protocol stack. 25

2.2 TCP header format. 26

2.3 RMST protocol. 32

2.4 ESRT finite state machine. 35

2.5 Event transfer. 41

2.6 Wisden. 43

2.7 A 10-node network for illustrating a deficiency of the GARUDA protocol. . . 50

2.8 A 9-node network for illustrating a deficiency of the GARUDA protocol. . . 50

3.1 A 2-node network. 53

3.2 Comparison of NACK -based and ACK -based methods 53

3.3 A 3-node linear network. 58

3.4 Comparison of end-to-end and hop-by-hop detection and recovery of lost packets 59

vi

3.5 A 4-node non-linear network. 60

3.6 Comparison of OS and IS (timing diagram) 61

3.7 Comparison of OS and IS . 62

3.8 Update of nodeTTL of a node based on packetTTL. 64

3.9 Illustration of DC, TQ, RTQ, RMPQ, and updating of nodeTTL at a node. 66

3.10 A 4-node non-linear network. 70

3.11 Ensuring at least one packet delivery in a non-acknowledgement based method 70

4.1 A 12x9 grid network . 74

4.2 Flowchart for the network simulator for OSDRMP protocol. 75

4.3 A 10-node linear network. 77

4.4 Simulation output from time 17 to time 18 in the network in Figure 4.1. . . 80

4.5 Simulation output from time 123 to time 130 in the network in Figure 4.1. . 81

4.6 OSDRMP vs. PSFQ at s=40, h=5, n=10 varying RMPdelayFactor & P . . 83

4.7 OSDRMP vs. PSFQ at s=40, h=5, RMPdelayFactor=3 varying n & P . . . 87

4.8 OSDRMP vs. PSFQ at s=0, h=14, n=10 varying RMPdelayFactor & P . . 89

4.9 OSDRMP vs. PSFQ at s=0, h=14, RMPdelayFactor=3 varying n & P . . . 90

4.10 Time taken to fill DC of nodes at s = 40, h = 5, n = 10, & P = 0.3 91

4.11 OSDRMP(rRMP) with 2 methods of calculating tr at s=40, h=5 93

4.12 OSDRMP(rRMP) with 2 methods of calculating tr at s=0, h=14 94

4.13 OSDRMP(rRMP) with 3 priority orders at s=40, h=5 96

4.14 OSDRMP(rRMP) with 3 priority orders at s=0, h=14 97

4.15 # packets from upstream neighbors at s=40, h=5, P=0.3, n=100 99

4.16 OSDRMP(rRMP) with 2 methods of responding to RMPs at s=40, h=5 . . 101

4.17 OSDRMP(rRMP) with 2 methods of responding to RMPs at s=0, h=14 . . 102

vii

Abstract

A wireless sensor network (WSN) is a collection of sensor nodes and base stations connected

via wireless medium. It sends data collected from the nodes to the base stations for generating

information. The size and low cost of the sensor nodes as well as the WSN’s ability to

connect without wired links are its key advantages which enable it to be deployed in hostile

or inaccessible environments at low cost. However, WSNs suffer from high data loss due to

the inherent weaknesses in a wireless transmission medium, transmission problems in hostile

environments due to human interference, etc. and node failures due to limited energy of

sensor nodes. Hence ensuring data transfer with minimum loss i.e. reliable data transfer is

very important in WSNs. The amount of loss tolerated is application dependent.

We present a reliable protocol for data transfer from a base station to sensor nodes

for time-critical applications in WSNs with zero tolerance for data loss. The protocol is

based on hop-by-hop detection and recovery of lost data packets, out-of-sequence forwarding

of packets and delayed request for missing packets at each node with non-acknowledgement

of packets at each receiving node. We present a detailed analysis of the advantages of the

key features of our protocol over other alternatives. The superiority of our protocol over an

established protocol PSFQ is demonstrated via extensive simulations, in terms of both the

delivery time of the entire data (sent from the base station to the sensor nodes) and the

number of messages exchanged in the network during this process.

In addition, we present two methods, one, for ensuring that at least one packet is

delivered to a node in non-acknowledgement based systems and another, for sending reports

from destination nodes to the base station respectively.

We explore different methods for further improvement of protocol performance: (1)

use of effective degree of a node in determining the optimum delay for requesting data packets

missing at nodes, (2) variation of the priority order for sending different types of messages

at nodes and, (3) selective response to requests for packets at nodes.

viii

Chapter 1

Introduction

1.1 Overview of Wireless Sensor Networks (WSNs)

Computing technology becomes exponentially smaller and cheaper with each passing year

according to Moore’s law. While silicon scaling marches on, the same semiconductor manu-

facturing processes are being utilized to build microscopic mechanical structures that interact

with the physical world. Scientists and engineers are now utilizing these phenomena in ways

that enable a new role for computing in science. They use them to build processors, radios

and exceptionally small electromechanical structures that sense fields and forces in the phys-

ical world; these can be combined to form inexpensive, low power communication devices

deployed throughout a physical space, providing dense sensing close to physical phenomena

as well as processing and communication of this information, and coordination of actions

with other nodes, thus forming a network known as a Wireless Sensor Network (WSN).

A wireless sensor network consists of tiny and unobtrusive sensor nodes which con-

figure themselves to aid the formation of the wireless network, and is inexpensive. Hence,

wireless sensor networks can be deployed in areas which are difficult to access e.g. in en-

emy territory for surveillance purposes, animal/plant habitat monitoring in dense forests,

within human body parts for monitoring diseases like cancer, etc. This has lead to increased

application and research in the area of wireless sensor networks.

1.1.1 Application Areas of WSNs

• Military. Wireless sensor networks are used for battlefield surveillance, monitoring

vehicular traffic, tracking the position of the enemy, etc. For example, in Iraq’s Al

Jazirah desert, only the most observant eye would note the new smattering of stones

spread across a scraggly acre near the Syrian border. An even closer look would reveal

these stones for what they truly are: a network of several thousand camouflaged sensors

scattered the night before by a low-flying U.S. military plane. These sensors will scout

the border for evidence of arms smuggling. As dusk turns to night and stars spill across

1

Figure 1.1: Applications of wireless sensor networks.

the sky, a faint rumble stirs the sand. The sensors detect the rumble and match it to

the acoustic signature of a heavy truck, perhaps a half-mile away. The information is

detected and relayed to the base station.

• Environmental observation. Wireless sensor networks can be used to monitor en-

vironment like forest fire detection, flood detection, air pollution detection, rainfall

observation in agriculture, etc. One example is water pollution detection in a lake

that is located near a factory that produces toxic waste illegally dumped into the lake.

Sensor nodes can be randomly deployed here and used to relay the exact origin of a

pollutant to a centralized authority which then takes appropriate measures to limit

the spread of pollution. Without the wireless sensor network , it would be difficult to

get the data without the nearby factory’s knowledge in which case the factory would

prevent the data gathering process.

2

Figure 1.2: Sensor nodes used to monitor the behavior of storm petrel.

• Habitat Monitoring. Wireless sensor networks are used to gather information on the

habitat of a plant/animal. This data is later analyzed to learn the optimal environment

favourable for the plant/animal’s growth. Examples include dispersal patterns of wind-

borne seeds, the water profiles experienced by spawning salmon, insect densities across

riparian environments, and the microclimate of meadow and woodland transects.

Wireless sensor networks have been used to capture a detailed picture of the

complex spatial variation and temporal dynamics of the microclimate surrounding a

coastal redwood tree [10] shown in Figure 1.4. When one walks in a redwood forest

it is temperate and moist, despite the wide variation in weather conditions. The top

of the tree experiences wide variation in temperature, humidity, and, of course, light,

whereas the bottom is typically cool, moist, and shaded. This variation was understood

to create non-uniform gradients, essentially weather fronts, that move through the

structure of the tree. For example, as the sun rises, the top of the canopy warms

quickly. This warm front moves down the tree over time until the entire structure

stabilizes or until cooling at the canopy surface causes the process to reverse.

Another example of application of wireless sensor networks in habitat monitor-

ing is the Great Duck Island System (GDI) [1] developed at the Great Duck Island,

Maine by the researchers of UCB/Intel Research Laboratory to monitor the behaviour

of storm petrel shown in Figure 1.2 For scientists studying the behavior of storm petrel,

monitoring the shy seabird’s nest activity meant sticking a cumbersome remote camera

or a daring arm into burrows which was difficult because of the seabird’s nature. It

involved obtaining an accurate count of the elusive seabirds which in turn involved

3

expensive, carefully planned trips to the island with pen, paper and a portable video

system dubbed the ”petrel peeper” that was transported by wheelbarrow or by several

biology students. However, with wireless sensor networks, a wireless network of more

than 20 miniaturized sensors, or motes, were installed in the burrows of the storm

petrels on the nearby Great Duck Island. Each sensor, slightly bigger than the two

AA batteries powering it, beamed back raw data about the conditions in the burrows

and the island’s microclimate. This process was less expensive and cumbersome and

the data had helped biologists understand why the the storm petrels favor Great Duck

Island over thousands of other islands off the coast of Maine which was particularly

important in answering questions related to conservation of habitat.

Figure 1.3: Enclosure to protect sensor nodes used to monitor the behavior of storm petrel.

• Building monitoring. Sensors can be used in buildings to monitor fire and smoke

detection. A network of sensors, capable of detecting smoke, can be deployed in a

huge building which is on fire to track the source and the direction in which the fire is

expanding. In addition, sensors can be used to monitor vibration that could damage

the structure of a building.

• Healthcare. Sensors are used in biomedical applications to improve the quality of the

provided care. Sensors are implanted in the human body to monitor medical problems

like cancer and help patients maintain their health. Smart Sensors and Integrated

Microsystems (SSIM) [2] builds retina prosthesis chips consisting of 100 microsensors

that can be implanted within human eye allowing patients with limited or no vision

to see at an acceptable level. Wireless sensor networks can also be used to monitor

4

Figure 1.4: Placement of sensor nodes on a redwood tree.

various conditions of the body and relay information which save costly trips to the

physician.

• Home and other commercial applications. Wireless sensor networks can be used

for automation of various devices used at homes and in offices.

1.1.2 Architecture of WSNs

A wireless sensor network consists of tens or hundreds or thousands of low cost nodes which

could either have a fixed location or are randomly deployed. Sensor nodes collect data and

send it to special nodes called base stations (sometimes they are also referred to as sinks).

The sensor nodes communicate with each other and with the base station via wireless. Base

stations are linked to the user interface via wired links in many cases. Though sensor nodes

and base stations are generally static, sometimes some of them can be mobile e.g. mobile base

stations are used to gather data from sensors in enemy territory for military applications.

An example of a mobile sensor node is a node attached to an animal which gathers data on

5

the animal and stores it till the animal moves to a position where there is a static sensor

node. The mobile node then transmits the data to the static node which then routes it to

the base station.

Figure 1.5: A wireless sensor network.

Sensor nodes can be dropped on a designated territory by airplane, missile, etc.

or they can be placed there by humans and robots. After deployment, the sensor nodes

will configure themselves to form the wireless sensor network. The WSN topology can

vary dynamically because of addition of more nodes and node failures due to energy loss,

enviromental disturbances, etc.

A sensor node has the following components:

• Processor and memory. The processor is responsible for control of the sensors, execu-

tion of communication protocols, etc. Memory is present for storage of data for various

purposes like data aggregation, etc.

• Sensors and analog-to-digital converters. The sensors gather data from the environment

and send it to the processor. If they are analog sensors, the signals are sent to the

analog-to-digital converters which convert them to digital format and then send them

to the processor.

• Transceiver unit. This transmits and receives radio signals or optical signals.

• Power unit. This may be batteries or solar cells.

6

Sensor nodes are characterized by small size, low power and short transmission ranges. The

problem of short transmission ranges are overcome by high node density.

Figure 1.6: MICA mote.

MICA mote is a commercially available sensor node which has been developed by

University of California, Berkeley [38]. These motes come in two sizes:

• Rectangular, measuring 2.25 x 1.25 by 0.25 inches (5.7 x 3.18 x.64 centimeters), it is

sized to fit on top of two AA batteries that provide it with power.

• Circular, measuring 1.0 by 0.25 inches (2.5 x .64 centimeters), it is sized to fit on top

of a 3 volt button cell battery.

The MICA mote uses an Atmel ATmega 128L processor running at 4 MHz. The 128L is

an 8-bit microcontroller that has 128 kilobytes of onboard flash memory to store the mote’s

program. This CPU is about as powerful as the 8088 CPU found in the original IBM PC

(circa 1982). The big difference is that the ATmega consumes only 8 milliamps when it is

running, and only 15 microamps in sleep mode. This low power consumption allows a MICA

mote to run for more than a year with two AA batteries. A typical AA battery can produce

about 1,000 milliamp-hours. At 8 milliamps, the ATmega would operate for about 120 hours

if it is operated constantly. However, a programmer can ensure that the CPU is asleep most

of the time, allowing the battery life to be extended considerably. For example, a mote

might sleep for 10 seconds, wake up and check status for a few microseconds, and then go

back to sleep. MICA motes come with 512 kilobytes of flash memory to hold data. They

7

also have a 10-bit A/D converter so that sensor data can be digitized. Separate sensors

on a daughter card can connect to the mote. Sensors available include those for sensing

temperature, motion, light, sound and magnetic fields. Advanced sensors for GPS signals

are under development. The final component of a MICA mote is the radio. It has a range of

several hundred feet and can transmit approximately 40,000 bits per second. When it is off,

the radio consumes less than one microamp. When receiving data, it consumes 10 milliamps.

When transmitting, it consumes 25 milliamps. Conserving radio power is key to long battery

life. All of these hardware components together create a MICA mote. A programmer writes

software to control the mote and make it perform a certain way. Software on MICA motes

is built on an operating system called TinyOS. TinyOS is helpful because it deals with the

radio and power management systems and makes it much easier to write software for the

mote.

Figure 1.7: Internal structure of a sensor node.

The base station links the wireless sensor network to user interface to disseminate

the data or filtered data for further processing. Base stations have enhanced capabilities

over simple sensor nodes since they must do complex data processing; this justifies the fact

that base stations have workstation/laptop class processors, and of course enough memory,

energy, storage and computational power to perform their tasks well. The communication

between base stations is initiated over high bandwidth links. Base stations can be connected

to user interfaces via wired links.

The network communication model for wireless sensor networks [35] consists of

8

five basic layers namely physical layer, data link layer, network layer, transport layer and

application layer.

Figure 1.8: Network communication model for wireless sensor networks.

• Physical layer. The responsibilities of the physical layer are frequency selection, car-

rier frequency generation, signal detection, and modulation. Frequency generation and

signal detection depend on hardware design. Two factors are important in the design

of the physical layer of wireless sensor networks: (i) Energy minimization (ii) Propaga-

tion and fading effects of the signal. Minimum power required is inversely proportional

to nth power of the distance. For low lying antenna and near ground channels as in

wireless sensor network, the value of n is closer to 4. It has been shown that power

starts to drop with higher exponents at smaller distances for low antenna heights. This

effect can be mitigated by exploiting the spatial density in wireless sensor network. In

wireless sensor network, the nodes are placed close to each other and this ameliorates

the problem due to signal loss with distance. Energy minimization is a more impor-

tant concern when designing the physical layer of wireless sensor networks. Choosing

the modulation scheme and frequency band is important in wireless sensor networks.

There is a trade-off between efficiency vs. energy minimization. For example, consider

the binary and M-ary modulation schemes. While the M-ary modulation schemes can

9

reduce transmission times by sending multiple bits per symbol, it required complex cir-

cuitry and increased radio power consumption. The binary modulation scheme is more

energy efficient here because it requires low power and simple transceiver circuitry.

• Data link layer. The responsibilities of the data link layer are the medium access

control (MAC), error control, etc. MAC protocols are especially important as they can

reduce collisions and prevent data loss. MAC protocols for other wireless networks are

not suitable for wireless sensor networks as sensor nodes are energy constrained. There

are two types of MAC protocols for wireless sensor networks:

In contention-based MAC protocols, nodes compete for a shared channel,

resulting in probabilistic coordination. Collision happens during the contention pro-

cedure in such systems. Contention protocols have several advantages compared to

scheduled protocols. First, because contention protocols allocate resources on-demand,

they can scale more easily across changes in node density or traffic load. Second, con-

tention protocols are more flexible as topologies change. There is no requirement to

form communication clusters, and peer-to peer communication is directly supported.

Finally, contention protocols do not require fine-grained time synchronizations as in

TDMA protocols. The major disadvantage of a contention protocol is its inefficient

usage of energy. Nodes listen at all times and this wastes energy.

Carrier Sense Multiple Access (CSMA) is a contention-based MAC protocol. In

CSMA, a node listens to the channel before transmitting. Its central idea is listening

before transmitting. The purpose of listening is to detect if the medium is busy, also

known as carrier sense. If it detects a busy channel, it delays access and retries later.

However CSMA cannot solve the hidden terminal problem.

The hidden terminal problem is shown in Figure 1.9, where either of nodes A

A CB

Figure 1.9: Hidden terminal problem.

and C can sense the medium and find it clear and transmit to node B. Because nodes A

10

and C are not in the range of each other, neither can determine by sensing the medium

whether the other is transmitting or not. Due to this, it is possible that node B will

receive data from both at the same time which will lead to colllisions and hence, data

loss.

CSMA/CA, where CA stands for collision avoidance, was developed to address

the hidden terminal problem. The basic mechanism in CSMA/CA is to establish a

brief handshake between a sender and a receiver before the sender transmits data. The

handshake starts from the sender by sending a short Request-to-Send (RTS) packet to

the intended receiver. The receiver then replies with a Clear-to-Send (CTS) packet.

The sender then starts sending data after it receives the CTS packet. The purpose

of RTS-CTS handshake is to make an announcement to the neighbors, of the trans-

action between both the sender and the receiver. If a node overhears an RTS or CTS

destined to other nodes, it should not send its own packet. CSMA/CA does not com-

pletely eliminate the hidden terminal problem, but now the collisions are mainly on the

control message packets. Since the RTS and CTS packets are very short, the cost of

collisions is greatly reduced. However, RTS/CTS has a considerable overhead. Based

on CSMA/CA, Karn proposed MACA [24], which added a duration field in both RTS

and CTS packets indicating the amount of data to be transmitted, so that other nodes

know how long they should withhold from sending their own packets. Bharghavan et

al. further improved MACA in their protocol MACAW [25]. MACAW proposed several

additions to MACA, including use of an acknowledgment (ACK) packet after each data

packet, allowing rapid link-layer recovery from transmission errors. The transmission

between a sender and a receiver follows the sequence of RTS-CTS-DATA-ACK. IEEE

802.11 adopted all these features of CSMA/CA, MACA and MACAW in its distributed

coordination function (DCF), and made various enhancements, such as virtual carrier

sense, binary exponential back-off, and fragmentation support [23].

Another contention based protocol, PAMAS, proposed by Singh and Raghaven-

dra [4], avoids overhearing by putting nodes into sleep state when their neighbors are

in transmission. PAMAS uses two channels, one for data transmission and one for

11

Figure 1.10: RTS-CTS messaging system.

control message transmission. After a node wakes up from sleep, it probes in the con-

trol channel to find any possible ongoing transmissions and their durations. If any

neighbor answers the probe, the node will sleep again for the specified duration. Prob-

ing in the control channel avoids interfering with a neighbors transmission in the data

channel, and the neighbor is able to answer the probe in the control channel without

interrupting its data transmission. However, the requirement of separate control and

data channels makes PAMAS more difficult to deploy, since multiple channels require

multiple radios or additional complex channel allocation.

Recent CSMA-based MAC protocols for wireless sensor networks are S-MAC[30],

T-MAC[34], Wise-MAC[31] and SIFT[32]. They suffer from the same disadvantages of

CSMA-based protocols and overhead due to sleep-listen periods for nodes which aim

to save energy consumption.

In reservation-based MAC protocols like Time Division Multiple Access (TDMA),

the channel is divided into N time slots. In each slot, only one node is allowed to

transmit. Hence, it has a natural advantage of collision-free medium access. However,

TDMA has some disadvantages that limits its use in wireless sensor networks. TDMA

normally requires nodes to form clusters. One of the nodes within the cluster is se-

lected as the cluster head. Nodes are normally restricted to communicate with the

cluster head within a cluster; peer-to-peer communication is not directly supported.

(If nodes communicate directly, then they must listen during all slots, reducing energy

12

Figure 1.11: Slot allocation for transmission in TDMA.

efficiency.) Inter-cluster communications and interference need to be handled by other

approaches, such as Frequency Division Multiple Access (FDMA) or Code Division

Multiple Access (CDMA). More importantly, TDMA protocols have limited scalability

and adaptivity to the changes on number of nodes. When new nodes join or old nodes

leave a cluster, the base station must adjust frame length or slot allocation. How-

ever, it is not easy to change the slot assignment within a decentralized environment

for traditional TDMA, since all nodes must agree on the slot assignments. Frequent

changes may be expensive or slow to take effect. Also, frame length and static slot

allocation can limit the available throughput for any given node, and the the maximum

number of active nodes in any cluster may be limited. Finally, TDMA protocols de-

pend on distributed, fine-grained time synchronization to align slot boundaries. Many

variations on the basic TDMA protocol are possible. Rather than scheduling slots for

node transmissions, slots may be assigned for reception with some mechanism for con-

tention within each slot. The base station may dynamically allocate slot assignments

on a frame-by-frame basis.

Sohrabi and Pottie proposed a self-organization protocol for wireless sensor

networks [26]. The protocol assumes that multiple channels are available (via FDMA

or CDMA), and any interfering links select and use different sub-channels. During the

time that is not scheduled for transmission or reception, a node turns off its radio to

13

conserve energy. Each node maintains its own time slot schedules with all its neighbors,

which is called a superframe. Time slot assignment is only decided by the two nodes on

a link, based on their available time. It is possible that nodes on interfering links will

choose the same time slots. Although the superframe looks like a TDMA frame, it does

not prevent collisions between interfering nodes, and this task is actually accomplished

by FDMA or CDMA. This protocol supports low-energy operation, but a disadvantage

is the relatively low utilization of available bandwidth. A sub-channel is dedicated to

two nodes on a link, but is only used for a small fraction of time, and it cannot be

re-used by other neighboring nodes.

Low-Energy Adaptive Clustering Hierarchy (LEACH), proposed by Heinzelman

et al. [27] is an example of utilizing TDMA in wireless sensor networks. LEACH

organizes nodes into cluster hierarchies, and applies TDMA within each cluster. The

position of cluster head is rotated among nodes within a cluster depending on their

remaining energy levels. Nodes in the cluster only talk to their cluster head, which

then talks to the base station over a long-range radio. LEACH is an example that

directly extends the cellular TDMA model to wireless sensor networks.

Figure 1.12: Bluetooth Smart Sensor Systems.

Bluetooth [28], [29] is designed for personal area networks (PAN) with target

nodes as battery-powered PDAs, cell phones and laptop computers. Its design for

low-energy operation and inexpensive cost make it attractive for use in wireless sensor

14

networks. As with LEACH, Bluetooth also organizes nodes into clusters, called pi-

conets. Frequency-hopping CDMA is adopted to handle inter-cluster communications

and interference. Within a cluster, a TDMA-based protocol is used to handle commu-

nications between the cluster head (master) and other nodes (slaves). The channel is

divided into time slots for alternate master transmission and slave transmission. The

master uses polling to decide which slave has the right to transmit. Only the commu-

nication between the master and one or more slaves is possible. The maximum number

of active nodes within a cluster is limited to eight, an example of limited scalability.

However, FDMA brings an additional circuitry requirement to dynamically com-

municate with different radio channels. This increases the cost of the sensor nodes,

which is contrary to the objective of the sensor network systems. CDMA also offers

collision-free medium, but its high computational requirement is a major obstacle for

energy consumption objective of the sensor networks. In pursuit of low computational

cost requirements of wireless CDMA sensor networks, there has been limited effort to

investigate source and modulation schemes, particular signature waveforms, design-

ing simple receiver models, and other signal synchronization problems. If it is shown

that the high computational complexity of CDMA could be traded with its collision

avoidance feature, CDMA protocols could also be considered as candidate solutions for

wireless sensor networks.

A recent TDMA-based MAC protocol for wireless sensor networks is DMAC[33].

It suffer from the same disadvantages of TDMA-based protocols.

• Network layer. This layer is responsible for data routing. There is also a tradeoff

between choosing a route that consumes minimum energy as well as a route which has

the minimum number of hops between a source and a destination. The issues [39] to

be considered when designing routing protocols are described in detail below.

– A routing protocol should be able to adapt well to the addition of nodes to a

wireless sensor network as well as to the removal of nodes due to node failure in

a wireless sensor network i.e. the dynamic topology of a wireless sensor network.

– While most wireless sensor networks have stationary nodes, some may have mobile

15

Figure 1.13: Routing in wireless sensor networks.

nodes or even mobile base station. Routing protocols must be designed to consider

mobility of nodes/base station during routing.

– Reducing energy consumption without losing accuracy is very important as sensor

nodes can use up their limited supply of energy performing computations and

transmitting information in a wireless environment. As such, energy-conserving

forms of communication and computation are essential in routing protocols for

energy-constrained wireless sensor networks.

– Routing protocols should be adapt to the time-critical and QoS requiremets of

different applications in wireless sensor networks.

– The coverage achieved by routing protocols when routing from a source to multiple

destinations like routing data from a base station to sensor nodes is an important

consideration. It should deliver the data to maximum possible targeted destina-

tion nodes. Routing protocols should also provide for a wireless sensor network

to connect to other wireless sensor networks and the internet.

– For applications in wireless sensor networks having data aggegration at intermedi-

ate nodes, routing should be done via cluster-heads where data aggregation takes

place within clusters.

There are various ways to classify routing protocols.

16

Figure 1.14: Flat routing: directed diffusion.

In flat routing, each node typically plays the same role and sensor nodes collab-

orate together to perform the sensing task. It is not feasible to assign a global identifier

to each node in a wireless sensor network. This has led to data centric routing, where

the base station sends queries to certain regions and waits for data from the sensor

nodes located in the selected regions. Since data is being requested through queries,

attribute-based naming is necessary to specify the properties of data. Examples of

flat routing protocols include Directed Diffusion[6], SPIN[8], Rumor Routing[40], Min-

imum Cost Forwarding Algorithm[41], Gradient-based Routing[42], Information-driven

Sensor Querying (IDSQ) and Constrained Anisotropic Diffusion Routing (CADR)[43],

COUGAR[44], ACQUIRE[45] and Energy Aware Routing[46].

In hierarchical routing, also called cluster-based routing which was originally

proposed in wireline networks, there are well-known techniques with special advantages

related to scalability and efficient communication. As such, the concept of hierarchical

routing is also utilized to perform energy-efficient routing in wireless sensor networks.

In a hierarchical architecture, higher energy nodes can be used to process and send

the information while low energy nodes can be used to perform the sensing in the

proximity of the target. This means that creation of clusters and assigning special

tasks to cluster heads can greatly contribute to overall system scalability, lifetime, and

energy efficiency. Hierarchical routing is an efficient way to lower energy consumption

within a cluster and performing data aggregation and fusion in order to decrease the

number of transmitted messages to the base station. Hierarchical routing is mainly

two-layer routing where one layer is used to select clusterheads and the other layer is

17

Figure 1.15: Hierarchical or cluster based routing.

used for routing. However, most techniques in this category are not about routing,

rather on ”who and when to send or process/aggregate” the information, channel

allocation etc., which can be orthogonal to the multihop routing function. Examples of

routing protocols include LEACH[27], PEGASIS[47], APTEEN[48], Self Organization

Protocol[49], Sensor Aggregates Routing[50], Virtual Grid Architecture Routing[51],

Hierarchical Power-aware Routing[52] and Two-Tier Data Dissemination[53].

• Transport layer. Protocols in the transport layer helps in reliable data transfer

in wireless sensor networks. This includes prevention of data loss and recovery of

lost data. Transport layer protocols can be of two types: (1) Protocols that try to

eliminate reasons for data loss and thus reduce data loss. (2) Protocols that recover

lost data. However, protocols designed for wired networks are unsuitable for wireless

sensor networks because they assume the primary reason for data loss to be congestion

which is not the case for wireless sensor networks. Such assumptions lead to actions

which can harm data delivery in wireless sensor networks. Transport layer protocols for

other wireless networks are also unsuitable for wireless sensor networks as they do not

18

consider energy conservation which is essential in wireless sensor networks. A number

of reliable data transfer protocols for wireless sensor networks have been described in

Chapter 2 as our work considers reliable data transfer in wireless sensor networks for

different applications.

• Application Layer. At the application layer, processes aim to create effective new

capabilities for efficient extraction, manipulation, transport, and representation of in-

formation derived from sensor data. In most applications, sensor networks have various

functional components: detection and data collection, data fusion, etc. However, ap-

plication layer protocols for wireless sensor networks is a little explored area.

1.2 Overview of Data Transfer Scenarios in WSNs

Data transfer in wireless sensor networks occurs from sensor nodes to a base station and vice

versa. During data transfer from sensor nodes to a base station, either streams of data are

sent by the sensor nodes as and when events are detected or the data collected by sensor

nodes are filtered at some sensor nodes and then sent to the base station. The filtered data

size is small compared to the unfiltered data size. For some applications, some amount

of data loss is acceptable. For example, temperature sensors measure the temperature of

an environment over time. In this case, only temperatures above a certain threshold value

need to be received by the base station. In other applications, all the sensor data must

reach the base station. No data loss is acceptable but these applications do not require

real-time delivery of data. Real-time delivery of data is required in wireless sensor network

applications like those monitoring the location of people trapped in a fire inside a building.

Some applications require a huge amount of data transfer in comparison to others like the

data captured by image sensors[11].

Data transfer from a base station to sensor nodes consist of instructions for sensor

nodes to reprogram themselves to perform a task different from the one they are executing

currently. The data sent from the base station to sensor nodes can consist of control code

i.e. software programs to enable detection of a particular type of data, sample data for

target detection, or queries for data. Sensor nodes in wireless sensor networks tend to

19

be application specific, and are typically hard-wired to perform specific tasks like sensing

temperature only. However, research is being done to build more powerful general-purpose

hardware and software environments capable of reprogramming or re-tasking sensors to do

a variety of tasks. Such systems are beginning to emerge. For example, the Berkeley motes

[12] are capable of receiving code segments from the network and assembling them into a

completely new execution image before re-tasking a sensor. To illustrate the application

of retasking the sensor nodes, let us consider sensor nodes of a wireless sensor network

measuring the intensity of earth movements in any area. A weather monitoring system

detects an environmental change which will happen in the area in a short while and wants

the sensor nodes to collect data on the temperature during this change. In this case, the base

station will send instructions to the sensor nodes to collect data on the temperature instead of

data on the intensity of earth movements. A base station can also send instructions to sensor

nodes (based on the data already sent by the sensor nodes) to collect data different from

that they are already collecting though for the same application. For example, in a border

surveillance system, many sensor nodes are scattered near a national border to monitor

illegal border crossing activity. When an instrusion is detected, sensor nodes immediatly

report this event. A base station gathers the data and based on the information processed,

instructs the sensor nodes to change detection parameters [13].

1.3 Reasons for Data Loss or Unreliable Data Transfer

in WSNs

The efficiency of any wireless sensor network network depends on the ability of the network

to deliver data from a source to one or more destinations without data loss. In other words, a

wireless sensor network enabling transfer of data without loss is reliable or supports reliable

data transfer. The amount of data loss that can be tolerated by the wireless sensor network

is application specific.

However, data transferred over a wireless sensor network is more susceptible to loss

than that over wired networks. This is because in wired networks data loss occurs primarily

due to congestion in the network while additional reasons for data loss exist in wireless sensor

20

networks. The reasons for data loss in wireless sensor networks are stated below.

1.3.1 Collision between Transmitting Nodes

Data loss will occur due to collisions between data transmitted by two or more nodes at the

same time in a wireless sensor network. Hence, a MAC or media access protocol is necessary

to determine which nodes will have sole access of the medium in order to transmit data

and thus, reduce the number of collisions. There is a brief discussion of the different MAC

protocols in the network communication model in Section 1.1.2. However, these protocols

cannot completely eliminate collisions; they can only reduce them.

1.3.2 Congestion

Data loss due to congestion can always occur in wireless sensor networks. When the buffer

capacity at a node is exceeded, congestion occurs and the node drops data. A network link

is said to be congested when the offered load on the link reaches a value close to the capacity

of the link.

Congestion can occur due to a variety of reasons. First, some node may detect events

like a forest fire or an earthquake and send large amounts of data suddenly in addition to

the data that is normally sent across the network. Second, new nodes may be added to the

network which may collect and send additional data thus adding to the traffic load. Third,

nodes may die increasing the load on other parts of the network. When large amounts of

data are being transferred from sensor nodes to base station, nodes close to the base station

may face congestion because they are few in comparison to the nodes sending data to them.

Another reason may be that other reasons for data loss like collisions slow the data delivery

rate at a node leading to the gradual build up of data at the node and hence, to congestion.

Routing through different nodes because some nodes are currently in the sleep mode can also

cause congestion. In wireless sensor networks, congestion causes overall channel quality to

degrade, leads to buffer drops at nodes and hence, data loss which in turn lowers throughput

and wastes energy.

21

1.3.3 Barriers to Electromagnetic Signals

Both radio/light waves used for transmission in wireless sensor networks are electromagnetic

radiation. Electromagnetic radiation can travel through various media to varying degrees,

depending on the frequency and the kind of media like solids and fluids. For example

• Light waves can travel through air, water and glass but not other solid material.

• Radio waves can travel through some solids but not through metal.

As such, presence of different types of solid objects in the path of wireless transmission can

result in data loss.

1.3.4 Environmental Disturbances

Electromagnetic signals can also fade because of environmental conditions like thunder-

storms, earthquakes, etc. They can be absorbed due to atmospheric gases or dielectric state

of the atmosphere. Likewise magnetic and electrical effects of the earth’s surface and man-

made machinery can affect signals. All these are responsible for signal/data loss in wireless

sensor networks.

1.3.5 Dead Nodes, Mobile Nodes and Human Interference

In addition to the above, node failure may occur due to energy loss or human interference

in wireless sensor networks e.g. if the military of a country places a wireless sensor network

in an enemy territory, the enemy may discovery a sensor node and deactivate it. If a node

sends data to a failed node, data loss occurs as a result. Also, a node may try to send data

to a mobile neighbor which has moved away resulting in data loss.

1.4 Problem Definition: An Application-Specific Reli-

able Data Transfer Requirement in WSNs

We consider the problem of implementing reliability during data transfer from a base station

to sensor nodes for time-critical applications with zero tolerance for data loss like the transfer

of instructions from a base station to sensor nodes in order to reprogram them to perform

22

a task different from the one they are executing currently or to change the parameters of

detection of their current task, etc.

Such applications have no tolerance for data loss because for example, if any part of

the instructions is lost, the sensor nodes will not be able to interpret the instructions. The

application is delay-sensitive because if there is a delay in the delivery of the instructions, the

sensor nodes may not be able to capture the data required by the base station. In addition,

sensor nodes are energy constrained, thus the number of messages exchanged in the wireless

sensor network to implement reliability must be minimum as it is a measure of the energy

used by the sensor nodes.

The problem is defined as below:

• A source node s has to deliver data to destinations d which are at a distance of h hops

from s where a node x which is within the transmission range of another node y is said

to be at a distance of one hop from y.

• Probability of successful transmission of a message between any two nodes seperated

by one hop is P .

• Each destination d should receive the entire data.

• Delivery should take minimum time and minimum number of messages.

The minimum time and minimum number of messages mentioned in the problem definition

implies that a new solution to the problem should take less/equal time and number of

messages in comparison to previous solutions.

0

1

2

3

4 5

6

7

89

Figure 1.16: A 10-node network for demonstrating the problem discussed in this dissertation.

23

In the network in Figure 1.16, node 6 is the source and it has to send 5 data packets

{p0, p1, p2, p3, p4} to all nodes 3 hops away from it. The probability of successful transmission

of a message between any two nodes seperated by 1 hop is P . The destination nodes are

nodes 0 and 2 respectively. All data packets should reach the destination nodes taking

minimum time and minimum number of messages.

In the practical scenario, it is not possible to guarantee that all nodes which are at a

distance of 3 hops away will receive the data. This is because no node is aware of the entire

network topology. However, whenever a node is determined to be at a distance of 3 hops, it

should receive all the data packets.

In the following chapters, we give a summary of the existing solutions and their

drawbacks and then present our solution and its evaluation.

24

Chapter 2

Literature Review

Here, we give a brief description of different reliable data transfer protocols in wireless

sensor networks and the problems with their implementation for time-critical applications

with zero-tolerance for data loss in wireless sensor networks.

2.1 TCP: Transport Control Protocol

The transmission control protocol (TCP) [16][17] is the most predominant transport layer

protocol in the Internet today. It transports more than 90% percent of the traffic on the

Internet. Its end-to-end congestion control mechanism, byte-stream transport mechanism,

and, above all, its elegant and simple design have not only contributed to the success of the

Internet, but have also made TCP an influential protocol in the design of many of the other

protocols and applications. Its adaptability to the congestion in the network has been an

important feature in times of extreme congestion. TCP in its traditional form was designed

and optimized only for wired networks.

Figure 2.1: TCP/IP protocol stack.

Since TCP is widely used today and the efficient integration of a wireless network

with the Internet is paramount wherever possible, it is essential to have mechanisms that can

improve TCP’s performance in wireless networks. This would enable the seamless operation

of application-level protocols such as FTP, SMTP, and HTTP across the integrated wireless

networks and the Internet.

25

TCP is a reliable, end-to-end, connection-oriented transport layer protocol that pro-

vides a byte-stream-based service [the stream of bytes from the application layer is split into

TCP segments, the length of each segment limited by a maximum segment size (MSS)]. The

major responsibilities of TCP include congestion control, flow control and in-order delivery

of packets. Congestion control deals with excess traffic in the network which may lead to

degradation in the performance of the network, whereas flow control controls the per-flow

traffic such that the receiver capacity is not exceeded. TCP regulates the number of packets

sent to the network by expanding and shrinking the congestion window. The TCP sender

starts the session with a congestion window value of one MSS. It sends out one MSS and

waits for the ACK. Once the ACK is received within the retransmission timeout (RTO)

period, the congestion window is doubled and two MSSs are originated. The doubling of

the congestion window with every successful ACK of all the segments in the current con-

gestion window continues until the congestion window reaches the slow-start threshold (the

slow-start threshold has an initial value of 64 KB).

Figure 2.2: TCP header format.

Once it reaches the slow-start threshold, it grows linearly, adding one MSS to the

congestion window for every ACK received. This linear growth, which continues until the

congestion window reaches the receiver window (which is advertised by the TCP receiver

and carries the information about the receiver’s buffer size), is called congestion avoidance,

as it tries to avoid increasing the congestion window, which will surely worsen the congestion

in the network. TCP updates the RTO period with the current round-trip delay calculated

26

on the arrival of every ACK packet. If the ACK packet does not arrive within the RTO

period, then it assumes that the packet is lost. TCP assumes that the packet loss is due to

the congestion in the network and it invokes the congestion control mechanism. The TCP

sender does the following during congestion control: (i) reduces the slow-start threshold to

half the current congestion window or two MSSs whichever is larger, (ii) resets the congestion

window size to one MSS, (iii) activates the slow-start algorithm, and (iv) resets the RTO

with an exponential back-off value which doubles with every subsequent retransmission.

The congestion window is doubled with every successfully acknowledged window and, upon

reaching the slow-start threshold, it enters into the congestion avoidance phase.

The TCP sender also assumes a packet loss if it receives three consecutive duplicate

ACKs (DUPACKs) which are repeated acknowledgments for the same TCP segment that was

successfully received in-order at the receiver. Upon reception of three DUPACKs, the TCP

sender retransmits the oldest unacknowledged segment. This is called the fast retransmit

scheme. When the TCP receiver receives out-of-order packets, it generates DUPACKs to

inform the TCP sender about the sequence number of the last in-order segment received

successfully.

Some of the reasons behind the throughput degradation that TCP causes when used

in wireless networks are:

• Misinterpretation of packet loss. Traditional TCP was designed for wired networks

where the packet loss is mainly attributed to network congestion. Network congestion

is detected by the sender’s packet RTO period. Once a packet loss is detected, the

sender node assumes congestion in the network and invokes a congestion control algo-

rithm. Wireless sensor networks experience a much higher packet loss due to factors

such as increased collisions due to the presence of hidden terminals, environmental

disturbances, human interference, frequent path breaks due to mobility of nodes, and

the inherent fading properties of the wireless channel.

• Misinterpretation of congestion window. TCP considers the congestion window

as a measure of the rate of transmission that is acceptable to the network and the

receiver. In wireless sensor networks, the congestion control mechanism is invoked by

27

TCP when the network gets partitioned or when a path break occurs. This reduces the

congestion window and increases the RTO period. When the route is reconfigured, the

congestion window may not reflect the transmission rate acceptable to the new route,

as the new route may actually accept a much higher transmission rate. Hence, when

there are frequent path breaks, the congestion window may not reflect the maximum

transmission rate acceptable to the network and the receiver.

• Multipath routing. There exists a set of QoS routing and best-effort routing pro-

tocols that use multiple paths between a source-destination pair in a wireless sensor

network. There are several advantages in using multipath routing. Some of these ad-

vantages include the reduction in route computing time, the high resilience to path

breaks, high call acceptance ratio, and better security. For TCP, these advantages

may add to throughput degradation. These can lead to a significant amount of out-of-

order packets, which in turn generates a set of duplicate acknowledgments (DUPACKs)

which cause additional power consumption and invocation of congestion control.

• Power and bandwidth constraints. Nodes in wireless sensor networks face resource

constraints including the two most important resources: (i) power source and (ii)

bandwidth. The performance of TCP is significantly affected by these constraints.

It is evident that a solution other than TCP is required for wireless sensor networks.

This solution should emphasize more on recovering or reducing from data loss due to various

other reasons than only congestion control.

2.2 PSFQ: Pump Slowly, Fetch Quickly

The PSFQ protocol [14] is a transport layer protocol designed to deliver data without loss

in wireless sensor networks. It uses a hop-by-hop lost data recovery method (the definition

of one hop is given in Section 1.4) with non-acknowledgement of data packets at receiving

nodes and in-sequence data packet forwarding at nodes to ensure reliability. In a hop-by-hop

data recovery method, intermediate nodes(i.e. nodes between source and destination) take

part in lost data recovery. Each node has a data cache to store all the data packets that it

receives. A data packet pi will have the sequence number i and the highest packet sequence

28

number m sent by the source. This information helps a node x to detect packets missing in

its data cache on receiving pi. The protocol consists of three operations: a pump operation,

a fetch operation and a report operation.

In the pump operation, the source transmits data packets one by one every Tmin.

Each packet has a sequence number. All other nodes behave as follows:

• When a node x receives a packet pi not present in its data cache, it stores pi in

the data cache. If there is no missing packet with sequence number lower than pi

and all such packets have been transmitted at least once, then x waits a random

period (to avoid collisions) between Tmin and Tmax before broadcasting pi. There is

a delay of at least Tmin between each pair of consecutive packets that x broadcasts.

However, this broadcast is suppressed if x finds that four or more of its neighbors have

already broadcast pi, because then the expected additional coverage achieved by x by

broadcasting pi tends to be small. If pi is already in the data cache, x drops the packet.

• When x receives a packet out-of sequence i.e. pi+1 is received where pi has never been

received, pi+1 is stored in the data cache if it not present there already but instead of

broadcasting it, x requests retransmission of all missing packets with sequence numbers

lower than pi+1 from its neighbors using a request for retransmission or NACK message

indicating the missing packets. The node x will resend the NACK every Tr < Tmax

interval (with slight randomization to avoid collisions between neighbors). As soon as

x receives the missing packets, it starts broadcasting the packets in-sequence i.e. pi

before pi+1 in the pumping mode.

The decision to broadcast packets only in-sequence has the advantage that loss events do not

propagate. To illustrate the advantage of in-sequence transmissions, let us suppose there are

no in-sequence transmissions at nodes. Let node x send packets pi and pi+1 to downstream

neighbor node y. Packet pi is lost during transmission. Node y receives pi+1 and sends it to

downstream node z. Node z on receiving pi+1 detects missing pi and sends a request for it

to y which cannot respond since it does not have pi. This is called propagation of loss and

this request from z to y is an unnecessary message which is costly for energy-constrained

wireless sensor networks.

29

The fetch operation corresponds to a retransmission request and is triggered by

detection of missing packets at nodes. However, a node x will not detect a missing packet

pi unless it receives pi+1 or any packet with sequence number higher than i. Hence, if pi+1

or any packet with a higher sequence number is not received, the missing pi will not be

detected. PSFQ deals with such cases by having x proactively trigger the fetch operation by

sending the request for retransmission or NACK if no new packet is delivered after a period

of time Tpro = α ∗ (pm − pi−1) ∗ Tmax where m is the highest packet sequence number sent

by the source and (i − 1) is the last successfully received packet and α is dependent on the

network channel error rate.

The report operation is initiated by the source. The source sends a report request

on receipt of which a destination node initiates and sends a report message at a random

time between (0, ∆) and each node which receives a report message appends its own report

to the received report message and forwards it further. A report message for a node x has

its node id and the packets received/missing at x. If x knows that the source has requested

a report message but does not receive a report after Treport = Tmax ∗ TTL + ∆ where TTL

is proportional to the shortest distance between source and destination, x initiates a report

message and forwards it to its neighbors.

However, in-sequence transmission of packets can delay the delivery of packets to

destination in comparison to out-of-sequence packets as discussed later Chapter 3. Also, if

there are no missing packets at a node, the slow pump operation will delay the transmission

of packets unnecessarily.

2.3 RMST: Reliable Multi-Segment Transport

The authors [18] implement reliability methods at different layers of wireless sensor networks

namely MAC layer, transport layer and application layers. RMST is a transport layer

protocol providing reliability which acts with Directed Diffusion as the routing protocol.

Link layer Automatic Repeat Request (ARQ) is an error control method for data

transmission which makes use of acknowledgments and timeouts to achieve reliable data

transmission. An acknowledgment is a message sent by the receiver to the transmitter to

30

indicate that it has correctly received a data frame. Usually, when the transmitter does not

receive the acknowledgment before the timeout occurs (i.e. within a reasonable amount of

time after sending the data frame), it retransmits the frame until it is either correctly received

or the error persists beyond a predetermined number of retransmissions. The following are

the different methods for implementing reliability at the MAC layer:

• No ARQ. Such transmissions do not employ MAC layer reliability mechanisms such

as RTS/CTS and ACK. In this mode, reliability is completely deferred to the transport

or application layer. There are several possible benefits to this scheme. Firstly, there is

a significant amount of overhead connected with the exchange of RTS/CTS and ACK

packets that is avoided. Second, routing protocols like diffusion attempt to select high

quality (lower error rate) paths for data transmission. The ARQ reliability mechanisms

can make poor paths mistakenly look reliable to higher layers.

• ARQ always. This transmission method utilizes RTS/CTS and ACK with retries

to bolster reliability. When a node wishes to communicate with multiple neighbors,

each neighbor must be sent a unicast packet. The number of ARQ retransmissions

attempted before giving up is configurable. This method also has certain benefits for

sensor networks. Data that travel on the links identified in route discovery will be

delivered with a high degree of reliability

• Selective ARQ. This method attempts to combine the benefits of both ARQ and

No ARQ. Data and control packets, in unicast transmissions, use ARQ to bolster

reliability. Data sent to multiple neighbors have no ARQ. Data used in route-discovery

are broadcast to all neighbors without ARQ.

The following are the different methods for implementing reliability at the transport layer:

• End-to-End Selective Request NACK. The detection of missing data and the

request for the same (NACK) takes place only at the base station. The requests for

missing data travel from the base station to the source of the data, where the missing

data is retransmitted.

• Hop-by-Hop Selective Request NACK and Repair from Cache. Each caching

node on a path from the source of the data to the base station caches the fragments

31

that make up a larger data entity. When such nodes sense a missing fragment, a

request (NACK) for them is sent to the next hop on the path toward the source. If

the requested fragment is in the local cache, a response is sent. If not, the NACK is

forwarded to the next hop toward the source.

The following is a method for implementing reliability at the application layer:

• End-to-End Positive ACK. In this approach a base station requests to receive a

large data entity, which is fragmented at the source. When all fragments have arrived

at the base station, it deletes its request. Sources send the entire set of fragments at

precalculated intervals until request is deleted.

RMST was designed to operate with Directed Diffusion [6] as the routing protocol.

Reliability in RMST refers to the eventual delivery of all fragments related to a unique

RMST entity to the subscribing base station. A unique RMST entity is a data set consisting

of one or more fragments coming from the same source. An unfragmented data entity must

have an application specific attribute (RmstNo) or set of attributes that serves to distinguish

a particular reliable flow of data during transfer from a source to the base station. Each

fragment that makes up a fragmented data entity must also contain a sequential fragment

id (FragNo). The total number of fragments that make up a data entity must be known

(MaxFrag). There is a single control message generated by RMST, the NACK, which must

be defined by an attribute.

Figure 2.3: RMST protocol.

32

In RMST, receivers are responsible for detecting whether or not a fragment needs to

be sent again. The term receiver here, however, does not necessarily mean the base station.

In the non-caching mode, only the base station monitors the integrity of an RMST entity

in terms of received fragments. In caching mode, an RMST node collects fragments and is

capable of initiating recovery for missing fragments to the next node along the path toward

the source. There are two types of loss detected by a receiver:

• A hole in a sequence of fragments. When a hole in a sequence of fragments is detected,

the missing fragments should be specifically requested.

• A truncated sequence. The truncation of a sequence is really a special case of a hole,

sensed by the receiver via a timeout geared to the expected receipt time of the next

fragment.

In non-caching mode, only the base station set timers to detect loss. In caching mode, each

caching node on the reinforced path from the source to the base station detects loss. The

timer handler inspects the hole map and sends a NACK for any holes that have aged for

too long. Multiple hole numbers are aggregated into a single NACK to conserve on control

traffic.

The only control message added to normal diffusion by RMST is the NACK. NACKs

are unicast in the reverse direction along the reinforced path from the source to the base

station. When a node gets a cache hit for a NACKed fragment, it unicasts that fragment to

the requesting neighbor. When a node intercepts a NACK, and it cannot find the missing

fragment in its local cache (or its not in caching mode), it forwards the NACK on the

reinforced path toward the source. In caching mode, the natural progression of traffic from

the source to the base station, causes holes to be sensed sooner upstream, thus making

NACK forwarding an unlikely event.

In caching mode, a node maintains a local cache of traffic in progress or recently

transmitted. In non-caching mode, only the source and the base station maintain a cache.

The cache is indexed by the application specific attribute. Each cache entry has an associated

fragment map and hole map. The fragment map contains the actual cached data indexed

by the fragment id. The hole map is a list that contains missing or overdue fragments

33

for a particular flow. Hole map entries contain a fragment id, a timestamp indicative of

when a NACK for this fragment was sent, and a flag indicating whether or not a NACK is

outstanding.

The RMST paper concludes based on simulations that MAC layer ARQ is better

than no ARQ. It states that a NACK based transport layer running over a selective-ARQ

MAC layer is an appropriate solution. However, RMST does not state how a node will give

priority when sending different types of messages it has at a particular time unit nor does it

mention the order in which packets are to be forwarded (in-sequence or out-of-sequence) at

nodes.

2.4 ESRT: Event-to-Sink Reliable Transport

The ESRT [19] protocol aims to achieve reliable event detection in wireless sensor network

minimising energy expenditure in the process. It includes a congestion control component for

achieving reliability. It is implemented at the transport layer. The protocol is designed for

wireless sensor network applications where sensor nodes gather information from a detected

event and send it to the base station and the base station is interested in the collective

information obtained from the sensor nodes in the region where the event occured.

Let τ be the duration of a decision interval by which the base station must detect

event features. The amount of information received by the base station for the detection

and extraction of event features is measured in terms of data packets. Let ri be the number

of data packets received by the base station in the decision interval i and R be the number

of data packets required for detection and extraction of event features in a decision interval.

If ri > R, then the event features can be reliably detected else appropriate action needs to

be taken to achieve the desired reliability R. Packet loss can occur due to link errors, node

failures, congestion, etc.

The congestion control component of the protocol involves detection and removal of

congestion. The reporting rate f of a sensor node is defined as the number of packets sent

out per unit time by that node. A sensor node measures the size of the current contents of its

buffer at the end of every reporting period 1/f < τ . If it exceeds the maximum buffer size,

34

the sensor node infers that it is going to experience congestion in the next reporting period.

The problem solved by ESRT in a wireless sensor network is to configure the reporting rate

f of the sensor nodes so as to achieve the required event detection reliability R at the base

station minimising energy consumption and removing congestion, if any.

ESRT achieves this by having the base station handle the task of informing the sensor

nodes to adjust their reporting rate f when ri < R and/or there is congestion. The authors

assume that the base station is powerful enough to reach all source nodes by broadcast. It

has been already explained before how the base station measures reliability. We now explain

how it detects congestion A sensor node on detecting congestion sets the CN (Congestion

Notification) bit in the header of the packets it transmits to the base station to notify it of

the upcoming congestion condition to be experienced in next reporting period. When the

base station receives packets whose CN bit is marked, it infers that congestion is experienced

in the last decision interval.

Figure 2.4: ESRT finite state machine.

The authors perform simulations and observe that the reliability achieved shows a

linear increase (plotted along the log scale) with reporting rate f until a certain f = fmax,

beyond which the reliability drops. This is because of network congestion. Let η be a

measure of the reliability. The aim of the protocol is to have the value of η as close to 1

35

as possible. Based on their simulations, the authors identify 5 states of the wireless sensor

network:

• (NC,LR) : f < fmax and η < 1 − ǫ (No Congestion, Low Reliability)

• (NC,HR) : f ≤ fmax and η > 1 + ǫ (No Congestion, High Reliability)

• (C,HR) : f > fmax and η > 1 (Congestion, High Reliability)

• (C,LR) : f > fmax and η ≤ 1 (Congestion, Low Reliability)

• (OOR) : f < fmax and 1 − ǫ ≤ η ≤ 1 + ǫ (Optimal Operating Region)

The desirable state is OOR. The following actions are taken by the protocol when the network

is in each of the states 1 to 4.

• (NC,LR) : The base station instructs the sensor nodes to increase the reporting rate

using the following formula

fi+1 =
fi

ηi

where ηi is the reliability observed at the base station at the end of decision interval i.

• (NC,HR) : In order to conserve energy, the base station instructs the sensor nodes to

reduce the reporting rate according to the formula:

fi+1 =
fi

2

(

1 +
1

ηi

)

• (C,HR) : The base station instructs the sensor nodes to decrease the reporting rate

using the following formula

fi+1 =
fi

ηi

where ηi is the reliability observed at the base station at the end of decision interval i.

• (C,LR) : This is the worst possible state and more aggressive reduction of the reporting

rate is required in order to reduce congestion and improve reliability. The base station

instructs the sensor nodes to decrease the reporting rate using the following formula

fi+1 = fi
(ηi/k)

36

where ηi is the reliability observed at the base station at the end of decision interval

i and k denotes the number of successive decision intervals for which the network has

remained in state (C,LR) including the current decision interval.

ESRT deals with loss due to congestion only in wireless sensor networks whereas there

are additional reasons for data loss in wireless sensor networks. It assumes that the base

station is powerful enough to reach all source nodes by broadcast and does not consider

data recovery methods in order to achieve reliability. Hence it is unsuitable for applications

having zero tolerance for data loss.

2.5 CODA: COngestion Detection and Avoidance

CODA is an energy efficient congestion control scheme for wireless sensor networks that com-

prises three mechanisms: receiver-based congestion detection, open-loop hop-by-hop back-

pressure, and closed-loop multi-source regulation.

An application driving the development of wireless sensor networks is the reporting

of conditions within a region where the environment abruptly changes due to an observed

event, such as in habitat monitoring, target detection, earthquakes, floods, or fires. Here,

wireless sensor networks typically operate under light load and then suddenly become active

in response to a detected or monitored event. Depending on the application this can result

in the generation of large, sudden, and correlated impulses of data that must be delivered to

a base station. Although a wireless sensor network may spend only a small fraction of time

dealing with impulses, it is during this time that the information it delivers is of greatest

importance. The transport of event impulses is likely to lead to varying degrees of congestion

in sensor networks. A number of distinct congestion scenarios are likely to arise.

• Densely deployed sensors generating impulse data events will create persistent hotspots

proportional to the impulse rate beginning at a location very close to the sources (e.g.,

within one or two hops).

• Sparsely deployed sensors generating low data rate events will create transient hotspots

potentially anywhere in the sensor field but likely farther from the sources, toward the

base station.

37

• Sparsely deployed sensors generating high data-rate events will create both transient

and persistent hotspots distributed throughout the sensor field.

CODA provides a solution for all these cases. CODA employs CSMA as a MAC pro-

tocol. Though TDMA can strictly control and schedule traffic and flows in the network and

thus alleviate the need for congestion control, it has a lot of synchronization and scheduling

overhead in wireless sensor networks. Hence, CODA uses CSMA for medium access. CODA

also suggests link-layer ARQ for improving reliability. The reason is that CODA does not

offer any solution for collisions or data recovery. It only offers reliable congestion detection

and control mechanisms.

The methods used by CODA for congestion detection are:

• A nearly overflowing queue.

• The base station expects a certain event sampling rate or reporting rate coming from

the sources. This rate is highly application-specific. When a base station consistently

receives less than desired reporting rate, it can be inferred that packets are being

dropped along the path, most probably due to congestion.

The methods used by CODA to control congestion are:

• Open-loop hop-by-hop backpressure. Once congestion is detected, the receiver

will broadcast a suppression message to its upstream neighbors and at the same time

make local adjustments to prevent propagating the congestion downstream. A node

broadcasts backpressure messages as long as it detects congestion. Backpressure signals

are propagated upstream towards the sources of the event. When an upstream node

(toward the source) receives a backpressure message, based on its own local network

conditions it determines whether or not to further propagate the backpressure signal

upstream. For example, a node may simply start to drop its incoming data packets

upon receiving a backpressure message, preventing its queue from building up, rather

than propagating the backpressure signal further upstream because of an overflowing

queue. The term depth of congestion is used to indicate the number of hops that the

backpressure message has traversed before a non-congested node is encountered. The

38

depth of congestion can be used by the routing protocol to help balance the energy

consumed during congestion across different paths. It is better for a node to use

congestion detection mechanisms only when it receives a packet as it will have less

overhead.

• Closed-loop multi-source regulation. When the source event rate (r) is less than

some fraction η of the maximum theoretical throughput (Smax) of the channel, the

source regulates itself. When this value is exceeded (r ≥ Smax), a source is more likely

to contribute to congestion and therefore closed-loop control is triggered. The source

only requires feedback from the base station if this threshold is exceeded. At this point,

a source requires constant feedback (e.g., ACK) from the base station to maintain its

rate (r). A source triggers base station regulation when it detects (r ≥ Smax) by setting

a regulate bit in the event packets it forwards toward the base station. Reception of

packets with the regulate bit set forces the base station to send ACKs to regulate all

sources associated with a particular data event. The reception of ACKs at sources

would serve as a self-clocking mechanism allowing the sources to maintain the current

event rate (r). When a source sets its regulate bit it expects to receive an ACK from

the base station at some predefined rate, or better, a certain number of ACKs over a

predefined period allowing for the occasional loss of ACKs due to transient congestion.

If a source receives a prescribed number of ACKs during this interval it maintains its

rate (r). When congestion builds up, ACKs can be lost forcing sources to drop their

event rate (r) according to some rate decrease function (e.g., multiplicative decrease).

CODA like ESRT in Section 2.4 deals with loss due to congestion only in wireless

sensor networks whereas there are additional reasons for data loss in wireless sensor net-

works. It does not consider data recovery methods in order to achieve reliability. Hence it

is unsuitable for applications having zero tolerance for data loss.

2.6 DTNLite: Delay Tolerant Networking Lite

This idea [55] assumes the existence of an underlying multihop routing protocol. It is meant

for applications which collect data and send it towards a single base station. It is based on a

39

paradigm called custody transfer. Only nodes which are custodian nodes will have the entire

message to be sent from the source to the destination. A custodian node x will pass the entire

message to another custodian node y and will delete the message from its buffer only after

receiving an acknowledgement from y that it has received the entire message. The initial

custodian node is the source. The custodian of a message sends a query asking for nodes

that have a better local metric estimate than itself. The local metric estimate can be energy

level remaining at a node, average energy consumption for message delivery, etc. The query

packet is forwarded as far as possible and the path traversed is added to the query. Any node

willing and eligible to assume custody sends a response to the query using the path in the

query. Quality estimates of the traversed links are recorded in the response. The custodian

node selects a successor from the candidate nodes based on the local metric estimate and

the quality estimate of the path to a candidate. The message transmission from a custodian

node to a potential custodian node takes place via a hop-by-hop delivery mechanism based

on non-acknowledgement of packets and retransmissions. The idea of custodian nodes is to

prevent unnecessary usage of memory space.

The selection of custodian nodes has a considerable overhead and since the wireless

sensor network topology is dynamic, this overhead becomes considerable with changes in

topology. This idea also does not give a solution to the problem of duplicate custodian

nodes because of loss of acknowledgements. Let a current custodian node x send a message

to a potential custodian node y. When y receives the entire message, it assumes custody

and sends back an acknowledgment to x. If the acknowledgment does not reach x, x does

not delete the message from its storage and renounce its custody. It will again try to send

it to another potential custodian node which may be different from y as the parameters

for evaluating candidate custodian nodes may have changed by then. So we have duplicate

custodian nodes and unnecessary usage of memory space. Also in terms of reliable data

delivery it does not introduce any new concept different from PSFQ. In fact, it does not

mention how the packets are to be fowarded at nodes (in-sequence or out-of-sequence) and

the priority order at nodes for sending different types of messages.

40

2.7 End-to-End Reliable Event Transfer in WSNs

Figure 2.5: Event transfer.

This paper [57] discusses two schemes for implementing reliability in the delivery of

events from sensor nodes to the base station.

• Non-acknowledgement based scheme. This is implemented in three different ways:

– Implicit acknowledgement. When a upstream node x receives a packet pi from

a downstream neighbor y that it had already sent to y, it is an implicit confrmation

that pi has been successfully delivered. However, if it does not receive pi, it does

not mean that the packet has not been successfully received by y because the

transmission of pi from y to x may have been lost.

– Event reporting frequency. This is the same method used in the ESRT pro-

tocol in Section 2.4. As mentioned before, this method deals with reducing con-

gestion only.

– Node density. In sensor networks, there are usually multiple nodes that have

overlapping sensing regions. Hence, it is possible that multiple nodes collaborate

to detect the same event. The number of nodes that report the same event has

an impact on the end-to-end event transfer reliability. Higher end-to-end reliable

event transfer rate can be achieved by increasing the number of nodes involved

in a sensing task. Event loss probability decreases because more packets are sent

for the same event. However, this does not guarantee 100% reliable data delivery

to the destination.

• Acknowledgement based scheme. This is implemented in three different ways:

41

– Selective acknowledgement. In this method, a sensor node determines whether

the data being reported is critical or not. There are various ways to determine

this. One approach is using a threshold value. Sensor nodes and the base sta-

tion can come to an agreement on a threshold value before deployment. The

threshold value depends on the application. Then, a sensor node decides whether

the measurement is critical or not by using the agreed threshold value. The ac-

knowledgement mechanism is triggered for the critical data packets. Each data

packet received by the base station is compared with the threshold value and

then categorized as being critical or not. If a critical data packet is received,

an acknowledgement packet is forwarded to the source sensor node immediately.

If the source sensor node does not receive an acknowledgement packet within a

predetermined timeout period, i.e., retransmission time, it retransmits the packet.

– Enforced acknowledgement. Here, the idea is almost the same as in the

selective acknowledgement case. Not all of the packets but the data packets that

carry critical data need to be acknowledged. However, the base station does not

determine whether a data packet is critical or not. Instead, the source sensor node

decides if a data packet is critical or not and marks the packets that carry critical

data. The base station is supposed to acknowledge the marked packets. The

source nodes retransmit unacknowledged marked packets after a predetermined

retransmission period.

– Blanket acknowledgement. Multiple sensor nodes reporting the same event

may be acknowledged by a single acknowledgement packet. In blanket acknowl-

edgement, a single acknowledgement packet is broadcast for an event. A sensor

node that receives an acknowledgement packet for the event, accepts that the

data packet generated for the same event has been received by the base station

successfully. Since the reception of the event is more important than the recep-

tion of every packet, this is an efficient acknowledgement mechanism for a wireless

sensor network.

Use of end-to-end reliability method increases the probability of loss as described in Chapter

3. The acknowledgement based methods cannot be used for applications with zero tolerance

42

for data loss. The number of acknowledgements would be too huge and it would be a burdern

for energy-constrained wireless sensor networks. The non-acknowledgement based methods

do not guarantee 100% reliable data delivery here because they do not deal with recovery of

data.

2.8 A WSN for Structural Monitoring

Wisden [58] is a wireless sensor network system for structural-response data acquisition.

Wisden continuously collects structural response data from a multi-hop network of sensor

nodes, and stores the data at a base station. In Wisden, nodes self-organize themselves into

a routing tree rooted at the base station. Wisden uses both hop-by-hop and end-to-end lost

packet detection and recovery to implement reliable data transfer.

Figure 2.6: Wisden.

Wisden implements a hop-by-hop non-acknowledgement based reliability scheme.

• Each source stores generated vibration data and then transmits the data to its parent

in the route tree. Parents keep track of the sequence numbers of the packets that they

receive, on a per source basis.

• A gap in the sequence number of sent packets indicates packet loss. Each node main-

tains a list of missing packets. When a loss is detected, a tuple containing a source ID

and sequence number of the lost packet is inserted into this list. Entries in the missing

packets list are piggybacked on outgoing transmissions.

• Nodes keep a small cache of recently transmitted packets, from which a child can send

packets reported missing by its parent.

43

Lost packets are often recovered hop-by-hop, however, two factors necessitate end-to-end

recovery. First, heavy packet losses can lead to large missing packet lists that might exceed

the memory of the sensor nodes. Also, a topology change could cause loss of missing packet

list information. For example, when a node selects a new parent, it will no longer respond

to requests for missing packets from its previous parent. The end-to-end recovery scheme is

essentially implemented in almost the same way as the hop-by-hop scheme. It leverages the

fact that the base station has significantly more memory and can keep track of all missing

packets. The base station attempts hop-by-hop recovery of a missing packet. When one of its

children notices that it has seen a packet from the corresponding source, but does not have

a cached copy of that packet, it adds that recovery request to its missing packets list. This

request is propagated downward in this manner (using the same mechanisms described for

hop-by-hop recovery) until it reaches the source. Since the source maintains the generated

packets in its memory, it can repair the missing packet.

The idea here is similar to the idea in PSFQ. However, it does not mention how the

packets are to be fowarded at nodes (in-sequence or out-of-sequence) and the priority order

at nodes for sending different types of messages.

2.9 STCP: Sensor Transmission Control Protocol

STCP [59] provides a generic, scalable and reliable transport layer paradigm for sensor

networks. Majority of STCP functionalities are implemented at the base station. Each node

might be the source of multiple data flows with different characteristics such as flow type,

transmission rate and required reliability. The authors mention that if the base station can

reach all the nodes in a single hop, it would enhance the performance of the solution, but it

is not a requirement.

Before transmitting the packets, the sensor nodes establish an association with the

base station via a session initiation packet. The session initiation packet informs the base

station of the number of flows originating from the node, the type of data flow, transmission

rate and required reliability. When the base station receives the session initiation packet, it

stores all the information, sets the timers and other parameters for each flow, and acknowl-

44

edges this packet. It is important for the source sensor node to wait for the acknowledgement

to ensure that the association is established. The nodes can now start transmitting data

packets to the base station.

Flows are of two types:

• Continuous flows. Since the base station knows the rate of transmission from the

source, the expected arrival time for the next packet can be found when the base

station receives a packet. The base station maintains a timer and sends a negative

acknowledgement (NACK) if it does not receive a packet within the expected time.

Sensor nodes retransmit packets only on receiving a NACK. No state information is

maintained. The transmitted packets are buffered for possible retransmission. To

prevent buffer overflow, a buffer timer is maintained, which periodically fires when the

buffer size reaches a threshold and the buffer is cleared. If the source node does not

receive a NACK, the packet must have reached the base station, unless the NACK

is lost. So the base station maintains a record of all packets for which it has sent a

NACK. If a packet arrives for which a NACK has been sent, the base station clears the

corresponding entry from the record. The base station periodically checks this record

and, if it finds an entry, it retransmits a NACK.

• Event-driven flows. In event-driven flows, the base station cannot estimate arrival

times of data packets. Because of reliability requirement, positive acknowledgements

(ACK) are used by the source to know if a packet has reached the base station. The

source node buffers each transmitted packet till an ACK is received. When an ACK

is received, the corresponding packet is deleted from the buffer. The nodes maintain

a buffer timer that fires periodically. When the timer fires, packets in the buffer are

assumed to be lost and are retransmitted.

In STCP, sensor nodes specify the required reliability for each flow in the session

initiation packet. For continuous flows, the base station calculates a running average of the

reliability. Reliability is measured as the fraction of packets successfully received. Even if

the base station does not receive a packet within the expected time interval, it will not send

a NACK if the current reliability satisfies the required reliability. The base station transmits

45

NACKs only when the reliability goes below the required level. For event-driven flows,

the base station calculates reliability as a ratio of packets received to the highest sequence

numbered packet received. The sensor node, before transmitting a packet, calculate the

effective reliability assuming that the packet will not reach the base station. If the result

is still more than the required reliability, the node does not buffer the packet, thus saving

memory space.

Each STCP data packet has a congestion notification bit in its header. Every sensor

node maintains two thresholds in its buffer: tlower and thigher. When the buffer reaches

tlower, the congestion bit is set with a certain probability. The value of this probability can

be determined by an approach similar to that employed in random early detection (RED)

by Floyd and Jacobson. When the buffer reaches thigher, the node will set the congestion

notification bit in every packet that it forwards. On receiving this packet, the base station

informs the source of the congested path by setting the congestion bit in the acknowledgement

packet. On receiving the congestion notification, the source will either route successive

packets along a different path or slow down the transmission rate. It should be noted that

the nodes rely on the network layer algorithm to find alternate routes.

STCP uses end-to-end reliability use of which increases the probability of loss as

described in Chapter 3. The first method does not mention how the packets are to be

fowarded at nodes (in-sequence or out-of-sequence) and the priority order at nodes for send-

ing different types of messages. The authors clearly mention that PSFQ may be used to

complement their solution which implies that they are aware of the incompleteness of their

solution. The second method uses too many acknowledgements which would be a burder for

energy-constrained wireless sensor networks.

2.10 A Bidirectional Reliable Transport Mechanism for

WSNs

This mechanism [13] addresses both sensor-to-base station and base station-to-sensor reliable

transport. Bidirectional reliability is achieved by transmitting acknowledgement (ACK) or

non-acknowledgement (NACK) messages between the sink and essential sensors that cover

46

the entire sensing field. Essential nodes (E-nodes) are selected using a weighted-greedy

algorithm based on the residual energy of sensors and rotated in time. There is also a

distributed congestion control mechanism.

• Base station-to-Sensor Reliable Query Transfer. Reliable base station-to-sensor

communication is provided using negative acknowledgements. Since the packets are

sent in order by the base station, sensors can detect the lost packets by using sequence

numbers in the query messages. We assume that each packet has a unique id and

a sequence number. An NACK message is sent if a gap is detected, i.e., an out-of-

sequence number. NACK is handled only in E-nodes. Other nodes simply ignore the

messages. This is because reliability can be achieved by using the essential set. The

last packet in a message has a Poll/Final (P/F) bit to indicate that it is the last packet.

When an E-node receives a packet whose P/F bit is set, it knows that the last packet

is received. It sends a single ACK to the base station indicating the entire message

has been successfully received. Base station retransmits the last packet of a message

repeatedly until it receives an ACK.

• Sensor-to-Base Station Reliable Event Transfer. Each E-node waits for an

acknowledgement(ACK) for only the first packet that reports an event which is called

event-alarm. When a new event occurs, an E-node decides whether it will report the

event or not. If it does, it marks the first packet as an event-alarm by setting the event

notification bit. Therefore, the base station sends ACK for packets which are marked

as event-alarm. The E-nodes are responsible for waiting for the acknowledgement and

retransmitting if necessary. This protocol assumes that congestion can occur because

large amounts of data are reported in events. Thus, ACK monitoring of event-alarm

messages can be used as an efficient way of congestion detection. Congestion control is

handled by the E-nodes based on monitoring the ACK packets of event reports. If an

ACK is not received during a timeout period by the E-node, congestion alarm messages

are sent to non-essential sensors to reduce their sending rate. When ACK is received,

congestion-safe message is announced to resume normal operation of the network.

47

The reliable data transfer method from a base station to sensor nodes does not men-

tion whether packet broadcasts are done in-sequence or out-of-sequence or the priority order

for sending different message types at nodes. The selection of the essential sensors which are

used for the data recovery process also involves considerable overhead. This protocol uses

end-to-end data recovery as opposed to hop-by-hop recovery. The superiority of hop-by-hop

method over end-to-end method is shown in our protocol Chapter 3. Also the ACK-based

method used here for data transfer from sensor nodes to a base station is unsuitable for

applications with zero-tolerance for data loss as an ACK has to be generated for every data

packet sent which will result in too many messages which is unsuitable for energy constrained

sensor nodes.

2.11 A Scalable Approach for Reliable Downstream

Data Delivery in WSNs

The scheme [15] developed in the GARUDA project addresses a similar problem as PSFQ,

namely reliable transfer of data from a base station to sensor nodes. GARUDA uses a

NACK based scheme and additionally ensures that the first data packet is delivered to all

sensors using Wait-For-First-Packet(WFP) pulse. This has a higher amplitude and lower

period compared to normal pulses. This solves the problem in NACK based schemes where

a receiver needs to receive at least one packet in order to detect losses of other packets.

GARUDA constructs an approximation to the minimum dominating set of the wireless

sensor network topology and the members of this set (called core members) act as recovery

servers for downstream core members and neighboring non-core members. Only those nodes

whose hop distances from the base station are integral multiple of three can be candidates

for the core. All core members know at least one upstream (i.e. closer to the base station)

core member from which they request retransmissions of packets.

The reliable delivery of data from the base station proceeds in two steps: first when

core nodes recover missing packets from upstream core nodes, and then when the non-core

nodes fetch the missing packets from their associated core members. GARUDA is based on

out-of-order delivery of packets i.e. a node x can send a packet pi+1 before it sends packet

48

pi. A core member x requests missing packets from its upstream core member y, but does

this only when it knows that the missing packets are indeed available at y. To achieve this,

node y includes in every forwarded packet a A-map or bitmap indicating the packets already

present at y, and x can use this knowledge to suppress NACKs for packets missing at y. A

non-core member associated with x suppresses all retransmission requests until x has all the

packets present, indicated by a full bit-map.

It is not clear how the the WFP pulse is better than an acknowledgement for the

first packet since there are retransmissions involved in both cases and in addition, WFP

pulses propagate downstream leading to periodic WFP pulses from downstream nodes whose

upstream neighbors have not yet received the first transmission of the first packet. Also the

periodic WFP pulses may collide with data transmissions leading to loss of data. In addition,

WFP pulses require twice the transmission power of normal pulses which is unsuitable for

energy constrained wireless sensor networks.

If all packets sent by an upstream core node y except packet p0 are lost (we assume

that when y sent p0, it did not have any other packet), then a downstream core node x will

not know what packets y has since the A-maps sent along with the lost packets are also lost

and will not request any packets even though y may have some of the packets. This can

delay delivery of packets to nodes.

The construction and maintainence the hierarchical core structure adds substantial

overhead and affects negatively the feasibility of the solution given the energy limitations of

wireless sensor networks. Also the topology of wireless sensor networks is dynamic which

would require the core construction process to be repeated from time to time. Since packets

can arrive via longer and shorter paths, the placement of core nodes will be far from ideal.

This too will lead to the core construction process to be repeated from time to time in a

manner similiar to above. The examples below show that it is possible for the core structure

to have two core nodes within a distance two hops of each other and an out-of-sequence packet

forwarding which does not use the core heirarchy but performs better than GARUDA.

In Figure 2.7, node 0 is the source. The dashed line joining two nodes indicate that

the transmission of the first packet p0 failed along that link. Solid lines indicate successful

transmission. Nodes 6, 7 and 9 have been elected as core nodes marked by ”C”. However,

49

01 2

4

3 5

6 97 8

C C C

Figure 2.7: A 10-node network for illustrating a deficiency of the GARUDA protocol.

node 7 is not at a distance of 3 from the source. Hence, it is not supposed to be a core node

but due to unsuccessful transmission of p0 along the link joining the nodes 4 and 7, it has

been elected as a core node. Thus instead of 2 core nodes, there are 3 core nodes. In this

way for a bigger and dense network, unsuccessful transmissions due to various reasons can

lead to an undesirable multiplicity of core nodes which results in more energy consumption.

0

1 2

3 4

5C 6 C

78

Figure 2.8: A 9-node network for illustrating a deficiency of the GARUDA protocol.

In Figure 2.8, node 0 has to transmit 2 packets p0 and p1 to nodes 7 and 8. Nodes

5 and 6 are core nodes. Node 5 has both packets while nodes 2, 4, 6 and 7 do not have

p0 but have p1. Let node 6 be node 7’s core node. According to GARUDA, node 7 can

request p0 from node 6 only. Hence, it has to wait for node 6 to receive the missing packet

before requesting it. Node 6 will send an unicast message to node 0 to recover p0. Since

nodes 2, 4 do not have it either, so only node 0 can respond to the request. When node 6

finally receives p0, it will send it to node 7. In out-of-sequence forwarding without the core

heirarchy, node 7(a destination node) could have sent a broadcast for p0 to nodes 5 and 6.

Node 5 which has p0 would have responded and node 7 would have received the complete

packet set and executed the instructions faster in comparison to the GARUDA case.

50

Chapter 3

A New Protocol for Application-Specific
Reliable Data Transfer in WSNs∗

We propose a reliable data transfer protocol (OSDRMP) for delivery of data from a base

station (source: s) to sensor nodes (destination: d) in a wireless sensor network for time-

critical applications with zero-tolerance for data loss mentioned in Section 1.4. Each data

set will have an unique id called data set id. We are at present considering the delivery of

one data set which is divided into n number of packets pi, 0 ≤ i < n (n ≥ 1) . The data set

may be instructions for retasking sensors, queries, etc.

3.1 Key Features of the Protocol

• Non-acknowledgement of packets received at a node.

• Hop-by-hop detection and recovery of lost packets.

• Out-of-sequence forwarding of packets at a node.

• A priority order for sending different types of messages at a node.

• Delay in requesting packets missing at a node.

3.1.1 Non-acknowledgement of Packets Received at a Node

The alternative to non-acknowledgement based method is acknowledgement based method.

We describe both methods and then the reasons for preferring the former method.

Both the acknowledgment(ACK) and non-acknowledgment(NACK) based methods

use three kinds of messages:

• Transmission of a packet pi.

• Acknowledgment of a received packet pi in ACK -based method or Request for a Missing

Packet pi in NACK -based method.

∗A part of the research detailed in this chapter and the next has already been published. c© 2007 IEEE.
The paper is titled ”Reliable and Efficient Data Transfer in Wireless Sensor Networks via Out-of-Sequence
Forwarding and Delayed Request for Missing Packets” by Damayanti Datta and Sukhamay Kundu. It
appears in the proceedings of ITNG ’07. Publication Date: 2-4 April 2007, On page(s): 128-133, ISBN:
0-7695-2776-0, INSPEC Accession Number: 9465309, Digital Object Identifier: 10.1109/ITNG.2007.165.

51

• ReTransmission of a packet pi.

We denote them respectively by T (pi), ACK(pi), RMP (pi), and RT (pi).

In ACK -based method, a node waits for an ACK(pi) from the receiver for a

minimum time period ta after sending a T(pi). If it does not receive an ACK(pi), then it

sends an RT (pi) and waits again for time ta for an ACK(pi), and the process continues till

an ACK(pi) is received. In this method, nodes should have distinct identification.

In NACK -based method, with each T (pi) or RT (pi), we include the total number

of packets n so that a node can detect the missing packets once it receives a packet and send

RMP s. A node which has detected a missing packet pi waits for a time tr before sending

an RMP (pi). This delay is also kept between two successive RMP s for pi from the same

node. A node sending pi in this case does not wait for an ACK(pi) following a T (pi) or

RT (pi); instead, it sends an RT (pi) everytime it receives an RMP (pi). An RMP (pi) can

be regarded as a negative acknowledgment(NACK). Unlike the ACK -based method, this

method does not require distinct identification for nodes but it cannot give 100% reliability

if the successful transmission of a message between any two nodes seperated by 1 hop has

probability less than 1.

The following example shows the superiority of NACK -based method over ACK -

based method. In Figure 3.2(a)-(b), the timing diagrams are shown for the transmission

of n = 2 packets {p0, p1} from node 0 to node 1 in the network in Figure 3.1 using ACK

and NACK -based methods. We assume that only the first T (p0) is lost in both cases and

all other messages are successfully sent in the first attempt. The dashed lines in Figure 3.2

show the lost transmissions. In Figure 3.2(b), the receiving node 1 does not know that p0 is

missing until it receives p1. The ACK -based method takes 7 time units and 5 messages to

deliver the two packets from node 0 to node 1 while the NACK -based method takes 6 time

units and 4 messages. This example shows that the NACK -based method is better than

the ACK -based method in terms of both the total delivery time and the total number of

messages.

We do an analysis of the message efficiency for NACK -based vs. ACK -based methods

in the network in Figure 3.1. Assume as in the above, that of the n = 2 packets {p0, p1},

52

0 1

Figure 3.1: A 2-node network.

1 2 3 4 5 6 7Time

Nodes

0

1

T (p0) RT (p0) ACK (p0) T (p1) ACK (p1)

(a) ACK -based method withta = 1.

1 2 3 4 5 6Time

Nodes

0

1

T (p0) T (p1) RMP(p0) RT (p0)

(b) NACK -based method withtr = 1.

Figure 3.2: Comparison of NACK -based and ACK -based methods for delivery of 2 packets
from nodes 0 to 1 in the network in Figure 3.1

p1 is successfully delivered from node 0 to node 1 in one attempt in the network in Figure

3.1. Let P be the probability of successful transmission of a message between any 2 nodes

seperated by 1 hop. Hence, the probability that k transmissions are required for one message

to be successfully sent from node 0 to node 1 is

P (1 − P)k−1

and the expected number of transmissions is

= P + 2P (1 − P) + 3P (1 − P)2 + · · · =
1

P

Let TS and TF denote respectively a successful and a failed transmission of a packet pi; we

use similar abbreviations for successful and failed RT s, RMPs and ACK s.

We compute the number of messages sent in NACK -based vs. ACK -based meth-

ods for n = 2 {p0,p1} packets. In the ACK -based method, the following are the possible

message sequences for the delivery of p0 and ACK(p0):

• TS(p0) from node 0 to 1 followed by an ACKS(p0) or an ACKF (p0) from node 1 to

53

node 0.

• TF (p0) from node 0 to 1 (with no following ACK(p0)).

When TS(p0) is followed by ACKS(p0), there will be no more messages. But there will be

additional RT (p0)s and ACK(p0)s for the cases of TS(p0) followed by ACKF (p0) and TF (p0).

Let E(p0) be the expected number of messages required for the delivery of p0 and ACK(p0).

Then,

E(p0) = P 2.2 + P (1 − P)[2 + E(p0)] + (1 − P)[1 + E(p0)]

and hence,

E(p0) =
1 + P

P 2
(3.1)

Since we assume node 0 delivers p1 in one attempt, the expected number of messages

EACK(p1) for the delivery of ACK(p1) is

EACK(p1) = P.1 + (1 − P)[1 +
1

P
+ EACK(p1)]

and hence,

EACK(p1) =
1

P 2
(3.2)

Therefore,

E(p1) =
1 + P 2

P 2
(3.3)

So the expected number of messages for delivery of {p0, p1} and their acknowledgments is

E(p0) + E(p1) =
2 + P + P 2

P 2
(3.4)

In the NACK -based method, after TF (p0) and TS(p1) from node 0 to node 1, node 1

detects that p0 is missing and sends an RMP (p0). The computation of the expected number

of messages E ′(p0) for the delivery of p0 is slightly more complex now. With probability P ,

p0 is delivered via the initial TS(p0). If the first T (p0) fails, then this will be followed by an

average
1

P
many RMP (p0)s from node 1 to node 0 till the latter receives the request for p0

and from that point on there will be an additional E ′(p0) many messages for the delivery of

54

p0. Thus,

E ′(p0) = P.1 + (1 − P)[1 +
1

P
+ E ′(p0)]

and hence,

E ′(p0) =
1

P 2
(3.5)

Since the expected number of messages for the delivery of p1 (E ′(p1)) is 1, the expected

number of messages for delivery of {p0, p1} here is

E ′(p0) + E ′(p1) =
1 + P 2

P 2
(3.6)

The nodes in the ACK -based method therefore send on an average
1 + P

P 2
extra

messages for n = 2 packets.

We compute the number of messages received in the NACK -based vs. ACK -

based methods for n = 2 packets. We do a similar analysis to determine the average number

of messages received by nodes 0 and 1. For a particular message sequence, the number of

messages sent and received will vary. For example, in the ACK -based method,

• TS(p0) from node 0 to node 1 is followed by an ACKS(p0) or an ACKF (p0) from node

1 to node 0. When TS(p0) is followed by ACKF (p0), two messages are sent but only

one is received.

• TF (p0) from node 0 to node 1 (with no following ACK(p0)). Here one message is sent

but none is received.

Let ER(p0) be the expected number of messages received for delivery of p0 and

ACK(p0) in the ACK -based method. Then,

ER(p0) = P 2.2 + P (1 − P)[1 + ER(p0)] + (1 − P)[0 + ER(p0)]

and hence,

ER(p0) =
1 + P

P
(3.7)

Since we assume that node 0 delivers p1 in one attempt, the expected number of messages

55

received for the delivery of ACK(p1) is

ERACK
(p1) = P.1 + (1 − P)[0 + 1 + ERACK

(p1)]

and hence,

ERACK
(p1) =

1

P
(3.8)

Therefore,

ER(p1) =
1 + P

P
(3.9)

Hence, the expected number of messages received by nodes 0 and 1 is

ER(p0) + ER(p1) =
2(1 + P)

P
(3.10)

Let E ′
R(p0) be the expected number of messages received for delivery of p0 in the

NACK -based method. Then,

E ′
R(p0) = P.1 + (1 − P)[0 + 1 + E ′

R(p0)]

and hence,

E ′
R(p0) =

1

P
(3.11)

Since we assume node 0 delivers p1 in one attempt, the expected number of messages received

for the delivery of p1 is

E ′
R(p1) = 1 (3.12)

Hence, the expected number of messages received by nodes 0 and 1 is

E ′
R(p0) + E ′

R(p1) =
1 + P

P
(3.13)

Thus, the nodes in the ACK -based method receive on an average
1 + P

P
extra messages for

delivering n = 2 packets.

Finally we analyze the number of messages sent in the NACK -based vs. ACK -

56

based methods for n ≥ 2 packets. In the case of n ≥ 2 packets, the probability that at least

one packet has been successfully delivered in the first attempt is

Qn = 1 − (1 − P)n

and assuming that this is the case the probability that k ≥ 1 packets are delivered in the

first attempt is

p(k) =
1

Qn

(

n

k

)

P k(1 − P)n−k (3.14)

The expected number of messages sent in the ACK -based method for the delivery of all n

packets and their acknowledgments from node 0 to 1 is

∑

k≥1

p(k)[k.E(p1) + (n − k)(1 + E(p0))]

The expected number of messages sent in the NACK -based method for the delivery of all n

packets is
∑

k≥1

p(k)[k + (n − k)(1 +
1

P
+ E ′(p0))]

This shows that the nodes in the ACK -based method send on an average
n

PQn

many extra

messages, which can be very large when P is small; it is close to n when P is close to 1.

3.1.2 Hop-by-hop Detection and Recovery of Lost Packets

The protocol implements detection and recovery of lost packets at intermediate nodes be-

tween a source and destinations including the destinations themselves i.e. hop-by-hop de-

tection and recovery of lost packets, instead of detecting and recovering lost packets at

destination nodes i.e. end-to-end detection and recovery of lost packets. We describe both

methods and then the reasons for preferring the former method.

In the end-to-end detection and recovery method, only the destination nodes

detect and recover packets lost during transmissions provided they have received at least one

packet. If the probability of successful transmission of a message between any two nodes

seperated by 1 hop is P , then the probability of the message reaching a destination from the

57

source where the message travels along a path of length a hops is P a which is less than P .

In the hop-by-hop detection and recovery method, each intermediate node x

between source and destinations (including the destination nodes themselves) which have

received at least one packet detect and recover packets missing at x. In this case, x must

maintain a data cache to store the packets received so that it can detect and request missing

packets.

0 1 2

Figure 3.3: A 3-node linear network.

In the end-to-end method, detection and recovery of lost packets take longer time as

detection and recovery take place only at destination nodes in comparison to hop-by-hop

method where detection and recovery take place at all nodes between the source and desti-

nations including the destinations themselves. Also the probability of a message reaching a

destination from source is less in comparison to a message reaching a node from its 1-hop

neighbor (P a < P). This will lead to more messages in terms of requests and retransmis-

sions and hence, longer delivery time for all n packets sent by the source in the end-to-end

detection and recovery method. In hop-by-hop detection and recovery method, data caches

have to be maintained at intermediate nodes which requires extra resources but intermediate

nodes will be required to have data caches anyway since they can function as destination

nodes a a later point in time for different data requirements.

The example in Figure 3.4 shows the time taken by both methods with exactly 3 lost

transmissions of a packet p0 occuring in the network in Figure 3.3. We assume that T (p1) is

delivered in one attempt. The delivery time and number of messages required for detection

and recovery of p0 in hop-by-hop method is 9 time units and 12 messages while that in the

end-to-end method is 12 time units and 16 messages. It is evident that here the hop-by-hop

detection and recovery method performs better than the end-to-end detection and recovery

method.

58

1 2 3 4 5 6 7 8 9Time

Nodes

0

1

2

T (p0) T (p1) RMP(p0)

RMP(p0)

RT (p0) T (p0)

T (p0)

T (p1)

T (p1) RMP(p0)

RT (p0)

RT (p0)

(a) Hop-by-hop recovery of lost packets.

1 2 3 4 5 6 7 8 9 10 11 12Time

Nodes

0

1

2

T (p0) T (p1)

T (p1)

T (p1)

RMP(p0)

RMP(p0)

RMP(p0)

RT (p0) RT (p0)

RT (p0) RMP(p0)

RMP(p0)

RMP(p0)

RT (p0) RT (p0)

RT (p0)

(b) End-to-end recovery of lost packets.

Figure 3.4: Comparison of end-to-end vs. hop-by-hop detection and recovery of lost packets
for delivery of 2 packets from nodes 0 to 2 via non-acknowledgement based method (tr = 0)
in the network in Figure 3.3.

3.1.3 Out-of-Sequence (OS) Forwarding of Packets at a Node

The alternative to out-of-sequence (OS) forwarding of packets at nodes is in-sequence (IS)

forwarding of packets. We describe both methods and the reasons for choosing the former

below.

In IS-forwarding, a node x can send a packet pj only if it has previously sent each

packet pi, i < j, at least once. This tends to delay the delivery of pj to a node and increase

the total delivery time.

In OS-forwarding, a node x can send a packet pj before sending one or more pi,

i < j. In particular, a node y can have the complete set of n packets although none of its

neighbors have the complete set; this is not possible in IS-forwarding. This increases the

possibility of y getting the packets quicker than in IS-forwarding.

3.1.4 A Priority Order for Sending Different Types of Messages
at a Node

In OS, the preferred priority order for sending different types of messages at a node is

T > RT > RMP . Since a node x can send a packet pj without any constraints on j, it

should send the packets as soon as possible so that a destination node y can get different pj

from different neighbors at the earliest. The preferred priority order in IS-forwarding [as in

59

PSFQ] is RMP > RT > T ; here, it is better for a node x to request a missing packet pi

because it cannot transmit pj, j > i, before transmitting pi at least once. Unlike PSFQ, a

node x does not delay the sending of Ts in OS-forwarding.

The following example illustrates the superiority of OS(T > RT > RMP) over

IS(RMP > RT > T). Figure 3.6 shows the minimum time and number of messages required

for the delivery of n = 2 packets {p0, p1} from node 0 to node 3 in the network in Figure

3.5 using OS(T > RT > RMP) and IS(RMP > RT > T) respectively. We assume that in

both cases the only messages lost are T (p0) from node 0 to node 2 at time 1 and T (p1) from

node 0 to 1 at time 2, as indicated by the dashed lines. Here, we use tr = 0 for simplicity. It

shows how OS can achieve a better performance than IS. The sequence of events in Figure

0

1

2

3

Figure 3.5: A 4-node non-linear network.

3.6 is repeated in Figure 3.7 in a different manner for better understanding of the OS vs IS

forwarding.

However, the priority order for sending different types of messages present at different

nodes may be vary. The following points illustrate this issue.

• It is desirable for destination nodes to receive the entire set of data packets as early

as possible and say, for example, execute the instructions in the data set. Hence, if

destination nodes have the priority order as RMP > RT > T , it may enable them

to request and hence, receive the packets earlier than when their priority order is

T > RT > RMP .

• The priority order at nodes may be also determined probabilistically. While it is better

for nodes nearer to the source to send whatever packets they have as fast as possible

so that nodes downstream can get different data packets from different neighbors at

the earliest, it is possible that some missing packets at the nodes are not requested for

a long time due to the less priority put on RMP s and nodes nearer to the destination

60

1 2 3 4 5 6 7Time

Nodes

0

1

2

3

T (p0)

T (p0)

T (p1)

T (p1)

RMP(p0)

RMP(p0)

RT (p0)

RT (p0)

T (p0)

T (p0)

T (p1)

T (p1)

(a) IS(RMP > RT > T).

Time 1 2 3 4 5

Nodes

0

1

2

3

T (p0)

T (p0)

T (p1)

T (p1)

T (p0)

T (p0)

T (p1)

T (p1)

(b) OS(T > RT > RMP).

Figure 3.6: Comparison of OS(T > RT > RMP) and IS(RMP > RT > T) for the delivery
of 2 packets from nodes 0 to 3 in the network in Figure 3.5 (timing diagram).

nodes including destination nodes do not receive these packets from any neighbors.

In that case, it is better if nodes nearer to the destination nodes including them put

priority on RMP s. This can probably alleviate the problem. Hence, the probability

of a node sending RMP s is determined by its distance from the source which is the

current known distance of the node from the source divided by the shortest distance

between the source and a destination. It increases as distance from the source increases.

3.1.5 Delay in Requesting Packets Missing at a Node

A node x may have a missing packet pi for either of the following two reasons:

• pi has not been sent to x.

• Each transmission of pi to x from its neighbors has failed to reach x.

61

0

1

2

3
p0(time 1)

p1(time 2)

p0(time 1)
p1(time 2)

p0(time 3)

p1(time 4)

0

1

2

3

p0(time 1)p1(time 2)

p0(time 1)

p1(time 2)

req p0(time 3)
p0(time 4)

p0(time 5)
p1(time 6)

OS(T/RT/RMP) IS(RMP/RT/T)

Figure 3.7: Comparison of OS(T > RT > RMP) and IS(RMP > RT > T) for the delivery
of 2 packets from nodes 0 to 3 in the network in Figure 3.5.

We use a minimum delay of tr time units from the time pi is detected missing at x

till x sends the first RMP for pi to its neighbors; this allows enough time for pi to reach x

from one or more of its neighbors. The same delay tr is used between two successive RMP s

from x for a given pi. This prevents too many unnecessary RMP s for pi in case none of the

neighbors of x currently has pi.

Optimal estimation of the delay is an area of further research. We have experimented

with different methods of calculating the delay and present them below.

• Delay = Degree of a node × RMPDelayFactor.

• Delay = Effective degree of a node × RMPDelayFactor.

Delay = Degree of a node × RMPDelayFactor. A node x should give a chance

to all of its neighbors to send a packet pi to it if they have pi. At a time, only one neighbor

can send pi to x in order to prevent collisions. Hence, it is better for x to delay its RMP (pi)

for a time equal to degree(x). This gives a chance to all of its neighbors to send pi. However,

it is possible that when x sends an RMP (pi), none of its neighbors have pi. So x must wait

a certain amount of time and then give a chance to all its neighbors to send pi. Hence, we

multiply the degree with a constant RMPDelayFactor. It is an integer constant which can

be varied starting from 1. The effect of RMPDelayFactor will depend on the type of network

and P .

62

Delay = Effective degree of a node × RMPDelayFactor. It is more likely that

a node receives most packets from its upstream neighbors (neighbors nearer to the source).

So, all neighbors are not equally responsible for sending packets. Hence, a node x will prefer

not to delay sending RMP s by considering in its delay computation those nodes which do

not contribute or contribute less to the sending of packets. So, instead of considering the

degree(x) in the delay computation, we consider effective degree of x. Let number of packets

sent from y (a neighbor of x) by time t be ny→x (we consider only the packets which y

has not sent before). Let total number of such packets from all neighbors of x by time t

be nally→x. Ideally, we expect each neighbor to equally contribute in sending the total n

packets. Hence effective degree of x is computed as follows for each neighbor y of x at time

t: if
ny→x

nally→x

≥
1

degree(x)
, effective degree(x) = effective degree(x) + 1.

3.2 Components of Each Message Type

Each message sent by a node x to its neighbors includes a data set id, nodeTTL(x) − 1, n,

the message type (T , RT , or RMP), and one of the following:

• The packet sequence number i and the data for pi, for T and RT messages.

• The sequence number i of a missing packet pi, for RMP messages.

We refer to the component (nodeTTL(x) − 1) in a message as packetTTL(pi). The data set

id is the same for all n packets of data sent by the source and is the same for all RMP s and

RT s for any of the n packets.

TimeToLive(TTL): nodeTTL and packetTTL. TimeToLive (TTL) or pack-

etTTL is a counter associated with a packet pi as it travels away from the source. When

pi is transmitted by the source, its TTL is equal to h where h is the minimum distance (in

hops) between the source s and a destination d. As it travels one hop, its TTL decreases

by one. So, when it reaches a destination node, its TTL equals zero. This helps a node

identify itself as a destination node and know that it should not transmit pi further. We

incorporate some changes in the manner in which TTL is maintained in order to ensure that

intermediate nodes do not identify themselves as destination nodes due to packets reaching

63

them via longer paths and thus prevent packets from reaching the actual destination nodes

at a minimum distance h from s.

Each node x which has received at least one message maintains a nodeTTL, which

equals the maximum packetTTL (packet Time To Live) associated with all messages received

by x. For the source node s, nodeTTL(s) is initialized to h and it does not change with time.

The packetTTL of any packet pi sent by s is (h - 1). As a packet pi travels away from the

s along various paths, the packetTTL(pi) associated with the T (pi) and RT (pi) messages

for pi typically goes down by one with each step; it can also occasionally go up when pi

reaches a node that has previously received other messages along shorter paths. A node x

with nodeTTL(x) = 0 is considered a destination node, except that if at some later time

nodeTTL(x) becomes greater than zero then from that point onwards x remains permanently

labeled as an intermediate node. An RMP message from x to y has a packetTTL associated

with it in order to inform the recipient node y of the current shortest path between s and

the sending node x which may help y to update its path information.

0

1

2

3 4

p0,p2 p0,p2

p1 p1,p2nodeTTL(0) = 2

time 3(node 3): packetTTL of arrivingp0 = 0, nodeTTL(3) = 0
time 4(node 3): packetTTL of arrivingp1 = 1, nodeTTL(3) = 1
time 7(node 3): packetTTL of arrivingp2 = 0, nodeTTL(3) = 1

Figure 3.8: Update of nodeTTL of a node based on packetTTL.

The following example illustrates the necessity of maintaining the nodeTTL at the

nodes. In Figure 3.8, node 0 is the source and it has to send 3 packets {p0,p1,p2} to all nodes

2 hops away. We assume that only one node can transmit at each time unit. The following

illustrates the sequence of events that occur in the network in Figure 3.8:

• Time 1: nodeTTL(0) = 2; packetTTL(p0) = packetTTL(p1) = packetTTL(p2) = 2.

Node 0 transmits p0. Transmission of p0 to node 1 is successful but the transmissions

to nodes 2 and 3 are not.

• Time 2: packetTTL(p0) received at node 1 = 1. nodeTTL(1) is initialized to 1. Node

1 transmits p0. Only the transmission to node 3 is successful.

64

• Time 3: packetTTL(p0) received at node 3 = 0. nodeTTL(3) is initialized to 0. Hence,

node 3 assumes that it is a destination node and hence, does not transmit p0. Node 0

transmits p1. The transmission of p1 to node 3 is successful but the transmissions to

nodes 0 and 2 are not.

• Time 4: packetTTL(p1) received at node 3 = 1. nodeTTL(3) is updated to 1. Node

3 realizes that it is not a destination node and transmits p1. Only the transmission to

node 4 is successful.

• Time 5: packetTTL(p1) received at node 4 = 0. nodeTTL(4) is initialized to 0. Node

4 assumes that it is a destination node and hence, does not transmit p1. Node 0

transmits p2. The transmission of p2 to node 1 is successful but the transmissions to

nodes 2 and 3 are not.

• Time 6: packetTTL(p2) received at node 1 = 1. nodeTTL(1) is not updated as

nodeTTL(1) = packetTTL(p2). Node 1 transmits p2 and only the transmission to

node 3 is successful.

• Time 7: packetTTL(p2) received at node 3 = 0. nodeTTL(3) is not updated as

nodeTTL(3) > packetTTL(p2). Though packetTTL of p2 is 0, the value of its nodeTTL

helps node 3 realize that it is not a destination node and it transmits p2. Only the

transmission to node 4 is successful.

In the above example, if the nodeTTL(3) was not maintained, node 3 on receiving p2 would

have assumed itself to be a destination node and not transmitted p2 which would result

in node 4 sending a request for p2, thus increasing the number of messages required for

delivering the packets which is undesirable in energy-constrained wireless sensor networks.

3.3 Assumptions about the Local Data at a Node

Each node x with nodeTTL(x) ≥ 0 has a Data Cache DC(x) = {pi: pi received by x}, a

Transmission Queue (TQ(x)), a ReTransmission Queue (RTQ(x)) and a Request-for-Missing-

Packet Queue (RMPQ(x)). At each node x, the following properties hold:

• DC(x) and RMPQ(x) are disjoint.

65

arrivalTime 13 3 8 11 17

nodeTTL 3 1 2 2 3

DC 0(3) 1(1) 2 3 4(2) 5(1) 6 7(1) 8

RTQ RMPQ TQ

Figure 3.9: Illustration of DC, TQ, RTQ, RMPQ, and updating of nodeTTL at a node.

• |DC(x) ∪ RMPQ(x)| = n.

• TQ(x) and RTQ(x) are disjoint subsets of DC(x).

• None of DC(x), TQ(x), RTQ(x) and RMPQ(x) contains any duplicate item.

• The packets pi in TQ(x) are ordered in the order of their arrival via T s or RT s, and

those in RTQ(x) are ordered in the order of their arrival via RMP s. RMPQ(x) is

maintained as a circular list, ordered by the packet sequence numbers.

The following example illustrates the different queues of a node, their contents and

update of nodeTTL of the node. In Figure 3.9, the DC(x) of a node x for n = 9 and

the arrivalTime of each pi in DC are shown; in particular, the packets that arrived in

chronological order are p1, p4, p5, p0, and p7. The packetTTL(pi) is shown in parentheses

next to each pi in DC. Each of TQ, RTQ and RMPQ points to the first packet in the

corresponding queue and the arrows from one packet to another show the sequence of packets

in the queue. We also show the updates to nodeTTL(x) as each pi ∈ DC is received.

3.4 Description of the New Protocol (OSDRMP)

3.4.1 Message Processing at a Node

In one time unit, a node x can do one or more of the following:

• Receive a message from one of its neighbors and process it.

• Send a message to each of its neighbors.

• Remain idle.

66

3.4.2 Nodes Selected for Message Transmission

The set of candidate nodes that are eligible to send messages at time t is given by

S ′(t) = {x : TQ(x) ∪ RTQ(x) 6= Ø or x can send RMP (pi) at time t for pi ∈ RMPQ(x)}

(3.15)

S(t) is the set of nodes selected from S ′(t) for sending messages at time t. Any protocol that

prevents message collision may be used to decide the group of nodes S(t) ⊆ S ′(t) that send

messages at time t. At time t = 1, S ′(1) = S(1) = s.

We can exclude a node x with nodeTTL(x) = 0 from sending T and RT messages;

this tends to reduce the number of messages slightly without significantly affecting the total

delivery time in spite of the fact two destination nodes may be adjacent to each other and that

a nodeTTL(x) may become positive at a future time. The advantage of having destination

nodes sending T and RT messages is that a destination node x may be successful in sending

packets to another destination node y which is yet to receive packets from any other node.

This helps in ensuring that all possible destination nodes receive the data at the earliest.

A node in S(t) transmits a message from one of its TQ, RTQ or RMPQ in that

priority order. A node x sends RMP (pi) for the first pi ∈ RMPQ(x) which satisfies tr delay

requirement. For each pi, x sends T (pi) only once but it sends RMP (pi) and RT (pi) multiple

times.

Two different methods of requesting RMP s can be implemented in our protocol. A

node x can have a missing packet pi because none of its neighbors have pi or because it has

been lost in transmission to x. Since the sequence of forwarding packets is OS which means

there are no restrictions on the order in which x transmits packets, either one of the above

reasons can be responsible for any missing pi at x. It is not clear whether requesting all

missing packets including those with sequence numbers higher than mx will be beneficial or

requesting only those with sequence numbers lower than mx will be beneficial where mx is

the highest packet sequence number in DC(x). Hence, either way of requesting RMP s can

be implemented depending on network type and P .

In restrictedRMP(rRMP), x sends an RMP (pj) at time t only if j < mx; the

67

other restrictions that pj ∈ RMPQ(x) and x satisfies the delay requirement tr still apply. If

there is no pj ∈ RMPQ(x) with j < mx and RMPQ(x) 6= Ø(i.e., mx < n − 1), then x sends

RMP (pj) for j = mx + 1 repeatedly till it receives pi ≥ pj.

In unrestrictedRMP(urRMP), a node x sends RMP s from the RMPQ in a cir-

cular fashion while satisfying the the delay requirement tr.

3.4.3 Processing of Input

In addition to the update of nodeTTL(x), the DC and various queues at a node x are updated

as follows when it receives an input. It processes an input message if and only if it is the

first message to x with packetTTL ≥ 0 or nodeTTL(x) ≥ 0.

• If the first message with packetTTL ≥ 0 is:

– a T (pi) or an RT (pi), then x initializes DC(x) = TQ(x) = {pi}, RMPQ(x) = {pj:

j 6= i and j < n}, and RTQ(x) = Ø.

– an RMP(pi), then x initializes RMPQ(x) = {p0} and DC(x) = TQ(x) = RTQ(x)

= Ø.

• When nodeTTL(x) ≥ 0, if the message is:

– a T(pi) or an RT(pi) and pi /∈ DC(x), then pi is added to both DC(x) and TQ(x)

and is removed from RMPQ(x), if necessary; RMPQ(x) is updated with all pj

where pj /∈ DC(x) ∪ RMPQ(x). If pi ∈ DC(x) then no updates take place.

– an RMP(pi), then pi is added to RTQ(x) if pi ∈ DC(x) and pi /∈ TQ(x) ∪ RTQ(x).

If pi /∈ DC(x) or if pi ∈ DC(x) and pi ∈ TQ(x) ∪ RTQ(x), then no updates take

place.

3.5 A Method for Ensuring At Least One Packet De-

livery to a Node

In non-acknowledgement based methods, at least one packet needs to reach a node in order

for the node to request missing packets. Though we assume in our protocol that a message

will have enough packets for at least one packet to reach a node, we present a method that

68

ensures at least one packet delivery to a node at the cost of some extra energy in terms of

messages.

In this method, when a node x puts a packet in its TQ for the first time, it creates

an array ACK ARRAY whose length is equal to the degree of x. For each neighbor y of x,

there is an entry in the array which consists of the neighbor y’s id and a bit which is initially

set to zero. The value of this bit is set to 1 when x knows that y has received at least one

packet. Whenever x receives a T or an RT message or an acknowledgement (ACK) message

from y for the first time, the corresponding bit in ACK ARRAY is set to 1. We assume

that each message will have it’s sending node’s id.

When x sends its first T which may be for any packet pi, it sets the ACKREQ bit in

the packet to 1 and destination in the same to all y which have not yet sent a T or an RT

or an ACK message. It expects an ACK from each neighbor y of x within a certain time

interval ta where the corresponding bit for y in ACK ARRAY is not set to 1. If it does

not receive a T or an RT or an ACK message within the ta time interval from a neighbor

y, it sends a packet from its TQ or RTQ and if they are empty, the packet pl having the

lowest sequence number in its data cache with the ACKREQ bit in the packet set to 1 and

destination in the same set to all y which have not sent a T or an RT or an ACK message.

This retransmission is called RTACK(pl) and will have priority over all other message types

except ACK messages for transmission purposes. It sends RTACK(pl) after every ta time

intervals as long as it does not receive a T or an RT or an ACK message from y. If x receives

a T or an RT or an ACK message from y when the corresponding bit in ACK ARRAY is

zero, then its sets the bit to 1. This indicates that y has received at least one packet. The

node x expects only one ACK from each neighbor y. To reduce the number of messages,

node ids for all nodes which have not sent a T or an RT or an ACK message are placed

together in the destination section of a packet pi whose ACKREQ bit is set to 1. If x is a

destination node, it will not wait for ACK messages.

When a node y receives a packet which may be any packet pi with the ACKREQ

bit set to 1 and it’s id present in the destination section of pi, it sends an ACK. However,

packetTTL(pi) or nodeTTL(y) must be greater than zero.

The ACK message of a node y consists of the data set id, the node id of y, nodeTTL(y)

69

− 1 and the message type which is ACK here. The sending of ACK message type will have

priority over other message types at the nodes. The ACK is broadcast in order to ensure all

neighbors of x know that it received at least one packet and hence, they will not wait for an

ACK message from it when they send a packet which may reduce the number of messages.

0 1

2

3

Figure 3.10: A 4-node non-linear network.

1 2 3 4 5 6 7 8 9 10 11 12 13 14Time

Nodes

0

1

2

3

T (p0) T (p1) RT ACK (p0) ACK

ACK

ACK

T (p0)

T (p0)

T (p0)

ACK ACK RT ACK (p0)

RMP(p1)

RMP(p1)

RMP(p1)

RT (p1)

ACK

T (p1)

T (p1)

T (p1)

Figure 3.11: Ensuring at least one packet delivery in a non-acknowledgement based method
for delivery of 2 packets from node 0 to nodes 2,3 in the network in Figure 3.10.

In Figure 3.11, n = 2 packets {p0, p1} are delivered from node 0 to nodes 2 and 3

in the network in Figure 3.10. Dashed lines show lost messages. The time interval ta is set

to 1 for simplicity. The delay in sending RMP s at each node x is equal to the product of

degree(x) and RMPDelayFactor which is set to 1. At each time unit, only one node can

send a message. We observe that at node 1, sending RTACK(p0) and ACK has priority over

other message types.

The messages T (p0) and T (p1) from node 0 to node 1 are lost. Node 0 waits a time

interval ta before sending RTACK(p0) to node 1. Node 1 now sends an ACK which reaches

node 0. Then, node 1 sends T (p0). All transmissions are successful. In response, both

neighbors of node 1 i.e. nodes 2 and 3, send ACKs. Note that node 1 does not require an

ACK from node 0 as it already knows that node 0 has at least one packet. But the ACK

from node 2 is lost. Here, at both nodes 2 and 3, sending an ACK has priority over sending

T (p0). Node 1 sends a RTACK(p0) to node 2 and then, sends RMP (p1). Note that sending

RTACK(p0) has priority over sending RMP (p1) here. Also, node 2 would have sent an ACK

70

but did not have access to the medium here. In reponse to node 1’s RMP (p1), node 0 sends

RT (p1). Then, node 2 gets chance to send a message and transmits an ACK. Finally node

1 sends T (p1) which reaches all nodes.

3.6 A Reporting Method Indicating Delivery of All

Packets to At Least One Destination Node

Sometimes, the base station may need to know if the entire data has been delivered to at

least one destination node. We do not say all destination nodes here since a base station

cannot estimate the number of destination nodes. So, it will not know how many reports

to wait for if it wants reports from all destination nodes. If it receives a report from one

destination node, then it knows that all n packets have successfully traveled the specified

distance and are likely to have reached other potential destination nodes. We present a new

reporting method for delivering a report back to the base station that at least one destination

node has received the entire data.

The base station station indicates that it requires a report by setting a REPREQ bit

to 1 in all packets that it sends out. All nodes with nodeTTL ≥ 0 receiving messages with

the REPREQ bit set to 1 sets the REPREQ bit to 1 in all T , RT and RMP messages that

they send to their neighbors. Once a destination node gets the entire data and a message

with the REPREQ bit set to 1 , it activates a REPORT bit by setting it to 1 in all T and

RT messages that it sends to its neighbors. If it has no message to send, its sends a report

(REP) message to its neighbors. The REP message has the data set id and the type of

message which is REP in this case. Both the REPORT bit and REP message indicate that

all n data packets have been received.

Each node which gets a message with the REPORT bit set to 1 in a T , an RT , an

RMP or a REP message activates the REPORT bit in any T , RT or RMP message it

sends to its neighbors. If it does not have a message to send, it sends a REP message to its

neighbors. A node will send a message with the REPREQ bit or the report bit set to 1 or

a REP message only for a pre-determined maximum number of times. This can be equal to

the degree of the node. This is done to reduce too many request and report messages since

71

only one message needs to reach the base station. At each node, sending of T , RT and RMP

messages will have priority over sending of REP messages. Only nodes with nodeTTL ≥

0 will send REP messages or messages with REPORT bit set to 1. When the base station

receives a message with the REPORT bit set to 1 or a REP message it knows that at least

once destination node has received the entire data.

72

Chapter 4

Simulation Environment, Software and
Results

We simulate the OSDRMP(rRMP and urRMP) and PSFQ-based protocols in the network

in Figure 4.1 for the following source(s)-destination(d) pairs at 3 different probabilities of

successful transmission (P = 0.3, 0.6 and 0.9) where the source is the base station and the

destinations are the sensor nodes.

• s = 40, h = 5 i.e. all d which are at a distance of 5 hops from s.

• s = 0, h = 14 i.e. all d which are at a distance of 14 hops from s.

In one set of simulations, we vary the RMPdelayFactor keeping the number of packets

constant at n = 10 and in the other set of simulations we vary the number of packets (n)

keeping the RMPdelayFactor constant at RMPdelayFactor = 3. When n is constant, we

choose the value of the constant n as 10 in order to better analyze the results. A higher

number would make it more difficult to analyze the results. When the RMPdelayFactor is

constant, we choose the value of the constant RMPdelayFactor as 3 because the simulation

results in the previous case show that both protocols perform well at approximately this

value of RMPdelayFactor for all s-d pairs and all probabilities.

We compare the performances of the protocols based on the total delivery time (de-

livTime) and the total number of messages sent and received (numMess) to deliver all the

n packets from source to destinations. We analyze the time taken by different nodes in

the network in Figure 4.1 to fill their DC when OSDRMP(rRMP) protocol is executed

under the conditions mentioned before and the reasons behind it. We also modify the OS-

DRMP(rRMP) protocol by varying the method by which the delay in sending RMP s is

calculated, the priority order of sending messages of different types at different nodes and

the way in which the nodes respond to RMP s, then simulate the protocol with modifica-

tions in the network in Figure 4.1 under similar conditions mentioned before and compare

the performances of the modified versions with the unaltered OSDRMP(rRMP) protocol.

The reason for choosing OSDRMP(rRMP) protocol is that though both versions of the OS-

DRMP protocol (rRMP and urRMP) perform better than the PSFQ-based protocol, the

73

84 95

72 83

60 71

48 59

36 47

24 35

12 23

0

96

1

97

2

98

3

99

4

100

5

101

6

102

7

103

8

104

9

105

10

106

11

107

s

Figure 4.1: A 12x9 grid network; the intended destination nodes are marked for s = 40 and
h = 5.

OSDRMP(urRMP) protocol use more messages in comparison to the the PSFQ-based pro-

tocol at low probabilities. Hence we choose the OSDRMP(rRMP) protocol for our purposes.

4.1 Simulation Environment and Software

We have developed a network simulator in C in the Unix environment. The flowchart of

the simulation program for the OSDRMP protocol is given in Figure 4.2 followed by more

details.

The following are provided to the simulator via an input file:

• The network in the form of a graph adjacency list.

• s.

• h

• P .

• RMPDelayFactor.

• n

All of s, d, h and n have been defined in Section 1.4 and in the beginning of Chapter 3. The

simulator has a function newProtocol() which executes the protocol for the input network.

The function new Protocol executes till the terminating condition is met or none of the nodes

in the network have any messages to send. If the terminating condition is met, the run is

successful, otherwise it is an unsuccessful run.

74

Start

i ≠ s, DC(i), TQ(i), RTQ(i), RMPQ(i) is empty. nodeTTL(i) = nextRMPsendT(i) = -1.
i = s, DC(i) and TQ(i) hav epacketsp j , j = 1 to n. nodeTTL(i) = h.

DetermineS´={ i: TQ(i) ≠ ∅ /RTQ(i) ≠ ∅ /RMPQ(i) ≠ ∅ & t ≥ nextRMPsendT(i)}

S´ = ∅ For eachi, RMPQ(i) is empty
T

End

T

Determinet´ = min{nextRMPsendT(i): RMPQ(i) ≠ ∅ }. t = t´.
DetermineS´={ i: RMPQ(i) ≠ ∅ & t ≥ nextRMPsendT(i)}

Select a random maximal subsetS ⊆ S´ such that no 2 nodes
are within a distance of 2 hops from each other.

i ∈ S, send message from XQ(i) where X = T/RT/RMP (priority order)
to all j ∈ Neighbor(i) with probabilityP. Update XQ(i).

Process message received at eachi.
Update nodeTTL(i),DC(i),TQ(i),RTQ(i),RMPQ(i) as applicable.

At least onei (nodeTTL(i) = 0) and for
all suchi, DC(i) is full & TQ(i) & RTQ(i) = ∅ .

T

Figure 4.2: Flowchart for the network simulator for OSDRMP protocol.

The terminating condition is that at least one destination node x (i.e., nodeTTL(x)

= 0) is found and each node x with nodeTTL(x) = 0 has | DC(x) | = n and TQ(x) =

RTQ(x) = Ø; the condition TQ(x) = RTQ(x) = Ø reduces the probability that there are

other potential destinations nodes that have not received any pi yet.

The function newProtocol() is given below.

1. A function determinesTransmittingNodes() is executed to determine the nodes which

will send messages during a time unit. If the output of determinesTransmittingNodes()

is zero, all nodes are checked to see if there are nodes which have RMP s but are unable

to send any because it is not yet time for any of them to send an RMP . In that case,

the current time is advanced by a minimum time t′ so that at least one node with a

non-empty RMPQ meets the delay requirement and becomes ready to send an RMP

at t + t′. The period t′ − t is idleTime which is a time unit when no node in the

network has any T or RT to send and it is not time for them to send RMP s due to

75

delay requirements. The function determinesTransmittingNodes() is executed again.

If the output is still zero, the run terminates and is considered to be an unsuccessful

run.

2. If the output of determinesTransmittingNodes() is greater than zero, the nodes selected

for transmission send their messages in the priority order T > RT > RMP . For each

such node x, the probability P determines which neighbors of x receive a message.

3. For each node with an input, the input message is processed according to the algorithm

in Section 3.4.3.

4. The terminating condition is checked to see whether it is true or not. If it is not

true, then steps 1 to 4 are executed again else the function terminates and the run is

considered to be a successful run.

The reason for executing two seperate loops for processing the inputs of nodes and

sending messages from nodes respectively is that this is a serial execution environment and

if both occured in the same loop, x may end up sending a message to another node y at time

t which we may encounter later during execution of the loop and process it, also at time t

which is wrong because the output message is supposed to reach y at time t + 1.

The function determinesTransmittingNodes() is given below.

1. For each node x, all nodes at a distance ≤ 2 from x are calculated and stored in

adjDist2Nodes [x]. This is done only in the first call of determinesTransmittingNodes().

2. All nodes in S ′(t) in Eqn. 3.15 in Section 3.4.2 are stored in the array candidateTrans-

mittingNodes.

3. A node y is randomly selected and added to nodesSelectForTrans which represents the

set S(t) in Section 3.4.2.

4. The node y and all nodes in adjDist2Nodes [y] are removed from candidateTransmit-

tingNodes.

5. Steps 3 to 4 are repeated till candidateTransmittingNodes is empty.

The following example shows the execution of determinesTransmittingNodes() for the

10-node linear network in Figure 4.3. The input to the function determinesTransmittingN-

76

0 1 2 3 4 5 6 7 8 9

Figure 4.3: A 10-node linear network.

odes() is the network shown below.

numNodes = 10
nodeNum (degree) adjNodes:
0 (1) 1
1 (2) 0 2
2 (2) 1 3
3 (2) 2 4
4 (2) 3 5
5 (2) 4 6
6 (2) 5 7
7 (2) 6 8
8 (2) 7 9
9 (1) 8

Step 1. For each node i, we compute the nodes which are at a distance ≤ 2 from i. The

output below shows the adjDist2Nodes array.

adjDist2Nodes[0]: 1 2
adjDist2Nodes[1]: 0 2 3
adjDist2Nodes[2]: 0 1 3 4
adjDist2Nodes[3]: 1 2 4 5
adjDist2Nodes[4]: 2 3 5 6
adjDist2Nodes[5]: 3 4 6 7
adjDist2Nodes[6]: 4 5 7 8
adjDist2Nodes[7]: 5 6 8 9
adjDist2Nodes[8]: 6 7 9
adjDist2Nodes[9]: 7 8

Step 2. In this example, we randomly choose the nodes belonging to S ′(t) i.e. candidate-

TransmittingNodes in the network above. The array candidateTransmittingNodes is initial-

ized.

candidateTransmittingNodes: 0 1 2 5 6 7 8 9

Iteration 1. Step 3. Node selected is 9.

nodesSelectForTrans: 9

Iteration 1. Step 4. Node 9 and all nodes in adjDist2Nodes [9] (7,8) are removed from

candidateTransmittingNodes.

candidateTransmittingNodes: 0 1 2 5 6

Iteration 1. Step 5. The array candidateTransmittingNodes is non-empty.

77

Iteration 2. Step 3. Node selected is 1.

nodesSelectForTrans: 9 1

Iteration 2. Step 4. Node 1 and all nodes in adjDist2Nodes [1] (0,2) are removed from

candidateTransmittingNodes.

candidateTransmittingNodes: 5 6

Iteration 2. Step 5. The array candidateTransmittingNodes is non-empty.

Iteration 3. Step 3. Node selected is 6.

nodesSelectForTrans: 9 1 6

Iteration 3. Step 4. Node 6 and all nodes in adjDist2Nodes [6] (5) are removed from

candidateTransmittingNodes.

candidateTransmittingNodes:

Iteration 3. Step 5. The array candidateTransmittingNodes is empty. Hence the iterations

stop.

The simulator runs for R number of runs and averages the results over successful

runs. The simulator requests R from the user during runtime. The following are the outputs

from the simulator:

• delivTime averaged over all successful runs.

• numMess averaged over all successful runs. When a node x sends a message (T , RT ,

or RMP) to its neighbors, we count this as one message in numMess irrespective of

the number of neighbors of x. The reason is that the energy spent by a node in sending

a message is the same irrespective of the number of neighbors. Each message received

by x is also counted as one message in numMess because energy is also spent by a node

in receiving and processing a message.

• idleTime averaged over all successful runs.

• The number of successful and unsuccessful T s, RT s and RMP s also averaged over all

successful runs.

• A file containing details of each node which has atleast one packet in its queues or DC

at each time unit during each run. The file also contains the delivTime, numMess and

78

idleTime for each run as well as a table giving the details of the number of messages of

each type (T , RT , RMP) sent by each node to each of its neighbors during each run.

In Figures 4.4 and 4.5, we show outputs from the simulator after execution of OS-

DRMP(rRMP) protocol in the network in Figure 4.1.

In the example in Figure 4.4, at time 17 node 29 sends RMP s to nodes 17, 28, 30

and 41 for retransmission of packet 2. All RMP s are successfully sent. Nodes 17 and 30 do

not have packet 2 in their DC. Node 28 has packet 2 in its DC but not in its TQ or RTQ

and hence puts packet 2 in its RTQ. Node 41 has packet 2 in its DC and TQ and hence

takes no action. At the same time, node 66 sends T s of packet 0 to nodes 54, 65, 67 and

78. Only the T to node 65 is successful. Node 65 does not have packet 0 in its DC. Hence,

it adds packet 0 to its DC and TQ and updates its RMPQ to request packet 2 instead of

packet 0. At time 17, node 26 also sends T s of packet 2 to nodes 14, 25, 27 and 38. All T s

are successful. Node 27 already has packet 2 in its DC and hence takes no action. Nodes 14,

25 and 38 do not have packet 2 in their DC and hence add packet 2 to their DC and TQ.

The updated contents of all nodes are shown at time 18.

In the example in Figure 4.5, at time 123, no node has any T s and RT s to send and it

is not time for any node to send an RMP . So the software updates the time by the minimum

time after which atleast one node can send an RMP which is time 129. So the time from

123 to 128 is called idleTime. At time 129, node 89 sends RMP s for packet 7 to nodes 77,

88, 90 and 101. Only the transmission to node 90 is unsuccessful.

We simulate PSFQ protocol by creating a protocol with the key characteristics of

PSFQ i.e. IS-forwarding of packets and the priority order for sending different types of

messages at nodes as RMP > RT > T . The methods by which this PSFQ-based protocol

simulation processes its input, chooses the set of nodes for transmission and sends messages

at each time unit are the same as in the OSDRMP protocol simulation.

4.2 Simulation Results

We implement both methods of requesting RMP s (rRMP and urRMP) described in Sec-

tion 3.4.2 in our simulation of the OSDRMP protocol. The PSFQ-based protocol has only

79

Time Node TQ RTQ pacForRRT DC

===

After processing nodes with non-empty IQs:
17 2[D] (1) (0) (1)
17 3 (1) (0) (1)
17 4 (0) (1)
17 5 (0) (1)
17 6[D] (0) (2) (0,1)
17 14 (0) (1)
17 15 (2) (0) (1,2)
17 16 (0) (1)
17 17 (2) (0,1)
17 18 (1) (2) (0,1)
17 19[D] (2) (0,1)
17 24[D] (0) (1)
17 25 (0) (1)
17 26 (2) (0) (1,2)
17 27 (0) (1,2)
17 28 (3,5) (4) (0,1,2,3,5)
17 29 (2) (0,1)
17 30 (2) (0,1)
17 31 (2) (0,1)
17 32[D] (0) (2) (0,1)
17 37[D] (0) (1)
17 38 (0) (1)
17 39 (1,4,2) (0) (1,2,4)
17 40[S] (6,7,8,9) (0,1,2,3,4,5,6,7,8,9)
17 41 (2,0,3,4) (5) (0,1,2,3,4)
17 42 (2) (0,1)
17 43 (2) (0,1)
17 48[D] (0) (1)
17 49 (0) (1)
17 50 (0) (1)
17 51 (4) (0) (1,4)
17 52 (0) (1,2,4)
17 53 (2,4) (0) (2,4)
17 54 (2) (0,1)
17 55 (1) (2) (0,1)
17 56[D] (1) (0)
17 61[D] (0) (1)
17 62 (0) (1)
17 63 (0) (1)
17 64 (2,4) (0) (1,2,4)
17 65 (0) (1)
17 66 (0) (2) (0,1)
17 67[D] (1) (0)
17 75 (0) (1)
17 76[D] (0) (1)
17 77 (0) (1)
17 89[D] (0) (1)

Sending Receiving Packet

Time Node# Node#s & TTL T_RT_RMP

17 29 +17,+28,+30,+41 2(3) RMP
17 52 -40,+51,+53,+64 0(4) RMP
17 32 -20,-31,+33,+44 0(0) T
17 3 +2,+4,+15 1(1) T
17 6 +5,+7,-18 0(0) T
17 66 -54,+65,-67,-78 0(1) T
17 26 +14,+25,+27,+38 2(2) T

Time Node TQ RTQ pacForRMP DC

===

After processing nodes with non-empty IQs:
18 2[D] (1) (0) (1)
18 3 (0) (1)
18 4 (0) (1)
18 5 (0) (2) (0,1)
18 6[D] (2) (0,1)
18 14 (2) (0) (1,2)
18 15 (2) (0) (1,2)
18 16 (0) (1)
18 17 (2) (0,1)
18 18 (1) (2) (0,1)
18 19[D] (2) (0,1)
18 24[D] (0) (1)
18 25 (2) (0) (1,2)
18 26 (0) (1,2)
18 27 (0) (1,2)
18 28 (3,5) (2) (4) (0,1,2,3,5)
18 29 (2) (0,1)
18 30 (2) (0,1)
18 31 (2) (0,1)
18 32[D] (2) (0,1)
18 37[D] (0) (1)
18 38 (2) (0) (1,2)
18 39 (1,4,2) (0) (1,2,4)
18 40[S] (6,7,8,9) (0,1,2,3,4,5,6,7,8,9)
18 41 (2,0,3,4) (5) (0,1,2,3,4)
18 42 (2) (0,1)
18 43 (2) (0,1)
18 48[D] (0) (1)
18 49 (0) (1)
18 50 (0) (1)
18 51 (4) (0) (1,4)
18 52 (3) (1,2,4)
18 53 (2,4) (0) (2,4)
18 54 (2) (0,1)
18 55 (1) (2) (0,1)
18 56[D] (1) (0)
18 61[D] (0) (1)
18 62 (0) (1)
18 63 (0) (1)
18 64 (2,4) (0) (1,2,4)
18 65 (0) (2) (0,1)
18 66 (2) (0,1)
18 67[D] (1) (0)
18 75 (0) (1)
18 76[D] (0) (1)
18 77 (0) (1)
18 89[D] (0) (1)

Figure 4.4: Simulation output from time 17 to time 18 in the network in Figure 4.1.

80

Time Node TQ RTQ pacForRMP DC

===

After processing nodes with non-empty IQs:
123 2[D] (0,1,2,3,4,5,6,7,8,9)
123 3 (0,1,2,3,4,5,6,7,8,9)
123 4 (0,1,2,3,4,5,6,7,8,9)
123 5 (0,1,2,3,4,5,6,7,8,9)
123 6[D] (0,1,2,3,4,5,6,7,8,9)
123 13[D] (0,1,2,3,4,5,6,7,8,9)
123 14 (0,1,2,3,4,5,6,7,8,9)
123 15 (0,1,2,3,4,5,6,7,8,9)
123 16 (0,1,2,3,4,5,6,7,8,9)
123 17 (0,1,2,3,4,5,6,7,8,9)
123 18 (0,1,2,3,4,5,6,7,8,9)
123 19[D] (0,1,2,3,4,5,6,7,8,9)
123 24[D] (0,1,2,3,4,5,6,7,8,9)
123 25 (0,1,2,3,4,5,6,7,8,9)
123 26 (0,1,2,3,4,5,6,7,8,9)
123 27 (0,1,2,3,4,5,6,7,8,9)
123 28 (0,1,2,3,4,5,6,7,8,9)
123 29 (0,1,2,3,4,5,6,7,8,9)
123 30 (0,1,2,3,4,5,6,7,8,9)
123 31 (0,1,2,3,4,5,6,7,8,9)
123 32[D] (0,1,2,3,4,5,6,7,8,9)
123 36 (0,1,2,3,4,5,6,7,8,9)
123 37 (0,1,2,3,4,5,6,7,8,9)
123 38 (0,1,2,3,4,5,6,7,8,9)
123 39 (0,1,2,3,4,5,6,7,8,9)
123 40[S] (0,1,2,3,4,5,6,7,8,9)
123 41 (0,1,2,3,4,5,6,7,8,9)
123 42 (0,1,2,3,4,5,6,7,8,9)
123 43 (0,1,2,3,4,5,6,7,8,9)
123 44 (0,1,2,3,4,5,6,7,8,9)
123 45[D] (0,1,2,3,4,5,6,7,8,9)
123 48[D] (0,1,2,3,4,5,6,7,8,9)
123 49 (0,1,2,3,4,5,6,7,8,9)
123 50 (0,1,2,3,4,5,6,7,8,9)
123 51 (0,1,2,3,4,5,6,7,8,9)
123 52 (0,1,2,3,4,5,6,7,8,9)
123 53 (0,1,2,3,4,5,6,7,8,9)
123 54 (0,1,2,3,4,5,6,7,8,9)
123 55 (0,1,2,3,4,5,6,7,8,9)
123 56[D] (0,1,2,3,4,5,6,7,8,9)
123 61[D] (0,1,2,3,4,5,6,7,8,9)
123 62 (0,1,2,3,4,5,6,7,8,9)
123 63 (0,1,2,3,4,5,6,7,8,9)
123 64 (0,1,2,3,4,5,6,7,8,9)
123 65 (0,1,2,3,4,5,6,7,8,9)
123 66 (0,1,2,3,4,5,6,7,8,9)
123 67[D] (0,1,2,3,4,5,6,7,8,9)
123 74[D] (0,1,2,3,4,5,6,7,8,9)
123 75 (0,1,2,3,4,5,6,7,8,9)
123 76 (0,1,2,3,4,5,6,7,8,9)
123 77 (0,1,2,3,4,5,6,7,8,9)
123 78[D] (0,1,2,3,4,5,6,7,8,9)
123 87[D] (0,1,2,3,4,5,6,7,8,9)
123 88 (0,1,2,3,4,5,6,7,8,9)
123 89[D] (7) (0,1,2,3,4,5,6,8,9)
123 100[D] (0,1,2,3,4,5,6,7,8,9)

Sending Receiving Packet

Time Node# Node#s & TTL T_RT_RMP

129 89 +77,+88,-90,+101 7(0) RMP

Time Node TQ RTQ pacForRMP DC

===

After processing nodes with non-empty IQs:
130 2[D] (0,1,2,3,4,5,6,7,8,9)
130 3 (0,1,2,3,4,5,6,7,8,9)
130 4 (0,1,2,3,4,5,6,7,8,9)
130 5 (0,1,2,3,4,5,6,7,8,9)
130 6[D] (0,1,2,3,4,5,6,7,8,9)
130 13[D] (0,1,2,3,4,5,6,7,8,9)
130 14 (0,1,2,3,4,5,6,7,8,9)
130 15 (0,1,2,3,4,5,6,7,8,9)
130 16 (0,1,2,3,4,5,6,7,8,9)
130 17 (0,1,2,3,4,5,6,7,8,9)
130 18 (0,1,2,3,4,5,6,7,8,9)
130 19[D] (0,1,2,3,4,5,6,7,8,9)
130 24[D] (0,1,2,3,4,5,6,7,8,9)
130 25 (0,1,2,3,4,5,6,7,8,9)
130 26 (0,1,2,3,4,5,6,7,8,9)
130 27 (0,1,2,3,4,5,6,7,8,9)
130 28 (0,1,2,3,4,5,6,7,8,9)
130 29 (0,1,2,3,4,5,6,7,8,9)
130 30 (0,1,2,3,4,5,6,7,8,9)
130 31 (0,1,2,3,4,5,6,7,8,9)
130 32[D] (0,1,2,3,4,5,6,7,8,9)
130 36 (0,1,2,3,4,5,6,7,8,9)
130 37 (0,1,2,3,4,5,6,7,8,9)
130 38 (0,1,2,3,4,5,6,7,8,9)
130 39 (0,1,2,3,4,5,6,7,8,9)
130 40[S] (0,1,2,3,4,5,6,7,8,9)
130 41 (0,1,2,3,4,5,6,7,8,9)
130 42 (0,1,2,3,4,5,6,7,8,9)
130 43 (0,1,2,3,4,5,6,7,8,9)
130 44 (0,1,2,3,4,5,6,7,8,9)
130 43 (0,1,2,3,4,5,6,7,8,9)
130 44 (0,1,2,3,4,5,6,7,8,9)
130 45[D] (0,1,2,3,4,5,6,7,8,9)
130 48[D] (0,1,2,3,4,5,6,7,8,9)
130 49 (0,1,2,3,4,5,6,7,8,9)
130 50 (0,1,2,3,4,5,6,7,8,9)
130 51 (0,1,2,3,4,5,6,7,8,9)
130 52 (0,1,2,3,4,5,6,7,8,9)
130 53 (0,1,2,3,4,5,6,7,8,9)
130 54 (0,1,2,3,4,5,6,7,8,9)
130 55 (0,1,2,3,4,5,6,7,8,9)
130 56[D] (0,1,2,3,4,5,6,7,8,9)
130 61[D] (0,1,2,3,4,5,6,7,8,9)
130 62 (0,1,2,3,4,5,6,7,8,9)
130 63 (0,1,2,3,4,5,6,7,8,9)
130 64 (0,1,2,3,4,5,6,7,8,9)
130 65 (0,1,2,3,4,5,6,7,8,9)
130 66 (0,1,2,3,4,5,6,7,8,9)
130 67[D] (0,1,2,3,4,5,6,7,8,9)
130 74[D] (0,1,2,3,4,5,6,7,8,9)
130 75 (0,1,2,3,4,5,6,7,8,9)
130 76 (0,1,2,3,4,5,6,7,8,9)
130 77 (7) (0,1,2,3,4,5,6,7,8,9)
130 78[D] (0,1,2,3,4,5,6,7,8,9)
130 87[D] (0,1,2,3,4,5,6,7,8,9)
130 88 (7) (0,1,2,3,4,5,6,7,8,9)
130 89[D] (7) (0,1,2,3,4,5,6,8,9)
130 100[D] (0,1,2,3,4,5,6,7,8,9)

Figure 4.5: Simulation output from time 123 to time 130 in the network in Figure 4.1.

81

urRMP. We compute the minimum delay tr for a node x according to tr = degree(x) ×

RMPdelayFactor, where degree(x) is the number of neighbors of x and RMPdelayFactor is

a constant. A time point t is considered an idleTime if S ′(t) = Ø.

4.2.1 Simulation Results of OSDRMP vs. PSFQ-based Protocols
for s = 40, h = 5 and n = 10 Varying RMPdelayFactor and
P

Figure 4.6 shows the variation of delivTime and numMess of the OSDRMP(rRMP and ur-

RMP) and the PSFQ-based protocols w.r.t. RMPdelayFactor at s = 40, h = 5, n = 10,

and P = 0.3, 0.6 and 0.9. For higher P , we use a larger range of RMPdelayFactor to better

represent the trend of variation of delivTime and numMess. Both versions of the OSDRMP

protocol perform better than the PSFQ-based protocol in terms of both delivTime and

numMess when P = 0.6 and 0.9. For P = 0.3, numMess for the PSFQ-based protocol are

initially higher than that for both versions of the OSDRMP protocol but as the RMPde-

layFactor increases, the PSFQ-based protocol performs better than the OSDRMP(urRMP)

protocol. However, this comes only with a very large increase in delivTime.

Analysis: delivTime vs. RMPdelayFactor. Consider delivTime in different

graphs in Figure 4.6 for different P s. In each case, delivTime of PSFQ-based protocol first

decreases and then increases as we increase the RMPDelayFactor. When RMPDelayFactor

is small, the higher priority of RMP in the PSFQ-based protocol does not give enough

opportunities for a node x to send T s and RT s to its neighbors, which can result in more

RMP s for some of the neighbors of x. Even if RMPQ(x) = Ø, frequent competition for

sending RMP s from the neighbors of x decreases chances of x being selected for sending T s

or RT s, and this too can lead to more RMP s from the neighbors. This again delays the

delivery of T s and RT s to nodes. The result is higher delivTime. When we increase the

RMPDelayFactor, it gives nodes more opportunity to send T s and RT s reducing number

of RMP s and hence, delivTime. On the other hand, when RMPDelayFactor is increased

beyond a certain value it results in increasing idleTime because all T s and RT s have been sent

and nodes cannot send RMP s due to delay requirements, and this increases the delivTime.

For a given RMPDelayFactor, the increase in P causes fewer RMPs and this decreases the

82

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.6: Comparison of OSDRMP(rRMP and urRMP) and PSFQ-based protocols for
s=40, h=5, n=10 varying RMPdelayFactor and P .

83

delivTime. Note that the minimum delivTime occurs at a higher RMPDelayFactor as P

increases. This is because at higher P , increase in RMPDelayFactor benefits propagation of

successful T s and RT s (which are more at higher P) throughout the network.

In the OSDRMP protocol, T and RT have priority. So for low RMPDelayFactor,

the delay of T s and RT s due to frequent transmission of RMP s is less than that in case

of the PSFQ-based protocol and hence, initial increase in RMPDelayFactor benefits the

OSDRMP protocol’s delivTime much less than that of the PSFQ-based protocol. At P =

0.3, number of T s and RT s is low and hence, priority of T s and RT s at low RMPDelay-

Factors is sufficient to ensure their propagation in the network. So at P =0.3, there is no

decrease in delivTime with increase in RMPDelayFactor. Like the PSFQ-based protocol,

at higher P , increase in RMPDelayFactor benefits propagation of successful T s and RT s

through the network by ensuring nodes with T s and RT s compete less with RMP s for

sending messages in the network. In both versions of the OSDRMP protocol, increase in

idleTime contributes to increase in delivTime at higher RMPDelayFactor (there are more

T s and RT s than in case of lower P) in comparison to that at lower P . Initially OS-

DRMP(rRMP) performs better than OSDRMP(urRMP) but as RMPDelayFactor increases

performance of OSDRMP(urRMP) betters that of OSDRMP(rRMP). The reason is that at

low RMPDelayFactor, OSDRMP(urRMP) has more RMP s for different packets in compar-

ison to OSDRMP(rRMP) and this leads to more competition for nodes with T s and RT s

in case of the former protocol. However, as RMPDelayFactor increases, T s and RT s get

more chances to propagate and OSDRMP(urRMP) reduces the possibility of idleTime by

sending more RMP s which also increases the chances of nodes getting packets faster and

thus reducing delivTime at lower P . But as P increases, packets reach nodes successfully

and hence, the number of packets for which RMP s are to be sent at nodes reduce and

thus OSDRMP(urRMP) is not able to reduce idleTime as effectively as in case of lower P .

Also, OSDRMP(rRMP) allows successful T s and RT s to propagate at higher P and hence,

the difference in delivTime between OSDRMP(urRMP) and OSDRMP(rRMP) decreases as

P increases. It is important to note that minimum delivTime does not indicate minimum

numMess.

Analysis: numMess vs. RMPdelayFactor. In Figure 4.6, for a low RMPDelay-

84

Factor, highest priority to RMP and frequent transmission of RMP s in the PSFQ-based

protocol with delayed T s and RT s leading to more RMPs, add up to a high numMess at all

P . With increase in RMPDelayFactor, T s and RT s have enough time to reach nodes thus

reducing the number of RMP s and the numMess for the PSFQ-based protocol. For low RM-

PDelayFactor, both versions of the OSDRMP protocol perform better than the PSFQ-based

protocol as T and RT have higher priority in the former. For P = 0.3, unsuccessful trans-

missions coupled with urRMP and nodes requesting packets which none of their neighbors

have (due to OS) contribute to high numMess for the OSDRMP(urRMP) protocol compared

to that for the PSFQ-based protocol. The rRMP in the OSDRMP(rRMP) protocol elim-

inates any potential disadvantage of OS and thus, the numMess becomes almost equal to

that of the PSFQ-based protocol. For P = 0.6 and 0.9, there are more and more successful

T s and RT s and OSDRMP(urRMP) does not have as many RMP s to send as in the case

of P = 0.3. Its behavior approaches that of OSDRMP(rRMP) and hence, the numMess

required for both versions of the OSDRMP protocol with increasing RMPDelayFactor is

almost equal and at times better than that required for the PSFQ-based protocol. We do

not obtain a clear benefit in terms of numMess unlike delivTime because the disadvantages

of OS forwarding counterbalance the disadvantages of IS forwarding by sending too many

RMP s even when neighbors of a node do not have the packets. There is a RMPDelayFactor

at each P for each protocol after which numMess do not change with increase in RMPDe-

layFactor. Increasing RMPDelayFactor does not benefit this situation and only contributes

to idleTime. The RMPDelayFactor after which numMess becomes constant increases with

increase in P for both the OSDRMP(rRMP) protocol and the PSFQ-based protocol. This is

because there are more successful T s and RT s at higher P and increase in RMPDelayFactor

helps in propagation of successful transmissions. For the OSDRMP(urRMP) protocol, the

RMPDelayFactor after which numMess become constant is very high at P = 0.3.

85

4.2.2 Simulation Results of OSDRMP vs. PSFQ-based Protocols
for s = 40, h = 5 and RMPdelayFactor = 3 Varying Number
of Packets (n) and P

Figure 4.7 shows the variation of delivTime and numMess of the OSDRMP(rRMP and

urRMP) and the PSFQ-based protocols w.r.t. n at s = 40, h = 5, RMPdelayFactor = 3,

and P = 0.3, 0.6 and 0.9. Both versions of the OSDRMP protocol perform better than the

PSFQ-based protocol in terms of both delivTime and numMess when P = 0.3, 0.6 and 0.9.

Analysis: delivTime vs. number of packets. Consider the different graphs in

Figure 4.7 for different P s. In each case, delivTime of the PSFQ-based protocol and both

versions of the OSDRMP protocol increase with increase in number of packets. This is

expected because the increase in the number of packets to be delivered increase the number

of messages exchanged in the process which results in more delivTime.

The delivTime of the PSFQ-based protocol is always more than the delivTime of

both versions of the OSDRMP protocol and this difference increases with increase in the

number of packets because the PSFQ-based protocol takes more messages to deliver the

packets in comparison to the OSDRMP protocol due to the disadvantages of IS-forwarding

(RMP > RT > T) in comparison to OS-forwarding (T > RT > RMP) of packets at nodes.

The delivTime of both versions of OSDRMP protocol are close to each other even

with increase in the number of packets. The reasons for this have been mentioned in Section

4.2.1.

Analysis: numMess vs. number of packets. In the different graphs in Figure 4.7

for different P s, the numMess for PSFQ-based protocol and both versions of the OSDRMP

protocol increase with increase in the number of packets. This is expected as the increase in

number of packets to be delivered increase the number of messages exchanged in the process.

The numMess for the PSFQ-based protocol is always more than the numMess for both

versions of the OSDRMP protocol and this difference increases with increase in number of

packets. This is due to the benefits of OS-forwarding (T > RT > RMP) over IS-forwarding

(RMP > RT > T) of packets at nodes. When number of packets is low i.e. n = 10

and 20 at P = 0.3, OSDRMP(urRMP) takes more number of messages in comparison to

PSFQ-based protocol because unsuccessful transmissions coupled with urRMP and nodes

86

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.7: Comparison of OSDRMP(rRMP and urRMP) and PSFQ-based protocols for
s=40, h=5, RMPdelayFactor=3 varying number of packets (n) and P .

87

requesting packets which none of their neighbors have (due to OS) contribute to the high

numMess. However, as number of packets increases, the advantages (in terms of numMess)

of OS-forwarding overcome the disadvantages of urRMP.

The numMess of both versions of OSDRMP protocol are close to each other even

with increase in number of packets with the reduced number of RMPs in the rRMP version

resulting in slightly lower numMess w.r.t to the urRMP version.

4.2.3 Simulation Results of OSDRMP vs. PSFQ-based Protocols
for s = 0, h = 14 and n = 10 Varying RMPdelayFactor and
P

Figure 4.8 shows the variations of delivTime and numMess w.r.t. RMPDelayFactor for the

OSDRMP protocol(rRMP and urRMP) and the PSFQ-based protocol for P = 0.3, 0.6 and

0.9. Here, the same conclusions as those in Figure 4.6 hold, except that there are more

messages in Figure 4.8 (because of larger h) which also causes the increase in idleTime to

start at a higher RMPDelayFactor.

4.2.4 Simulation Results of OSDRMP vs. PSFQ-based Protocols
for s = 0, h = 14 and RMPdelayFactor = 3 Varying Number
of Packets (n) and P

Figure 4.9 shows the variations of delivTime and numMess w.r.t. n for the OSDRMP

protocol(rRMP and urRMP) and the PSFQ-based protocol for P = 0.3, 0.6 and 0.9. Here,

the same conclusions as those in Figure 4.7 hold, except that there are more messages in

Figure 4.9 because of larger h.

4.2.5 Simulation Results Demonstrating the Time Taken to Fill
the DC of Nodes during Execution of OSDRMP(rRMP)
Protocol.

We run simulations using OSDRMP(rRMP) with the the source-destination pairs (i)s = 40,

h = 5 and (ii)s = 0, h = 14 at n = 10 and 3 different probabilities of successful transmission

(P = 0.3, 0.6 and 0.9) in the 12x9 grid network in Figure 4.1 and observe the time taken by

the different nodes in the network between the source and destinations to fill their DC. The

results are plotted in the Tables 4.1 till 4.6.

88

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.8: Comparison of OSDRMP(rRMP and urRMP) and PSFQ-based protocols for
s=0, h=14, n=10 varying RMPdelayFactor and P .

89

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.9: Comparison of OSDRMP(rRMP and urRMP) and PSFQ-based protocols for
s=0, h=14, RMPdelayFactor=3 varying number of packets (n) and P .

90

84 95

72 83

60 71

48 59

36 47

24 35

12 23

0

96

1

97

2

98

3

99

4

100

5

101

6

102

7

103

8

104

9

105

10

106

11

107

402.2 397.3 401.1 395.7 401.5

420.1
13

407.3
14

400.6
15

391.1
16

401.8
17

407.9
18

415.2
19

424.4 422.3
25

404.7
26

359.7
27

325.4
28

358.4
29

403.3
30

421.1
31

439.1
32

404.9 429.4
37

397.6
38

321.6
39

321.9
41

390.0
42

431.7
43

433.8
44

471.2
45

422.9 422.1
49

404.3
50

357.2
51

321.6
52

356.0
53

403.5
54

418.7
55

441.1
56

417.2
61

410.0
62

403.5
63

391.4
64

403.2
65

410.9
66

418.5
67

417.1
74

418.8
75

434.0
76

417.3
77

417.7
78

443.5
87

436.7
88

443.6
89

460.5

s

Figure 4.10: Time taken to fill the DC of nodes for s = 40, h = 5, n = 10, RMPDelayFactor
= 1 and P = 0.3.

Figure 4.10 shows the time taken by each node to fill its DC when s = 40, h = 5, n

= 10, RMPDelayFactor = 1 and P = 0.3. From the figure we see that the time taken to fill

a node x’s DC has dependencies on the following:

• Number of shortest paths between the base station (s) and x. It is given by the

following equation:

numPaths =

(

m + n

m

)

(4.1)

where (m,n) are coordinates of x and the coordinates of s is (0,0) and each distance of

1 hop in either direction increases the corresponding coordinates by 1.

• Number of upstream neighbors of x via shortest paths from s.

• Degree of x.

91

4.2.6 Simulation Results of Varying the Methods of Calculation
of Delay in Sending RMP s in OSDRMP(rRMP) Protocol

We run our simulations for the 12x9 grid in Figure 4.1 and observe the effects of OS-

DRMP(rRMP) protocol with and without effective degree calculations on delivTime and

numMess w.r.t RMPDelayFactor for (i) s = 40, h = 5 and (ii) s = 0, h = 14 at P = 0.3,

0.6 and 0.9 and n = 10. The reasons for choosing the OSDRMP(rRMP) protocol is given at

the beginning of this chapter. In Figures 4.11 and 4.12, OSDRMP(rRMP) without effective

degree and with effective degree are referred to as rRMP(noEffecDeg) and rRMP(EffecDeg)

respectively.

The simulations in the Figures 4.11 and 4.12 show that the OSDRMP(rRMP) protocol

with effective degree initially takes more delivTime in comparison to the OSDRMP(rRMP)

protocol with no effective degree and then, with increase in RMPDelayFactor its performance

becomes better than the latter for all P but always takes more number of messages. Initially,

the OSDRMP(rRMP) protocol with effective degree takes more delivery time with increase in

RMPDelayFactor. This is because when RMPDelayFactor is small too many RMP s decrease

the chances of nodes with T s and RT s from being selected. However when RMPDelayFactor

is increased beyond a certain point, the idleTime observed in the OSDRMP(rRMP) protocol

with no effective degree is effectively utilized by the OSDRMP(rRMP) protocol with effective

degree by sending more RMP s based on effective degree and not waiting unnecessarily.

Effective degree helps in reduction of the unnecessary waiting time to send RMP s by not

taking into account nodes from where there are less possibilities of new packets and hence, the

OSDRMP(rRMP) protocol with effective degree uses more RMPs. This effectively reduces

the idleTime to make requests and receive packets and thus lowers the delivTime. However, it

increases the number of RMP s and hence, there are more number of messages in comparison

to the OSDRMP(rRMP) protocol with no effective degree. This results in nodes receiving the

necessary RT s and thus, in destination nodes receiving the total packets faster in comparison

to other version without effective degree.

92

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.11: Performance of OSDRMP(rRMP) for two different methods of calculating the
delay in sending RMP s (tr) and s=40, h=5, n=10.

93

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.12: Performance of OSDRMP(rRMP) for two different methods of calculating the
delay in sending RMP s (tr) and s=0, h=14, n=10.

94

4.2.7 Simulation Results of Varying the Priority Orders for Send-
ing Different Types of Messages at Nodes in OSDRMP(rRMP)
Protocol

For reasons mentioned in the beginning of this chapter, we choose to implement the OS-

DRMP(rRMP) protocol and then vary the message priority orders at the nodes in the net-

work in Figure 4.1. The source-destination pairs, number of packets and probabilities remain

the same as in the previous section. Both delivTime and numMess are plotted against RM-

PDelayFactor for the different cases of priority orders (mentioned in Section 3.1.4) as given

below:

• Message priority order at all nodes is T > RT > RMP . In the graph, it is denoted by

rRMP.

• Message priority order at all nodes except destination nodes is T > RT > RMP .

At destination nodes, the order is RMP > RT > T . In the graph, it is denoted by

rRMP(DiffPOatDest). We will refer to it as OSDRMP(rRMP) with DiffPOatDest.

• Message priority order at all nodes is determined probabilistically. The probability

that each node x (selected for transmission) with eligibility to send an RMP can send

one is given by 1−
nodeTTL(x)

h
where h is the minimum distance between the source

and a destination. If x is not selected for RMP , it sends a T if TQ(x) 6= Ø, else it

sends an RT. In the graph, it is denoted by rRMP(POatEachNodeDetByProb). We

will refer to it as OSDRMP(rRMP) with POatEachNodeDetByProb.

We see from the Figures 4.13 and 4.14 that there is no real gain in terms of delivTime

and numMess by implementing OSDRMP(rRMP) protocols with DiffPOatDest and with

POatEachNodeDetByProb respectively. While OSDRMP(rRMP) protocol with DiffPOat-

Dest aims to save time by ensuring that destination nodes request and get packets before

sending T s and RT s, it does not differ from OSDRMP(rRMP) w.r.t delivTime because pri-

ority on T s and RT s at the destination nodes in the latter help neighbors get packets faster

and distribute them to other potential destination nodes which in turn saves unnecessary

RMP s and RT s and hence, delivTime. Even if destination nodes get all packets a little

faster, the net impact on delivTime is less as there are no downstream nodes for destination

95

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.13: Performance of OSDRMP(rRMP) for three different methods of determining
the priority order for sending different types of messages at nodes and s=40, h=5, n=10.

96

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.14: Performance of OSDRMP(rRMP) for three different methods of determining
the priority order for sending different types of messages at nodes and s=0, h=14, n=10.

97

nodes in which case propagation would have been faster and benefitted the delivTime bet-

ter.The numMess too, is the same for both cases as in both destination nodes have to send

all of the T s, RT s and RMP s. However, OSDRMP(rRMP) protocol with POatEachNod-

eDetByProb performs worse than both OSDRMP(rRMP) protocol with DiffPOatDest and

OSDRMP(rRMP) protocol because the possibility of putting priority on sending RMP s on

nodes counteracts the benefits of OS forwarding by delaying the sending of T s and RT s to

nodes which increases delivTime in which the destination nodes receive the packets and also,

results in the increase of RMP s and RT s. However, as RMPDelayFactor increases, T s and

RT s have more chances to propagate and this along with OS forwarding makes the behavior

of this protocol similar to that of the other two protocols.

4.2.8 Simulation Results Demonstrating the Number of New Pack-
ets Sent by Upstream Neighbors of Nodes during Execution
of OSDRMP(rRMP) Protocol

Each node x receives data packets via T s and RT s from its neighbors. A portion of the

RT s may be in response to the RMP s sent by x to its neighbors while the rest may be in

response to RMP s sent by other nodes. Some of the packets received at x are new packets

which it has not received before while the rest are duplicates.

Normally, we expect the upstream neighbors of x to receive new packets before x does.

However, it is possible that a packet pi arrives at x faster than it arrives at y, an upstream

neighbor of x because of link failures. Hence, by this time x, a downstream neighbor of y

can transmit pi to y. This example demonstrates that downstreams neighbors of a node

can also send new packets to it. We run simulations with s = 40, h = 5 and n = 100 at

3 different probabilities of successful transmission (P = 0.3, 0.6 and 0.9) and at 2 different

RMPDelayFactors (= 1 and 3) in the 12x9 grid network in Figure 4.1 to observe the number

of new packets sent by upstream neighbors of each node. The intention is to see whether

upstream nodes are responsible for most of the new packets at a node. This can be useful in

methods for reduction of RMP s. If a node x receives considerable more new packets from its

upstream neighbors than its downstream ones, then x can ignore RMP s from any upstream

neighbor y. Because y can receive its missing packets from its upstream neighbors.

98

84 95

72 83

60 71

48 59

36 47

24 35

12 23

0

96

1

97

2

98

3

99

4

100

5

101

6

102

7

103

8

104

9

105

10

106

11

107

upstr=100.0 upstr=90.3 upstr=62.1 upstr=90.8 upstr=100.0

upstr=100.0
13

upstr=84.3
14

upstr=81.8
15

upstr=62.1
16

upstr=82.7
17

upstr=84.2
18

upstr=100.0
19

upstr=100.0 upstr=83.0
25

upstr=81.4
26

upstr=86.6
27

upstr=68.5
28

upstr=87.0
29

upstr=82.3
30

upstr=83.2
31

upstr=100.0
32

upstr=62.7 upstr=53.8
37

upstr=65.3
38

upstr=67.7
39

upstr=67.9
41

upstr=65.1
42

upstr=54.2
43

upstr=59.2
44

upstr=100.0
45

upstr=100.0 upstr=82.9
49

upstr=82.1
50

upstr=87.3
51

upstr=68.3
52

upstr=87.5
53

upstr=82.5
54

upstr=83.0
55

upstr=100.0
56

upstr=100.0
61

upstr=84.9
62

upstr=82.0
63

upstr=65.3
64

upstr=81.9
65

upstr=84.7
66

upstr=100.0
67

upstr=100.0
74

upstr=82.6
75

upstr=54.3
76

upstr=83.2
77

upstr=100.0
78

upstr=100.0
87

upstr=60.1
88

upstr=100.0
89

upstr=100.0

s

Figure 4.15: Number of packets arriving via upstream nodes for s = 40, h = 5, n = 100,
RMPdelayFactor = 3.0 and P = 0.3 .

The results of the simulations are plotted in Tables 4.7 and 4.8. The term ”packetTTL

≥ nodeTTL” implies that a node x has received packets with packetTTL greater than

or equal to nodeTTL(x) i.e. from upstream neighbors of x and the term ”packetTTL <

nodeTTL” implies that x has received packets from its downstream neighbors. However,

nodeTTL(x) may change over time. So a packet may arrive at x via an upstream path which

can become a downstream path for x later on. The data in the tables are collected under

these circumstances and validate our conclusions. We also collect separate data to check

how many packets actually arrive via the shortest path between the source(base station)

and each node for the different cases mentioned above. The results are almost the same as

those in Tables 4.7 and 4.8. The results for s = 40, h = 5, n = 100, RMPdelayFactor = 3.0

and P = 0.3 are presented in the Figure 4.15.

99

In Figure 4.15, nodes 28, 39, 41 and 52 at distance of 1 hop from the source receive

approximately the same number of packets via upstream neighbors. They each have only 1

upstream neighbor and 3 downstream ones. Of nodes whose shortest distance from source

is 2 hops, nodes 27, 29, 51 and 53 have exactly 2 upstream neighbors and 2 downstream

ones and get approximately the same number of packets from upstream neighbors. The

other set of nodes at a distance 2 i.e. 16, 38, 42 and 64 have only 1 upstream neighbor

and 3 downstream ones, and receive approximately the same number of packets which are

less that received by the other set of nodes at a distance 2 probably because they have

only one upstream neighbor. This pattern is repeated throughout the network with the

nodes having the same number of upstream and downstream neighbors at the same distance

from the source receiving approximately the same number of packets from upstream nodes.

All destination nodes receive all their packets from upstream neighbors as they have no

downstream paths to themselves.

The results in the tables and the figure show that most of the new packets at x are

received from its upstream neighbors. Hence, it is feasible to modify the protocol so that

the node responds to RMP s from its downstream neighbors only. We do not consider the

number of duplicate packets sent by upstream neighbors vs. the number of duplicate packets

sent by downstream neighbors because they are not important in the reduction of RMP s.

4.2.9 Simulation Results Demonstrating the Effect of a Node Se-
lectively Responding to RMP s in OSDRMP(rRMP) Proto-
col

Based on the results in the previous section, we modify the OSDRMP(rRMP) protocol

such that a node x responds only to RMP s sent to it by its downstream neighbors. We

call this modified protocol OSDRMP(rRMP) with SelResp; in the graph, it is denoted by

rRMP SelRespToRMP. We run simulations with the source-destination pairs (i)s = 40, h =

5 and (ii)s = 0, h = 14 at 3 different probabilities of successful transmission (P = 0.3, 0.6

and 0.9) and n = 10 in the 12x9 grid network in Figure 4.1 and observe the performance

of the modified protocol OSDRMP(rRMP) vs. OSDRMP(rRMP)with SelResp. The results

are shown in the Figure 4.16 and Figure 4.17 .

100

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.16: Performance of OSDRMP(rRMP) for two different methods of responding to
RMPs by nodes and s=40, h=5, n=10.

101

(a) P = 0.3

(b) P = 0.6

(c) P = 0.9

Figure 4.17: Performance of OSDRMP(rRMP) for two different methods of responding to
RMPs by nodes and s=0, h=14, n=10.

102

The results show that the OSDRMP(rRMP) protocol with SelResp performs worse

in terms of delivTime and numMess with respect to the OSDRMP(rRMP) protocol. The

difference is more pronounced when P = 0.3 and becomes reduced as P increases. The reason

for this is as follows. As number of responses to RMP s are reduced in the OSDRMP(rRMP)

protocol with SelResp, the probability of pi reaching the neighbors of a node x also reduces.

Selective response to RMP by x may prevent a packet pi from reaching a downstream

node y faster in comparison to non-selective response. In the OSDRMP(rRMP) protocol, pi

which reached y would have been sent from y to nodes further downstream and reached a

destination node z faster in comparison to the OSDRMP(rRMP) protocol with SelResp. As

mentioned before, as number of responses to RMP s are reduced in the OSDRMP(rRMP)

protocol with SelResp, the probability of pi reaching the neighbors of x also reduces which

may lead to more RMP s. This possibility is more at lower P (=0.3) than at higher P (=0.6

and 0.9). Hence the difference in the performances of the OSDRMP(rRMP) protocol with

SelResp vs. the OSDRMP(rRMP) protocol reduce at higher P .

103

Table 4.1: Time taken to fill DC for s=40, h=5, P=0.3, n=10.

104

Table 4.2: Time taken to fill DC for s=40, h=5, P=0.6, n=10.

105

Table 4.3: Time taken to fill DC for s=40, h=5, P=0.9, n=10.

106

Table 4.4: Time taken to fill DC for s=0, h=14, P=0.3, n=10.

107

Table 4.5: Time taken to fill DC for s=0, h=14, P=0.6, n=10.

108

Table 4.6: Time taken to fill DC for s=0, h=14, P=0.9, n=10.

109

Table 4.7: Number of packets received by each node from upstream and downstream neigh-
bors for s=40, h=5, P=0.3 and 0.6, n=100.

P = 0.3 P = 0.6

RMPDelayFactor = 1 RMPDelayFactor = 3 RMPDelayFactor = 1 RMPDelayFactor = 3

Nodes packetTTL packetTTL packetTTL packetTTL packetTTL packetTTL packetTTL packetTTL

≥ nodeTTL < nodeTTL ≥ nodeTTL < nodeTTL ≥ nodeTTL < nodeTTL ≥ nodeTTL < nodeTTL

2 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

3 90.6 9.4 90.3 9.7 82.6 17.4 82.3 17.7

4 63.4 36.6 62.3 37.7 47.3 52.7 47.5 52.2

5 90.8 9.2 90.8 9.2 83.3 16.7 83.5 16.5

6 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

13 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

14 84.5 15.5 84.3 15.7 69.9 30.1 70.1 29.9

15 81.9 18.1 81.9 18.1 74.9 25.1 75.5 24.5

16 62.3 37.7 62.3 37.7 56.4 43.6 55.9 44.1

17 82.0 18.0 82.8 17.2 74.8 25.2 74.1 25.9

18 84.4 15.6 84.2 15.8 69.6 30.4 70.7 29.3

19 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

24 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

25 82.5 17.5 83.0 17.0 67.0 33.0 68.2 31.8

26 82.1 17.9 81.5 18.5 75.0 25.0 75.2 24.8

27 86.9 13.1 86.7 13.3 84.3 15.7 83.8 16.2

28 67.9 32.1 68.5 31.5 65.8 34.2 65.7 34.3

29 87.4 12.6 87.0 13.0 84.7 15.3 83.2 16.8

30 82.1 17.9 82.3 17.7 75.5 24.5 74.8 25.2

31 82.5 17.5 83.2 16.8 66.1 33.9 68.3 31.7

32 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

36 63.7 36.3 62.7 37,3 39.7 60.3 41.1 58.9

37 55.4 44.6 54.0 46.0 45.8 54.2 46.4 53.6

38 65.9 34.1 65.5 34.5 61.1 38.9 59.6 40.4

39 69.7 30.3 67.8 32.2 65.5 34.5 66.3 33.7

41 67.9 32.1 68.6 31.4 65.4 34.5 65.2 34.8

42 66.5 33.5 65.3 34.7 61.4 38.6 59.5 40.5

43 54.8 45.2 54.4 45.6 45.6 54.4 44.5 55.5

44 59.6 40.4 60.4 39.6 38.9 61.1 40.3 59.7

45 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

48 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

49 82.9 17.1 83.2 16.8 67.6 32.4 68.7 31.3

50 82.1 17.9 82.3 17.7 75.3 24.7 76.3 23.7

51 87.3 12.7 87.5 12.5 85.2 14.8 84.2 15.8

52 68.3 31.7 68.6 31.4 66.2 33.8 65.4 34.6

53 87.5 12.5 87.6 12.4 84.5 15.5 84.0 16.0

54 82.5 17.5 82.0 18.0 77.4 22.6 76.7 23.3

55 83.0 17.0 83.2 16.8 67.0 33.0 67.8 32.2

56 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

61 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

62 85.6 14.4 84.9 15.1 72.6 27.4 72.8 27.2

63 82.0 18.0 82.0 18.0 76.8 23.2 76.0 24.0

64 65.3 34.7 65.7 34.3 62.4 37.6 60.0 40.0

65 82.0 18.0 82.0 18.0 77.2 32.8 76.2 23.8

66 84.7 15.3 84.7 15.3 74.5 22.5 74.2 25.8

67 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

74 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

75 82.9 17.1 82.6 17.4 67.4 32.6 66.8 33.2

76 54.3 45.7 55.0 45.0 45.6 54.4 45.3 54.7

77 83.2 16.8 82.7 17.3 65.9 34.1 67.7 32.3

78 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

87 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

88 60.1 39.9 60.7 39.3 37.6 62.4 39.4 60.6

89 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

100 100.0 0.0 100.0 0.0 100.0 0.0 100.0 0.0

110

Table 4.8: Number of packets received by each node from upstream and downstream neigh-
bors for s=40, h=5, P=0.9, n=100.

P = 0.9

RMPDelayFactor = 1 RMPDelayFactor = 3

Nodes packetTTL packetTTL packetTTL packetTTL

≥ nodeTTL < nodeTTL ≥ nodeTTL < nodeTTL

2 100.0 0.0 100.0 0.0

3 90.7 9.3 90.5 9.5

4 57.3 42.7 54.4 45.6

5 90.2 9.8 90.9 9.1

6 100.0 0.0 100.0 0.0

13 100.0 0.0 100.0 0.0

14 61.6 38.4 63.6 36.4

15 91.4 8.6 86.9 13.1

16 79.7 20.3 74.3 25.7

17 90.0 10.0 88.3 11.7

18 61.7 38.3 66.0 34.0

19 100.0 0.0 100.0 0.0

24 100.0 0.0 100.0 0.0

25 55.5 44.5 59.2 40.8

26 89.6 10.4 84.3 15.7

27 97.9 2.1 97.9 2.1

28 91.1 8.9 90.6 9.4

29 98.1 1.9 96.9 3.1

30 90.0 10.0 85.6 14.4

31 53.5 46.5 56.1 33.9

32 100.0 0.0 100.0 0.0

36 30.7 69.3 35.4 64.6

37 59.4 40.6 53.9 46.1

38 84.9 15.1 80.3 19.7

39 90.6 9.4 90.8 9.2

41 90.4 9.6 90.9 9.1

42 85.6 44.4 81.7 18.3

43 62.3 37.7 52.9 47.1

44 18.0 82.0 26.6 73.4

45 100.0 0.0 100.0 0.0

48 100.0 0.0 100.0 0.0

49 61.4 38.6 65.3 34.7

50 92.4 7.6 89.2 10.8

51 98.3 1.7 97.7 2.3

52 90.8 9.2 90.9 9.1

53 98.4 1.6 97.6 2.4

54 93.9 6.1 89.8 10.2

55 61.9 38.1 63.9 36.1

56 100.0 0.0 100.0 0.0

61 100.0 0.0 100.0 0.0

62 80.8 19.2 79.4 20.6

63 93.6 6.4 91.1 18.9

64 85.2 14.8 65.79.4 20.6

65 93.4 6.6 90.6 9.4

66 83.7 16.3 81.0 19.0

67 100.0 0.0 100.0 0.0

74 100.0 0.0 100.0 0.0

75 63.6 36.4 65.2 34.8

76 60.0 40.0 55.4 44.6

77 60.6 39.4 65.7 34.6

78 100.0 0.0 100.0 0.0

87 100.0 0.0 100.0 0.0

88 16.8 83.2 25.0 75.0

89 100.0 0.0 100.0 0.0

100 100.0 0.0 100.0 0.0

111

Chapter 5

Conclusions

In this dissertation research, we have explored different protocols for implementing reliable

data transfer in wireless sensor networks (WSNs) and introduced a new protocol for im-

plementing reliability during data transfer from a base station (sink) to sensor nodes for

time-critical applications with zero-tolerance for data loss in wireless sensor networks.

In chapter 2, we reviewed a number of protocols implementing reliability by different

methods in different application scenarios in wireless sensor networks. The methods included

congestion control, recovery of data lost during transmission, etc. Data transfer in different

application scenarios varied from bulk transfer of data in bursts from sensor nodes to a

base station, to continuous transfer of data from sensor nodes to a base station, to data

aggregation and filtering at intermediate nodes also during data transfer from sensor nodes

to a base station, etc.

However, few of them discussed reliable data transfer from a base station to sensor

nodes for time-critical applications with zero tolerance for data loss in energy-constrained

wireless sensor networks or were suitable for it. Two protocols which considered imple-

menting reliability in this application scenario were PSFQ and GARUDA. PSFQ uses an

in-sequence forwarding of data packets with message priority as RMP > RT > T which

tends to delay delivery of the data packets to a node and GARUDA uses a cluster based

method which has an overhead of cluster formation and this can delay the delivery of data

packets to a node considerably in contrast to a method which does not use clusters as shown

in chapter 2. It also proves costly in terms of number of messages. Such delays in delivery

time are not suitable for time-critical applications.

We presented a new protocol OSDRMP for recovery of lost data during data transfer

from a base station to sensor nodes for time-critical applications with zero tolerance for data

loss in wireless sensor networks. The protocol is based on the following:

• Non-acknowledgement of packets at receiving nodes.

• Hop-by-hop detection and recovery of lost packets.

• Out-of-sequence forwarding of packets at nodes.

112

• A priority order for sending different types of messages at a node.

• Delayed request for missing packets at nodes.

There are three types of messages exchanged during the process of data recovery: Transmis-

sion (T), ReTransmission (RT), Request for Missing Packets(RMP). We analyzed and es-

tablished the advantages of non-acknowledgement based transmission, hop-by-hop detection

and recovery of lost packets, and out-of-sequence forwarding of packets over acknowledge-

ment based transmission, end-to-end detection and recovery of lost packets, and in-sequence

forwarding respectively. We also justified the requirement for delay in requesting packets

missing at nodes. The superiority of the OSDRMP protocol was demonstrated against a

well-known protocol PSFQ in terms of both the delivery time of all packets (from a base

station to sensor nodes) and the number of packets exchanged in the process, via extensive

simulations. We also investigated the time taken to fill the DC of a node in a network and

concluded that the time had dependencies on the number of shortest paths between the

source and the node, the number of upstream neighbors of the node and the node’s degree.

In non-acknowledgement based methods, at least one packet needs to reach a node

in order for the node to request missing packets. Though we assume that the data set sent

by the base station will consist of enough packets for at least one packet to reach a node,

we present a method that ensures at least one packet delivery to a node at the cost of some

extra energy in terms of messages. In this method, a node sending one or more packets to

its neighbors will wait for an acknowledgement for only one packet or a message from each

of its neighbors indicating that the neighbor has a packet. If it does not receive this, it will

retransmit packets repeatedly till it receives an acknowledgement or a message from each

neighbor thus ensuring that each neighbor has received at least one packet.

A new method for generating reports for a base station on request while minimizing

the number of messages has been suggested by us. Base stations in wireless sensor networks

do not have an idea of the exact number of destination sensor nodes at a particular distance.

Also, knowledge of intermediate nodes status cannot help base station in knowing for sure

whether the entire data has reached the destination nodes or not. We use this knowledge

in our reporting method where the base station needs to know that at least one destination

113

node has received the entire data in order to be satisfied. This prevents the base station from

waiting for an unnecessary time period for reports from other destination nodes since it does

not know the number of destination nodes. Intermediate node status is not required. This

reduces size of messages and minimizes energy consumption in wireless sensor networks.

We further investigated different ways of improving the performance of the OSDRMP

protocol:

• The effective degree of a node x is the number of neighbors which send more than

a certain number of packets to x’s data cache. The delay in sending in RMP s in

OSDRMP protocol is dependent on the degree of x in order to give a chance to all

neighbors of x to send the missing packets to it. However, if the delay is not dependent

on those nodes which contribute very less to the number of packets in x’s data cache,

we can reduce unnecessary delay and hence, delivery time. Thus, the effective degree

of a node is used to determine the delay in RMP s at each node. Our simulations

showed that this reduced the delivery time but increased the number of messages for

the OSDRMP protocol due to increase in number of RMP s.

• The priority order at a node x determines the order in which x sends messages when

more than one message type is present at x at a time unit. While giving priority

to RMP s enables x to receive missing packets faster, giving priority to T s enables

downstream neighbors of x to receive packets faster by ensuring that they have all the

packets sent by the base station even when x and other upstream neighbors do not

have the complete set. From chapter 3, we see that the priority order T > RT > RMP

is more suitable for out-of-sequence forwarding in comparison to RMP > RT > T .

However, we wanted to see whether giving priority to RMP s at destination nodes

or determining the priority order at each node probabilistically with nodes nearer

to the destination having more probability of putting priority on RMP s will enable

destination nodes to request and receive packets faster in comparison to the case where

all nodes have the priority order as T > RT > RMP . In our simulation results, the

variations did show any significant improvement over the original OSDRMP protocol

with T > RT > RMP priority order at all nodes. This is because the advantage gained

114

by putting priority on RMP s was negated by its effect on out-of-sequence forwarding

as discussed in Chapter 3.

• We performed simulations in order to determine the direction from which a node re-

ceived most T s. Our results showed that upstream neighbors of a node contributed

maximum to the number of packets received at a node. So we concluded that upstream

neighbors of a node x are enough to satisfy its request for missing packets and we can

use this property to reduce the number of messages. Hence, we modified the OSDRMP

protocol so that every node responds to RMP s from its downstream neighbors only.

In our simulations, this selective response to requests for data packets did not how-

ever show any improvements in the performance of the OSDRMP protocol in terms of

both the delivery time and the number of messages. The reason is that lesser number

of responses to RMP s at a node lowered the chance of a node getting packets and

increased the number of RMP s.

Our studies show that while we have presented a reliable and efficient data transfer

protocol, We also want to explore the following in our future work.

• Methods for further reduction in the number of messages like efficient methods for

calculation of the delay in requesting missing packets and determination of optimal

message priority orders at nodes.

• Application of the OSDRMP protocol to implement reliability for other application

scenarios in wireless sensor networks and also for applications in other wireless net-

works.

115

Bibliography

1. A.Mainwaring, J.Polastre, R.Zewczyk, D.Culler, J.Andderson, ”Wireless Sensor Net-
works for Habitat Monitoring.” ACM International Workshop on Wireless Sensor Net-
works and Applications (WSNA’02), Atlanta, GA, September 2002.

2. L.Schwiebert, S. Gupta, J.Weinmann, ”‘Research Challenges in Wireless Sensors of
Biomedical Sensors.” In Mobile Computing and Networking, pp.151, 165, 2001.

3. Wei Ye, J.Heidemann and Deborah Estrin, ”An Energy-effcient MAC Protocol for
Wireless Sensor Networks.” Proc. IEEE INFOCOM, New York, NY, June 2002.

4. S.Singh and C.S.Raghevendra, ”PAMAS: Power Aware Multi-access Protocol with
Signaling for Ad-hoc Networks.” ACM Computer Communication Review, Vol.28, No.3,
pp.526, July 1998.

5. K.Sohrabi, J. Gao, V. Ailawadhi and G. Pottie, ”Protocols for Self-organization of a
Wireless Sensor Network.” IEEE Personal Comm. Magazine, Vol.7, No.5, pp.16-27,
October 2000.

6. C. Intanagonwiwat, Ramesh Govindan and Deborah Estrin, ”Directed Diffusion: A
Scalable and Robust Communication Paradigm for Sensor Networks.”In Proceedings
of the Sixth Annual International Conference on Mobile Computing and Networks (Mo-
biCOM 2000), Boston, Massachusetts, August 2000.

7. S. Heddetiniemi and A. Leistman, ”A Survey of Gossiping and Broadcasting in Com-
munication Networks.” Networks, Vol.18, 1988.

8. W.R. Heinzelmann, J. Kulik and H. Balakrishnan,”Adaptive Protocols for Information
Dissemination in Wireless Sensor Networks.” Proc. ACM MobiCOM ’99, pp.174-185,
Seattle, WA, 1999.

9. K. Sohrabi, ”‘Protocols for Self-Organization in a Wireless Sensor Network.” IEEE
Personal Comm. pp.16-27, October 2000.

10. G.Tolle, J. Polastre, R. Szewczyk, N. Turner, K. Tu, P. Buonadonna, S. Burgess, D.
Gay, W. Hong, T. Dawson and D. Culler, ”A Macroscope in the Redwoods.” Proceed-
ings of the Third ACM Conference on Embedded Networked Sensor Systems (SenSys),
November 2-4, 2005.

11. Péter Völgyesi, András Nádás, Ákos Lédeczi and Károly Molnár, ”Reliable Multihop
Bulk Transfer Service for Wireless Sensor Networks.” Proceedings of the 13th Annual
IEEE International Symposium and Workshop on Engineering of Computer Based Sys-
tems(EBCS’06), 2006.

12. Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, Kristofer Pister.
”System architecture directions for network sensors.” Proc. of the 9th International
Conf. on Architectural Support for Programming Languages and Operating Systems,
pp. 93-104, November 2000.

116

13. Nurcan Tezcan, Wenye Wang and Mo-Yuen Chow, ”A Bidirectional Reliable Trans-
port Mechanism for Wireless Sensor Networks.” Military Communications Conference
(MILCOM), Octber 2005.

14. C. Wan, A. Campbell, L. Krishnahmurthy. ”PSFQ: A Reliable Transport Mechanism
for Wireless Sensor Networks.” ACM International Workshop on Wireless Sensor Net-
works and Applications, Atlanta, Georgia, September 2002.

15. S.J. Park, R. Vedantham, R. Sivakumar, and I.F. Akyildiz, ”A Scalable Approach for
Reliable Downstream Data Delivery in Wireless Sensor Networks.” Proc. Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), Tokyo, Japan, May 2004.

16. Hari Balakrishnan, Srinivasan Seshan, Elan Amir and Randy H. Katz, ”Improving
TCP/IP Performance over Wireless Networks.” Proc. First ACM Conference on Mobile
Computing and Networking, November, 95.

17. Antonio DeSimone, Mooi Choo Chuah and On-Ching Yue, ”Throughput Performance
of Transport-Layer Protocols over Wireless LANs.” Proceedings of IEEE GLOBECOM,
pages 542–549, December 1993.

18. F. Stann and J. Heidemann, ”RMST: Reliable Data Transport in Sensor Networks.”
Proc. 1supst IEEE Intl. Workshop on Sensor Network Protocols and Appl., Alaska,
May 2003.

19. Y. Sankarsubramaniam, O. Akan, I. Akyildiz, ”ESRT: Event-to-sink Reliable Trans-
port in Wireless Sensor Networks.” Proc. ACM Mobihoc 2003, Maryland, June 2003.

20. C-Y Wan, S. B. Eisenman and A. T. Campbell, ”CODA: Congestion Detection and
Avoidance in Sensor Networks.” Proc. First ACM Conference on Embedded Networked
Sensor Systems (SenSys 2003), pp.266-279, Los Angeles, CA, Nov 2003.

21. C.Wang, K. Sohraby, B. Li, ”SenTCP: A Hop-by-Hop Congestion Control Protocol for
Wireless Sensor Networks.” IEEE INFOCOM 2005 (Poster Paper), March 2005.

22. W. Ye and J. Heidemann, ”Medium Access Control in Wireless Sensor Networks.”
USC/ISI Technical Report ISI-TR-580, October 2003.

23. LAN MAN Standards Committee of the IEEE Computer Society, ”Wireless LAN
medium access control (MAC) and physical layer (PHY) specification.” IEEE Std
802.11-1999 edition, IEEE, New York, NY, USA, 1999.

24. Phil Karn, ”MACA: A New Channel Access Method for Packet Radio.” In Proceedings
of the 9th ARRL Computer Networking Conference, London, Ontario, Canada, Sept.
1990, pp. 134140.

25. V. Bharghavan, A. Demers, S. Shenker, and L. Zhang, ”MACAW: A Media Access Pro-
tocol for Wireless LANs.” In Proceedings of the ACM SIGCOMM Conference, London,
UK, Sept. 1994, pp. 212225.

26. Katayoun Sohrabi and Gregory J. Pottie, ”Performance of a Novel Self-organization
Protocol for Wireless Ad hoc Sensor Networks.” In Proceedings of the IEEE 50th Ve-
hicular Technology Conference, pp. 12221226, 1999.

117

27. Wendi Rabiner Heinzelman, Anantha Chandrakasan, and Hari Balakrishnan, ”Energy-
efficient Communication Protocols for Wireless Microsensor Networks.” In Proceedings
of the Hawaii International Conference on Systems Sciences, Jan. 2000.

28. Bluetooth SIG Inc., ”Specification of the Bluetooth system: Core.” http://www.bluetooth.org/,
2001.

29. Jaap C. Haartsen, ”The Bluetooth radio system.” IEEE Personal Communications
Magazine, pp. 2836, Feb. 2000.

30. W. Ye, J. Heidemann, D. Estrin, ”Medium Access Control With Coordinated Adaptive
Sleeping for Wireless Sensor Networks.”, IEEE/ACM Transactions on Networking,
Volume: 12, Issue: 3, Pages:493 - 506, June 2004.

31. C. C. Enz, A. El-Hoiydi, J-D. Decotignie, V. Peiris, ”WiseNET: An Ultralow-Power
Wireless Sensor Network Solution.” IEEE Computer, Volume: 37, Issue: 8, August
2004.

32. K. Jamieson, H. Balakrishnan, and Y. C. Tay, ”Sift: A MAC Protocol for Event-Driven
Wireless Sensor Networks.” MIT Laboratory for Computer Science, Tech. Rep. 894,
May 2003.

33. G. Lu, B. Krishnamachari, C.S. Raghavendra, ”An adaptive energyefficient and low-
latency MAC for data gathering in wireless sensor networks.” Proceedings of 18th In-
ternational Parallel and Distributed Processing Symposium, Pages: 224, 26-30 April
2004.

34. B. Hull, K. Jamieson, and H. Balakrishnan, ”Mitigating Congestion in Wireless Sensor
Networks.” In SenSys 04, Baltimore, Maryland, 2004.

35. I.F.Akyildiz, W.Su, Y. Snakarasubramaniam and E. Cayirci, ”A Survey on Sensor
Networks.” IEEE Communications Magazine, August, 2002.

36. G.J.Pottie and W.J.Kaiser, ”Wireless Integrated Network Sensors.” ACM Communi-
cations, Vol.43, No.5, pp 551-558, May, 2000.

37. E. Shih et al. ”Physical Layer Drive Protocol and Algorithm Design for Enegy-Efficient
Wireless Sensor Networks.” Proceedings of ACM Mobicom ’01, pp272-286, Italy, July,
2001.

38. http://computer.howstuffworks.com/mote4.htm.

39. J.N. Al-Karaki, A.E. Kamal, ”Routing Techniques in Wireless Sensor Networks: A
Survey.” IEEE Wireless Communications, Volume 11, Issue 6, Page(s): 6 - 28, Dec.
2004.

40. D. Braginsky and D. Estrin, ”Rumor Routing Algorithm for Sensor Networks.” Pro-
ceedings of the First Workshop on Sensor Networks and Applications (WSNA), Atlanta,
GA, October 2002.

118

41. F. Ye, A. Chen, S. Liu, L. Zhang, ”A Scalable Solution to Minimum Cost Forwarding in
Large Sensor Networks.” Proceedings of the 10th International Conference on Computer
Communications and Networks (ICCCN), pp. 304-309, 2001.

42. C. Schurgers and M.B. Srivastava, ”Energy Efficient Routing in Wireless Sensor Net-
works.” MILCOM Proceedings on Communications for Network-Centric Operations:
Creating the Information Force, McLean, VA, 2001.

43. M. Chu, H. Haussecker, and F. Zhao, ”Scalable Information-Driven Sensor Querying
and Routing for Ad hoc Heterogeneous Sensor Networks.” The International Journal
of High Performance Computing Applications, Vol. 16, No. 3, August 2002.

44. Y. Yao and J. Gehrke, ”The Cougar Approach to In-network Query Processing in
Sensor Networks.” SIGMOD Record, September 2002.

45. N. Sadagopan et al., ”The ACQUIRE mechanism for Efficient Querying in Sensor Net-
works.” Proceedings of the First International Workshop on Sensor Network Protocol
and Applications, Anchorage, Alaska, May 2003.

46. R. C. Shah and J. Rabaey, ”Energy Aware Routing for Low Energy Ad Hoc Sen-
sor Networks.” IEEE Wireless Communications and Networking Conference (WCNC),
March 17-21, 2002, Orlando, FL.

47. S. Lindsey, C. Raghavendra, ”PEGASIS: Power-Efficient Gathering in Sensor Informa-
tion Systems.” IEEE Aerospace Conference Proceedings, Vol. 3, 9-16 pp. 1125-1130,
2002.

48. A. Manjeshwar and D. P. Agarwal, ”APTEEN: A Hybrid Protocol for Efficient Routing
and Comprehensive Information Retrieval in Wireless Sensor Networks,” Parallel and
Distributed Processing Symposium., Proceedings International, IPDPS, pp. 195-202,
2002.

49. L. Subramanian and R. H. Katz, ”An Architecture for Building Self Configurable
Systems.” Proceedings of IEEE/ACM Workshop on Mobile Ad Hoc Networking and
Computing, Boston, MA, August 2000.

50. Q. Fang, F. Zhao, and L. Guibas, ”Lightweight Sensing and Communication Protocols
for Target Enumeration and Aggregation”, Proceedings of the 4th ACM international
symposium on Mobile ad hoc networking and computing (MOBIHOC), pp. 165-176,
2003.

51. Jamal N. Al-Karaki, Raza Ul-Mustafa, Ahmed E. Kamal, ”Data Aggregation in Wire-
less Sensor Networks - Exact and Approximate Algorithms.”, Proceedings of IEEE
Workshop on High Performance Switching and Routing (HPSR), Phoenix, Arizona,
April 18-21, 2004.

52. Q. Li and J. Aslam and D. Rus, ”Hierarchical Power-aware Routing in Sensor Net-
works.” In Proceedings of the DIMACS Workshop on Pervasive Networking, May, 2001.

53. F. Ye, H. Luo, J. Cheng, S. Lu, L. Zhang, ”A Two-tier Data Dissemination Model for
Large-Scale Wireless Sensor Networks”, Proceedings of ACM/IEEE MOBICOM, 2002.

119

54. Y. Yu, D. Estrin, and R. Govindan, ”Geographical and Energy-Aware Routing: A Re-
cursive Data Dissemination Protocol for Wireless Sensor Networks.” UCLA Computer
Science Department Technical Report, UCLA-CSD TR-01-0023, May 2001.

55. R. Patra and S. Nedevschi. ”DTNLite: A Reliable Data Transfer Architecture for
Sensor Networks.” Technical report, 2003, CS294–1 Course Project Report, Berkeley.

56. A. Boukerche, R.W.N. Pazzi and R. B. Araujo, ”A Fast and Reliable Protocol for
Wireless Sensor Networks in Critical Conditions Monitoring Applications.” Proceedings
of the 7th ACM international symposium on Modeling, analysis and simulation of
wireless and mobile systems, Pages: 157 - 164, Venice, Italy, 2004.

57. N. Tezcan, E. Cayirci, M.U. Caglayan, ” End-to-end Reliable Event Transfer in Wire-
less Sensor Networks.” 15th IEEE International Symposium on Personal, Indoor and
Mobile Radio Communications, Vol. 2, Pages: 989- 994 Vol.2, Sept, 2004.

58. N. Xu, S. Rangwala, K. K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and
D. Estrin, ”A Wireless Sensor Network for Structural Monitoring.” Proceedings of
the 2nd international conference on Embedded networked sensor systems, Pages 13-24,
Baltimore, Maryland, 2004.

59. Y.G. Iyer, S. Gandham and S. Venkatesan, ” STCP: A Generic Transport Layer Pro-
tocol for Wireless Sensor Networks.” Proceedings of 14th International Conference on
Computer Communications and Networks, Pages 449-454, October 17-19, 2005.

120

Appendix: Permission Letters

From: j.hansson@ieee.org
To: ddatta1@lsu.edu
CC:
Subject: Yur Permission Grant
Date: Wednesday, June 13, 2007 2:48:45 PM
Dear Damayanti Datta :

This is in response to your letter below, in which you have requested
permission to reprint, in your upcoming thesis/dissertation, your the
described IEEE copyrighted material, We are happy to grant this
permission.

Our only requirement in regards to distributing the paper copies is that
the following copyright/credit notice appears prominently on the first page
of each reprinted paper, with the appropriate details filled in:

c© 2007 IEEE. Reprinted, with permission, from (complete publication
information).

If Louisiana State University should wish to place a copy of your IEEE
copyrighted paper on its web site, we are happy to grant this permission
also.

Our only requirement is that the following IEEE notice appears prominently
on the first page/screen of the reprinted paper, with the appropriate
details filled in:

Copyright c© IEEE. Reprinted from (relevant publication info).

This material is posted here with permission of the IEEE. Such permission
of the IEEE does not in any way imply IEEE endorsement of any of Louisiana
State University’s products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this
material for advertising or promotional purposes or for creating new
collective works for resale or redistribution must be obtained from the
IEEE by writing to pubs-permissions@ieee.org.

By choosing to view this document, you agree to all provisions of the
copyright laws protecting it.

Thank you.

Sincerely,

Jacqueline Hansson

121

IEEE Intellectual Property Rights Office
445 Hoes Lane
Piscataway, NJ 08855-1331 USA
+1 732 562 3828 (phone)
+1 732 562 1746(fax)
e-mail: j.hansson@ieee.org

From: ”Damayanti Datta” ¡ddatta1@lsu.edu¿
To: copyrights@ieee.org
CC:
Subject: permission to publish
Date: Wednesday, June 13, 2007 2:08:54 PM
Hi,

I need permission to publish the contents of the following paper as a part
of my PhD dissertation work. The paper is Reliable and Efficient Data
Transfer in Wireless Sensor Networks via Out-of-Sequence Forwarding and
Delayed Request for Missing Packets by Datta, Damayanti Kundu, Sukhamay.
Dept. of Comput. Sci., Louisiana State Univ., Baton Rouge, LA; This paper
appears in: Information Technology, 2007. ITNG ’07. Fourth International
Conference on Publication Date: 2-4 April 2007, On page(s): 128-133, ISBN:
0-7695-2776-0, INSPEC Accession Number: 9465309, Digital Object Identifier:
10.1109/ITNG.2007.165

Please let me know if you need any more information.
Thanks,
Damayanti Datta

122

Vita

Damayanti Datta was born in Kolkata, India. She received her Bachelor of Engineering

degree in chemical engineering from Jadavpur University, Kolkata, India, in 1996. She

worked in Paharpur Cooling Towers as a chemical engineer from 1996-1997 and in Cognizant

Technology Solutions as a software engineer from 1997-2000. In August 2000, she joined

the master’s program in computer science at Georgia Southwestern State University and

graduated in December, 2001. She joined the doctoral program in computer science at

Louisiana State University in January, 2002.

123

