
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2009

Compilation and Scheduling Techniques for
Embedded Systems
Hassan Salamy
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Salamy, Hassan, "Compilation and Scheduling Techniques for Embedded Systems" (2009). LSU Doctoral Dissertations. 716.
https://digitalcommons.lsu.edu/gradschool_dissertations/716

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/716?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F716&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

COMPILATION AND SCHEDULING TECHNIQUES FOR
EMBEDDED SYSTEMS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Electrical and Computer Engineering

by
Hassan Salamy

B.E., Lebanese American University, 2003
M.S. in E.E., Louisiana State University, 2006

August 2009

To my family, friends, and mentors... needless to say to you the reader...

ii

Acknowledgments

I would like to thank my advisor Dr. Jagannathan Ramanujam (Dr. Ram) for his continuous support

academically and financially. His hints and ideas when I was stuck will always be appreciated and

acknowledged. Dr. Ram gave me much freedom in choosing my projects and was always very

flexible in deadlines. I will always be thankful for the friendship that I have built with him during

the years I spent at LSU as a graduate student. Thank you Dr. Ram for giving me the opportunity to

go to different conferences that would not have been possible without your financial and academic

support. Such conferences played crescent role in my overall academic experience. Also, I would

like to thank my committee members, Dr. J. Trahan, Dr. R. Vaidyathanan, Dr. D. Carver, and Dr.

M. Vicente, for serving on my committee and reading this thesis.

This dissertation would not have been possible without the unconditional love and support of

my parents. Thanks for their financial support, I was able to get through the first year of my studies

here at LSU. Their love and prayers have always been a motivation for me to give my best possible

effort. Thank you for being such a great parents and mentors. I would also like to express my love

to my two sisters Samar and Samah and their five angels Hadi, Mortada, Jawad, Hana’a, and Sara.

A special thank you is to my brother Rami who has always believed in me. He has always been

proud of me and he has started calling me doctor since the time I sent my graduate application out.

Thank you for being such a great brother and a great friend. You have always been a big motivator

for me throughout my academic life.

Last but not least, I would like to thank all the great friends and colleagues at the Electrical

Engineering Department at LSU that made my stay a pleasant one. Throughout the five years of

graduate school, I was able to build strong friendships with few people in the Islamic Center of

Baton Rouge and in Baton Rouge. I will always appreciate your friendship.

To all people that have loved and supported me either directly or indirectly, thank you and May

Allah bless you.

iii

Table of Contents

Acknowledgments . iii

List of Tables . vii

List of Figures . viii

Abstract . xi

Chapter 1: Introduction . 1
1.1 Embedded Systems Design . 2
1.2 Digital Signal Processors . 5
1.3 DSPs with Address Generation Units . 5
1.4 Multi-Processor System on Chip . 6
1.5 Thesis Outline . 10

Chapter 2: Simple Offset Assignment with Variable Coalescing 11
2.1 Offset Assignment . 11
2.2 Related Work . 15
2.3 Our Heuristic . 17

2.3.1 Coalescing and Selection Criteria . 19
2.3.2 Tie Break . 21

2.4 Simulated Annealing . 22
2.4.1 Initial Solution . 23
2.4.2 Neighborhood Transformation . 24
2.4.3 Cost Function and Cooling Schedule . 24

2.5 CSOA: Example . 25
2.6 Results . 25
2.7 Chapter Summary . 32

Chapter 3: General Offset Assignment with Variable Coalescing 33
3.1 Problem Definition . 33
3.2 Related Work . 36
3.3 The CGOA Heuristic . 36
3.4 CGOA: Example . 40
3.5 Simulated Annealing . 42
3.6 Results . 42
3.7 Chapter Summary . 51

iv

Chapter 4: The Offset Assignment Problem with Variable Permutation 52
4.1 CSOA ILP Formulation . 52
4.2 ILP Formulation with Variable Permutation . 54
4.3 General Offset Assignment with Variable Coalescing 58

4.3.1 Problem Definition . 58
4.3.2 CGOA ILP Formulation with Variable Permutation 61

4.4 Results . 67
4.5 Chapter Summary . 72

Chapter 5: Address Register Allocation for Arrays in Loops 73
5.1 Problem Definition and Related Work . 73
5.2 ILP Formulation of the Address Register Allocation Problem 77

5.2.1 Minimum Cost for a Given Number of ARs 77
5.2.2 Minimum Number of ARs for a Zero Cost Cover 81
5.2.3 Code Restructuring . 82

5.3 Genetic Algorithm . 85
5.4 Results . 89
5.5 Chapter Summary . 92

Chapter 6: Task Scheduling and Memory Partitioning for MPSoC: Single Application 94
6.1 Task Scheduling and Memory Partitioning . 95

6.1.1 Architecture Overview and Problem Definition 95
6.1.2 Motivation . 96
6.1.3 Our Heuristic . 99
6.1.4 Pipeline Scheduling . 102

6.2 Example . 104
6.3 Experimental Results . 106
6.4 Related Work . 113
6.5 Chapter Summary . 114

Chapter 7: Task Scheduling and Memory Partitioning for MPSoC: Multiple Appli-
cations . 115

7.1 Motivation . 115
7.2 Architectural Model . 116
7.3 Our Approach . 116

7.3.1 The Compiler . 119
7.3.2 The Resource Partitioner . 120
7.3.3 The Scheduler . 125
7.3.4 Our Heuristic . 126

7.4 Chapter Summary . 130

Chapter 8: Conclusions and Future Work . 131
8.1 Conclusions . 131
8.2 Possible Future Work . 135

8.2.1 DSPs: The Offset Assignment Problem 135
8.2.2 MPSoCs: Memory-Aware Scheduling and SPM Management 136

v

References . 138

Vita . 144

vi

List of Tables

2.1 A step by step run of our algorithm on the example in Figure 2.9 27

2.2 Percentage of temporary variables. 29

2.3 SOA-OFU cost. 29

2.4 Comparison between different techniques for solving the SOA problem. 30

2.5 Results for different CSOA algorithms. 31

2.6 The percentage of the memory slots needed using different CSOA heuristics 31

3.1 First and Last values for the CGOA example in Figure 3.3. 41

3.2 Percentage of temporary variables. 44

3.3 SOA-OFU cost. 45

3.4 CGOA results for 2 ARs. 46

3.5 CGOA results for 4 ARs. 46

3.6 CGOA results for 8 ARs. 46

3.7 COA results for 2 ARs. 47

3.8 COA results for 4 ARs. 48

3.9 COA results for 8 ARs. 48

6.1 Min, Avg, and Max values . 98

6.2 Run times for our heuristic and the ILP formulation. 112

vii

List of Figures

1.1 A typical Address Generation Unit (AGU) . 7

1.2 An MPSoC architectural example . 8

2.1 (a) C code. (b) Access sequence. (c) Variable placement 1. (d) Variable placement 2. 13

2.2 A CSOA example . 14

2.3 (a) Access sequence. (b) Access graph. (c) Liao’s solution. 16

2.4 (a) Access graph. (b) Access graph after coalescing a and e. 18

2.5 Our heuristic for simple offset assignment with variable coalescing. 20

2.6 Ottoni’s CSOA versus our CSOA . 22

2.7 One possible final solution for the example in Figure 2.6 using Ottoni’s CSOA. . . 22

2.8 (a) Original memory contents. (b)-(e) Memory after applying different operations. . 24

2.9 Our CSOA example . 26

2.10 One possible final solution for the example in Figure 2.9 using Ottoni’s CSOA. . . 26

3.1 GOA example . 35

3.2 Our general offset assignment heuristic with variable coalescing. 38

3.3 CGOA example . 41

3.4 Solution representation for the SA . 42

3.5 Annealing CGOA algorithm. 43

3.6 The normalized stack size reduction for 2 ARs . 48

3.7 The normalized stack size reduction for 4 ARs . 49

3.8 The normalized stack size reduction for 8 ARs . 49

3.9 Normalized cost for SA with respect to our CGOA 2, 4, and 8 ARs 50

4.1 An example of code permutation . 56

viii

4.2 An example of the traditional GOA . 59

4.3 An example of the new GOA . 62

4.4 The normalized cost for the CSOA problem with permutation. 69

4.5 The normalized cost for the CGOA problem with permutation. 69

4.6 Design space exploration of memory versus cost. 70

5.1 An example of different ARA solutions . 76

5.2 An example of an indexing graph with reordering forward edges (dash edges) . . . 83

5.3 GA chromosome . 86

5.4 The mutation operation for the GA with code restructuring. 86

5.5 The crossover operation for the GA with code restructuring. 87

5.6 Our genetic algorithm for the address register allocation problem. 89

5.7 Normalized code size with respect to [6] for 1, 2, and 4 ARs 90

5.8 Normalized execution cycles with respect to [6] for 1, 2, and 4 ARs 91

5.9 Normalized GA with code restructuring execution cycles 92

6.1 An MPSoC architectural model . 95

6.2 An example of different scheduling techniques 99

6.3 Our scheduling heuristic. 103

6.4 The balance routine. 103

6.5 The recompute routine. 104

6.6 An example of pipelining . 106

6.7 Results for lame benchmark . 107

6.8 Results for osdemo benchmark . 108

6.9 Results for enhance benchmark . 108

6.10 Results for cjpeg benchmark . 109

6.11 Results for pgp benchmark . 109

6.12 Results for rasta benchmark . 110

6.13 Results for pegwit benchmark . 110

ix

6.14 Results for epic benchmark . 111

6.15 Cycles reduction as α decreases . 112

7.1 Our architectural model . 117

7.2 Our framework . 118

7.3 (a) An unbalanced TDG. (b) A balanced TDG . 123

7.4 Our scheduler heuristic. 127

7.5 Our SPM partitioning heuristic. 128

7.6 Our processor partitioning heuristic. 128

7.7 Our task scheduling memory partitioning heuristic. 129

x

Abstract

Embedded applications are constantly increasing in size, which has resulted in increasing demand

on designers of digital signal processors (DSPs) to meet the tight memory, size and cost constraints.

With this trend, memory requirement reduction through code compaction and variable coalescing

techniques are gaining more ground. Also, as the current trend in complex embedded systems of

using multiprocessor system-on-chip (MPSoC) grows, problems like mapping, memory manage-

ment and scheduling are gaining more attention.

The first part of the dissertation deals with problems related to digital signal processors. Most

modern DSPs provide multiple address registers and a dedicated address generation unit (AGU)

which performs address generation in parallel to instruction execution. A careful placement of

variables in memory is important in decreasing the number of address arithmetic instructions lead-

ing to compact and efficient code. Chapters 2 and 3 present effective heuristics for the simple and

the general offset assignment problems with variable coalescing. A solution based on simulated

annealing is also presented.

Chapter 4 presents an optimal integer linear programming (ILP) solution to the offset assign-

ment problem with variable coalescing and operand permutation. A new approach to the general

offset assignment problem is introduced. Chapter 5 presents an optimal ILP formulation and a ge-

netic algorithm solution to the address register allocation problem (ARA) with code transformation

techniques. The ARA problem is used to generate compact codes for array-intensive embedded ap-

plications.

In the second part of the dissertation, we study problems related to MPSoCs. MPSoCs provide

the flexibility to meet the performance requirements of multimedia applications while respecting

the tight embedded system constraints. MPSoC-based embedded systems often employ software-

managed memories called scratch-pad memories (SPM). Scheduling the tasks of an application on

the processors and partitioning the available SPM budget among those processors are two critical

issues in reducing the overall computation time.

xi

Traditionally, the step of task scheduling is applied separately from the memory partitioning step.

Such a decoupled approach may miss better quality schedules. Chapters 6 and 7 present effective

heuristics that integrate task allocation and SPM partitioning to further reduce the execution time

of embedded applications for single and multi-application scenarios.

xii

Chapter 1
Introduction

Aside from science fiction movies, the idea of a human-independent robots that perform daily

life chores flexibly to a large extent or work effectively side by side with people is still a dream.

The belief that artificial intelligence will be at a stage where a machine is capable of performing

many operations flexibly independent of the control of human beings is still out of reach. The

intelligent machines field has witnessed good advancements over the years but is yet to reach a

stage of maturity, where the transistor-based (or other) devices surpass human intelligence and

become smart enough to improve their own design with minimal or no interference from human

beings. The human mind is still too complex to be understood by the field of medicine and so is

the ability to build a machines that can imitate humans with accuracy. Many of these abstract tasks

are far more complicated to be handled efficiently by machines as the step by step logic provided

by digital computers is still far away from imitating the human brain.

However, aside from the world ruled by machines, the last fifty years have shown that computers

are extremely capable in two important areas:

1. data manipulation such as word processing, spread sheets, web search, and database man-

agement; and

2. mathematical calculations such as those in engineering simulations, aircraft design, and real-

time digital signal processing.

Microprocessors perform these tasks with different levels of efficiency; however, it is still expen-

sive to make a device that is optimized for tasks in both areas.

General-purpose processors are extremely useful in handling a large scope of versatile tasks

with a degree of efficiency. However, sometimes the degree of efficiency is more important than

versatility. It is a hard problem to build a general purpose processor that is optimized for a large

set of tasks. Therefore, special-purpose processors have secured themselves the essential role as

1

the building block in most of the embedded systems in the form of electronic devices that we

come across daily in our lives. As the name suggests, a special-purpose processor is a processor

specifically designed to solve a small set of tasks very efficiently.

In today’s world, embedded systems are found everywhere from homes, offices and hospitals to

cars, planes and consumer electronic devices. An embedded system is a system that is designed

for a particular purpose. The special-purpose computer in such a system is usually designed to

perform one or a few dedicated functions often with real-time computing constraints. The pro-

cessor (or computer) here is usually embedded as part of a complete device including hardware

and software interacting with other devices such as mechanical parts, etc. In contrast, a general-

purpose computer such as a personal computer usually serves a number of purposes such as data

processing, internet surfing, spread sheet manipulation, etc.

Since an embedded system is dedicated to a specific task, the design engineers of an embedded

system can reduce the size and cost of the product and increase the reliability and performance.

Embedded systems are usually mass-produced to benefit from economies of scale. Embedded sys-

tems are found in a range of items from portable devices such as digital cameras and cellular

phones to large stationary installations like washing machines and traffic lights.

1.1 Embedded Systems Design
Embedded systems can be specified in different levels of abstraction. Gajski’s Y-chart [25] has

identified the different views of these abstraction levels and their relationship using three domains.

The three domains are defined as follows.

• Behavior: This is a set of performance specifications with operational characteristics. Sub-

systems are presented in their functional forms.

• Structure: Different subsystems (e.g., processors, memory units, and controllers) that help to

realize the behavior and their interconnections are specified.

• Geometry: This refers to the physical implementation of the system that realizes a structural

definition.

2

The Y-chart uses five levels of abstraction defined below.

• System: At this level, the system is described as a set of subsystems to be mapped to hard-

ware or software components.

• Algorithmic: It represents the algorithmic step-by-step solution and the interaction between

different subsystems.

• Register-Transfer (RT): The system is defined as a set of communicating register transfer

logics (RTL) such as ALUs, MUXs, and registers.

• Logic: It represents the hardware implementation of the logic functions as a set of logic gates

and flip-flops along with their interconnections.

• Circuit: This is the actual hardware level implemented from transistors, capacitors and resis-

tors on a board.

Embedded systems typically have tight constraints on design and functionality. Such contraints

add significant burden on the design and life cycle of an embedded system. System optimization

at different levels can have a large impact on meeting the set of tight constraints. We list some of

the characteristics and constraints that an embedded system engineer often works with.

• Real-time operation: Often, one of the most critical constraints in an embedded system is

its real-time system operation, i.e., the time at which the output from the system is ready in

response to an input. In some systems, if the results are not available at a certain time, then

the system is considered to have failed [24]; such systems are called hard real-time systems.

In other cases, a delay in the availability of results leads to degraded system performance

[24]; such systems are called soft real-time systems. Signal processing and mission critical

systems are examples of embedded systems with significant real-time operation constraints.

• Size and weight: Embedded systems often have tight contraints on size and weight, which are

typically derived from the larger system that they are part of; the size and weight also impact

3

the overall cost [28]. Memory utilization has a direct impact on area and hence size [11].

Therefore, reducing memory size is critical in controlling the size and the cost of embedded

systems.

• Safety and reliability: Many embedded systems used in critical applications requiring high

levels of reliability and fault tolerance. One way to improve fault tolerance is by including

redundant components in the design. Unfortunately, adding redundant components to an

embedded system adversely affects size and cost.

• Operation in harsh environments: Some embedded systems operate in environments, where

they need to be protected from extreme heat, fire hazards, lightning, vibrations, shock, etc.

• Low-energy operation: The battery life of some embedded systems is one of the critical

design issues. In some cases, frequent battery replacement is difficult. Thus, a design aimed

to reduce energy consumption is essential.

• Low system cost: Many embedded systems, e.g., consumer electronic devices, are mass-

produced and therefore must be inexpensive in price and cheap to manufacture. In some

cases, lower cost can be achieved partly through reducing memory requirements.

• Time-to-market: In several embedded system markets such as consumer electronics, the time

to market (a commonly quoted number is six months) is essential for companies to establish

and maintain competitiveness. Often a missed deadline can have a major impact on a com-

pany’s market share of the product. The use of high-level software tools in design help in

reducing time-to-market but may have an adverse effect on design quality. In addition, de-

sign for debuggability helps in improving design correctness while meeting time-to-market

constraints.

In this thesis, we deal with two kinds of processors used often in embedded systems, namely,

digital signal processors (DSPs) and multi-processor system-on-chip (MPSoC).

4

1.2 Digital Signal Processors
A digital signal processor (DSP) is an example of an embedded processor, i.e., a processor used in

an embedded system. DSPs are specifically designed to handle digital signal processing tasks. An

example of a digital signal processor is the charge coupled device (CCD) image sensor in digital

cameras. CCD image sensors are electronic devices that are capable of transforming a physical

image (or light pattern) into an electric charge pattern. These sensors require real-time operation.

DSPs are often used in real-time processes and thus must have predictable execution times com-

pared to general purpose processors. For instance, most people will not mind waiting for a Word

document to be converted to pdf format, no matter how long it takes. However, DSPs are often

used in applications where the processing is continuous and thus the execution time must be pre-

dictable. DSPs have seen tremendous growth in the last decade, and have been used in a wide

variety of devices such as MP3 players, wireless phones, and scientific instruments.

1.3 DSPs with Address Generation Units
Digital signal processors form the core functions in many portable electronic devices designed

under tight constraints, namely, cost, size and weight, while meeting constraints on high levels

of performance and real-time constraints. Such designs usually have limited memory as a way to

meet cost and size constraints. In contrast, the memory requirement for the execution of signal and

video processing codes on embedded processors is significant. Moreover, since the program code

resides in the on-chip ROM, the size of the code directly translates into silicon area. As a result,

code minimization becomes an important step in reducing the amount of memory needed.

Many DSPs such as the Texas Instruments TMS320C5x, NEC 77110, Motorola DSP56000,

Analog Devices ADSP21xx and ST D950 have address generation units (AGUs) [40]; see Figure

1.1. The architectures of such DSPs are very irregular and only indirect memory addressing is

supported. In such architectures, the AGU is responsible of calculating the effective address of

a memory location that will be accessed, since the base-plus-offset addressing mode is often not

supported in these DSPs. An extra instruction is needed in general to add (resp. subtract) an offset

to (resp. from) the current address in the address register to compute the next address. However,

5

such architectures support auto-increment/decrement of the address register, as part of executing

the current instruction. When there is a need to add an offset of 1 or subtract an offset of 1 from the

current address, this can be done in parallel with the same LOAD/STORE instruction using auto-

increment/decrement. This does not require an extra address arithmetic instruction in the code and

therefore can decrease code size. Statistics show that the programs for DSPs can have up to 50%

address arithmetic instructions [75].

One solution for minimizing the number of instructions needed for address computation in

scalar based codes is to perform offset assignment of the variables (OA). Offset assignment refers

to the problem of placing the variables in memory to maximally utilize auto-increment/decrement

operations and thus reduce code size. It is referred to as simple offset assignment (SOA) when there

is only one address register (AR), and as general offset assignment (GOA) in the case of multiple

available ARs. Work so far has addressed SOA and GOA assuming a memory location is allocated

for each variable for the duration of the entire program. Allocating variables with non-overlapping

lifetimes to the same memory location is referred to as variable coalescing. The SOA and GOA

problems studied in Chapters 2, 3 and 4 include the case of variable coalescing.

As many DSP algorithms have an iterative pattern of references to array elements within loops,

an efficient generation of memory addresses for array references in loops is an important step for

generating efficient code for array-intensive embedded applications. This problem is referred to as

address register allocation (ARA), and is studied in Chapter 5. In both OA and ARA considered in

this dissertation, the auto-modify range is [-1,1]. OA and ARA are both NP-complete [47, 7].

1.4 Multi-Processor System on Chip
System designers are finding it increasingly difficult to achieve more performance out of single

processors due to clock and power constraints. As a result, achitectures with multiple processors

on a single chip have become a viable solution to achieving higher level of performance to solve

a broad range of problems from both high-end and low-end computing. Multiprocessor systems-

on-chip (MPSoCs) that include a large number of different processing cores are now common for

a variety of reasons, especially in embedded systems.

6

Modify
Register File

Address
Register File

Effective Address

AR pointer
Immediate

Constant c

r =1

MR pointer q

+/-

FIGURE 1.1. A typical Address Generation Unit (AGU) contains a modify register file, address register file,
and ALU.

• The design, validation and verification of a chip multiprocessor consisting of multiple simple

processor cores is easier than that of a complex single-processor system [36, 21, 54, 56].

• An MPSoC can be clocked at a reduced frequency, and this can lead to reduced power con-

sumption without significant performance loss.

• Since each processor in an MPSoC can be indidually controlled, there are opportunities for

energy reduction.

• Architecturally, an MPSoC design can result in better utilization of the available chip area.

Generally speaking, an MPSoC consists of multiple heterogeneous processing elements (PEs),

memory hierarchies, and I/O components interconnected by complex communication architec-

tures; see Figure 1.2. Such architectures provide the flexibility of simpler design, high performance

and optimized energy consumption. An example of an MPSoC is the Nomadik multimedia applica-

tion processor from ST Microelectronics [4]. This MPSoC is deployed in 2.5G/3G mobile phones

and personal digital assistants (PDAs).

While embedded systems become increasingly complex, the processor-memory speed gap has

continued to increase; over the last several years, increase in memory access speed has failed to

7

P1 P2 P3 Pn

SPM1 SPM2 SPM3 SPMn

Off-chip memory

Pk

SPMk

FIGURE 1.2. An architectural model example with n processors, SPM budget, off-chip memory and inter-
connection buses.

keep up with the increase in processor speed. This makes the memory access latency a major aspect

in scheduling embedded applications on embedded systems. This increasing processor-memory

speed gap is more of a problem in the case of MPSoCs due to the heavier contention on the

network and the use of shared memories in some cases.

Hardware-based caches were always an attractive solution to bridge the speed gap between the

processor and the memory. However, hardware based caches have many disadvantages.

1. Caches are among the major energy consumers among components of computing system.

2. Often, higher cache miss rates may occur due to the lack of predictability of future accesses

and caches are subject to conflict, capacity and compulsary misses.

3. Using caches in systems with real-time requirements is not effective since their impact on

worst-case execution time (WCET) is generally hard to predict. Caches incur unpredictable

data access time (or latency), which is unacceptable for real-time embedded applications.

4. With caches, effective data prefetching to hide latency is harder to achieve since programs

often fail to expose useful spatial locality in the data accesses.

Due to those and other reasons, recent research shows that caches are not ideally suited for mul-

timedia applications with regular data access patterns. Execution time predictability is a critical

issue for real-time embedded applications; this makes the use of data caches not suitable since it is

8

hard to model the exact behavior and to predict the execution time of programs. To alleviate such

problems, many modern MPSoC systems use software-controlled memories known as scratchpad

memories (SPM).

An SPM is fully software-controlled and hence the execution time of an application on such

memories can be predicted with accuracy since data movement is also software controlled. Unfor-

tunately, scratchpad memories are expensive and hence they are usually of limited size and as a

result not all the application data variables can be stored in the on-chip scratchpads. Many mul-

tiprocessor system-on-chip models use a memory hierarchy with slow off-chip memory (DRAM)

and fast on-chip scratchpad memories. Such a hierarchy means that proper allocation of variables

to the on-chip memory plays an essential role in reducing the off-chip accesses. The execution time

of a program on a processor depends on how much SPM is allocated to that processor as accessing

an element from the off-chip memory is usually in the order of 100 times slower than accessing

elements stored locally in the on-chip memory.

There is a large number of complex embedded applications consisting of multiple concurrent

real-time tasks [48]. These tasks can then be divided into subtasks by application designers. The

computation time for each task depends on the amount of SPM allocated to the processor executing

this task. The problem of task scheduling and memory allocation on MPSoCs is NP-complete

[38]. Traditionally, these two steps—task scheduling and memory allocation—are done separately,

where tasks are first scheduled and then the SPM budget is partitioned among the processors. Such

a decoupled approach may not result in better schedules in terms of minimizing the computation

time of the whole application. The appropriate configuration of a processor’s scratchpad memory

depends on the tasks scheduled on that processor. Therefore, the integration of those two steps is

critical to improve the performance.

Unlike current approaches that have studied the task scheduling and memory partitioning prob-

lems as two separate problems, we solve those two problems in an integrated fashion. Chapter 6

deals with developing heuristics for the single application scenario that perform task scheduling

and SPM memory partitioning in an integrated fashion where the private on-chip memory budget

9

allocated to a processor is decided dynamically as tasks are mapped to this processor. Chapter 7

extends the heuristics in Chapter 6 to deal with more than one application concurrently using the

MPSoC.

1.5 Thesis Outline
The remainder of this thesis is organized as follows.

Chapter 2 presents our solution to the simple offset assignment problem with variable coalescing

(CSOA). We present an effective heuristic and test it on a bunch of real life embedded applications

from MediaBench. We further improve the CSOA results using a simulated annealing approach.

Our approach to the general offset assignment problem with variable coalescing (CGOA) is pre-

sented in Chapter 3. An effective heuristic for the CGOA problem is designed and tested. Results

are further improved by using a simulated annealing approach.

In Chapter 4, optimal integer linear programming (ILP) for the offset assignment problem with

variable coalescing is presented. Variable permutation is also utilized to find the best possible legal

access sequence for the best cost. A new approach to the general offset assignment is presented in

this chapter where the main idea is to partition the access sequence rather than the variables.

Chapter 5 presents the address register allocation (ARA) problem for array-intensive embedded

applications. An optimal ILP and sub-optimal genetic algorithm (GA) solutions are presented. The

solutions were further extended to allow code restructuring as a process to decrease the overall

cost.

In Chapter 6, we present our work of developing an effective heuristic for the task schedul-

ing/memory partitioning problem for a multi-processor system-on-chip where a single application

is using the MPSoC at a time. In Chapter 7, the task scheduling/memory partitioning problem for

MPSoC is studied in the case of multiple applications executing at the same time.

Conclusions and pointers to possible future work are presented in Chapter 8.

10

Chapter 2
Simple Offset Assignment with Variable Coalescing

As mentioned in the previous chapter, embedded systems are designed under tight constraints that

vary from size and cost to safety and reliability. Cost and size are major factors in the design cycle

of an embedded system as such systems are usually mass produced and are embedded in larger

artifacts. Memory usually constitutes a big portion of the size and cost of the embedded system.

As the embedded applications are growing in size so is the necessity for a bigger memory. Thus

the ability to reduce the memory requirement becomes essential in keeping up with the application

code size and the tight constraints on size and cost. One way to do so is through offset assignment

and variable coalescing that will be thoroughly defined and explained in this chapter.

2.1 Offset Assignment
Embedded system applications are getting larger in size and this is exerting more pressure over

the memory design of a DSP as usually the code is usually loaded into the ROM. And as a result,

the size of the code translates into physical area. With all the tight size and cost constraints, the

size of the embedded code becomes of substantial importance. Reducing the code size has great

implications on the DSP design. Thus reducing the embedded application code size is a priority.

As mentioned in the previous chapter, one way to reduce the size of an embedded application

is known as offset assignment. Such a technique is utilized to decrease the number of explicit

address arithmetic instructions. Such instructions usually constitute 20% - 30% of the total code

instructions [75]. Variable coalescing is a technique also used to decrease such instructions as

well as the memory requirement to store the variables. Variable coalescing usually increases the

proximity between the variables in the memory and as a result less memory is needed to store the

variables as well as fewer explicit address arithmetic instructions are needed.

The offset assignment problem refers to the placement of the variables in a program in the mem-

ory so that the number of explicit address arithmetic instructions is minimized. Different place-

11

ments will lead to different generated code. Consider the simple example in Figure 2.1 with the

code and the access sequence in Figure 2.1 (a), (b) and two different variable placements in Figure

2.1 (c), (d). The assembly code generated for the placements in Figure 2.1(c), (d) are respectively

shown below with the instructions in bold are the explicit address arithmetic instructions. This sim-

ple example shows that a better placement of the variables in the memory will lead to fewer address

arithmetic instructions which decreased from two in Figure 2.1(c) to one in Figure 2.1(d). This re-

duction is significant in real embedded benchmarks as the number of explicit address arithmetic

instructions may account for 50% of the number of instructions.

LDAR AR0,&d LDAR AR0, &d
LOAD *(AR0)+ LOAD *(AR0)+
ADD *(AR0)+ ADD *(AR0)+
STOR *(AR0)+ STOR *(AR0)
LOAD *(AR0)+ ADAR AR0,2
ADD *(AR0) LOAD *(AR0)-
SBAR AR0,2 ADD *(AR0)-
ADD *(AR0) ADD *(AR0)+
ADAR AR0,2 STOR *(AR0)
STOR *(AR0)

Simple offset assignment (SOA) refers to the case where there is only one address register. In

SOA, each memory location or slot is assigned only one variable. Simple offset assignment with

variable coalescing (CSOA) refers to the case where more than one variable can be mapped into

the same memory location. Variable coalescing is intended to decrease the memory requirement

by further decreasing the number of address arithmetic instructions as well as decreasing the mem-

ory requirement for storing the variables. Two variables can be coalesced if their live ranges do

not overlap at any time which means that at any time, those two variables are not needed to be

simultaneously live.

Definition 2.1: An interference graph (IG) is a graph with a node to represent each variable in

the access sequence and an edge between two nodes means the live ranges of the corresponding

variables overlap and thus they interfere.

12

(S1) a = d + c

(S2) b = e + b + a

d c a e b d c a b e

Access sequence: d c a e b a b

(a)

(b)

(c) (d)

FIGURE 2.1. (a) C code. (b) Access sequence. (c) Variable placement 1. (d) Variable placement 2.

In CSOA, an interference graph (IG) is constructed by examining the live ranges of all the

variables. Each node in the graph represents a variable, and an edge between two nodes means

they interfere and thus they cannot be coalesced. Coalescing two or more variables means that

those variables will share the same memory location at different times as their live ranges are

non-overlapping at all times of the program run.

Two variables can be coalesced if they meet all the following feasibility conditions:

• the two variables do not interfere;

• after coalescing, no node in the access graph has more than two selected edges incident on
it; and

• the resulting access graph is still acyclic considering only the selected edges.

So instead of always selecting an edge as in SOA, CSOA can, in any iteration, either select an

edge or coalesce two variables that meet the feasibility conditions.

Definition 2.2: An access sequence (AS) is the order the variables are accessed in a certain

program.

Consider for example the following two statements in C code:

a = b+ c

b = a−d

The access sequences of variables in statements S1 and S2 are b c a and a d b, respectively. Thus

the access sequence for the example C code is b c a a d b.

13

z = z + x

Access sequence: y z x z x z y z w

 (c) (d)

 (a)

 (b)

x

z

y

w

Code:

w z y

x

4

3

1

z, w

x

3

4

x

z,w

y

 (e)

y

 (f)

w = y + z

x = y + z

FIGURE 2.2. (a) C code. (b) Access sequence. (c) Access graph solution with no coalescing. (d) A Mem-
ory layout for OA. (e) Access graph solution with coalescing. (f) A memory layout for OA with variable
coalescing.

Definition 2.3: The access graph (AG) is a graph with a node for each variable and an edge of

weight w between nodes u and v meaning that variables u and v appear consecutively w times in

the access sequence.

Consider the simple example in Figure 2.2 assuming only one available AR. One way to solve

SOA is as follows. Given an access sequence of the variables, construct the access graph. Edges are

then selected in decreasing order of their weights provided that choosing an edge does not introduce

a cycle and it does not result in a node of degree more than two in the AG with only selected edges.

Finally, the access graph considering only the selected edges will determine the placement of the

variables in the memory. Figure 2.2 (d) shows the memory layout of such a solution with a final

cost of one which is equal to the weight of the non selected edge (w,z). This cost of one represents

the one address arithmetic instruction needed to update the address register pointing to the memory

location of variable z to point to that of variable w. However, in the case of variable coalescing,

variables z and w can be coalesced as they have non-overlapping live ranges. Figure 2.2 (f) shows

the memory layout for the coalescing case with variables z and w mapped to the same memory

location with a final cost of zero meaning that no explicit address register instruction is needed.

The simple offset assignment problem with variable coalescing studied in this chapter can now

be defined as follows.

14

CSOA Problem Definition: Given an access sequence of variables in a program, a DSP archi-

tecture of one address register (AR), and an interference graph, find the offset assignment of the

variables in the memory so that the number of explicit address arithmetic instructions is minimized.

2.2 Related Work
The problem of simple offset assignment was first discussed by Bartley [13]. Then Liao et al. [47]

showed that the SOA problem is NP-complete and that it is equivalent to the Maximum Weight

Path Cover (MWPC) problem. They proposed a heuristic for the SOA problem. Their heuristic is

as follows. Given an access sequence of the variables, the access graph has a node for each variable

with an edge of weight w between nodes a and b meaning that variables a and b appear consec-

utively w times in the access sequence. In their greedy heuristic, edges are selected in decreasing

order of their weights provided that choosing an edge does not introduce a cycle and it does not

result in a node of degree more than two. Finally, the access graph considering only the selected

edges will determine the placement of the variables in the memory. One possible result of applying

Liao’s heuristic to the access sequence in Figure 2.3 (a) is shown in Figure 2.3 (c), where the bold

edges are the selected edges and the final offset assignment is [e b a c d]. The cost of a solution

is the sum of the weights of all unselected edges (i.e., non-bold edges). For the example in Figure

2.3 (a), the cost is 1 which represents the non-bold edge that refers to the one address arithmetic

operation needed to go from a to e in the access sequence since variables a and e are mapped to

non-consecutive memory locations.

Leupers and Marwedel [44] extended Liao’s work by proposing a tie-break heuristic for the

SOA problem. Liao et al. [47] did not state what happens if two edges have equal weight. Leupers

and Marwedel used the following tie-break function: if two edges have the same weight, they pick

the edge with the smaller value of the tie-break function T2(a,b) defined for an edge (a,b) as in

Equation 2.5.

Atri et al. [8] solved the SOA problem using an incremental approach. They tried to overcome

some of the problems with Liao’s algorithm, mainly in the case of equal weight edges as well

as the greedy approach of always selecting the maximum weight edges. Starting with an initial

15

1

a b

e

c d

2

1

1

1
1

a b

e

c d

2

1

1

1

Access Sequence: d c a e b a b

(a)

(b) (c)

FIGURE 2.3. (a) Access sequence. (b) Access graph. (c) Liao’s solution.

offset assignment (which could be the result of any SOA heuristic), their incremental-SOA tries to

explore more points in the solution space by considering the effect of selecting currently unselected

edges.

Leupers [41] compared several algorithms for simple offset assignment. Ottoni et al. [57, 58]

studied the simple offset assignment problem with variable coalescing (CSOA). Their algorithm

uses liveness information to construct the interference graph. In the interference graph, the nodes

represent variables and an edge between two variables means that they interfere and thus they

cannot be coalesced. The authors used the SOA heuristic proposed by Liao et al. [47] enhanced

with the tie-break in [44], with the difference that at each step the algorithm chooses between

(i) coalescing two variables; and (ii) selecting the edge with the maximum weight as in Liao’s

algorithm. Their algorithm finds the pair of nodes that can be coalesced with maximum csave,

where csave represents the actual saving from coalescing this pair of nodes. At the same time, it

finds the edge with the maximum weight w that can be selected using Liao’s algorithm. If there are

candidates for both coalescing and selection, then it will use coalescing if csave is larger than w,

otherwise use selection.

In [81], the authors studied the cases of SOA with variable coalescing at the same time as

[57]. Their coalescing algorithm first separates values into atomic units called webs by applying

variable renaming. Their proposed heuristic starts by applying pre-iteration coalescing rules. Then

the algorithm picks the two variables (i.e., nodes) with maximum saving for coalescing provided

16

that they respect the validity conditions. If the saving is positive, then the two nodes are coalesced.

Liao’s SOA will then be applied to the new access graph. This process will continue as long as

there are two variables that can be coalesced.

2.3 Our Heuristic
Our algorithm presented in Figure 2.5 integrates both selection and coalescing options in a way to

minimize the total cost, which is represented by the number of address arithmetic instructions, as

well as to decrease the memory requirement for storing the variables in memory. The algorithm

takes as an input the interference graph (IG) and the access sequence and outputs the mapping

of the variables to memory locations possibly with coalescing. From the access sequence, it con-

structs the access graph (AG), which captures the frequency of consecutive occurrence of any two

variables in the access sequence. Then it sorts the edges whose end-point vertices interfere in de-

creasing order of their weights as a guide for selection. Since one of the purposes of our heuristic

is to decrease the memory requirement for storing the variables, an edge (a,b) such that (a,b) /∈

IG will not be considered for selection. The vertices of such an edge will be left as candidates for

coalescing which means that fewer edges will be considered for selection and thus more variables

will probably be coalesced. Note that the selection of an edge may prevent future variable coalesc-

ing opportunities. So only those edges whose endpoints interfere will be considered as candidates

for selection in each iteration of the algorithm.

In each iteration, all pairs of variables that meet the three conditions for variable coalescing

(mentioned earlier) are candidates for coalescing. We define the following values:

Gain(a,b) =
Actual Gain(a,b)
Possible Loss(a,b)

(2.1)

Actual Gain(a,b) = W (a,b)

+ ∑
x∈Ad j(a)∩Ad j(b)

(b,x)∈Selected Edges

(a,x)/∈Selected Edges

W (a,x)+ ∑
y∈Ad j(a)∩Ad j(b)

(b,y)/∈Selected Edges

(a,y)∈Selected Edges

W (b,y) (2.2)

17

1

a b

e

c d

2

1

1

1

(a)

a, e b

c d

3

1

1

(b)

FIGURE 2.4. (a) Access graph. (b) Access graph after coalescing a and e.

Possible Loss(a,b) = 1+ ∑
(a,x)/∈IG,(b,x)∈IG
(b,x)/∈Selected Edges

(a,x)

+ ∑
(b,y)/∈IG,(a,y)∈IG
(a,y)/∈Selected Edges

(b,y) (2.3)

A Gain value for each of those candidate pairs is calculated that captures the benefit of coalescing

as well as the possible loss of future coalescing opportunities. The value Gain(a,b) is defined in

Equation 2.1 as the actual saving that results from coalescing variables a and b divided by the

possible loss of future coalescing opportunities due to coalescing a and b. When variables a and b

are coalesced, all edges incident at a and b of the form (a,x) and (b,x) will be merged, and if edge

(a,b) exists, it will be deleted. When edges (a,x) and (b,x) are merged into edge (ab,x), if at least

one of the edges was already selected, then (ab,x) will be marked as selected.

The value Actual Gain(a,b), Equation 2.2, is basically the sum of the weights of the edges

incident at a or b that were not selected and will become selected if variables a and b are coalesced

as a result of being merged with a selected edge, plus the weight of the edge (a,b) if it exists.

Consider the example in Figure 2.4 (a). The Actual Gain(a,e) from coalescing variables a and e

is equal to the weight of the unselected edge (e,b), as this edge will be merged with the selected

edge (a,b), plus the weight of the edge (a,e) as this edge will no longer exist after coalescing a

and e. Thus Actual Gain(a,e) = 1 + 1 = 2.

The value Possible Loss(a,b) is defined in Equation 2.3 as the sum of the edges (a,x) such that

(a,x) /∈ IG, (b,x) is not selected, and (b,x) ∈ IG plus the sum of the edges (b,y) such that (b,y)/∈

18

IG, (a,y) is not selected, and (a,y) ∈ IG. In simple words, Possible Loss(a,b) accounts for the

number of edges incident at a or b whose corresponding vertices were interference-free and now

interfere as a result of coalescing a and b.

As depicted in Equation 2.3, Possible Loss(a,b) considers only vertices that are neighbors to a

or b. Although other definitions of the loss can be used, we found that our definition captures the

possible effect of coalescing on future solutions that can be constructed. Even though coalescing

involves vertices and not edges, using the number of edges as the essence for the loss in Equation

2.3 leads to better results. The rationale behind this is that an edge whose corresponding vertices

interfere will probably end up as a selected edge and thus it may prevent some future coalescing

opportunities and this may degrade the quality of the final solution.

It is worth noting that although our heuristic integrates both selection and coalescing, it gives pri-

ority to coalescing, which can be clearly deduced from the definition of loss. We believe this is one

of the main reasons for our improvements in terms of the cost as well as the memory requirement

for storing the variables. The reason behind dividing Actual Gain(a,b) with Possible Loss(a,b) is

the idea that coalescing two variables with a larger Possible Loss value may prevent more future

coalescing opportunities and thus may prevent reaching a solution of smaller cost compared to

coalescing two variables with a smaller Possible Loss value.

2.3.1 Coalescing and Selection Criteria

Among all the pairs that are candidates for coalescing, our algorithm picks the pair with the max-

imum Gain. If the algorithm is able to find a pair for coalescing as well as an edge for selection

in some iteration, it will coalesce if the Actual Gain from coalescing is greater than or equal to

the weight of the edge considered for selection; otherwise, it will select the edge. One way our

heuristic attempts to maximize the number of variables mapped to each memory location is to also

allow the coalescing of pairs of variables with zero Gain value (if possible) after no more variables

with positive Gain can be coalesced.

Coalescing variables without a good guide may prevent possible improvements over the stan-

dard SOA solution. Consider the example in Figure 2.6. Figure 2.6(b) shows Liao’s greedy solu-

19

CSOA-ALGORITHM

Input: Access sequence AS, Interference graph IG
Output: Offset assignment
Build the access graph (AG) from the access sequence.
L = list of edges (x,y) such that (x,y) ∈ IG in decreasing order of their

weights using T1 then T2 for tie break.
Coalesce = false.
Select = false.
Do

Find a pair of nodes (a,b) for coalescing that satisfies:
1. (a, b) /∈ IG.
2. AG will still be acyclic after a and b are coalesced considering

selected edges.
3. No node will end up with degree > 2 considering selected edges.
4. (a,b) has max Gain where Gain is calculated as in Equation 2.1.

where T0,T1, and T2 are the three tie break functions used in that order.
If such a pair of nodes is found, then Coalesce = true.
Among the edges that belong to L pick the first edge (c,d) such that:

1. Selecting (c,d) will not result in a cyclic AG considering selected edges.
2. Selecting (c,d) will not result in a node with degree > 2

considering only selected edges.
If such an edge is found, then Select = true;
If (Coalesce && Select)

If (Actual Gain(a, b) ≥Weight(c, d))
Update access graph AG with (a, b) coalesced.
Update interference graph IG with (a, b) coalesced.
Update list L

Else
Select edge (c,d)
Remove (c,d) from L.

Else
If (Coalesce)

Update access graph AG with (a,b) coalesced
Update interference graph IG with (a,b) coalesced
Update list L

Else if (Select)
Select edge (c,d)
Remove (c,d) from L.

While (Coalesce || Select)
Return offset assignment

FIGURE 2.5. Our heuristic for simple offset assignment with variable coalescing.

20

tion, [47]. The cost of this offset assignment is 4. Figure 2.6(c) shows a possible solution using

the CSOA algorithm in [58] whose cost is also 4. Although there is a potential for improvement

through variable coalescing, the algorithm in [58] fails to capture this possible improvement over

Liao’s solution. This is because their algorithm first chooses to coalesce vertices b and e since they

have the maximum csave (Actual Gain). However, this choice will prevent any future coalesc-

ing opportunities of positive csave provided that their heuristic picks edges (a,eb) and (d,eb) for

selection which is a random choice in this case.

Our algorithm alleviates this shortcoming by calculating the Possible Loss(b,e) = 5 and thus

Gain(b,e) = 3/5. As a result our algorithm first picks a and b for coalescing since Gain(a,b) =

2/3; edge (b,e) will not be considered for selection since b and e do not interfere. The cost of the

final solution using our heuristic is zero, as shown in Figure 2.6(d). Another possible solution by

Ottoni’s heuristic for the example in Figure 2.6 is presented in Figure 2.7 which is also not the

optimal solution as it encounters a cost of 2.

2.3.2 Tie Break

Tie break is the process of deciding between two candidates that have the same gain value. For

selection, we used two tie-break functions T1 and T2 defined below,

T1(a,b) = degree(a)+degree(b) (2.4)

T2(a,b) = ∑
x∈Ad j(a)

W (a,x)+ ∑
y∈Ad j(b)

W (b,y), (2.5)

where T1(a,b) is the sum of the degree of a and degree of b in the access graph. T2(a,b) is the

Leupers tie-break function defined as the sum of the weights of the edges that are incident at a

plus the sum of the weights of the edges that are incident at b. If two edges that are candidates for

selection have the same weight then we try to tie break using the function T1; if T1 cannot break

the tie, we use T2. An edge with smaller T1 or T2 will win the tie.

If two pairs of variables (a,b) and (c,d) that are candidates for coalescing are such that Gain(a,b)=

Gain(c,d), then we first try to break the tie using T0 which is the Actual Gain such that we choose

21

the pair with the bigger Actual Gain. If both candidate pairs have the same actual gain, then we tie

break using T1 followed by T2, if needed.

d

 (c) (d)

 (a)

b c

e f

a

d

3

2 2

2 2

c

e,b f

a

2 2

a,b

3
2

2

 (b)

a

b

c

d

e

f

e,d

c

f

2

2

FIGURE 2.6. (a) Interference graph. (b) Liao’s SOA greedy solution with cost = 4. (c) A possible solution
from the Ottoni’s CSOA with cost 4 where it fails to capture the potential improvements from coalescing.
(d) The optimal solution using our algorithm with cost = 0.

c, f e, b

a

d

4

2

2

FIGURE 2.7. One possible final solution for the example in Figure 2.6 using Ottoni’s CSOA.

2.4 Simulated Annealing
Since the offset assignment problem is NP complete, the heuristic presented in Section 2.3 will very

likely produce a suboptimal solution. In order to further improve the results, we used a simulated

annealing approach.

22

Simulated annealing (SA) [35] is a global stochastic method that is used to generate approxi-

mate solutions to very large combinatorial problems. The technique originates from the theory of

statistical mechanics and is based on the analogy between the annealing process of solids and the

solution procedure for large combinatorial optimization problems. The annealing algorithm begins

with an initial feasible configuration, and then a neighbor configuration is created by perturbing the

current solution. If the cost of the neighboring solution is less than that of the current solution, the

neighboring solution is accepted; otherwise, it is accepted or rejected with some probability. The

probability of accepting inferior solutions is a function of a parameter, called the temperature T,

and the change in cost between the neighboring solution and the current solution. The temperature

is decreased during the optimization process, and the probability of accepting an inferior solution

decreases with the reduction of the temperature value.

The set of parameters controlling the initial temperature, stopping criterion, temperature decre-

ment between successive stages, and number of iterations for each temperature is called the cooling

schedule [35]. Typically, at the beginning of the algorithm, the temperature T is large and an in-

ferior solution has a high probability of being accepted. During this period, the algorithm acts as

a random search to find a promising region in the solution space. As the optimization progresses,

the temperature decreases and there is a lower probability of accepting an inferior solution. The

algorithm then behaves like a downhill algorithm for finding the local optimum of the current

region.

2.4.1 Initial Solution

The initial configuration is usually chosen to be a random memory offset solution. However, since

simulated annealing requires a significant amount of time in order to converge to a good solution

especially for the large benchmarks used in our experiments, we decided to use the final solution

from our heuristic as the initial solution for SA. Then we ran SA for a short period of time with

a low probability of accepting a bad solution. The solution is basically a linear memory offset

assignment as shown in Figure 2.8.

23

a

b

c

d

e

f

g

h

 (a)

h

b

c

d

e

f

g

a

(b)

b

c

d

a

e

f

g

h

 (c)

a

b

c

d

e

f

g

h

 (d)

a

h

b

c

d

e

f

g

 (e)

 FIGURE 2.8. (a) Original memory contents. (b)-(e) Memory after applying different operations.

2.4.2 Neighborhood Transformation

The main operation of the simulated annealing is the neighborhood function. Starting from a cur-

rent solution, the neighborhood function applies some operations to move into a new solution. We

illustrate the neighborhood transformation using the example in Figure 2.8. For instance, a neigh-

borhood solution is created by randomly selecting two memory locations and then swapping the

variables placed in such locations.

The neighbor function can perform one of the following operations to the original memory

content shown in Figure 2.8 (a).

• Exchange the contents of two memory locations, Figure 2.8 (b),

• Move the content of one memory location, Figure 2.8 (c),

• Uncoalesce a coalesced node into two or more nodes, Figure 2.8 (d), or

• Coalesce two memory locations, Figure 2.8 (e).

2.4.3 Cost Function and Cooling Schedule

Given an offset assignment, the cost is the actual cost from applying our simple offset assignment

heuristic with variable coalescing. The cost is the actual number of explicit address arithmetic

instructions generated based on the current offset assignment solution. The cost can also be the

memory requirement to store all the variables but we resort to the former cost criteria in our simu-

lated annealing algorithm.

24

The cooling schedule is the set of parameters controlling the initial temperature, the stopping

criterion, the temperature decrement between successive stages, and the number of iterations for

each temperature. The cooling schedule was empirically determined as follows.

1. Tinit = 400.

2. The temperature reduction multiplier, α , is set to 0.8.

3. The number of iterations, M, is set to 5 while the iteration multiplier, β, is set to be 1.05.

The algorithm stops when the current temperature, T, is below 0.001.

2.5 CSOA: Example
For the sake of clarity, consider the example in Figure 2.9 where Figure 2.9(a) shows the inter-

ference graph (IG) and Figure 2.9(b) shows the original access graph (AG). Figures 2.9(c)–(h)

show how the access graph is updated when our heuristic is applied to this example. Although not

shown, whenever two nodes are coalesced, the interference graph (IG) will be updated to reflect

the coalescing of the nodes as well as to update the interference edges accordingly. Table 2.1 shows

the step-by-step execution of our algorithm and the criteria used for choosing the candidates for

selection and for coalescing. Note that in Table 2.1 we do not show the coalescing candidates with

zero Gain. Figure 2.9(i) shows the final solution with zero cost. If we run the CSOA algorithm in

[58] on the same example presented in Figure 2.9, the cost of a possible final solution, shown in

Figure 2.10, is 4.

2.6 Results
We implemented our techniques in the OffsetStone toolset [5, 41] and we tested them on the Medi-

aBench benchmarks [39]. In Table 2.4, we compare our CSOA heuristic with four different tech-

niques used to solve the simple offset assignment problem without variable coalescing (SOA),

namely Liao et al. [47], Leupers’ tie-break [44], incremental with Leupers’ tie-break INC-TB

[8, 41], and Genetic algorithm GA [43].

We measured the number of explicit address arithmetic instructions needed by each method.

We presented the cost resulting from the SOA-OFU in Table 2.3 as a reference point. The cost in

25

a

d

(g)

2 2 2

(h)

g
b

c

d

e

f

b c

e f

a

d

g

3

2 2

1 1

a,b c

e f d

g

3

2 2

1 1

a,b c

e f

g

2

3

2 2

1 1

a,b c

e,d f

g

2

3

2

1 1

a,b c

e,d f

g

2

3

2

1 1

a,b c

e,d f

g

2

3

2

1 1

(a)
(b) (c)

(d)

a,b c

e,d,g f

2

3

3

(e) (f)

f

e,d

g

a,b

c

(i)

FIGURE 2.9. (a) The interference graph. (b) The original access graph. (c)-(h) The access graphs after each
iteration of our algorithm. (i) The final offset assignment, which incurs zero cost.

a c

e,b f

g,d

2

2

1 2

2

FIGURE 2.10. One possible final solution for the example in Figure 2.9 using Ottoni’s CSOA.

26

TABLE 2.1. A step by step run of our algorithm on the example in Figure 2.9

Iteration Coalesce Candidate Selection Decision

Vertices ActualGain PossibleLoss Gain edge Weight
a,b 2 2 1 Coalesce(a,b)
b,e 3 4 3/4 (b,c) 2 Tie-break T0

1 d,e 2 3 2/3 (g,f) 1
g,d 1 1 1
f,e 2 3 2/3
d,e 2 2 1 (ab,e) 3

2 g,d 1 1 1 (ab,c) 2 Select (ab,e)
f,e 2 2 1 (g,f) 1
d,e 2 2 1

3 g,d 1 1 1 (ab,c) 2 Coalesce (d,e)
f,e 2 2 1 (g,f) 1 Tie-break T0
c,e 2 3 2/3

(ab,c) 2 Select (ab,c)
4 ed,g 1 1 1 (ed,f) 2 Tie-break T1

(g,f) 1
5 ed,g 1 1 1 (ed,f) 2 Select (ed,f)

(g,f) 1
6 ed,g 2 1 2 (g,f) 1 Coalesce (ed,g)

Table 2.3 is the actual number of explicit address arithmetic instructions resulted from generating

the code with the offset assignment achieved using the SOA-OFU where no variable coalescing is

allowed. OFU is a naive offset assignment algorithm based on order of first use where variables

are assigned to offsets in the order of their appearance in the access sequence. Smaller numbers in

the tables of results are better as they mean fewer address arithmetic instructions are needed.

The following is a brief description of each of the benchmarks used.

1. Adaptive Differential Pulse Code Modulation (ADPCM).

2. EPIC (Efficient Pyramid Image Coder) is an experimental image data compression utility.

3. PEGWIT is a program for performing public key encryption and authentication.

4. PGP uses ”message digests” to form signatures.

5. JPEG stands for Joint Photographic Experts Group, is a commonly used method of compres-

sion for photographic images.

27

6. MPEG2 is a standard for the generic coding of moving pictures and associated audio infor-

mation.

7. GSM is a European standard for voice transcoding.

8. RASTA is for speech recognition.

9. G721: CCITT voice compression.

Our CSOA heuristic drastically reduces the cost of simple offset assignment when compared to

heuristics that do not perform variable coalescing since variable coalescing increases the proximity

between variables in memory, thus it reduces the number of update instructions.

In Table 2.5, we compare our results with those of two heuristics that perform SOA with variable

coalescing, mainly Ottoni’s CSOA [58] and Zhuang’s CSOA [81]. Clearly our CSOA outperforms

the two other heuristics. This improvement is due to the guide used in our choice between can-

didates for coalescing where we not only consider the actual saving but also an estimate of the

possible loss in future coalescing opportunities. Also the idea of just considering edges whose

endpoints interfere for selection increases the opportunity for coalescing nodes with maximum

Gain as defined in Equation 2.1. The ability to coalesce depends on the selected edges and vice-

versa. So an algorithm that can choose the right candidates for selection and coalescing, at the

right iteration, and decide between them, should consider the influence of such a decision on fu-

ture solutions. This is accounted for in our algorithm by defining the possible loss as a guide for

the possible effect of coalescing on future solutions. The three tie-break functions T0, T1, and T2

play a role in achieving the clear improvements to the final solution.

Our simulated annealing (SA) algorithm further improved the results by searching the feasible

region for better solutions starting from the final solution of our heuristic. Results in Table 2.4

Column 7 shows that the SA further improved the results in all the cases in a short CPU time.

In Table 2.6, we show the reduction in memory slots needed to store the variables using our

CSOA heuristic compared to that of those in [58] and [81]. We measured the percentage of memory

slots needed compared to heuristics that do not perform coalescing where in such a case a memory

28

TABLE 2.2. Percentage of temporary variables.

Benchmarks Temporaries (%)
adpcm 59.6
epic 48.1
g721 80.7
gsm 86.6
jpeg 65.2

mpeg2 65.6
pegwit 72.1

pgp 67.5
rasta 43.6

TABLE 2.3. SOA-OFU cost.

Benchmarks SOA-OFU cost
adpcm 207
epic 6235
g721 718
gsm 1511
jpeg 10338

mpeg2 7981
pegwit 2249

pgp 7235
rasta 6626

29

TABLE 2.4. Comparison between different techniques for solving the SOA problem.

Benchmarks Liao [47] TB [44] INC-TB [8] [44] GA [43] Our CSOA SA
adpcm 138 132 132 132 58 54
epic 4508 4364 4352 4352 2119 2025
g721 526 506 506 506 138 122
gsm 1091 1052 1052 1052 159 147
jpeg 7112 6895 6875 6875 2202 2066

mpeg2 5706 5555 5547 5539 1780 1708
pegwit 1536 1399 1392 1392 607 554

pgp 5122 4862 4855 4855 1526 1403
rasta 4353 4287 4287 4287 864 847

slot is needed for each variable. Results show that our algorithm drastically reduces the memory

requirement by maximizing the number of variables that are assigned to the same memory location,

and it outperforms both other CSOA heuristics in all the cases. The reason behind this reduction is

that we defined the Gain from coalescing in terms of possible loss in coalescing opportunities as

well as due to the fact that we did not consider the edges (a,b) such that (a,b) /∈ IG as candidates

for selection and this will result in more coalescing opportunities.

However, the main reason for our improvement over Ottoni’s CSOA is that our heuristic allows

zero Gain coalescing between nodes in the final AG. That is, we coalesce pairs of vertices (a,b) (if

possible) such that Gain(a,b) = 0. This zero Gain coalescing will not reduce the cost in terms of the

number of address arithmetic instructions but it will contribute to maximizing the number of vari-

ables mapped to a memory location. This explains the huge difference between the improvements

in Table 2.5 and Table 2.6. Although a heuristic designed just to decrease the memory requirement

for storing the variables may get better results than those in Table 2.6, it will be detrimental to

the quality of the final solution in terms of the number of address arithmetic instructions. So our

heuristic not only decreases the cost (which is defined as the reduction in the number of address

arithmetic instructions), but also decreases the number of memory locations needed to store the

variables.

30

TABLE 2.5. Results for different CSOA algorithms.

Benchmarks CSOA-Ottoni CSOA-Zhuang Our CSOA
adpcm 62 66 58
epic 2264 2488 2119
g721 145 159 138
gsm 202 221 159
jpeg 2264 2750 2202

mpeg2 1955 2139 1780
pegwit 585 682 607

pgp 1628 1903 1526
rasta 921 1637 864

TABLE 2.6. The percentage of the memory slots needed using different CSOA heuristics with respect to the
number of variables.

Benchmarks Memory slots(%) Memory slots(%) Memory slots(%)
[58] [81] our CSOA

adpcm 27.3 28.3 21.7
epic 27 26.6 18.5
g721 25 22.7 17.3
gsm 21.5 19.8 9.1
jpeg 34.5 25.7 18.8

mpeg2 31.8 21.9 17.1
pegwit 35.3 26.8 22.1

pgp 31.5 24.7 18.4
rasta 26.1 21.4 14

31

2.7 Chapter Summary
The offset assignment problem has received a lot of attention from researchers due to its great im-

pact on code size reduction for DSPs. Reducing the code size is beneficial in the case of DSPs since

the code is directly transformed into silicon area. The main idea of the ongoing research in this field

is to decrease the number of address arithmetic instructions and thus the code size. The problem is

studied as simple offset assignment (SOA) when there is one address register in the system. In this

chapter, we presented a heuristic to solve the simple offset assignment with variable coalescing

that chooses between selection and coalescing in each iteration by calculating the Actual Gain and

Possible Loss for each pair of coalescing candidates. Results on real life benchmarks show that

our algorithm not only decreases the number of address arithmetic instructions, but also drastically

decreases the memory requirement for storing the variables by maximizing the number of variables

that are mapped to the same memory slot. Simulated annealing further improved the final solution

from our heuristic.

32

Chapter 3
General Offset Assignment with Variable Coalescing

In Chapter 2, we studied the problem of simple offset assignment with variable coalescing (CSOA).

CSOA is the offset assignment problem when the system has only one available address register

(AR). Embedded systems usually have more than one address register and thus the CSOA cannot

be very helpful to such systems. The problem of offset assignment with a system of k address

registers is referred to as general offset assignment (GOA). CSOA is essential in solving the CGOA

problem as the solution approach to such problem is dividing it into multiple CSOA problems. An

optimized solution to the CSOA problem will be propagated to a better CGOA solution and hence

the importance of the technique presented in the previous chapter.

3.1 Problem Definition
The general offset assignment problem (GOA) refers to the case where there is more than one

address register. In the literature, GOA solutions are based on partitioning variables among the

available address registers. An important aspect in the GOA problem is how to partition the vari-

ables into L partitions (L ≤ k), where k is the number of available address registers, so that the cost

is minimized. There is no clear way to decide which variables should be mapped to which address

registers.

To clarify the solution to the GOA problem, consider the example in Figure 3.1 with two avail-

able address registers AR0 and AR1. Figure 3.1(a) shows the original access sequence. Assume that

variables a, b, c and d are mapped to AR0 and variables e and f are mapped to AR1. This variable

partitioning is the optimal solution for the access sequence in Figure 3.1(a). Then two access se-

quences are extracted from the original access sequence. The first one represents the sequence of

the variables mapped to AR0, and the second represents the sequence of the variables mapped to

AR1. Figure 3.1(b) shows that access sequence for the variables mapped to address register AR0

with the corresponding access graph in Figure 3.1(c). Applying SOA to the access graph in Figure

33

3.1(c) results in an offset assignment, Figure 3.1(d), of cost = 1 which represents the one explicit

address arithmetic instruction needed to update AR0 pointing to variable d at a certain program

point to point to the address of variable b. Similarly, Figures 3.1 (e), (f), and (g) show the access

sequence, access graph and offset assignment for the variables mapped to address register AR1 with

a cost of zero. The GOA solution, Figure 3.1(h), is the concatenation of the SOA solutions with

the final cost of 3 which represents the sum of the costs of the SOA solutions plus an initialization

cost of 2 for the two used address registers in the generated code. Below is the actual assembly

code for the sample example in Figure 3.1 showing only the address registers accesses.

LDAR AR0,&c
LDAR AR1,&e
*(AR0)+
*(AR0)+
*(AR0)
SBAR AR0,3
*(AR1)+
*(AR0)+
*(AR0)-
*(AR1)-
*(AR1)+
*(AR0)
*(AR1)
*(AR0)+
*(AR0)+
*(AR0)

The general offset assignment with variable coalescing problem studied in this chapter can now

be defined as follow.

CGOA Problem Definition: Given an access sequence AS, an interference graph IG, and k ad-

dress registers, find the best partitions of the variables among l address registers (l ≤ k) so that

the CSOA cost of each partition plus the ARs initialization cost is minimum.

The main assumption of this problem is that a variable can be accessed by one address register

throughout the program run. This is the assumption made by all the researchers that studied the

general offset assignment problem and therefore we abide by it in this chapter. This assumption

will be relaxed in Chapter 4.

34

1

2

2

3

a b

c d

Original AS: c a d b e c f b e c f c a d

b d c a

3
e f

(a)

(c)

(f)

Cost = 1

AS1: c a d b c b c c a d

(b)

AS2: e f e f

(e)

(d)

e f

Cost = 0

(g)
b d c a

Cost = 3

(h)

e f

FIGURE 3.1. (a) Original access sequence. (b) Access sequence for AR0. (c) Access graph for AR0. (d)
Offset assignment for AR0. (e) Access sequence for AR1. (f) Access graph for AR1.(g) Offset assignment for
AR1. (h) Offset assignment for the GOA problem.

35

3.2 Related Work
Several researchers proposed heuristics to solve the GOA problem. The basic idea of those heuris-

tics is to partition variables and then map each partition into an address register. The number of

partitions cannot exceed the number of available address registers. SOA is then applied to each

partition separately. The GOA solution is constructed by concatenating the SOA solutions. This

idea was first introduced in [47] without mentioning how to form the partitions. Leupers et al. [44]

proposed to form the partitions as follows. First sort the edges in the AG in decreasing order. Fol-

lowing this order, a disjoint edge will be mapped to each address register, if possible. Then the rest

of the variables, if any, will be mapped to partitions such that a variable x is mapped to partition p

with the minimum new cost if x is assigned to p.

Zhuang et al. [81] studied the GOA problem with variable coalescing. Their heuristic starts by

applying variable coloring using the register coloring technique in [53]. If 2k colors are enough

to color the AG, where k is the number of address registers, then the cost of the solution is the

initialization cost. Otherwise, the heuristic progresses in a similar fashion to [44] using the cost

from their proposed CSOA heuristic as a criteria to assign variables to partitions. Ottoni et al. [58]

then proposed a CGOA heuristic which first sorts variables in decreasing order of their number

of interferences. Each variable is assigned to the partition with the least number of interferences.

The size of the partition is used as a tie break when a variable has the same minimum number of

interferences with more than one partition. The priority is given to the partition with the fewest

variables. Recently Huynh et al. [31] defined the memory layout permutation problem (MLP) and

showed through exhaustive search that solving such a problem improves the offset assignment

solutions but they did not present a solution to this problem.

Several others [45, 67, 70, 78, 79, 71, 26, 60, 19, 46, 29, 62] have addressed problems related to

offset assignment.

3.3 The CGOA Heuristic
In this section, an effective heuristic is presented to solve the GOA problem in the presence of

variable coalescing (CGOA), Figure 3.2. A set of variables such that their corresponding access

36

graph (AG) is a line graph will have an SOA (CSOA) cost of zero since the AG in this case

is acyclic and each vertex in the graph has two incident edges. To exploit this fact, our CGOA

algorithm first tries to partition as many of the variables in the access sequence as possible into L

sets of variables such that the access graph of each set is a line graph. Then our CGOA assigns the

remaining variables into the partitions in a way to decrease the final cost.

Definition 3.1: Define First(v) to be the place in the access sequence where variable v appears

the first time.

Definition 3.2: Define Last(v) to be the place in the access sequence where variable v appears the

last time.

A set S of variables such that any two variables, u ∈ S, v ∈ S and such that the ranges [First(u),

Last(u)] and [First(v), Last(v)] do not overlap, will constitute a line access graph. First, our CGOA

heuristic will compute First(v) and Last(v) for all variables v in the access sequence. Then it sorts

the variables in increasing order of (First + Last) in list L1 using the degree of the node in the

interference graph as a tie break. Although sorting the variables in increasing order of Last is also

a possible criteria, we found that sorting them in the increasing order of (First + Last) is a better

criteria to map as many variables to the available ARs as possible in this part of the heuristic.

In the first loop of our heuristic, the first unassigned variable in L1 will be assigned to the first

address register AR0. The heuristic will then assign to AR0 as many variables as possible following

the order in L1 such that no two variables assigned to AR0 have overlapping ranges. The same

procedure will be repeated for all the available address registers that we have provided that at least

one variable is not assigned yet. At the end of this part of the heuristic, the CSOA cost for the

sets of variables mapped to each address register is zero as the access sequence in each partition

represents a line access graph and thus the CGOA cost is the address registers’ initialization cost.

Since probably not all the variables will meet the requirements to be assigned to a certain address

register in the first part of the heuristic, the second part will take care of assigning the rest of the

variables to the address registers. For each unassigned variable, we calculate its frequency, in the

original access sequence, where the frequency of a variable v is defined as the number of times

37

CGOA-ALGORITHM

Input: Access sequence AS, Interference graph IG
Output: Offset assignment
For each variable v, calculate First(v) and Last(v).
L1= list of variables vi in increasing order of Start(vi)+Last(vi)
While (L1 6= NULL) and (L≤ k)

Pick the first variable v in L1.
Assign v to address register ARL.
Last = Last(v)
Remove v from L1.
f = true
While ((L1 6= NULL) and (f=true)

Pick the first variable u in L1 such that Start(u)>Last.
if such variable u is found

Last = Last(u).
Add u to ARL
Remove u from L1.

elseif no such variable is found
f = false
L++

End while
End while
Calculate the frequency in the original access sequence for all the variables in L1.
Sort variables in L1 in decreasing order of their frequencies.
While (L1 6= NULL)

Pick the first variable u in L1.
Calculate PenaltyAR j(u) for all address registers.
Assign u to the AR with the smallest penalty using the
number of interferences as the tie break.

End While
CGOA solution = CSOA(AS1)+ ... +CSOA(ASL)

FIGURE 3.2. Our general offset assignment heuristic with variable coalescing.

38

this variable appears in the access sequence. Then we sort the variables in decreasing order of their

frequency in list L1. Variables with small frequency have small degree nodes in the AG. For each

unassigned variable v, the Penalty of assigning v to AR j is defined in Equation 3.1.

Definition 3.3: Define the Penalty of assigning v to AR j as the number of variables u in set SAR j(v),

cardinal of set S, where SAR j(v) contains the variables u mapped to AR j such that (u,v) ∈ original

access graph (AG) and such that u and v interfere.

Since (u,v) ∈ original access graph (AG), (u,v) will automatically be an edge in the access

graph representing the variables mapped to address register AR j if v is assigned to AR j. Penalty

is a measure of how far will the new access graph representing AR j be from a line graph if the

variable v is assigned to the address register AR j considering only newly added edges whose end

points interfere. Variable v will be assigned to the address register corresponding to the smallest

penalty. If variable v has the same Penalty value corresponding to more than one AR, it will be

assigned to the one with fewer number of variables that interfere with v. So the main idea in this

step is to try to keep the access graph for each address register as close to a line graph as possible

since line access graphs have zero CSOA costs.

PenaltyAR j(v) = Card(SAR j(v)) (3.1)

where

SAR j(v) = {u|u ∈ AR j, (u,v) ∈ IG,(u,v) ∈ AG} (3.2)

After the second while loop, we will end up with L access sequences for each of the L address

registers used. Note that our heuristic may end up not using all the available address registers,

and this will reduce the address registers initialization cost compared to a heuristic that uses more

address registers. This is true since our CGOA tries to map to a certain address register as many

variables as possible before considering other address registers.

For each address register used, the corresponding access sequence will be built from the original

access sequence by considering only the variables that are mapped to this address register. And

then the access graph will be constructed for each access sequence. The heuristic will then apply

the CSOA algorithm in Chapter 2 to each set of variables that belongs to the same address register.

39

The total CSOA cost of all the partitions will be added up plus the cost of initializing the address

registers used as the CGOA cost as shown in Equation 3.3 where I is the initialization cost. We

assume an initialization cost of 1 in our experiments. The CGOA solution is the concatenation of

the CSOA solutions.

CGOA Cost =
L

∑
i=1

CSOA CostARi +L∗ I. (3.3)

3.4 CGOA: Example
To clarify our CGOA algorithm, consider the example in Figure 3.3 with two available address

registers AR0 and AR1. Figure 3.3(a) shows the access sequence with the access graph and the

interference graph in Figure 3.3(b) and Figure 3.3(c), respectively. Our CGOA algorithm will start

by calculating First and Last values for each variable in the access sequence, Table 3.1. Then the

variables will be sorted in increasing order of (First + Last) as a b e c d. Following the criteria

described earlier in the first part of our CGOA algorithm, variables a and e will be mapped to AR0

and variables b and d will be mapped to AR1 since [First(a),Last(a)] ∩ [First(e),Last(e)] = /0 and

[First(b),Last(b)] ∩ [First(d),Last(d)] = /0.

At the end of the first part of the heuristic, only variable c is not yet mapped to any address regis-

ter. Since c is adjacent to e in the original access sequence and (e,c) ∈ IG, PenaltyAR0(c) = 1. Also

c is adjacent to b and d in the access sequence with (c,d) ∈ IG and (c,b) ∈ IG, so PenaltyAR1(c) =

2. Therefore, variable c will be mapped to AR0. Figure 3.3(d)-(f) and Figure 3.3(g)-(i) show the ac-

cess sequences for variables mapped to AR0 and AR1, respectively, with their corresponding access

graphs and CSOA solutions. Notice that both the access graphs resulting from our heuristic are

line graphs. The offset assignment for the CGOA solution is the concatenation of the offset assign-

ments for the two CSOA solutions. The cost of our CGOA solution is the sum of the costs of the

individual CSOA solutions plus the cost of 2 for initializing the two address registers used. Thus

the cost of our CGOA is two since the two CSOA solutions resulted in zero cost offset assignments.

40

(i)

a a

(e)

a e c

a a e c e c e c 5
a e c

5
(d)

(f)

(h)

b b d d d b d

(g)

b d
1

a b a e c e c b d e d c d

(a) e

d c

b e

d c

b

2

2

(b) (c)

2

3

1

1

1

1

FIGURE 3.3. (a) Access sequence. (b) Original access graph. (c)Interference graph. (d)-(f) Access sequence
for variables mapped to AR0, access graph, and CSOA solution of zero cost. (g)-(i) Access sequence for
variables mapped to AR1, access graph, and CSOA solution of zero cost.

TABLE 3.1. First and Last values for the CGOA example in Figure 3.3.

Variable First Last First + Last
a 1 3 4
b 2 8 10
c 5 12 17
d 9 13 22
e 4 10 14

41

1

V1 V2

2 2

V3 V4

1 1

V5 V6

3 1

V7 V8

2

V9

2

V10

3 AR

Variables

FIGURE 3.4. Solution representation for the SA

3.5 Simulated Annealing
Since the offset assignment problem is NP-complete, the heuristic presented in Section 3.3 will

very likely produce a suboptimal solution. So in order to further improve the results, we used a

simulated annealing approach, Figure 3.5. Simulated Annealing (SA) [35] is a global stochastic

method that is used to generate approximate solutions to very large combinatorial problems. The

annealing algorithm begins with an initial feasible configuration, the solution from our CGOA

heuristic in our case, and then a neighbor configuration is created by perturbing the current solution.

An SA solution is represented in Figure 3.4 as a vector of n elements, where n is the number of

variables in the access sequence (AS). Each variable in the AS has a fixed position in this vector

with the AR assigned to this variable. A neighboring solution is selected by randomly selecting

the position of variable vi from the current configuration and changing its corresponding address

register ARi to a randomly chosen AR j with j < k. The cost of a solution is calculated in the same

procedure as the cost of the CGOA presented in Section 3.3. The cooling schedule was empirically

determined as follows: 1) initial temperature = 600, 2) the temperature reduction multiplier, α , is

set to 0.89, and 3) the number of iterations, M, is set to 4 while the iteration multiplier, β, is set to

be 1.05. The algorithm stops when the current temperature, T, is below 0.001.

3.6 Results
We implemented our techniques in the OffsetStone toolset [5, 41] and we tested our heuristics on

the MediaBench benchmarks [39]. We measured the number of explicit address arithmetic instruc-

tions needed by each method. We presented the cost resulted from the SOA-OFU in Table 3.3 as

a reference point. The cost in Table 3.3 is the actual number of explicit address arithmetic instruc-

tions resulted from generating the code with the offset assignment achieved using the SOA-OFU

where no variable coalescing is allowed. OFU is a naive offset assignment algorithm based on or-

der first use where variables are assigned to offsets in the order of their appearance in the access

42

Annealing CGOA
S0 = Initial solution.
α = Cooling rate.
β = Iteration multiplier.
T0 = Initial temperature.
MaxTime = Total allowed time for the annealing process.
M0 = Time until next parameter update.
BestS = S0
T = T0
Call CGOA();
S0 = Output Solution of CGOA();
CurrentS = S0
CurrentCost = CGOA Cost(CurrentS)
BestCost = CGOA Cost(BestS)
Time = 0
do{

M = M0
do{

NewS = Neighbor(CurrentS);
NewCost=CGOA Cost(NewS)
δ Cost = NewCost - CurrentCost
If (δ Cost < 0)

CurrentS=NewS
CurrentCost=CGOA Cost(CurrentS);
If (NewCost < BestCost) then

BestS=NewS
BestCost = CGOA Cost(BestS)

elseif (Random < e−
δCost

T) then
CurrentS=NewS

CurrentCost = CGOA Cost(CurrentS);
M = M - 1

} while (M ≥ 0)
Time = Time + M0;
T = α * T;
M0 = β * M0;
while (Time > MaxTime and T > 0.001);
Return(BestS);

FIGURE 3.5. Annealing CGOA algorithm.

43

TABLE 3.2. Percentage of temporary variables.

Benchmarks Temporaries (%)
adpcm 59.6
epic 48.1
g721 80.7
gsm 86.6
jpeg 65.2

mpeg2 65.6
pegwit 72.1

pgp 67.5
rasta 43.6

sequence. Smaller numbers in the tables of results are better as they mean fewer address arithmetic

instructions are needed.

We compared our results to Ottoni’s CGOA [58]. We did not compare our results to the CGOA

in [81] since it underperforms Ottoni’s CGOA as clearly shown in [58]. Recall that Ottoni’s CGOA

works as follows. First it sorts the variables in decreasing order of their number of interferences.

Each variable is then assigned to the partition with the least number of interferences. The size of

the partition is used as a tie break when a variable has the same minimum number of interferences

with more than one partition. The priority is given to the partition with the fewest variables. One of

the biggest drawbacks of this CGOA heuristic is that it uses more address registers than necessary.

Since variables are assigned to partitions with the least corresponding number of interferences and

since the size of the partition is used as a tie break where the partition with the fewest number of

variables is given the highest priority, more address registers are used than necessary and thus the

cost of the final solution will increase due to the address registers initialization cost.

To clarify this point, consider an example of a line access graph of n nodes corresponding to the

n variables in the program. Assume that n address registers are available. Ottoni’s CGOA heuristic

will assign a variable to each address register and thus the final CGOA cost is n corresponding to

the initialization cost of the n address registers. However, using only one address register which

is basically applying a simple offset assignment heuristic on our line access graph will result in a

final cost of 1 which is the initialization cost of the one address register used.

44

TABLE 3.3. SOA-OFU cost.

Benchmarks SOA-OFU cost
adpcm 207
epic 6235
g721 718
gsm 1511
jpeg 10338

mpeg2 7981
pegwit 2249

pgp 7235
rasta 6626

This major drawback in their CGOA heuristic is more exposed when more address registers are

used. This will have a great impact on our benchmarks since usually the embedded applications

are divided into many basic blocks and thus the CGOA is applied separately to each basic block.

Many of those basic blocks consist of a number of variables that is close to the number of available

address registers. As a result Ottoni’s CGOA will end up using more address registers for such

basic blocks than needed. The initialization costs of the address registers used for each basic block

will be added to the cost of the offset assignment solution and thus their CGOA cost will get higher

with more available address registers in the system mostly due to the large initialization cost.

However, in our CGOA heuristic, fewer address registers will be used in most cases since it tries

to map as many variables to a single address register as possible. To show the effectiveness of this

idea, consider the results of Ottoni’s CGOA and our CGOA in Tables 3.4, 3.5 and 3.6 for 2, 4,

and 8 address registers, respectively. Results show that our solution outperformed that of Ottoni by

a large margin. This margin increases as the number of available address registers in the system

increases.

To alleviate the effect of using more address registers than necessary on the final cost of the

problem, Ottoni [58] presents the CGOA results as the minimum between their CSOA and CGOA

costs. This means that they need to run CSOA first to get the cost and then run CGOA. This

explains the difference between the results presented in the paper [58] and the actual CGOA results

presented in Tables 3.4, 3.5, and 3.6. In this way, the cost of the solution will most probably

be the CSOA cost for basic blocks of small to medium number of variables. To show that the

45

TABLE 3.4. CGOA results for 2 ARs.

Benchmarks Our CGOA CGOA-Ottoni
adpcm 17 22
epic 1366 1463
g721 79 61
gsm 103 118
jpeg 1464 1659

mpeg2 1220 1412
pegwit 243 279

pgp 923 1006
rasta 1095 1381

TABLE 3.5. CGOA results for 4 ARs.

Benchmarks Our CGOA CGOA-Ottoni
adpcm 13 15
epic 686 769
g721 89 84
gsm 168 287
jpeg 1240 1694

mpeg2 1012 1187
pegwit 193 278

pgp 830 989
rasta 1250 1318

TABLE 3.6. CGOA results for 8 ARs.

Benchmarks Our CGOA CGOA-Ottoni
adpcm 21 35
epic 383 505
g721 127 195
gsm 256 619
jpeg 1477 2766

mpeg2 995 1515
pegwit 282 556

pgp 914 1622
rasta 1055 1199

46

TABLE 3.7. COA results for 2 ARs.

Benchmarks COA1 COA2 COA-Ottoni
adpcm 14 15 15
epic 1334 1353 1422
g721 50 64 49
gsm 43 44 46
jpeg 1199 1251 1293

mpeg2 966 1046 1214
pegwit 211 213 243

pgp 803 825 825
rasta 586 634 690

improvement from our CGOA heuristic is not just from the reduction in the initialization cost,

we tuned our CGOA heuristic to a COA heuristic, as in [58], where the final cost is not the final

cost of our CGOA but rather the minimum between our CSOA and CGOA costs, COA Cost =

min(CSOA Cost,CGOA Cost).

We tested our general offset assignment heuristic with the CSOA heuristic in Chapter 2 applied

to the final partitions as COA1 and with Ottoni’s CSOA in [58] applied to the final partitions

as COA2. Both COA1 and COA2 heuristics outperformed Ottoni’s COA [58] in most cases. We

used COA2 just to show the net performance of our partitioning technique compared to the one in

[58]. Tables 3.7, 3.8, and 3.9 show the results for 2 ARs, 4 ARs, and 8 ARs, respectively, where

the first columns show the benchmarks and the next three columns show the results for the three

COA heuristics. This improvement is most probably due to the another drawback in Ottoni’s COA

heuristic which is that they only consider the interferences between variables as a criterion for

partitioning their variables into the available address registers whereas in our case we also consider

the structure of the access graph in our variable partitioning method.

Figures 3.6–3.8 show the CGOA stack savings normalized with respect to the number of vari-

ables in the program when two, four and eight address registers are used, respectively. Our CGOA

reduced the memory slots needed to store the variables by 10% on average compared to that of

using the CGOA algorithm in [58] for 2, 4 and 8 ARs. The stack size reduction decreases with

more available address registers since partitions with fewer number of variables have less variables

coalescing opportunities. Reduction in memory slots needed is essential in DSP architectures as

47

TABLE 3.8. COA results for 4 ARs.

Benchmarks COA1 COA2 COA-Ottoni
adpcm 9 9 9
epic 629 648 655
g721 51 62 51
gsm 56 56 67
jpeg 837 878 951

mpeg2 726 790 806
pegwit 123 137 128

pgp 542 578 565
rasta 570 596 610

TABLE 3.9. COA results for 8 ARs.

Benchmarks COA1 COA2 COA-Ottoni
adpcm 19 19 21
epic 324 330 343
g721 88 91 94
gsm 83 85 108
jpeg 920 961 961

mpeg2 670 695 735
pegwit 193 202 212

pgp 514 572 594
rasta 556 602 623

0

10

20

30

40

50

60

70

80

90

100

N
o

r
m

a
li

z
e

d
 V

a
r
ia

b
le

 S
t
a

c
k

 S
iz

e

Benchmark

CGOA_Ottoni

Our CGOA

FIGURE 3.6. The normalized stack size reduction for 2 ARs using Ottoni’s CGOA and our CGOA with
respect to the number of variables.

48

0

10

20

30

40

50

60

70

80

90

100

N
o

r
m

a
li

z
e

d
 V

a
r
ia

b
le

 S
t
a

c
k

 S
iz

e

Benchmark

CGOA_Ottoni

Our CGOA

FIGURE 3.7. The normalized stack size reduction for 4 ARs using Ottoni’s CGOA and our CGOA with
respect to the number of variables.

0

10

20

30

40

50

60

70

80

90

100

N
o

r
m

a
li

z
e

d
 V

a
r
ia

b
le

 S
t
a

c
k

 S
iz

e

Benchmark

CGOA_Ottoni

Our CGOA

FIGURE 3.8. The normalized stack size reduction for 8 ARs using Ottoni’s CGOA and our CGOA with
respect to the number of variables.

49

0

10

20

30

40

50

60

70

80

90

100

adpcm epic g721 gsm jpeg mpeg2 pegwit pgp rasta

N
o

r
m

a
li

z
e

d
 C

o
s
t

Benchmark Name

2 AR2

4 ARs

8 ARs

FIGURE 3.9. Normalized cost for SA with respect to our CGOA 2, 4, and 8 ARs

this means less memory is needed to store the variables in the application. This reduction from our

techniques results from coalescing more variables which means that more variables share the same

memory slot. Although not studied in this paper, one can expect a similar reduction in the power

consumption due to the smaller code size and fewer execution cycles.

Finally, we tested all the benchmarks using our SA. Due to the big benchmarks that we used,

the simulated algorithm takes a long time to converge into a high quality solution. So to speed up

SA, we started it with our CGOA solution as the initial solution and we ran it for a maximum of 15

minutes. Figure 3.9 shows the normalized cost of our SA with respect to our CGOA which shows

a cost reduction of 0% to 12% compared to our CGOA and thus it shows that there is still room for

improvement.

The cost reduction in our techniques is essential for DSPs since the code in such systems resides

in the ROM and thus it directly translates into silicon area. Our techniques reduced the code size

by reducing the number of explicit address arithmetic instructions as well as the variable stack

size through variable coalescing. The techniques presented in this paper outperformed the best

known solutions in the literature [58]. This is very significant as address arithmetic instructions

are sometimes up to 50% of the code size in such DSP systems. Those improvements are basically

possible due to the large number of temporary variables in DSP applications where a variable is

considered temporary if it is alive in only one basic block, Table 3.2.

50

3.7 Chapter Summary
In this chapter, we presented a heuristic to solve the general offset assignment problem with vari-

able coalescing where more than one variable can be mapped to the same memory location. Results

on different benchmarks show the effectiveness of our heuristic compared to other heuristics. Re-

sults were further improved using simulated annealing.

51

Chapter 4
The Offset Assignment Problem with Variable
Permutation

In Chapters 2 and 3, we presented two effective heuristics for the simple and the general offset

assignment problem with variable coalescing. However, we assumed that the access sequence is

fixed. In this chapter, we will assume that the access sequence is not fixed but rather variables can

be permuted in the case of permutative operations. For instance a = b + c can be rewritten as a =

c + b in our approach provided that this improves the final solution. We will present an optimal

integer linear programming (ILP) formulation for the simple offset assignment and the general

offset assignment with variable permutation.

One of the main assumptions endorsed in the literature and in Chapter 3 for the general offset

assignment problem is that a variable can be accessed by only one address register throughout the

program run. In this chapter, we will formulate the CGOA problem assuming different instances of

the same variable can be accessed by different address registers. The optimal solution to our new

approach to the general offset assignment is at least as good as that of the traditional CGOA as the

latter is a special case of the former.

4.1 CSOA ILP Formulation
For the simple offset assignment problem with variable coalescing, we formulate the ILP based

on the access graph and thus the solution is the best cover of the access graph so that the sum of

the weights of the uncovered edges is minimized. The idea is to find the best offset assignment

that is the best placement of the variables in the memory so that the cost is minimized. Recall that

two variables with non-overlapping live ranges can share the same memory location. This variable

coalescing is intended to increase the proximity between the variables in the memory and thus

decrease the number of explicit address arithmetic instructions in the code generated for a DSP

architecture with an address generation unit.

52

First define the binary variable X l
i that takes the value 1 if the variable i is at position l in the

memory offset assignment.

X l
i =

{
1, if variable i is in position l in the OA
0, otherwise (4.1)

A certain variable i can be mapped to one and only one location l in the memory, Equation (4.2).

For the simple offset assignment with variable coalescing, more than one variable can be mapped

to the same memory location. Two variables can be mapped to the same memory location if they do

not interfere, that is, there is no edge in the interference graph between those two variables. Thus

in Equation (4.3), two variables that interfere are not allowed to share the same memory location.

∑
l

X l
i = 1 ∀ i (4.2)

X l
i +X l

j ≤ 1 ∀ (i, j) ∈ Interference graph (4.3)

There is no need for an explicit address arithmetic instruction to update the address register point-

ing to variable location i to point to variable location j if those two variables are in adjacent

locations, X l
i + X l+1

j = 2, or if they are coalesced, that is, they share the same memory location,

X l
i +X l

j = 2. Define the binary variable Yi j as a variable that takes a value of 1 if variables i and j

are within the auto-modify range,

Yi j =

{
1, if X l

i + X l+1
j = 2 or X l

i + X l
j = 2

0, otherwise (4.4)

To force variable Yi j to be 1 only when variables (X l
i && X l+1

j) or (X l
i && X l

j) are equal to 1,

we have to include the constraints in Equations (4.5)-(4.7). In that set of constraints, for any two

locations l and l′ in the memory such that those two locations are within the auto-modify range,

the value of the binary variable Yi j will be 1 which means that there is no need for an address

arithmetic instruction. Since in our case we assumed an auto-modify range of [-1,1] then variable

Yi j will take the value of 1 if locations l and l′ are adjacent or are the same location that is l =

l′. Note that those constraints can be easily modified to accommodate any auto-modify range. We

need the constraints in Equations (4.5)-(4.7) for all values of |l-l′| ≤ 1 since we defined the variable

53

Y as Yi j rather than Y l
i j that is variable Y has no index for the memory position.

∀ i, j, l and l′ such that |l-l′| ≤ 1 :

Yi j ≤ X l
i (4.5)

Yi j ≤ X l′
j +X l

j (4.6)

Yi j ≥ X l
i +X l

j +X l′
j −1 (4.7)

We define the overall cost of our CSOA solution as the sum of the weights of the edges in the

access graph that are not selected as those edges represent the explicit address arithmetic instruc-

tions needed. Our objective function is used as the sum of the weights of the selected edges in the

access graph and thus we need to maximize this function as more selected edges results in smaller

number of address arithmetic instructions in the generated code and thus smaller code size. The

objective function is as defined in Equation (4.8).

Maximize : ∑
i

∑
i

wi j(Yi j +Yji) (4.8)

4.2 ILP Formulation with Variable Permutation
Most of the previous research on the offset assignment problem was concerned about finding good

heuristics for the SOA and the GOA problems assuming that the access sequence (AS) order is

fixed. A solution to the offset assignment problem greatly depends on the AS. A slight change in

the access sequence may change the structure of the access graph (AG). As the structure of the

access graph is the core for the quality and the cost of the offset assignment solution, trying to find

a new feasible AG to further improve the OA solution becomes an important issue. The basic idea

is to try to change the positions of the variable instances in the AS in a way so that the final cost is

decreased. For instance, statement a = b+c is equivalent to the statement a = c+b as the addition

operation is permutative. An example of a non-permutative operation is the division operation.

Although a minus operation is not commutative, but it is permutative as a− b is equivalent to

−b+a. However, we allow such permutation between variables around a minus operation as long

as the first variable in the resultant statement is not in the form of - x. An example of an allowable

permutation in the presence of a minus operation is a+b− c→ a− c+b but not −c+a+b.

54

Permuting the operators of a permutative operation changes the position of appearances of the

variables in the AS and hence we end up with a new AS and consequently a new offset assignment

problem. Variables and statements can be moved around as long as the new code is equivalent to

the original code, that is, for a set of input values, both the codes will result in the same output

values.

In this section, we formulate the simple offset assignment problem with the inclusion of variable

permutation. The solution looks for the best permutation of variables in the right hand side of the

statements to decrease the cost.

For instance the possible permutations for the statement a = b + c + d and the corresponding
access sequences are:

1. a = b+d + c AS: b d c a

2. a = c+d +b AS: c d b a

3. a = c+b+d AS: c b d a

4. a = d +b+ c AS: d b c a

5. a = d + c+b AS: d c b a

Many permutations were possible since all of the operations in that statement are addition oper-

ations which is a permutative operation. Now consider the following statement with a subtraction

operation which is a non permutative operation a = b− c + d. The only possible permutations

allowed in our formulation for that statement are: a = d +b− c, a = d− c+b and a = b+d− c.

To understand the effectiveness of variable permutation in decreasing the offset assignment cost,

consider the example in Figure 4.1. Figure 4.1 (a) shows the original code with the corresponding

access sequence in Figure 4.1 (b). Applying Liao’s SOA on the access graph in Figure 4.1 (c) will

result in an offset assignment as shown in Figure 4.1 (d) with a cost of 3 which represents the two

address arithmetic instructions needed to move the address register between variables a and c as

well as one address arithmetic instruction needed to update the address register pointing to variable

c in the memory to point to variable d.

Now consider an equivalent version of the code with variable permutation in Figure 4.1 (e). The

codes in Figures 4.1 (a) and (e) are equivalent. The only difference between those two versions is

55

the position of variables in the access sequence and thus they will result in two completely different

access graphs as shown in Figures 4.1 (c) and (g). Again applying Liao’s offset assignment to the

access graph in Figure 4.1 (g) will result in a zero-cost offset assignment solution, Figure 4.1 (h),

compared to a cost of three resulting by applying the SOA heuristic to the AG corresponding to

the original code.

This simple example clearly shows that permuting the variables can be an effective technique

to further decrease the offset assignment cost which is the number of explicit address arithmetic

instructions. Thus applying variable permutation will further improve the code generated for em-

bedded applications on a DSP architecture by reducing the code size.

2

2
2

1

3

6 6
a b

c d

d = a + b + c

c = a + c + b

b = b + a

a = b + a + d

The original code:

d = c + a + b

c = b + a + c

b = a + b

a = d + b + a

The new code:

AS: b a d a b a b a c b c a b c d

d

a

b

c

2

6 4

a b

c d

AS: d b a a a b b b a c c c a b d

d

b

a

c

(a)

(b)

(c) (d)

(e)

(f)

(g) (h)

Cost = 3

Cost = 0

FIGURE 4.1. (a) The original code. The corresponding AS (b), access graph (c), and offset assignment (d).
(e) The code after permutation. The corresponding AS (f), access graph (g), and offset assignment (h).

Recall that the cost function for simple offset assignment with variable coalescing was in the

form of wi j ·Yi j. In that case the weights of the edges are known since the access sequence is fixed.

However, in the case of variable permutation, the access sequence is not fixed and consequently

56

the access graph and thus the weights of the edges in the access graph are not fixed. To include

this into our ILP formulation, define the binary variable Wi js as below. For instance, consider the

statement S1 : a = b+ c. Wac1 = 1, but if variables b and c are permuted, then Wac1 = 0.

Wi js =
{1, if variables i and j are next to each other in the statement’s S AS

0, otherwise (4.9)

To include variable permutation for permutative operations in our formulation, a few things

should be taken into consideration. Consider for instance the statement s : a = b+ c+d. The right

hand side of s has three variables with permutative operations. Only two variables can have two

neighbors considering only statement s. Usually for n variables with permutative operations in a

certain statement, n-1 variables will end up with two neighbors locally in that statement. Another

important aspect is that only one variable i in the RHS can be the neighbor of the variable in the

LHS of the statement s. One more constraint needed is that the variable in the LHS of statement

s− 1 that precedes statement s in the code must have an edge to only one of the variables j in

the RHS of s. Notice that, for a statement s with more than one variable in the RHS, i 6= j. The

following equations are sufficient to take care of the number of neighbors of each variable in a

certain statement. For each statement s with a as the variable in the LHS and with b as the LHS

variable of statement s−1:

∑
i

∑
j

Wi js = n−1 ∀s (4.10)

∑
i∈RHS(s)

Wais = 1 a = LHS(s−1) (4.11)

∑
i∈RHS(s)

Wgis−1 = 1 g = LHS(s) (4.12)

∑
i∈RHS(s)

Wi js = 2−Wa js−Wg js−1 ∀ j,s (4.13)

The objective function in this case is the same as in the CSOA. However, since W and Y are both

variables, the objective function in Equation (4.14) is not linear and thus we resort to linearization.

∑
s

∑
i

∑
i

Wi js(Yi j +Yji)+∑
s

∑
j∈s

Wa js(Yi j +Yji) a ∈ LHS(s−1) (4.14)

To do so, define the binary variable Ri js as follows: the value of 1 if Yi j + Yji = 1 & Wi js = 1,

Ri js =
{

1, if Yi j + Yji = 1 & Wi js = 1
0, otherwise (4.15)

57

(Ri js ≤ Yi j +Yji) ∀i, j,s (4.16)

(Ri js ≤Wi js) ∀i, j,s (4.17)

(Ri js ≥ Yi j +Yji +Wi js−1) ∀i, j,s (4.18)

The objective function can now be expressed linearly as shown below where the first part rep-

resents the number of explicit address arithmetic instructions saved between variables of the same

statement whereas the second part takes care of the variables in statement s and the variable a in

the left hand side of statement s−1 which is the statement that precedes statement s in the code:

Maximize∑
s

∑
i

∑
i

Ri js +∑
s

∑
j∈s

Ra js a ∈ LHS(s−1) (4.19)

Note that in this subsection, we considered variable permutation without variable coalescing as

the permutation can change the interference graph as will be shown in the next section. The ILP

formulation for the case of variable coalescing and permutation is presented in the next section.

4.3 General Offset Assignment with Variable Coalescing
4.3.1 Problem Definition

The general offset assignment problem (GOA) refers to the case when there are more than one ad-

dress register. Traditionally, GOA solutions are based on variable partitioning among the available

address registers. In all of the heuristics (to the best of our knowledge), a variable can be accessed

by only one address register.

To clarify the traditional solution to the GOA problem, consider the example in Figure 4.2 with

two available address registers AR0 and AR1. Figure 4.2(a) shows the original access sequence.

Assume that variables a, b, c and d are mapped to AR0 and variables e and f are mapped to

AR1. This variable partitioning is the optimal solution for this access sequence. Then two access

sequences are extracted from the original access sequence. The first one represents the sequence

of variables mapped to AR0 and the second represents the sequence of variables mapped to address

register AR1. Figure 4.2(b)-(c) shows that access sequence for the variables mapped to address

58

1

2

2

3

a b

c d

Original AS: c a d b e c f b e c f c a d

b d c a

3
e f

(a)

(c)

(f)

Cost = 1

AS1: c a d b c b c c a d

(b)

AS2: e f e f

(e)

(d)

e f

Cost = 0

(g)
b d c a

Cost = 3

(h)

e f

FIGURE 4.2. (a) Original access sequence. (b) Access sequence for AR0. (c) Access graph for AR0. (d)
Offset assignment for AR0. (b) Access sequence for AR1. (c) Access graph for AR1. (d) Offset assignment
for AR1. (e) Offset assignment for the GOA problem.

register AR0 with the corresponding access graph. Applying SOA to the access graph in Figure 4.2

(b) results in an offset assignment, Figure 4.2 (d), of cost = 1 which represents the one explicit

address arithmetic instruction needed to update AR0 pointing to variable b at a certain program

point to point to the address of variable d. Similarly, Figures 4.2(e),(f) and (g) show the access

sequence, access graph and offset assignment for the variables mapped to address register AR1 with

a cost of zero. The GOA solution, Figure 4.2 (h), is the concatenation of the SOA solutions with

the final cost of 3 which represents the sum of the costs of the SOA solutions plus an initialization

cost of 2 for the two used address registers in the generated code.

In the literature, GOA is based on the assumption that all the instances of a certain variable

are accessed by only one address register and thus the solution is usually based on dividing the

variables into partitions and then mapping each partition into an address register. However, this

assumption is used to simplify the problem but it may degrade the quality of the final solution

59

as the optimal solution to this problem may not be the solution with minimum number of explicit

address arithmetic instructions for the problem in hand. An alternative solution to the general offset

assignment problem is to allow a variable to be accessed by more than one address register. As a

result, our CGOA solution is based on the idea of partitioning the variable access sequence rather

than the variables.

The new statement of the general offset assignment problem can now be defined as follows.

Problem Definition: Given an access sequence AS, partition AS into l (l ≤ k) partitions where

different instances of the same variable can be mapped into different partitions so that the number

of explicit address arithmetic instructions is minimized.

Recall that the solution of the traditional general offset assignment problem is based on the con-

catenation of the solutions of the simple offset assignment applied to each partition. This is possible

because there are no variables in common between the access sequences of different address reg-

isters since the solution is based on variable partitioning. However, the idea of partitioning the

variables’ instances in the access sequence rather than the variables may result in access sequences

with common variables.

Consider for instance the example AS in Figure 4.3 (a) with two available ARs which is the same

example used in Figure 4.2. Partitioning the access sequence into two partitions in Figures 4.3 (b)

and (d) results in two access sequences with variables a and d in common. Applying SOA to the

corresponding access graphs in Figures 4.3 (c) and (e) is not feasible as it will result in an offset

assignment that needs to duplicate the common variables between the two access variables in the

memory. To take care of this, the solution of our new proposed general offset assignment problem

is reached as follows.

1. Divide the original access sequence in the best possible way into l partitions, Figures 4.3(b),(d).

2. Build the access graph corresponding to each access sequence, Figures 4.3 (c),(e).

3. Merge the resultant access graphs into one access graph, Figures 4.3 (f).

4. Apply SOA to the resultant access graph.

60

5. The GOA solution is the offset assignment of the solution in Step 4, Figure 4.3 (g).

6. The GOA cost is the SOA cost in Step 4 plus the initialization cost of each address register

used.

The merge operator in Step 3 is performed as follows. Assume the original access sequence

is partitioned into two access sequences with the corresponding access graphs AG1(V1,E1) and

AG2(V2,E2). Assume AG is the access graph resulting from merging AG1 and AG2. Then AG(V,E)

= {V, E| V = V1 ∪V2 and E = E1 ∪ E2}. Merging the access graphs in Figures 4.3(c) and (e) results

in the access graph in Figure 4.3(f). Applying SOA to the AG in Figure 4.3(f) will result in a zero

cost offset assignment and thus the GOA cost is equal to 2 which is the initialization cost of the

two address registers used. Notice that this cost is less than the cost of 3 when the traditional GOA

is applied to the same problem in Figure 4.2. Note that the optimal cost of this new CGOA is at

least as good as the traditional CGOA as the latter is a special case of the former.

4.3.2 CGOA ILP Formulation with Variable Permutation

Trying to formulate the new nontraditional CGOA problem defined in Section 4.3.1 based on

building the access graphs like in the CSOA case is quite expensive especially with the inclusion

of variable permutation. Thus we formulate the general offset assignment problem with variable

coalescing based on the cost formulated in [43] that does not work on the access graph but rather

directly on the access sequence.

The inclusion of variable permutation for permutative operations means that the position of a

variable in an access sequence may not be static. A variable’s position can change as permutation

is applied. Based on the permutativity of the operations in a certain statement, a variable can be

positioned at different places. Consider for instance the following statement: a = b + c + d. The

position of the variable a in the left hand side is static since the position of the statement is assumed

static in our case. Assume that the position of variable a in the access sequence is p. The positions

of variables b, c and d can be in the range of [p− 3, p[since addition is permutative and thus the

statement can be written as:

61

1

4

1

b c

a d

Original AS: c a d b e c f b e c f c a d

(a)

(c)

AS1: c b c b c c a d

(b)

AS2: a d e f e f

(d)

b d c a Cost = 2

(g)

e f

3

1

1

a d

e f
(e)

3

2

1

a d

e f

(f)

4 c b

1

FIGURE 4.3. (a) Original access sequence. (b) Access sequence for AR0. (c) Access graph for AR0. (d)
Access sequence for AR1. (e) Access graph for AR1. (f) The resultant access graph from the merge operator.
(e) Offset assignment for the GOA problem.

62

1. a = b+d + c

2. a = c+b+d

3. a = c+d +b

4. a = d + c+b

5. a = d +b+ c

Define the binary variable Pixx′ as a binary variable that keeps track of the position of the variable

i initially positioned at x in the access sequence before any permutation is applied. The legal po-

sitions of a certain variable, say in the range [p, p+n], are extracted by the compiler based on the

permutativity of the operation and thus the Pixx′ can be 1 only for x′ ∈ [p, p + n]. Equation (4.21)

ensures that Pixx′ = 0 for all x′ /∈ [p, p+n].

Pixx′ =
{

1, if variable i intially positioned at x is repositioned to x′ in the AS.
0, otherwise (4.20)

∀ x′ /∈ [p,p+n] where [p,p+n] is the legal range of positions of variable i :

Pixx′ = 0 (4.21)

Since only one variable i can be at a certain position x′ in the access sequence and a variable i

initially positioned at x in the access sequence can be repositioned to at most one position x′, the

following constraints are needed:

∀ x’ ∈ [1,m] where m is the size of the access sequence:

∑
i positioned at x such that i is legal to be in x’

Pixx′ = 1 (4.22)

And ∀ i positioned at x that is legal to be positioned at x’ ∈ [p,p+n] :

∑
x′

Pixx′ = 1 (4.23)

Define the binary variable Rkix′ which keeps track of the variable that address register k points

to at program point x′. Equation (4.25) takes care of an important aspect in our formulation which

is that a variable register has to point to one variable at a program point if this address register is

used. If the address register is not used then it should not point to any variables at any point in the

63

program.

Rkix′ =
{

1, if address register k points to variable i at program point x′
0, otherwise (4.24)

∑
i

Rkix′ = ARk ∀ k, x′ (4.25)

We define the binary variable Ix′k to take a value 1 if there is a need for an explicit address arithmetic

instruction by the address register k at program point x′ as follows.

Ix′k =
{

1, if condition 1
0, otherwise (4.26)

where condition 1 = if variable at position x′, Pixx′ , is covered by address register k and the variable

at position x′− 1, Pixx′−1, is covered by address register k and the variables are within an auto-

modify range (Yi j = 1).

The constraint in Equation (4.27) basically keeps track of the explicit address arithmetic instruc-

tions needed at each program point. Ix′k will take a value of one at program point x′ if the variables

pointed to by address register k at points x′ and x′−1 are not within the auto-modify range and thus

an explicit load is needed. Note that Ix′k will take the smallest possible value since the objective

function discussed later on is to minimize the sum of all Is. Also Ix′k cannot take a negative value

as it is defined as a binary variable which means that the only possible values that I can take are

either 0 or 1.

Ix′k ≥ Rkix′+Pixx′+Rk jx′−1 +Pjyx′−1−Yi j−3 ∀ ix, jy, x’, k (4.27)

The binary variable Yi j in the expression below is the same binary variable defined for the case

of CSOA and is redefined below as

Yi j =

{
1, if X l

i + X l+1
j = 2 or X l

i . + X l
j = 2

0, otherwise (4.28)

∀ i, j, l and l′ such that |l-l′| ≤ 1 : (4.29)

Yi j ≤ X l
i (4.30)

Yi j ≤ X l′
j +X l

j (4.31)

Yi j ≥ X l
i +X l

j +X l′
j −1 (4.32)

64

A very important idea when formulating the offset assignment problem with variable coalescing

and variable permutation is that the permutation may alter the interference graph. Recall that in the

interference graph there is a node for each variable and an edge between two variables meaning that

their live ranges overlap and thus coalescing is not possible. Consider the two equivalent versions

of the piece of code below.

Version 1: Version 2:

S1: c = a+ c S1: c = a+ c

S2: a = b+d + c S2: a = c+b+d

S3: b = a+d S3: b = a+d

For Version 1, assume that the variable b in statement S2 is the first appearance of b in the

program and the appearance of variable c in S2 is the last in the program. The live ranges of

variables b and c overlap and thus they cannot be coalesced. Now consider the same code in

Version 2 after applying permutation to the variables in the RHS of statement S2 of Version 1.

This permutation makes variables b and c interference free as their live ranges do not overlap

any more. Notice that this can happen only when applying permutation to variables i and j in a

certain statement and such that it is the first appearance of variable i and the last appearance of the

variable j. To take this into consideration, we divide the edges in the interference graph (IG) into

three types:

1. Type 1: Edges in the IG that cannot be deleted by applying variable permutation.

2. Type 2: Edges in the IG that are possible to be deleted by variable permutation.

3. Type 3: Pairs (i, j) that should be added as edges to the IG if those two variables were

interference free and now interfere after applying permutation.

Recall that in the case of variable coalescing with no variable permutation in Section 4.1, the

constraint to take care of variables interference is as follows,

X l
i +X l

j ≤ 1 ∀ (i,j) ∈ Interference graph. (4.33)

65

This simple formulation is no more sufficient in the case of variable permutation as the IG is not

fixed any more. That is, some of the edges in the IG may get deleted as discussed earlier and some

edges can be added to the IG.

For the Type 1 edges in the IG, the constraint in Equation (4.33) is sufficient and thus the con-

straint is now expressed as follows,

X l
i +X l

j ≤ 1 ∀ Type1 edges (i,j) ∈ Interference graph. (4.34)

The formulation gets more complicated to take care of the other types of edges in the IG. The

formulation is only for the statements that have a variable i that appears the last time and a variable

j that appears the first time as in only this case can applying permutation alter the IG. The current

position x′ in the AS of the variable i of legal range [p, p + n] originally positioned at x can be

expressed as: p1 = ∑x′∈[p,p+n] x′ ·Pixx′ where as the current position y′ in the AS of the variable j

of legal range [p′, p′+n′] originally positioned at y can be expressed as: p2 = ∑y′∈[p′,p′+n′] y′ ·Pjyy′ .

Now for each pair (i, j) that respects the condition mentioned earlier, if p1 > p2, then i and j

interfere; otherwise they are interference free.

For all Type 2 and Type 3 pairs of variables (i, j), the constraint is now expressed in Equation

(4.35) where the expression (2− p1−p2
p1) is < 2 if p1 > p2 and > 2 if p1 < p2,

X l
i +X l

j ≤ 2− p1− p2
p1

∀ Type 2 or Type 3 (i,j). (4.35)

Sometimes using more address registers for a certain CGOA problem can result in a higher cost

due to the initialization cost for using an address register which is basically an extra instruction in

the generated code. So at this point, we need to keep track of how many address registers are used

and thus add an initialization cost of 1 for each address register. Define the binary variable ARk as:

ARk =
{

1, if address register k is used
0, otherwise (4.36)

To ensure that variable ARk is 1 when the address register k is used, the constraint in Equation

(4.37) is needed. ARk will take a value of 1 if at no program point there was a variable instance

accessed by address register k. If Rkix′ = 0 at all program instances, then address register k is not

66

used and thus ARk = 0 since ARk is a binary variable that can take values 0 or 1 and the sum ∑k ARk

is minimized in the objective function, Equation (4.38). And on the other side, if Rkix′ = 1 at any

program point meaning that address register k is used, then ARk in the constraint below will be

greater than 1 but since ARk is binary variable, ARk will take the value 1.

ARk ≥ Rkix′ ∀ k, i, x’ (4.37)

We define the overall cost of our CGOA solution in Equation (4.38) as the number of explicit

address arithmetic instructions needed by each address register which is basically the sum of all

the I variables at all the program points for all the address registers used plus the initialization cost

of each address register used.

Minimize∑
k

∑
x′

Ikx′+∑
k

ARk (4.38)

Another important aspect of the offset assignment problem with variable coalescing is the re-

sulting ability to decrease the memory needed to store the variables. Coalescing increases the

proximity between the variables and thus more variables tend to share the same memory location.

As the average number of variables mapped to each memory location is increased, the memory

stack size needed to store the program variables is decreased. Thus another objective function for

the problem can also be stated as to decrease the memory stack size. To formulate this idea into a

linear form, define the binary variable ml that takes a value of 1 if at least a variable is mapped to

the memory location l as

ml ≥ X l
i ∀ l, i. (4.39)

The objective now is to minimize the number of memory locations used and thus minimize ∑l ml .

4.4 Results
We implemented our techniques in the OffsetStone toolset [5, 41] and we tested our heuristics on

the MediaBench benchmarks [39]. We measured the percentage of the number of address arith-

metic instructions inserted by each method with respect to the number of address arithmetic in-

structions inserted by the simple and general offset assignment heuristics with variable coalescing

67

presented by Ottoni [58]. Those two heuristics are well known effective heuristics that solve the

offset assignment problem in the case of variable coalescing. Variable permutation is not used in

Ottoni’s case as the access sequence is assumed to be fixed.

The methodology of our experimental evaluation is as follows. Given a benchmark, extract the

original access sequence assuming that the statements’ variable order is fixed, that is, before any

variable permutation is applied. Based on the permutativity of the operations available in the state-

ments, we find the range of positions at which a certain variable can be placed in the access se-

quences. Two variables with a non permutative operation are looked at as a single variable in our

techniques. For instance, consider the statement a = b + c
d . Variables c and d are around a non-

permutative operation and thus those variables cannot be permuted. So we can look at c
d as a single

variable C and thus the statement can be looked at as a = b +C and thus now variables b and C

can be permuted due to the permutativity of the addition operation and thus it can be written as

a = C + d which is a simpler presentation of a = c
d + b. The output will be the range of positions

that a variable can take in the access sequence. Those ranges are to be used by our ILP formulation.

We implemented four different versions of our integer linear formulations using CPLEX mainly:

• CSOA: Integer linear programming of the simple offset assignment problem with variable

coalescing.

• CSOA Perm: Integer linear programming of the simple offset assignment problem with vari-

able coalescing with the inclusion of variable permutation for permutative operations.

• CGOA: Integer linear programming of the general offset assignment problem with variable

coalescing.

• CGOA Perm: Integer linear programming of the general offset assignment problem with

variable coalescing with the inclusion of variable permutation.

For the first part of our experimental results, we show the effectiveness of our ILP formula-

tion for the simple offset assignment with variable coalescing. For this simple offset assignment,

variable permutations are applied to find the best possible access sequence that results in the best

68

0

10

20

30

40

50

60

70

80

90

100

adpcm g721 pgp jpeg rasta pegwit

N
o

r
m

a
li

z
e

d
 C

o
s
t

Benchmark

CSOA

CSOA_Perm

FIGURE 4.4. The normalized cost for the CSOA problem with permutation.

0

10

20

30

40

50

60

70

80

90

100

adpcm g721 pgp jpeg rasta pegwit

N
o

r
m

a
li

z
e

d
 C

o
s
t

Benchmark

CGOA (2 ARs)

CGOA_Perm (2 ARs)

CGOA (4 ARs)

CGOA_Perm (4 ARs)

CGOA (8 ARs)

CGOA_Perm (8 ARs)

FIGURE 4.5. The normalized cost for the CGOA problem with permutation.

69

0

2

4

6

8

10

12

14

16

18

4 6 8 9 12 15 30

C
o
st

Memory

ADPCM

G721

JPEG

FIGURE 4.6. Design space exploration of memory versus cost.

cost. The cost in this part is the number of explicit address arithmetic instructions needed in the

code generated for a DSP architecture with an address generation unit. The auto-modify range is

assumed to be [-1,1] in our experimental results but our techniques can handle any auto-modify

range. The benchmarks used are made of basic blocks. We apply our formulations to each basic

block separately. We limit our experiments on basic blocks of number of variables less than or

equal to 30 since as the number of variables increase, the run time for our ILP increases exponen-

tially.

For the CSOA, we tested our ILP formulations against the CSOA heuristic in [58]. Results in

Figure 4.4 are the cost (number of explicit address arithmetic instructions) normalized against the

cost from the CSOA heuristic. Results show that our CSOA ILP formulation improved over the

CSOA heuristic by 12% on average whereas the inclusion of variable permutation improved over

the heuristic by 18% on average.

Then we tested our CGOA ILP techniques and presented the results as the cost normalized

against the CGOA heuristic in [58]. We show the results for 2, 4, and 8 address registers (AR). Our

CGOA optimal ILP formulation improved over the heuristic by 22%, 17%, and 42% on average for

2, 4, and 8 ARs, respectively, whereas the CGOA formulation with variable permutation improved

over the heuristic by 31%, 23%, and 46% on average for 2, 4, and 8 ARs, respectively, Figure 4.5.

70

Results show that with more address registers, the improvements from our ILP solution over-

performs the CGOA heuristic by a big margin. The reason is that the heuristic may use more

address registers than needed and thus the initialization cost of the ARs used for each basic block

will be added up to the cost of the final solution. This is not the case for the ILP optimal solution

since the solution for l available address registers for each basic block is the minimum cost for

all the solutions for any number of address registers ≤ l as our ILP will find the optimal solution

that may be a solution using k address registers where k ≤ l. Note that some of the improvement

is due to the new approach to the CGOA presented in Section 4 where we partitioned the variable

instances rather than variables.

For this part of the experiments, we tested our ILP CGOA with the objective to decrease the

memory requirement for the program variables (stack size). Coalescing more variables reduces the

memory stack size. Our optimal results improved on average over the Ottoni’s offset assignment

heuristics by 25%, 28%, 33%, and 41% for 1, 2, 4, and 8 address registers, respectively. Reducing

the variable stack size is very important as the available memory is usually limited in such DSP

systems.

In this part of our experiments, we perform design space exploration to find the best cost for an

available number of address registers. This will be helpful in the embedded system design. We do

so by setting the objective function to minimize the stack size, in Section 4.3, as a constraint in the

form ∑l ml < memory size m. We start with m equals to the number of variables so that is there

is a memory location for each variable in the program which is the case of no variable coalescing.

If it is feasible to find a solution to this problem then we try half the size of the memory m/2 and

if the solution with memory size of m/2 is not feasible, then we try
⌈

m+m/2
2

⌉
. We always try half

of the range up or down between the memory size explored at this point and the previous memory

size explored. This will be very helpful for the design space exploration.

Figure 4.6 shows the design space exploration for the basic blocks of 30 variables extracted from

ADPCM, G721, and JPEG benchmarks with 4 available address registers. This will be helpful for

the designer to find the best memory versus cost parameters. Notice that with less memory, the ILP

71

is forced to coalesce more variables and in many cases heavily variable coalescing increases the

cost as that may prevent some select opportunities in the offset assignment solution methodology.

The cost reduction in our techniques is essential for DSPs since the code in such systems re-

sides in the ROM and thus it directly translates into silicon area. The number of address arithmetic

instructions is sometimes up to 50% of the code size in some DSP applications. Our ILP tech-

niques reduced the code size by reducing the number of explicit address arithmetic instructions as

well as the variable stack size through variable coalescing. The techniques presented in this chap-

ter outperformed the best known solutions in the literature [58]. Although ILP formulations are

more expensive than heuristics in terms of solution time, the cost reduction is very essential and

significant for such DSP systems and this makes long solution times bearable.

4.5 Chapter Summary
Reducing the code size of an embedded application in a tightly constrained DSP architecture is

crucial. Thus, an optimal solution is favorable compared to heuristics even though it needs more

computation time. The problem of offset assignment has received a lot of attention from researchers

due to its great impact on code size reduction for DSPs. Reducing the code size is beneficial in the

case of DSPs since the code is directly transformed into silicon area. In this chapter, optimal ILP

formulations for the CSOA and CGOA with variable permutation are presented. Also a new pro-

posed approach to the general offset assignment was presented. Results on different benchmarks

show the big improvement possible from the optimal solution as well as from the variable permu-

tation compared to other heuristics in the literature.

72

Chapter 5
Address Register Allocation for Arrays in Loops

In the previous three chapters, we studied the problem of offset assignment with variable coalesc-

ing as a technique to reduce the code size and memory requirement for scalar-based embedded

applications. In this chapter, we are concerned with array-intensive embedded applications. The

offset assignment techniques are not applicable to the case of arrays. The main difference with

arrays is that the array element locations are fixed and cannot be rearranged and hence the ne-

cessity of a completely different approach to reduce the code size and memory requirement for

array-intensive applications.

Many DSP algorithms have an iterative pattern of references to array elements within loops. In

this chapter, we study the address register allocation for array references in array-intensive DSP ap-

plications. Given an array-intensive DSP application, the problem is to assign the array references

to the available address registers (ARs) so that auto-increment/auto-decrement mode is maximally

utilized. Proper assignment of array references to ARs will reduce the number of explicit address

arithmetic instructions and thus the code size. DSP applications are known to have up to 50% ad-

dress arithmetic instructions (20% to 30% in most cases) [75]. Thus there is significant potential

for code size reduction, which is essential for digital signal processors. Code size reduction often

leads to execution cycle reduction and energy reduction. Due to the large benefit from solving

the address register allocation problem, finding an optimal or near-optimal solution is favorable to

finding solutions using heuristics, regardless of the overhead in the computation time of finding

such solutions.

5.1 Problem Definition and Related Work
Array references in many DSP applications usually have small constant strides and thus they ob-

serve high locality. As a result, an AGU can be highly utilized to maximally exploit auto-increment

and decrement, which obviates the need for explicit address arithmetic instructions. For instance,

73

if two consecutive array elements say X [i] and X [i + 1] are mapped to the same address register,

then auto-increment can be used to update the address register pointing to X [i] to point to X [i+1].

The address register problem can be defined as follows.

Problem Definition: Given an array reference sequence, access sequence, and a set of available

address registers (ARs), map each reference to an address register such that the number of address

arithmetic instructions is minimized.

Since the number of ARs is usually small compared to the number of array references, the ad-

dress register allocation can be a difficult problem. Consider the following array reference example

to illustrate the problem [42].

for (i = 2; i < M; i++){
X[i+1] //r1
X[i] //r2
X[i+2] //r3
X[i-1] //r4
X[i+1] //r5
X[i] //r6
X[i-2] //r7
}

Assume that we have two available address registers AR0 and AR1. If references r1, r2, and r3

are assigned to AR0 and the rest of the references are assigned to AR1, then the corresponding

assembly code contains 4 explicit address arithmetic instructions (shown under Case(a) below).

In contrast, with two ARs, if r1, r2, r3, r5 and r6 are assigned to address register AR0, and the

rest to AR1, the assembly code has 3 explicit address arithmetic instructions (shown under Case(b)

below). Below are the corresponding codes where the instructions in bold represent the explicit

address arithmetic instructions. Note that in the code below we only show the address arithmetic

instructions and operations. This simple example shows that careful assignment of the array refer-

ences to the available address registers reduces the address arithmetic instructions.

Case (a) Case (b)

LDAR AR0, &X[3] LDAR AR0, &X[3]
LDAR AR1, &X[1] LDAR AR1, &X[1]

74

for (i = 2; i < M; i++) for (i = 2; i < M; i++)
*(AR0)- - *(AR0)- -
ADAR AR0,2 ADAR AR0,2
*(AR0) *(AR0)- -
ADAR AR1,2 *(AR1)- -
*(AR1)- - *(AR0)- -
SBAR AR1,2 ADAR AR0,2
ADAR AR1,2 ADAR AR1,2

Several researchers have studied the address register allocation problem. Gebotys [26] described

a technique based on the minimum network flow circulation problem [74] to minimize the cost of

merging paths together. Araujo and Malik [7] introduced the indexing graph (IG) to represent

the address register allocation problem. Each array reference is represented by a vertex in the

IG and an edge between two vertices means that the index distance between the corresponding

array references is within the auto-modify range, for simplicity [-1,1] in our case. Thus an edge

represents the possible transition from one array reference to another without the need of an address

instruction. They mapped the problem to determining the disjoint path/cycle cover of the IG which

minimizes the total number of paths and cycles and which has the smallest number of paths, and

showed that this problem is similar to the problem of finding the minimum disjoint cycle cover of

a graph (MDCC).

Since MDCC is NP-complete, the authors proposed the simple-IG which is an acyclic graph (see

Figure 5.1 for an example) that is derived by dropping all the back edges (from the corresponding

IG), where a back edge is an edge between two array references across loop iterations. An example

of a back edge in our sample code is the edge between the array reference r5 of the current iteration

(i.e., X [i+1]) and the array reference r4 of the next iteration (i.e., X [(i+1)−1]), since these refer-

ences are within the auto-modify range. Using the simple-IG reduces the problem to the minimum

disjoint path cover (MDPC) problem. This problem was studied before by Boesch and Gimpel [16]

based on the Hopcroft-Karp [30] algorithm for a maximum bipartite matching. The main idea was

to transform the simple-IG into a bipartite graph by splitting each vertex v into two vertices v1

and v2 where vertex v1 (resp. v2) is the source (resp. destination) of all outgoing (resp. incoming)

75

edges from (resp. into) v. However, the simple-IG covering problem does not eliminate the need

for explicit address arithmetic instructions in the loop body (for back edges).

(a)

 (b)

r1 r2

r3

r6 r5

r4

r7

r3

r1 r2

r6 r5

r4

r7

r1 r2

r3

r6 r5

r4

r7

 (c)

AR1=&X[3]

AR2=&X[1]
AR3=&X[4]

AR4=&X[0]

for (i=2;i<M;i++)
{ *(AR1) - -

 *(AR1) + +

 *(AR3) + +
 *(AR2) + +

 *(AR1) + +

 *(AR2)
 *(AR4) + +

}

AR1 = &X[3]

AR2 = &X[4]
for (i=2;i<M; i++)

{ *(AR1) - -

 *(AR1) - -
 *(AR2) - -

 *(AR1) - -

 *(AR2) - -
 ADAR AR2 , 3

 ADAR AR1, 4

}

AR1 = &X[3]

AR2 = &X[2]
AR3 = &X[0]

for (i=2;i<M;i++)

{ *(AR1) + +
 *(AR2) - -

 *(AR1) - -

 *(AR2) + +
 *(AR1) + +

 *(AR2)

 *(AR3) + +
}

FIGURE 5.1. (a) Match-based algorithm solution. (b) Path-based algorithm solution. (c) ILP optimal solu-
tion. (IG + corresponding assembly code)

Leupers et al. [42] proposed a path-based algorithm to find an upper bound on the number

of address registers. They introduced an extended distance graph where a node for each array

reference in the next loop iteration is added to the indexing graph. They allocated the address

76

registers in a greedy fashion based on a longest path heuristic. Their heuristic outputs an upper

bound on the number of address registers needed to incur a zero cost solution. They enhanced their

algorithm with a merge operator to merge paths if the path-based algorithm results in a number of

ARs that exceeds the number of available ARs [14]. Ottoni et al. [60, 59] presented an efficient way

for array reference allocation for loops in embedded systems. Recently, Chen et al. [18] studied

the effect of transformations to reduce the cost.

When the matching-based algorithm in [7] is applied to the piece of code presented earlier in this

section, we end up with two address registers. In this solution, two address arithmetic instructions

are needed at the end of each iteration as shown in Figure 5.1-(a). The path-based algorithm [42]

produces a zero cost solution with four ARs as shown in Figure 5.1-(b). However, the optimal

solution is a zero-cost solution with only three address registers as seen in Figure 5.1-(c). Note

that even though our solution proposed in this chapter works on the IG, for simplicity we show

the result on the simple-IG in Figure 5.1-(c). Solid edges in all sub-figures of Figure 5.1 refer to

selected edges whereas dashed edges are not selected. Similarly, a path or a cycle cover represents

the references covered by the same address register. For instance, references r1, r3, and r5 in Figure

5.1-(c) are addressed using address register AR1 due to the path cover (r1, r3, r5) and references

r2, r4, and r6 are covered by AR2 whereas reference r7 is covered by AR3.

5.2 ILP Formulation of the Address Register Allocation
Problem

In this section, we will optimally solve two versions of the address register allocation problem

namely, (i) minimum cost for a given number of address registers, and (ii) minimum number of ARs

for a zero cost cover. We will optimally solve these two problems using integer linear programming

(ILP). Due to the great benefits resulting from optimally solving these two problems, the run time

overhead by the ILP is bearable.

5.2.1 Minimum Cost for a Given Number of ARs

The first ILP formulation finds the minimum number of explicit address arithmetic instructions for

a given number of ARs. This problem is defined as follows.

77

Problem Definition: Given an indexing graph (IG) and the number of address registers (ARs),

find the best mapping of the array references to the ARs such that the total number of explicit

address arithmetic instructions is minimized.

This problem is similar to the problem of finding the minimum disjoint cycle cover of a graph

(MDCC) which is an NP-hard problem. The MDCC of a graph G is the minimum number of

disjoint cycles that cover all the vertices.

Definition 5.1: A back edge (ri, r j) is an edge across iterations, where reference ri is a reference

in the current iteration, reference r j is in the next iteration, and i > j.

Definition 5.2: A forward edge (ri, r j) is an edge between reference ri in the loop body to a

later reference r j in the same iteration where i < j.

Note that our formulation works on the IG whereas the solutions in [42, 14, 7] work on the

simple-IG, that is, the IG without any back edges; therefore, these works [42, 14, 7] solve a simpler

(and clearly different) version of the problem with a solution that is usually worse than the solution

to the original problem (on the IG).

The objective is to be able to assign the IG vertices to those ARs such that the number of address

arithmetic instructions is minimized. This is an important problem since the number of available

address registers is usually limited. For this problem we need to extend the IG to also include

edges (u,v) such that |W (u,v)| > the auto-modify range (which is 1 in our case). We call such

edges cost-inducing edges.

Definition 5.3: A cost-inducing edge is an edge between two array references that are not within

the auto-modify range.

To develop the ILP formulation, we first define the following binary variables.

• ARk is a binary variable for address register k such that:

ARk =
{

1, if address register k is used
0, otherwise (5.1)

• Yi jk is a binary variable that denotes if the edge (i, j)∈ IG is covered by address register k
and is defined as follows:

Yi jk =
{

1, if (i, j) is covered by ARk
0, otherwise (5.2)

78

• Xik is a binary variable that denotes if vertex i in the IG is covered by address register k and
is defined as follows:

Xik =
{

1, if vertex i is covered by ARk
0, otherwise (5.3)

• Zi jk is a binary varliable for each cost-inducing edge (i, j) in the extended IG and is defined
as follows:

Zi jk =
{

1, if (i, j) is covered by ARk
0, otherwise (5.4)

The objective of this problem is to minimize the number of cost-inducing edges used in the IG

cover and the number of ARs used. Our objective function decreases the number of cost-inducing

edges since a cost-inducing edge is an edge between two references that are not within the auto-

modify range and thus an explicit address arithmetic instruction is always needed if that edge is

mapped to a certain address register. The minimization in our objective function for the address

registers will minimize the number of AR initialization instructions. The objective function is

defined as follows.

Minimize : α∑
i

∑
j
∑
k

Zi jk +
k

∑
l=0

ARl, (5.5)

where the actual cost is just the number of costly edges represented by the first part of the objective

function divided by α. The second part of the objective function makes sure that we do not use

more address registers than needed to get this cost. But since the main objective is to minimize the

number of cost-inducing edges, the first part of the objective function is given more weight through

the constant α, where α is a big number.

Here are the list of constraints needed in our ILP formulation.

Constraint 1: Each vertex in an IG is covered by only one address register:

∑
k

Xik = 1 ∀ i. (5.6)

79

Constraint 2: In this constraint we ensure that if an address register k is not used (ARk=0), then no

vertex or edge is covered by this address register.

Xik−ARk ≤ 0 ∀ i,k (5.7)

Yi jk−ARk ≤ 0 ∀ i, j,k (5.8)

Zi jk−ARk ≤ 0 ∀ i, j,k (5.9)

Constraint 3: If an edge (i, j) is covered by address register k then both vertices i and j are covered

by the same address register k. This is formulated as follows.

Xik +X jk ≥ 2Yi jk ∀i, j,k (5.10)

Xik +X jk ≥ 2Zi jk ∀i, j,k (5.11)

Constraint 4: This constraint ensures that each vertex in the IG has one covered ingoing edge and

one covered outgoing edge.

∑
i

∑
k

Yi jk +∑
i

∑
k

Zi jk = 1 ∀ j (5.12)

∑
j
∑
k

Yi jk +∑
j
∑
k

Zi jk = 1 ∀i (5.13)

Constraint 5: Constraint 5 makes sure that a cycle cover can contain only one back edge (or self-

edge). We used the equality condition here rather than the inequality (≤) to ensure that each cover

is a cycle with a back edge that can be a cost-inducing or a regular edge (a non-cost-inducing edge).

But since the objective function is minimizing the number of cost-inducing edges, this constraint

maximizes the inclusion of regular back edges.

∑
j

∑
i≤ j

Yjik +∑
j

∑
i≤ j

Z jik = ARk ∀k (5.14)

Constraint 6: This constraint ensures that all the vertices and the edges that are covered by the

same AR are connected in a legal way that maintains a feasible solution. This makes sure that the

number of vertices in an IG that are covered by the address register ARk is equal to the number of

edges covered by ARk.

∑
i

Xik = ∑
i

∑
j

Yi jk +∑
i

∑
j

Zi jk ∀k (5.15)

80

5.2.2 Minimum Number of ARs for a Zero Cost Cover

The second ILP formulation finds the minimum number of ARs for a zero-cost solution. Such a

solution is desired since the speed penalty of each address computation is multiplied by the number

of loop iterations which is usually large. Since the objective is a cover with zero cost, only cycles

are allowed where a node by itself is considered as a self-cycle. A path cover in an IG is not

allowed in this case since an explicit address arithmetic instruction may be needed to update the

address register pointing to the array reference represented in the tail of the path to point to the

array reference represented in the head of the path in the next iteration. So our problem now can

be defined as follows:

Problem Definition: Given an IG, find the minimum number of cycles that cover the IG such

that each cycle contains only one back edge.

The formulation of such a problem is a simpler version of the previous formulation as it works

on the IG and not the extended IG where the extended IG is the IG with the costly edges. As a

result all the Z binary variables will be dropped from our formulation. Since the number of ARs

is not known in this problem, an upper bound on the number of ARs will be used in the objective

function based on the upper bound solution presented in [42].

Objective function : The objective of this problem is to minimize the number of address registers

needed to cover the indexing graph such that the cost is zero. The objective function that takes care

of this is defined as follows:

Minimize :
u

∑
k=0

ARk, (5.16)

where u is the upper bound on the number of address registers needed, computed using the path-

based algorithm [42].

Following is the list of the constraints that are equivalent to those in Section 5.2.1.

Constraint 1:

∑
k

Xik = 1 ∀ i (5.17)

81

Constraint 2:

Xik−ARk ≤ 0 ∀ i,k (5.18)

Yi jk−ARk ≤ 0 ∀ i, j,k (5.19)

Constraint 3:

Xik +X jk ≥ 2Yi jk ∀i, j,k (5.20)

Constraint 4:

∑
i

∑
k

Yi jk = 1 ∀ j (5.21)

∑
j
∑
k

Yi jk = 1 ∀i (5.22)

Constraint 5:

∑
j

∑
i≤ j

Yjik = ARk ∀k (5.23)

Constraint 6:

∑
i

Xik = ∑
i

∑
j

Yi jk ∀k (5.24)

5.2.3 Code Restructuring

In the previous formulation, we assumed that the order of the array references is fixed. In this sec-

tion, we study the effect of code restructuring (i.e., code transformations) on reducing the number

of address arithmetic instructions as well as the number of address registers used. The restructuring

technique studied in this section consists of reordering the array references inside a statement as

well as reordering the statements inside the loop body. The statement reordering technique is valid

if it does not violate the dependences inside the loop body or the operation’s correctness.

In order to be able to formulate the above problem as an ILP, we need to update the indexing

graph in a way to reflect the potential legal reordering possibilities as well as the benefits of such

reordering. In order to take care of this, we introduce the reordering edge ei, j between two array

reference i and j of the same array, say Xk, indicating that there is no legality violation that prevents

82

X1[i] X1[i+1] X1[i+2]

X2[i-1]
X1[i-4] X1[i-3]

X2[i] X1[i-1] X1[i-2]

X2[i-1]

FIGURE 5.2. An example of an indexing graph with reordering forward edges (dash edges)

the array reference j to be scheduled after the array reference i and that j and i are within the auto-

modify range. Figure 5.2 shows the updated indexing graph for the example code below where

the reordering edges are shown as dashed edges (backward reordering edges are not shown for

simplicity).

for (i = 4; i < M; i++){
S1 : X1[i] = X2[i−1]+X1[i+1]+X1[i+2]
S2 : X2[i−1] = X1[i−4]+X1[i−3]
S3 : X2[i] = X1[i−1]+X1[i−2]}

To clarify the edges in Figure 5.2, consider the three edges between the two references X1[i+1]

and X1[i+2].

1. The edge (X1[i+1], X1[i+2]) is a forward edge.

2. The solid edge (X1[i+2], X1[i+1]) is a back edge.

3. The dashed edge (X1[i + 2], X1[i + 1]) is a reordering edge which means that it is legal for

reference X1[i+2] to be accessed before reference X1[i+1].

Below is the code after applying code restructuring. Applying the formulation in the previous

subsection will show that the cost goes down from two explicit address arithmetic instructions

with 3 ARs before code restructuring to one with 2 ARs after code restructuring with the assembly

83

code for those two codes are respectively shown below. The code only shows the address arithmetic

instructions and operations. The instructions in bold are the explicit address arithmetic instructions.

for (i = 4; i < M; i++){
S1 : X1[i] = X2[i−1]+X1[i+2]+X1[i+1]
S3 : X2[i] = X1[i−1]+X1[i−2]
S2 : X2[i−1] = X1[i−3]+X1[i−4]}

Before code restructuring: After code restructuring:
LDAR AR0, &X2[3] LDAR AR0, &X2[3]
LDAR AR1, &X1[5] LDAR AR1, &X1[6]
LDAR AR2, &X1[0]
for (i = 4; i < M; i++) for (i = 4; i < M; i++)

*(AR0) *(AR0)++
*(AR1)++ *(AR1)- -
SBAR AR1,2 *(AR1)- -
*(AR1)- - *(AR1)- -
*(AR2)- - *(AR1)- -
*(AR2)- - *(AR1)- -
*(AR0)++ *(AR0)- -
ADAR AR1,3 *(AR1)- -
*(AR2)- - ADAR AR1,7
*(AR0) *(AR0)++

To include the reordering techniques in our formulation, additional constraints are needed to

make sure that the final solution is a feasible one. First, we define the binary variable Pi j for every

pair of statements Si and S j in the loop body as a variable that keeps track of the position of

statement Si with respect to that of statement S j.

Pi j =
{

1, if Si occurs before S j in the loop body
0, otherwise (5.25)

Constraint 1: In this constraint we make sure that if statement S j precedes statement Si in our

final solution, then none of the forward edges (including the reordering forward edge) from Si to S j

can be selected since those edges are no longer feasible forward edges. Also this constraint takes

care of the requirement that if any forward edge Yi j is selected, where i and j are array references

in statements Si and S j, respectively, then statement Si precedes statement S j in the loop body.

Yi j−Pi j ≤ 0 ∀i, j such that i ∈ Si and j ∈ S j (5.26)

84

Constraint 2: If statement Si precedes S j then at least one of the reordering forward edges (if any)

from Si to S j is selected.

∑
i∈Si, j∈S j,(i,j) is reordering forward

Yi j−Pi j ≥ 0 (5.27)

Constraint 3: If there is a loop-independent dependence between statements Si and S j (i.e., a de-

pendence from Si in a loop iteration to S j in the same loop iteration), then statement Si must precede

statement S j after applying the reordering techniques. For every pair of such statements we should

have the following constraint:

Pi j = 1. (5.28)

Constraint 4: This constraint takes care of the feasibility of the solution in terms of making sure

that the proper ordering of the statements in the loop body is legal. It basically states that if state-

ment Si precedes statement S j and statement S j precedes statement Sk, then statement Si precedes

statement Sk in the loop body. The constraints in Equations (5.29) and (5.30) are very important

as they make sure that the proper positioning of the statements is feasible. Note that in our for-

mulation we do not have a variable that keeps track of the position of each statement in the loop

body but rather we have variable Pi j that reflects the position of the statement Si with respect to the

statement S j.

Equation (5.30) takes care of an important aspect in our formulation which is to make sure that

if a reordering edge is selected going from a statement Sk2 to statement Sk1, then no forward edge

from Sk1 to Sk2 can be selected. Such forward edges are no longer valid as they violate the definition

of a forward edge which is an edge from an array reference to a later array reference in the same

loop body.

Pi j +Pjk ≤ 2Pik ∀ statements Si,S j,Sk (5.29)

Pi j +Pji = 1 ∀ statements Si,S j (5.30)

5.3 Genetic Algorithm
The ILP formulations presented in Section 5.2 guarantee optimal solutions but with high execution

time for large applications. So in order to get near-optimal solutions for large embedded applica-

85

Array references

 Position in AS

 (b)

3 2 4 7 1 10 6 8 5 9

Array references r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

1 3 2 1 1 3 1 2 3 2 AR

 (a) 1

r1 r2

3 2

r3 r4

1 1

r5 r6

3 1

r7 r8

2

r9

3

r10

2 AR

FIGURE 5.3. (a) Chromosome representation for the GA. (b) Chromosome representation for the GA with
code restructuring.

 Position in AS 1 2 3 4 5 6 7 8 9 10

Array references r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

1 3 2 1 1 3 3 2 3 2 AR

 Position in AS 1 2 3 7 5 6 4 8 9 10

Array references r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

1 3 2 3 1 3 1 2 3 2 AR

 M
u

t
a

t
io

n

FIGURE 5.4. The mutation operation for the GA with code restructuring.

tions in a reasonable amount of time, we used a genetic algorithm (referred to GA) [52] (see Figure

5.6). GA is a well known technique that can result in good solutions for NP-complete problems.

GAs work with a family of solutions, known as the current population, from which we obtain the

next generation of solutions. When the algorithm is designed properly, we obtain progressively

better solutions from one generation to the next. The main advantage of using GAs is in the fact

that it only needs an objective function with no specific knowledge about the problem space. The

challenge, however, remains in finding an appropriate problem representation that results in an

efficient and successful implementation of the algorithm.

86

 Child 2

 Child 1

 Parent 2

 Parent 1

 Xover point 2 Xover point 1

 Position in AS 1 3 4 5 2 6 7 9 8 10

Array references r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

1 3 2 1 1 2 1 2 3 2 AR

 Position in AS 1 2 3 4 5 6 7 8 9 10

Array references r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

2 3 2 3 1 3 1 1 2 2 AR

 Position in AS 1 3 4 5 2 6 7 9 8 10

Array references r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

1 3 2 3 1 3 1 2 3 2 AR

 Position in AS 1 2 3 4 5 6 7 8 9 10

Array references r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

2 3 2 1 1 2 1 1 2 2 AR

 X
o

v
e

r

FIGURE 5.5. The crossover operation for the GA with code restructuring.

87

In order to solve the ARA problem, we propose the chromosomal representation shown in Figure

5.3(a). This representation is based on a vector where every gene corresponds to an array reference

with its corresponding address register. The corresponding AR for each array reference is not static

and it may change as the GA operators are applied. Part of the initial population is constructed

randomly and the rest is based on a random perturbation of the available chromosomes using

the crossover operator. Within each generation, individuals are selected for reproduction using

the genetic operators mutation and crossover that are applied iteratively with their corresponding

probabilities.

Mutation is an important operator that introduces incremental changes in the offspring by ran-

domly changing allele values of some genes. The algorithm randomly chooses an array reference,

ri and changes its address register allocation to a randomly chosen AR. Crossover is the main

genetic operator as it provides a mechanism for the offspring to inherit the characteristics of the

parents. We use a two-point crossover that randomly chooses two chromosomes that are split into

three segments of contiguous genes. The offsprings are created by taking alternative segments from

the two parents. The fitness of an individual is crucial for the transmission of its gene information

to the next generation. The fitness of an individual solution in our formulation is the reciprocal of

the number of explicit address arithmetic instructions needed by such a solution.

For the ARA with code restructuring, we propose the chromosome representation in Figure

5.3(b). In the case of code restructuring, the position of an array reference in the access sequence

(AS) is needed. The mutation and crossover operations for the ARA with code restructuring are as

follows:

• Mutation: The mutation operation exchanges the contents of two genes in the chromosome.

The array register and the position in the access sequence (AS) of those two array reference

will be exchanged as shown in Figure 5.4.

• Crossover: The crossover operation is a two-point crossover that randomly chooses two par-

ent chromosomes and two crossover points and then exchanges the contents of the genes

that encode the address registers (AR) between those two points to create the two child chro-

88

Genetic ARA()
{

M = Population size.
N0 = Population size/2.
Ng = Number of generations.
Read the Access sequence.
Construct the Indexing Graph (IG).
Read the number of AR.
Get the population size and the number of generations (Ng).
Generate an initial population, current pop
for i = 1 to M

evaluate(current pop)
Keep the best()
for i = 0 to Ng do

for j = 0 to N0 do
Select two chromosomes from current pop for mating.
Apply crossover with probability Pxover.

for k = 0 to N0 do
Select a chromosome from current pop.
Apply mutation with probability Pm.

Evaluate the population fitness.
new pop = select(current pop, offspring).
current pop← new pop.
}

FIGURE 5.6. Our genetic algorithm for the address register allocation problem.

mosomes. The crossover operation does not exchange the values in the genes that encode

the position in the AS as shown in Figure 5.5; those genes can be changed by the mutation

operation.

Note that not any repositioning of references in the access sequence is legal. For instance a write

in an instruction code statement cannot be positioned before the read in the same statement. The

GA will follow the criteria described in Section 5.2 to determine if a certain solution is feasible or

not. An illegal solution will be penalized in the sense that its fitness is defined to be close to zero.

Such solutions will most probably not be chosen for the next generation.

5.4 Results
We implemented our ARA techniques and the techniques in [42, 14, 7]. We compared our re-

sults to those achieved by the techniques in [14] as they have the best results. We executed our

ILP formulations using CPLEX [1]. The techniques were tested using real-life benchmarks from

89

DSPstone [82] as well as statistical analysis using generated test files. We tested those test files

on the problem of finding the minimum number of address registers for a zero number of address

arithmetic instructions as well as for the the minimum cost for a given number of address registers.

We performed our analysis under different array access sequence length. Our optimal ILP formula-

tions decreased the number of ARs needed by 4% to 11% whereas they decreased the cost, number

of explicit address arithmetic instructions, by 8% to 15%. A reduction in the number of address

registers needed is also important as the number of ARs in a DSP system is usually limited. Note

that even a small cost reduction makes a difference since the loop body is sometimes executed

thousands of times equal to the loop index.

The ILP formulation for the code restructuring techniques was also evaluated on our test files.

Based on the dependence analysis of the statements as well as the feasibility analysis, the IGs

were updated to include all the possible reordering edges such that the offset between the end

nodes of each edge is within the auto-modify range, [-1,1] in our case. On average, the number

of address arithmetic instructions is decreased by 12.1% whereas the minimum number of address

registers needed for a zero cost went down by 11.4%. Note that as the length of the access sequence

increases, the improvements in the results usually increase as more array references and statements

in the loop body translate to more reordering opportunities. All of the results were achieved in a

matter of seconds (≤ 45 seconds in all cases).

0

10

20

30

40

50

60

70

80

90

100

3Step-log Full-search Hier Phods

N
o

r
m

a
li

z
e

d
 C

o
d

e
 S

iz
e

Benchmark Name

1 AR

2 ARs

4 ARs

FIGURE 5.7. Normalized code size with respect to [6] for 1, 2, and 4 ARs

90

0

10

20

30

40

50

60

70

80

90

100

3Step-log Full-search Hier Phods

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 C
y

cl
e

s

Benchmark Name

1 AR

2 ARs

4 ARs

FIGURE 5.8. Normalized execution cycles with respect to [6] for 1, 2, and 4 ARs

Next we implemented our GA with and without code restructuring and tested it on four array-

intensive real-life benchmarks, namely, 3Step− log, Full− search, Hier, and Phods [80]. Various

GA parameters are important in achieving good results. Given a sufficient population size and num-

ber of generations, a suboptimal but good ARA solution can be found; however, the GA execution

time is directly proportional to both parameters. We have experimentally determined that for the

problems we attempted, a population size of 150 and a generation number of 400 were sufficient to

achieve good solutions. We have also determined experimentally the crossover probability Pxover

to be 0.65, and the mutation probability, Pm to be 0.35.

The results in Figure 5.7 and Figure 5.8 show respectively the normalized code size and execu-

tion cycles for our GA with code restructuring compared to the techniques used in [14] for 1, 2

and 4 ARs. The average reductions in code size with 1, 2, and 4 ARS are 14.25%, 21%, and 28%,

respectively. The average execution cycle reductions with 1, 2, and 4 ARS are 9.25%, 14.75%, and

22.5%, respectively. Our results also show a reduction in code size of 8% to 10% more than the

quantified results in [18] when code restructuring techniques are used. The execution time of our

GA was between a few seconds in some cases to a few minutes in bigger applications.

To show the effectiveness of the code restructuring techniques, we tested the four benchmarks,

3Step− log, Full− search, Hier and Phods using the GA without code restructuring. Figure 5.9

shows the execution cycles for the benchmarks from the codes generated based on the GA with

the code restructuring address register allocation solution normalized with respect to the execution

91

0

10

20

30

40

50

60

70

80

90

100

3Step-log Full-search Hier Phods

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 C
y

cl
e

s

Benchmark Name

2 ARs

4 ARs

8 ARs

FIGURE 5.9. Normalized GA with code restructuring execution cycles with respect to GA without code
restructuring for 2, 4, and 8 ARs

cycles of the codes generated from the GA without code restructuring. The code restructuring

techniques improved the results up to 10%, 8% and 7% for 2 ARs, 4 ARs and 8 ARs, respectively.

The results clearly show the significant potential for improvement as well as the effectiveness of

the code restructuring techniques to reduce the code size and the execution cycles. This reduction

in the number of explicit address arithmetic instructions and the number of execution cycles is

crucial for digital signal processors (DSPs), which are designed under very tight constraints on

area, memory, power, etc. In such DSP systems, the code usually resides on the ROM and thus the

code size directly translates into silicon area. This implies that optimal or near-optimal solutions

are much desired in such systems even though the execution time of techniques that generate the

executed code is much higher than that of heuristics. Although not studied in this chapter, one

can expect a similar reduction in the power consumption due to the smaller code size and fewer

execution cycles.

5.5 Chapter Summary
Many DSP algorithms have an iterative pattern of references to array elements within loops. A

careful assignment of array references to address registers reduces the number of explicit address

register instructions. Code size reduction is essential for such processors due to the tight constraints

such as area and cost. Code size reduction also results in fewer execution clock cycles and thus less

energy consumption. Due to tight constraints in DSP processor systems, optimal or near-optimal

92

solutions are highly desirable; the potentially high execution time of the techniques that produce

these solutions often outweights the great benefits of such (near-) optimal solutions. In this chapter,

the address register allocation problem for array-intensive DSP applications is studied. To the best

of our knowledge, we are the first to develop integer linear programming (ILP) formulations of the

problems (with and without code restructuring) and also the first to develop a genetic algorithsm

(GA) solution to the problem with code restructuring to further improve the results. Results on

several benchmarks show the effectiveness of our approaches.

93

Chapter 6
Task Scheduling and Memory Partitioning for
MPSoC: Single Application

The current trend in modern complex embedded system design is to deploy a multiprocessor

system-on-chip (MPSoC), thanks to recent advances in architecture, VLSI and electronic design.

Generally speaking, an MPSoC consists of multiple heterogeneous processing elements (PEs),

memory hierarchies, and I/O components interconnected by complex communication architec-

tures. Such architectures provide the flexibility of simple design, high performance, and optimized

energy consumption. An MPSoC provides an attractive solution to the problems brought forth by

increasing complexity and size of embedded systems applications. Execution time predictability is

a critical issue for real-time embedded applications; this makes the use of data caches not suitable

as a cache is hardware-controlled and hence it is hard to model the exact behavior and to predict

the execution time of programs. To alleviate such problems, many modern MPSoC systems use

software-controlled memories known as scratchpad memories (SPMs).

An SPM is fully software-controlled and hence the execution time of an application on such

memories can be predicted with accuracy. Unfortunately, scratchpad memories are expensive and

hence they are usually of limited size and as a result not all the application data variables can be

stored in the on-chip scratchpads. Many multi-processor system-on-chip models use a memory

hierarchy with slow off-chip memory (DRAM) and fast on-chip scratchpad memories. Such a

hierarchy means that proper allocation of variables to the on-chip memory is an essential part in

reducing the off-chip accesses. The computation time of a program on a processor depends on

how much SPM is allocated to that processor as accessing an element from the off-chip memory

is usually in the order of 100 times slower than accessing elements stored locally in the on-chip

memory.

An embedded application can usually be divided into multiple tasks, and different tasks can be

scheduled on different processors. The computation time for each task depends on the amount of

94

P1 P2 P3 P5

 SPM1 SPM2 SPM3 SPM5

Off-chip memory

P4

 SPM4

FIGURE 6.1. An architectural model example with five processors, SPM budget, off-chip memory and
interconnection buses.

SPM allocated to the processor executing this task. The problem of task scheduling and memory

allocation on MPSoCs is an NP-complete problem [38]. Traditionally, these two steps are done

separately where tasks are usually scheduled and the SPM budget is then partitioned among the

processors. Such a decoupled technique may not result in better schedules in terms of minimizing

the computation time of the whole application. The appropriate configuration of a processor’s

scratch pad memory depends on the tasks scheduled on that processor. Therefore, the integration

of those two steps is critical to improve the performance. In this chapter, we present a heuristic that

performs task scheduling and SPM memory partitioning in an integrated fashion where the private

on-chip memory budget allocated to a processor is decided dynamically as tasks are mapped to

this processor.

6.1 Task Scheduling and Memory Partitioning
6.1.1 Architecture Overview and Problem Definition

Dividing an application into a set of tasks where one or more independent tasks can be executed in

parallel on the available processors is extremely useful for MPSoCs. Parallelism leads to potential

for speeding up the execution time; this is a major issue in embedded processors. A typical MP-

SoC is shown in Figure 6.1 which consists of multiple processors, an SPM budget divided among

the processors, and a global off-chip memory that can be accessed by all the processors. Our

problem formulation is based on a task dependence graph (TDG).

95

Definition 6.1: A TDG is a directed acyclic graph with weighted edges where each vertex rep-

resents a task in the embedded application. An edge between two tasks, say Ti and Tj in the TDG,

represents a scheduling order that needs to be enforced due to the fact that Tj needs data to be

transferred from Ti after Ti is already executed.

A certain processor cannot start executing task Tj unless all the necessary data communication

is performed. The weight of an edge is the communication cost. Each task can be mapped to any

of the available processors. Since the processors in our architectural model can be heterogeneous,

the execution time of each task depends on the processor to which this task is mapped as well

as the SPM memory allocated to that processor. Generally speaking, a larger SPM results in less

computation time since off-chip access is more expensive in terms of the clock cycles compared

to fast on-chip SPM. A large portion of the execution cycles of a task goes to accessing the data

variables. Accessing a data variable from an SPM is usually in the order of 100 times faster than

accessing it from the off-chip memory. Since the available SPM memory is usually limited due to

the MPSoC’s design constraints, a good utilization of SPM can be critical in narrowing the gap

with the processor’s speed. The problem can now be stated as follows.

Problem Definition: Given an embedded application consisting of t tasks, an MPSoC architec-

tural model and an SPM budget: (i) find a schedule of those tasks on the available processors, (ii)

partition the SPM memory among the processors, and (iii) assign data variables of a certain task

T scheduled on processor P to the private SPM budget assigned to P. The objective is to minimize

the execution time in cycles of the embedded application on the MPSoC architectural model.

6.1.2 Motivation

Most works so far have treated task scheduling and memory partitioning as two decoupled steps

that are performed independently. Given a set of tasks and an MPSoC model with a certain amount

of available scratch pad memory budget, tasks are usually scheduled on the processors and then

memory is partitioned among used processors. In this aspect, those two steps are performed inde-

pendently. However, the configuration of a processor’s scratch pad memory is highly dependent

on the tasks scheduled on this processor. Thus, task scheduling and memory partitioning are inter-

96

dependent on each other and they should be integrated in one step in order to get high quality

schedules.

The computation time of a task depends on the processor to which it is mapped as well as on the

SPM memory available for that task. Therefore, task scheduling should take into consideration the

varying computation time of a task based on the processor and on the SPM budget. Considering

static computation time, meaning that the computation time is fixed from the scheduler point of

view, may limit the quality of the schedule.

Consider the example in Figure 6.2 (a) of a task graph with 6 tasks, T1, T2, T3, T4, T5, and T6.

Task T4 depends on tasks T1, T2 and T3, and task T6 depends on tasks T4 and T5. Any time there

is an edge between two tasks Ti and Tj means that a communication cost should be accounted for

provided that those two tasks are allocated to two different processors. Although our technique

takes such costs into account, we omit them in Figure 6.2 for simplicity. Define Mini j, Avgi j, and

Maxi j as the computation time for task Ti on processor Pj assuming all of the available SPM bud-

get is assigned to Pj, 1/n of the available SPM budget is assigned to Pj where n is the number

of processors, and no SPM is assigned to Pj, respectively. Those values will be used later on by

our heuristic. In this example, we assume two homogeneous processors. The (Min,Avg,Max) val-

ues are shown in Table 6.1. Figure 6.2 (b) shows the schedule assuming no available scratch pad

memories. First tasks T1 and T2 will be mapped to the two available processor P1 and P2. At this

time only task T3 is ready to be scheduled. The scheduling algorithm will map T3 to P2 as it is

free before P1 since the computation time of T2 is less than that of T1. In a similar fashion, the

scheduling algorithm will assign tasks T4 and T6 to processor P1 whereas task T5 will be mapped

to processor P2. The cost of such a schedule is equal to 29.

Figure 6.2 (c) shows the results following the common practice of partitioning the available SPM

memory equally between the two processors. With such a criterion, the available SPM budget will

be equally divided between processors P1 and P2 regardless of what tasks are mapped to what

processors. Equally partitioned SPM reduces the computation time of the whole application to 25.

97

TABLE 6.1. Min, Avg, and Max values

Tasks Min Avg Max
T1 7 9 15
T2 8 9 10
T3 3 5 6
T4 4 5 6
T5 2 2.5 3
T6 5 6 7
T7 5 6 7

To further reduce this application’s computation time, the available SPM can be divided between

the two processors in any ratio.

From the task schedule, we can see that task T 4 can start only after P2 is done executing task

T 3. The issue now is to try to reduce the dead time between tasks T 1 and T 4 imposed by the

computation time for tasks T 2 and T 3. To minimize this dead time, techniques usually allocate

more SPM budget to processor P2 to reduce the computation time of tasks T 2 and T 3. Notice that

if all the SPM memory is allocated to processor P2 then the computation time for T 1 will jump

to 15 and as the results the minimum start time of T 4 will increase from 14 to 15. To avoid this

increase, some SPM memory should be allocated to P1 to keep the execution time as balanced to

the end time of T 3 as possible. Intuitively speaking, the approximated minimum end time of T 3

will be 12 and thus the total computation time for our example application will be close to 23. With

the same memory partitioning, the computation time can be reduced to 22 assuming that tasks T 4

and T 6 are scheduled on P2 and task T 5 is mapped to P1, Figure 6.2 (d).

However, 22 is not the optimal time for scheduling the example task graph on two processors.

Our heuristic, presented later, can reduce the computation time to 19 as it integrates task scheduling

and memory allocation into one step. The problem with the previous schedule is that it allocated T3

to the same processor P2 that is scheduled to execute T2. This choice is the reason for the dead time

in the schedule as T2 cannot benefit much from more SPM memory which is clear from the Min,

Avg, and Max values. A good heuristic should take those values into consideration where a better

choice for T3 is to be scheduled on P1 with all available SPM memory is allocated to this processor

98

P1

P2

P1

P1

P2 P2

Time

T1

T2 T3 T5

T4 T6

29

T1

T2

T3

T4 T6

T5

P1 P1

P2

Time

T1

T2 T3

T5

T4 T6

Time

T1

T2

T3

T5

T4 T6

 19

(a)
(b)

(d) (e) 22

T5 T3

T1 T6 T4

Time

(c) 25

T2

FIGURE 6.2. (a) TDG. Schedule based on: (b) no SPM. (c) equal partitioned SPM. (d) non-equal partitioned
SPM. (e) our integrated approach.

and the result is a schedule with minimal end time of 19; see Figure 6.2 (e). A benchmark example

is presented in Section 6.2.

6.1.3 Our Heuristic

A good heuristic for task scheduling and memory partitioning should take into consideration the

dynamic (varying) execution time of a task throughout the process of building the schedule. This

dynamic execution time is the result of the dynamic SPM budget assignment to processors through-

out the course of the heuristic. Using profiling of the tasks in the embedded application, Min, Avg,

and Max values (defined earlier) are calculated for each task on each of the available heterogeneous

processors. We define elasticity of a task as the extent to which this task can benefit from a larger

SPM. Although it can be defined in different ways, we define elasticity dynamically as the extent

to which the computation cost of a task on Pi may decrease as the SPM budget of Pi is increased

from the current budget to size where size is the maximum amount of SPM budget available in

our model. Equation 6.1 defines elasticity of task Ti where Cur is the computation time of the task

under the current memory budget. The elasticity of a task Ti is basically a measure of the room for

computation time reduction of Ti with more SPM budget.

elasticity(Ti) =
Curi−Mini

Curi
(6.1)

A bigger value of elasticity means that the computation time of Ti is more amenable for reduction

with the increase in the SPM allocated to that task. Note that elasticity(Ti) is a dynamic value since

99

the current computation time of Ti, Curi, may change as the SPM budget distribution changes.

Our heuristic in Figure 6.3 starts with profiling the application to extract important information.

Using the profiling data, the embedded application will be divided into tasks with a necessary data

communication between two tasks impose a certain kind of dependency. Based on the extracted

tasks and the communication between them, the task dependence graph is created. In this graph,

each task is represented by a vertex and each communication cost by a weighted directed edge.

For each available task Ti and processor Pj, we calculate the number of variables, the size of the

variables, Mini j, Avgi j, and Maxi j values. All those values are computed through profiling. Then

the ASAP values for all tasks are calculated based on the Avg values that is assuming the SPM

budget is equally divided among the available processors. Tasks will be sorted in increasing order

of the ASAP values in a list L1. For each task, following the ASAP sort, we evaluate the best

processor to assign this task to so that the overall computation time is minimally increased.

The minimum start time of a task Ti on processor Pj, Start time(Ti,Pj), is equal to the maximum

of the end time of processor Pj, End time(Pj), and the maximum end time of all its parent tasks,

MaxTj∈Parent(Ti)(Tj), plus the maximum communication time of all the parent tasks scheduled on

Pk with k 6= j (see Equation 6.5). Two dependent tasks mapped to the same processor will have

zero communication cost. In general, task Ti will be scheduled on the processor Pj corresponding

to the minimum additional overhead time in the schedule.

However, Ti may be scheduled on a processor Pl of higher overhead time provided that the

predicted end computation time (PEC(Pl)) (defined by us in Equation 6.2) of this processor is at

least δ % less than that of Pj. We choose δ of 10 in our experimental evaluations. This PEC(Pl)

value is a guide to the scheduler of how much this over head time may decrease with the SPM

memory transfers in future steps if Ti is mapped to Pl . PEC is basically an estimate of how much

the end time of processor Pl will be if more SPM budget is assigned to it.

The PEC of a processor is closely related to the elasticity of the tasks scheduled on that pro-

cessor. The PEC value provides the dynamic essence of our heuristic as at each step the heuristic

looks beyond the current SPM budgets distribution in its task mapping decision to an estimate of

100

future distributions in future steps. In the case of equal additional end time, if task Ti is assigned

to two different processor, then we avoid assigning it to a processor with no scheduled tasks. In

this case, we schedule Ti on the processor with the higher elasticity under the current SPM budget.

The elasticity of a processor is the average value of the elasticity of the tasks scheduled on this

processor.

PEC(Pi) = End time(Pi)− ∑
Tj∈Pi

(
Cur(Tj)−

Cur(Tj)
1+ elasticity(Tj)

)
(6.2)

After scheduling any task, we try to balance the schedule in a way to decrease the total computa-

tion time. We do so by dynamically changing the SPM budget for each processor to reach a better

balance. We start by trying to reduce the computation time of tasks on processor Pi with maximum

end time so far. We do so by transferring an α % of the memory budget, Mem j, corresponding to

processor Pj with the minimum (End time*elasticity) and such that End time(Pj) < End time(Pi)

and assigning it to processor Pi. Doing so will probably decrease the end time of processor Pi and

in the same time increase the end time of processor Pj. Considering processor Pj to be of low total

elasticity will give more room to reduce its SPM budget with a minimal increase in its End time.

We do memory transfer α% at a time as long as End time(Pj) < End time(Pi). we choose an α

equals to 10 in our experiments.

Time(Ti,Mem j) = Time(Ti,0)−Gain(Ti,Mem j) (6.3)

Gain(Ti,Mem j) = ∑
vi∈Ti,vi∈Mem j

((β1−β2)∗ f reqi). (6.4)

Start time
(
Ti,Pj

)
= Max

(
Max

(
End timeTk∈Parent(Ti) (Tk)

)
,End time

(
Pj
))

+ Max
(
Comm timeTk∈Parent(Ti) (Tk)

)
(6.5)

End time(Ti) = Start time(Ti,Pj)+Time(Ti,Mem j) (6.6)

End time(Pj) = Max(End timeTk∈Pj(Tk)) (6.7)

After any SPM memory budget redistribution among different processors, the Recompute() sub-

routine in Figure 6.5 will be invoked to recompute the start time, computation time, and end time

101

of tasks Ti referred to, respectively, as Start time(Ti), End time(Ti), and Time(Ti). First a Gain

value, Gain(Ti,Mem j), is computed for Ti with the newly budget SPM memory, Mem j, assigned

to the processor to which Ti is mapped. This Gain value in Equation 6.4 , represents the execution

cycles reduced due to allocating variables of Ti to Mem j following the increasing order byte/ f req

of the data variables where bytei is the size of the variable vi and f reqi is the number of times vi

is accessed. In Equation 6.4, β1 is the cost of accessing a variable from the off-chip memory and

β2 is the cost of the SPM access. This is a simple data allocation technique that we adopted in

our heuristic. The new computation time of Ti, Time(Ti, Mem j), is the time taken to execute Ti as-

suming no SPM memory, Time(Ti,0), minus Gain(Ti,Mem j). We assume on-chip memory access

costs only one clock cycle. The end time of a task Ti scheduled on processor Pj is then calculated

as in Equation 6.6. The end time of each processor is thus the end time of the last task assigned to

this processor (Equation 6.7).

After all the tasks are scheduled, we call the Balance() procedure, Figure 6.4, to try to further

reduce the schedule cost through reducing the end time of the processor with the largest end time

by performing memory transfers. At this point we tune the Balance() procedure so that it allows

the last memory transfer between Pi and Pj that will result in End time(Pj) > End time(Pi). We

run this procedure t times where t is the number of tasks in the TDG. Notice that if a processor

ends up with no scheduled tasks, then the SPM budget for such processor will be distributed among

other processors using the Balance() procedure to reduce the schedule time the most.

6.1.4 Pipeline Scheduling

An embedded application is usually executed many times for a stream of input data on an MPSoC.

Such multiple executions make embedded applications amenable to pipelined implementation.

Pipeline scheduling benefits from allowing tasks from different embedded application instances

to be scheduled at each stage of the pipeline. Such a schedule does not necessarily decrease the

computation time of one instance of embedded application but rather it decreases the time between

the start of two consecutive iterations of the task graph. The objective is to decrease the pipeline

stage time interval as after filling up the pipeline, an instance execution of the application is per-

102

Task scheduling and memory partitioning

1. Divide the application into tasks Ti.
2. Perform dependence analysis between tasks.
3. Construct the T DG based on dependence analysis and communication costs.
4. Divide the SPM memory equally between the processors.
5. For each task Ti and processor Pj, extract the following:
6. (i) Minimum computation time on Pj, Mini j.
7. (ii) Maximum computation time on Pj, Maxi j.
8. (iii) Average computation time on Pj, Avgi j.
9. Find ASAP for all the tasks based on Avg values.
10. L1 = List of tasks in increasing order of ASAP.
11. While (L1 not empty) do:
12. Get the first task Tf from L1.
13. For each processor Pi:
14. Calculate the elasticity and PEC of Pi if Tf is mapped to Pi.
15. Find the minimum start time of Tf on Pi.
16. Find END time(Pi) if Tf is mapped Pi.
17. if ((END time(Pi) < min && PEC(Pj) ≥ (1 - δ%)PEC(Pi))||

(END time(Pi) > min && PEC(Pi) ≤ (1 - δ%)PEC(Pj)))
(Comment: Pj = processor corresponding to the current min value)

18. min = END time(Pi)
19. else if (END time(Pi) = min)
20. min = END time of processor with the higher elasticity.
21. End For
22. Assign Tf to Pj corresponding to min.
23. Delete Tf from L1.
24. Call Balance().
25. End While
26. For i = 1 to t do:
27. Call Balance().

FIGURE 6.3. Our scheduling heuristic.

Balance()

1. Pi = processor with maximum end time, End time(Pi).
2. Pj = processor with minimum End time(Pj)*elasticity.
3. while(End time(Pj) < End time(Pi)) do:
4. Memi = Memi + α Mem j.
5. Mem j = Mem j - α Mem j.
6. Recompute().
7. if (End time(Pj) ≤ End time(Pi)).
8. Perform the memory update.

FIGURE 6.4. The balance routine.

103

Recompute()

1. Following the ASAP sort of scheduled tasks Ti and the new SPM budget distribution:
2. Recompute time(Ti,Mem j).
3. Recompute Gain(Ti,Mem j).
4. Recompute Start time(Ti,Pj) where Ti is mapped to Pj of SPM = Mem j.
5. Update the Start time of all the tasks on Pj successor to Ti.
6. Recompute End time(Ti,Pj).

FIGURE 6.5. The recompute routine.

formed each pipeline stage. The maximum number of stages is equal to the number of processors

in the MPSoC system.

Our technique finds all the paths from the dummy start node to the dummy end node where the

dummy start node is a node with an outgoing edge to all the nodes in the TDG with zero ingoing

edges and the dummy end node is a node with an ingoing edge from every node in the TDG with

zero outgoing edges. Then our technique tries to remove some edges in the TDG to reduce the

time on the critical paths. We find the critical paths based on the PEC values defined earlier. The

removal of an edge means that the nodes at the subgraph corresponding to the head of the edge,

SGh, and that corresponding to the tail, SGt , belong to two separate stages in the pipeline. Any

time an edge from Ti to Tj is removed, all the edges that connect SGh and SGt will be removed.

The TDG can be at most divided into s unconnected graphs where s is the number of stages in the

pipeline. Our task scheduling/memory partitioning heuristic will then be applied to the resulting

TDG. An example of our pipeline technique is presented in Section 6.2.

6.2 Example
In this section, we present a task graph example to illustrate our heuristic as well as to show the

effectiveness of integrating task scheduling and memory partitioning for embedded programs on

a MPSoC. This task graph example is based on the lame benchmark from MiBench that consists

of four tasks with their corresponding execution times in Mega cycles are shown in Figure 6.6 (a)

assuming no SPM. In this example, we assume a multiprocessor architecture of two homogeneous

processors, 4 KB scratchpad memory, and unlimited off-chip memory.

Figure 6.6 (a) shows the lame task graph with 4 tasks with data communications between tasks

104

are represented by edges. We assume equal communication costs. Since task T1 has the longest

execution time with no SPM, usually current schedulers will map it to a separate processor. This

is the solution that decoupled task scheduling/memory partitioning heuristics will output as they

don’t take into consideration the considerable reduction in computation time of T1 with a bigger

SPM memory. The solution is presented in Figure 6.6 (c) with a total pipeline stage interval of

8.5. Task T2 is of small elasticity which implies that adding more SPM memory to P1 will not help

much in reducing the execution time. Tasks Ti, T ′i , and T ”i represents three instances of the same

task from different runs of the application. In this solution 12.1 KB SPM memory is allocated to

processor P1 and the rest to P2.

Since we have two processors in our MPSoC model, at most two pipeline stages are allowed.

Our heuristic in Section 6.1 will find that there are two paths from the dummy source task to the

dummy end task, p134 and p234. Since there are only two processors, the parallel tasks T1 and T2

will be mapped to different stages in the pipeline. The important question now is whether to assign

T3 and T4 to the same stage of T1 or T2. Based on the high elasticity value of T1 compared to T2

and based on the PEC values of p134 and p234, our heuristic will map T3 and T4 to the same stage

as T1, namely S2, since PEC of p234 > PEC of p134. The PEC of a path, say p234, is calculated as

PEC(Pn) in Equation 6.2 assuming tasks T2, T3, and T4 are mapped to processor Pn. After dividing

tasks into different stages, our integrated task scheduling memory partitioning algorithm will be

applied to the TDG in Figure 6.6 (b).

Figure 6.6 (d) shows our pipeline schedule with a pipeline stage of 7.19M cycles. This solution

starts by assigning T2 to P1 and T ′1 to P2. After applying the Balance() procedure, 2.8 KB of SPM

memory will be assigned to P2 to balance the schedule as much as possible. The scheduler will

then assign T ′3 to P2 since its end time is lower on this processor as its elasticity is high. The

Balance() subroutine will update the memory budget for each processor by moving 1 KB from P1

SPM budget to P2 to balance the schedule. T ′4 will also be assigned to P2 as its end time will be

smaller on this processor at this step due to the high SPM memory budget allocated to P2. After

105

P1

P2

(c)

time
time

T1” T1

T2’ T3’ T4’ T2 T3 T4

8.5 17

P1

T1’ T3’ T4’

T2 T2”

T1 T3 T4

7.19

P2

(d)

14.38

T1(9.1)

T2(6.4)

T3(4.3) T4(1)

T1’

T2

T3’ T4’

(a) (b)

FIGURE 6.6. (a) Original TDG. (b) TDG with pipelining. A solution using: (c) decoupled heuristics. (d) our
heuristic.

all the tasks are scheduled, the Balance() procedure will further reduce the cost by transferring the

0.2 KB SPM budget assigned to P1 to P2.

6.3 Experimental Results
We implemented five approaches to solve the task scheduling and memory allocation problem on

MPSoC systems namely, (i) decoupled task scheduling and memory partitioning assuming equally

partitioned SPM among all available processors T SMP EQUAL; (ii) decoupled task schedul-

ing and memory partitioning with SPM partitioned among different processors with any ratio,

T SMP ANY ; (iii) our integrated task scheduling and memory partitioning heuristic described in

Section 6.1, T SMP INT EG; (iv) our heuristic with pipelining T SMP PIPE; and (v) the optimal

solution with pipelining based on the ILP formulation in [72], ILP PIPE using the CPLEX ILP

solver [1]. We used the following real life programs from the Mediabench and MiBench, enhance,

lame, osdemo, c jpeg, pgp, rasta, pegwit, and epic as test benchmarks.

We used Simplescalar architectural simulation to profile the used benchmarks [9]. Simplescalar

can simulate the execution of an application on a complex multiprocessor system on-chip archi-

tectures with different memory hierarchies. The MPSoC architecture used is similar to the one in

Figure 6.1. The profiling is intended to (i) divide each application into computation blocks referred

to as tasks, (ii) find the computation times for each task on each available processor in processor

cycles, (iii) find the number of variables, (iv) the number of times each variable is used, f req, and

106

0

1

2

3

4

5

6

7

8

9

10

8K 32K 128K

C
y
cl
e
s

SPM

TSMP_EQ

TSMP_ANY

TSMP_INTEG

TSMP_PIPE

ILP_PIPE

FIGURE 6.7. Results for lame benchmark

(v) the size in bytes for each variable in the current application. The profiler information is based

on a system with only off-chip memory. Using the profile information and dependence analysis, a

task graph is constructed with a vertex for each task and an edge to represent the communication

cost between two tasks. The communication cost depends on the size of data to be communicated

between the two tasks and it is calculated through profiling. We assume a 100 cycle latency for

off-chip memory access compared to 1 cycle latency for the SPM on-chip memory.

We tested the benchmarks, enhance, lame, osdemo, and c jpeg, assuming a multiprocessor sys-

tem on chip of two processors and a scratch pad memory with size that varies between 4KB and

4 MB. We tested each of our benchmarks under three SPM budgets chosen based on the size of

the benchmark. The choice of SPM sizes for each benchmark is essential as too little SPM or too

much SPM for a certain embedded application may not reflect the effectiveness of our heuristic.

The off-chip memory size is assumed to be unlimited ,that is, it can hold all the data variables

needed by the embedded application.

The first three columns in Figures 6.7–6.10 shows the comparison between T SMP EQ, T SMP ANY ,

and T SMP INT EG. The number of cycles in the results graphs are shown as 1.0E−06 of the ac-

tual number of cycles. All of those results are based on α value of 10 meaning that 10% of SPM

memory is being transferred between two tasks at a time in the Balance() procedure. The im-

provement greatly depends on the structure of the embedded application. T SMP ANY improved

107

0

10

20

30

40

50

60

70

80

4K 16K 32K

C
y
cl
e
s

SPM

TSMP_EQ

TSMP_ANY

TSMP_INTEG

TSMP_PIPE

ILP_PIPE

FIGURE 6.8. Results for osdemo benchmark

0

50

100

150

200

250

512K 2M 4M

C
y
cl
e
s

SPM

TSMP_EQ

TSMP_EQ

TSMP_INTEG

TSMP_PIPE

ILP_PIPE

FIGURE 6.9. Results for enhance benchmark

over T SMP EQ from little improvement close to 0% to dramatic improvement of 47%. Such im-

provements show that static memory allocation, that is, partitioning the SPM budget equally among

the processors limits the effectiveness of SPM memories as it does not consider the characteristics

of the tasks assigned to a processor in its memory partitioning decision.

Our integrated approach for task scheduling and memory partitioning, T SMP INT EG, further

improved the results over the decoupled approach, T SMP ANY . T SMP INT EG improved over

T SMP ANY from little improvement close to 0% in some cases to dramatic improvement of 22%.

This improvement is due to the guidance that our integrated approach uses to partition the memory

108

0

1

2

3

4

5

6

32K 64K 256K

C
y
cl
e
s

SPM

TSMP_EQ

TSMP_ANY

TSMP_INTEG

TSMP_PIPE

ILP_PIPE

FIGURE 6.10. Results for cjpeg benchmark

0

10

20

30

40

50

60

70

80

90

100

512K 2M 4M

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 C
y

cl
e

s

SPM

TSMP_ANY

TSMP_INTEG

TSMP_PIPE

FIGURE 6.11. Results for pgp benchmark

based on the fact that the SPM configuration of a certain processor depends on the tasks mapped

to that processor.

The fourth columns in Figures 6.7–6.10 show the result of our technique with pipelining, PIPE.

The results emphasis the fact that such embedded applications can benefit significantly from

pipelining. The pipeline cost is the computation time needed for one pipeline stage. As expected,

our embedded applications greatly benefit from pipelining as the execution time is decreased by

27% in some cases.

109

0

10

20

30

40

50

60

70

80

90

100

512K 2M 4M

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 C
y

cl
e

s

SPM

TSMP_ANY

TSMP_INTEG

TSMP_PIPE

FIGURE 6.12. Results for rasta benchmark

0

10

20

30

40

50

60

70

80

90

100

512K 2M 4M

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 C
y

cl
e

s

SPM

TSMP_ANY

TSMP_INTEG

TSMP_PIPE

FIGURE 6.13. Results for pegwit benchmark

In order to show the effectiveness of our task scheduling/memory partitioning heuristic, INTEG,

we compared it to an optimal integer linear formulation (ILP) based on the ILP formulation of this

problem in [72], ILP PIPE. The ILP solver is stopped after 35 minutes in some cases due to the

long execution time taken by the ILP to produce optimal results. Following the same assumptions

concerning the MPSoC system model and SPM memory budget, our T SMP INT EG heuristic is

in the range of 0% to 13% off the optimal solution in a negligible amount of time, Table 6.2. This

shows the effectiveness of our heuristic as in most of the cases our solution was close to the ILP

one.

110

0

10

20

30

40

50

60

70

80

90

100

512K 2M 4M

N
o

rm
a

li
ze

d
 E

x
e

cu
ti

o
n

 C
y

cl
e

s

SPM

TSMP_ANY

TSMP_INTEG

TSMP_PIPE

FIGURE 6.14. Results for epic benchmark

The ILP formulation is not scalable as the run time is exponential with the number of variables

in the application. For large scalar based embedded application, the number of variables is usu-

ally large and thus the ILP will take very long time (hours) that makes the use of ILP infeasible

for such applications. On the other side, our heuristic is of polynomial run time and thus it scales

well with big applications as clearly shown in the run time in Table 6.2. We tested our heuristic

on the following four large embedded applications mainly, pgp, rasta, pegwit, and epic. Figures

6.11–6.14 show the results achieved by our heuristic when considering a system with 4 processors

and an SPM budget ranging from 512K to 4M. The results in Figures 6.11–6.14 are the normal-

ized execution cycles with respect to T SMP EQ. T SMP ANY , T SMP INT EG, and T SMP PIPE

improved over T SMP EQ up to 12%, 33%, and 40% respectively.

Keep in mind that our solutions can be further improved if we decrease the value of α. The

reduction in the value of α will add some overhead on the execution time but will try to exchange

smaller ratio of the SPM between different tasks and this will further improve the results by up

to 2.1% as shown in Figure 6.15. More aggressive SPM data allocation techniques will further

improve the results.

Finally, we tuned our MPSoC architecture in Figure 6.1 so that the processors can access the

SPMs of each other in 5 cycles time. We tested our heuristics with such an architecture and found

an average reduction of 4% in the execution cycles compared to the architecture in Figure 6.1.

111

173

174

175

176

177

178

179

180

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

C
y
cl
e
s

alpha

FIGURE 6.15. Cycles reduction as α decreases

TABLE 6.2. Run times for our heuristic and the ILP formulation.

Benchmark # of variables Our heuristic (sec) ILP [72]
Lame 128 8 35 min

Osdemo 46 5 26 min
Enhance 44 3 34 min

Cjpeg 20 0.1 15 sec
Epic 410 51 –
Pgp 240 24 –

Rasta 300 38 –
Pegwit 320 42 –

112

6.4 Related Work
Many research groups have studied the problem of task scheduling for applications on multiple

processors with the objective is to minimize the execution time. Benini et al. [15] solved the

scheduling problem using constraint programming and the memory partitioning problem using

integer linear programming. The authors argued why these two choices fit the two problems the

best. Kwok and Ahmed [38] presented a comparison among algorithms for scheduling task graphs

onto a set of homogeneous processors on a diverse set of benchmarks to provide a fair evaluation

of each heuristic based on a set of assumptions. De Micheli et al. [51] studied the mapping and

scheduling problem onto a set of processing elements as a hardware/software codesign. Neimann

and Marwedel [55] used integer programming to solve the hardware/software codesign partition-

ing problem. A tool for hardware-software partitioning and pipelined scheduling based on a branch

and bound algorithm was presented in [17]. Their objective was to minimize the initiation time,

number of pipeline stages, and memory requirements. Similarly, Kuang et al. [37] proposed an

ILP solution for the partitioning problem with pipelined scheduling. Cho et al. [20] proposed an

accurate scheduling model of hardware/software communication architecture to improve timing

accuracy.

Panda et al. [65, 66] presented a comprehensive allocation technique for scratchpad memories on

uniprocessor to maximally utilize the available SPM memories to decrease the programs execution

times. Optimal ILP formulations for memory allocation for scratch-pad memories were presented

in [10, 22]. An ILP formulation for the SPM allocation problem to reduce the code size was pre-

sented in [68]. Steinke et al. [69] formulated the same problem with the objective to minimize the

energy consumption. Angiolini et al. [6] optimally solved the problem of mapping memory loca-

tions to SPM locations using dynamic programming. Their algorithm works by mapping parts of

the external memory to physically partitioned on-chip SPM banks.

Many authors have studied the memory allocation problem in MPSoCs. The main focus of their

research work is data parallelism in the context of homogeneous multiprocessor systems. Meftali

et al. [50] formulated the memory allocation problem as an ILP to obtain an optimal distributed

113

shared memory architecture to minimize the global cost to access shared data as well as the memory

cost. Kandemir et al. [33] presented a compiler-based strategy for optimizing energy and memory

access latency of array dominated applications in an MPSoC. In [61], the authors proposed an ILP

formulation for the memory partitioning problem on MPSoC. Suhendra et al. [72] studied the prob-

lem of integrating task scheduling and memory partitioning among a heterogeneous multiprocessor

system on chip with scratch pad memory. This is the only paper, to the best of our knowledge, that

addressed this problem in an integrated approach for MPSoC. They formulated this problem as an

integer linear problem (ILP) with the inclusion of pipelining. Other works [12, 32, 73] have studied

issues related to task scheduling and memory partitioning.

6.5 Chapter Summary
In this chapter, we have presented an effective heuristic that integrates task scheduling and mem-

ory partitioning on multiprocessor systems-on-chip with scratchpad memory. Compared to the

widely-used decoupled approach, our integrated approach further improved the results since the

appropriate partitioning of SPM spaces among different processors depends on the tasks sched-

uled on each of those processors and vice-versa. Results on several benchmarks from Mediabench

and MiBench show the effectiveness of our approach compared to the decoupled approaches.

114

Chapter 7
Task Scheduling and Memory Partitioning for
MPSoC: Multiple Applications

In the previous chapter, we presented an integrated framework for task scheduling and SPM mem-

ory partitioning for one application executing on a MPSoC at a given time. In such case, the SPM

space and the processor cores available are assumed to be managed by a single application. Al-

though the one-application scenario is common, some multiprocessors system on chips are used

to execute multiple applications. In this case, multiple applications need to share the available

resources, i.e., SPM and processors.

This chapter focuses on the multiple application scenario and develops an effective framework

for task scheduling and memory partitioning for multiprocessor system on chip with multiple con-

current applications. The developed solution is a two-level solution where in the first level the

available resources are dynamically partitioned among the available applications, and in the sec-

ond level, the tasks in a single application are then scheduled based on the integrated approach of

task scheduling and memory partitioning presented in the previous chapter.

Most of the previous works in this area [27, 64, 63, 76, 77, 23, 34, 49] focused on single appli-

cation scenarios where the available resources are assumed to be managed by only one application

at any given time.

7.1 Motivation
The heuristic in the previous chapter cannot directly be applied to the case of multiple applications

since the execution start time of those applications may be different. Consider a simple example of

three applications A, B and C to be executed on an MPSoC. Let the first application A start execut-

ing at time ti. Suppose, then at time ti + s, application B starts executing. Let A finish executing at

time ti +n (where n > s). Also, let application C start executing some time after A finishes, i.e., C

starts at time ti +m where m > n. Here, it is clear that not all applications are executing at the same

time. At first only one application (A) is using the resources (processors and memory). Starting at

115

time ti + s, two applications A and B are competing for the available resources. Thus, some of the

resources already allocated to application A will now be allocated to application B. Then during the

time range, i.e., during the open-onterval (ti +n, ti +m), all the resources can be allocated to only

application B since B is the only active application in the system. Then at time ti + m some of the

resources will be deallocated from application B and allocated to application C. After B finishes

executing, all the resources can now be allocated to application C as needed. From this example,

the necessity for allocation and deallocation is clear since not all the applications may start and

end at the same time.

The heuristic for task scheduling and SPM memory partitioning presented in the previous chap-

ter will be applied repeatedly to each application based on the resources allocated to that applica-

tion. These resources are dynamic based on how many applications are using the system at a certain

time and thus the allocation of the resources among tasks inside a single application is dynamic

and based on the active applications at that point in time.

7.2 Architectural Model
The architectural model assumed in this chapter consists of a number of processor cores and a

scratchpad budget that is shared concurrently by all applications. A large off-chip memory of

unlimited size is assumed. Each executing application in our model is mapped to a set of resources.

The number of cores mapped to a certain application depends on the structure of the application

and the degree of potential parallelism. A simple view of our model is presented in Figure 7.1,

where a set of processors are mapped to each application and then the tasks of such application are

scheduled on an available processor in the set. As mentioned earlier, the schedule is SPM budget-

aware, i.e., the schedule considers the dynamic execution time of a task based on the processor to

which it is mapped as well as the SPM memory budget assigned to that processor.

7.3 Our Approach
Problem Definition: Given (i) an MPSoC architectural model of a set of processors, on-chip SPM

budget, and large off-chip memory and (ii) a set of applications to be executed at this architecture

with unknown start time, dynamically divide the processor cores and the SPM budget among all

116

P1 P2 P3 P7

Off-Chip Memory

P6 P5

App 1 App 2 App 3

P4

T1, T3 T2,T4 T2, T5 T4 T1, T3 T1 T2

SPM 2 SPM 1 SPM 4 SPM 3 SPM 7 SPM 5 SPM 6

P8

 T3

 SPM 8

FIGURE 7.1. An architectural model example with three applications, eight processors, an SPM budget,
off-chip memory, and interconnection buse.

concurrently executing applications then divide the resources mapped to each application among

its tasks. The objective is to minimize the run time over all applications, that is, construct a schedule

of minimum time.

The question is how to divide the available processors and memory budget among different

applications at different times. The number of processors and the SPM memory budget allocated to

an application depends on the nature of the application. More processors will usually be allocated

to an application that has larger potential for parallelism compared to an application of a more

sequential nature.

Our framework shown in Figure 7.2 consists of three major components: (i) the compiler, (ii)

the resource partitioner, and (iii) the scheduler. The compiler is responsible of profiling a certain

application. Once the compiler receives a new application, it will extract a set of information that

will be later used by the resource partitioner. Once the resource partitioner receives such informa-

tion, it will allocate resources of processor cores and SPM budget to such application based on

the nature and structure of the application as well as the number of applications currently using

the system. Then the scheduler will further partition the processors and SPM budget assigned to a

117

App 1 App 2 App 3

Compiler

Profile (App1) + TDG1 Profile (App2) + TDG2 Profile (App3) + TDG3

Scheduler

Resources Partitioner

Profile (App1) + TDG1 + #Proc1 +SPM1 Profile (App3) + TDG3 + #Proc3 +SPM3

Profile (App2) + TDG2 + #Proc2 +SPM2

FIGURE 7.2. Our framework consists of three components: the compiler, the resources partitioner, and the
scheduler.

118

certain application among the set of tasks that constitute such application. The scheduler will use

the heuristic presented in the previous chapter.

The number of resources assigned to a certain application is based on the structure of the ap-

plication. For instance, it makes sense to assign more processors to a highly parallel application

in nature so that more tasks can run in parallel. Also, typically a memory-intensive application

should be assigned a bigger scratchpad memory budget compared to an application that requires

less memory. Note that a memory-intensive application is one in which memory accesses are a sig-

nificant fraction of the execution time; whereas, an application where most of its computation time

is consumed for instance in big loops rather than memory accesses is classified as non-memory-

intensive.

The processor cores and the scratchpad memory budget are shared resources and thus they need

to be carefully partitioned among the competing applications in the system. Once this partitioning

is over, the scheduler will schedule the tasks of a certain application on the processors mapped

to that application under the memory budget mapped to it. Notice that as an application enters or

leaves our system, the resources will be redistributed and the tasks will be rescheduled and thus the

framework is very dynamic based on the applications using the system at a certain point in time.

7.3.1 The Compiler

Once the compiler receives a new application that needs to be scheduled on the multi-processor

system on chip, it analyzes the structure of this application and extracts important information that

will be sent to the resource partitioner and the scheduler as annotations. For example, the task

dependence graph is a very basic part that is needed by the resource partitioner and the scheduler.

To refresh our memories, a task dependence graph (TDG) is a directed acyclic graph with weighted

edges where each task in the embedded application is represented by a vertex. An edge between

two tasks, say Ti and Tj in the TDG, represents some kind of a scheduling order due to the fact that

Tj needs data to be transferred from Ti after Ti is already executed. Thus a certain processor cannot

start executing task Tj unless all the necessary data communication is performed.

119

Another important piece of information extracted by the compiler is a set of [Maxi j, Avgi j,

and Mini j] values for each of the tasks. As defined in the previous chapter, the Mini j represents

the computation time for task Ti on processor Pj assuming all of the available SPM budget is

assigned to Pj. The Avgi j represents the computation time for task Ti on processor Pj assuming 1/n

of the available SPM budget is assigned to Pj where n is the number of processors. And the Maxi j

represents the computation time for task Ti on processor Pj assuming no SPM budget is assigned

to Pj which means that all the data variables will be accessed from the slow off-chip memory.

In summary, the profiling by the compiler is intended to:

• divide each application into computation blocks referred to as tasks;

• find the computation times for each task on each available processor in processor cycles;

• find the number of variables;

• the number of times each variable is used, f req; and

• the size in bytes for each variable in the current application.

The profiler information is based on a system with only off-chip memory. Using the profile infor-

mation and dependence analysis, a task graph is constructed with a vertex for each task and an

edge to represent the communication cost between two tasks. The communication cost depends on

the size of data to be communicated between the two tasks and it is calculated through profiling.

7.3.2 The Resource Partitioner

The resource partitioner is responsible of dividing the available resources among the concurrently

executing applications. Given a system of p heterogeneous processor cores and an SPM budget of

size m and n executing applications, divide the available resources fairly among the applications so

that the schedule time of all the applications is minimized. The partitioner will receive the profiling

information from the compiler and then decide how much SPM budget and how many processor

cores should be assigned to such an application. Needless to say, the scheduler will most probably

assign fewer resources to an application than the optimal resources required as we are assuming a

120

system of limited resources and with more than one concurrently executing application competing

for the available resources.

Once the partitioner receives a new application, it will read its structure and computes the level

of parallelism based on the structure of the TDG to figure out the degree of benefit from assigning

more processors to such an application. Also, based on the elasticity value, the scheduler will be

able to figure out how much this application benefit from more SPM budget. As in Chapter 6, we

define elasticity of a task as the extent to which this task can benefit from a larger SPM. We define

elasticity dynamically as the extent to which the computation cost of a task on Pi may decrease

as the SPM budget of Pi is increased from the current budget to size where size is the maximum

amount of SPM budget available in our model. Equation 7.1 defines elasticity of task Ti where Cur

is the computation time of the task under the current memory budget. The elasticity of a task Ti

is basically a measure of the room for computation time reduction of Ti with more SPM budget.

A bigger value of elasticity means that the computation time of Ti is more amenable for reduction

with the increase in the SPM allocated to that task. Note that elasticity(Ti) is a dynamic value since

the current computation time of Ti, Curi, may change as the SPM budget distribution changes.

elasticity (Ti) =
Curi−Mini

Curi
(7.1)

As mentioned earlier, the number of processor cores mapped to a certain application is directly

related to the degree of parallelism (DP) of such an application. The degree of parallelism is de-

fined in Equation 7.2. A large DP value means that the application’s structure has high degree of

parallelism where as a small DP value means that the application is more sequential in nature. The

degree of parallelism of an application will be extracted from the structure of its task dependence

graph. We define the DP in a way to reflect the degree of parallelism between the tasks in the TDG.

Two independent tasks can be executed in parallel on two different processors (if possible) whereas

two dependent tasks A and B (B depends on A) must be executed sequentially as task B needs to

wait for some input information from task A.

Given a TDG with t tasks. A pair of tasks (Ti, T j) can be run in parallel if there is no path in the

TDG between Ti and T j and thus they are independent. As the number of such pairs is bigger, the

121

degree of parallelism of the application is bigger. The DP value will be used by the resource parti-

tioner as a guideline when dividing the processors in the system among the concurrently executing

applications.

DP(APPi) = pathsi +
pairsi

pathsi
(7.2)

Given a TDG, find all the paths between a dummy start node and a dummy end node. The dummy

start node S is a node with an edge to each task (node) in the TDG with zero incoming edges and

the dummy end node E is such that there is an edge between this node and all the tasks in the TDG

with no outgoing edges. Two paths are distinct if they have at least one task not in common. For

any two paths pi and p j, find all the pairs (Ti belongs pi, Tj belongs p j) such that Ti and Tj can be

run in parallel. As shown in Equation 7.2, the degree of parallelism is made up of the sum of two

components. The first component represents the number of distinct paths in the TDG. Intuitively

speaking, an application with a TDG of high number of distinct paths is more parallel in nature

and thus it can benefit more from additional processors. However, the number of distinct paths is

not enough to represent the degree of parallelism in an application.

An application with two more balanced paths will benefit more from two processors compared to

an application with two unbalanced paths. Consider for instance the two TDG examples in Figure

7.3. The two applications corresponding to these two TDGs have the same number of tasks. Now

assume that two processers are assigned to the TDG in Figure 7.3 (a). After processor 2 is used

to execute (lets say) task 6, that processor is no more needed and thus it will be idle. However,

for the application corresponding to the TDG in Figure 7.3 (b), the two processors will be more

effectively utilized during the executing time of the application and thus such an application should

have a higher DP.

To take this observation into consideration, we added the second part, pairs
paths , to our DP definition.

The value pairs is the number of pairs that can be executed in parallel. Considering again the two

TDG examples in Figure 7.3. The parallel pairs in Figure 7.3 (a) are (1, 6), (2, 6), (3, 6), (4, 6),

and (5, 6) whereas the parallel pairs corresponding to the TDG in Figure 7.3 are (1, 4), (1, 5), (1,

6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), and (3, 6). Thus the DP value for the first TDG is 2 + 5/2 =

122

T1 T2 T3 T4 T5

T6

T1 T2

T5

T3

T6 T4

 (a)

 (b)

FIGURE 7.3. (a) An unbalanced TDG. (b) A balanced TDG

123

4.5 and the DP value for the second TDG is 2 + 9/2 = 6.5. As a result, the ratio pair/paths loosely

represents how balanced the paths in the TDG are. Now in an architectural model with 3 available

processors, the resource partitioner will use the two DP values to decide that only one processor

will be assigned to the first application whereas two processors will be assigned to the second

application. We will see later on how the resource partitioner will decide on how many processors

to assign to each executing application.

Although the pairs value represents the number of parallel paths, that number is mostly an

exaggeration of the number of actual tasks that can run in parallel. To clarify this point, assume

that we have the following pairs of tasks between two paths pi and p j (Ti belongs pi, Tj belongs

p j), (T1, T3), (T1, T4), and (T1, T5). What this means is that task T1 that belongs to path Pi

can run in parallel with T3, T4 or T5. Since T3, T4, and T5 belong to the same path p j, they are

dependent and should be run sequentially. Thus, T1 can be run in parallel with only one of such

tasks at a time. As a result, the pairs variable in our DP definition is in no way a reflection of how

many pairs can run in parallel at the same time but rather a reflection of how much the paths are

balanced in a certain TDG.

The processors will be divided among all the applications in the system in a fairly fashion so

that the overall run time of the scheduler is minimized. As will be discussed in Subsection 7.4.4,

each application will receive a number of processors proportional to its number of distinct paths

and its degree of parallelism DP.

The SPM budget in the system will be partitioned among the concurrently executing applications

in the system in a fairly fashion so that the overall computation time of the scheduler is minimized.

If the system does not have enough SPM budget to cover all the variables in the system, then

each application will receive an SPM budget proportional to its needed SPM as well as to its

elasticity. This concept will be discussed in the Subsection 7.4.4. The elasticity of an application

is the average elasticity of its tasks and is defined in Equation 7.3.

elasticity(Appi) =
∑ j elasticity(Tj)

n
(7.3)

124

7.3.3 The Scheduler

The scheduler receives all the applications with their structure and assigned number of cores and

SPM budget from the resource partitioner. Basically, for each application i, the scheduler will

receive its task dependence graph, T DGi, the cores mapped to this application Pi, and its SPM

budget Si as Appi(T DGi, Pi, Si). The scheduler then schedules the tasks of each application i on

the resources assigned to it; i.e., at this stage, the tasks will be mapped to the available processors

Pi and the SPM budget Si will be partitioned among the processors so that the overall computation

time is minimized.

The scheduler will follow the heuristic presented in Chapter 6 (also in Figure 7.4). The main idea

of this heuristic, as discussed in Chapter 6, is that it integrates the scheduling part with the SPM

budget partitioning part in one step. Unlike the traditional scheduling heuristics that assign the

task to the processor such that the increase in the computation time under the current SPM budget

distribution is minimum, the heuristic will schedule a task Ti on a processor Pl of higher overhead

time provided that the predicted end computation time (PEC(Pl)) (defined by us in Equation 7.4)

of this processor is at least δ % less than that of Pj. In this sense, the heuristic looks beyond

the current SPM budget distribution to predict what will happen with future SPM repartitioning

among the processors. As discussed in Chapter 6, the predicted estimated computation time (PEC)

is basically an estimate of how much the end time of processor Pi will be if more SPM budget is

assigned to processor Pi. The PEC of a processor is closely related to the elasticity of the tasks

scheduled on that processor. The PEC value provides the dynamic essence of this heuristic as

at each step the heuristic looks beyond the current SPM budget distribution in its task mapping

decision to an estimate of future distribution in future steps.

PEC(Pi) = End time(Pi)− ∑
Tj∈Pi

(Cur(Tj)−
Cur(Tj)

1+ elasticity(Tj)
) (7.4)

In the case of multiple applications executing concurrently on an MPSoC, the scheduler will

schedule the tasks for each application separately following the single application heuristic. The

question now is what happens when the system gets a new application or one application finishes

executing and leaves the systems. As mentioned in the previous subsection, when a new applica-

125

tion wants to use the system, the resource partitioner will repartition the resources among all the

executing applications guided by the level of parallelism of an application and its elasticity. At this

point, the scheduler will receive a new set of information about the applications in the system as

well as the new application. Some of the applications that are already scheduled under the previous

resource partitioner need to be rescheduled according to the new resource partitioning.

Some of the resources that will be assigned to the new application will come from the unused

cores and SPM budget whereas others will come from resources already assigned to some other

already executing applications. Applications may lose some processor cores and a part of the SPM

budget assigned to them under the previous resource partitioning prior to the arrival of the new

application. The scheduler, however, will wait for all the tasks currently executing to finish before

redistributing the resources. A new schedule will be generated based on the new resources assign-

ment and on the updated TDG for each application. The updated TDG of a certain application is

the TDG including only non-scheduled tasks.

The same thing will happen when an application finishes executing. The resources that were

assigned to this application need to be distributed among other still executing applications. When

an application finishes, the scheduler will inform the resource partitioner which will, in its part,

repartition the available resources among the currently executing applications and will then send

the new resource assignment to the schedule that will generate a new schedule.

7.3.4 Our Heuristic

The main task of our heuristic is to partition the resources among different applications and then

schedule the tasks on these resources such that the overall time of the schedule is minimized. The

resource partitioner heuristic is mainly made up of two major parts, the SPM partitioner (see Figure

7.5), and the processors partitioner (see Figure 7.6). The job of the partitioner is to partition the

available resources among the concurrently executing applications in as fairly fashion as possible.

In the SPM partitioner case, the heuristic operates in two steps. In the first step, it determines

the memory requirements of the applications from the annotations sent by the compiler and then in

the second step, it allocates the available SPM memory space to the applications. The SPM space

126

Scheduler(Appi,Si, Pi, T DGi)

1. Divide the SPM memory equally between the processors.
2. For each task Ti and processor Pj, extract the following:
3. (i) Minimum computation time on Pj, Mini j.
4. (ii) Maximum computation time on Pj, Maxi j.
5. (iii) Average computation time on Pj, Avgi j.
6. Find ASAP for all the tasks based on Avg values.
7. L1 = List of tasks in increasing order of ASAP.
8. While (L1 not empty) do:
9. Get the first task Tf from L1.
10. For each processor Pi:
11. Calculate the elasticity and PEC of Pi if Tf is mapped to Pi.
12. Find the minimum start time of Tf on Pi.
13. Find END time(Pi) if Tf is mapped Pi.
14. if ((END time(Pi) < min && PEC(Pj) ≥ (1 - δ%)PEC(Pi))||

(END time(Pi) > min && PEC(Pi) ≤ (1 - δ%)PEC(Pj)))
15. min = END time(Pi)
16. else if (END time(Pi) = min)
17. min = END time of processor with the higher elasticity.
18. End For
19. Assign Tf to Pj corresponding to min.
20. Delete Tf from L1.
21. Call Balance().
22. End While
23. For i = 1 to t do:
24. Call Balance().

FIGURE 7.4. Our scheduler heuristic.

127

SPM Partitioner(n, m)

1. For i = 1 to n do:
2. SPM = SPM + SPM requested(i)
3. End For
4. If (SPM≤ m)
5. For i = 1 to n
6. SPM received(i) = SPM requested(i)
7. SPM Elasticity = SPM Elasticity + (1 + elasticity(i)) * SPM requested(i)
8. End For
9. Else
10. For i = 1 to n
11. SPM received(i) = MIN(SPM requested(i),

((1+ elasticity(i)) * SPM requested(i)/(SPM Elasticity) * n))
12. SPM Elasticity = SPM Elasticity - SPM received(i)
13. End For

FIGURE 7.5. Our SPM partitioning heuristic.

Processor Partitioner(n, p)

1. For i = 1 to n
2. Reconstruct TDG(i)
3. DP(i) = Compute DP(i)
4. End For
5. For i = 1 to n
6. Path = Path + path(i)
7. Path DP = Path DP + (1 + α DP(i)) * path(i)
8. End For
9. If (Path ≤ p)
10. For i = 1 to n
11. Processor received(i) = path(i)
12. End For
13. Else
14. For i = 1 to n
15. Processor received(i)= MIN(path(i),((1 + α DP(i)) * path(i)/(Path DP) * p))
16. Path DP = Path DP - Processor received(i)
17. End For

FIGURE 7.6. Our processor partitioning heuristic.

128

Task Scheduling Memory Partitioning(n, m)

1. Processor Partitioner(n, p)
2. SPM Partitioner(S, p)
3. Scheduler(Appi,Si, Pi, T DGi)

FIGURE 7.7. Our task scheduling memory partitioning heuristic.

allocated to each application is then divided amongst its tasks based on the elasticity of such tasks.

The SPM partitioner takes the SPM size (m) and the number of applications concurrently running

(n) as an input. Based on the data requirements of each application obtained by the function call

Receive(), the heuristic calculates the total SPM budget, SPM, needed to satisfy all the available

applications. If this SPM value is less than or equal to the available SPM budget (m), then each

application takes all the SPM space it requested. In this case, we do not have a space partitioning

problem.

However, if the total requested SPM is less than the available SPM budget, the SPM partitioner

tries to distribute the available SPM among all the concurrently executing applications in a fairly

possible way. It does that in Lines 10–13 in the heuristic by allocating to each application an SPM

budget proportional to its requested size in a manner that an application with higher elasticity will

receive an SPM budget closer to it requested budget compared to an application with smaller elas-

ticity. Remember that the overall objective is a short schedule. From Lines 10–13, an application

with higher elasticity value will get a push up in presenting its case of receiving more SPM budget.

The processor partitioner heuristic in Figure 7.6 works in a similar fashion to the SPM parti-

tioner. The processor partitioner takes the number of processors in the system (p) and the number

of applications concurrently running (n) as an input. It first sums up the total number of requested

processors by all the applications, namely the value Path. We assume that the optimal number of

processors for an application is equal to the number of distinct paths in its corresponding TDG.

If the total number of processor requested (Paths) is less than or equal the number of available

processors, then each application will be granted a number of processors equals to its number of

distinct paths.

129

However, in the case that the Paths value is less than the available processors (p), then the

partitioner will distribute the available processors among the applications proportional to their

number of paths. This core distribution will be performed in a way that an application with a

higher degree of parallelism (DP) will receive a number of cores closer to its number of distinct

paths compared to an application of a smaller DP value, lines (14 - 17). A good value for α in Figure

7.6 is 0.1. Two applications with the same number of paths may end up receiving different number

of processors based on the DP values. The application with the higher DP value will probably

receive more processors compared to the one with smaller DP value. This is fair as the DP value

loosely reflects the degree of balance between all the paths of an application. A more balanced-path

application will more effectively utilize the processors as more tasks will be executing in parallel.

Our heuristic for the complete task scheduling memory partitioning framework is presented in

Figure 7.7. This heuristic will be called any time a new application enters or leaves the system.

7.4 Chapter Summary
In this chapter, we have presented an effective heuristic that integrates task scheduling and mem-

ory partitioning on multiprocessor systems-on-chip with scratchpad memory in the presence of

multiple applications. Compared to the widely-used decoupled approach, our integrated approach

will further improve the results since the appropriate partitioning of SPM spaces among different

processors depends on the tasks scheduled on each of those processors and vice-versa. The frame-

work fairly divides the available resources among all the concurrently executing applications. The

techniques are very dynamic depending on the applications concurrently using the system.

130

Chapter 8
Conclusions and Future Work

Applications that are executed on embedded processors have become extremely important. The

amount of memory on embedded processors has not kept pace with the increase in the size of

embedded applications. With embedded processors such as digital signal processors (or DSPs),

effective compilation techniques are one way to reduce memory requirements. With multiproces-

sor system-on-chip (MPSoC), issues such as mapping, memory management and scheduling are

important. In this thesis, we have addressed different compilation issues for DSPs and scheduling

techniques for MPSoCs.

8.1 Conclusions
The main concern of the first part of this thesis in Chapters 2 thru 5 is on compilation techniques

for digital signal processors (DSPs). DSPs are special-purpose processors that are widely used

in many embedded systems. Such systems have very tight constraints in terms of size, memory,

cost, etc. Memory usually constitutes a large fraction of the cost and size of an embedded system.

Thus, reducing the memory requirement of an application is essential in embedded systems. In the

first part of the thesis, we studied and presented different approaches and heuristics to reduce the

code size and the memory requirement to store the variables. Reducing the code size automatically

reduces the silicon area needed to save this code as in such DSP systems the code is stored in a

ROM. Increasing the proximity of the embedded application variables (including the temporary

variables) in the memory is critical to reduce the code size as well as the stack size.

In Chapters 2 and 3, we addressed the problem of offset assignment with variable coalescing

(COA). COA is a method used to decrease the size of the code. Decreasing the size of the code

is essential in such systems as the size of the code directly translates into silicon area. Studies

have shown that up to 50% of the program bits are used for addressing. Decreasing the number of

address arithmetic instructions is equivalent to decreasing the memory and size of such systems.

131

DSPs usually have a dedicated address generation unit (AGU) that can be utilized to update the

address with the current load/store instruction. When there is a need to update the current address

d to d± r where r is in the auto-modify range, then no addressing instruction is needed. Offset

assignment is a method used to maximally utilize auto-increment and decrement modes in such

systems to decrease the code size.

We studied the problem of offset assignment with variable coalescing as a single offset assign-

ment (CSOA) when there is only one address register in Chapter 2 and as general offset assignment

(CGOA) in Chapter 3 when there are multiple address registers. Our CSOA heuristic is used as the

basis for our CGOA heuristic. Results on several MediaBench benchmarks show the significant

benefit of our techniques compared to the best known techniques in the literature. The results were

further improved through the utilization of simulated annealing (SA).

In Chapters 2 and 3, the importance of variable coalescing was demonstrated through our results

on large real life benchmarks. It was assumed in some of the previous works [47] that variable

coalescing is not effective in decreasing the code size through minimizing the number of address

arithmetic instructions. To clarify this point, one needs to understand the relationship between edge

selection and variable coalescing. Recall that edge selection or variable coalescing should respect

the two conditions mentioned in Chapter 2 and 3, namely, (i) the access graph is still acyclic, and

(ii) no node in the access graph has more than two selected edges incident at it. Thus an edge

selection may prevent some variable coalescing opportunities and vice-versa. However, due to the

large number of temporary variables, many coalescing opportunities are available that minimized

the cost drastically on the larger real life benchmarks used in our experiments.

In Chapter 4, an optimal integer linear programming (ILP) solution is presented for the offset

assignment problem with variable coalescing. The ILP formulation is then extended to include

variable (or operand) permutation. Variable permutation is used to find the best possible access se-

quence so that the overall cost is minimal. A new version of the general offset assignment problem

is also suggested where the main idea is to partition variable accesses rather than variables. In this

new CGOA approach, different instances of the same variable can be accessed by different address

132

register. The optimal solution to the new GOA is at least as good as the traditional GOA as the

latter is a special case of the former.

In Chapter 5, we studied the problem of array register allocation with the intention to decrease

the code size as well as decrease the number of address registers used. This problem is utilized

for array-intensive applications, which are very common in embedded systems. Optimal integer

linear formulations (ILP) are presented for two related problems: (i) finding the minimum number

of address arithmetic instructions for a given number of address registers in the system, and (ii)

finding the minimum number of address registers for a zero cost. Due to the exponential complexity

of the ILP, very long computation time is needed with big embedded applications. To overcome

this, a genetic algorithm is utilized to get near optimal solutions in a reasonable amount of time.

In the second part of the thesis (Chapters 6 and 7), we shifted our attention to multi-processor

system on chip (MPSoC). The continued increase in the complexity of applications ported to SoC

architectures places a tremendous burden on the computational resources needed to deliver the re-

quired functionality. An emerging architectural solution places multiple processor cores on a single

chip to manage the computational requirements. In Chapters 6 and 7, we presented an integrated

approach to the task scheduling and memory partitioning problems in order to improve the quality

of the schedule.

In Chapter 6, we developed a memory-aware task scheduling heuristic for embedded applica-

tions on an MPSoC. There, we assumed that only one application consisting of multiple tasks is

executed at a given time on the MPSoC system. Usually scratch-pad memory (SPM) partitioning

and task scheduling are studied as two separate problems; however, we showed through extensive

results on real life benchmarks that those two problems are inter-related and thus they should be

studied as one problem. Our integrated task scheduling and memory partitioning heuristic for ap-

plications on an MPSoC outperformed the decoupled techniques and was very close to the optimal

solution in most cases. Pipelining was also studied to further improve the results where the main

objective is to minimize the time needed for a pipeline stage.

133

In Chapter 7, we extended our task scheduling/SPM partitioning problem from Chapter 6 to

handle the case of multiple applications utilizing the system at the same time. Those applications

compete for the available resources (processor cores and SPM budget). We presented a two level

approach to solve this problem. In the first level, the partitioner distributes the processors and

the SPM budget among the concurrently executing applications based on the structure of each

application. More processors are assigned to a highly parallel application and more SPM budget is

given to a more memory-intensive application. Then, in the second part, the scheduler schedules the

tasks of each application based on the technique presented in Chapter 6. The technique presented

is dynamic as the number of applications using the system may change at different instances of

time. Thus at any given time, a new application starts executing or an application ends executing,

allocation/deallocation of the resources is performed.

In summary, our offset assignment approaches are the best approaches in the literature so far.

We showed that throughout the thesis chapters through extensive experimental results on real life

applications. We are the first to present optimal solution to the offset assignment problem with

variable coalescing and with the inclusion of operand (i.e., variable) permutation. We introduced a

new approach to the general offset assignment problem that partitions the variable instances rather

than the variables. We presented a heuristic approach to this problem that can be further developed

and implemented.

We also presented the first heuristic in the literature that performs integrated task scheduling

and memory partitioning. We showed the importance of such approach compared to decoupled

techniques. We are the first to present a way to fairly partition the available processor cores and

SPM budget among concurrently executing embedded applications on a multi-processor system on

chip. We believe that the problems studied in this thesis are essential to improve the effectiveness

of embedded systems and that the implementation of such approaches in commercial compilers

can be highly beneficial.

134

8.2 Possible Future Work
8.2.1 DSPs: The Offset Assignment Problem

Simulated Annealing In Chapters 2 and 3, a special simulated annealing (SA) algorithm is used.

In our approach, the final solution from our heuristic is used as the initial solution to our SA. SA is

run for a short period of time with a low probability of accepting bad solutions. The main reason

for this choice is that the SA usually takes a long time especially when tested on big benchmarks.

However, such a solution is not the real SA but rather closer to a downhill greedy solution. One

possible future work is to solve the offset assignment problem using the traditional simulated

annealing. The initial solution for this SA is a random solution and the probability of accepting

a bad solution at the beginning is not very small so that the SA will be able to search the whole

search space rather than ending up with a premature solution in some local optima.

Heuristics for permuting variables in offset assignment In Chapter 4, an ILP solution is pre-

sented to solve the offset assignment problem with variable permutation. The computation time of

such formulation is usually exponential and thus it may become inconvenient to use for large em-

bedded applications. One possible future work is to develop a heuristic based solution to the offset

assignment problem with variables permutation. Such solution should take into consideration the

structure of the access graph and try to apply variable permutation to change the AS into one with

smaller cost.

Incorporating statement reordering in the ILP formulation The ILP formulation in Chapter 4

considers only variable permutation. Statement reordering is not considered. Statement reordering

can be an effective approach to further improve the results. An ILP model that takes both vari-

able permutation and statement reordering into account can be a possible future work. Statement

reordering is usually based on the dependence analysis so that the solution is legal.

A new approach to general offset assignment In Chapter 4, a new approach to the general offset

assignment problem is presented. In this new approach, the access sequence is partitioned based

on partitioning the variable accesses rather than the variables. Partitioning the variables means that

a variable can be accessed by one and only one address register. However, partitioning the ac-

135

cesses allows two accesses of the same variable to be addressed by different address registers. An

ILP solution is presented to this new CGOA. One possible future work is to construct a heuristic

solution based on the approach presented in Chapter 4 and to perform extensive testing on differ-

ent benchmarks to show how powerful this new approach is compared to the traditional CGOA

solution.

8.2.2 MPSoCs: Memory-Aware Scheduling and SPM Management

Data allocation and experimental evaluation in MPSoC scheduling In Chapter 6, we stud-

ied the task scheduling problem for embedded applications on an MPSoC concurrently with SPM

memory partitioning. In scheduling such applications, we assumed a simplistic data allocation

technique. Our data allocation technique follows the increasing order byte/ f req of the data vari-

ables where bytei is the size of the variable vi and f reqi is the number of times vi is accessed. A

more involved data allocation technique is expected to further improve the results. In Chapter 7,

we presented a framework for resource partitioning and task scheduling for multiple concurrently

executing applications in a multi-processor systems on chip system. Experimental evaluation of

this framework is on our agenda as a future work.

Scratchpad memory management The trend nowadays in embedded systems (and some hetero-

geneous multicore designs such as the IBM Cell processor) is to use fully software-controlled fast

memories known as scratchpad memories (SPMs). SPMs demonstrate many benefits that ranges

from predictability of access time, to low energy consumption. Being of limited size, usually not

all the variables in the program can be allocated to such memories at the same time and thus a big

chunk of the variables will reside in the slow main memory. Accessing variables from the main

memory is usually within the range of hundred times slower than accessing them from the SPM.

Hence, the proper allocation of variables to the SPM can make a big difference in the speed of

the application execution. One possible future work is to address the problem of deciding which

variables should be brought to the SPM and at what time during the execution. The choice of the

variables or the chunk of arrays elements to be brought to the SPM should be based on the reuse

distance, i.e., heavily reused variables should have higher priority to be in the SPM. Another prob-

136

lem is whether the variable allocation should be static or dynamic. Static allocation means that the

variables allocated in the SPM will stay there throughout the program execution. Dynamic alloca-

tion gives the choice of allocating the variables to the SPM for a certain amount of time. Since a

program may access non-contiguous elements of an array in a certain iteration, bringing the whole

column (row) of arrays to the SPM at a time means that we may be bringing many array elements

that will not be used in this iteration or a nearby (in time) future iteration. A way to solve this

problem is to introduce local arrays and to map only the used elements of the original arrays in this

iteration to the local arrays. When such arrays are brought to the SPM, most of their elements will

be used in the current iteration and thus the SPM memory will be effectively utilized.

Locality enhancement Another issue for MPSoCs is management of locality in applications. Lo-

cality enhancement in a certain program means making accesses to reused elements closer in time

through reducing the reuse distance. Smaller reuse distance means that heavily reused elements

will be brought from the main memory to the SPM/cache in a certain iteration and thus more hits

and less misses will occur when executing the program. The main idea is to maximize the access

of variables from the fast SPM memories and to minimize the slow trips to the main memory. A

related important aspect is exploiting parallelism. A possible future work is to explore building a

framework for automatic locality enhancement and program parallelization based for MPSoCs.

137

References

[1] Ilog inc., ilog cplex 8.1 reference manual. http://www.ilog.com/products/cplex.

[2] Majc-5200. http://www.sun.com/microelectronics/ MAJC/5200wp.html.

[3] Mp98: A mobile processor. http://www.labs.nec.co.jp/MP98/top-e.htm.

[4] Nomadik: A multimedia application processor. http://www.st.com.

[5] Offsetstone. http://www.address-code-optimization.org.

[6] F. Angiolini, L. Benini, and A. Caprara. Polynomial-time algorithm for on-chip scratchpad
memory partitioning. In International Conference on Compilers, Architecture, and Synthesis
for Embedded Systems (CASES), 2003.

[7] G. Araujo and S. Malik. Register allocation for indirect addressing in loops. 8(1), 1999.

[8] S. Atri, J. Ramanujam, and M. Kandemir. Improving offset assignment for embedded pro-
cessors. Languages and Compilers for High-Performance Computing, S. Midkiff et al. (eds.),
Lecture Notes in Computer Science, Springer-Verlag, 2001.

[9] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for computer system
modeling. IEEE Computer, 35(2), 2002.

[10] O. Avissar, R. Barua, and D. Stewart. An optimal memory allocation scheme for scratch-
pad-based embedded systems. ACM Transactions on Embedded Computing Systems, 1(1),
2002.

[11] F. Balasa, F. Catthoor, and H. Man. Background memory area estimation for multidimen-
sional signal processing systems. IEEE Transactions on VLSI Systems, 3(2):157–172, 1995.

[12] R. Banakar, S. Steinke, B. Lee, M. Balakrishnan, and P. Marwedel. Scratchpad memory: De-
sign alternative for cache on-chip memory in embedded systems. In International Conference
on Hardware-Software Codesign (CODES), 2002.

[13] D. H. Bartley. Optimizing stack frame accesses for processors with restricted addressing
modes. Software-Practice and Experience, 22(2):102–111, 1992.

[14] A. Basu, R. Leupers, and P. Marwedel. Array index allocation under register constraints in
dsp programs. 12th Int. Conf. on VLSI Design, 1999.

[15] L. Benini, D. Bertozzi, A. Guerri, and M. Milano. Allocation and scheduling for mpsoc
via decomposition and no-good generation. In International Joint conferences on Artificial
Intelligence (IJCAI), 2005.

[16] F. Boesch and J. Gimpel. Covering the points of a digraph with point-disjoint paths and its
application to code optimization. In Journal of the ACM, 1977.

[17] K. S. Chatha and R. Vemuri. Hardware-software partitioning and piplined scheduling of
transformative applications. IEEE Transactions on VLSI, 10(3), 2002.

138

[18] G. Chen and M. Kandemir. Optimizing address code generation for array-intensive dsp ap-
plications. In Proc. International Symposium on Code Generation and Optimization, 2005.

[19] G. Chen, M. Kandemir, M. J. Irwin, and J. Ramanujam. Reducing code size through address
register assignment. ACM Transactions on Embedded Computing (TECS), 5(1):225–258,
2006.

[20] Y. Cho, N.-E. Zergainoh, S. Yoo, A. Jerraya, and K. Choi. Scheduling with accurate com-
munication delay model and scheduler implementation for multiprocessor system-on-chip.
Design Automation for Embedded Systems, 2007.

[21] M. Collin, R. Haukilahti, M. Nikitovic, and J. Adomat. Socrates a multiprocessor soc in 40
days. In Proceedings of Design Automation and Test in Europe (DATE), 2001.

[22] A. Dominguez, S. Udayakumaran, and R. Barua. Heap data allocation to scratch-pad memory
in embedded systems. Journal of Embedded Computing, 2005.

[23] P. Francesco, P. Marchal, D. Atienza, L. Benini, F. Catthoor, and J. M. Mendias. An integrated
hardware/software approach for run-time scratchpad management. In Proceedings of the 41st
annual conference on Design automation, 2004.

[24] J. G. Ganssle. The art of programming embedded systems. Academic Press Inc., San Deigo,
California, 1992.

[25] D. Gaski and R. H. Kuhn. Guest editors introduction-new vlsi tools. IEEE Computer,
16(2):14–17, 1983.

[26] C. Gebotys. Dsp address optimization using a minimum cost circulation technique. In Pro-
ceedings of the IEEE/ACM International Conference on Computer-Aided Design, 1997.

[27] P. Hanlai, L. Ming, and J. Jing. Extended control graph based performance optimization
using scratch-pad memory. In Proceedings of the Design, Automation and Test in Europe
Conference (DATE), 2005.

[28] J. L. Hennessy and D. A. Patterson. Computer architectures: A quantitative approach. Mor-
gan Kaufmann, 1996.

[29] J. Hong. Memory optimization techniques for embedded systems. Ph.D. Thesis, Dept. of
Electrical and Computer Engineering, Louisiana State University, 2002.

[30] J. Hopcroft and R. Karp. An n5/2 algorithm for maximum matchings in bipartite graphs. In
Journal of the ACM, 1973.

[31] J. Huynh, J. N. Amaral, P. Berube, and S. A. Touati. Evaluation of offset assignment heuris-
tics. Proceedings International Conference on High Performance Embedded Architectures
and Compilers (HiPEAC), 2007.

[32] M. Kandemir and N. Dutt. Memory systems and compiler support for mpsoc architectures.
Multiprocessor Systems-on-Chips, 2005.

[33] M. Kandemir, J. Ramanujam, and A. Choudhury. Exploiting shared scratch pad memory
space in embedded multiprocessor systems. In Design Automation Conference (DAC), 2002.

139

[34] M. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrishnan, I. Kadayif, and A. Parikh. Dy-
namic management of scratch-pad memory space. In Proceedings of the 38th Conference on
Design Automation, 2001.

[35] S. Kirkpatrick, C. D. G. Jr., and M. P. Vecchi. Optimization by simulated annealing.
220(4598):671–680, 1983.

[36] V. Krishnan and J. Torrellas. A chip multiprocessor architecture with speculative multi-
threading. In IEEE Transactions on Computers, Special Issue on Multithreaded Architecture,
1999.

[37] S.-R. Kuang, C.-Y. Chen, and R.-Z. Liao. Partitioning and pipelined scheduling of embed-
ded systems using integer linear programming. In International Conference on Parallel and
Distributed Systems (ICPADS), 2005.

[38] Y.-K. Kwok and I. Ahmad. Benchmarking and comparison of the task graph scheduling
algorithms. Journal of Parallel and Distributed Computing, 59(3), 1999.

[39] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: A tool for evaluating and
synthesizing multimedia and communications systems. In Proceedings IEEE International
Symposium on Microarchitecture, pages 330–335, 1997.

[40] R. Leupers. Code generation for embedded processors. In Proceedings 13th International
System Synthesis Symposium (ISSS), 2000.

[41] R. Leupers. Offset assignment showdown: Evaluation of dsp address code optimization al-
gorithms. In Proceedings 12th International Conference on Compiler Construction (CC)
Warsaw, Poland, Springer LNCS 2622, 2003.

[42] R. Leupers, A. Basu, and P. Marwedel. Optimized array index computation in dsp programs.
In Proc. ASP-DAC, 1998.

[43] R. Leupers and F. David. A uniform optimization technique for offset assignment problems.
In Proceedings 11th International System Synthesis Symposium (ISSS), 1998.

[44] R. Leupers and P. Marwedel. Algorithms for address assignment in dsp code generation. In
Proceedings International Conference on Computer-Aided Design (ICCAD), 1996.

[45] B. Li and R. Gupta. Simple offset assignment in presence of subword data. In Proceedings
International Conference on Compilers, Architectures and Synthesis for Embedded Systems
(CASES 2003), pages 12–23, 2003.

[46] S. Liao. Code generation and optimization for embedded digital signal processors. Ph.D.
Thesis, Dept. of Electrical Engineering and Computer Science, Massachusetts Institute of
Technology, 1996.

[47] S. Liao, S. Devadas, K. Keutzer, S. Tjiang, and A. Wang. Storage assignment to decrease
code size. In Proc. ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 1995.

140

[48] Z. Ma, C. Wong, S. Himpe, E. Delfosse, F. Catthoor, J. Vounckx, , and G. Deconinck. Task
concurrency analysis and exploration of visual texture decoder on a heterogeneous platform.
In IEEE Workshop on Signal Processing Systems (SiPS), 2003.

[49] P. Marwedel, L. Wehmeyer, M. Verma, S. Steinke, and U. Helmig. Fast, predictable and
low energy memory references through architecture-aware compilation. In Proceedings of
the conference on Asia South Pacific design automation: electronic design and solution fair,
2004.

[50] S. Meftali, F. Gharsalli, F. Rousseau, and A. Jerraya. An optimal memory allocation for
application-specific multiprocessor system-on-chip. In International Symposium on Systems
Synthesis (ISSS), 2001.

[51] G. D. Micheli, R. Ernst, and W. Wolf. Readings in hardware/software co-design. Morgan
Kaufmann, 2002.

[52] M. Mitchell. An introduction to genetic algorithms (complex adaptive systems). The MIT
Press Publisher, 1998.

[53] S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann Publishers
Inc., 1997.

[54] B. A. Nayfeh, L. Hammond, and K. Olukotun. Evaluating alternatives for a multiprocessor
microprocessor. In Proceedings of the 23rd International Symposium on Computer Architec-
ture, 1996.

[55] R. Neimann and P. Marwedel. Hardware/software partitioning using integer programming.
In Design Automation and Test in Europe (DATE), 1996.

[56] K. Olukotun, B. A. Nayfeh, L. Hammond, K. Wilson, and K. Chang. The case for a single
chip multiprocessor. In Proceedings of the 7th International Conference on Architectural
Support for Programming Languages and Operating Systems, 1996.

[57] D. Ottoni, G. Ottoni, G. Araujo, and R. Leupers. Improving offset assignment through si-
multaneous variable coalescing. In 7th International Workshop on Software and Compilers
for Embedded Systems (SCOPES’03),, 2003.

[58] D. Ottoni, G. Ottoni, G. Araujo, and R. Leupers. Offset assignment using simultaneous
variable coalescing. ACM Transactions on Embedded Computing Systems, 5(4), 2006.

[59] G. Ottoni and G. Araujo. Efficient array reference allocation for loops in embedded proces-
sors. In Proceedings of the IEEE Workshop on Embedded System Codesign (ESCODES’02),
2002.

[60] G. Ottoni, S. Rigo, G. Araujo, S. Rajagopalan, and S. Malik. Optimal live range merge
for address register allocation in embedded programs. In Proceedings 10th International
Conference on Compiler Construction, CC 2001 LNCS 2027, pp. 274–288. Springer, 2001.

[61] O. Ozturk and M. Kandemir. An integer linear programming based approach to simultaneous
memory space partitioning and data allocation for chip multiprocessors. In IEEE computer
society Annual Symposium on VLSI (ISVLSI), 2006.

141

[62] O. Ozturk, M. Kandemir, and S. Tosun. An ilp based approach to address code generation for
digital signal processors. Proceedings Great Lakes Symposium on VLSI (GLSVLSI), 2006.

[63] P. Panda, N. Dutt, and A. Nicolau. Architectural exploration and optimization of local mem-
ory in embedded systems. In Proceedings of the 10th International Symposium on System
Synthesis, 1997.

[64] P. Panda, N. Dutt, and A. Nicolau. Efficiant utilization of scratch-pad memory in embedded
applications. In Proceedings of the European Conference on Design and Test, 1997.

[65] P. Panda, N. Dutt, and A. Nicolau. Memory issues in embedded systems-on-chip: Optimiza-
tion and exploration. Kluwer Academics Publisher, 1999.

[66] P. Panda, N. D. Dutt, and A. Nicolau. On chip vs off chip memory: The data partitioning
problem in embedded processor-based systems. ACM Transactions on Design Automation of
Electronic Systems (TODAES), 5(3), 2000.

[67] A. Rao and S. Pande. Storage assignment optimizations to generate compact and efficient
code on embedded dsps. In Proc. ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 128–138, 1999.

[68] J. Sjodin and C. V. Platen. Storage allocation for embedded processors. In International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems (CASES), 2001.

[69] S. Steinke, L. Wehmeyer, B.-S. Lee, and P. Marwedel. Assigning program and data objects
to scratchpad for energy reduction. In Design Automation and Test in Europe (DATE), 2002.

[70] A. Sudarsanam, S. Liao, and S. Devadas. Analysis and evaluation of address arithmetic
capabilities in custom dsp architectures. In Proceedings Design Automation Conference,
pages 287–292, 1997.

[71] N. Sugino, S. Iimuro, A. Nishihara, and N. Jujii. Dsp code optimization utilizing memory
addressing operation. IEICE Transaction Fundamentals, pages 1217–1223, 1996.

[72] V. Suhendra, C. Raghavan, and T. Mitra. Integrated scratchpad memory optimization and task
scheduling for mpsoc architecture. In International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES), 2006.

[73] F. Sun, N. Jha, S. Ravi, and A. Raghnunathan. Synthesis of appication-specific heterogeneous
multiprocessor architectures using extensible processors. In International Conference on
VLSI Design, 2005.

[74] R. E. Tarjan. Data structures and network algorithms. SIAM, 1983.

[75] S. Udayanarayanan and C. Chakrabarti. Address code generation for digital signal proces-
sors. In Proceedings 38th Design Automation Conference (DAC), 2001.

[76] M. Verma, L. Wehmeyer, and P. Marwedel. Cache-aware scratch pad allocation algorithm.
In Proceedings of the Design, Automation and Test in Europe Conference (DATE), 2004.

142

[77] M. Verma, L. Wehmeyer, and P. Marwedel. Dynamic overlay of scratchpad memory for
energy minimization. In Proceedings of the end IEEE/ACM/IFIP International Conference
on Hardware/Software Codesign and System Synthesis, 2004.

[78] B. Wess and M. Gotschlich. Optimal dsp memory layout generation as a quadratic assign-
ment problem. In Proceedings International Symposium on Circuits and Systems (ISCAS),
1997.

[79] B. Wess and T. Zeitlhofer. Optimum address pointer assignment for digital signal processors.
International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2004.

[80] N. Zervas, K. Masselos, and C. Goutis. Code transformations for embedded multimedia
application: Impact on power and performance. In Proceedings of the ISCA Power-Driven
Microarchitecture Workshop, 1998.

[81] X. Zhuang, C. Lau, and S. Pande. Storage assignment optimizations through variable coales-
cence for embedded processors. In Proceedings ACM SIGPLAN Conference on Language,
Compiler, and Tool Support for Embedded Systems (LCTES), pages 220–231, 2003.

[82] V. Zivojnovic, J. Velarde, and C. Sclaager. Dspstone, a dsp benchmarking methodology.
Technical report, Aachen University of Technology, 1994.

143

Vita

Hassan Salamy is a native of Lebanon. He was born in Beirut in February, 1982. He received

his Bachelor of Engineering degree in computer engineering from Lebanese American University,

Byblos, Lebanon, in 2003. He took four masters level courses at the Lebanese American University

before moving to the USA. In the fall of 2004, he joined the graduate program in the Department of

Electrical and Computer Engineering at Louisiana State University (LSU). He received his Master

of Science degree in electrical engineering from LSU in 2006. He is expected to receive his doctoral

degree in electrical engineering in August 2009.

144

	Louisiana State University
	LSU Digital Commons
	2009

	Compilation and Scheduling Techniques for Embedded Systems
	Hassan Salamy
	Recommended Citation

	tmp.1483830367.pdf.Ae0Zk

