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ABSTRACT

The bilateral filter [1] is a nonlinear filter that does spatial averaging without smoothing 

edges. It has shown to be an effective image denoising technique. It also can be applied to the 

blocking artifacts reduction. An important issue with the application of the bilateral filter is 

the selection of the filter parameters, which affect the results significantly. Another research 

interest of bilateral filter is acceleration of the computation speed. 

There are three main contributions of this thesis. The first contribution is an empirical 

study of the optimal bilateral filter parameter selection in image denoising. I propose an 

extension of the bilateral filter: multi resolution bilateral filter, where bilateral filtering is 

applied to the low-frequency sub-bands of a signal decomposed using a wavelet filter bank. 

The multi resolution bilateral filter is combined with wavelet thresholding to form a new 

image denoising framework, which turns out to be very effective in eliminating noise in real 

noisy images. The second contribution is that I present a spatially adaptive method to reduce 

compression artifacts. To avoid over-smoothing texture regions and to effectively eliminate 

blocking and ringing artifacts, in this paper, texture regions and block boundary 

discontinuities are first detected; these are then used to control/adapt the spatial and intensity 

parameters of the bilateral filter. The test results prove that the adaptive method can improve 

the quality of restored images significantly better than the standard bilateral filter. The third 

contribution is the improvement of the fast bilateral filter, in which I use a combination of 

multi windows to approximate the Gaussian filter more precisely. 
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1. INTRODUCTION

1.1 Image Denoising

Figure 1.1 Original image and its red, green, and blue channels are displayed 
in parallel scan order.

There are different sources of noise in a digital image. For example, dark current noise is 

due to the thermally generated electrons at sensing sites; it is proportional to the exposure 

time and highly dependent on the sensor temperature. Shot noise is due to the quantum 

uncertainty in photoelectron generation; and it is characterized by Poisson distribution. 

Amplifier noise and quantization noise occur during the conversion of the number of 

electrons generated to pixel intensities. The overall noise characteristics in an image depend 

on many factors, including sensor type, pixel dimensions, temperature, exposure time, and 

ISO speed. Noise is in general spatial position and channel dependent. Blue channel is 

typically the noisiest channel due to the low transmittance of blue filters. In single-chip 

digital cameras, demosaicking algorithms are used to interpolate missing color components; 

therefore, noise is not uncorrelated for different pixels. An often neglected characteristic of 

image noise is the spatial frequency. Figure 1.1 shows the portion of an image captured with 
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a Sony DCR-TRV27, and its red, green, and blue channels are shown in parallel scan order. 

The blue channel is the most degraded channel; it has a coarse-grain noise characteristics. 

The red and green channels have finer-grain noise characteristics. Referring to Figure 1, 

noise may have low-frequency (coarse-grain) and high-frequency (fine-grain) fluctuations. 

High-frequency noise is relatively easier to remove; on the other hand, it is difficult to 

distinguish between real signal and low-frequency noise.

1.2 Bilateral Filter

Bilateral filter [1] is firstly presented by Tomasi and Manduchi in 1998. The concept of 

the bilateral filter was also presented in [2] as the SUSAN filter and in [3] as the 

neighborhood filter. It is mentionable that the Beltrami flow algorithm is considered as the 

theoretical origin of the bilateral filter [4] [5] [6], which produces a spectrum of image 

enhancing algorithms ranging from the 2L linear diffusion to the 1L non-linear flows. The 

bilateral filter takes a weighted sum of the pixels in a local neighborhood; the weights 

depend on both the spatial distance and the intensity distance. In this way, edges are 

preserved well while noise is averaged out. Mathematically, at a pixel location x, the output 

of a bilateral filter is calculated as follows，

2 2( ) ( )
2 22 21
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where d and r are parameters controlling the fall-off of weights in spatial and 

intensity domains, respectively, ( )N x is a spatial neighborhood of pixel ( )I x , and C is the 

normalization constant:
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Figure 1.2 shows the illustration of 1D bilateral filter. The top right image is the input 

noisy signal. The top left image shows the intensity Gaussian while the midd

the special Gaussian. The bilateral response is shown at the bottom.

Figure 1.2 Illustration of 1
step signal noised by random 
the bottom figure.

Another parameter during the running of the bilateral filter is the window size of how 

many pixels should be computed on time.

Basically, based on the property of the 
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Figure 1.2 shows the illustration of 1D bilateral filter. The top right image is the input 

The top left image shows the intensity Gaussian while the midd

the special Gaussian. The bilateral response is shown at the bottom.

Figure 1.2 Illustration of 1-D bilateral filter. The filter is applied on a 1
step signal noised by random Gaussian noise. The output of the filter is shown in 

Another parameter during the running of the bilateral filter is the window size of how 

many pixels should be computed on time. The window size is related to the spatial 

Basically, based on the property of the Gaussian distribution, window size should be around 

               (1.2)

Figure 1.2 shows the illustration of 1D bilateral filter. The top right image is the input 

The top left image shows the intensity Gaussian while the middle image shows 

. The filter is applied on a 1-D input 
noise. The output of the filter is shown in 

Another parameter during the running of the bilateral filter is the window size of how 

The window size is related to the spatial Gaussian. 

distribution, window size should be around 
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2 to 3 times the standard deviation of the Gaussian, since when it’s over 3 times sigma, the 

output of Gaussian almost equals to zero.

In some research, it is shown that the bilateral filter is identical to the first iteration of the 

Jacobi algorithm (diagonal normalized steepest descent) with a specific cost function. Elad 

et al. [7] related the bilateral filter with the anisotropic diffusion.

1.3 Wavelet Decomposition and Thresholding

Wavelet is a mathematical function used to divide a given function or continuous-time 

signal into different scale components. One can assign a frequency range to each scale 

component. Each scale component can then be studied with a resolution that matches its 

scale. Thus the Wavelet is a multi resolution representation function.

Wavelet transform is the discrete sampling of the wavelets. Based on the recurrence 

relations property of wavelet, the most common wavelet transforms, such as Daubechies 

wavelet transform, generate progressively finer discrete samplings of an implicit mother 

wavelet function; each resolution is twice that of the previous scale down-sampled by 2. 

Therefore, using the one level wavelet transform, the input signal can be decomposed 

into two frequency coefficients, the approximation coefficients as the low frequency part 

and the detail coefficients as the high frequency part. This is the so called wavelet 

decomposition. 

With higher level decompositions, multi resolution representation of the signal can be 

achieved. Figure 1.3 shows the wavelet decomposition of an image. The left picture is the 

original image and the right one using 1-level wavelet decomposition. We can see from the 

right image that the top left small picture is the low frequency part which keeps the energy 
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mostly while the others are detail information. 

Figure 1.3 Right one shows the wavelet decomposition of the left picture. It uses 1 level 
Db4 wavelet decomposition in the Matlab. The image size is 512 512

Wavelet thresholding is a denoising method that applies the thresholding shrinkage upon

the high frequency components after the wavelet decomposition. There are two basic 

thresholding methods, the hard thresholding and the soft thresholding, by which the 

threshold value is computed. 

Generally speaking, the soft thresholding is used for the wavelet thresholding application. 

The most common wavelet thresholding methods are Bayes Shrink [10], Visu Shrink[9] and 

SURE Shrink [8].

1.4 Compression Artifacts

Block-based discrete cosine transform (BDCT) is adopted by widely used image/video 

compression standards, such JPEG, MPEG, and H-263, due to its high energy compaction 

and low computational complexity. 

Before BDCT, the image must be split into 8 8 blocks of pixels. If the data does not 

represent an integer number of blocks then the encoder must fill the remaining area of the 

incomplete blocks with some form of dummy data. Filling the edge pixels with a fixed color 
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(typically black) creates ringing artifacts along the visible part of the border; repeating the 

edge pixels is a common technique that reduces the visible border, but it can still create 

artifacts. DCT is applied on such8 8 blocks.

Figure 1.4 Illustration of blocking artifacts. Left is the original image with size of 
512 512 , while the right one is the compressed output of left with bit-rate=0.18.

After the DCT, quantization is used to reduce the amount of information in the high 

frequency components. This is done by simply dividing each component in the frequency 

domain by a constant for that component, and then rounding to the nearest integer, which is 

the main lossy operation in the whole process. As a result of this, it is typically the case that 

many of the higher frequency components are rounded to zero, and many of the rest become 

small positive or negative numbers, which take many fewer bits to store. When using 

quantization with block-based coding, several types of artifacts can appear, including 

staircase noise along curving edges, "mosquito noise" around edges, and blocking artifacts. 

The major problem here is the blocking artifacts, the discontinuities along the block 

boundaries. The blocking artifacts and other compression artifacts become more severe with 

increasing compression rates. Figure 1.4 shows the illustration of an image with blocking 
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artifacts after over compressed

1.5 Overview of the Thesis

In order to solve the image denoising and compression artifacts reduction problems, this 

thesis consists of five parts. In Chapter 2 is given a comprehensive literature review, which 

covers the most popular and advanced researches in the certain fields. In Chapter 3, I will 

explain the elaborate proposed methods for image denoising. A multi resolution bilateral 

filter is applied to the image for real noise elimination. In Chapter 4, I will give the full 

results of the experiments in image denoising. Then, in chapter 5, I will discuss the 

framework of my method in compression artifacts reduction, which uses a spatial adaptive 

bilateral filter. In Chapter 6, all the experiment results and data for compression artifacts 

reduction are presented. Chapter 7 makes the summary and conclusion.
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2. LITERATURE REVIEW

2.1 Image Denoising Applications

2.1.1 Wavelet Approaches

Donoho and Johnstone [8][9] provided an ideal spatial adaptive wavelet shrinkage. With 

ideal spatial adaptation, they described a new principle for spatially-adaptive estimation: 

selective wavelet reconstruction. It showed that variable-knot spline fits and 

piecewise-polynomial fits, when equipped with an oracle to select the knots, are not 

dramatically more powerful than selective wavelet reconstruction with an oracle. Then they 

developed a practical spatially adaptive method, SureShrink[9], which works by shrinkage 

of empirical wavelet coefficients. A new inequality in multivariate normal decision theory 

which they called the oracle inequality showed that attained performance differs from ideal 

performance.

Chang and Vetterli [10] proposed an adaptive, data-driven threshold for image denoising 

using the wavelet soft-thresholding. The threshold is derived in a Bayesian framework, and 

the prior used on the wavelet coefficients is the generalized Gaussian distribution (GGD) 

widely used in image processing applications. The proposed threshold is closed-form and 

adaptive to each sub-band. This method, so called BayesShrink [10], outperforms Donoho 

and Johnstone’s SureShrink [9] most of the time.

Since wavelet coefficients of real images have significant dependencies, Sendur et al. [11] 

considered the dependencies between the coefficients and their parents in the detail 

coefficients part. For this purpose, the non-Gaussian bivariate distributions are proposed, 

and corresponding nonlinear threshold functions are derived from the models using 
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Bayesian estimation theory. The new shrinkage functions do not assume the independence 

of wavelet coefficients. However, the performance of this method is not very well.

Pezurica [12] et al. developed three wavelet domain denoising methods for sub-band 

adaptive, spatially adaptive and multi-valued image denoising. The core of his approach is 

the estimation of the probability that a given coefficient contains a significant noise-free 

component, which is called "signal of interest." In this respect, he analyzed cases where the 

probability of signal presence is 1) fixed per sub-band, 2) conditioned on a local spatial 

context, and 3) conditioned on information from multiple image bands. All the probabilities 

are estimated assuming a generalized Laplacian prior for noise-free sub-band data and 

additive white Gaussian noise. His sub-band adaptive shrinkage function outperforms 

Bayesian thresholding approaches in terms of MSE (Mean-Squared Error). 

Portilla [13] et al. developed a model for neighborhoods of oriented pyramid coefficients 

based on a Gaussian scale mixture: the product of a Gaussian random vector, and an 

independent hidden random scalar multiplier. This model, called BLS-GSM, can account for 

both marginal and pair-wise joint distributions of wavelet coefficients. Then he showed a 

local denoising solution as a Bayesian least squares estimator, and demonstrated the 

performance of this method on images corrupted by simulated additive white Gaussian noise 

of known variance. Portilla’s methods

One of the best wavelet thresholding methods recently is the SureShrink based on the 

inter-scale orthonormal wavelet transform. Instead of postulating a statistical model for the 

wavelet coefficients, Luisier et al. [14] directly parameterized the denoising process as a 

sum of elementary nonlinear process with unknown weights. Then minimize an estimate of 
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the mean square error between the clean image and the denoised one. He use the statistically 

unbiased, MSE estimate— Stein's unbiased risk estimate— that depends on the noisy image 

alone, not on the clean one. Like the MSE, this estimate is quadratic in the unknown weights, 

and its minimization amounts to solving a linear system of equations. The existence of this a 

priori estimate makes it unnecessary to devise a specific statistical model for the wavelet 

coefficients. Instead, and contrary to the custom in the literature, these coefficients are not 

considered random anymore. 

2.1.2 Non-wavelet Approaches

Denoising images can be achieved by a spatial averaging of nearby pixels. This method 

removes noise but creates blur. Henceforth, neighborhood filters, which perform an average

of neighboring pixels under the condition that their grey level is close enough to the one of 

the pixel in restoration, creates shocks and staircasing effects. Buades et al. [15] performed

an asymptotic analysis of neighborhood filters as the size of the neighborhood shrinks to 

zero. His paper proved that these filters are asymptotically equivalent to the Perona-Malik 

equation [16], one of the first nonlinear PDE proposed for image restoration. In continuation, 

he proposed an extremely simple variant of the neighborhood filter using a linear regression 

instead of an average. By analyzing its subjacent PDE, the artifacts can be eliminated. 

Elad et al. [17][18][19] addressed his approach based on sparse and redundant 

representations over a trained dictionary. The proposed algorithm denoised the image, while 

simultaneously training a dictionary on its corrupted content using the K-SVD algorithm. As 

the dictionary training algorithm is limited in handling small image patches, the author

extended its deployment to arbitrary image sizes by defining a global image prior that forces 
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sparsity over patches in every location in the image. 

Kernel regression is also a popular state-of-the-art method for image denoising. Takeda 

et al. [20] made contact with the field of nonparametric statistics and adapt kernel regression 

ideas for use in image denoising, upscaling, interpolation, fusion, and more. They 

established key relationships with some popular existing methods and show how several of 

these algorithms, including the recently popularized bilateral filter, are special cases of the 

proposed framework. Especially they proposed the iterative steering regression which has a 

better performance than the bilateral filter for the elimination of both Gaussian white noises 

and real noise.

Patch-based approach [21] is proposed by Kervrann et al. The method is based on a 

point-wise selection of small image patches of fixed size in the variable neighborhood of 

each pixel. Associate with each pixel the weighted sum of data points within an adaptive 

neighborhood in a manner that it balances the accuracy of approximation and the stochastic 

error at each spatial position. By introducing spatial adaptivity, they extend the Non-local 

means filter which can be considered as an extension of bilateral filtering to image patches. 

So they propose a nearly parameter-free algorithm for image denoising. 

One of the best methods in non-wavelet pattern is called sparse 3D transform domain 

collaborative filtering (BM3D) [22] by Dabov et al. Their strategy is based on an enhanced 

sparse representation in transform domain. The enhancement of the sparsity is achieved by 

grouping similar 2D image fragments (e.g. blocks) into 3D data arrays called "groups". 

Collaborative filtering is a special procedure developed to deal with these 3D groups. The

result is a 3D estimate that consists of the jointly filtered grouped image blocks. By 
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attenuating the noise, the collaborative filtering reveals even the finest details shared by 

grouped blocks and at the same time it preserves the essential unique features of each 

individual block. 

2.2 Blocking Artifacts Reduction

In the literature, there are numerous methods proposed to reduce compression artifacts. 

Some methods are introduced as a part of the encoding process, such as the lapped transform. 

Since these methods require modification of the codec, alternative post-processing methods, 

which do not require any codec changes, have become main focus in the area. The 

post-processing methods can be categorized into two: enhancement based algorithms and 

restoration based algorithms. Enhancement based algorithms try to improve the perceptual 

quality without an explicit optimization process; on the other hand, restoration based 

algorithms try to recover the original image based on some optimization criteria. Another 

way of categorizing these methods is spatial domain vs. transform domain, depending on 

which domain the image is processed. There are methods that use both domains.

An example of the enhancement based algorithms is by Apostolopoulos et al. [23], where 

the blockiness is first detected based on the number of zero DCT coefficients in each block, 

and then applying 1D median filter to reduce block discontinuities and 2D median filter to 

reduce mosquito artifacts.

A restoration based algorithm is proposed by Katsaggelos [24] via the Bayesian approach. 

They used the hierarchical Bayesian paradigm to the reconstruction of block discrete cosine 

transform (BDCT) compressed images and the estimation of the required parameters. Then

derive expressions for the iterative evaluation of these parameters applying the evidence 
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analysis within the hierarchical Bayesian paradigm. This method allows for the combination 

of parameters estimated at the coder and decoder.

Another restoration base method is POCS (projection onto convex sets) by Liew et al.

[25]. POCS method is presented for the suppression of blocking and ringing artifacts in a 

compressed image that contains homogeneous regions. In their paper, a new family of 

convex smoothness constraint sets is introduced, using the uniformity property of image 

regions. This set of constraints allows different degrees of smoothing in different regions of 

the image, while preserving the image edges. The regions are segmented using the fuzzy 

c-means algorithm, which allows ambiguous pixels to be left unclassified. 

Wu et al. [26] proposed the post-filter using the DCT coefficients of shifted blocks to 

deblock and preserve the details. For each block, its DC value and DC values of the 

surrounding eight neighbor blocks are exploited to predict low frequency AC coefficients. 

Those predicted AC coefficients allow inferring spatial characteristics of a block before 

quantization stage in the encoding system. They are used to classify each block into either of 

two categories, low-activity and high-activity block. In the following post-processing stage, 

two kinds of low pass filters are adaptively applied according to the classified result on each 

block. It allows for strong low pass filtering in low-activity regions where the blocking 

artifacts are most noticeable, whereas it allows for weak low pass filtering in high-activity 

regions to reduce ringing noise as well as blocking artifacts without introducing undesired 

blur. 

Bovik et al. [27] proposed the fast and blind measurement of detection and reduction to 

the blocks in the DCT domain. In the algorithm, blocking artifacts are modeled as 2-D step 
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functions. A fast DCT-domain algorithm extracts all parameters needed to detect the 

presence of, and estimate the amplitude of blocking artifacts, by exploiting several 

properties of the human vision system. Using the estimate of blockiness, a novel 

DCT-domain method is then developed which adaptively reduces detected blocking 

artifacts. 

Delp et al. [28] presented the DCT-domain Markov Random Field model. It is called 

transform-domain Markov random field (TD-MRF) model, which used two block artifact 

reduction post-processing methods. The first method, referred to as TD-MRF, provides an 

efficient progressive transform-domain solution. It can reduce up to 90% of the 

computational complexity compared with spatial-domain MRF (SD-MRF) methods while 

still achieving comparable visual quality improvements. Then they discuss a hybrid 

framework, referred to as TSD-MRF, which exploits the advantages of both TD-MRF and 

SD-MRF. 

Bilateral filter [1] is also a popular methods used for image compression artifacts 

reduction. Lin et al. [29] came up with a fast algorithm which alleviates the said artifacts in 

the DCT domain. It decomposed a row or column image vector to a gradually changed 

signal and a fast variation signal, which correspond to low-frequency (LF) and 

high-frequency (HF) DCT sub-bands respectively. Blocking artifacts between adjacent LF 

blocks are suppressed by smoothing LF components and discarding invalid HF ones, and 

ringing artifacts inside HF vectors are reduced by a simplified bilateral filter. With such a 

process, edges are preserved while blockiness and ringing alleviated. Experimental results 

confirm the robustness and computational efficiency of the proposed method.
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2.3 Fast Bilateral Filter

Paris and Durand [30] analyzed accuracy in terms of bandwidth and sampling, and derive 

criteria for downsampling in space and intensity to accelerate the bilateral filter by 

extending an earlier work on high dynamic range images. Their method approximates the 

bilateral by filtering subsampled copies of the image with discrete intensity kernels, and 

recombining the results using linear interpolation. In other words, this method treats the 

intensity image as a 3D surface, applies Gaussian smoothing to binary and intensity 

modulated surface, and divides them to determine the filtered intensity values at the original 

surface location. It becomes faster as the size increases due to the greater subsampling of the 

surface. The exact output is dependent on the phase of the subsampling grid and the 

discretization leads to further loss of precision particularly on high dynamic range images.

Another fastest bilateral filter implementation whose computation cost converges to 

O(logn) (n is the total number of the pixels) was developed by Weiss [31] using a hierarchy 

of partial distributed histograms using a tier-based approach. Even though complexity has 

been lowered, simplicity has been lost due to filter size and optimal histogram count specific 

implementation requirements. This method is limited to rectangular spatial kernels and box 

filters. Another concern is the imperfect frequency response of their spatial box filter.

Porikli [32] described a constant time bilateral filtering method. He constructed an 

integral histogram and used the integral histogram to find the bilateral convolution response 

of a rectangular box filter with uniform domain kernel, where the intensity differences can 

be weighted with any arbitrary range function. The integral histogram enables computation 

of histograms of all possible kernels in a given image. It takes advantage of the spatial 
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positioning of data points in a Cartesian coordinate system, and propagates an aggregated 

function starting from an origin point and traversing through the remaining points along a 

scan-line. Histograms of image windows can be computed easily by using the integral 

histogram values at the corner points of those windows without reconstructing a separate 

histogram for every single one of them. For more generic Gaussian and polynomial range 

functions on arbitrary domain kernels, he applied Taylor series expansion of the 

corresponding norms. This second method can use “any” spatial kernel for bilateral filtering 

without increasing the complexity. It is shown that such bilateral filters can be expressed in 

terms of spatial linear filters applied on original image powers.
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3. IMAGE DENOISING METHODS

3.1 Multi ResolutionBilateral Filter

3.1.1 Parameter Selection of Bilateral Filter

There are two parameters that control the behavior of the bilateral filter [1]. Referring to 

(1.1), d and r characterize the spatial and intensity domain behaviors, respectively. In 

case of image denoising applications, the question of selecting optimal parameter values has 

not been answered from a theoretical perspective; to the best of our knowledge, there is no 

empirical study on this issue either. In this section, I provide an empirical study of optimal 

parameter values as a function of noise variance. 

To understand the relationship among d , r and the noise standard deviation n , the 

following experiments were done. Zero-mean white Gaussian noise was added to some 

standard test images and the bilateral filter was applied for different values of the parameters 

d and r . The experiment was repeated for different noise variances and the mean squared 

error (MSE) values were recorded. Typical MSE contour plots are given in Figure 3.1-3.4.

Examining these plots, it can be seen that the optimal d value is relatively insensitive to 

noise variance compared to the optimal n value. It looks the best range for the d value 

is between 1.5 and 2.0; on the other hand, the optimal r value changes significantly as the 

noise standard deviation n changes. This is an expected result. Because if r is smaller 

than n , noisy data could remain isolated and untouched as in the case of salt-and-pepper 

noise problem of the bilateral filter.

To see the relationship between n and the optimal r , we set d to some constant 

values, and plotted the optimal r values as a function of n . Figure 3.5, Figure 3.6 and
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Figure 3.1 The contour plots of the MSE values between the original image and the 
denoised image for different values sigma_d and sigma_r. The noise standard deviation
sigma_n=5. The results are averaged from 60 color and gray-scale test images.

Figure 3.2 The contour plots of the MSE values between the original image and the 
denoised image for different values sigma_d and sigma_r. The noise standard deviation
sigma_n =10. The results are averaged from 60 color and gray-scale test images.
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Figure 3.3 The contour plots of the MSE values between the original image and the 
denoised image for different values sigma_d and sigma_r. The noise standard deviation
sigma_n =20. The results are averaged from 60 color and gray-scale test images.

Figure 3.4 The contour plots of the MSE values between the original image and the 
denoised image for different values sigma_d and sigma_r. The noise standard deviation
sigma_n =30. The results are averaged from 60 color and gray-scale test images.
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Figure 3.7 show these plots for 60 standard images. The r values as a function of the 

noise standard deviation n are plotted as the averaged data from 60 standard test images. 

The blue data points are the mean of optimal r values that produce smallest MSE for 

each n value. The blue vertical lines denote the standard deviation of the optimal r for 

the 60 different images. The least squares that fit to  /r n  are also plotted as red lines 

and their slopes are written in each case: from the left to the right, the slope is 2.65, 2.11, 

and 1.85.

Figure 3.5 The optimal sigma_r vs. sigma_n. sigma_d=1.5. The blue points show the 
mean value of the optimal sigma_r, while the blue lines show the variance of the optimal
sigma_r. The red line shows the averaged estimated slope of the optimal sigma_r vs. 
sigma_n

As seen in these plots, the r and n are linearly related to a large degree. The least 

squares fits to ( r / n ) data are also plotted in the figure. Although there is no single value 

for ( r / n ) that is optimal for all images and d values, we concluded that a value in the
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Figure 3.6 The optimal sigma_r vs. sigma_n. sigma_d=3. The blue points show the mean 
value of the optimal sigma_r, while the blue lines show the variance of the optimal sigma_r.
The red line shows the averaged estimated slope of the optimal sigma_r vs. sigma_n

Figure 3.7 The optimal sigma_r vs. sigma_n. sigma_d=5. The blue points show the mean 
value of the optimal sigma_r, while the blue lines show the variance of the optimal sigma_r.
The red line shows the averaged estimated slope of the optimal sigma_r vs. sigma_n
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range 2-3 could be a good choice on average. We should note that we cannot expect to find 

universal optimal values for d and r as images may have a large variety of texture 

characteristics. However, these experiments at least tell us some guidelines in selecting these 

parameters.

3.1.2 Multi Resolution Bilateral Filter Framework

Figure 3.8 Framework of multi resolution bilateral filter.

As we have discussed in previously, image noise is not necessarily white and may have 

different spatial frequency (fine-grain and coarse-grain) characteristics. Multi resolution

analysis has been proven to be an important tool for eliminating noise in signals; it is possible 

to distinguish between noise and image information better at one resolution level than another. 

Therefore, we decided to put the bilateral filter in a multi resolution framework: Referring to

Figure 3.8, a signal is decomposed into its frequency sub-bands with wavelet decomposition. 

As the signal is reconstructed back, bilateral filtering is applied to the approximation 

sub-bands. Unlike the standard single-level bilateral filtering, this multi resolution bilateral 

filtering has the potential of eliminating low-frequency noise components. (This will become 

evident in our experiments with real data.) Bilateral filtering works in approximation 

sub-bands; in addition, it is possible to apply wavelet thresholding to the detail sub-bands, 
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where some noise components can be identified and removed effectively. This new image 

denoising framework combines bilateral filtering and wavelet thresholding. The experiment 

results will be given in the next chapter.

3.2 Fast Bilateral Filter

In Porikli’s constant time bilateral filter [32], he applied Taylor expansion to the 

Gaussian spatial filter. Since for constant spatial filter, the response of bilateral filter can be 

written as the summation of the integral histogram, a bilateral filter can be interpreted as the 

weighted sum of the spatial filtered responses of the powers of the original image. So he used 

a box filter to compute the 2D spatial linear filter in constant time O(1) by using an integral 

image.

Figure 3.9 Multiple boxes filters and Gaussian filter

Based on the method provided by Porikli [32], we can find that he only use one box filter 

to approximate the Gaussian filter. So I extend one box filter to multiple box filters which can 
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be more precise and close to the Gaussian. The weight of each box depends on the area of 

each box. The summation of the area of every box should be equal to the area of the Gaussian. 

The multiple boxes filter is shown in Figure 3.9.
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4. EXPERIMENTAL RESULTS FOR IMAGE DENOISING

I have conducted some experiments to see the performance of the proposed framework 

quantitatively and visually. To do a quantitative comparison, I simulated noisy images by 

adding white Gaussian noise with various standard deviations to some standard test images. 

These noisy images were then denoised using several algorithms and the PSNR results were 

calculated. For visual comparisons, real noisy images were used.

4.1 PSNR Comparison for Gray-Scale Images

For each test image, three noisy versions were created by adding white Gaussian noise 

with standard deviations 10, 20, and 30. These images were denoised using four methods. 

The first method is the BayesShrink wavelet thresholding algorithm [10]. Five decomposition 

levels were used; the noise variance is estimated using the robust median estimator [9]. The 

second method is the bilateral filter [1]. Based on our experiments discussed in the previous 

sections, we chose the following parameters for the bilateral filter: d =1.8, 2r n   , and 

the window size is11 11 . The third method is the sequential application of BayesShrink[10]

and bilateral filter[1]. The reason this method was included is to see the combined effect of 

BayesShrink[10] and bilateral filter[1] and compare it with the proposed method. The fourth 

method is the proposed method. For the proposed method, DB8 filters in Matlab were used 

for one-level decomposition.

For the bilateral filtering part of the proposed method, we set the parameters as follows:

1.8d  , the window size is11 11 , and 1.0r n   at each level. In case of the original 

bilateral filter, 2r n   was a better choice. However, for the proposed method this lead to 

a smaller PSNR value on average. The reason is the double application of the bilateral filter 



26

Table 4.1 PSNR comparison among different methods under different noisy condition. 
The numbers are obtained by averaging the results of six runs.

Image n Bayes[10] Bilateral[1] [1]after[14] OWT[14] Proposed 

Barbara

512 512

10 31.25 31.37 30.92 32.18 31.79

20 27.32 27.02 27.16 27.98 27.74

30 25.34 24.69 25.23 25.83 25.61

Boats

512 512

10 31.94 32.08 31.93 32.69 32.48

20 28.69 28.90 28.80 29.52 29.50

30 27.13 27.50 27.34 27.89 27.77

Goldhill

512 512

10 31.94 32.08 31.93 32.69 32.48

20 28.69 28.90 28.80 29.52 29.50

30 27.13 27.50 27.34 27.89 27.77

Peppers

256 256

10 31.49 32.98 31.89 33.18 33.45

20 27.85 29.07 28.01 29.33 30.20

30 25.73 27.02 26.07 27.13 28.18

House

256 256

10 33.07 33.77 33.09 34.29 34.62

20 29.83 29.63 29.79 30.93 31.37

30 27.12 28.11 28.10 28.98 29.24

Lena

512 512

10 33.38 33.65 33.39 34.45 34.48

20 30.27 30.33 30.29 31.33 31.28

30 28.60 28.54 28.62 29.55 29.33

Average 29.24 29.54 29.31 30.29 30.34
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in the proposed method. When r was large, texture in the image was smoothed to produce 

low PSNR values. After some experimentation, 1.0r n   turned out to be better in terms 

of PSNR values. Here, we should note that a higher PSNR does not necessarily correspond to 

a better visual quality. We will discuss this shortly. For the wavelet thresholding part of the 

proposed method, the BayesShrink method [10] was used; and the noise variance was 

estimated again with the robust median estimator technique. To eliminate the border effects, 

images were mirror-extended before the application of the bilateral filter and cropped to the 

original size at the end.

Computation time for the multi resolution bilateral filter is only 5% more than the 

original bilateral filter when it comes to one level wavelet decomposition. Because the 

wavelet thresholding is a really fast algorithm, it would not cost too much time to carry on the 

proposed method.

The PSNR results are given in Table 4.1. As seen, the proposed method is 0.8dB better 

than the original bilateral filter and 1.1dB better than the BayesShrink method on average. 

The sequential application of BayesShrink[10] and bilateral filter[1] is only slightly better 

than BayesShrink and worse than bilateral filter. Therefore, we conclude that the 

improvement of the proposed method is not due to the combined effect of BayesShrink and 

bilateral filter, but due to the multi resolution application of the bilateral filter.

In order to achieve the best performance for the real random noise, such as the fixed 

pattern noise induced by the high ISO speed, we test the proposed method on the standard 

test images blurred by the spatially varying random noise. The PSNR results compared with 

[1] is shown in Table 4.2, which prove that the application of our method can be effective in 



28

the real noise denoising. Here we should notice that, since the noise is spatially varying, the 

automatic parameter estimator derived before cannot be used here. However, based on the 

experimental results, we still have to realize that the r influences the performance most 

and d should be a properly small value.

Table 4.2 PSNR comparison among various methods on real noisy images. The numbers 
are obtained by averaging the results of six runs.

Image BayesShrink[10] Bilateral[1] OWT[14] Proposed

Barbara 512 512 31.96 32.12 32.26 32.63

Lena   512 512 32.94 33.17 32.87 34.01

Goldhill 512 512 32.06 32.40 32.28 32.76

Boat   512 512 32.05 32.41 32.37 32.93

House 512 512 32.45 34.05 32.39 34.52

Peppers 512 512 31.76 33.42 32.2 33.58

Average 32.20 32.93 32.40 33.41

4.2 Visual Comparison for Real Noisy Images

PSNR comparisons for image denoising tell only a part of the story: First, it is well 

known that the PSNR is not a very good measure of visual quality; second, the white 

Gaussian noise assumption is not always accurate for real images. As a result, experiments 

with real data and visual inspections are necessary to evaluate the real performance of image 

denoising algorithms. In case of gray-scale images, we add the spatially varying random 

noise on the standard test image 'lena' ( 512 512 ). The results are shown in Figure 4.1, which 

compares the proposed method with the bilateral filter [1] and the BayesShrink method [10].
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In case of color images, there is also the issue of what color space to use. To achieve 

good PSNR performance, the RGB space could be a good choice; however, for visual 

performance, it is a better idea to perform denoising in the perceptually uniform CIE-L*a*b* 

color space. Because the human visual system is more sensitive to color noise compared to 

luminance noise, stronger noise filtering could be applied to the color channels a and b 

compared to the luminance channel L. We test the image using the proposed method in both 

of the RGB channels and L*a*b* channels in Figure 4.2. From the results we can clearly find 

that the denoising in RGB channels still preserve quite perceptible color noises. One thing 

that should also be observed is not to over-smooth the luminance channel to avoid unnatural 

``plastic'' looking images. If we apply the multi resolution filter on L*a*b* together, it can 

eliminate the color noises but also over-blur the luminance channel that lost the details. 

Humans are better at detecting differences in luminance levels as opposed to color levels. 

Therefore, in our experiments, the proposed method and the standard bilateral filter were 

applied to each channel separately in the CIE-L*a*b* space for color images.

In Figure 4.2, we compare the standard bilateral filter and the proposed method. The 

bilateral filter was applied for various values of d and r . As seen in the figure, the 

chroma noise was not eliminated effectively in any case. (We have also tested the iterative 

application of the bilateral filter. The results were not good either, and were not included in 

the figure.) Two results obtained by the proposed method are given: In the first case, the 

number of decomposition levels for the luminance channel is one; and in the second case it is 

two. In both cases, the number of decomposition levels for the chrominance channels is four. 

The resulting images in both cases are free of chroma noise to a great extent. Increasing the 
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number of decomposition levels for the luminance channel produces a smoother image as 

seen in the second case.

In Figures 4.3 and 4.4, results of the BLS-GSM method [13], the bilateral filter [1], and 

the proposed method are presented for real images provided at the website of the first author 

of [13]. The BLS-GSM method is considered as one of best denoising algorithms in terms of 

the PSNR results. However, the proposed method is apparently producing more visually 

pleasing results than the BLS-GSM method in case of real data. In Figure 4.3, neither the 

BLS-GSM method nor the bilateral filter was able to eliminate the chroma noise. In Figure

4.4, noise was not completely eliminated by the BLS-GSM method. The result of the bilateral 

filter is less noisy but overly smoothed. The result of the proposed method can be considered 

as the best visual one among three.

Also, note that in all these real image experiments, n values were estimated from the 

data, and the same d and ( / )r n  values were used for the proposed method. That is, 

once the parameters were decided, there was no need to re-adjust them for another image.

4.3 CIE-L*a*b* Distance Comparison for Color Images

It is well known that the PSNR is not a good representative of visual quality. Other 

quality measures have been proposed to evaluate the performance of image restoration 

algorithms. In case of color images, Euclidean distance in the perceptually uniform 

CIE-L*a*b* color space gives a better sense of visual quality than the PSNR. 

One of the most widely used perceptual color fidelity metric is the S-CIELAB, given as 

part of the CIE L*a*b* standard color space specification [33]. To measure perceptual 

difference between two lights using this metric, the spectral power distribution of the two 

http://www.cie.co.at/cie/
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Figure 4.1 a) Input image with a PSNR 30.02, (b) The BayesShrink method[10], (c) The 
bilateral filter [1] with sigma_d=1.8 and sigma_r=5sigma_n, (d)The proposed method with 
the number of decomposition levels is 1. For the proposed method, sigma_d=1.8 and
sigma_r=3sigma_n at each level. The wavelet filters are db8 in MATLAB.
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Figure 4.2 Real noisy image comparisons. (a) Input image, (b) The bilateral filter [1] 
with sigma_d=1.8 and sigma_r=3sigma_n, (c) The bilateral filter with sigma_d=1.8 and
sigma_r=20sigma_n, (d) The bilateral filter with sigma_d=5 and sigma_r=20sigma_n, (e) 
The proposed method with the decomposition levels is (1,4,4) for the (L,a,b) channels, 
respectively, (f) The proposed method with the decomposition levels (2,4,4). For the 
proposed method, sigma_d=1.8 and sigma_r=3sigma_n at each level. The wavelet filters are 
DB8 in MATLAB.
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Figure 4.3 Up-left: Input image, Up-right: the BLS-GSM result [13], Bottom-left: 
bilateral filter [1] result, Bottom-right: Result of the proposed method. For the bilateral filter,
sigma_d=1.8 and sigma_r=10sigma_n and the window size is11 11 . For the proposed 
method, sigma_d=1.8 and sigma_r=3sigma_n at each level, the window size is11 11 , and 
the number of decomposition levels is (1,4,4) for the (L,a,b) channels, respectively. 



34

lights are first converted to XYZ representations, which reflect (within a linear 

transformation) the spectral power sensitivities of the three cones on the human retina. Then, 

the XYZ values are transformed into an L*a*b* space, in which equal distance is supposed to 

correspond to equal perceptual difference (a "perceptually uniform" space). Then, the 

perceptual difference between the two targets can be calculated by taking the Euclidean 

distance of the two in this L*a*b* space. The difference is expressed in "Delta E" units. One 

Delta E unit represents approximately the threshold detection level of the color difference. 

The larger S-CIELAB metric is, the lower quality of the restored color image is. 

We compare the proposed algorithm with the original bilateral filter [1] and two wavelet 

thresholding algorithms: the BayesShrink [10] and the SURE Shrink [9]. In the first 

experiment, we added white Gaussian noise with variance 25 to the standard color images 

Baboon, Peppers, Boat and Goldhill. The denoising algorithms are applied to each color 

channel separately. The performance of the algorithms are measured using the Euclidean 

distance in the perceptually uniform CIEL*a*b* space [33]. The results are shown in Table 

4.3. From Table 4.3, we can find that proposed multi-level bilateral filter has the least color 

difference which means that it is most suitable for the human visual system.

Table 4.3 Comparison of several methods in terms of the Euclidean distance in the 
CIEL*a*b* space [33]. For the proposed method, the images are decomposed by one 
level using the DB4 filters of MATLAB.

Image BayesShrink SURE Shrink Bilateral Proposed

Baboon 512*512 11.9730 13.2110 7.9895 7.6034

Peppers 512*512 8.4389 9.1117 5.1905 2.6680

Boat 512*512 7.4325 7.8173 6.7754 3.5880

Goldhill 512*512 8.6210 9.4387 7.608 5.1807
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4.4 PSNR of Fast Bilateral Filter

In this section, I have conducted some experiments to see the performance of the 

proposed multiple box fast bilateral filter. To do a quantitative comparison, I simulated the 

standard test images with different quantization levels. The PSNR results were calculated. 

I computed the PSNR for the fast bilateral filter to the original filter. Figure 4.4 shows 

the test results with different d . I apply these fast bilateral filters on a standard test image 

“Barbara.jpg” blurred by the white random Gaussian noise with the standard deviation of the 

input noise as 30. For the original bilateral filter, I use same r and d as the fast bilateral 

filter. 

Figure 4.4 PSNR comparisons between single box fast bilateral [32] and 
proposed multi box fast bilateral filters. sigma_d=1.5, sigma_r=20, and the 
standard deviation of the simulation noise is sigma_n=30. The green line is 
the proposed method, while the red and blue are Porikli’s method [32].
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Figure 4.5 PSNR comparisons between single box fast bilateral [32] and 
proposed multi box fast bilateral filters. sigma_d=3 and sigma_r=20, and the standard 
deviation of the simulation noise is sigma_n=30. The green line is the proposed 
method, while the red and blue are Porikli’s method [32].

Given the same parameters of original bilateral filter, the proposed multiple boxes fast 

bilateral filter can improve 0.5dB-1dB of PSNR than the single box fast bilateral filter. The 

computation time only increase 20%, which is still greatly smaller than the original bilateral 

filter. It proves that the proposed method has the better approximation of the original bilateral 

filter and would not cost much more computation time.
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5. BLOCKING ARTIFACTS REDUCTION

5.1 Parameter Analysis

There are two parameters that control the behavior of the bilateral filter. Referring to 

(1.1), d and r characterizes the spatial and intensity domain behaviors, respectively. In 

case of compression artifact reduction, these parameters should be chosen carefully. 

Figure 5.1 illustrates this on a one dimensional signal. The first subplot in that figure 

shows an edge signal; the edge discontinuity is 10. The second subplot displays the outputs of 

the bilateral filter for different values of r . When the r value is less than the discontinuity 

amount, the filter is basically useless against eliminating the discontinuity. When r is 

larger than the discontinuity amount, the discontinuity can be eliminated. At the same time, 

the extent of the smoothing can be controlled by the d value. The larger the d value is, 

the wider the extent of smoothing can be. On the other hand, if r value is less than the 

discontinuity amount, elimination of the discontinuity is impossible no matter the value of d .

Therefore, we need to measure the discontinuity amount along the block boundaries and 

adapt the value of r accordingly. We also would like to avoid over-smoothing texture

regions by adapting the d value on the texture regions. For a smooth region, the value of 

the d can be large; otherwise, it should be small. 

As we will show shortly, the non-adaptive application of bilateral filter creates some 

problems: if strong parameters are chosen to eliminate blockiness, it over-blurs the texture 

details; if weaker parameters are chosen, the blocking artifacts are not completely removed. 

To address these issues, we present an adaptive bilateral filtering framework, whose block 

diagram is given in Figure 5.2.
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Figure 5.1 Effects of the values of the bilateral filter parameters sigma_r and 
sigma_d on a block discontinuity are illustrated. Input is a step signal with the 
step value=10. The middle image shows the performance of the bilateral filter 
using same sigma_d value and different sigma_r. The bottom image shows the 
performance of the bilateral filter using same sigma_r value and different 
sigma_d.

In the light of discussion of the previous section, we included two modules in the 

framework. One module detects the block discontinuities and adjusts the value of r

accordingly; the other module detects smoothness of local regions and adjusts the value of 

d accordingly.
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Figure 5.2 Framework of adaptive bilateral filter

5.2 Parameter Selection

To detect block discontinuities, the input image is filtered with [ 1,0,1] (for vertical 

boundaries) and with [ 1,0,1]T (for horizontal boundaries) along the block boundaries, and 

then absolute values of the results are taken. The r value should be at least equal to these 

values to be effective. The discontinuities are detected along the block boundaries; however, 

if the bilateral filter is applied along the boundaries only, the blockiness cannot be eliminated. 

Consider a single block; if the bilateral filter is applied along the boundaries only, the 

discontinuity moves further inside the block. To eliminate the blockiness effectively, the 

bilateral filter should be applied to the entire block. Thus, the discontinuities along the 

boundaries should be diffused into the blocks. One approach is as follows: Given the input 

image with blocking artifacts as Figure 5.3, referring Figure 5.4, the center four pixels inside 

a block is set to zero; the horizontal and vertical discontinuities along the boundaries are kept 

except for the corner pixels, where the larger of the horizontal/vertical discontinuities is 

chosen; and then the rest of the pixels are interpolated linearly. This is repeated for all blocks 

to obtain the block discontinuity map ( )bM x . The block discontinuity map ( )bM x for the 
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JPEG compressed “Lena”' image is shown Figure 5.5. Once ( )bM x is calculated, the 

adaptive ( )r x is calculated as

, 0( ) ( , ( ))r r min bmax k M x x                                 （5.1）

Figure 5.3 Compressed input image Lena. The compressed bit-rate is 0.18 which means 
quantization quality=8 in the Matlab.

Where ,r min is the minimum value of ( )r x , and 0k is a scale factor. The reason we 

use such a minimum value is that we would like to apply a minimal filtering to the entire 

image; if this was not done, other compression artifacts, such as the mosquito artifact, could 

not be eliminated and some sort of spatial unevenness appear in the final image. Therefore, 

we need a controller to balance the power of the intensity filter of the standard bilateral filter.

Only if the estimated intensity parameter is large enough, the r is considered as the 

parameter.
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Figure 5.4 Interpolation of the block discontinuities at each block.

Figure 5.5 Block discontinuity map

To detect high-frequency texture regions, we compute the standard deviation of each 

block. The standard deviation is used as an indicator of texture and to adapt value of d to 

preserve the texture information. Figure 5.6 shows the standard deviation of each block for 

the compressed ``Lena'' image. Note that the edge regions 
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Figure 5.6 Local standard deviation for texture detection

Figure 5.7 Median filtered local standard deviation

are highlighted in addition to the texture regions. However, we would like to apply strong 

bilateral to edge regions as well to eliminate ringing type of artifacts. One solution is to apply 
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a median filter to eliminate edge regions from the texture map. In our experiments, the 

standard deviation of each 8 8 block is calculated, a 3 3 median filter is applied, and 

then the resulting image is interpolated to obtain the texture map ( )tM x . (For the Lena image 

of Figure 5.3, the texture map is shown in Figure 5.7. The value of d should be inversely 

proportional to ( )tM x . One way of calculating ( )d x is

1
,( ) ( , ),

1 ( )d d min
t

k
max

M
 


x

x
                              （5.2）

where 1k is a constant parameter controlling the mapping from ( )tM x to ( )d x , and 

,d min is minimum value of ( )d x . Such a minimum ,d min is introduced again to do a 

minimum level of filtering to the entire image.

5.3 Summary

The adaptive parameter selection here is simply separating the filtering job into two 

categories: one for eliminating boundaries of the blocks, another for recovering the texture 

and details of the original image.

Using the framework provided before, we can easily get the parameters of bilateral filter 

adaptively. All the parameters are tested in the next chapter to show the performance of this

framework.
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6 EXPERIMENTAL RESULTS FOR COMPRESSION ARTIFACTS REDUCTION

In this section, I have conducted some experiments to see the performance of the 

proposed framework quantitatively and visually. To do a quantitative comparison, I simulated 

some standard test images under different compression rates. These compressed images were 

then deblocked using several algorithms which introduced in the previous literature review 

section. The PSNR and MSDSt results were calculated. For visual comparisons, standard 

images and snapshot from standard test videos are provided.

There have several measurements for the blocking artifacts. The most popular two are 

PSNR and MSDS (Mean Squared Difference of Slope) [34]. MSDS involves the intensity 

gradient (slope) of the pixels close to the boundary of two blocks. It is based on the empirical 

observation that quantization of the DCT coefficients of two neighboring blocks increases the 

MSDS between the neighboring pixels on their boundaries. Consider an 8 8 block of the 

input image and four blocks w, s, e, n horizontally adjacent to f. The MSDS is defined by

7
2

1 2
0

( ( ) ( ) )w
m

d m d m


                           (6.1)

1( )d m is the intensity slope across the boundary between the f and w blocks, defined by

1 ( ) ( , 0) ( , 7)d m f m w m                                  (6.2)

2 ( )d m is the average between the intensity slope of f and w blocks close to their 

boundaries, defined by

2

( ,7) ( ,6) ( ,1) ( ,0)
( )

2 2

w m w m f m f m
d m

 
                         (6.3)

Then, the MSDS which involves both horizontal and vertical adjacent blocks is given by

1 w s e nMSDS                                             (6.4)

MSDSt is proposed in [35], which extends the definition of MSDS by involving the four
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diagonally adjacent blocks. If nw is a block diagonally adjacent to f, then define

2
1 2( ( ) ( ) ) ,n w g m g m                                   (6.5)

1( ) (0,0) (7,7)g m f w                                        (6.6)

and 

2

(7,7) (6,6) (1,1) (0,0)
( )

2 2

nw nw f f
g m

 
                        (6.7)

If ne, ns, nw and nn are the four blocks diagonally adjacent to f; the MSDS involving 

only the diagonally adjacent blocks is

2 n w n s n e n nM S D S                                 (6.8)

The total MSDSt considered for the intensity slopes of all the adjacent blocks is

1 2tMSDS MSDS MSDS                                     (6.9)

From the formulas above, we can find that the MSDSt is typically designed for the 

measurement of blocking artifacts. The large MSDSt means the restored image still has more 

blocking artifacts remained compared to the original test image.

We test this proposed adaptive bilateral filter for blocking artifacts reduction for some 

standard images, such as "Lena", "Cameraman", "Boat", "Airplane", "Mandrill", "Peppers" 

and "Goldhill". We compare our results in PSNR, with JPEG Coded, H.263, MPEG-4, 

POCS[25], Post-DCT Method in [26], blind DCT measurement Method in [27] and original 

bilateral filter[1]. We also compare our method in MSDSt with JPEG Coded, TSD-MRF [28]

which is considered as the best in MSDSt among the previous methods and original bilateral 

filter. The parameters in Table 6.1 are r =20, d =3, window size is 6, 0 1.0k  , 1 10.0k  , 

Table 6.1 and Table 6.2 show the results with the parameters cited in the caption. From Table 

4.4 and Table 4.5, we notice that the bilateral filter and the proposed method has the best 
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performance in PSNR, while the proposed method performs best in MSDSt.

Table 6.1 Comparison of the proposed method in PSNR with JPEG Coded, H.263, 
MPEG4, POCS[25], Method in[26], Method in [27] and original bilateral filter. 

Image Bit-rate JPEG H.263 MPEG4 POCS [25] [26] Bilateral Proposed

Lena 0.22 29.47 30.20 30.02 30.23 30.32 30.27 30.37 30.49

Peppers 0.22 29.21 30.02 30.04 29.85 29.95 29.93 30.59 30.59

Goldhill 0.23 27.90 28.50 28.31 28.46 28.51 28.40 28.38 28.53

Mandrill 0.30 22.05 22.35 22.15 22.44 22.49 22.39 22.46 22.26

Airplane 0.24 28.72 29.34 29.32 29.34 29.39 29.33 29.87 29.81

Average 23.38 26.68 27.96 28.06 28.13 28.06 28.33 28.34

We also test the parameters in our proposed method. Figure 6.1 shows how 0k , which 

controls r along the blocking boundaries according to (5.1), influences the PSNR and 

MSDSt. Obviously, when the 0k increases, the PSNR will be undermined while the MSDSt 

can be improved. Therefore, we have to choose a proper 0k to make the balance between 

the PSNR and MSDSt. Figure 6.2 shows that under different bit-rate, using the proposed 

adaptive d for the texture detected. Both of the PSNR and MSDSt can be improved a lot. 

In the (5.2) we use the 1k to control the intensity of the d along the blocking boundary. 

Figure 6.3 illustrates the relationship between 1k and PSNR, MSDSt, which implies only 

the moderate 1k can make both metric best.

In order to differentiate the performance of bilateral filter and proposed method, we plot 

the comparison of bilateral filter using different parameter r with the proposed method. 
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Table 6.2 Comparison of the proposed method in MSDSt with JPEG Coded, 
TSD-MRF[28] and original bilateral filter. 

Image Bit-rate JPEG TSD-MRF Bilateral Proposed

Lena 0.20 6674 2229 3841 526

0.30 4384 1641 2365 374

Boat 0.20 10947 3844 5744 879

0.30 8695 3969 4095 747

Cameraman 0.20 5164 2904 4512 438

0.30 4276 2554 2616 351

Peppers 0.20 6341 2212 5622 2157

0.30 3524 1322 4525 2193

Average 6250 2584 4163 958

From Figure 6.4, we can find that when r increases, the PSNR of the bilateral filter 

become worse, although the MSDSt decrease. It proves that intensity parameter of bilateral 

filter can control the blocking reduction as well as blur the details. Only the proposed method 

can reduce the blocking artifacts as well as saving the details with the best PSNR and 

MSDSt. 

Visually, we can find the same conclusion from in Figure 6.5. It is captured from a 

region of the standard test image Lenna. From left to right: (a) The standard bilateral filter 

with 20r  , 3d  ; (b) The standard bilateral filter with 50r  , 3d  ; (c) The adaptive 

bilateral filter with , 20r min  , , 3d min  . Obviously, when using the large intensity 

parameter, the image will be blurred too much, but the blocks can be eliminated very well.
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Figure 6.1 Relationship between the k0 and the PSNR, MSDSt for the Lena test image 
under bit-rate=0.18. The image size is 512 by 512. The k1=1.5.
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Figure 6.2 Comparison of original Bilateral with the proposed method with and without 
the adaptive sigma_d for the Lena test image under different bit-rate. 
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Figure 6.3 Relationship between k1 and the PSNR, MSDSt of the proposed method for 
the Lena test image under bit-rate=0.18. The image size is 512 by 512, k0=1.2
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Figure 6.4 Comparison of original Bilateral filter with sigma_r of 20 and 50, and the 
proposed method for the Lena test image under different bit-rate. 
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Figure 6.5 Performance of Bilateral Filter. From left to the right: input compressed image, 
bilateral filtered image and adaptive bilateral filtered image.

Figure 6.6 Visual tests for adaptive parameters. (a) Original image. (b) Input compressed
image. (c)The standard bilateral filter, (d) The adaptive bilateral filter

There is a test of proposed adaptive method is presented in Figure 6.6. 20r  , 3d  , 

, 20r min  , , 3d min  , 0 1.0k  , 1 10.0k  . It is obvious that for the texture part such as the 

shoulder of 'Lena', the proposed method can preserve the details smoothly.
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A test of a region from ‘Lena’ under different rates is displayed in Figure 6.7.

Figure 6.7 Visual comparisons under different bit-rates. the first row shows the compressed 
image, the second row shows the original Bilateral filter, and the third row presents the proposed 
method. From left to right the compressed images’ bit-rate are 0.18, 0.22, 0.24, respectively.

In Figure 6.7, image size is 64 64 ; The parameters are 0 1.2k  , 1 10.0k  , , 20r min  , 

, 1.5d min  , 20r  , 3d  . We can clearly find that the proposed adaptive method can 

eliminate the blocks effectively, compared to the residual blocking artifacts in the bilateral 

filter.
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We also test for the video sequences, shown as Figure 6.8. One frame from our 

experiment with the video sequence "Foreman" is displayed. 

Figure 6.8 Test for video sequence (a)Uncompressed frame; (b)Compressed frame; 
(c)Bilateral filter; (d)Proposed method.

Image size is144 137 ; the input bitrate is 0.495. 0 1.2k  , 1 10.0k  , , 20r min  , 

, 1.5d min  , 20r  , 3d  . The results indicate that our method works best for saving the 

details in the texture part as well as removing the artifacts.
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7 SUMMARIES AND CONCLUSIONS

7.1 Multi Resolution Bilateral Filter

In this section of the research, I have made an empirical study of the optimal parameter 

values for the bilateral filter in image denoising applications and present a multi resolution

image denoising framework, which integrates bilateral filtering and wavelet thresholding. In 

this framework, I decompose an image into low- and high-frequency components, and apply 

bilateral filtering on the approximation sub-bands and wavelet thresholding on the detail 

sub-bands. We have found that the optimal r value of the bilateral filter is linearly related 

to the standard deviation of the noise. The optimal value of the d is relatively independent 

of the noise power. Based on these results, we estimate the noise standard deviation at each 

level of the sub-band decomposition and use a constant multiple of it for the r value for

bilateral filtering.

As a result of these experiments in the previous chapter, we can reach the following 

conclusions:

(1) Clearly, with the multi-level bilateral filter, the strong noise is eliminated most 

effectively.

(2) For the gray-scale images, wavelet thresholding like BayesShrink [10] will still keep 

some random noises in the texture which can be clearly observed, while bilateral filter can 

remove the noises in the texture very well. However, original single level bilateral filter has a 

stronger intensity parameter r than the multi-level bilateral filter such that it will lose 

some details in the texture. With wavelet thresholding, multi-level bilateral filter can 

eliminate the noises in the high frequency components without obvious influence on the 
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texture.

(3) Wavelet thresholding like BayesShrink [10] and OWT SURE [14] is not effective for 

the real noisy images. The reason to explain this can be inferred that because wavelet 

thresholding is based on the robust median estimation, the real noise doesn’t have the same 

property as the standard Gaussian random noise so that it could not be estimated correctly.

(4) Multi resolution bilateral filter can use any type of wavelet thresholding method, such 

as OWT SURE [14], as long as this method is effective. Compared with the proposed method, 

although the OWT SURE has good performance for the slight noisy image, but when it 

comes to the strong noisy image, using same parameters, the proposed method has the best 

output performance.

(5) When we transfer the color space into the CIEL*a*b* space, we can use the 

advantage of multi-level bilateral filter more effectively. Because human visual system is

more sensitive to the red and green color noises, we can use higher level decomposition on 

the a and b channel. According to the observation, for those noises in the color channels a and 

b, like the red and green color noises on the girl’s face and hair, only the multi-level bilateral 

filter can work with the most effect.

(6) We compare our algorithm with Portilla's BLS-GSM [13], which is considered as the 

most effective recent image denoising method. From Figure 4.3, we can find that BLS-GSM

and single-level bilateral have some obvious color noises remained, while multi-level 

bilateral filter can avoid. Therefore, our proposed method has the best efficiency in the 

denoising works for real noisy image.

The key factor in the performance of the proposed method is the multi resolution
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application of the bilateral filter. It helped eliminating the coarse-grain noise in images. The 

wavelet thresholding adds power the proposed method as salt-and-pepper type of noise 

components cannot be eliminated with the bilateral filter. We used a specific wavelet 

thresholding technique (i.e., the BayesShrink method); it is possible to improve the results 

further by using better detail-sub-band-denoising techniques or using redundant wavelet 

decomposition. These issues and the detailed analysis of parameter selection for the proposed

framework are left as future work. We believe that the proposed framework will inspire 

further research towards understanding and eliminating noise in real images.

7.2 Compression Artifacts Reduction

In this section of research, a spatial adaptive method for the blocking artifact reduction is 

presented, which is manifested as an automatic detection for the texture and the discontinuity 

in the image so that we can apply different spatial and intensity parameters of the bilateral 

filter upon them. The value of the parameters is determined by the local mapping from the 

index assigned by the detection. From the experiment, the proposed method has the best 

performance in PSNR and MSDSt. At the same time, the visual quality of the results show 

that the proposed method can eliminate the blocking artifacts better and keep more texture

details than the original bilateral filter.

In our preliminary experiments, the parameters were selected after some trial and error. 

As a next task, we will do a further analysis of these parameters. The preliminary results 

indicate that the adaptive method reduces the blockiness effectively while keeping the texture. 

Further improvement can be achieved by applying the smoothing process repeatedly. Another 

possible approach to improve the results is constraining the DCT coefficients of the resulting 
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image. The upper and lower bounds for each DCT coefficient are available at the decoder 

side. By iterating the processes of projecting the resulting image onto these bounds in the 

DCT domain and applying adaptive bilateral filtering in spatial domain, a better 

reconstruction can be achieved.
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