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Abstract 
 
A common way to locate an emitter within a wireless sensor network requires the estimation of 
time-difference-of-arrival (TDOA) parameters using data collected by a set of spatially separated 
sensors.  Compressing the data that is shared among the sensors can provide tremendous savings 
in terms of the energy and transmission latency. Traditional MSE and perceptual based data 
compression schemes fail to accurately capture the effects of compression on the TDOA 
estimation task; therefore, it is necessary to investigate compression algorithms suitable for 
TDOA parameter estimation. 
 
This thesis explores the effects of data compression on TDOA parameter estimation accuracy.  
The first part of this document investigates the decimation of band-limited communication 
signals which are oversampled to achieve high precision in the TDOA estimate.  In the second 
part, we follow the work of [19-22] in implementing a Fisher Information-based subband 
encoding scheme, an approach that has been shown to provide better results than the traditional 
MSE-based approach.  A pseudo-QMF filter bank [8] is implemented, which is computationally 
more efficient than wavelet packet filter banks, at the cost of relaxing perfect reconstruction 
conditions.  Additionally, a suboptimal bit allocation algorithm is developed which further 
lessens the sensor resource requirements for compression.  
 
 
 
 
 

 x



Chapter 1 
 
Introduction 
 
1.1 Position and Velocity Estimation 
 
Wireless location finding has emerged as an essential public safety feature in cellular networks 
due to a mandate issued by the FCC in 1996 [1].  The E911 mandate requires wireless service 
providers to deliver the accurate location of a 911 caller to emergency responders.  In addition to 
its immediate EMS and military applications, there exists much potential in the commercial 
sector as well [1][2].  As the use of location sensitive applications becomes more prevalent, the 
demand for reliable, cost-effective passive location systems will subsequently grow [1][2]. 
  
A commonly used method for estimating the position of an emitter within a wireless sensor 
network requires the use of time-difference-of-arrival (TDOA) measurements [3][4]. The locus of 
points where the difference in distance to two sensors is proportional to the TDOA estimate 
obtained from the sensors is a hyperbola on which the emitter lies (Fig. 1.1).  If the elevation of 
the emitter is known, at least 3 sensors are required to determine its position [5].  Including 
additional information from redundant sensors can help to improve the accuracy of the 
estimation. Similarly, the velocity of an emitter can be determined using frequency-difference-of-
arrival (FDOA) information. 
 

 
Figure 1.1 Passive location of emitter using TDOA estimates 

 
 
1.2 The Data Compression Issue 
 
In order to estimate TDOA or FDOA parameters, it is necessary for information to be shared 
between sensors.  Sharing data among sensors can introduce significant network delays that may 
affect the performance of the location application.  To minimize network latency and reduce 
power consumption by, possibly, mobile sensors, the data collected by each sensor should be 
compressed before it is transmitted to a neighboring sensor (Fig 1.2a) or a central fusion center 
(Fig 1.2b) for processing. 
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Figure 1.2  (a) distributed estimation (b) centralized estimation 
 

In addition to noise introduced at each receiver, the combined decimation and quantization of the 
signal information will also contribute noise to TDOA estimate.  Unlike traditional perceptual 
encoding schemes, the fidelity criterion of this particular application is the impact on the 
TDOA/FDOA parameter estimates.  
 
 
1.3 Scope of Work  
  
This thesis will outline the issues related with compressing data for the purpose of geo-location 
and will develop a tool which will aid in the design of compression algorithms for digital linearly 
modulated signals of the form: 
 

v(t) = Ing(t − nT)
n=−∞

∞

∑      (1.1) 

 
Where  is a sequence of symbols, In{ } gT (t)  is a transmission filter, and v  is the continuous 
time complex envelope of the modulated signal.  Examples of digital modulation techniques 
which are of the form in equation 1.1 include pulse amplitude modulation (PAM), phase shift 
keying (PSK), and quadrature amplitude modulation (QAM). 

(t)

 
The developments in the remainder of this thesis do not include the effects of multipath or 
fading.  Additionally, it is assumed that the sensors and fusion center have clocks which are 
perfectly synchronized, so the effects of clock jitter are also not included. 
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Chapter 2 
 
Literature Review 
 
2.1 Data Compression Overview 
 
Data Compression or Source Coding is the process of removing unwanted redundancy from a 
signal while satisfying a fidelity criterion to reduce transmission bandwidth or space required for 
storage [6].  Some examples of popular perceptual [6] encoding schemes include the MPEG 
[6][7] and JPEG [6][7] standards. 
 
A common lossy data compression algorithm structure consists of several stages as depicted in 
Fig. 2.1.  First, the input is transformed to a domain suitable for encoding.  The samples of the 
transformed signal are then selectively mapped to a smaller set of symbols, which require fewer 
bits to represent, through the process of quantization. The compressed data is then transmitted 
over a channel to a decoder which decodes the quantized sequence and restores the information 
to its original domain. 
 
 

 
 

Figure 2.1 A common lossy data compression algorithm structure 
 
The majority of existing lossy compression schemes are designed for multimedia applications 
and, consequentially, use perceptual based measures to determine loss of fidelity.  The focus of 
this thesis will be on the effects of lossy compression on TDOA/FDOA estimation. 
 
 
2.2 Transform Coding 
 
It is common in data compression schemes to transform a signal into a domain that is more 
suitable for analysis or encoding.  For example, in subband coding, a signal is decomposed into a 
number of frequency subbands (Fig. 2.2), each of which can be encoded independently (Fig 2.2).  
There exist many techniques for performing subband decomposition including quadrature-mirror 
filtering (QMF) and polyphase decomposition [7].  Two special cases of these methods are 
presented: the wavelet packet transform [7] and the pseudo-quadrature mirror filter bank [8]. 
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Figure 2.2 Subband Decomposition 

 
The wavelet packet transform (WPT) is a cascade of quadrature-mirror filter banks and can take 
on any dyadic tree structure (Fig 2.3).  Because QMF banks satisfy the perfect reconstruction 
perfect reconstruction conditions, the input to a WPT analysis filter bank can be perfectly 
reconstructed by a companion synthesis filter bank. Aliasing which is introduced by overlapping 
from adjacent frequency bands will be completely cancelled.  Although the WPT allows for 
perfect reconstruction, due to its recursive nature, it is not the most computationally efficient 
structure. 

 

 
Figure 2.3 Wavelet Packet Decomposition 

 
If the perfect reconstruction conditions are relaxed, a more efficient structure can be 
implemented such as the pseudo-quadrature mirror filter bank (PQF)[8].  The pseudo-quadrature 
mirror filter bank is a cosine-modulated filter bank which is designed to minimize, but not 
eliminate, aliasing between adjacent frequency subbands.  Section 2.6 provides a more detailed 
description of the filter bank and a brief analysis of its performance.  In general, the order of a 
near-perfect reconstruction filter is much smaller than that of a perfect reconstruction filter with 
the same transition band slope.  Additionally, the number of operations required by a polyphase 
filter bank is less than that of a recursive filter bank. 
 
 
2.3 Quantization 
 
Quantization is the process of mapping the outputs of an information source, , to a 
representation sequence,  , which requires fewer bits to describe.  The function which defines 
the mapping is called a quantizer [9][10].  In scalar quantization, each single-source output is 
quantized into a number of levels and the levels are encoded into a binary sequence [9][10].  If 
we are dealing with an analog source, each output is a real number.  A scalar quantizer, 

x
ˆ x

Q(⋅) , 
partitions ℜ  into N disjoint subsets, ℜ i,1 ≤ i ≤ N  [11].  Corresponding to each subset, , is a 
representation point, 

ℜi
ˆ x i (Fig. 2.4). 
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Figure 2.4 Scalar quantization of ℜ  

 
If the source output at time k, xk , belongs to ℜi, it is then represented by ˆ x i [9]. 
 

Q(x) = ˆ x i for all x ∈ ℜi   (2.1) 
 
The quantized symbol at time k, ˆ x k , is then encoded as a binary sequence and transmitted.  Since 
there are N quantization levels, the number of bits required to transmit each source output is 
R = log2 N . 
  
Since quantization provides a many-to-one mapping (i.e. ℜi → ˆ x i), the original source symbol, 
xk , can not be obtained from its quantized version, ˆ x k .  The distance between a source output at 
time k, xk , and its quantized version, ˆ x k , can be expressed as the function d(xk, ˆ x k ). A 
commonly used distortion measure is the squared-error [6][9] [11][12]: 

 
d(xk, ˆ x k ) = (xk − ˆ x k )2    (2.2) 

 
If d(xk, ˆ x k ) is the distortion measure per single source output, then distortion between a sequence 
of n outputs, , and the corresponding quantized values, ,is the average of the distortion 
between the individual outputs: 

Xn ˆ X n

 

     d(Xn, ˆ X n ) = 1
n d(xk, ˆ x k )

k=1

n

∑    (2.3) 

 
Equation 2.3 assumes that the position of the error in the sequence is unimportant [9].  Since the 
source output is a random process,  is a random variable.  The distortion for the source 
is defined as the expected value of the random variable . 

d(Xn, ˆ X n )
d(Xn, ˆ X n )

 

   D = E[d(Xn, ˆ X n )] = 1
n E[d(xk, ˆ x k )]

k=1

n

∑ = E[d(xk, ˆ x k )]  (2.4) 

 
Where the final equality in equation 2.4 holds under the assumption that the source output is a 
stationary random process [12]. 
 
The distortion, D, can be expressed as a function of the rate, R [9][11].  In general, D is 
monotonically decreasing in R [9][10][11][12].  A well known result in rate-distortion theory 
[10][12] is that the distortion-rate function, D(R), of a discrete-time, continuous-amplitude, 
memoryless source with zero-mean and finite variance, σ x

2 , (with respect to the mean-squared-
error distortion measure) is upper bounded by: 
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D(R) ≤ σ x

22−2R     (2.5) 
 
Where equality holds when the source outputs are Gaussian with variance σ x

2  [12]. The limit in 
2.5 can be approached asymptotically using very complex encoders and decoders [9].  
 
The simplest scalar quantizer is the uniform quantizer, which has regions, , of equal length, Δ, 
(with the exception of  and 

ℜi

ℜ1 ℜN ).  Uniform quantization is optimal when the probability 
density function (PDF) of the source output is uniform.  If the PDF of the source output is known 
and is not uniform, an optimal quantizer can be designed through use of an algorithm which 
iteratively determines the boundaries of the partition regions [13]. 
 
For the scenario of a wireless sensor network, we use uniform scalar quantization due to its ease 
of implementation and our lack of knowledge of source statistics.  For a finite amplitude signal 
in additive noise, the partition length, Δ, is given by [19]: 
 

Δ =
A2 + σ 2

2b−1 − 1
2

     (2.6) 

  
Where A is the peak amplitude of the signal, σ 2 is the variance of additive noise, and b is the 
number of bits allocated for quantization.  
 
 
2.4 Bit Allocation 
 
In a transform coding scheme, it is often required to encode segments of a signal independently, 
for example, in subband encoding, each frequency subband is separately encoded.  Given a 
single rate constraint and a set of subbands to be individually quantized, the problem of 
determining an appropriate way to allocate bits arises. 
 
As mentioned in the previous section, the distortion introduced by quantization can be expressed 
as a function of the rate, D(R).  For an M-channel subband encoder, each subband will have its 
own rate-distortion function, Di(R),1≤ i ≤ M .  When the distortion measure is additive, the total 
distortion can be computed as the sum of the distortion of the individual subbands.  Given a set 
of independent rate-distortion functions, Di(R), the task of finding a bit allocation vector, 

  B = bi ≥ 0 i ∈ 1,2,L,M{ }, which minimizes the total distortion, using less than R bits, is defined 
as: 
 

min
B

Di(bi
i=1

M

∑ )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 subject to: bi
i=1

M

∑ ≤ R
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
 
  (2.6) 

⎭
 
When a signal is stationary and its statistics are known a priori, a model can be used to determine 
a bit allocation vector, B, which will be optimal on average.  If the signal is highly non-stationary 
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or its statistics are not known, an operational algorithm can be used to calculate an optimal bit 
allocation for each block which is quantized.  Determining the bit allocation requires solving the 
constrained optimization problem in equation 2.6, which may not be computationally feasible for 
a wireless sensor to perform on each quantization block.  An efficient Lagrange multiplier based 
technique [14] has been implemented to solve the integer optimization problem off-line (see 
Appendix A).  It is assumed that a central fusion center will observe a portion on an intercepted 
signal and calculate a bit allocation vector, B, which will then be sent to the sensors. Performing 
the bit allocation at the fusion center will reduce the resources required by each sensor without 
significantly affecting the overall geo-location task. 
 
If the rate-distortion functions are not convex, or do not contain a point which meets the required 
budget, then the Lagrange optimization method will not provide an optimal solution [6].  When 
the Lagrange multiplier method is inadequate, the allocation can be formulated as a deterministic 
dynamic programming problem.  Although dynamic programming can provide a better solution, 
it requires significantly more resources to implement and may not be feasible in real-time 
applications. 
 
 
2.5 TDOA and FDOA Parameter Estimation 
 
In order to develop a distortion measure which is appropriate for geo-location, it is important to 
examine the TDOA and FDOA estimation process.  The TDOA parameter is determined by 
observing data received by a pair of physically separated sensors (Fig 2.5a) and searching for the 
time offset of a hypothesized common signal.  Likewise, the FDOA parameter can be found by 
determining the frequency offset between the signals received at the sensors (Fig. 2.5b).  A 
common way to perform the estimation process is through the use of cross-correlation [15]. 
 

 
Figure 2.5 (a) stationary emitter (b) mobile emitter in wireless sensor network 

 
 
Let x1(t)denote the signal observed by sensor 1 and x2(t)the signal observed by sensor 2.  Let 
both signals contain a common component and a white Gaussian noise component, , s(t) )(tni
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which is assumed to be independent at each sensor. 
 
    x1(t) = s(t)e j 2πf1t + n1(t)    (2.7) 
    x2(t) = s(t − D)e j 2πf2t + n2(t)    (2.8) 
 
The complex ambiguity function (CAF) [15][4] is defined as: 
 

A(τ, f ) = x1(t)x2
*(t + τ)e− j 2πftdt

0

T∫    (2.9) 
 
Notice that the CAF is the cross-correlation of the signals observed by the two sensors, 
modulated by a term f.  The time lag, τ , and frequency shift, f, parameters are to be searched 
simultaneously for values that maximize ),( fA τ .  The combined TDOA/FDOA estimation 
process can be expressed as: 
 
     max

τ , f
A(τ, f )      (2.10) 

 
Assuming that there are no hidden periodicities in the signals x1(t)  and x2(t), and the parameters 
τ  and f remain constant within the integration time T; the ambiguity function will peak as 

D→τ  and , creating a unique “correlation lobe” (Fig. 2.6).   21 fff −→

 
Figure 2.6 Complex Ambiguity Function 
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Given that  is aperiodic, the CAF should possess a unique, clearly defined maximum.  When 
the signals 

s(t)
xi(t)  contain additive noise , the peak location of the CAF will be perturbed.  It 

has been shown [4][15][16] that the TDOA and FDOA estimates are unbiased and have a 
variance that achieves the Cramer-Rao bound when any of several reasonable techniques is used 
to locate the apparent peak.  When the additive noise, ni , is white and Gaussian, the Cramer-
Rao lower bounds for TDOA and FDOA estimation are given as [15][16]: 

ni(t)

(t)

 

  σTDOA ≥
1
β

1
BTγ

  where  β = 2π
f 2 S( f ) 2 df∫

S( f ) 2 df∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
2

 (2.11) 

  σ FDOA ≥
1
Te

1
BTγ

  where Te = 2π
t 2 s(t) 2 dt∫

s(t) 2 dt∫
⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
2

  (2.12) 

 
Where S( f ) 2  is the power spectrum density of the source signal , B is the noise bandwidth 
at the receiver, T is the integration time, 

s(t)
β  is termed rms radian frequency,  is termed rms 

integration time, and 
eT

γ  is the effective input signal-to-noise ratio (SNR)[4][15]: 
 

     1
γ

=
1
2

1
γ1

+
1
γ 2

+
1

γ1γ 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥     (2.13) 

 
Where γ1 is the SNR at sensor 1 and γ 2  is the SNR at sensor 2.  In order to accurately perform 
the estimation, the integration time-bandwidth product must be large, BT >>1.  A small effective 
SNR, γ , will degrade the accuracy of the estimate; however, the accuracy can be further 
improved by increasing the receiver bandwidth, B, or observation time, T. 
 
In order to improve the asymptotic performance of an unbiased estimator, we wish to minimize 
the Cramer-Rao lower bound or, equivalently, maximize its reciprocal, the Fisher Information, J 
[17]. 
 
      σ 2

TDOA ≥ J−1    (2.14) 
 
Lossy compression of the observed signal, xi(t) , will change its probability density function 
(PDF), which will, consequently, affect the value of the Fisher Information (FI).  Let J(x;τ ) 
denote the FI of the observed signal with respect to the TDOA parameter, τ , and J( ˆ x ;τ) denote 
the FI of the compressed signal. Our goal is to compress the observed signal in such a way that 
the difference in Fisher Information is minimized: 
   
     min

ˆ x 
{J(x;τ ) − J( ˆ x ;τ )}    (2.14) 

 
Since J(x;τ) ≥ J( ˆ x ;τ), for any compression scheme, the goal is [19]: 
 

 9



      max
ˆ x 

{J( ˆ x ;τ )}    (2.15) 
 
The Fisher Information for TDOA estimation when the two observed signals contain additive 
white Gausian noise can be expressed as [15][16]: 
 

     J(x;τ ) = BTγ
f 2 S( f ) 2 df

−∞

∞

∫

S( f ) 2 df
−∞

∞

∫
   (2.16) 

 
When the SNR at the two sensors is large, i.e. γ1 >>1,γ 2 >> 1, the third term in equation 2.13 is 
negligible and the effective SNR, γ , is approximately: 
 

      γ =
2γ1γ 2

γ1 + γ 2

    (2.17) 

 
The SNR for the ith sensor is defined as: 
 

      γ i =
S( f ) 2 df

−∞

∞

∫
σ i

2    (2.18) 

 
Where σ i

2 is the variance of the zero-mean additive white Gaussian noise at the ith sensor.  Using 
equation 2.18, the effective SNR, γ , can be rewritten as: 
 

      γ =
2 S( f ) 2 df

−∞

∞

∫
σ1

2 + σ 2
2    (2.19) 

 
Now, substituting the expression for the effective SNR (Eq. 2.19) into equation 2.16, the Fisher 
Information can then be expressed as: 
 

     J(x;τ ) = 2BT
f 2 S( f ) 2 df

−∞

∞

∫
σ1

2 + σ 2
2    (2.20) 

 
Focusing on the compression task at sensor i, we wish to compress the intercepted signal, xi(t) , 
to maximize equation 2.20.  For a fixed time-bandwidth product, BT, the term which we wish to 
maximize at sensor i is proportional to: 
 

     1
σ i

2 f 2 S( f ) 2 df
−∞

∞

∫     (2.21) 
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This approach has been used in previous works [18][19][20][22] in which the source signal, , 
is a frequency modulated (FM) signal.  Their works indicate that the FI-based approach provides 
better results than using standard MSE distortion criteria when compressing signals for TDOA 
and FDOA estimation.  For the remainder of this thesis, we will follow the work of [19][21][22] 
in developing a model for the Fisher Information which characterizes the effects of lossy 
compression on the TDOA estimation task.  

s(t)

 
As discussed in section 2.3, quantization introduces noise.  The signal, ˆ x i[k], resulting from 
quantization of samples of the intercepted signal, xi(t) , can be expressed as: 
 
    ˆ x i[k] = s[k] + ni[k] + e[k]    (2.22) 
 
Where s[k] is the sampled source signal at time k, ni[k] is the sensor noise, and e[k] is the 
quantization noise.  Following the work of [19][22], we will model the quantization noise, e, as 
white, uniformly distributed, zero mean, and independent of the sensor noise, , when the 
samples are quantized using multiple bits [19][22].  For multi-bit quantization, if 

, then the sum of the random variables, e and , will result in a random 
variable that is approximately Gaussian, with a variance that is the sum of the variances of the 
two random variables [19].  Including the effects of quantization noise (for the multi-bit case) 
into equation 2.21, we can then express the quantity which we are trying to maximize as: 

ni

var{e} << var{ni} ni

 

     
f 2 S( f ) 2 df

−∞

∞

∫
σ i

2 + q2     (2.23) 

 
Where q  is the variance of the quantization noise, which we model by [19]: 2

 
     q2 = 3π

2 σ 22−2b     (2.24) 
 
Where σ 2 is the variance of the intercepted signal, and b is the number of bits used for 
quantization.  As done in [19][21][22], we will use the Discrete Fourier Transform (DFT) of the 
intercepted signal, xi(t) , to evaluate the Fisher Information for the multi-bit quantization case 
[19] (the superscript “m” in  signifies multi-bit). ˜ J (m )

 

     ˜ J (m )(Xi[n]) =

2π 2 n2 Xi[n] 2

n=−N
2

N
2−1

∑
Nσ i

2 + qn
2   (2.25) 

 
Where Xi[n],−N

2 ≤ n ≤ N
2 −1 are the DFT coefficients of the samples of the signal xi(t) ;σ i

2 is the 
variance of the sensor noise,  (scaled by N as a result of the DFT [19]); and qn  is the 
variance of the quantization noise for the nth sample.  Notice that the Fisher Information (Eq. 
2.20) is dependent on the power spectrum density of the source signal, s .  For the FI 

ni(t) 2

(t)
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evaluation (Eq. 2.25) we are using the DFT of the observed signal, xi(t) , which contains both 
the source signal, , and the sensor noise, ; therefore, the expression which we are 
evaluating (eq. 2.25) is approximately the Fisher Information. 

s(t) ni(t)

 
Since the Fisher Information is proportional to the integral of the quadratically weighted PSD 
(Eq, 2.21), the choice of the DFT as the transform for analysis allows us examine the 
contribution of frequency components to the overall FI; therefore, we can selectively quantize 
frequency subbands to maximize the total FI. 
 
For the case of quantization to a single bit, the assumption that the variance of the sensor noise is 
large than the variance of  the quantization noise no longer holds.  We use the numerically 
computed FI given in [19] for quantization using a single bit: 
 

˜ J (1)(X1[n]) =
4

πNσ 2 n2 Im2{Xi[n]}exp −
2

Nσ 2 Re2{Xi[n]}
⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ×

1
1− erf 2(Re{Xi[n]}/( Nσ))

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

      + 4
πNσ 2 n2 Re2{Xi[n]}exp −

2
Nσ 2 Im2{Xi[n]}

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ ×

1
1− erf 2(Im{Xi[n]}/( Nσ))

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥  

           (2.26) 
 
Where Xi[n],−N

2 ≤ n ≤ N
2 −1 are the DFT coefficients of the samples of the signal xi(t) , and the 

superscript “1” in  signifies single-bit quantization. ˜ J (1)

 
In [21] the authors use the Discrete Fourier Transform to evaluate the Fisher Information of an 
intercepted signal, while using the Wavelet Packet Transform to transform the data for encoding.  
Similar to their approach, we will use the DFT to evaluate the FI, and employ the Pseudo-QMF 
bank to transform the data for encoding. 
 
 
2.6 Pseudo-QMF Filter Bank  
  
The pseudo-quadrature mirror filter (PQF) bank [8] is a cosine-modulated filter bank which is 
designed to cancel aliasing between adjacent frequency subbands.  Aliasing introduced by non-
adjacent subbands is comparable to stopband attenuation.  Due to its highly symmetric structure, 
the PQF can be implemented much more efficiently than the ordinary wavelet packet transform 
[7]. 
 
The difficulty of designing a pseudo-QMF bank lies in creating a single low-pass FIR prototype 
filter from which the rest of the filter bank can be constructed [7][23][24].  Once the prototype is 
obtained, its impulse response coefficients, , are modulated by a cosine term to created each 
subband filter.  The kth bandpass filter,

h(n)
Hk (n) , of an M channel analysis filter bank is obtained by 

[8]:  
 

Hk (n) = h(n)cos (2k +1)
2M n − π

4( )    (2.27a) 
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Similarly, the synthesis filters,Gk (n),1 ≤ k ≤ M , are obtained by [8]: 
 
    Gk (n) = h(n)cos (2k +1)

2M n + π
4( )    (2.27b) 

 
The operation of performing M filter convolutions with a window size of N requires M × N  
multiplications and  additions.  The implementation of the PQF requires M × N −1( ) 2M 2 + N  
multiplications and 2M 2 − 3M + N  additions when the number of subbands is a power of 2 and 
the prototype filter has length of 16 times the number of subbands [8].  Figure 2.7 demonstrates 
the computational savings of the pseudo-QMF filter bank, when using the previously mentioned 
optimization [8], versus performing M separate filter convolutions. 
 

 
Figure 2.7 Analysis filter bank (a) multiplications (b) additions 

 
Table 2.1 Analysis filterbank (a) multiplications (b) additions 

 
Analysis Filterbank Multiplications  Analysis Filterbank Additions 
subbands standard PQF  subbands standard PQF 
4 256 96  4 252 84 
8 1024 256  8 1016 232 
16 4096 768  16 3840 720 
32 16384 2560  32 15872 2464 

 
The filter bank is built from a single prototype filter which is designed to satisfy near-perfect 
reconstruction conditions within a certain tolerance [7].  The design of such a prototype filter 
generally requires solving a nonlinear constrained optimization problem [24].  For our 
simulations, we used the prototype filter coefficients specified in the MPEG audio standard [25]. 
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2.7 Spectral Characteristics of Digital Linearly Modulated Signals 
 
In order to develop an efficient bit allocation scheme for subband coding, it is important to 
determine the spectral content of the digitally modulated signal.  Consider a random information 
sequence  which is to be transmitted over a channel.  A modulator maps the digital 
information into analog waveforms that match the characteristics of the channel [10].  We will 
consider the class of memoryless linear modulation methods with the following base-band 
representation [10]: 

In{ }

 

v(t) = IngT (t − nT)
n=−∞

∞

∑     (2.28) 

 
Where  is a set of digital symbols,In{ } gT (t)  is a pulse-shaping filter (Fig 2.8), and the pulse 
duration is T. 
 

 
Figure 2.8 Digital sequence shaped by transmission filter 

 
Examples of modulation methods belong to this class include pulse amplitude modulation, 
phase-shift keying, and quadrature amplitude modulation [9][10].  Assuming that {In}is a wide-
sense stationary process with mean, μi, and variance, σ i

2, the power spectrum density (PSD) of 
the modulated signal (in baseband form) can be expressed as [10]: 
 

φvv ( f ) = σ i
2

T G( f ) 2 + μ i
T G( m

T ) 2δ( f − m
T )

m=−∞

∞

∑    (2.29) 

 
Where G( f ) 2  is the PSD of the pulse shaping filter, gT (t) .  When the information symbols In{ } 
are equally likely and symmetrically distributed in the complex plane [10], μi = 0, and the 
discrete part of equation 2.29 vanishes: 
 

φvv ( f ) = σ i
2

T G( f ) 2    (2.30) 
 
This implies that under the given conditions, the PSD of the baseband signal is simply a scaled 
version of the PSD of the pulse shaping filter, G( f ) 2 . 
 
It is assumed that the sensors we will be using are provided with the carrier frequency of the 
signal, so that we can remove the carrier component and encode the complex envelope of the 
signal.  Given the complex envelope of a digitally modulated signal of the form in equation 2.28, 
assuming that the sequence {In} is a zero-mean stationary random process, if we capture a 
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sufficiently long portion of the signal and observe its spectrum, we can compute the Fisher 
Information and determine an appropriate bit allocation.  The bit allocation will be effective for 
the remaining duration of the signal so long as the pulse shaping filter or symbol rate, 1

T , does 
not change. 
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Chapter 3 
 
The Effects of Decimation 
 
3.1 Motivation for Decimation 
 
In order to accurately perform the TDOA estimation process, it is necessary to sample the 
observed continuous-time signal at a very high rate.  The cross-correlation of two discrete-time 
signals will yield a discrete sequence; therefore, when searching for the peak of the cross-
correlated signals, the precision of the estimate will be limited to integer multiples of the 
sampling period (assuming interpolation is not used). 
 
Consider a signal which is sampled at a rate of 20 MHz, providing a resolution of 50 ns.  If we 
quantize the discrete-time signal using only one bit per sample, the overall rate will be 20 Mbps, 
which is infeasible for many real-time systems.  Additionally, if we oversample band-limited 
communication signals, it is possible to resample at the Nyquist rate without introducing 
significant distortion.  In an effort to further reduce the overall code rate, we will explore the use 
of decimation to reduce the sampling rate used for transmission. 
 
 
3.2 Overview of Decimation 
 
When the continuous-time, baseband signal is sampled at a rate of Fs = 1

Ts
, its resulting 

spectrum will be periodic with a period of Fs.  We will consider the region centered at the origin, 
confined to the interval, f ∈ [− Fs

2 ,Fs
2 ], or equivalently, ω ∈ [−π,π ] (Fig. 3.1).  

 
Figure 3.1 Spectra of a discrete-time signal 

 
The down-sampling of a signal will effectively “expand” [25] its spectra.  If the rate is reduced 
below the Nyquist rate, it may be necessary to pass the signal through a low-pass filter, Hd (z) , 
prior to down-sampling in order to avoid aliasing of the folded spectrum, (Fig. 3.2). 
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Figure 3.2 The process of decimation 

 
At the receiver end, we wish to restore the signal to its original sampling rate before cross-
correlation in order to regain fine precision in the TDOA estimate.  Up-sampling the signal will 
“compress” [25] its spectra, causing images of the signal to be introduced into the upper end of 
the spectrum.  These images can be removed by passing the up-sampled signal through an 
interpolation filter, Hu(z), (Fig. 3.3). 
 

 
Figure 3.3 The process of interpolation 

 
A decimation/interpolation codec which was implemented for the geo-location scenario is 
depicted in figure 3.4.  The discrete-time baseband signal, x(n), is first passed through a low-
order FIR filter, Hd (z) , and is then downsampled by a factor of L.  When the decimation factor, 
L, is very large, the decimation process is divided into two stages.  The decimated signal is then 
transmitted over a channel to a receiver which up-samples the signal by the factor, L, and passes 
it through an interpolation filter, Hu(z).  The reconstructed signal, ˆ x (n), is then used to perform 
the TDOA estimation. 
 

 
Figure 3.4 Structure of a decimation/interpolation codec 

 
 
3.3 Experimental Results  
 
We performed a series of experiments using the codec depicted in figure 3.4.  In the experiments, 
we used two different pulse-shaping filters: a rectangle (Fig. 3.5a), and a raised-cosine (Fig. 
3.5b). 
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Figure 3.5 (a) rectangular pulse (b) raised-cosine pulse 

 
We will first derive the power spectrum density of the linearly modulated signals using the two 
filters.  The rectangular pulse is defined as: 
 

g(t) = A,0 ≤ t ≤ T     (3.1) 
 
 
Which has the power spectrum density (PSD): 
 

     G( f ) 2 = (AT)2 sinπfT
πfT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

   (3.2) 

 
Using the result obtained in equation 2.30, we can express the PSD of the linearly modulated 
baseband signal as: 
 

φ( f ) = σ i
2A2T sinπfT

πfT
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

   (3.3) 

 
Let, ˜ φ ( f ) , denote the PSD of the band-limited random process, sampled at the rate Fs = 1

Ts
.  The 

PSD of the sampled signal is then: 
 

˜ φ ( f ) =
1

Ts
2 φ( f − n

Ts
)

n=−∞

∞

∑     (3.4) 

 
For our analysis, we will consider the spectrum on the interval f ∈ [− Fs

2 ,Fs
2 ] 

 

     ˜ φ ( f ) =
1

Ts
2 σ i

2A2T sinπfT
πfT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

2

, f ≤ FS
2   (3.5) 
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Figure 3.6 compares the theoretically obtained PSD (Eq. 3.5) with the PSD of an observed signal 
where the pulse duration is 5ns, and it is sampled at a rate of 20MHz.  The symbols, , are 
i.i.d., uniformly distributed with zero-mean. 

In{ }

 

 
Figure 3.6 PSD of rectangular pulse-shaped signal with 5 ns period, sampled at 20 MHz 

 
The PSD of the rectangular pulse decays proportional to 

1
f 2 , as indicated in equation 3.5.  Upon 

observation of the PSD (Fig. 3.6), it is apparent that its magnitude is very small in the range 
f > 0.05, which means that the signal can be significantly decimated without removing a large 

amount of energy.  In order to better illustrate the cumulative distribution of power in the 
spectrum of a continuous-time rectangular pulse, we have numerically integrated its PSD (Fig. 
3.7). 
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Figure 3.7 Cumulative power distribution of a rectangular pulse 
 
Notice that the cumulative power grows at a large rate for low frequencies ( f < 1

T ), and at high 
frequencies, the cumulative power approaches 1 asymptotically. 
 
To illustrate the effects of decimation on the spectrum of the signal, we decimate an observed 
signal by a factor of 50, effectively removing all but the central lobe (Fig. 3.8). 
 

 
Figure 3.8 PSD of decimated signal 

 
After the signal has been transmitted to a fusion center, prior to cross-correlation, the signal is 
upsampled to its original sampling rate and is then interpolated.  Figure 3.9 shows the spectrum 
of the interpolated signal which is used for TDOA estimation.  Notice that the central lobe is 
slightly attenuated at its edges due to the non-ideal transition bands of the decimation and 
interpolation filters. 
 

 
Figure 3.9 PSD of interpolated signal 

 
The second pulse-shaping filter we experimented with is the raised-cosine, of the form: 
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g(t) =
A
2

1+ cos 2π
T

t −
T
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ ,0 ≤ t ≤ T    (3.6) 

 
Which has a power spectrum density (PSD) defined as: 
 

    G( f ) 2 =
AT
2

⎛ 
⎝ 
⎜ 

⎞ 
⎠ 
⎟ 

2 sin2 πfT
(πfT)2(1− f 2T 2)2    (3.7) 

 
Using equation 2.30, we can express the PSD of the linearly modulated baseband signal as: 
 

    φ( f ) =
σ i

2A2

4
sin2 πfT

(πf )2(1− f 2T 2)2    (3.8) 

 
The spectrum of the sampled signal, centered at f = 0 is: 
 

˜ φ ( f ) =
σ i

2A2

4Ts
2

sin2 πfT
(πf )2(1− f 2T 2)2 , f ≤ FS

2   (3.9) 

 
Figure 3.10 compares the result from equation 3.9 to the PSD of an observed signal, shaped by a 
raised-cosine pulse with a duration of 5 ns, sampled at 20 MHz.  The modulated symbols, In{ }, 
are i.i.d., uniformly distributed, with zero-mean. 
 

 
Figure 3.10 PSD of raised cosine pulse with 5 ns period, sampled at 20 MHz 

 
Notice that the central lobe of the spectrum of the raised cosine is wider than central lobe of the 
sinc function (it does not have zeros at f = −1

T , 1
T ).  Also, the PSD of the raised cosine decays 

proportional to 1
f 6 . As figure 3.10 demonstrates, the magnitude of the side lobes is very small 

(not even visible in the graph).  Figure 3.11 contains a plot of the cumulative power distribution 
of a raise-cosine pulse, similar to figure 3.7 for the rectangular pulse.  Notice that the cumulative 
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power grows at a large rate for low frequencies ( f < 2
T ), and at high frequencies, the cumulative 

power approaches 1 asymptotically. 
 

 
Figure 3.11 Cumulative power distribution of a rectangular pulse 

 
To illustrate the effects of decimation on the spectrum of a raised-cosine shaped signal, we 
decimate an observed signal by a factor of 25, discarding all side lobes (Fig. 3.12). 
  

 
Figure 3.12 PSD of decimated signal 

 
Figure 3.12 shows the PSD of the interpolated signal used for TDOA estimation.  Notice that the 
PSD of the interpolated signal is not very different than the original signal, as the majority of the 
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power is contained in the central lobe.  The central lobe is slightly attenuated at its edges due to 
the non-ideal transition bands of the decimation and interpolation filters. 

 
Figure 3.13 PSD of interpolated signal 

 
We performed a series of experiments to investigate the effects of decimation on the TDOA 
estimation process.  In the experiments, we used a fixed sampling rate of 20 MHz and generated 
signals with symbol rates up to 2.5 million symbols per second.  The signals were comprised of a 
sequence of i.i.d., uniformly distributed symbols, randomly generated with zero-mean unit 
variance, and modulated using a pulse with duration, T. 
 
The sequence length and symbol rate, 1

T , were jointly chosen to produce signals with a duration 
on the order of 3 ms.  To simulate centralized estimation (Fig. 1.2b), where two sensors share 
their signals with a fusion center, we decimated two signals by a factor, L, ranging from 2 to 48, 
and then interpolated by the same factor prior to cross-correlation.  The resulting TDOA estimate 
was compared to an estimate obtained by cross-correlating the same signals without using 
decimation/interpolation.  Similarly, to simulate distributed estimation (Fig 1.2a), we decimated 
and interpolated only one of the two signals. 
 
Figures 3.14 and 3.15 show the variance of the TDOA estimation error obtained from performing 
the decimation experiment 100 times with a rectangular pulse-shaping filter.  The results in 
figure 3.14 are for the centralized estimation case, figure 3.15 depicts the results of the 
distributed estimation case.  In the graphs, the symbol rate, relative to the sampling rate is given 
in the units samples per symbol. 
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Figure 3.14 TDOA error as a function of symbol rate and decimation factor 

(rectangle, centralized) 
 
 
 

 
Figure 3.15 TDOA error as a function of symbol rate and decimation factor 

(rectangle, distributed) 
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In comparing figure 3.14 with figure 3.15, it is apparent that the TDOA estimation error is 
significantly less when only one of the two signals is decimated and interpolated.  Additionally, 
in both cases, the TDOA error introduced by decimating signals with low symbols rates is 
minimal. 
 
The same decimation experiments were also performed with signals which were shaped using a 
raised-cosine pulse.  Figures 3.16 and 3.17 depict the results of the raised-cosine experiments. 
Once again, the TDOA error introduced by decimation in the distributed estimation scenario 
(Fig. 3.17) is significantly less than the error introduced in the centralized estimation scenario 
(Fig. 3.16). 
 

 
Figure 3.16 TDOA error as a function of symbol rate and decimation factor 

(raised-cosine, centralized) 
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Figure 3.17 TDOA error as a function of symbol rate and decimation factor 

(raised-cosine, distributed) 
 

Comparing the results of the decimation experiments for the rectangular pulse (Fig. 3.14) with 
those for the raised-cosine (Fig. 3.16), it can be seen that for low decimation factors, the raised-
cosine shaped signals produce less TDOA error than the rectangular shaped signals.  However, 
for large decimation factors, the TDOA error for the rectangular shaped signals is slightly less 
than for the raised-cosine shaped signals.  Figures 3.18a and 3.18b compare the TDOA error 
variance for both cases when the signals are decimated by the factors 10, 20, 30, and 42.  

 
Figure 3.18 TDOA error as a function of symbol rate for decimation factors 10, 20, 30, 42 

(a) rectangular shaped signal (b) raised-cosine shaped signal 
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The reason for this behavior may be explained by examining the spectral shape of the pulses. 
The PSD of the raised-cosine decays proportional to 1

f 6 ; therefore, the power contributed by 
side lobes is less than the power contributed by the side lobes of the PSD of the rectangle (which 
decays proportional to 1

f 2 ).  Also, the central lobe of the PSD of the raised-cosine is wider than 
the central lobe of the PSD of the rectangle.  Figure 3.19 depicts the amount power which is 
retained after decimating a rectangular pulse and a raised-cosine pulse. 
 

 
Figure 3.19 Signal power as a function of decimation factor 

(Decimation removes energy from the signal) 
 
When we decimate by small factors (but large enough to reduce the rate below the Nyquist rate), 
we are, in effect, removing side lobes from the signal; therefore, more energy will be removed 
from the signal shaped by a rectangular pulse.  As a result, the signal-to-noise ratio of the 
interpolated rectangular pulse-shaped signal will be lower, which will, in turn, have a greater 
effect on the estimation error. 
 
When we decimate by large factors (large enough to remove all side lobes), we remove power 
from the central lobe.  The majority of the power in a raised-cosine pulse lies in its central lobe, 
in the region f < 2

T , while the majority of the power in the rectangular pulse is in the central 
lobe, in the region f < 1

T .  Decimating the sampled, raised-cosine shaped signal by a factor, 
L ≥ TFs

4 , will result in removing power from the central lobe; whereas, the central lobe of the 
rectangular shaped signal will not be affected until we decimate by a larger factor, L ≥ TFs

2 .  
Notice (Fig. 3.19) that the rectangular shaped signal is decimated by factors greater than about 
TFs

2 , it retains more power than the raised-cosine shaped signal, decimated by the same amount.  
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This loss of power at higher decimation factors is what accounts for the improvement of the 
TDOA estimate for the rectangular shaped signal over the raised-cosine shaped signal. 
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Chapter 4 
 
The Effects of Quantization 
 
4.1 The Subband Encoder 
 
In this chapter we will follow the work of [19-22] in developing a subband encoder which is 
designed to compress an intercepted signal while minimizing adverse effects on the TDOA 
estimation process.  The observed signal is decomposed into a number of frequency subbands, 
each of which is quantized independently, using a uniform scalar quantizer.  The structure of the 
subband codec is depicted in figure 4.1.  The sequence that is being compressed, x(n), is the 
sampled complex envelope of an observed signal, which is assumed to be finely quantized using 
32 bits per sample.  The real and imaginary parts of x(n) are independently quantized; therefore, 
the compression ratio of the subband encoder can be calculated as CR = 32

2R , where R is the 
number of bits budgeted per sample for the compressed signal. 
 

 
Figure 4.1 Subband encoder/decoder block diagram 

 
The subband encoder consists of an M-channel Pseudo-QMF analysis filter bank (Section 2.6) 
and M uniform scalar quantizers.  The bit allocation for the quantizers is determined by a fusion 
center which observes a portion of an intercepted signal.  The focus of this chapter will be on 
comparing the effectiveness of a bit allocation determined using Fisher Information-based 
criteria versus choosing an allocation based solely on mean-squared-error distortion criteria. 
 
        
4.2 Mean Squared Error Distortion Criteria 
 
In order to establish a basis for comparison, we will first use the well-known MSE distortion 
criteria to determine a bit allocation for the subband encoder.  We use the same rate-distortion 
model as in [19] for the ith subband: 
 

Di(bi) = 3π
2 σ i

22−2bi ,1 ≤ i ≤ M    (4.1) 
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where the variance of the signal samples of the ith subband, , is determined empirically from a 
portion of the signal.  Using the M rate-distortion functions and a rate constraint, R, the bit 
allocation, B, is determined by solving the constrained integer optimization problem: 

σ i
2

 

min
B

Di(bi
i=1

M

∑ )
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 subject to: bi
i=1

M

∑ ≤ R
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
 
  (4.2) 

⎭
 

Where the bit allocation vector is   B = bi ≥ 0 i ∈ 1,2,L,M{ }. 
 
To demonstrate the bit allocation process, we will use a rectangular pulse-shaped signal (Section 
3.3) with a pulse duration, T = 5ns, sampled at the rate, Fs = 20MHz .  Since the band-limited 
communication signal is oversampled, it can be downsampled prior to subband encoding without 
introducing significant error in the TDOA estimate (Chapter 3).  The signal is downsampled by a 
factor of 16 so that the central lobe and two side-lobes of the power spectrum density are 
retained.  The magnitude spectrum of the downsampled signal is shown in figure 4.2. 

 
Figure 4.2 Magnitude spectrum of a rectangular shaped signal 

(T=5ns, Fs=20MHz, SNR=10dB) 
 
The signal is decomposed into 32 frequency subbands using a pseudo-QMF bank.  Figure 4.3 
depicts the variance of the subband samples, . σ i

2,1 ≤ i ≤ 32
 
The variances, , are then used in equation 4.1 to compute the rate-distortion 
functions for the 32 subbands.  The rate-distortion functions, combined with the rate constraint, 
R, allow us to formulate the constrained optimization problem in equation 4.2.  The optimization 
problem was solved using a MATLAB implementation of the Lagrange optimization algorithm 
described in Appendix A.  Figure 4.4 depicts the 32 rate-distortion functions and the solution 
points, b

σ i
2,1 ≤ i ≤ 32

i,1 ≤ i ≤ M , (red x’s) when the rate is constrained to 4 bits per sample (4:1 compression 
ratio). 
 
The bit allocation, B, which provides a solution to the constrained optimization problem (Eq. 
4.2), for this example is depicted in figure 4.5. 
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Figure 4.3 Variance of the subband samples 

 
 
 
 
 
 

 
Figure 4.4 Rate-Distortion functions for the 32 quantizers (4:1 Compression Ratio)  
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Figure 4.5 Bit allocation computed using MSE criteria 

 
Notice that by using the MSE-based distortion criteria, bits are allocated to subbands based 
primarily on their power content.  Since white noise was added to the signal prior to 
compression, the PSD of the noisy signal at high frequencies is nearly flat; therefore, the bits are 
allocated almost evenly over the side lobes. 
 
 
4.3 Fisher Information Distortion Criteria 
 
The Fisher Information-based distortion that we will use is that developed in [19-22] (Section 
2.5).  We will derive the Fisher Information (for TDOA) for the rectangular and raised cosine 
pulses (section 3.3) using the formulas introduced in section 2.6.  Continuing with the power 
spectrum density of a rectangular pulse-shaped signal, sampled at the rate 1

Ts
 (Eq. 3.5): 

 

˜ φ ( f ) =
1

Ts
2 σ i

2A2T sinπfT
πfT

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
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2

, f ≤ FS
2    (4.3) 

 
Substituting the PSD of the signal into the Fisher Information formula that was presented earlier 
(Eq. 2.20), we have: 
 

J =
1

σ1
2 + σ 2

2 f 2 1
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∫ df   (4.4) 

 
The  terms in the numerator and denominator of the integrand of equation 4.4 cancel and the 
Fisher Information becomes: 

f 2

 

J =
2σ i

2A2

(σ1
2 + σ 2

2)π 2Ts
2 sin2 πfT

− Fs
2

Fs
2

∫ df    (4.5) 
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=
2σ i

2A2

(σ1
2 + σ 2

2)π 2Ts
2 1− cos2πfT(

− Fs
2

)
Fs

2

∫ df    (4.6) 

 
As discussed in section 2.6, in the wireless sensor network scenario, it is assumed that we cannot 
observe the original signal, uncorrupted by additive noise.  Additionally, it is assumed that the 
sensor which is performing the compression will know the variance of the noise at a neighboring 
sensor; therefore, it is not feasible to directly compute the Fisher Information (Eq. 4.6).  Instead, 
we follow the approach of [19][22] and approximate the Fisher Information using the DFT 
coefficients of an intercepted, noisy signal (Eq. 2.25).  To demonstrate the performance of the 
approximate FI model (Eq. 2.25), figure 4.6 compares the quadratically weighted DFT 
coefficients of an intercepted noisy signal to the integrand of equation 4.6 (where the integrand is 
sampled using the same number of points as the DFT).   
 

 
Figure 4.6 Quadratically weighted power spectrum of rectangular pulse shaped signal 

 
Because the FI is proportional to the integral of the quadratically weighted PSD, we can examine 
the contribution of individual frequency components to the Fisher Information.  Due to the form 
of the FI of the rectangular pulse-shaped signal (Eq. 4.6), it is apparent that the side lobes 
contribute significantly to the FI. 
 
Similarly, for the raised-cosine pulse shaped signal (Eq. 3.6), it can be shown that the Fisher 
Information with respect to TDOA estimation is: 
 

J =
σ i

2A2

4(σ1
2 + σ 2

2)π 2Ts
2

sin2 πfT
(1− f 2T 2)2 df

−FS
2

FS
2

∫    (4.7) 

 
Figure 4.7 depicts the integrand of equation 4.7 and the quadratically weighted DFT coefficients 
of an intercepted, noisy raised-cosine pulse-shaped signal.  Notice that the weighted spectrum 
decays proportional to 1

f 4 , implying that frequency components in the range f < 2
T  will 

contribute heavily to the Fisher Information. 
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Figure 4.7 Quadratically weighted spectrum of raised-cosine 

 
Following the work of [19-22], we use the Fisher Information-based model (Eq. 2.25, 2.26) to 
characterize the effects of quantization on the TDOA estimation process.  The FI corresponding 
to the ith subband for the multi-bit case is computed as [19][21]: 
 

˜ J i
(m ) =

2π 2 n2 X[n] 2

n ∈Ni

∑
Nσ 2 + qi

2    (4.8) 

 
The distortion introduced by quantization of the ith subband, , is calculated using the rate-
distortion model in equation 4.1.  The FI corresponding to the ith subband for the single-bit 
quantization case is computed as [19]: 
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           (4.9) 
 
Where Ni  is the set of indices belonging to the ith subband. The bit allocation is then determined 
by solving the optimization problem: 
 

max
B

˜ J i
i=1

M

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

  subject to: bi
i=1

M

∑ ≤ R
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
 
  (4.10) 

⎭
 
Where the bit allocation vector,   B = bi ≥ 0 i ∈ 1,2,L,M{ }, is constrained to non-negative integers 
and the objective function is: 
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0,bi = 0
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(1),bi =1
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A Lagrange optimization routine was implemented in MATLAB to solve the constrained 
minimization problem presented in section 4.2 (Eq. 4.2).  If we could somehow reformulate the 
constrained maximization problem (Eq. 4.10) as a minimization problem, then we could use the 
same optimization procedure to solve for both the MSE-based and FI-based bit allocations.   The 
objective function, , is defined by 3 different functions (Eq. 4.11), depending on the value of 
the rate, .  Consider, first, the function, , for multi-bit quantization (Eq. 4.8).  Replacing the 
numerator of equation 4.8 by G,  can be rewritten as: 

˜ J i
bi
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Using equation 4.12b, the maximization problem (Eq. 4.10), for the case when b  can be 
expressed as: 
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Where   B = bi ≥ 2 i ∈ 1,2,L,M{ }.  Since q , by definition (Eq. 4.1), is the only term in equation 
4.13 which is a function of , the parameter over which we are searching, the optimization 
problem (Eq. 4.13) can be equivalently stated as [22]: 
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Where   B = bi ≥ 2 i ∈ 1,2,L,M{ }.  Similarly, we reformulate the values of the objective function 
of the maximization problem (Eq. 4.11) for the single-bit (bi = 1) and zero-bit ( ) cases:  bi = 0
 

ˆ J i
(1) =

G
σ 2 − ˜ J i

(1)     (4.15) 
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G
σ 2      (4.16) 
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The bit allocation can now be determined by solving the optimization problem: 
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B
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Where   B = bi ≥ 0 i ∈ 1,2,L,M{ } and the objective function is defined as: 
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Figure 4.8 depicts the objective functions (Eq. 4.17) computed for a 32 subband encoder.  The 
red x’s denote the solution points, bi,1 ≤ i ≤ M , to the optimization problem when the rate was 
constrained to 4 bits per sample (4:1 compression ratio). 

 
Figure 4.8 FI-based objective function for the 32 quantizers (4:1 Compression Ratio) 

 
Notice that the objective functions in figure 4.8 are not convex due to the values given by the 
single-bit approximation.  As a result of the non-convexity, the Lagrange optimization algorithm 
(section 2.4) used to solve the constrained optimization problem (Eq. 4.17) may not yield an 
optimal solution.  Instead, we use the Lagrange optimization procedure to find the closest 
solution from below (a rate which is less than or equal to the constraint), then we use a water-
filling method (Appendix A) to allocate any remaining bits.  Figure 4.9 depicts the bit allocation 
determined by solving the constrained optimization problem (Eq. 4.17). 
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Figure 4.9 Bit allocation computed using FI-based criteria 

 
Notice that more bits are allocated to the side lobes when we use the FI-based approach (due to 
quadratic weighting of the spectrum).  In the MSE-based approach, the bits were allocated more 
evenly in the subbands which contain the side lobes. 
 
 
4.4 Experimental Results 
 
We conducted a series of subband encoding experiments to compare the performance of using a 
bit allocation determined via MSE-based criteria versus a bit allocation determined by the FI-
based approach.  In the experiments, linearly modulated signals were randomly generated and 
had an average duration of 3 ms (60,000 samples with Fs = 20MHz ).  The signals were 
decimated prior to subband encoding to enhance the TDOA error introduced by fine quantization 
(as a coarsely quantized signal can still provide an error-free TDOA estimate when the number 
of samples is very large).  Figure 4.10 depicts the codec that was used in the experiments. 
 

 
Figure 4.10 Codec block diagram 

 
We selected the symbol rates and decimation factors using data obtained from the decimation 
experiments (Chapter 3).  Figure 4.11 depicts 3 operating points that were chosen for the 
experiments with a rectangular pulse-shaped signal. 
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Table 4.1 Operating points for subband encoding experiments 
 

Operating 
Point 

Symbol Rate 
(samples/symbol)

Decimation Factor 

1 100  48 
2 19 14 
3 9 8 

 

 
Figure 4.11 Operating points for subband encoding experiments 

(rectangular pulse-shaped signal) 
 
The red regions in figure 4.11 indicate large TDOA error whereas the dark blue regions indicate 
very small TDOA estimation error.  The operating points were chosen to be in regions where 
decimation produced little to no error, but where further decimation would result in a sizeable 
increase in error. 
 
In the first set of experiments, we randomly generated 100 signals and independently computed a 
bit allocation for each received signal. A fixed compression ratio was chosen and the SNR of two 
signals (received by two different sensors) was varied from 40dB to 10dB.  The scenario of 
centralized estimation (where two sensors compress their observed signals prior to transmitting 
them to a fusion center for processing) was simulated.   The compressed/decompressed signals 
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were used to obtain a TDOA estimate, which was then compared to a TDOA estimate obtained 
from signals which had not been compressed (then decompressed). 
 

 
Figure 4.12 Subband encoder performance using bit allocation for each signal 

(a) exp 1, CR=8:1 (b) exp 1, CR=4:1  (c) exp 2, CR=8:1 (d) exp 2, CR=4:1 
(e) exp 3, CR=8:1 (f) exp 3, CR=4:1 
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Figures 4.12 and 4.14 depict the results of the experiment performed at the 3 different operating 
points (table 4.1).  Figures 4.12 (a) and (b) (top) present the results for operating point 1, figures 
4.12 (c) and (d) (middle) present the results for operating point 2, and figures 4.12 (e) and (f) 
(bottom) present the results for operating point 3.  Figures 4.12 (a),(c), and (e) (left) depict the 
results when the compression ratio was fixed at 8:1, and Figures 4.12 (b),(d), and (f) (right) 
depict the results when the compression ratio was fixed at 4:1. 
 
Notice (Fig. 4.12) that subband encoding using the FI-based approach resulted in less TDOA 
estimation error than the MSE-based approach.  According to the approximate FI model that was 
used for compression (Eq. 4.8, 4.9), the FI should increase as the signal-to-noise ratio of the 
received signal is increased, meaning that the TDOA error variance should decrease.  Observing 
the experimental results (Fig. 4.12), it is apparent that, in general, the TDOA estimation error is 
decreasing as the SNR is increased up to about 25dB.  In most cases (Fig. 4.12(a-e)), the 
estimation error increases as the SNR is increased above 25dB.  Referring back to the 
approximate FI model (Eq. 4.8, 4.9), we mentioned that a necessary condition for the model to 
hold was that the variance of the noise introduced by quantization remains smaller than the 
variance of the sensor noise.  When the signal-to-noise ratio becomes large, the variance of the 
sensor noise becomes small and the approximate FI model fails to hold. 
 
The approach of calculating a bit allocation for each received signal can be computationally 
expensive for wireless sensors and also requires additional side information to be included with 
each compressed signal.  We subsequently explored a suboptimal approach which would not 
require computation of a bit allocation for each received signal.  In the second set of 
experiments, 100 signals were generated at random, as before, but only one of the signals was 
analyzed to determine the bit allocation which would be used to compress all 100 signals.  To 
demonstrate the selection of a bit allocation, figure 4.13(a) compares the average of the 
allocations calculated for 100 randomly generated signals, using FI criteria, to the allocations 
calculated for two randomly selected message signals 4.13(b) and (c). 
 
Figure 4.14 depicts the results of the experiment using the suboptimal approach, performed at the 
3 operating points (table 4.1).  Figures 4.14 (a) and (b) (top) present the results for operating 
point 1, figures 4.14 (c) and (d) (middle) present the results for operating point 2, and figures 
4.14 (e) and (f) (bottom) present the results for operating point 3.  Figures 4.14 (a),(c), and (e) 
(left) depict the results when the compression ratio was fixed at 8:1, and Figures 4.14 (b),(d), and 
(f) (right) depict the results when the compression ratio was fixed at 4:1. 
 
It can be seen (Fig. 4.14) that, in general, the FI-based approach results in less TDOA estimation 
error than the MSE-based approach.  In most cases, the error decreases as the SNR is increased 
until about 25dB.  As the SNR is increased above 25dB, the error, in some cases, increases 
(similar to the first set of experiments).  Notice in figure 4.14(b) that the error seems to fluctuate 
as the SNR in increased.  This behavior is likely a results of using the suboptimal approach; 
however, also note that the error is nearly zero. 
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In comparing the results from the first set of experiments (Fig. 4.12) to the results of using the 
suboptimal approach (Fig. 4.14), it can be seen that in some cases (b, c, and d) that the 
suboptimal approach actually produced less error.  For the other cases (a, e, f), the increase in 
error resulting from the suboptimal approach was reasonably small. 
 

 
Figure 4.13 FI-based bit allocation (a) averaged over 100 messages 

(b) message #5 (c) message #41 
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Figure 4.14 Subband encoder performance using one-time bit allocation 

(a) exp 1, CR=8:1 (b) exp 1, CR=4:1  (c) exp 2, CR=8:1 (d) exp 2, CR=4:1 
(e) exp 3, CR=8:1 (f) exp 3, CR=4:1 

 
Upon observing the results of the experiments which were performed, (Fig. 4.12, 4.14), one can 
conclude that the approximate FI model (Eq. 4.8, 4.9) characterized the effects of quantization on 
the estimation task reasonably well. Additionally, the suboptimal approach of using a fixed bit 
allocation to compress an ensemble of messages produced good results.
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Chapter 5 
 
Conclusion 
 
5.1 Discussion 
 
In this thesis, we explored the effects of compression on the task of estimating time-difference-
of-arrival parameters.  We began by investigating, experimentally, the effects of decimation on 
TDOA estimation for digital linearly modulated signals with different symbol rates, using both 
rectangular and raised-cosine pulse-shaping transmit filters.  We showed that the band-limited 
communication signals that were used could be decimated without introducing considerable 
error, so long as the power within the central lobe of the power spectrum was retained. 
 
We next explored the effects of quantization on the estimation task using a Fisher Information-
based model developed in [18-22].  Due to the structure of the FI model (Eq. 4.8) we 
implemented a subband encoder which would allow us to selectively quantize frequency 
subbands based on their contribution to the Fisher Information.  We, additionally, developed a 
suboptimal algorithm to perform subband encoding by analyzing only a portion of the signals 
that were to be compressed.  Experimental results showed that subband encoding using the FI-
based approach resulted in less TDOA estimation error than using the standard MSE-based 
distortion criteria. 
 
  
5.2 Further Work 
 
In order to characterize the effects of quantization on the TDOA estimation process, we used a 
Fisher Information-based model (Eq. 4.8, 4.9) developed in [18-22].  The model relies on the 
assumptions that 1) the sensor noise is i.i.d. AWGN, 2) the noise introduced by quantization is 
uniformly distributed, white, and independent of the sensor noise [19], and 3) the variance of the 
sensor noise is much larger than the variance of the quantization noise.  When the intercepted 
signal is coarsely quantized or its SNR is high, conditions 2 and 3 will be violated and the FI 
model (Eq. 4.8) will not hold [22].  In [19], the authors provide an approximate model for the 
case of single-bit quantization (Eq. 4.9).  Under high SNR conditions, the author of [22] provides 
a method for approximating the Fisher Information which is of large complexity, and is likely 
not feasible for use in resource constrained, real-time tracking scenarios.  There remains further 
research in developing a FI model of low complexity which can hold under high SNR conditions. 
 
Similar to the FI-based model developed for quantization [18-22], one could explore models to 
characterize the effects of decimation and subsequent interpolation on the TDOA estimation 
process. 
 
Another possible avenue of research would be to compare the performance of decimation to the 
performance of quantization for compressing signals for TDOA estimation.  In addition to 
analyzing the effects on the estimation task, one could include an analysis of the computational 
complexity of both methods. 
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Continuing under the framework of subband encoding for TDOA estimation, one could perform 
further analysis to determine the importance of different frequency subbands to the estimation 
task.  In this thesis, we used an FI-based model which essentially applied a quadratic weighting 
to the spectrum of the signal which was to be compressed.  Perhaps, with further analysis, one 
could determine the role which different frequency components play on the estimation of the 
TDOA parameter. 
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Appendix A 
 
Lagrange Optimization Algorithm 
 
Given a set of discrete (monotonically decreasing) rate-distortion functions, Di(R),1 ≤ i ≤ M , and 
a rate constraint R, the Lagrange optimization algorithm will determine an optimal way to 
distribute a budgeted set of bits to a set of quantizers . The optimization problem which we are 
trying to solve is: 
 

min
B

Di(bi)
i=1

M

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

 subject to: bi
i=1

M

∑ ≤ R    (A.1) 

 
 where   B = bi ≥ 0 i ∈ 1,2,L,M{ }.  The set of admissible bit allocation values, b , is constrained to 
non-negative integers. 

i

 
Introducing a Lagrange multiplier, λ ≥ 0, references [4][16] show that the solution to the 
unconstrained problem: 
 

min
B

Di(bi) + λbi
i=1

M

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
 
     (A.2) 

⎭
 
is also the solution to the budget-constrained problem in equation A.1Moreover, they show that 
for a given λ : 
 

   min
B

Di(bi) + λbi
i=1

M

∑
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

= min
bi

Di(bi) + λbi{
i=1

M

∑ }   (A.3) 

 
As a result, the minimum of the “Lagrangian cost function”, Di(bi) + λbi , can be computed 
independently for each quantizer.  Figure A.1 presents a graphical interpretation of minimizing 
the Lagrangian cost function. 
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Figure A.1 Graphical interpretation of minimizing the Lagrangian cost function 

 
As the rate,bi , increases, the distortion, , decreases; therefore, we have a trade-off between 
rate and distortion.  The Lagrange multiplier allows us to select specific trade-off points.  
Minimizing the Lagrangian cost function when 

Di(bi)

λ = 0 is equivalent to minimizing the distortion; 
and minimizing the Lagrangian cost when λ → ∞  is equivalent to minimizing the rate.  As can 
be seen in figure A.1, the point in the rate-distortion function of the ith quantizer which 
minimizes the Langrangian cost is that point at which the line of absolute slope λ  is tangent to 
the convex hull of the rate-distortion function.  
 
The optimization algorithm iteratively searches for a Lagrange multiplier, λ , which yields a 
solution that meets the predetermined rate constraint.  The choice of an initial Lagrange 
multiplier, λi , will greatly affect the rate of convergence; therefore, λi  was chosen as a function 
of the rate constraint, R.  We used the algorithm discussed in [16] to search for a value, λ , which 
meets the rate constraint.  Figure A.2 is a flow diagram of the algorithm which was implemented 
(using the notation from [16]).  When an exact solution cannot be found using the Lagrange 
optimization alone, the Lagrange optimization is used to find the closest solution from below, 
then a water-filling method is used to allocate any remaining bits (Approximate Solution at 
bottom-right of Fig. A.2). 
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Figure A.2 Flowchart of Lagrange optimization algorithm (with water-filling) 

 
The Lagrange multiplier-based optimization algorithm will provide an optimal solution so long 
as the discrete rate-distortion functions are convex and contain points which provide a solution 
for a given rate constraint (i.e. if the set of admissible bit allocation values, b , is further 
constrained, an optimal solution may be unreachable). 

i
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Appendix B 
 
Additional Formulations 
 
B.1 Cramer-Rao bound for time delay estimation 
 
This appendix gives an outline of the derivation of the Cramer-Rao bound for time delay 
estimation.  For a detailed formulation, the reader is directed to the sources from which the 
outline was created [4][15][16][17]. 
 
The Cramer-Rao inequality expresses an asymptotic lower bound on the variance of an unbiased 
statistical estimator.  The reciprocal of the Fisher Information, J(x;θ), of the parameter θ , is the 
lower bound on the variance of an unbiased estimator of the parameter  θ̂ . 
 

cov{ ˆ θ } ≥ J−1      (B.1) 
 

Consider the problem of estimating a parameter vector θ  from sample values of an n-variate 
time series x(t) .  The elements of the Fisher Information for an unbiased estimator  θ̂  are given 
by: 

Jij (x;θ) = −E ∂2 ln p(x;θ)
∂θi∂θ j

⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
 
    (B.2) 

⎭
 

Where p(x;θ) is the conditional probability density function.  For the case where the elements of 
x  are jointly Gaussian, Bangs has shown that the elements of the Fisher Information matrix are 
given by: 

Jij =
1
2

tr ∂R
∂θi

R−1 ∂R
∂θ j

R−1
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

    (B.3) 

 
Where R is the data covariance matrix given by R = E{xxT }.  The FI evaluation in (B.3) can be 
simplified if the matrix R is diagonal.  This is achieved by replacing the data vector x  by its 
Fourier coefficients, which are asymptotically uncorrelated. 
 
Let x(t)  be a discrete time stationary zero-mean n-variate process with autocorrelation function 
R(τ) = E{x(t)xT (t + τ )}.  Its power spectrum density is defined as: 
 

S(ω) = R(τ)e− jωτ

τ =−∞

∞

∑      (B.4) 

 
The elements of the Fisher Information from (B.3) can then be expressed as: 
 

Jij =
T

4π
tr ∂S(ω)

∂θi

S−1(ω) ∂S(ω)
∂θ j

S−1(ω)
⎧ 
⎨ 
⎩ 

⎫ 
⎬ 
⎭ 

dω
0

2π∫   (B.5) 
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This result also holds for a band-limited continuous time process which is sampled at the Nyquist 
rate. 
 
For the case of time delay estimation, consider two noisy signals r1(t)  and r2(t) which contain a 
common stationary process, , delayed in time. s(t)
 

r1(t) = s(t) + n1(t)
r2(t) = s(t − D) + n2(t)

     (B.6) 

 
where  and  are uncorrelated additive noise processes.  The relative delay, D, is 
estimated from measurements 

n1(t) n2(t)
r1(t),r2(t),1≤ t ≤ T{ }.  The Cramer-Rao bound for delay estimation 

error is formulated by first forming the spectral matrix of the vector process . r1(t),r2(t)[ ]T

 
S(ω) =

S(ω) + N1(ω) S(ω)e jωD

S(ω)e− jωD S(ω) + N2(ω)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥    (B.7) 

 
Then, upon differentiating the above expression with respect to the time delay parameter and 
performing the necessary matrix multiplications, the following is found: 
 

∂S(ω)
∂D

S−1(ω) ∂S(ω)
∂D

S−1(ω) =
1

S(ω)
ω 2S2(ω) 0

0 ω 2S2(ω)

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   (B.8) 

 
Where S(ω)  is the determinant of the spectral matrix S(ω).  When (B.8) is inserted into 
equation (B.5), the resulting expression for the Fisher Information is: 
 

J(D) =
T

2π
ω 2(S(ω )

N1 (ω ))(S(ω )
N2 (ω ))

1+ (S(ω )
N1 (ω )) + (S(ω )

N2 (ω ))
dω

0

2π∫    (B.9) 

 
From equation (B.9) we can see that the quadratic weighting in the Fisher Information arises as a 
result of differentiating S(ω)  with respect to the time delay parameter, D. 
 
 
B.2 The effects of carrier phase synchronization on the estimation process 
 
This appendix demonstrates the effects of synchronization errors (between the local oscillator 
and the received carrier) on the TDOA/FDOA estimation process.  Given two complex baseband 
signals with a common component shifted in frequency and time: 
 

x1(t) = s(t)e j 2πf1t

x2(t) = s(t − D)e j 2πf2 ( t−D )
    (B.10) 
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The TDOA/FDOA estimation process is defined as: 
 

max
τ , f

x1(t)x2
*(t + τ)e− j 2πftdt

0

T

∫     (B.11) 

 
or equivalently: 
 

max
τ , f

s(t)e j 2πf1t s*(t + τ − D)e j 2πf2 ( t−D )e− j 2πftdt
0

T

∫  (B.12) 

 
Assuming that the signal is demodulated without the use of carrier phase synchronization, then 
let the phase offset at sensor i be θi .  The baseband representations of the received signals at the 
two sensors are now: 
 

x1(t) = s(t)e j(2πf1t +θ1 )

x2(t) = s(t − D)e j(2πf2 (t−D )+θ 2 )
    (B.13) 

 
The TDOA/FDOA estimation process requires searching over the magnitude of the modulated 
cross-correlation: 
 

   s(t)e j(2πf1t +θ1 )s*(t + τ − D)e− j(2πf2 ( t−D )+θ 2 )e− j 2πftdt
0

T

∫   (B.14) 

   = e j(θ1 −θ 2 ) s(t)e j 2πf1t s*(t + τ − D)e− j 2πf2 ( t−D )e− j 2πftdt
0

T

∫   (B.15) 

   = e j(θ1 −θ 2 ) s(t)e j 2πf1t s*(t + τ − D)e− j 2πf2 ( t−D )e− j 2πftdt
0

T

∫   (B.16) 

= s(t)e j 2πf1t s*(t + τ − D)e− j 2πf2 ( t−D )e− j 2πftdt
0

T

∫    (B.17) 

 
Therefore, TDOA/FDOA parameter estimation does not require the use of a coherent phase 
reference when removing the carrier component from the observed signal.  While an accurate 
phase reference is necessary for symbol detection, it has no effect on the TDOA/FDOA 
estimation process. 
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Appendix C 
 
Experimental Setup 
 
C.1 Preliminaries 
 
The experiments performed in this thesis require the use of the MATLAB core, Communications 
Toolbox, and Signal Processing Toolbox.  The following m-files were used in the simulations. 
 
crMsg.m, tdoa.m, codec.m, bitalloc.m, bitallocfi.m, addnoise.m, Tx_symbols.m 
 
 
C.2 Decimation Simulations 
 
This simulation decimates and interpolates digital linearly modulated signals of different symbol 
rates, generating 100 random messages for each specified symbol rate.  Decimation and 
subsequent interpolation are performed for multiple factors.  The TDOA parameter is then 
estimated using both the compressed and uncompressed messages.  The results for each message 
will be saved in the directory specified by dec_path. 
 
%test effects of downsampling (varying symbol rate and decimation factor) 
%Preliminaries: 
%   msgR - message parameter structure  
%   P,u - sensor/emitter coordinates 
%   cdcP - codec parameter structure 
%Experimental results: 
%   td - matrix containing TDOA estimates obtained from uncompressed signals 
%   ctd - TDOA estimates obtained from compressed signals 
  
dec_path='results/dec/';  %path in which results are saved 
M=[2:2:32 35 36 40 42 45 48];  %interpolation factors 
F=[2 2 3:5 4 7 4 6 5 11 6 13 7 6 8 7 6 8 7 9 8]; %decimation factors  
F=[F; 1 2 2 2 2 3 2 4 3 4 2 4 2 4 5 4 5 6 5 6 5 6]; %(two stages) 
N_sym=256:256:12800;   %number of symbols 
R_sym=(50:50:2500)*1000;  %symbol rates 
  
for e=1:length(R_sym),   %for each symbol rate 
msgR.R_sym=R_sym(e); 
msgR.N_sym=N_sym(e); 
msgR.x=[];     %clear symbol vector 
  
clear rtd ctd td 
for k=1:100,    %repeat 100 times 
[msgk msgP]=crMsg(u,P,msgR,[]); %create new message 
  
msgkc=msgk;     %copy other stuff over 
for j=1:length(M),   %for each decimation factor 
    for i=1:(size(msgk,1)-1), 
        K=length(msgk{i,1}); 
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        Pad=ceil(K/M(j))*M(j)-K; %calculate pad 
        x=[msgk{i,1}; zeros(Pad,1)]; %zero-pad signal 
        %decimate and interpolate 
msgkc{i,1}=interp(decimate(decimate(x,F(1,j),'FIR'),F(2,j),'FIR'),M(j)); 
        msgkc{i,1}=msgkc{i,1}(1:end-Pad); %remove pad 
    end 
    ctd(j,:,k)=tdoa(msgkc,msgP,1); %compressed TDOA estimate 
    [td(j,:,k) rtd(j,:,k)]=tdoa(msgk,msgP,1); %uncompressed TDOA estimate 
    %display status 
    disp([num2str(M(j)) ': ' num2str(ctd(j,:,k)-td(j,:,k))]); 
end 
save([dec_path num2str(e)],'ctd','td','M','msgP'); %save results 
end 
end 
 
 
C.3 Subband Encoding Simulations 
 
This simulation will generate 100 random messages and perform subband encoding using MSE 
and FI-based distortion criteria.  A bit allocation will be computed for each intercepted signal.  
The TDOA parameter is estimated using signals produced by both compression methods.  The 
results are saved to the file sub_file. 
 
%test FI vs MSE bitalloc with additive noise (varying SNR) 
%Preliminaries: 
%   msgR - message parameter structure  
%   P,u - sensor/emitter coordinates 
%   cdcP - codec parameter structure 
%Experimental results: 
%   td - matrix containing TDOA estimates obtained from uncompressed signals 
%   ftd – TDOA estimates for signals compressed using FI criteria 
%   mtd – TDOA estimates for signals compressed using MSE criteria 
%   bf – subband bit allocations using FI criteria 
%   bm – subband bit allocations using MSE criteria 
 
clear td ftd mtd bm bf 
sub_file='results/subband/experiment1'; 
N=fliplr([0:5:40]); %SNR 
  
for i=1:100,     %repeat 100 times 
[msgb msgP]=crMsg(u,P,msgR,[]);  %create new message 
for j=1:length(N),    %for each SNR 
    cdcP.n=max(abs(msgb{1,1}))^2/10^(N(j)/10); %noise variance 
    msgk=addnoise(msgb,N(j),N(j));  %add noise (WGN) 
    cdcP.op='MSE';    %change mode to MSE 
    [msgkc bm(i,j,:,:)]=codec(msgk,cdcP); %compress using MSE alloc 
    msgkc{3,1}=msgk{3,1};   %dont compress signal 3 
    mtd(i,:,j)=tdoa(msgb,msgP,1)-tdoa(msgkc,msgP,1); %MSE TDOA estimates 
    cdcP.op='FI';     %change mode to FI 
    [msgkc bf(i,j,:,:)]=codec(msgk,cdcP); %compress using FI alloc 
    msgkc{3,1}=msgk{3,1};   %dont compress signal 3 
    ftd(i,:,j)=tdoa(msgb,msgP,1)-tdoa(msgkc,msgP,1); %FI TDOA estimates 
     
    td(i,:,j)=tdoa(msgb,msgP,1)-tdoa(msgk,msgP,1); %no-comp TDOA estimates 
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    disp(['MSE: ' num2str(mtd(i,:,j)) ' FI: ' num2str(ftd(i,:,j)) ' NO: ' 
num2str(td(i,:,j))]);    %display status 
end 
save(sub_file,'ftd','mtd','td','msgP','bm','bf'); %save results 
end 
 
This simulation will generate 100 random messages and perform subband encoding using MSE 
and FI-based distortion criteria; however, unlike in the previous experiment, the bit allocation 
will be computed only once using a randomly generated message.  This simulation generates the 
results for the suboptimal approach that was presented in section 4.3. 
 
%test FI vs MSE bitalloc with additive noise (varying SNR, one-time alloc) 
%   msgR - message parameter structure  
%   P,u - sensor/emitter coordinates 
%   cdcP - codec parameter structure 
%Experimental results: 
%   td - matrix containing TDOA estimates obtained from uncompressed signals 
%   ftd – TDOA estimates for signals compressed using FI criteria 
%   mtd – TDOA estimates for signals compressed using MSE criteria 
%   bf – subband bit allocations using FI criteria 
%   bm – subband bit allocations using MSE criteria 
  
clear td ftd mtd 
sub_file='results/subband/experiment1'; 
N=fliplr([0:5:40]); %SNR 
  
[msgb msgP]=crMsg(u,P,msgR,[]);  %create message for bit alloc 
for j=1:length(N),    %for each SNR 
    cdcP.n=max(abs(msgb{1,1}))^2/10^(N(j)/10); %noise variance 
    msgk=addnoise(msgb,N(j),N(j));  %add noise (WGN) 
    cdcP.op='MSE';    %change mode to MSE 
    [msgkc bm(j,:,:)]=codec(msgk,cdcP); %compress using MSE alloc 
    cdcP.op='FI';     %change mode to FI 
    [msgkc bf(j,:,:)]=codec(msgk,cdcP); %compress using FI alloc 
end 
  
cdcP.op=[]; 
for i=1:100,     %repeat 100 times 
[msgb msgP]=crMsg(u,P,msgR,[]);  %create new message 
for j=1:length(N),    %for each SNR 
    msgk=addnoise(msgb,N(j),N(j));  %add noise (WGN) 
    cdcP.b=squeeze(bm(j,1,:));  %load MSE bit allocation 
    msgkc=codec(msgk,cdcP);   %compress using MSE alloc 
    msgkc{3,1}=msgk{3,1};   %dont compress signal 3 
    mtd(i,:,j)=tdoa(msgb,msgP,1)-tdoa(msgkc,msgP,1); %MSE TDOA estimates 
    cdcP.b=squeeze(bf(j,1,:));  %load FI bit allocation 
    msgkc=codec(msgk,cdcP);   %compress using FI allo  c
    msgkc{3,1}=msgk{3,1};   %dont compress signal 3 
    ftd(i,:,j)=tdoa(msgb,msgP,1)-tdoa(msgkc,msgP,1); %FI TDOA estimates 
    td(i,:,j)=tdoa(msgb,msgP,1)-tdoa(msgk,msgP,1); %no-comp TDOA estimates 
    disp(['MSE: ' num2str(mtd(i,:,j)) ' FI: ' num2str(ftd(i,:,j)) ' NO: ' 
num2str(td(i,:,j))]);  %display status 
end 
save(sub_file,'ftd','mtd','td','msgP','bm','bf'); %save results 
end 
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