
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2007

Oblivious transfer for secure communication
Abhishek Parakh
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Parakh, Abhishek, "Oblivious transfer for secure communication" (2007). LSU Master's Theses. 3382.
https://digitalcommons.lsu.edu/gradschool_theses/3382

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3382&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3382&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/3382?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F3382&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

OBLIVIOUS TRANSFER FOR SECURE

COMMUNICATION

A Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

in

The Department of Electrical and Computer Engineering

by
Abhishek Parakh

B. Tech., Dr. B R Ambedkar National Institute of Technology, Jalandhar, India,
 2005

December 2007

Acknowledgements

I sincerely thank Dr Subhash Kak for providing me with invaluable guidance, inspiring talks

and enthusiastic support throughout the course of my work. He has been very patient and equally

reciprocative in sharing my excitement during my research. He has not only been helpful in

research but also a mentor in all other realms of life.

I am indebted to Dr Suresh Rai and Dr Hsiao-Chun Wu for accepting my request to be on

the advisory committee. Dr Rai has spared his invaluable time in guiding me through the process

of thesis writing and Dr Wu has been an excellent teacher throughout my stay in the department.

Also, I would like to thank my family. Without their support I would not have been able to

embark on this journey of academic excellence.

ii

Table of Contents

Acknowledgements…………………………………………………………………...……….....ii

Abstract……………………………………………………………………………………….....iv

Chapter 1 Introduction... 1

1.1 Concepts .. 2
1.1.1 Public Key Cryptography ... 3

1.2 Oblivious Transfer .. 4
1.3 The Need for New Public Key Cryptosystems ... 5

1.3.1 Problem Formulation and Layout of the Thesis ... 7

Chapter 2 Implementing Oblivious Transfer ... 8

2.1 The Cubic Transformation .. 9
2.2 Oblivious Transfer .. 11

2.2.1 Comments ... 12

Chapter 3 Oblivious Transfer Using Elliptic Curves .. 13

3.1 Background ... 13
3.2 Key Observation ... 16
3.3 The Proposed Algorithm ... 16
3.4 Chosen One-out-of-two Oblivious Transfer ... 23
3.5 Conclusions ... 25

Chapter 4 Exchanging Secrets Using NTRU .. 26

4.1 Background ... 26
4.1.1 The NTRU Cryptosystem ... 27

4.2 The Proposed Technique ... 29
4.3 One-out-of-two Oblivious Transfer .. 31
4.4 Conclusions ... 33

Chapter 5 Oblivious Transfer Based on Key Exchange .. 34

5.1 Preliminary .. 35
5.2 Mutual Exchange of Secrets – The Proposed Protocol ... 36
5.3 One-out-of-two Oblivious Transfer .. 41
5.4 Coin-Flipping Protocols .. 43
5.5 Conclusion .. 44

Chapter 6 Conclusions .. 45

References .. 47

Appendix: Copyright Agreement .. 50

Vita ... 51

 iii

iv

Abstract

Over the past four decades, computational power and algorithmic strategies have advanced

tremendously resulting in an enormous increase in the key sizes required for secure

cryptosystems such as RSA. At the same time, the electronic devices have grown smaller and

portable requiring algorithms running on them to be optimized in size and efficiency while

providing security, at least, equivalent to that provided on a typical desktop computer.

As a result, the industry is moving towards newer cryptosystems such as ECC and NTRU

that are well suited for resource constrained environments. While, ECC claims to provide

security equivalent to that of RSA for a fraction of key size, NTRU is inherently suited for

embedded systems technology.

However, implementation of new cryptosystems requires the development of protocols

analogous to those developed using older cryptosystems. In this thesis, we fulfill a part of this

requirement by providing protocols for Oblivious Transfer using ECC and NTRU. Oblivious

Transfer, in turn, has applications in simultaneous contract signing, digital certified mail,

simultaneous exchange of secrets, secure multiparty computations, private information retrieval,

etc.

Furthermore, we introduce the idea of basing Oblivious Transfer on public-key exchange

protocols. The presentation in the thesis uses Diffie-Hellman Key Exchange, but the scheme is

generalizable to any cryptosystem that has a public-key exchange strategy. In fact, our proposal

may especially be suited for Quantum Cryptography where the security of key exchange

protocols has been proven.

Chapter 1

Introduction

Cryptography is closely related to information theory. It is the art of making a piece of

information unintelligible to certain people while letting some others make sense of it.

Cryptography has been used for thousands of years, mainly in wars and conspiracies where the

outcomes have been significantly affected by its proper use. The Second World War was a

monstrous proof of this fact. However, today almost every person in a slightly technologically

well to do society uses cryptography knowingly or unknowingly, the “simplest” examples being

emails, credit cards and phone conversations. Banks rely heavily on their ability to securely

communicate with their clients. Further, cryptography has applications in secure storage of

information/data, secret-sharing, digital copy-rights management, exchanging secrets,

simultaneous contract singing, online games and so on.

If you are thinking, “I am not concerned with any of the above mentioned applications of

cryptography, never used a credit card, never used Internet and do not even know the meaning of

a computer; therefore, I do not need cryptography,” you cannot be further away from the truth.

Every time when you leave your home, you certainly lock it, and only those who possess the

correct key can enter. The key represents the secret information that is needed to open the lock. It

may be in the form of a secret number (for a number lock) or ‘jagged’ combination of teeth on a

conventional key. This is a form of cryptography. The only ways to open the lock (other than

using the right key) are to prop it open (a brute force attack) or let a lock-smith try his skills (a

form of cryptanalysis).

1

1.1 Concepts

The field of cryptography can be divided into two subfields: the symmetric key

cryptography (secret-key cryptography) and the asymmetric key cryptography (public-key

cryptography). While the symmetric key cryptography has existed for thousands of years, the

asymmetric key cryptography is a product of the computer age that dawned upon us about four

decades ago; the former still remains the most secure form of encryption.

In a symmetric key encryption scheme, given an encryption/decryption key pair (, it is

computationally “easy” to determine knowing only the value of e , and to determine from

. Therefore, both encryption and decryption keys need to be kept secret. Since in most

practical cases, the terms: single-key, one-key, conventional encryption and most importantly

secret-key encryption can be found in the literature [22].

)de,

e

d

d

d e =

Even though symmetric key cryptography is extremely secure, it suffers from two

fundamental problems: key-distribution and the extremely large number of keys required. The

task of distribution has been traditionally accomplished by secure couriers. However, in the

electronic age, with literally millions of users trying to establish secure sessions separated by

thousands of miles, couriers become impossible. Moreover, the users need to change the shared

session key from time to time.

These practical difficulties brought upon the scientists the need to develop asymmetric key

ciphers, often termed as Public-Key Ciphers (PKC). In the PKC, given an encryption key it is

computationally infeasible to determine the corresponding decryption key . Therefore, the

encryption key can be made public while keeping the decryption key secret [22]. This eliminates

the problem of key-distribution, as the encryption key can be posted on standard forums, and

e

d

2

significantly reduces the number of keys required in order to communicate between a given

group of players.

Public-Key Cryptography (also abbreviated PKC) seems very useful but it is much weaker

in security (for a given key size) and order of magnitudes slower than symmetric-key

cryptography. In other words, PKC requires much larger key sizes to achieve the same level of

security as the secret-key cryptography. Therefore, public-key cryptographic schemes have come

to be used for secret key transports and once the shared secret keys are delivered, secure sessions

can be established using the conventional methods of encryption. Apart from key distribution,

the other applications of PKC include Digital Signatures, Digital Certificates, Data Integrity

Check, Oblivious Transfer, etc [30].

1.1.1 Public Key Cryptography

The Public Key Cryptography had its inception in the 1970’s when Ralph Merkle [6]

showed that it was possible to create problems of controllable difficulty using puzzles. Though

Merkle’s idea laid the foundations of public-key cryptography, it was little appreciated until

Whitfield Diffie and Martin Hellman, published their paper, ‘New Directions in Cryptography’

[5] that finally catapulted the idea of public-key cryptography to new heights.

The two major public-key schemes that emerged in the 1970s were the Diffie-Hellman

scheme for key agreement in 1975 [5] and the key transport and digital signature scheme

proposed by Rivest, Shamir and Adleman (RSA [29]) in 1977. The security of the Diffie-

Hellman scheme is based on the hardness of the discrete logarithm problem while the RSA

scheme assumes that its security to be based upon the difficulty of integer factorization.

In 1979, Michael O Rabin proposed a cryptosystem [27] based on the square transformation

which was prohibited from use in the RSA scheme. The major advantage of Rabin’s

3

cryptosystem was that he could prove its security to be equivalent to integer factorization, which

in the case of RSA is only an assumption.

Even though Rabin’s cryptosystem has a formal proof of its security being equivalent to

integer factorization, it has found little application because of the additional overhead needed to

provide disambiguation of the decrypted message.

An alternate sequence of development of public-key cryptography can be found in [7].

1.2 Oblivious Transfer

In 1981, Rabin discovered an interesting application for his cryptosystem and he called this

new scheme as ‘Oblivious Transfer’ [28]. An oblivious transfer scheme is a protocol in which a

sender sends a message to a receiver with some fixed probability between 0 and 1 without the

sender knowing whether or not the receiver received the message.

Rabin presented the idea of OT applying it to solve the problem of mutual exchange of

secrets; his protocol worked only for honest parties; Fischer, Micali and Rackoff presented a

protocol [12] which used the concept of zero-knowledge proofs to make the “exchange of

secrets” protocol secure against dishonest players. Blum [1] applied the notion to coin flipping,

secret exchange and certified electronic mail.

In 1983, Even, Goldreich and Lempel [9] introduced the idea of 1-out-of-2 oblivious transfer

where the sender (Alice) sends two secrets and and the receiver’s (Bob’s) input is choice

bit ; the latter then learns but gets no information about the other secret . In turn, Alice

does not know which of the two secrets Bob has retrieved.

0S 1S

b bS bS −1

4

Kilian [20] proved that the notion of 1-out-of-2 oblivious transfer was enough to develop all

secure two party schemes for oblivious circuit evaluation. The idea of Private Information

Retrieval was introduced in [3, 4, 21].

1.3 The Need for New Public Key Cryptosystems

Although the above developments were all based on ‘exponential modular arithmetic’, other

cryptosystems were being developed in parallel. Most prominent were the McEliece

cryptosystem based on algebraic coding theory and the ElGamal public-key encryption and

signature scheme in 1984. The ElGamal scheme was seen as a rival to the RSA scheme and was

based on the discrete logarithm problem rather than integer factorization [6].

The Elliptic curve cryptography (ECC) was discovered by Victor Miller and Neal Koblitz in

1985 again based on the discrete logarithm problems. In 1996, J. Hoffstein, J. Pipher and J.H.

Silverman, presented the NTRU (Number Theorists aRe Us) cryptosystem which is based on the

ring of truncated polynomials [24]. NTRU has come to be known for its efficiency in creating

public/private key pairs which makes it feasible to change keys often as well as its encryption

and decryption speed.

Two reasons for the upcoming of new cryptosystems are: first, due to the advancement in

factorization techniques and increase in computational power, RSA requires at least a 1024 bit

key for secure encryption. Second, the electronics industry has seen devices grow smaller.

Handheld PDAs, cell-phones with built in internet capabilities, sensor networks that gather

crucial military data, embedded systems, etc. have very limited battery life and limited

processing power. The algorithms used on them need to be optimized not only in size (due to

limited memory) but also in speed (efficiency). Further, Internet access on PDAs and cell-phones

means that large number of people use these media for bank transactions, emails access, private

5

chats, etc. Therefore, security provided in them has to be at power if not greater than that which

is available on a desktop computer.

According to the National Institute of Standard and Technology (NIST) the keys in the

public key cryptosystems must match in strength with the symmetric cryptosystems such as

Advanced Encryption Standard (AES) [6]. This is because AES uses public-key cryptosystems

to provide digital signatures for non-repudiation and key agreement techniques that greatly

simplifies key management. A 128-bit AES key requires a 3072-bit RSA key and a 256-bit key

requires an RSA of 15,360 bits. On the other hand, cryptosystems such as ECC scale linearly

with AES and maintain comparable key sizes. Therefore, a 512-bit key size for ECC suffices for

a 256-bit AES algorithm [6]. ECC is showing up in standardization efforts, including the IEEE

P1363 Standard for public-key cryptography [32].

A comparison of the key size requirements is given in Table 1.1.

Table 1.1. NIST guidelines for key sizes to maintain equivalent strengths across
various cryptosystems [6].

Security
(bits)

Symmetric
encryption
algorithm

 Minimum Size of Public Keys (bits)

 DSA/DH RSA ECC

80 - 1024 1024 160
112 3DES 2048 2048 224
128 AES-128 3072 3072 256
192 AES-192 7680 7680 384
256 AES-256 15360 15360 512

If ECC claims smaller key sizes, NTRU provides faster encryption even with key sizes

comparable to that of RSA. Specifically, NTRU claims that for a key consisting of bits, RSA

and ECC systems require on the order of operations to encrypt or decrypt a message, while

NTRU requires only on the order of operations [24]. As a result NTRU is making an impact

on the embedded systems industry and is being considered for numerous standards.

N

3N

2N

6

1.3.1 Problem Formulation and Layout of the Thesis

From the previous sections, we can conclude that there is a need for implementation of new

cryptosystems that are suitable for low power devices with limited computational power. Also,

we have seen that oblivious transfer is an important idea and is a basis for a number of “high

level” protocols. Therefore, the development of protocols using cryptosystems such as ECC and

NTRU, that are analogous to those that have been developed using exponential arithmetic, is

needed. This will provide a smooth transition from present technology to the new ones.

In Chapter 2, we describe the “traditional” oblivious transfer scheme but present its

implementation using a new class of transformation introduced in [16]. Chapter 3 provides

protocols for oblivious transfer using Elliptic Curve Cryptography. We will follow setup similar

to that described in [28] and provide solution for mutual exchange of secrets and 1-out-of-2

oblivious transfer. In Chapter 4 the solution to the above two problems is presented using the

NTRU cryptosystem. In chapter 5, we develop an oblivious transfer protocol based on the idea of

public-key exchange. Even though we explicitly provide a scheme that is based on Diffie-

Hellman transformation, the idea is to introduce new implementation strategy for OT based on

key exchange, different from those used before. This has the advantage of generalizing the

scheme to all the new cryptosystems, since all of them have an implicit key exchange strategy in

them. Chapter 6 discusses the conclusions and future work.

7

Chapter 2

Implementing Oblivious Transfer

Public-Key Cryptography involves the use of trapdoor functions. Some of these are one-to-

one functions, while the others are many-to-one functions. The idea of OT was first developed

using the latter type of function. Rabin described OT using the square transformation of the form

, nmc mod2= qpn ×= , p and are primes, which results in two or four messages being

mapped to a single cipher. Hence, Alice would convey the factors of (assuming Alice is

using a public key encryption method of the form , where is the encryption

exponent) without knowing for sure whether Bob received the factors or not. In other words, Bob

may or may not receive the factors, each happening with probability one-half. Now when Alice

sends her secret to Bob encrypting it using her public-key encryption function, Bob will be able

to decrypt it only if he has the key (a 50-50 chance).

q

An

eA
e nmc mod=

Another interesting class of many-to-one functions was introduced by Kak [16]. He

discussed the application of the transformation of the type ; where, n is a product

of two primes

nmc mod3=

p and such that the Euler’s Totient function q ()nφ is divisible only by 3 and not

9. This case was overlooked in [27], where the author had implicitly assumed that ()nφ is

divisible by 9.

The restriction on ()nφ [16] implies that only one of the factors of , say n p , is of the form

, while the 13 +k () 13), =qGCD (φ ; (GCD stands for Greatest Common Divisor). Such an

arrangement causes only three clear-text messages to map to a single cipher; one message less

8

than the square transformation. Also, Kak’s cubic transformation gives rise to a two-third

probability of transfer when used to implement oblivious transfer.

In the following sections, we first briefly review Kak’s scheme and then discuss its

application to oblivious transfer.

2.1 The Cubic Transformation

Consider the transformation , where pmc mod3= 13 += kp and . The

condition simplifies calculations; in general, one may use other values of

4mod3=p

4mod3=p p . If

 is not divisible by 9, the inverse 1−p 3
1

c can be obtained by using:

⎪⎩

⎪
⎨
⎧

= +

+

9
22

9
2

31
p

p

c

cc (2.1)

The reason for this is the fact that by Fermat’s Little Theorem and .

Hence,

11 ≡−pc 33)1(cc pa ≡+−

3
1

9
3)1(

cc
pa

≡
+−

. If 69mod1 =−p , then 2+p is divisible by 9; if 39mod1 =−p , then

 is divisible by 9. Consequently, the result in equation 2.1. 3)1(2 +−p

It turns out that the cube roots of 1 are 1, α and . Therefore, the cube roots of an

arbitrary are ,

2α

c m αm and . Hence, it suffices to fix a single value for 2αm α , between Alice

and Bob.

The three cube roots of 1 may be obtained by solving the equation: . Apart from

1, the other two roots can be obtained by solving , which is easily possible if the

square root of

013 =−α

012 =++αα

3−p exits. By Euler’s criterion, is a square modulo b p if and only if

pb p mod12)1(≡− . Since , the square root 4mod3=p 4121 += paa , we can write

if 69mod1 =−p

if 39mod1− =p

9

⎜⎜
⎝

⎛
±−= (1

2
1 pα ⎟⎟

⎠

⎞
−

+
4

1

)3
p

 (2.2)

Now, consider the transformation , where nmc mod3= 13 += kp

c

 and is relatively

prime to 3. This makes only 3 messages m to map to a single cipher . To find the inverse we

may use:

1−q

⎪⎩

⎪
⎨
⎧

= +

+

9
3)(2

9
3)(

31
n

n

c

cc φ

φ

 (2.3)

Since, we deal with computations modulo qpn ⋅= , we can solve the equation

modulo the two primes factors of separately and then combining the results to generate an

answer modulo .

013 =−α

n

n

Example 2.1: Set and 7=p 11=q . Our first task is to find the solution to the cube root of

1. We can do so by using the Chinese Remainder Theorem (CRT) and solving:

separately, modulo 7 and 11.

013 =−α

For , we note that is square modulo 7, and therefore, 7=p 43 =−p 4,2=pα by equation

(2.2). However, we note that is not a square modulo 11, therefore equation (2.2) cannot

be used. Hence, we use

83 =−q

1=qα only; the other values can be found using probabilistic algorithms

however, they are not needed. Combining the result using CRT:

() ()() nqpppqq qp modmodmod 11 −− ××+××= ααα (2.4)

We obtain the two values 231 =α and 672 =α . Alice and Bob may, beforehand, agree to

use 23=α . (Note that). 77mod2
12 αα =

if 69mod)(=nφ

if 39mod)(nφ =

10

Returning to our example, if 12=m , then other values that will map to the same cipher are

34=αm and . Bob may send the cipher along with side information that helps Alice

decide on which of the possible cube roots is the message.

452 =αm

2.2 Oblivious Transfer

Suppose Alice is using an encryption function of the form , where

, , GCD

Anmc mod3=

AAA qpn ⋅= 13 += kpA 1)3,1(=−Aq and 4mod3=p , to encrypt her secret and that

she wants to send this encrypted secret to Bob, obliviously. For Bob to decrypt the secret he must

have the decryption key, which in this case is equivalent to having the factors of . However,

in an oblivious scheme the recipient should obtain the secret only with a fixed probability

between 0 and 1. Thus, the problem of oblivious transfer of secret reduces to the problem of

oblivious transfer of the decryption key.

An

The encryption exponent 3 and are public. The transfer proceeds as follows: An

1. Bob randomly chooses an Anx < and sends to Alice A . B nxc mod3=

2. Alice computes AB ncx mod3
1 = (since she knows the factors of An) and sends it to

Bob.

3. Bob evaluates)),((1 AnxxGCDy −= .

After step 3, py = or q with a two-third probability. Consequently, Bob can compute the

decryption key with a probability of two-third.

To see the working of the algorithm consider the example below:

Example 2.2: Let and 13=Ap 3=Aq , 39313 =⋅=⋅= AAA qpn . Let Bob’s choice be

. And he sends to Alice. Alice then computes the cube root of 5 11=x 539 =mod113=Bc

11

modulo 39. Note that . Hence, Alice may send either 11, 8 or 20; each

with equal probability, since She does not know what was Bob’s choice.

39mod520811 333 ≡≡≡

If Alice sends 11, Bob computes 0)39),1111((=−= GCDy

11((

. He does not receive the

factors.

If Alice sends 8, Bob computes 3)39,3()39),8 ==−= GCDGCDy

((

. He receives . Aq

If Alice sends 20, Bob computes 3)39,9()39),1120 ==−= GCDGCDy

)(An

. He receives . Aq

Therefore, we see that Bob receives the factors with a probability two-third. He can

consequently compute φ and the decryption key. Alice is completely unaware as to whether

Bob received the factors or not. Her knowledge is limited to the apriori probability of two-third.

Hence, we have achieved our goal of oblivious transfer.

2.2.1 Comments

Rabin’s protocol was built on the square transformation giving rise to an oblivious transfer

probability of one-half. Thus the protocol for mutual exchange of secrets, implemented by Rabin,

has a non-termination probability of one-quarter for every iteration. However, using Kak’s cubic

function a mutual exchange of secrets protocol would have a non-termination probability of only

one-ninth.

Moreover, probabilities of transfer other than one-half may be useful in certain applications

such as lottery draws, where the probability of draw of prizes of larger value must be lower than

the probability of draw for the prizes of lower value.

12

Chapter 3

Oblivious Transfer Using Elliptic Curves*

As seen in the Chapter 1, Elliptic Curve Cryptography (ECC) has started to show up as a

serious competitor to RSA due to the tremendous increase in key length required for a secure

RSA putting a heavier processing load on applications implementing it. ECC offers equal

security compared to RSA for much smaller key sizes, thereby reducing processing overhead.

Rabin [28] presented the notion of oblivious transfer while developing a solution to the

problem of mutual exchange of secrets between two distrustful parties. We develop a similar

protocol for oblivious transfer using ECC and apply it to provide a solution for mutual exchange

of secrets and also implement the 1-out-of-2 oblivious transfer.

3.1 Background

ECC is a public-key cipher that is based on the use of an abelian group. Another example of a

well known cipher based on the abelian group is the Diffie-Hellman key exchange where the

encryption keys are generated by exponentiation over the group. For elliptic curve cryptography,

addition over the group is used and multiplication is replaced by repeated addition. For example,

, where the addition is performed over an elliptic curve [8, 32]. (vvvkv +++=× K)

In general, an elliptic curve is defined by an equation containing two variables, with

coefficients belonging to the set of real numbers. However, for cryptographic purposes the

variables and coefficients are restricted to elements in a finite field:

pbaxxpy mod)(mod 32 ++= (3.1)

13

*Journal version: Cryptologia, Volume 31, Issue 2 April 2007, pages 125 – 132.

where and are integer constants and is a prime . The set of points is a set

of all

a b p),(baE p),(yx

x and satisfying (3.1). y

The order r of a point on an elliptic curve is defined as the smallest positive

integer

),(11 yxT =

r such that ; the evaluation of 0=rT rT is a computation done on elliptic curve [8]. A

point is called a base point in and is picked such that its order G)b,(aE p r is a very large

value.

A finite abelian group can be defined based on the set provided that

 has no repeated factors, which is equivalent to the condition

. The rules for arithmetic stated below hold good for both the

elliptic curves defined over real numbers as well as the finite field [32]. For any points

:

),(baE p

pbaxx mod)(3 ++

pba mod)274(23 +

),(, baEQP p∈

pmod0≠

1. O serves as the additive identity. Thus POP =+ and OO −= .

In the following we assume that OP ≠ and OQ ≠ ,

2. If),(PP yx then the point),P = (PP yx − is the negative of P , denoted as P− .

3. Multiplication is defined as repeated addition; i.e. PPPPP +++=4 .

4. If),(PP yx ,),(QQ yx and QPP = Q = −≠ , then),(RR yxQPR =+= is determined

by the following rules:

pxxx QPR mod)(2 −−= λ

pyxxy PRpR mod))((−−= λ

14

 Where,

⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +

≠⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

−

=

QPifp
y

ax

QPifp
xx
yy

P

P

PQ

PQ

mod
2

3

mod

2

λ

Thus the addition operation on elliptic curves is analogous to modular multiplication in RSA

and the repeated addition is the analogous to modular exponentiation. The security of ECC arises

from the fact that for , where kPQ =),(, baEPQ p∈ and pk < , it is easy to calculate Q given

the values of and , but it is relatively very hard to determine given the values of and k P k Q

P ; this is the discrete logarithm problem over the elliptic curves [32].

A standard elliptic curve transfer proceeds as follows. Encode the plain text message m to

be sent as an (- point . It is the point that will be encrypted as cipher-text and

subsequently decrypted. We cannot simply encode the message as the

)yx , mP mP

x or coordinate at a

point, because not all such coordinates are in . User Alice selects a private key n and

generates a public key U . Similarly, Bob generates a public key U . To encrypt and

send a message to Bob, Alice chooses a random positive integer and produces a cipher-text

 consisting of the pair of points

y

B

),ba(E p A

GA = nA ×

mP k

mC

};{ Bmm kUPkGC +=

Alice has used Bob’s public key . To decrypt the cipher-text, Bob multiplies the first

point in the pair with his own secret key and subtracts the result from the second point:

BU

() () () mBBmBBm PkGnGnkPkGnkUP =−+=−+

15

Note that Alice has masked the message by adding to it. Nobody but Alice knows

the value of , so even though is public, nobody can remove the mask . Reader may

refer to [8] for further background on elliptic curve cryptography.

mP BkU

k BU BkU

With the above background on Elliptic Curve Cryptography, we set forth on the task of

developing the protocol for oblivious transfer.

3.2 Key Observation

If we compare the square transformation in [28] and the elliptic curve equation given by

(3.1), we can rewrite (3.1) as

Xpy =mod2 (3.2)

where . It should be clear to the reader that for every pbaxxX mod)(3 ++= x coordinate there

are two possible coordinates. However, unlike in the square transformation, here neither y x

nor can be substituted for a message, because not all values of y x and are permissible in

ECC.

y

3.3 The Proposed Algorithm

Our aim is to allow exchange of secret and between two parties Alice and Bob

without using a trusted third party and without simultaneous exchange. Here, we do not go into

the details of signing the messages using ECC and take it for granted that all the messages are

signed.

AS BS

Both Alice and Bob select a common elliptic curve . This information is public.

They then decide upon one

),(baEq

x -coordinate. Let the two points corresponding to this x -coordinate

be and , whereupon by symmetry 1P 2P 21 PP −= . The x - coordinate is also public knowledge.

16

Since, Alice and Bob have not decided upon which - coordinate to use, we will denote Alice’s

choice of point as and Bob’s choice as , such that

y

AP

P=

BP

2P1PA or PA =

Similarly, or 1PB P= 2PPB = .

Even though the x - coordinate is common, neither party knows what is the final point

chosen by the other because there are two possible - coordinates to choose from. y

P

Now, let Alice choose a secret key , which she wishes to use for encryption of her

messages, with the aim of obliviously conveying this secret key to Bob. Also, we assume that

a procedure for mapping of to a point on elliptic curve has been pre-decided. We call the

point on our elliptic curve, corresponding to , as . Thus, if a person knows , he can

deduce from it. Similar, arrangement is made on Bob’s side too.

An

An

An

An
An AnP

An

With the above assumptions, the oblivious transfer of the secret key proceeds as follows:

1. Alice sends to Bob : AAP n

() RPn AA2. Bob sends to Alice : { BB Pn ; nB + ; RnB }

where, is Bob’s secret key Bn
 R is randomly chosen point by Bob, belonging to the group .),(baEq

3. Alice computes : An [() ()BPBA nAAB nPnn R −+] = Q

4. Alice sends to Bob : { P(nn BBA) Q+ ; ()B R

AnA Pnn + }

5. Bob computes :

a.)AAB = () (BA PnnQPn −+Bn K

b. = B () KnPRn BnA A

−+ ZnB

17

The sequence of steps presented above achieves our goal of oblivious transfer. The two

cases that arise in such a transfer are BA PP = and BA PP ≠ . We discuss these two cases below

and show how the algorithm given above achieves our goal.

The difference between the two cases arises in step 3. Hence, we analyze them step 3

onwards.

Case I: BA PP =

3. Alice computes : An [() ()BBAAAB PnnRPnn −+] = Rn A

4. Alice send to Bob : { () RnPnn ABBA + ; ()

AnBA PRnn + }

5. Bob computes :

a. = Rn () ()AABABBA PnnRnPnn −+ A

b.)Rnn =

AnP () (PRnn ABnBA A
−+

Case II: BA PP ≠

In this case, we note that . Therefore, the results are as follows: BA PP −=

3. Alice computes : An [() ()BBAAAB PnnRPnn −+] = An [() RPnn AAB +×2]

4. Alice send to Bob : { () ()]2[RPnnnPnn AABABBA +×+ ; ()
AnBA PRnn + }

5. Bob computes :

a. () () ()AABAABABBA PnnRPnnnPnn −+×+]2[= K

b.)Kn ≠
AnP () (PRnn BnBA A

−+

Note: K is never equal to unless RnA BA PP = or)0,0(== BA PP . Hence, the users are not

allowed to choose and)0,0(=AP)0,0(=BP in our algorithm.

18

Once the receiver knows , he can deduce from it. Therefore, this point forward we

refer to as .

AnP An

AnP An

However, it is to be noted that no matter what calculations are performed by Bob in step 5,

he cannot get if . The problem is equivalent to the discrete log problem in case of

.

An BA PP ≠

BA PP ≠

Since, with probability one-half, Bob receives the secret key with probability

one-half.

BA PP = An

Returning to our algorithm, Bob can verify the value he has obtained from step 5,

whether it is or not, by doing

BZ

An 1PZB × and 2PZ B × and checking if one of them is equal to

 sent to him by Alice in the first step. AAPn

In a similar manner, Bob transfers his secret key to Alice with probability one-half. Once

this transfer has been achieved we can follow steps similar to those proposed in [28] in order to

prevent cheating by either of the parties during exchange of information. Here, we present these

steps, adapting them to suit elliptic curve transfers. We define the state of knowledge of the

secret keys as follows:

Bn

⎩
⎨
⎧
Μ
Μ

=
,
,

AW
if Alice does not know Bob’s secret key

if Alice knows Bob’s secret key

Similarly,

⎩
⎨
⎧
Μ
Μ

=
,
,

BW
if Bob knows Alice’s secret key

if Bob does not know Alice’s secret key

where Μ is a constant and Μ is the bit wise complement of Μ .

19

After the transfer of keys according the algorithm presented in this chapter and having

defined the state of knowledge of keys as above,

Alice sends to Bob: AA SW ⊕

Bob sends to Alice: BB SW ⊕

Note: Reader may be reminded from the start of Section 3.3 that is Alice’s secret which

Bob wishes to know and is Bob’s secret which Alice wishes to know.

AS

BS

Note that the above two steps do not provide either party any information about the other’s

secret. Now, Alice may transfer her secret to Bob using an elliptic curve cryptographic transfer.

However, in our scheme, Alice will encode her secret using her secret key and not the public key

of Bob. (From section 3.1) We take G to be the base point with large order.

Alice sends to Bob : GnS AA +

Bob computes (assuming he knows) : An GnGnS AAA −+ = AS

Bob transfers his secret to Alice in the next step in a similar manner. However, suppose, at

the last step Bob were to cheat and not pass on his secret to Alice, then the fact that Bob has

cheated Alice implies that Bob has , i.e.

BS

An BB SW ⊕ = BS⊕Μ . Here ⊕ denotes Exclusive-OR

operation.

Thus, Alice can do BB SS =Μ⊕⊕Μ and thus obtain . The probability, when the

protocol is completed, that neither one knows the other’s secret is one-quarter.

BS

Example 3.1: Let Alice and Bob choose an elliptic curve . The equation

corresponding to this curve is . Now, both parties, Alice and

Bob, decide upon a common

)21,9(23E

23mod)219(23mod 32 ++= xxy

x -coordinate, say 7. The two points corresponding to this x -

20

coordinate are and)6,7(1 =P)17,7(2 =P

5

. From the properties of elliptic curves, we have

. 21 PP −=

Let Alice choose a secret number =An

)1,2(

)6,7(=

)6,7(5

. We do not explore the details of mapping of to

a point on the elliptic curve and just refer to it as . In turn, let Bob choose a secret number

 and a random point . Now we execute our algorithm by considering the two

cases separately:

An

AnP

3=Bn =R

Case 1: and)6,7(=AP BP

1. Alice sends to Bob:)18,11(==

10,1({
,7(3{}

=
=RB

[5
[5
[5

])

=
=
=

= QPBB

15({

({})
AnP

=

AAPn .

2. Bob sends to Alice:

})19,14();5,11();
})1,2(3);1,2()18,11(3);6;; +nRPn BB)(+Pnn AAB

) −+ RPn AA

;) AB nQP

{

n

{

3. Alice computes:

)17,7(])1,2(
])9,13()5,11(

])10,1(5)5,11(
(([

=
−
−

nnn ABA

4. Alice sends to Bob:

})13,1(;)9,

})19,14(5;)17,7()9,13((

A

A

n

nBBA

P

PRnnn

+

++=+

n AAB

+

Pnn BBA

5. Bob computes:

a) KPnQ =−+)() (
15()18,11(3)9, −=

)9,13()9,15(= −
)17 ,7(=

b))17,7(3)13,1()()(−+=−+
AA nBnBA PKnPRnn

21

)13,1()13,1(−+=
AnP

AnP=

Case 2: and)6,7(=AP)17,7(=BP

1. Alice sends to Bob:)18,11()6,7(5 ==AAPn .

2. Bob sends to Alice:

})19,14();5,11();13,1({
})1,2(3);1,2()18,11(3);17,7(3{};)(;{

=
+=+ RnRPnnPn BAABBB

3. Alice computes:

)7,9(])11,3([5
])14,13()5,11([5
])13,1(5)5,11([5

])()([

==
−=
−=

=−+ QPnnRPnnn BBAAABA

4. Alice sends to Bob:

})13,1(;)2,17({

})19,14(5;)7,9()14,13({})(;)({

A

AA

n

nnBABBA

P

PPRnnQPnn

+=

++=++

5. Bob computes:

a) KPnnQPnn AABBBA =−+)()(
)18,11(3)2,17(−=

)9,13()2,17(−=
)22,2(=

b))22,2(3)13,1()()(−+=−+
AA nBnBA PKnPRnn

)4,14()13,1(−+=
AnP

 AnP≠

22

3.4 Chosen One-out-of-two Oblivious Transfer

The chosen one-out-of-two oblivious transfer [9], - OT for short, is an important

application of the basic oblivious transfer protocol. In this transfer, the sender sends two secrets

 and and the receiver’s input is choice bit c ; the latter then learns but gets no

information about the other secret .

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
2

0S 1S cS

cS −1

This transfer has been implemented using exponentiations. Here we show that the one-out-

of-two oblivious transfer can be implemented using the algorithm we presented.

We assume that both parties are willing to take part in the protocol honestly, i.e. Alice is

willing to disclose one out of two secrets that she has to Bob, but Bob does not want Alice to

know which one secret he wants to know. Also, Bob should learn only the one secret he wants to

know and nothing about the other.

In other words, Alice is said to have two secrets and . Alice associates different secret

keys to each secret. These secret keys will be used to encrypt and when transferring them

to Bob. Bob must be able to retrieve only one of these two secrets and Alice should not come to

know what Bob has extracted.

0S 1S

0S 1S

Let Alice associate keys with and with for encryption. Bob’s task is to

retrieve one of these two keys; i.e., retrieve if he wants to know . The retrieval should be

accomplished in such a manner that Alice should not be able to determine which key Bob has

retrieved and Bob should not gain any information about the key he could not retrieve.

0An 0S
1An 1S

1An 1S

23

Recall, from the previous section that every x - coordinate yields two points and such

that . Alice declares that she is associating secret with point and secret with

point . The transfer of the secrets then proceeds as follows:

1P 2P

1S21 PP −=

2P

0S 1P

1. Alice sends to Bob : { 10
PnA ; 21

PnA }

2. Bob sends to Alice : { BB Pn ; () RPnn AB +10
 ; () RPnn AB +21

 ; RnB }

3. Alice computes :

0An [() ()BBAAB PnnRPnn
00 1 −+] = ; 1H

1An [() ()BBAAB PnnRPnn
11 2 −+] = . 2H

4. Alice sends to Bob :

{ ; () 10
HPnn BBA + ()

00 AnBA PRnn + ; () 21
HPnn BBA + ; ()

11 AnBA PRnn + }

Note:
0AnP and

1AnP is the mapping of secret keys
0An and

1An to points on the elliptic curve.

Bob must have chosen in the second step such that BP 1PPB = if Bob wants secret and

 if Bob wants secret . Therefore after step 4, Bob picks up only one of the two pairs of

points sent to him by Alice which will yield the secret key he wants.

0S

2PPB = 1S

For example, if Bob has chosen 1PPB = then the first pair of points in step 4, i.e.

{ ; () 10
HPnn BBA + ()

00 AnBA PRnn + }, will yield in the following manner :
0An

5. Bob computes :

a) () () RnHPnnHPnn AABBBA 000 111 ==−+

b) () ()RnnPRnn ABnBA A 000
++ =

0AnP .

24

From
0AnP , Bob can easily calculate

0An . The second pair of points will not yield any key.

Thus, Bob can get only one of the two secret keys and Alice remains oblivious to the fact that

which of the two keys did Bob retrieve.

Alice may send both the secrets to Bob in the following manner:

Alice sends to Bob: { ; GnP As 00
+ GnP As 11

+ }, where is the mapping of secret to the

elliptic curve and is the mapping of secret to the elliptic curve.

0sP 0S

1s
P 1S

Bob will be able to retrieve only in our example because he has only and hence

obtain . He will not be able to get any information from the second half of the message about

secret . Alice does not know which of the two secrets Bob obtained. We have achieved our

goal of chosen one-out-of-two oblivious transfers.

0sP
0An

0S

1S

3.5 Conclusions

This chapter has described the idea of oblivious transfer using elliptic curves and presented

an algorithm for its implementation. Also we describe the application of our protocol to the

solution of the problem of - OT.
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
1
2

The algorithm presented here may be expressed in different variants. The key contribution is

the introduction of oblivious transfer to ECC. The one-out-of-two oblivious transfer may be

further modified in order to obtain 1-out-of-n oblivious transfer.

In the next chapter, we will develop a protocol for mutual exchange of secrets using NTRU

cryptosystem. As mentioned before, though NTRU does not provide any decrease in key sizes, it

is inherently faster in implementation and especially suited for embedded technology.

25

Chapter 4

Exchanging Secrets Using NTRU

In this chapter we will discuss the NTRU cryptosystem and develop the idea of oblivious

transfer using NTRU. The application of the idea to the problem of mutual exchange of secrets is

presented in section 4.2. While the section 4.3 presents a protocol for 1-out-of-2 oblivious

transfer.

4.1 Background

NTRU is a cryptosystem based on the use of polynomials of degree with integer

coefficients; e.g.,

1−N

1
1

3
3

2
210

−
−+++++= N

N xaxaxaxaaa K

Any two polynomials and are added together in the usual manner of polynomial

addition by summing up the coefficients of similar powers of

a b

x . Example,

() (()) () 1
11

2
21100

−
−− +++++++=+ N

NN xbaxaxbababa K2b+ . Similarly, the multiplication

laws hold true for the polynomials provided the powers of x are suitably mapped to 1−N by

replacing by 1, by Nx 1+Nx x and so no. The set of all such polynomials is denoted by R [24].

The above addition and multiplication rules make R into a ring, which is called the Ring of

Truncated Polynomials. In terms of abstract algebra we work in the ring
1
][
−

Ζ
= Nx

xR .

The NTRU public-key cryptosystem uses the ring of truncated polynomials along with

modular arithmetic. This has further the effect of reducing the coefficients of the polynomial

26

modulo a number . Note here that may not be a prime. Thus the expression (modulo)

represents the reduction of coefficients of the polynomial modulo .

q q a q

a q

The inverse modulo of a polynomial is a polynomial q a qA with the property that:

qAa q mod1≡∗

Even though not all polynomials have an inverse modulo q , it is easy to determine if a

polynomial has an inverse and to compute if it exists. The details of a fast algorithm for

computing the inverse is described in [15].

4.1.1 The NTRU Cryptosystem

The NTRU cryptosystem is characterized by the following parameters [24]:

1. N - the polynomials used are of degree 1−N .

2. q - is a large modulus. (Not necessarily prime.)

3. p - is a small modulus. (Not necessarily prime.)

Table 4.1. Typical values for the above parameters , and N q p [24].

Security N q p

Moderate 167 128 3

Standard 251 128 3

High 347 128 3

Highest 503 256 3

a) Key Generation: Alice generates an encryption/decryption key pair (or a public/private

key pair). In order to do so she chooses two polynomials f and g belonging to the ring R . The

polynomial f should have inverses modulo two numbers q and p . In general, q is large and

p is small and that q and p do not have any common factors.

27

The inverses of polynomial modulo q and modulo f p is denoted by and , i.e.

 and .

qF pF

qfFq mod1≡∗ pfFp 1≡∗ mod

Alice now computes her public key ()qgpFh q mod∗≡ . Her private key is the polynomial

. f

The polynomials and f g are chosen to be “small” relative to a random polynomial

modulo . In a random polynomial the coefficients are randomly distributed mod where as in

a “small” polynomial, the coefficients are much smaller than .

q q

q

b) Encryption: When Bob wants to send a message to Alice, he first encodes his message as

a polynomial m of degree 1−N with coefficients lying between 2/p− to 2/p . He also

chooses a small random polynomial r . The encrypted message sent to Alice is of the form:

()qmhrc mod+∗=

c) Decryption: Alice decrypts c to obtain the original message polynomial m (or

equivalently the message) as follows: Alice computes: ()qcfa mod∗= , where the coefficients

of the resultant polynomial a is chosen to lie between 2/q− and 2/q .

Finally, Alice computes: ()paFm p mod∗=′ .

The resultant in the last step is the same as m with an extremely large probability for

appropriately chosen parameter values. In some cases, the decryption may fail to yield the

correct message and therefore check bits need to be included. For the detailed description of the

method for choosing appropriate parameters refer to [15].

m′

The encryption/decryption scheme work because of the following:

() () ()
() ()

()qmfgpr
qmgpFrf

qmhrfqcfa

q

mod
mod

modmod

∗+∗=
+∗∗∗=

+∗∗=∗=

28

and () () pmpmfgprFpaFm pp modmodmod =∗+∗∗=∗=′ .

With this background we discuss, in the next section, the implementation of OT using

NTRU.

4.2 The Proposed Technique

Suppose Alice and Bob wish to exchange secret AS an BS , however they do not trust

each other. The problem is to develop a protocol without trusted third party and without a

simultaneous exchange. Here we propose a protocol to do so using the NTRU encryption. We

have outlined the advantages of using NTRU in Chapter 1. We take for granted that every

message exchanged between Alice and Bob is signed.

s d

In order to conduct the exchange, Alice generates a two secret encryption keys , and

their corresponding decryption keys , . She is going to use one of these encryption keys to

encrypt her original secret when transferring it to Bob. However, for Bob to decrypt the

cipher to obtain the secret, he needs to know the correct decryption key, which will be

transferred to him “obliviously” with a probability of one-half. Bob generates two secret

encryption/decryption key pairs / and / . These will be used for the transfer of

from Bob to Alice. For all the computations Alice and Bob agree upon the parameters to be used

publically, i.e. ,

1Ah
2Ah

1Af

1Bf

2Af

AS

1Bh
2Bh

2Bf BS

N p and , where they have their usual meaning. The method of key

generation, encryption and decryption remains the same as described in section 4.1.

q

Now, Alice generates another pair of encryption/decryption key Ah Af hich she will use to

conduct the protocol. Bob generates Bh / B hese pairs are also kept secret.

/ w

 Tf .

29

Therefore, all the keys generated by either party are kept secret. Only one of the main

decryption keys (,) will be transferred obliviously (vice versa for , in the second

half of the protocol) . The protocol proceeds as follows (appropriate modulus operations are

taken to be implicit in all the steps):

1Af
2Af

1Bf
2Bf

1. Alice generates a random polynomial Ar and using the encryption key Ah , she encrypts

the two secret keys,
1Af ,

2Af and sends them to Bob.

Alice sends to Bob:
11 AAA fhrc +∗= and

22 AAA fhrc +∗= .

2. Bob randomly chooses one of the ciphers, 1c and 2c and encrypts it using his own secret

key Bh and a randomly chosen polynomial Br .

Bob sends to Alice:
1AAABB fhrhrc +∗+∗= or

2AAABB fhrhrc +∗+∗= .

3. Alice decrypts the cipher sent by Bob by subtracting AA fr ∗ from c and sends it back to

Bob.

Alice sends to Bob:
1ABB fhrc +∗=′ or

2ABB fhrc +∗=′ depending on what she

receives.

4. Bob can now subtract BB hr ∗ from c′ and obtains one of the keys
1Af or

2Af . Alice

remains oblivious to which of the two keys Bob has received.

Steps 1 through 4 achieve oblivious transfer of encryption keys; the following steps are for the

exchange of secrets.

5. Bob sends to Alice BSM ⊕1 if he has received
1Af else he sends BSM ⊕2 .

30

Here, and are pre-agreed random constants. Alice at this point does know which of the

two keys Bob has received and hence she does not know if Bob has sent or

1M 2M

BSM ⊕1 BSM ⊕2 to

her.

6. Alice randomly chooses one of the two encryption keys
1Ah or

2Ah and another random

polynomial r .

Alice sends to Bob: AAS Shrc
A

+∗=
1

 or AAS Shrc
A

+∗=
2

.

where we have assumed that secret is represented in the polynomial form with

coefficients of the polynomial chosen to lie between

AS

2/p− and . 2/p

Bob will receive the secret if he can successfully decrypt , which will depend on his

chances of having the decryption key for the encryption function that Alice has randomly

chosen. Since, there are two possible encryption functions Alice can choose from, Bob’s

probability of receiving the secret after step 6 is one-half. Alice will remain oblivious to whether

Bob has received the secret.

AS
ASc

Similar transfer of secret keys and exchange of secret takes place from Bob to Alice.

Step 6 is a purely NTRU PKCS transfer involving encryption and decryption in the NTRU

system.

If after receiving , Bob was to cheat and not send his secret to Alice then Alice will know

which of the two XORs (or

AS

BSM ⊕1 BSM ⊕2) had Bob sent in step 5 and therefore deduce . BS

4.3 One-out-of-two Oblivious Transfer

A situation in which Alice has two secrets and such that Bob wants one of these

without Alice knowing which one of the secrets he has retrieved is called 1-out-of-2 OT. On the

1S 2S

31

other hand, Alice is concerned that Bob must get only the secret he chooses and no information

about the other secret. We had presented a protocol for the solution of this problem in chapter 3.

Here we solve the problem using NTRU encryption functions.

It is not difficult to see the solution since we have discussed the protocol for exchange of

secrets in the previous section. With a few modifications to the already presented protocol we

can achieve our goal of 1-out-of-2 oblivious transfer. The protocol is as follows:

1. Alice declares that she is sending secrets 1S and 2S in order (represented in appropriate

polynomial form).

Alice send to Bob: 11 Shrc AA +∗= and 22 Shrc AA +∗= .

2. Bob chooses 1c if he wants to retrieve secret 1S and 1c if he wants to retrieve secret 2S .

He then encrypts his choice using his secret key Bh and a randomly chosen polynomial

Br .

Bob sends to Alice: 1Shrhrc AABB +∗+∗= or 2Shrhrc AABB +∗+∗= .

3. Alice decrypts the cipher sent by Bob by subtracting AA hr ∗ from c and sends it back to

Bob.

Alice sends to Bob: 1Shrc BB +∗=′ or 2Shrc BB +∗=′ depending on what she

receives.

4. Bob can now subtract BB hr ∗ from c′ and deduce one of the secrets, depending on his

choice. Alice remains oblivious to which of the two secrets Bob has received.

At the end of the protocol, Bob will deduce only one of the two secrets and not be able to get

any information about the other. Alice will not know which of the two secrets Bob received.

32

4.4 Conclusions

In the chapter we have provided schemes for mutual exchange of secrets and 1-out-of-2

oblivious transfer using NTRU. The protocol may be generalized to 1-out-of-n oblivious transfer

and non-interactive oblivious transfer may be possible to implement.

In this next chapter we will discuss the broader idea of basing the protocol for oblivious

transfer on key-exchange protocols. This is an important idea since almost every public-key

cryptosystem has a method for public-key exchange which can be modified to implement

oblivious transfer.

33

Chapter 5

Oblivious Transfer Based on Key Exchange*

In this chapter we construct a protocol for oblivious transfer using key exchange similar to

the Diffie-Hellman (DH) protocol [5], which is a popular method for establishing a shared key

between two parties over an insecure channel. We modify the Diffie-Hellman protocol such that

the two communicating parties will succeed or fail in establishing a shared key each with a

probability of one-half. However, the party sending the secret will not know if the receiver has

the same key as he/she does.

The disadvantage of the protocol described by Rabin in [28] is that it is valid only when the

encryption key is factorization dependent. In other words, Rabin’s protocol works only for

“RSA- type” encryption schemes. However, the advantage of using the idea of oblivious transfer

based on key exchange protocols is that after the keys are exchanged obliviously, the players can

use any mutually agreed encryption scheme to encrypt their secrets.

Further, with the advent of quantum computers, all the present protocols will be needed to

be developed using quantum cryptography. Quantum key exchange has been proven to be secure

and therefore an oblivious transfer scheme may be possible to develop using ideas similar to

those presented in this chapter.

There have been implementations [23] of 1-out-of-n OT based on the Decision Diffie-

Hellman (DDH) problem [2]. However, our protocol differs from previous ones in the sense that

- firstly, we describe a scheme for mutual exchange of secrets based on DH. Secondly, in the

previous implementations the 1-out-of-n OT use the DDH for the transfer itself, i.e. applies the

Diffie-Hellman exponentiation for the encryption of secrets directly. Here we administer the idea

34

*Journal version to appear in Cryptologia.

of the oblivious key exchange. Once the keys are exchanged (obliviously), the parties may use

any mutually agreed encryption method for the actual transfer / exchange of secrets.

5.1 Preliminary

Diffie-Hellman key exchange was the first published public-key algorithm and a number of

commercial products still employ this exchange technique [32]. The purpose of the algorithm is

to enable two users to exchange a key securely that can be used for subsequent encryption of

messages. The algorithm itself is limited to the exchange of the keys. As in the case of Elliptic

Curve Cryptography, the Diffie-Hellman algorithm also depends for its effectiveness on the

difficulty of computing discrete logarithms. Briefly, we can define the discrete logarithm in the

following way.

A number x is said to be a primitive root of a prime number p if consecutive

exponentiations from , ,…, generate distinct numbers lying

between 1 and in some order. Given where

px mod px mod2

b

px p mod1−

pi mod1−p x≡ x is a primitive root of then

the task of finding a unique exponent i where 0

p

)1(−≤≤ pi satisfying the equation is known as

taking the discrete logarithm of for the base b x , . pmod

With this background we proceed with the description of the Diffie-Hellman key exchange

algorithm. The publicly known numbers are: a prime number p and an integer x that is a

primitive root of p .

1. Alice selects a random and secret integer pX A < and computes p . xY AX
A mod=

2. Bob independently selects a random and secret integer pX B < and computes

p . xY BX
B mod=

3. The values of Y are available publically.

35

4. Alice and Bob can communicate by computing a shared key and

, respectively.

() pYK AX
B mod=

() pYK BX
A mod=

The two calculations in step 4 produce the same key as follows:

()
()
()
()
()
() pY

ppx

px

px

ppx

pYK

B

BA

BA

AB

AB

A

X
A

XX

XX

XX

XX

X
B

mod

modmod

mod

mod

modmod

mod

=

=

=

=

=

=

At the end of execution of the algorithm the two participants have exchanged a secret key.

The opponent has x , p , and available to him and in order to break the algorithm, he is

forced to take a discrete logarithm to determine the key.

AY BY

In practice, the participants choose numbers p and x , such that p is a large prime on the

order of at least 300 decimal digits (1024 bits), 1−p has a large prime factor and x is a

generator of order in the multiplicative group 1−p pΖ (a generator is a primitive root of).

This ensures the security of the protocols not only against eavesdroppers but also against the

opposing party, which is to be considered as an adversary as well in our protocol. Since we will

be working only in , we often do not state it explicitly.

p

pΖ

5.2 Mutual Exchange of Secrets – The Proposed Protocol

Suppose Alice and Bob possess secrets and respectively, which they wish to

exchange, however, they do not trust each other. We would like to complete the exchange

without a trusted third party and without a procedure for simultaneous exchange of secrets; the

AS BS

36

latter being practically impossible to implement when the parties are geographically far apart.

Both parties are assumed to have an appropriate mechanism to digitally sign every message they

send.

Let the secrets and be passwords to files that Bob and Alice want to access such that

if a wrong password is used then the files will self-destruct. This prevents the parties from trying

random passwords. The protocol is based on the oblivious exchange of encryption keys.

AS BS

In the protocol, we exploit the fact that there exist pgg Ζ∈21, , 21 gg ≠ such that they map

to a single cipher c , where . Let denote the key that Alice uses to

encrypt her secret, while Bob uses to encrypt his secret. With these assumptions, the

protocol proceeds as follows:

pgpgc modmod 2
2

2
1 ≡≡

BK

AK

1. Alice and Bob agree upon a prime p , a number px Ζ∈ as the generator and c such that

p (Alice and Bob both know 1g and 2g). gpgc modmod 2
2

2
1 ≡≡

2. Alice privately chooses 1gg A = or 2gg A = and two random numbers
1AN and

2AN .

3. Bob secretly decides on Bg , such that 1gg B = or 2ggB = and a random number BN .

4. Alice sends to Bob: p and p . x AA Ng mod1+ x AN mod2

5. Bob sends to Alice: p
x

x
B

B

AA
N

g

Ng

mod
1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +

 and computes () pxK BA
NN

A mod2=′ for himself.

6. Alice computes: p
x

xK
A

A

B

B

AA N
N

N

g

Ng

A mod
1

2

1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
=

+

.

7. Bob chooses a random message M and sends ()AKMfC ′= , to Alice.

8. Alice sends back ()AKC to Bob. fY ,1−=

37

Here),(kmf is a function known to both Alice and Bob, where m is the input, k is the

key, and knowing),(kmf does not reveal the key used. Therefore, f may be an encryption

function using a secret key and 1−f is the decryption function.

c =

Two cases arise from the above sequence, namely BA gg = and . If BA gg ≠ BA gg = then

, else . Hence, Bob receives with probability one-half. Steps 7 and 8 help

Bob check if he has by comparing and

AA KK =′ AA KK ≠′

AK

AK

Y M .

Similarly, exchange of takes place from Bob to Alice. BK

Define states,

⎩
⎨
⎧

=
.,

.,

A

A
b KreceivenotdidBobifK

KreceivedBobifK
U

where, and pK Ζ∈ K is the bitwise complement of K . is similarly defined. aU

3. a number c , where c . pgpg modmod 2
2

2
1 ==

Mutual agreement:
1. Prime such that p 1−p has a large prime factor.
2. a number that is a primitive root of . px Ζ∈ p

Figure 5.1 Illustration of proposed algorithm to achieve oblivious exchange of encryption key

(all computations performed in pΖ).

38

In order to prevent cheating by either party, Alice sends Aa SU ⊕ to Bob and Bob sends

 to Alice. Since, neither party knows other’s state of knowledge of the secret key, this

step does not provide either party with any knowledge of other’s secret.

Bb SU ⊕

Finally, Alice and Bob exchange their secrets encrypting them using and ,

respectively.

AK BK

If at the last step, after Alice sends her encrypted secret to Bob, Bob was to cheat and not

send his secret to Alice, then the fact that Bob cheated implies that Bob received and

 and that Bob had previously sent

AK

KUb = BBb SKSU ⊕=⊕ . Alice can retrieve by

computing .

BS

BB SKSK =⊕⊕

The probability, after the protocol is complete, that neither party knows other’s secret key is

one-fourth.

Example 5.1: Alice and Bob wish to exchange secrets and . They agree upon AS BS 23=p ,

 and . Therefore, 5=x 9=c 3mod 1 == gpc and 20mod p 2 =g=c . We examine the two

cases arising in step 2 of the algorithm.

Case I: BA gg =

2. Alice chooses: 31 == g and two random numbers 5
1

gA =AN and 15
2
=AN .

3. Bob chooses: 31 == g and 17gB =BN .

4. Alice sends to Bob: 1623 and mod5mod 531 ≡≡ ++ px AA Ng

 . 1923mod5mod 152 ≡≡px AN

39

5. Bob sends to Alice:

 ()
() 723mod716

23mod12516

23mod
125
1623mod

5
5mod

17

171

1717

3

531

≡×≡

×≡

⎟
⎠
⎞

⎜
⎝
⎛≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

++

p
x

x
B

B

AA
N

g

Ng

 and computes for himself: () 2123mod19mod 172 ≡≡≡′ pxK BA
NN

A .

6. Alice computes: () 2123mod7mod 5
151

2

1

≡≡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡

+

p
x

xK
A

A

B

B

AA N

N
N

g

Ng

A .

Bob may encrypt a random message with the key that he has generated and ask Alice to

decrypt it using her key to determine if he has . Since Alice and Bob have chosen

, then

AK

3== BA gg 21==′ AA KK . The choice 20== BA gg gives similar results.

Case II: BA gg ≠

2. Alice chooses: 31 == g and two random numbers 5
1

gA =AN and 15
2
=AN .

3. Bob chooses: 202 = and 17= ggB =BN .

4. Alice sends to Bob: 1623 and mod5mod 531 ≡≡ ++ px AA Ng

 . 1923mod5mod 152 ≡≡px AN

5. Bob sends to Alice:

 ()
() 923mod216

23mod1216

23mod
12
1623mod

5
5mod

17

171

1717

20

531

≡×≡

×≡

⎟
⎠
⎞

⎜
⎝
⎛≡⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
≡⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

−

++

p
x

x
B

B

AA
N

g

Ng

40

 and computes for himself: () 2123mod19mod 172 ≡≡≡′ pxK BA
NN

A .

6. Alice computes: () 1623mod9mod 5
151

2

1

≡≡
⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡

+

p
x

xK
A

A

B

B

AA N

N
N

g

Ng

A .

In this case, Alice and Bob have chosen BA gg ≠ , hence AA KK ≠′ . The alternate choice,

 and yields similar results. 20=Ag 3=Bg

In none of the cases can Bob predict beforehand what choice Alice has made, so the protocol

remains fair.

Security issues: The protocol breaks down if Bob is able to compute both

and

() px BA
NN mod2

()[] px A

A
BABA N

N
NNgg mod1

2
1+− . We see that Bob can deduce and , which he may compute 1ANx 2ANx

px
x
x y

N

N

A

A

mod
1

2

≡ . Given , deducing is a DLP. If we assume that “somehow”

Bob is able to deduce , then in order for him to compute the ratio

12 AA NNy −= y

y
1

2

A

A

N
N

, he still needs to know

either or , which is again equivalent to a DLP. Based on the assumption that a Discrete

Log Problem is difficult to solve, the protocol remains secure.

1AN
2AN

5.3 One-out-of-two Oblivious Transfer

One of the most powerful primitives that have led to the invention of numerous

cryptographic schemes is the one-out-of-two oblivious transfer. It may conceptually be described

as a black box where Alice puts in two secrets, and , such that Bob can only retrieve one of

them while getting no information about the other. Bob is concerned that Alice should not know

which secret he retrieved.

1S 2S

41

A situation may be such that a spy wishes to sell one out of two secrets that he possesses,

while the buyer does not wish the spy to know which information he wants. In such a situation

the 1-out-of-2 oblivious transfer can be employed. It is assumed that the party possessing the two

secrets is willing to disclose one and only one of these to the other.

The procedure of choosing prime , generator number p x and

remains identical to that described before. However, this time Alice uses secret keys and

to encrypt secrets and , respectively. She announces to Bob that she is associating key

with and key with . With these initial conditions the protocol follows:

pgpgc modmod 2
2

2
1 ≡≡

1K 2K

1K1S

2K

2S

2g1g

1. Alice secretly chooses
1AN and sends to Bob: p . x ANg mod11 +

2. Bob chooses 1gg B = (if he wants secret 1S) or 2ggB = (if he wants secret 2S) and

secret numbers BN and
1BN .

3. Bob sends to Alice: p
x

x
BB

B

A
NN

g

Ng

mod
1

11

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +

 and p . x BN mod

4. Alice chooses a number
2AN and sends to Bob: p

x
x

A
BB

B

A

NNN

g

Ng

mod
2

1
11

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ +

.

5. Bob computes: p
x

xp
x

xK
AB

B

ABABB

B

A
NN

g

NgNNNN

g

Ng

B modmod
2

11121
11

1

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
≡

++

.

6. Alice computes: p and xK AAB NNN mod21
1 ≡

()() pxK
AAB

NNggN mod2121

2
+−

≡ .

7. Alice encrypts secret 1S using 1K and secret 2S using 2K and sends them to Bob.

42

From the above sequence we see that if Bob chooses 1gg B = , then and if Bob

chooses , then . Hence, Bob will only be able to retrieve one of the two secrets

depending upon his choice, while Alice will not be able to determine which secret Bob has

retrieved.

1KKB =

2ggB = 2KKB =

Security issues: In order for Bob to cheat, he needs to compute both and . His best

option is to determine one of the keys honestly and using that, try to deduce the other key. For

instance, if Bob honestly computes , then he will have access to and

1K 2K

1K 1ANx
1

21

A

A

N

NAN

x
x . But this

does not provide him with any information about and which he needs to compute .

Similarly, he cannot calculate from . The problem is again equivalent to efficiently

solving a DLP.

1AN
2AN 2K

1K 2K

5.4 Coin-Flipping Protocols

A couple may decide on which restaurant to go to or whether they should take a vacation or

buy a car for their next anniversary, by tossing a coin. In this case flipping a coin is a trivial

matter since both parties are present at the same place physically. However, problems arise when

the participants are geographically separated over large distances. How are they supposed to

fairly flip a coin when both of them cannot see the outcome simultaneously? Many business

transactions require such an arrangement or a simple game of gambling over the Web may need

a fair coin-toss.

It turns out that any oblivious transfer scheme may be suitably modified to flip a coin and so

can be the protocol for mutual exchange of secrets that we have presented. For instance, if Bob

receives the same key as Alice then Bob wins the toss else Alice wins. After Bob declares the

43

key he has computed, Alice replies if he won or lost and reveals all the variables that she had

chosen which Bob can use to verify Alice’s claim. Bob need not disclose any of the variables of

his choice.

Another approach to coin-tossing by telephone is using d-sequences [17]. This becomes

possible because the digits of the d-sequence are generated by an exponentiation process [18],

[19]. But this will not be discussed further in this thesis.

5.5 Conclusion

Our algorithms, in this chapter, open up the possibility of development of oblivious transfer

schemes using key exchange protocols. Academically, it appears that such algorithms should

have preceded Rabin’s protocol. The existence of our algorithm shows that there are numerous

variations on the implementation of OT protocols. Also, most OT schemes can be extended to

coin flipping with minor modifications, in which case, only one sided transfer may take place

and victory or loss depends on the opposing party being lucky enough to deduce the key.

Our protocol for mutual exchange of secrets is different from Rabin’s protocol in the sense

that the latter aims at obliviously transmitting the decryption key from the transmitter to the

receiver whereas we establish a shared key between the transmitter and receiver with probability

one-half. Higher exponents may be employed to generate transfer probabilities other than one-

half. It turns out that the Diffie-Hellman protocol is a powerful primitive and can be used as a

basis for implementing many cryptographic protocols that have been implemented via the RSA

type transformations. This possibility had been overlooked.

44

Chapter 6

Conclusions

This thesis provides protocols to conduct mutual exchange of secrets using the idea of

oblivious transfer and also provided schemes for one-out-of-two oblivious transfer. In Chapters 2

and 3, the schemes provided are based on ECC and NTRU, respectively that are currently

competing against RSA and have certain advantages over the latter. Before this thesis, oblivious

transfer had been implemented only using exponential arithmetic and hence the wide spread use

of the new cryptosystems depends on the fast development of schemes analogous to those that

have been previously implemented using the outgoing cryptosystems.

In the last chapter of the thesis, we have discussed an oblivious transfer scheme using the

DH-key exchange for implementation. The scheme is not restricted to DH-key exchange and the

basic idea is to emphasize the fact that oblivious transfer can be implemented using public-key

exchange techniques.

As a passing note we should also mention that with the advent of quantum computing and

the discovery of fast factorization algorithm and discrete logarithm algorithm, if and when a

quantum computer is realized, the systems of classical cryptography will collapse and may be the

only form of cryptography that will be secure will be quantum cryptography [31]. However,

quantum cryptography has had its own share problems with the discovery of no-go theorems.

Yet quantum key exchange has been proven to be secure and our idea of basing the oblivious

transfer on key exchange schemes might turn out to be a useful notion in quantum cryptography.

45

Also, we would like to mention that even though the factorization and discrete logarithm

algorithms have already been discovered in quantum computing, there is not yet a quantum

algorithm for breaking the NTRU cryptosystem [24].

46

References

1. Blum, M. Three applications of the oblivious transfer: Part i: Coin flipping by telephone;
part ii: How to exchange secrets; part iii: How to send certified electronic mail. Technical
report, Department of EECS, University of California, Berkeley, CA, 1981.

2. Boneh, D. The Decision Diffie-Hellman Problem. Proceedings of the Third Algorithmic
Number Theory Symposium. Springer-Verlag LNCS 1423, 1998, 48-63.

3. Chor, B., Goldreich, O., Kushilevitz, E. and Sudan, M. Private Information Retrieval.
Journal of the ACM, Volume 45, Issue 6, 1998, 965-981.

4. Chor, B. and Gilboa, N. Computationally Private Information Retrieval. Proceedings 29th
ACM Symposium on Theory of Computing, 1997, 304-313.

5. Diffie, W. and Hellman, M. E. New Directions in Cryptography, IEEE Transactions on
Information Theory, vol. IT-22, Nov. 1976, 644-654.

6. Code and Cipher, Vol 1. No. 1. A copy can be found at www.certicom.com. September 9,
2007.

7. Ellis, J. H. The History of Non-Secret Encryption. 1987 (made public in December 1997)

8. Enge, A. Elliptic Curves and their Applications to Cryptography. Kluwer Academic,
Boston, 1999.

9. Even, S., Goldreich, O. and Lempel, A. A randomized protocol for signing contracts.
Proceedings Crypto ‘82, 205-210, 1983.

10. Feige, U., Fiat, A. and Shamir, A. Zero Knowledge Proofs of Identity. Proceedings of the
19th ACM Symposium. on Theory of Computing, May 1987, 210-217.

11. Fiat, A. and Shamir, A. How to prove yourself: Practical solutions to identification and
signature problems, Advances in Cryptology - Crypto '86, Springer-Verlag (1987), 186-
194.

12. Fischer, M., Micali, S. and Rackoff C. A secure protocol for the oblivious transfer.
EuroCrypt 84, 1984.

13. Goldreieh, O., Micali, S. and Wigderson, A. "Proofs That Yield Nothing But Their
Validity and a Methodology of Cryptographic Protocol Design", Proceedings of FOGS
1986, 174-187.

47

14. Goldwasser, S., Micali, S. and Rackoff, C. The knowledge complexity of interactive
proof systems. ACM Symposium on Theory of Computing, ACM Press, New York,
USA, 1985, 210-217.

15. Hoffstein, J., Pipher, J., Silverman, H. J. NTRU: A Ring-Based Public Key
Cryptosystem. Lecture Notes in Computer Science 1423, Springer-Verlag, Berlin, 1998,
267-288.

16. Kak, S. A cubic public-key transformation, Circuits, Systems and Signal Processing,
Volume 26, 2007, 353-359.

17. Kak, S. A new method for coin flipping by telephone, Cryptologia, vol. 13, pp. 73-78,
1989.

18. Kak, S. and Chatterjee, A. On decimal sequences, IEEE Transactions on Information
Theory, IT-27: 647 – 652, 1981.

19. Kak, S. Encryption and error-correction coding using D sequences, IEEE Transactions on
Computers, C-34: 803-809, 1985.

20. Kilian, J. Founding cryptography on oblivious transfer. Proceedings of the twentieth
annual ACM symposium on Theory of computing, 1988, 20-31.

21. Kushilevitz, E. and Ostrovsky, R. Replication Is Not Needed: Single Database,
Computationally-Private Information Retrieval. Proceedings 38th IEEE Symposium on
Foundations of Computer Science, 1997, 364-373.

22. Menezes, J. A., Oorschot, C. P., Vanstone, A. S. Handbook of Applied Cryptography,
CRC, 1996.

23. Naor, M. and Pinkas, B. Efficient Oblivious Transfer Protocols, Proceedings of SODA
2001 (SIAM Symposium on Discrete Algorithms), January 7-9 2001, Washington DC.

24. NTRU Tutorials and FAQs. www.ntru.com/cryptolab. September 9, 2007.

25. Parakh, A. Oblivious Transfer using Elliptic Curves, Cryptologia, Volume 31, Issue 2
April 2007, 125-132.

26. Parakh, A. Oblivious Transfer based on Key Exchange, arXiv:0705.0178 (To appear in
Cryptologia.)

27. Rabin, M. O. Digitalized signatures and public-key functions as intractable as

factorization. MIT/LCS/TR-212, MIT Laboratory for Computer Science, 1979.

28. Rabin, M. O. How to exchange secrets by oblivious transfer. Technical Report TR-81,
Aiken Computation Laboratory, Harvard University, 1981.

48

29. Rivest, R., Shamir, A. and Adleman L. A Method for Obtaining Digital Signatures and

Public-Key Cryptosystems. Communications of the ACM, Vol. 21 (2), pp.120–126.
1978. (Technical Report in 1977)

30. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
Wiley, 2 Edition, 1995.

31. Singh, S. The Code Book: The Science of Secrecy from Ancient Egypt to Quantum
Cryptography. Anchor, 2000.

32. Stallings, W. Cryptography and Network Security: Principles and Practice. Third Edition.
Prentice Hall. 2003.

49

Appendix: Copyright Agreement

50

51

Vita

Abhishek Parakh was born in Khetri Nagar, a mining town in the state of Rajasthan, India.

He completed his bachelor’s degree in electronics and communications engineering from

National Institute of Technology, Jalandhar, India.

He is currently with the Department of Electrical and Computer Engineering at Louisiana

State University, Baton Rouge, Louisiana. He expects to receive his Master of Science in

Electrical Engineering degree in Fall 2007.

His research interests include cryptography, signal processing and philosophy of science.

	Louisiana State University
	LSU Digital Commons
	2007

	Oblivious transfer for secure communication
	Abhishek Parakh
	Recommended Citation

	Chapter 1
	Introduction
	1.1 Concepts
	1.1.1 Public Key Cryptography

	1.2 Oblivious Transfer
	1.3 The Need for New Public Key Cryptosystems
	1.3.1 Problem Formulation and Layout of the Thesis

	Chapter 2
	Implementing Oblivious Transfer
	The Cubic Transformation
	2.2 Oblivious Transfer
	2.2.1 Comments

	Chapter 3
	Oblivious Transfer Using Elliptic Curves*
	Background
	3.2 Key Observation
	3.3 The Proposed Algorithm
	3.4 Chosen One-out-of-two Oblivious Transfer
	3.5 Conclusions

	Chapter 4
	Exchanging Secrets Using NTRU
	Background
	4.1.1 The NTRU Cryptosystem

	4.2 The Proposed Technique
	4.3 One-out-of-two Oblivious Transfer
	4.4 Conclusions

	Chapter 5
	Oblivious Transfer Based on Key Exchange*
	5.1 Preliminary
	5.2 Mutual Exchange of Secrets – The Proposed Protocol
	5.3 One-out-of-two Oblivious Transfer
	5.4 Coin-Flipping Protocols
	5.5 Conclusion

	Chapter 6
	Conclusions
	References
	Appendix: Copyright Agreement

