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ABSTRACT 
Lung cancer is one of the most lethal cancer types. Research in computer aided detection (CAD) and 

diagnosis for lung cancer aims at providing effective tools to assist physicians in cancer diagnosis and 

treatment to save lives. 

In this dissertation, we focus on developing a CAD framework for automated lung cancer nodule 

detection from 3D lung computed tomography (CT) images.  Nodule detection is a challenging task that 

no machine intelligence can surpass human capability to date.  In contrast, human recognition power is 

limited by vision capacity and may suffer from work overload and fatigue, whereas automated nodule 

detection systems can complement expert’s efforts to achieve better detection performance. 

The proposed CAD framework encompasses several desirable properties such as mimicking 

physicians by means of geometric multi-perspective analysis, computational efficiency, and the most 

importantly producing high performance in detection accuracy. As the central part of the framework, we 

develop a novel hierarchical modular decision engine implemented by Artificial Neural Networks. One 

advantage of this decision engine is that it supports the combination of spatial-level and feature-level 

information analysis in an efficient way. Our methodology overcomes some of the limitations of current 

lung nodule detection techniques by combining geometric multi-perspective analysis with global and 

local feature analysis. The proposed modular decision engine design is flexible to modifications in the 

decision modules; the engine structure can adopt the modifications without having to re-design the entire 

system. The engine can easily accommodate multi-learning scheme and parallel implementation so that 

each information type can be processed (in parallel) by the most adequate learning technique of its own. 

We have also developed a novel shape representation technique that is invariant under rigid-body 

transformation and we derived new features based on this shape representation for nodule detection. 

We implemented a prototype nodule detection system as a demonstration of the proposed framework. 

Experiments have been conducted to assess the performance of the proposed methodologies using real-

world lung CT data. Several performance measures for detection accuracy are used in the assessment. The 

results show that the decision engine is able to classify patterns efficiently with very good classification 

performance. 
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CHAPTER 1. INTRODUCTION 

1.1) Motivation 

Lung cancer is one of the most lethal cancer types. It is reported in [Partain05] that it accounts for 

32% and 25% of cancer deaths among men and women [Dood04] and causing 150,000 deaths a year 

[Li2003] in the United States, respectively. It is proved that early detection of this cancer type may 

increase the chance of surviving [Sluimer06, Dood04,  Li2003]. It has been observed that radiologists 

may overlook some nodules due to heavy load of number of images and fatigue. It is also proven that a 

computer aided detection and diagnosis CADD system can provide a ‘second opinion’ for radiologists to 

increase their interpretation performance [Doi005]. 

 [Factus] reported some facts about the lung cancer in the United States: “Approximately 175,000 
people are diagnosed with lung cancer in the U.S. each year– about 82,000 women and nearly 93,000 
men. Lung cancer kills more than 160,000 people annually – more people than breast, colon and prostate 
cancers combined. Lung cancer is responsible for more than a quarter of all cancer-related deaths every 
year. Smoking is the primary cause of lung cancer. Approximately 90 percent of lung cancer cases occur 
in people who are currently smoking or have previously smoked. Although the risk of developing lung 
cancer goes down with smoking cessation, a significant risk remains for 20 years or longer after quitting. 
Approximately 50 percent of all lung cancers (87,500) occur in people who have already quit smoking. 
Radon exposure is the second leading cause of lung cancer, and the leading cause of lung cancer among 
never-smokers. More people who have never smoked die from lung cancer than do people from AIDS or 
liver cancer or ovarian cancer. Risk factors for lung cancer other than those from smoking include lung 
scarring from tuberculosis, and occupational or environmental exposures to radon, second-hand smoke, 
radiation, asbestos, air pollution, arsenic and some organic chemicals. Only 16 percent of lung cancer 
patients are diagnosed before their disease has spread to other parts of their bodies, (e.g., regional lymph 
nodes and beyond), compared to more than 50 percent of breast cancer patients, and 90 percent of 
prostate cancer patients. Men’s mortality (death) rates from lung cancer began declining over 20 years 
ago, while women’s lung cancer mortality rates have been rising for decades and just recently began to 
stabilize. African Americans experience the highest incidence of lung cancer, and the highest death rate. 
Roughly, 85 percent of people diagnosed with lung cancer die within five years of their diagnosis, 
compared to 12 percent of breast cancer and 1 percent of prostate cancer patients. Less money is spent on 
lung cancer research compared to research on other cancers. In 2005, the National Cancer Institute 
estimated it spent only $1,708 per lung cancer death compared to $13,947 per breast cancer death, 
$10,214 per prostate cancer death and $4,655 per colorectal death.”. 

As seen from the facts stated above, invention of a novel methodology that can assist to detect a 

cancer would be very crucial. It has been experienced for a long time that a CADD system is one of the 

important tools used in medicine. Main goal of a CADD system is to give a second opinion to enhance 

the performance of radiologist while increasing the number of true positive detections and decreasing the 

number of missed nodules. A CADD system is mainly used to assist human interpreters to identify and 

characterize abnormalities automatically [Ko2004] “making lesions easier to detect and classify and 

potentially identify at an earlier stage” [Krup04]. Although automatic nodule detection systems may yield 
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false outputs, [Ko2004] showed that image interpretation time significantly improved. Besides assisting 

in interpretation, a CADD system can provide a standard against both the inter- and intra-observer 

variations in identification as well [Ko2004] [Krup04]. The future of CADD system tends to “provide 

some possibility of being malignant vs. benign and perform tailored image processing to enhance the 

visibility of the lesion for the radiologist so that it can be readily perceived and interpreted” [Krup04]. 

Another advantage of using a CADD system is to reduce the workload of radiologist and consequently 

decreasing error as well [Arma04]. As stated in [Rubin00], with the advanced technology of CT scanning, 

‘data explosion’ is a big challenge when we consider that a radiologist has to analyze more than 300 

image sections per case. Explosion of image data affects human judgment due to physiological exhaustion 

like fatigue or distraction [Arma00]. 

The frontal-chest-radiograph as compared to CT scanning has some disadvantages of projectional 

imaging such as obscuration due to the overlaying structures and lack of discrimination between texture 

of normal and abnormal tissues, and insensitivity to early stages of cancer [Hans00]. On a research, it was 

found that the average size of missed peripheral cancers by radiologist is 0.3 cm for CT versus 1.3 cm for 

radiography [Arma00]. The spiral CT has an advantage over chest radiography as “shorter scanning time, 

lower radiation exposure, and increased diagnostic accuracy” [Kane96]. In spite of the advancement of 

CT scanning technology, missed nodules are still a challenge due to the structure of the lung anatomy. 

Among the pulmonary nodule types, pleural tumors, vascularized nodules, or those having the size of less 

than 5 mm are the mostly missed nodule types [Ko2004]. Another challenge in automatic reading of a CT 

section image is related to the partial volume effect and anisotropic volume reconstruction [Kuhn06]. 

1.2) Problem Definition and the Proposed Framework 

Nodule detection techniques can be categorized with respect to their spatial analysis dimension such 

as 2D or 3D detection and their analysis granularity that can be global or local. It is obvious that high-

dimensional analysis is superior to lower ones as regard to detection accuracy; whereas it demands more 

computational resources. Global analysis approaches enable to characterize the whole volume of interest 

(VOI) with higher-level abstraction, which may be desirable in terms of computational resource 

allocation; on the other hand, discriminative power would be so restrictive. In contrast, local analysis 

approaches can provide more descriptive features while leading to the curse of dimensionality that may 

require advanced processing techniques; even in some cases, the dimensionality may gets too large and 

making decision on the class of a given object can be an NP-complete problem. 

As an important fact that human intelligence is the best nodule detector and yet there is no machine 

intelligence that can compete with this human detection capability.  Whereas human visual recognition 

power is limited by eye vision capacity, on which the machine can be superior. Therefore, a 

comprehensive nodule detection technique should be able to combine higher spatial dimensional analysis 

with global and local feature level analysis while demanding less computational resources and high 
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performance detection accuracy, and be able to mimic human intelligence. In addition, the detection 

system should be flexible so that different classification approaches can be used together and modification 

of its units should not require redesigning the entire system. 

According to our extensive literature review about pulmonary nodule detection from 3D CT images, 

the current approaches analyze a VOI for suspicious objects by 1) searching through transverse plane or 

2) performing segmentation. The first group approaches aim either to find the most descriptive section or 

to model the VOI based on some spatial assumptions before extracting characteristic features; the second 

group approaches perform, first, a 3D segmentation and then extract features for pattern recognition. On 

the other hand, they perform feature level analysis in a non-categorical way; so the size of a feature vector 

has to face curse of dimensionality. Another drawback of the current approaches, which employ 3D 

analysis, is that they consider entire VOI to produce some global feature vectors, which have less 

capability of characterizing complicated lung volumes. 

The objective of this dissertation is to propose a novel CAD framework that can encompass properties 

of the comprehensive nodule detection framework described above. Accordingly as a part of the 

framework, we proposed and implemented a novel modular nodule detection method and a novel content 

based shape representation from which new shape features are derived. The proposed framework is 

composed of integrated units that automate the whole process including data retrieval, pre-processing, 

feature extraction, training, testing and assessment for detection. An important aspect of the proposed 

decision engine is that its integrated units at the same layer can process independently; therefore, its 

structure is very well suited for parallel processing environment. 

1.2.1) The Framework Proposed 

The organization of the framework is depicted in Figure 1.1 and Figure 1.2. The data retrieval unit 

reads nodule location information and corresponding image series locations from the data archive for each 

specified patient. All volume VOIs are extracted for further processing. In the preprocessing unit, gray-

level and scale normalization are applied; after that, coronal and sagittal volumes are computed from 

sections; finally, sections that are not adequate for feature extraction are replaced with their nearest 

‘usable’ sections. The feature extraction unit produces feature vectors for each section of planes. At the 

feature set preparation stage, extracted features are organized in such a way that their spatial order 

preserved per each image series; this special organizing is crucial to realize modularity. The next step is 

the main unit, the Decision Engine, where the classification is performed. All of the outputs from each 

unit are archived to be able use later, e.g. for testing and assessment purpose. Some units can allow a user 

interaction to change the parameters. The whole system is designed in such a way that ‘once the start 

button is pushed on this side, you can get the all results at the other side’; so that experiments can be 

conducted in an organized and efficient way. 

The overall scenario is as such that a set of CT slices from a VOI and candidate nodule region of 

interests  (ROIs) are given, these slices are preprocessed to handle anisotropy and scalability problems, 
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and to normalize their gray level range. After the preprocessing, a VOI is obtained from the raw data by 

selecting/replacing some regions from the VOI; following that, feature vectors are obtained from this VOI 

using feature extraction tools that we developed. After extracting all feature vectors for each slice, they 

are organized in a special way for modular processing. At the final stage, the modular Decision Engine 

processes these feature sets to produce the final classification decision. The whole system is implemented 

in the MATLAB environment. A user interface is developed to analyze image series, to perform some 

image processing, and to extract VOIs. 

 

s  

Figure 1.1 The proposed framework 

The rest of the dissertation is organized as follows: In the second Chapter, background information is 

presented; the Section 2.1 is about medical imaging and CT, the Section 2.2 is about pulmonary anatomy, 

lung cancer, tumor and image characteristics of nodules, the Section 2.3 is about pattern recognition  

system,  basic structure of an Artificial Neural Networks (ANN), the Section 2.4 explains basics of 

Backpropagation learning and two versions of this method that is utilized in this study are explained 

briefly, and an extensive literature review is given in Section 2.5. In the third Chapter, content-based 

image representation is explained in detail; first, the concept of image content and principal of image 

representation is explained, and then, a novel shape representation is introduced in Section 3.3. In Section 
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3.4, we explained the feature types utilized in this research and introduced a new shape feature and two 

circularity features obtained from our canonical shape representation. The fourth Chapter is about data 

preparation; we explained how the raw data is collected and processed to prepare feature vector sets for 

training and testing. In addition, in this chapter, an auto-polygonalization algorithm is proposed. The fifth 

chapter covers our one of the main contribution ‘modular decision engine model’. The chapter six 

introduces performance assessment measures. In the Chapter 7, we discuss results obtained from 

implementation of the model and provide a comparison table with the relevant nodule detection studies. 

Finally, at Chapter 8, the whole system is summarized and possible future directions are listed 

 
Figure 1.2 The proposed framework (with detail internal processes) 
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CHAPTER 2. BACKGROUND 
A CADD system provides a ‘second opinion’ [Partain05] to assist radiologist in reading and 

understanding of images with a certain accuracy and efficiency. Therefore, the goal of a CADD system is 

to provide necessary tools that are used to improve radiologic interpretation of lesions by efficient 

detection techniques to achieve more effective treatment. Output of a CADD system should yield a high 

true-positive rate while producing less number of false-positives as much as possible and it should be 

helpful to reduce intra-/inter-observations [Krup04]. As seen in the Figure 2.1, A CADD system is 

composed of following tasks or of sub-systems [Partain05]: Data acquisition, preprocessing, feature 

extraction, detection, diagnosis, retrieval of similar images in the database, and assessment of outputs. 

A more enhanced CADD system is given in Figure 2.2. Phases of the CAD framework are retrieval of 

images, preprocessing, lung region extraction and lung boundary tracing, candidate search, feature 

extraction, and nodule detection and diagnosis. The flow of the CAD system is as follows: First, 

pulmonary CT images are entered to the system. Second, anisotropic voxels are preprocessed by an 

interpolation technique. After that, the lung region is extracted to reduce the search time. Once the lung 

region is determined, candidate VOIs are searched within the lung volume. Then, features that describe an 

image object in the VOI are extracted from each slice of three orthogonal planes. The classifier utilizes 

these features to make decision about the class of the candidate imject. During the process, an interaction 

is available in extraction, search and database units. Extracted lung lobes, features, and candidate imjects 

can be archived to the database system to be used later. Rules that control the decision engine in detection 

unit can be modified based on new experiences. 

 
Figure 2.1 A typical CADD system 
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Figure 2.2 An enhanced CADD system 
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Medical imaging utilizes some forms of energy interacting with tissues [Bush01]. The spectrum of the 
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A tomographic image is reconstructed by a computer system based on the energy acquired from different 
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tissues. The amount of interaction  in the form of attenuation, scattering or absorption  during the 

penetration is measured to create image of the body. The variation of interaction for each tissue type 
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enables to create a contrast. If all tissues react with the energy in the same way, there will be no contrast, 

hence no meaningful image. 

A CT imaging system is composed of several units such as energy source unit, energy management 

unit, detection unit, movement control unit, and reconstruction unit. The X-ray energy is produced and 

directed by a beam in the form of rays. A ‘ray’ is a single transmission measurement detected by a single 

detector at a moment. Several rays can be sent from a ‘parallel beam’ source or from a ‘fan beam’ source 

in different ‘projections’. ‘View’ or ‘projection’ is the orientation through which several rays are radiated. 

Modern CT scanners employ fan-beam geometry. The goal of energy source and management unit is to 

utilize maximum amount of measurement from different projections accurately while keeping the amount 

of energy dose at a minimum level in a limited time. A typical example, 800 rays taken at 1,000 different 

projections will rise about 800, 000 single transmission measurements [Bush01 p. 329]. 

The detection unit is constructed from series of arrays of detector hardware where the energy leaving 

the body is acquired. The detector arrays can be in different forms such as single arrays and multiple 

arrays. The state-of-art technology utilizes the multiple detector array systems. A detector unit can be 

Xenon detector or a solid-state detector, which is mostly used. The X-rays incident on a scintillator that is 

the top part of a detector are converted to visible light spectrum. The light emitted by scintillator is 

detected by a photo-detector. The photo-detector converts the light energy into electrical energy 

proportional to the light intensity. 

Movement and position of the table, beam or detector characterize the technology of the imaging 

system. For example, a helical CT scanner enables the table movement while rotating continuously beam 

and detector array chamber. The data acquisition time and accuracy is affected by movement and position 

parameters. 

Reconstruction unit utilizes the raw data obtained from detection unit to create a 2D image of the 

volume scanned using a reconstruction algorithm. The most widely used reconstruction algorithm is 

‘filtered backpropagation’ algorithm. Data acquired by detectors from different orientations is 

preprocessed to decrease the effect of blurring by convolving with a ‘1/ r ’ filter such as ramp filter. In 

addition, some other corrections on the raw data such as related to geometric discrepancies are 

accomplished. After the preprocessing, an attenuation coefficient is computed for each ray. A system of 

unknowns of voxel values is solved using these set of coefficients. 

Attenuation of photons is proportional to tissue structure (soft or bone-type), photon energy level 

(typically <26 keV for low photon energies), and atomic number of the absorber (e.g. soft tissues have 

low atomic number). Some of photons are removed due to the attenuation. A CT scanner measures the 

‘linear attenuation coefficient’ for each ray. The linear attenuation coefficient is “the fraction of photons 

removed from a mono-energetic beam of X- or Gamma rays per unit thickness of material” [Bush01 p. 

45]. It is unit is mm-1. The relation between number of photons removed n and the linear attenuation 

coefficient µ  for a ray traversing a small distance ∆x with some incident photons of N can be given by 
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equation (2.1) in case of a linear relation. This equation tells that, for each 1,000 incident photons, about 

16 photons are removed from the beam traversing a soft tissue of µ = 0.016 mm-1 (under 100 keV) 

passing through a thickness of 1 mm. 

  (2.1) 

On the other hand, attenuation is not linearly proportional to the thickness. Equation (2.2) defines the 

non-linear relation between the number of incident photons N0 and the number of photons N succeeded to 

pass a distance x through a tissue of the coefficient µ. Considering the example given above, N ≈ 984 and 

n ≈ 16; but if ∆x = 60 mm, then N ≈ 382 and n ≈ 617 not n ≈ 960 (in case of a linear relation). 

  (2.2) 

The linear attenuation coefficient is combination of linear coefficient of different type of linear 

attenuation coefficients such as Rayleigh, photoelectric effect, Compton scatter, and pair production. 

A contrast on a tomographic image is due to different interaction of tissues with X-rays passing 

through. The linear attenuation coefficient is computed using equation (2.3) after measuring number of 

incident photons on a detector element for a traveling distance of x. If we sub-divide the total distance x 

traveled into k small intervals and considering the linear attenuation coefficient is constant for each sub-

interval, then equation (2.4) shows the relation between attenuation coefficients of each individual sub-

intervals and the measured linear attenuation coefficient [Bush01 p. 350]. 

  (2.3) 

  (2.4) 

After computation of the linear attenuation coefficients for each ray, system of unknowns of voxel 

values is solved using these set of coefficients and voxel values. These voxel values are represented by 

high-precision floating point number, are transformed to Hounsfield Unit (HU) for display purpose. The 

CT value of each voxel is computed by equation (2.5). A CT value, which is given in Hounsfield Unit, is 

an integer value due to truncation. Some typical CT values are 0 HU for water, -1000 for air, [-300, +100] 

for soft tissues, and up to 3000 for bones. 

  (2.5) 

CT values are typically stored in 12-bit depth; hence, 4096 different gray levels can be obtained. The 

range of a typical CT image is [−1000, +3000]. 
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2.2) Pulmonary Anatomy and Lung Cancer 

Pulmonary (pulmo- is from Latin pulmonarius ("of the lungs") [Wilung]) anatomy studies structure of 

lung. In the following sections, anatomy of pulmonary region and lung cancer will be briefly explained. 

Lung is the essential organ of the respiratory system. “Its principal function is to transport oxygen 

from the atmosphere into the bloodstream, and to excrete carbon dioxide from the bloodstream into the 

atmosphere. This exchange of gases is accomplished in the mosaic of specialized cells that form millions 

of tiny, exceptionally thin-walled air sacs called alveoli” [Wilung]. The lung anatomy is shown in Figure 

2.3. 

 
Figure 2.3 Lung anatomy [Wilung] 

In humans, the trachea bifurcates and produces two main bronchi. The bronchi give rise to 

bronchioles after multiple divisions. The bronchial tree ends with alveolar sacks. Clusters of alveoli made 

up alveolar sacks. Blood vessels tightly wrap the individual alveoli [Wilung]. “Human lungs are located 

in two cavities on either side of the heart. Though similar in appearance, the two are not identical. Both 

are separated into lobes, with three lobes on the right and two on the left. The lobes are further divided 

into lobules, hexagonal divisions of the lungs that are the smallest subdivision visible to the naked eye. 

The connective tissue that divides lobules is often blackened in smokers and city dwellers. The medial 

border of the right lung is nearly vertical, while the left lung contains a cardiac notch. The cardiac notch is 

a concave impression molded to accommodate the shape of the heart. Lungs are to a certain extent 
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'overbuilt' and have a tremendous reserve volume as compared to the oxygen exchange requirements 

when at rest. This is the reason that individuals can smoke for years without having a noticeable decrease 

in lung function while still or moving slowly; in situations like these only a small portion of the lungs are 

actually perfused with blood for gas exchange. As oxygen requirements increase due to exercise, a greater 

volume of the lungs is perfused, allowing the body to match its CO2/O2 exchange requirements.” 

[Wilung]. 

“Lung cancer is the malignant transformation and expansion of lung tissue, and is the most lethal of 

all cancers worldwide, responsible for 1.2 million deaths annually. It is caused predominantly by cigarette 

smoking, and predominantly affected men, but with increased smoking among women, it is now the 

leading cause of death due to cancer in women. However, some people who have never smoked still get 

lung cancer.” [Wilucan]. 

“Cancers that begin in the lungs are divided into two major types, non-small cell lung cancer and 

small cell lung cancer, depending on how the cells look under a microscope. Each type of lung cancer 

grows and spreads in different ways and is treated differently. Nonsmall cell lung cancer is more common 

than small cell lung cancer, and it generally grows and spreads more slowly. There are three main types of 

non-small cell lung cancer. They are named for the type of cells in which the cancer develops: squamous 

cell carcinoma (also called epidermoid carcinoma), adenocarcinoma, and large cell carcinoma. Small 

cell lung cancer, sometimes called oat cell cancer, is less common than non-small cell lung cancer. This 

type of lung cancer grows more quickly and is more likely to spread to other organs in the body.” 

[Cangov]. 

A tumor is “primarily used to denote abnormal growth of tissue” [Witumor]. A tumor can be invasive 

or non-invasive. Invasive tumor is an abnormal tissue growth that spreads (invades) to the surrounding 

healthy tissue (usually a malignant one). Non-Invasive tumor is an abnormal tissue growth that does not 

spread to the surrounding healthy tissue. “Cancer is a class of diseases or disorders characterized by 

uncontrolled division of cells and the ability of these cells to invade other tissues, either by direct growth 

into adjacent tissue through invasion or by implantation into distant sites by metastasis.” [WikiCan]. 

Solitary pulmonary nodules (SPN) are defined as ‘focal, round, or oval areas of increased opacity in 

the lung that measures less than 3 cm in diameter” [Eras00, Worman04]. In [Ge2005], it is defined as 

“single round intra-parenchymal opacity, at least moderately well-marginated and less than 3 cm in 

maximum diameter”. “Lesions measuring greater than 3 cm are classified as masses” [Buny06] 

Pulmonary nodules can be classified into four groups based on their locations [Kosti03]: 1) Well-

circumscribed: The nodule is located centrally in the lung, without significant connections to vasculature. 

2) Vascularized: The nodule is located centrally in the lung, but has significant vascularization 

(connections to neighboring vessels). 3) Pleural tail: The nodule is near the pleural surface, connected by 

a thin structure (“pleural tail”). 4) Juxtapleural: A significant proportion of the nodule periphery is 

connected to the pleural surface. 
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2.2.1) Image Characteristics of Nodules 

Basic image characteristics of a nodule can be determined by its morphological features and internal 

characteristics. In this section we briefly explain these characteristics. 

Morphologic features: Size, margin, and contour; “nodule margins and contours can be classified as 

smooth, lobular, irregular, or speculated” [Eras00]. Assessment of margin characteristics may not be a 

valid discriminator [Worman04]. 

Internal Characteristics: Basic internal characteristics of a nodule image are attenuation features, type 

of cavity, and its calcification pattern [Eras00]. Nodules can be characterized by their CT values 

conveyed based on homogeneity, contrast enhanced-CT measure, CT number level, and opacity. CT 

values are similar for both tumor and vessels [Kanaza96]. CT values are relatively uniform for malignant 

nodules compared to the vessels. CT values are generally higher than that of vessels in vertical sections 

[Satoh99]. Homogenous attenuation is seen in both benign and malignant [Eras00, Worman04]. 

“Shadows contacting the lung wall are generally tumors” [Satoh99]. 

Level of CT numbers for lung structures: Air: -1000 HU, lung tissue: -910 to – 500, chest wall, blood, 

and bone: above -500 [Hu2001]. Intra-nodular fat: -40 to -120 HU [Eras00, Worman04]. 

Opacity: “Non-solid and part-solid nodules, also referred to as ground-glass opacities (GGO), are 

entities that have attracted increasing interest and systematic analysis over the past few years. They were 

initially observed in trials for early detection of lung cancer with low-dose CT and were found to 

represent lung cancer in a higher proportion of cases than solid nodules (malignancy in 34% of GGOs vs. 

7% of solid nodules in one study). The distribution of histological findings in malignant GGOs is 

different from findings in solid nodules: GGOs frequently represent bronchioloalveolar carcinoma or 

adenocarcinoma with bronchioloalveolar features, whereas histological analysis of solid nodules more 

often reveals others subtypes of adenocarcinoma, squamous cell carcinoma and small cell lung cancer” 

[Worman04]. 

Cavitation: “Benign cavitary nodules generally have smooth, thin walls” while “malignant nodules 

typically have thick, irregular walls” [Eras00]. 

Wall thickness: In general > 16 mm is a sign of malignancy, < 4mm is a sign of benign [Eras00, 

Tan2003]. 

Calcification Patterns: Attenuation value of 200 HU can be used to discriminate calcified and non-

calcified nodule. [Eras00]. Eccentric or stippled form of calcifications is indeterminist [Tan2003]. 

2.3) Pattern Recognition 

A pattern is a signal whose elements have some common contextual characteristics. A contextual 

characteristic for a pattern in an image can be defined based on a geometric, a topological, or photometric 

structures. An ‘imject’ (image object or object in an image) can be defined by means of patterns conveyed 

by the image object such as an imject of a vessel can be defined by a gray-level profile that is 



13 

 

perpendicular to its major axis. Patterns can be grouped into two main categories namely concrete and 

abstract. A concrete pattern is based upon physical measurements over spatial and temporal items such as 

fingerprints, weather map waveforms, and an abstract pattern is based upon “attribute of concepts and 

mental models” [Looney97, Jesa04]. In this dissertation, ‘pattern’ refers to ‘concrete pattern’. 

Pattern Recognition, generalization, identification, and classification are closely related concepts. 

‘Pattern Recognition' is making a decision about class of an object by assigning its class to a known 

population [Looney97]. We can look at pattern recognition as an ‘inverse problem', which is one-to-many 

if the forward problem is many-to-one and it can be solved using a mixture model [Bish06]. 

‘Identification’ is “the recognition of an object as a unique singleton class” [Looney97]. In ‘classification’ 

process, the object is assigned to a class specified based on its features likelihood. A learning system 

reaches its entropic stable state when the system ‘learns’ the class of a pattern [Looney97]. 

‘Generalization’ is one of the goal/aspects of a pattern recognition task [Bish06]. Recognition can be done 

by a ‘supervised’ or an ‘unsupervised’ learning approach. A supervised approach aims to assign a pattern 

to a predefined class while an unsupervised approach aims to group patterns according to a similarity 

metric. A recognition process can utilize statistical (or decision theoretic) or syntactic (or structural) 

approaches [Looney97 p. 8]. “’Statistical pattern recognition’ is based on statistical characterizations of 

patterns, assuming that the patterns are generated by a probabilistic system. ‘Structural pattern 

recognition’ is based on the structural interrelationships of features.” [Foldoc]. ‘Pattern Recognition 

System’ is composed of data acquisition, preprocessing, pattern extraction, feature extraction, 

classification (or identification), and post-processing units [LeonC98, Jesa04 p. 2, Looney97 p. 5 Figure 

0.1, Duda01]. 

Classification approaches can be dichotomized in two main groups: Statistical (decision theoretic) 

approaches and syntactical (structural) approaches [LeonC98 p. 21]. In our research, we will develop an 

ANN-based recognition method, which is a structural approach. Designing a novel classifier to cope with 

some variations due to noise and data acquisition system [Duda01, p. 12] is a challenging problem of a 

pattern recognition system. Classification (from the decision theory point of view) can be done by 

minimizing the misclassification rate, maximizing the true classification rate, or further minimizing the 

expected loss [Bish06 p. 38-48]. 

2.3.1) Pattern Extraction 

Patterns in an image can be extracted by a segmentation method, a filter-based technique, or a model-

matching approach. Segmentation in Computer Vision is assigning pixels to some classes such that each 

segment has the maximal region. Filter-based techniques utilize some spatial filters, which are traversed 

over the image to extraction a pattern according to filter specification. Sobel’s mask [Ziou97] and Canny 

edge detector [Sonka98] are some examples of spatial filters. In model-matching approaches, patterns are 

defined by model parameters. Model parameters can be statistical distribution of some features such as 

Gaussian distribution of gray-levels within a window or can be some shape features such as polygonal 
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shape of an imject’s class. Segmentation methods and model-matching approaches use some similarity 

metrics to get the optimum result. Some examples of similarity metrics are Euclidian distance, 

Mahalanobis distance, Minkowski distance, Kullback-Leibler distance. 

Patterns like ‘blob’ are helpful in detection of nodules due to their spatial similarity in 2D space. Blob 

can be defined as “a connected region that is either significantly brighter or significantly darker than its 

neighborhood. It should have a sufficiently large area and be stable over some sufficiently large interval 

in scale-space” [Lindeb91]. 

2.3.2) Pattern Classification Using ANN 

Artificial neural network (ANN) is a classification technique that applies “biological concepts to 

machines to recognize patterns” [Jesa04 p. 3]. Its root goes to the article by McCulloch and Pitts in 1943 

[McCul43]. Although it emerged by inspirations from biological models, there is a strong relation 

between ANN and the statistical discriminant approaches [Duda01 p. 21, 33, Bish06, Lewis03]. ANN can 

be used to compute posterior probabilities, it can also be utilized for linear discriminant analysis as well 

as for quadratic discriminant analysis [Zhang00]. In addition, it has a power of flexibility employing non-

linear mapping and it is a “data-driven self-adaptive method” without imposing a specific function or 

distribution [Zhang00]. An extensive comparison study reported in [Zhang00] concluded that there is no 

best classifier that works for all data sets. Main advantages of using ANN are adaptive-learning, self-

organization, fault tolerance capabilities, generalization power, massive parallelism, and distributed 

representation [Jesa04 p. 4, Jain96, Schalk97]. Challenges in using ANN include the over-fitting problem, 

difficulty in prediction of generalization, and lack of specific design guidelines that can be applied in 

general [Schalk97 p.10] 

2.3.3) A Basic Structure of ANN 

A neural network model is a nonlinear mapping of input space {xi} to output space {yj} controlled by 

some adjustable parameters {wk} [Bish06 p. 228]. It implements linear discriminants while learning 

nonlinear mapping functions [Duda01 p. 283]. It is a heuristic and adaptive pattern recognition approach. 

It is composed of three layers namely input layer, hidden layer(s), output layer. Every layer is composed 

of nodes namely input nodes, hidden nodes, and output nodes. Each node has two units: First unit is to 

compute activation and the second unit is to transform activation. The activation, sometimes called ‘net’, 

is linear combination of weighted inputs as defined in equation (2.6). The second unit is to transform the 

activation to a value between two saturation values using, in general, a non-linear function. A threshold 

also called bias can be used to adjust the location of the decision plane. The bias can be introduced as a 

part of the input vector as well. Figure 2.4 shows a typical ANN structure [Lewis03 p. 4]. A basic 

structure of a node (or a neural unit) which is also called perceptron is shown in Figure 2.5. Hidden nodes 

are used to transform non-linearly separable problems into linear one [Duda01 p. 299]. 
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 (2.6) 

2.3.4) ANN Topologies 

ANN techniques can be classified as feed-forward (acyclic) or recurrent (cyclic) based on their 

connection topologies. Examples of the feed-forward topologies are Single-layer Perceptron, Multi-layer 

Perceptron (MLP), Adaptive Linear Element (ADALINE), Multiple Adaline (MADALINE), Radial Basis 

Function (RBF) network, and examples of the recurrent topologies are Kohonen Self-organizing Network, 

competitive networks, Hopfield network, Adaptive Resonance Theory networks (ART) [Jain96]. Another 

taxonomy of ANNs can be done based on the learning scheme they used; these are supervised or 

unsupervised learning schemes. In supervised learning, a corresponding target is specified for each 

training sample whereas in unsupervised learning samples are used without any target or ‘teacher’ to 

adjust learning weights. Back-propagation, RBF networks are typical examples of supervised approaches 

and Hebbian learning and competitive learning can be listed under unsupervised approaches [Kung93]. 

 
Figure 2.4 A basic ANN structure [Lewis03 p. 4] 

 
Figure 2.5 A basic neural unit [Lewis03 p. 4] 



16 

 

2.3.5) Training of ANN 

There are three training protocols: Stochastic, batch, and on-line [Duda01 pp. 293, 316]. In stochastic 

training, patterns are selected randomly from a training set and weights are updated for each sample. In 

batch training, weights are updated after introducing all samples from a training set. In on-line training, 

samples are used only once and weights are updated as in the stochastic learning. In general, the number 

of training samples per class should be at least 5-10 times the dimensionality [LeonC98 p. 7]. In the 

sequel, we explain some basic parameters used in training of an ANN. 

Activation function: Choice of activation function may differ depending on the nature of the problem. 

Linear activation functions are used for regression-type problems; logistic sigmoid and cross-entropy 

functions are used for binary classification [Bish06 p. 236]. If there is prior information about the 

distribution of the sample space, then an appropriate function e.g. a Gaussian function can be used. In 

case of back-propagation-based learning, an activation function should have following properties: 1) Non-

linearity to utilize the computational power 2) It must saturate so output will be bounded 3) Continuity 

and smoothness to satisfy existence of derivative condition, and not as an essential but as a helpful 

property 4) Monotonicity not to introduce additional local minima in the error function, and 5) Linearity 

for small value of the activation [Duda01 p. 307]. 

Initializing Weights: Initialization of an ANN is important for the convergence. Finding the best 

parameter set of ANN for a given training data is an NP-complete problem [Leon98]. A poor weight 

initialization may yield the network to trap into a local minimum [Leon98 p. 88]. Weights should be 

initialized in such a way that a uniform learning, which requires adaption of all weights to be completed 

about the same time, can be achieved. A uniform weight update, that is while some weights do not 

converge faster than others, can be achieved selecting them from a uniform distribution of an interval [

,ω ω−   ], and for a d dimensional input space we can chose 1/ dω = to make activation in the range of [-

1, 1] [Duda01 p. 311]. Another approach to initialize weights is step-wise regression analysis by means of 

orthogonal least square or maximum covariance method [Leon98 p. 90-93]. Elimination of weights also 

can be done using second-order methods in network design [Duda01 p. 318]. A symmetric weight 

initialization in a network layer may cause to trap into a saddle point in case the initial weight and bias 

values are set to zero. In addition, large initial weight may produce a large output at the saturation region 

of the transfer function and consequently the performance function surface will produce some flatten 

regions away from the global minimum. 

Learning Rate: The optimal learning rate is defined as the rate at which learning is achieved at one 

step. Learning rate is used to adjust converging rate. Accuracy of the final result is strongly affected by 

learning rate chosen [Duda01 p. 312]. 

Momentum: In gradient-based learning scheme, oscillation around a local minimum can be avoided 

by adding a fraction of change in the weight (obtained in the previous update step) so that it will 

accelerate the weight update step while descending down the hill, and will decrease update step size if 
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sign of the error rate changes. This mechanism assists to escape from a local minimum. It is used to speed 

up learning [Schalk97 p. 164]. 

Hidden Layers: Hidden layers are employed to increase the dimensionality of mapping from input to 

output to have a better approximation [Bish06 p. 256]. On the other hand, increasing number of hidden 

layers may cause possibility of trapping into local minima [Duda01 p. 317-8]. Each node in a hidden layer 

can be thought as a (e.g. logistic) model that maps inputs to a class based on its parameters. Number of 

hidden layers can be determined by employing step-wise regression analysis with forward or backward 

elimination approach [Leon98 p. 90-93]. 

Matching Error (Cost) Function: Depending on the nature of the problem, the cost function may 

differ. Sum-of-squares  [Bish06 p. 233] defined in equation (2.7) can be used for linear regression-type 

problems, cross-entropy error function defined in equation (2.8) can be used for binary classifications and 

multi-class classifications  [Bish06 p. 236] or Minkowski error function [Duda01 p. 318] defined in 

equation (2.9) to adjust the locality of the classifier. 

 

  (2.7) 

  (2.8) 

  (2.9) 

where x is input vector, n and c are number of samples and number of output neural units respectively, zmk 

is the output and tmk is the corresponding target for mth sample and kth output neural unit, respectively; R 

adjust the influence of long tails in the distribution. 

 Over-fitting Problem in Training: The goal of designing a model is to obtain a good generalization 

over a sample space. How to achieve the best generalization and how to decide number of parameters is 

an important problem in design of ANN. If the number of weights are too many, then poor generalization 

(over-specialization); on the other hand, if they are too few, then poor learning performance (over-

generalization) is obtained [Duda01 283]. Over-fitting is reduction in accuracy of classification over test 

data compared to the accuracy over training samples. When the number of the data points is more than the 

weights, an over-smoothing (or generalization) may occur. On the other hand, when the number of 

weights (mapping dimension) is larger than the number of exemplars, the network model will show 

‘memorize’ effect as a consequences of over-specialization [Looney97 p. 307-308]. To avoid the over-

fitting problem, several methods have been proposed such as weight decay (as a regularization term) and 

early-stopping. 
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2.4) Backpropagation Learning 

Backpropagation learning algorithm was proposed by different scientist as a solution to non-linearly 

classification problems in 1980s. In this section we just introduce basics of the Backpropagation 

algorithm using equations in [Hagan95] and refer the reader to the reference for details. The 

Backpropagation is a version of the LMS (least mean squared) weight adjusting algorithm which uses the 

expected squared error as a performance measure; it differs from the LMS such that difference is the 

expected squared error is approximated by the squared error at an iteration k. In the next section the basic 

Backpropagation algorithm Steepest Descent and some variations of Backpropagation learning are 

explained briefly. 

2.4.1) Steepest Descent Backpropagation Algorithm 

Let t(k) and a(k) denote the target values vector and output of the activation function at an iteration k, 

respectively; the approximated error is given by 

  (2.10) 

So the steepest descent weight at an iteration k is computed by 

 
 

(2.11) 

where α is the learning rate, w is the weight between jth input to the ith node at a layer m. The change 

in the error due to the change in weights can be calculated by 

 

 

 

(2.12) 

where the sensitivity  denotes the change in  to the ith element of the net input at layer m, and the 

net input  to the activation function of node i at layer m is given by 

   (2.13) 

where b is the bias. Therefore 

  (2.14) 

  (2.15) 

Finally the approximate steepest descent equation will be 
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  (2.16) 

In the matrix form, it is given by 

  (2.17) 

The sensitivity vector is computed using the recurrence relation given by 

 

 

 

 

 

, for m = 0, 1, .., M − 1 

,  

(2.18) 

where p is the input vector and  denotes the activation function. As you see the sensitivity of a layer m+1 

is propagated backward from the last layer M to the first layer. 

2.4.2) Variations of Backpropagation Algorithms 

In the previous section ‘Steepest Descent Weight Adjusting Algorithm’ is introduced. This algorithm 

is not fast enough for practical purpose. Some faster algorithms have been proposed to speed up the 

weight adjusting iterations. These algorithms can be categorized into two main group as heuristic and 

numerical optimization methods. We briefly explain each method in the sequel. 

2.4.3) Heuristic Approaches 

Since steepest descent weight adjusting algorithm is too slow, some heuristic algorithms were 

developed to speed up the learning process. Among these algorithms, use of momentum, rescaling and 

variable learning rate can be listed [Hagan95 p.12-2]. Though the learning can be processed faster, 

algorithms in this category have some drawbacks such as necessity of setting up some parameters and 

failure to converge; even steepest descent eventually reaches a solution [Hagan95 p.12-14]. Including a 

momentum term into weight adjustment is similar to applying a low-pass filter to smooth out oscillation 

in the output [Hagan95 p.12-9]. It helps the network to converge stably fast towards to the optimum point 

[Hagan95 p.12-11]. Equation (2.17) with the momentum becomes 

  
 

(2.19) 

Increasing learning rate yields a faster convergence but an unstable adaption process due to skipping 

the optimum point. Instead of using a constant variable rate, a variable learning rate can help to flow 
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faster in such a way that it is increased at flat regions of the performance function surface while 

decreasing in valleys [Hagan95 p.12-12]. In addition to the learning rate (lr) and momentum constants, 

learning rate increase ratio (lr_inc) and learning rate decrease ratio (lr_dec) are used to update the learning 

rate; if the performance function increases above a ratio then the lr is multiplied with the lr_dec, if it 

decreases, then lr is multiplied by lr_inc. 

2.4.4) Numerical Optimization Approaches 

Among the numerical optimization technique, the steepest descent, Newton’s method and conjugate 

gradient can be listed [Hagan95 p.12-14]. The steepest descent is the slowest one compared to other two 

approaches; Newton’s method requires computation of Hessian matrix and its inverse. The conjugate 

gradient is in between of steepest descent and Newton’s methods [Hagan95 p.12-14]. As a variation of 

Newton’s method the Levenberg-Marquardt [Hagan95 p.12-19] minimize a function which is sum of 

squared of other non-linear functions; this property makes it a good candidate for Backpropagation 

learning. The weight adjustment equation is given by 

  (2.20) 

where J is the Jacobian matrix, e is the error vector, and µ is a constant for stability. The algorithm starts 

with a small µ (like 0.001) and it is increased by mu_inc (like multiplying by 5) if the performance 

function does not produce a smaller value and then the step is reapeated; on the other hand, if the function 

yields a smaller value then µ is divided by mu_dec for a faster convergence. 

2.5) Literature Review on Pulmonary CT-based CADD Systems 

Studies related to CT-based CADD system can be grouped under several topics such as objective of 

the study, lung area extraction methods, nodule detection, features used, diagnosis, assessment, 

preprocessing (interpolation, in general), time complexity and computation time. Objective of researches 

are mainly about nodule detection, diagnosis, or both detection and diagnosis, growth-rate estimation, 

effect of some image features on detection and diagnosis, performance of detection and diagnosis 

methods, reducing false detection. Receiver operating characteristic (ROC), sensitivity, specificity, and 

free-response receiver operating characteristic are used for assessment. Most of the studies did not 

mention their computation time, computation and space complexity of their algorithms. Computation time 

in [Fieb99] is 5 min using an O2 workstation of 250 MHz for detection of 23 nodules. In [Lee001], 

genetic algorithm (GA) template matching is used for detection. It takes 23 min. The same authors used a 

template matching algorithm alone; they reported that it takes 164 min. detection by ANN, which is a 

unique study  to the best of our knowledge  is employed in [Suzuki03]; the ANN is used to eliminate 

false candidates. Its training takes 29.9 hours with Pentium 1.7 GHz PC-based workstation whereas time 

to decide class of a candidate nodule is negligibly small. In the following section, we will introduce a 

review of detection and feature extraction methods. 
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2.5.1) Nodule Detection Methods 

Nodule detection methods using pulmonary CT images can be categorized as gray-level threshold, 

clustering, spatial filtering, template matching, deformation methods, morphological analysis, model-

based techniques [Arma04].  

In [Arma99], multiple gray level (36 gray-level) thresholds are applied for detection of candidate 

objects. These levels are obtained with an increment of 5 in the range [5, 225]. At every threshold level, 

lung volumes are constructed using 10-point connectivity, which is found more suitable for anisotropic 

voxels. If a lung volume satisfies the threshold value of corresponding equivalent volume (V < 4/3 π r3), 

then it is considered as a candidate nodule. In [Arma00], multiple-gray level threshold is utilized to obtain 

candidate nodules. An object less than 3 cm-diameter sphere is recognized as a nodule candidate. A rule-

based technique followed by two linear discriminant analysis (LDA) classifiers is employed to decide as 

nodule or non-nodule using 2D and 3D features. Pixels are normalized such that -1000 HU corresponds to 

zero and 1000 HU corresponds to one. In [Arma00], the structures whose volume is less than a threshold 

are selected as candidate nodules after employing 18-point pixel connectivity to combine pixels of 

contiguous structures. False positive candidates are eliminated. Finally, an LDA classifier is used to 

identify remaining candidates as nodule or not. Number of candidate nodules is decreased using a rule-

based scheme based on two features maximum eccentricity and pixel value standard deviation. The 

threshold used in the rules is determined empirically. Lung area extraction is performed by thorax 

segmentation based on multiple gray-level thresholds and then separating airways using region-growing 

technique. The anterior junction line is corrected, juxta-pleural or hilar structures are corrected using 

rolling-ball algorithm, and pixels belonging to the diaphragm are eliminated. Area under the ROC curve 

(Az) was reported as 93%. In [Arma03], multiple-gray-level-thresholding (region-melting) is used to 

identify initial lung nodule candidates based on a maximum use of maximum volume requirement. To 

eliminate obvious non-nodule structures a rule based technique is employed. Az was reported as 79%. 

In [Gige94], a tree based on four threshold levels is constructed. The top node corresponds to the 50% 

of area under the histogram, and 25%, 12.5%, 6.25% in the following nodes, respectively. Geometric 

descriptors are perimeter, area, compactness, elongation, circularity, distance measure, and total score = 

area x circularity x distance were used as features. A rule-based system is used to distinguish vessels from 

nodules. Also in case of ambiguity, a candidate is examined using adjacent sections to determine the class 

of the nodule. A Gray-level thresholding technique is used to separate body from the background. A line 

from the center of the image to an edge of the image is guide to decide on the threshold. The lung 

boundary is obtained by means of gray-level histogram. The threshold at which a maximum separation 

between two classes is obtained, class 1 is gray value of lung area and class 2 is gray value of 

mediastinum and chest wall. The boundary of the lung is obtained using delineation of globally connected 

regions using 8-point connectivity after generating a binary image. Sensitivity was reported as 94% with 

1.25 FP/case. In [Zhang05], morphologic closing, thresholding and labeling are performed followed by 
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LDA classifier to detect juxtapleural nodules. Detection of non-pleural nodules is achieved by an optimal 

thresholding (given in [Hu2001]), local shape index, and DTCNN trained by GA. Sensitivity was reported 

as 85.6% with 9.5 FP/case (4% per image). In [Ge2005], gradient field computation is performed to 

discriminate symmetric objects from non-symmetric ones and LDA is used to reduce number of false 

positives; sensitivity was reported as 80% with 0.37 FP/section. 

In [Lou99], applying a gray level threshold followed by detection of circular shape boundaries using 

Hough transformation. After obtaining circular boundaries, they are combined to construct a 3D structure. 

A surface deformable model using location (x, y, and z coordinates), orientation (angels with the three 

axes), size (radius in 3 directions), squareness (in xy-plane and xz-plane), and tapering in x- and y-axis. A 

small tube object is used as seed and it was allowed to grow within the target object until a cost criteria is 

satisfied; sensitivity and specificity were reported as 88.9% and 11.1%, respectively. In [Lee001], a GA 

template-matching algorithm was developed. Nodules are assumed spherical; hence, a 3D Gaussian 

template is used as a template. The Body image is extracted by applying a threshold. GA search is 

performed over the 7x7 partitioned regions of the body area. Cross-correlation is used to measure the 

similarity between the template and the candidate structure. The lung-wall nodule detection is done by 

first obtaining a broad lung contour using thresholding and labeling. A semi-circular template was 

traversed along the lung border pixel by pixel and a similarity is computed to decide if the search region 

has a candidate nodule. Sensitivity was 72% with 1.1 FP/sectional image. In [Takiza03], nodules are 

detected using 3D Markov random field models analyzing VOI through a single plane. In [Paik2004], a 

statistical shape model is employed. Voxels of high density structures such as bones are set to the level of 

water. Isotropic voxels are obtained. All air voxels including air outside the body are thresholded and the 

former air voxels are negatively masked leaving only lung air voxels. Finally, a binary image is obtained. 

3D orientation of image surface normal are obtained using modified Canny edge detector. Total number 

of surface normal vectors for a structure is calculated to measure the sphericity. Sensitivity was reported 

as 90% with 5.6 FP/data set. 

In [Kanaza96] and [Satoh99], candidate regions are segmented by fuzzy-clustering method and 

nodules detected by a rule-based approach. In [Kawa99], segmentation using 3D geometric approach 

which is “based on deforming 3D surfaces represented level-sets” over the ROI selected interactively is 

used; the Az value reported as 92%. In [Kawa00], a 3D deformable surface model approach is used to 

extract nodules. Nodules are represented by their curvature indexes namely shape index and curvedness 

together with the discrete shape spectrum, which is a histogram of shape index. To further 

characterization of a nodule, its topological features are explored using Euler number that is composed of 

the number of the connected components, cavities, and holes of the 3D digital object. The type of the 

connectivity used is 26-connectivity. In [Fieb99], a 3D region growing is employed. A voxel having a CT 

value higher than a specified threshold is used to select a seed point. Process is performed twice with 

different seed points. A rule-based approach is used; e.g., if the extent in one dimension is more than 
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twice the extent in another dimension, the region is assumed as a false positive. Sensitivity was reported 

as 100% for size ≥ 5 mm (n=10) and 95.6% for size ≥ 3 mm (n=23) with 15 FP/study (< 1 per image). 

The Az value reported as 97%. In [Gurc02], weighted k-means clustering with two-output class, one is for 

the nodule candidate and the other is for the background of the lung is utilized; different segmentation 

parameters are used for each segment and segmentation is done manually; sensitivity was reported as 

84% with 2.53 FP/slice. In [Li2003], nodules are segmented from the background using a region growing 

technique and dynamic programming. In [Way2006], k-means clustering followed by 3D active contour 

method is applied. 26-conectivity is used in construction of candidate volumes; Az reported as 83% ±4%. 

In [Kuhn06], a nodule is extracted using region growing approach starting from a manually selected seed 

point for a manually obtained VOI followed by morphological operations. 

In [Wei2006], an intelligent seed point generation method is used to speed up detection given in 

[Wei2002]. Nodules are detected using a volume projection method mimicking a radiologist’s reading of 

slices in alternating forward and backward directions. Projection directions are selected using Eigen-value 

analysis. A Gaussian curve fitting is applied on the projected data to do a quantitative shape analysis. It is 

assumed that nodules are in ellipsoid shape and nodule structures have consistent projections with respect 

to non-nodules. A Gaussian smoothing process is applied to remove irregularities. Sensitivity reported as 

67.6%, 71.9%, 6.2 FP/slice. In [Okumur98], VNQ-filter is developed to detect a nodule candidate. It is 

assumed that pathological shadows are given. 

In [Arim04] and [Suzuki03], an ANN based detection technique (Massive Training Artificial Neural 

Network (MTANN)) was introduced to eliminate false nodule candidates as a final stage of elimination 

procedure; this technique is the only work that a special ANN model is developed for pulmonary nodule 

detection from CT images, to the best of our knowledge; [Arim04] reported sensitivity as 83% with 5.8 

FP/scan and 84% with 5.9 FP/scan and [Suzuki03] reported sensitivity as 80.3 and 4.8 FP/patient (0.18 

FP/section). MTANN works with a predefined window traversed throughout the image to obtain sub-

regions. Each window is obtained shifting its center by one pixel. Training of the ANN is achieved by a 

modified back-propagation algorithm. The teacher image has a Gaussian-like distribution. Inputs are the 

pixel of the sub-regions, and the target is the central pixel of the teacher image. Each output image is 

scored by summation of its Gaussian weighted values. If the score exceeds a threshold then the object is 

considered as a nodule. STD of the Gaussian, σ,  and the threshold is computed using a training set. Sub-

region window size is selected as 9x9 pixels, number of hidden unit is 25, σ is 5 pixels, training image is 

19x19 pixels. 

2.5.2) Lung Region Extraction Methods 

Methods used in extraction of a lung region can be classified as threshold-based region growing, 

mathematical morphology, k-means clustering, and deformable model segmentation. It is reported that the 
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thresholding approach gives better results compared to the deformable model approaches in extraction of 

lung area [Kim003]; the later has problem with convergence, initialization, and speed. 

In [Arim04], segmentation by LDA is applied to whole body CT histogram to extract left or right 

lung regions. A threshold CT level is computed automatically by LDA. In [Kanaza96], the original image 

is transformed into the binary image using simple thresholding. In [Arma00], thorax is segmented based 

on multiple gray-level thresholds followed by separating airways using region-growing technique. In 

[Gige94], a gray-level thresholding technique is used to separate body from the background. A line from 

the center of the image to an edge of the image is used as a guide to decide on the threshold. The lung 

boundary is obtained by means of gray-level histogram. In [Wei2002], the lung volume is obtained using 

intensity thresholding and morphological operations. 2D region growing is applied followed by 3D region 

growing in [Fieb99]. K-means clustering is applied in [Gurc01] to partition pixels as lung and 

background; the segmentation is processed slice-by-slice. 

2.5.3) Features 

Image features are used to describe imjects based on the content of the image so that recognition can 

be achieved using less data and consequently smaller size search space. Features utilized in detection can 

be classified as photometric or geometric features. In general, photometric features are used to measure 

homogeneity of ROI and geometric features are used to measure circularity or sphericity. It is reported in 

[McNitt99] that texture features produced the best performance compared to the size and shape features. 

Photometric features can be simple or complex such as gray-level (also named as attenuation or CT 

number), average gray value, contrast, pixel gradient, distribution of attenuation, directional variance of 

pixel gradient, directional cross-correlation of pixel gradient, entropy of gray-value distribution, first and 

second moments of gray-values, inverse difference moment of gray-values, mean of gray-values, gray-

value moment ratio, standard deviation of gray-values, kurtosis of the gray value, kurtosis of the gray 

value histogram, max mean CT value, skewness of the gray value histogram, texture. 

Geometric features can also be simple and complex such as area, average area of the candidate, 

distance measure, sphericity, circularity, eccentricity of the fitted ellipse, effective diameter, aspect ratio, 

ratio of major and minor axes, compactness, elongation, irregularity, major axes, minor axes, mean of the 

curvedness on each surface type, perimeter, position, volume, entropy, first and second moments , inverse 

difference moment, mean, moment ratio, standard deviation, shape, total score (= area x circularity x 

distance). 

In nodule detection from CT images several features are used together. These feature combinations 

include 1) 13 texture features reported in [McWy99], 2) size, circularity, average CT value, variance of 

values, thickness, the ratio of standard area as the “proportion to the distance from lung wall to the area of 

ROI” [Satoh99], 3) size, shape, attenuation, distribution of attenuation, and texture [McNitt99], 4) mean, 

STD, area, circularity, irregularity, contrast, max mean CT value, directional variance of pixel gradient, 

and directional cross-correlation of pixel gradient; inverse difference moment, entropy, area, and contrast 
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as juxtapleural features [Lee001], 5) volume, surface area, average gray value, standard deviation, 

skewness and kurtosis of the gray value histogram, and also area, perimeter, circularity, compactness, 

major and minor axes and their ratio, and eccentricity of the fitted ellipse in each cross section [Gurc02], 

6) geometric descriptors are perimeter, area, compactness, elongation, circularity, distance measure, and 

total score = area x circularity x distance [Gige94], 7) volume, area, aspect ratio, sphericity, first and 

second moments, moment ratio as geometric features [Zhang05], 8) effective diameter, degree of 

circularity, and contrast [Li2003], 9) area, thickness, circularity, gray value, variance, position 

[Kanaza96], 10) eccentricity, gray-level standard deviation, average area of the candidate [Arma03], 11) 

3D features used are volume, surface area, average gray-value, STD, skewness, and kurtosis of the gray 

value; 2D features used are maximum values of the area, perimeter, circularity, compactness, major and 

minor axes and their ratio, eccentricity of the ellipse fitted to the cross-section [Gurc01], 12) ratio of each 

surface type’s area to total surface, division number of each surface type, mean of the curvedness on each 

surface type [Kawa97], 13) curvature indexes, histogram of shape index, Euler number [Kawa00]. 
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CHAPTER 3. CONTENT BASED IMAGE REPRESENTATION1

Image is defined as “a two-dimensional representation of a scene” [IEEE90]. A digital image is 

defined as “an image that has been converted into an array of pixels, each of which has an associated 

value called its gray level” [IEEE90]. Sometimes the term ‘image’ is used in the meaning of ‘digital 

image’. An object in an image, which we name as ‘imject’ (image object), is an abstraction of a real 

object. A simple imject (boundary-based definition) is defined as spatially maximal region enclosed by a 

boundary having no common segment with another imject; that is spatially maximal disjoint region 

enclosed by a boundary. Also we can define and imject a mapping from the real world object to scalar 

space over a grid; on the other hand, imjects can be defined over a feature space. Consequently, the goal 

of the image representation based on the content is to find some encoding schemes that create some 

characteristic features to be used by the machine. 

As we discussed above, an image is an abstraction itself and it needs further abstraction to be used in 

Computer Vision applications; in other words, images need to be ‘represented’ by their ‘contents’ using 

some abstraction methods. Representation of an image is achieved by encoding the image content with 

some distinct structures obtained from its content. If encoding is for an imject conveyed by the image, it 

will be named as ‘imject representation’ and this representation provides local information about the 

image. Encoding boundary of an imject is called ‘shape representation’, which provides some global 

information about the imject. A content-based representation method should be able to provide properties 

including uniqueness, robustness, accuracy, and invariance. Representation can be local or global. The 

image representation can be performed by some features like geometric (or morphological), photometric, 

structural or mixture of these. Morphological features give information about the structure of an object 

[Demi04]. They are employed to measure, for example, shape of imjects. Photometric features give 

information about spatial association of pixels. They are employed to measure for example homogeneity 

of the pixel association. As a photometric feature, texture is a connected set of pixels that occurs 

repeatedly in an image [Demi04 p. 7]. 

 

There is a strong relation between content representation and pattern recognition. The higher the 

discriminative capability of a representation posseses, the higher the performance of recognition is 

achieved. There are many challenges related to finding some good discriminative features. One of the 

main challenges in recognition of imjects is due to overlapping of their irradiance ranges. If two imjects 

had a totally non-overlapping range, then it would be trivial to identify them just using their range 

information. Another main challenge is the ‘composition of radiances’ may have some overlapping sets. 
                                                      

1 Partially reprinted by permission of IEEE International Conference on Image Processing, pp.1493 – 
1496, 2006, © [2006] IEEE; partially reprinted by permission of  Proc. Of the Int’l Conf. in Image 
Processing, Computer Vision, & Pattern Recognition, pp.407-413, 2007, © [2007] IPCV’07; partially 
reprinted by permission of  Proc. Of the Int’l Conf. in Image Processing, Computer Vision, & Pattern 
Recognition, pp.23-27, 2008, © [2008] IPCV’08. 
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Hence, range and possible compositions coming from this range should be studied before developing an 

algorithm for a recognition problem; possible set of compositions can be studied under the science of 

‘representation’ or ‘coding’. 

The imject recognition problem can be defined as exploring some patterns which are composition of 

some primitive elements such as tonal elements [Haralic79] or composition of some features obtained 

from these elements such as run-length features. In other words, a pattern can be searched over the 

original (radiance) space or over the ‘transformation space’. Primitive elements and their possible 

compositions can be from 1) a scalar space or 2) a spatial space. If a scalar space is employed to represent 

an imject, i.e. to obtain some primitive elements, some filtering functions can be used; this approach can 

work if imjects have some patterns which are ‘range-separable’; two imjects are said to be ‘range-

separable’ if some set of thresholds can discriminate one imject from another. The second approach which 

conducts pattern search over a spatial neighbor is more discriminative than the first one. A neighbor can 

be defined in several ways; e.g. pixels within a specific radius, pixels on a specific radius, group of pixels 

separated by a specific distance, and so on. A pattern which describes an imject can be explored within 1) 

a ‘pixel neighbor’, e.g. pixels on a line at a specific orientation, or 2) a ‘window neighbor’, e.g. 3 by 3 

window, using a scalar or spatial relation. A scalar relation only considers ‘magnitude-dependent’ 

measures ignoring spatial relation such as variation of magnitudes, some statistical measures like range, 

mean, standard deviation, moments, entropy, etc. A spatial relation is defined based on a positional 

measure such as gradient, directional co-occurrence, directional order, etc. 

In the following sections, the content based representation will be elaborated in more detail; a novel 

shape representation (‘canonical polygonal representation’) and a novel spectral shape feature obtained 

from this representation will be introduced. 

3.1) Imject Representation 

The goal of imject representation is to define some descriptive features so that the imject can be 

identified. The imject representation can also assist to increase computation efficiency by means of salient 

features. Imjects can be represented by some geometric, photometric, and topological features. In this 

dissertation, we will focus on first two types of features. The geometric features can be broadly classified 

as basic geometric features, shape features, size related features, positional features. The photometric 

features can be broadly classified as basic photometric features and derived photometric features. 

The basic geometric features include points like corners, lines like edges, and curves like contours. 

The shape features to measure circularity or sphericity include effective diameter, aspect ratio, ratio of 

major and minor axes, eccentricity (of the fitted ellipse), compactness, elongation, major axes, minor 

axes, axis orientation, and symmetry. The shape features to measure curvedness include irregularity 

(smoothness), mean of the curvedness on each surface type, concavity and convexity, and curvature 
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[Carr98]. The size related features are perimeter, area, and volume. A positional feature is a distance from 

a specific imject or feature. 

The basic photometric feature is a pixel value like intensity, gray-level, color, and transparency value. 

The derived photometric features include pixel gradient, optical density [Demi04 p. 9], contrast, entropy, 

and as the statistical photometric features: texture features, moment features, histogram features, 

descriptive features like mean, standard deviation, max, min, and dominant pixel value. The histogram 

(gray/color level distribution) features include average gray-value, kurtosis of the histogram, skewness. 

The moment features include first and second moments, inverse difference moment, moment ratio, center 

of gravity, elongation of the region, and orientation of region’s axis. The texture features include 

coarseness, directionality, moment features, features obtained from co-occurrence matrix, Gabor features, 

Fourier coefficients, special texture energy, autocorrelation function, structural elements, Markov random 

fields model, fractal dimension, and multi-channel features. 

A representation can be global or local. A global feature describes overall characteristics while a local 

feature describes finer details. The global features may not be a distinctive descriptor but easy to compute 

whereas the local features are more descriptive but more time consuming as well. Some examples of the 

global features are histogram features, which is obtained from whole imject, volume, area, and perimeter. 

Some examples of the local features that are derived from a boundary are Fourier coefficients, inflection 

points, edges, ridges, and curvature index. 

3.2) Shape Representation 

Shape is defined as outline of an imject. The goal of shape representation is to obtain some 

descriptive features so that outline of an imject can be used in identification. Therefore describing a shape 

by some features is a mapping from raw data of the shape to  where n is the dimension of a feature 

vector [Wolter03]. The shape features can be classified as boundary based, region based, space domain 

features, transform domain features [Zhang03]. 

The boundary based shape descriptors are classified as conventional, boundary signatures, spectral 

descriptors, and structural descriptors. Examples of the conventional descriptors are perimeter, area, and 

eccentricity. A signature primitive can be distance based such as arc length, radial length, and edge length 

or angel based such as local tangential angle, between-radial angle, between-edge angle, and centroid-

edge angle. Also it can be distance-angle based such as radial distance function, curvature function 

[Kawa00], and turning function. The spectral descriptors include Fourier coefficients, wavelet coefficients 

such as Gabor wavelet coefficients. The structural descriptors can be polygonal descriptors, skeleton, 

shock graph, topological features such as Delaunay triangulation [Demi04 p. 8]. The domain based shape 

descriptors include parametric contours such as chain codes, curve approximations such as splines, 

stochastic methods such as Hidden Markov Model and autoregressive model. The region based 
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descriptors are area, compactness, Euler number, geometric moments, Zernike moments, pseudo-Zernike 

moments, Legendre moments, and grid method. 

3.3) Canonical Polygonal Representation 

Numerous models have been defined for shape representation. Each representation has its own 

primitives employed to find the best match. Shape primitives can be grouped based on utilizing radial 

distance from an origin, the edge segment lengths, and the angle between connected segments [Chang91, 

Chen95, Huang96, Wang03, Wu2001, Chuang96, Maes91, Nishida98]. Representing shapes can be 

achieved using vertex-based or edge-based methods. According to [Chen95], The former has less 

computation time while the latter is more accurate. Among the edge-based methods, polygonal 

representation of shapes has been studied extensively [Chen95]. Matching of polygons has been achieved 

by string representation using the three primitives mentioned above [Wu2001, Maes91]. These three 

primitives can be organized in different combinations to obtain a unique representation. An orientation 

invariant representation has been obtained by shifting [Maes91, Huang96, Arkin91] or using max/min 

distance [Nishida98, Bernier03]. 

We proposed a new polygonal shape representation which is called ‘canonical polygonal 

representation’ (CPR), an efficient algorithm to compute a unique representation of a polygon under rigid 

transformation and can be applied to affine transformation with some additional processes [Soysal06]. 

The computational complexity for matching of two polygons with n vertices has been reported as either 

O(n2) [Schreiber90] or O(n2 log n) [Arkin91, Maes90] to the best of our knowledge. Our proposed 

method has O(n log n) computational complexity for representation and Θ(n) for matching. Hence, if 

shapes are stored with the proposed representation, matching can be done in Θ(n), which is the optimum, 

and online matching can be achieved in O(n log n) after obtaining vertices. 

Our novel shape representation exploits two primitives which are radial distance and its 

corresponding edge distance for a given polygon . For each vertex of the polygon, a distance vector  is 

obtained using these two distances and then all vectors are cyclically ordered in a specified direction to 

get a canonical string representation  of the polygon. To handle the starting point problem, a 

normalized string  is obtained from the  using Normalize String algorithm proposed below. 

3.3.1) Canonical Representation 

Let  denotes a polygon of n vertices ordered in a specified direction 

and  denotes the centroid of P given by (3.1). Let  be a distance vector where 

the edge  (from a vertex ( ) to a vertex ( )) and the radial  (from ( ) to ( )) 

distances defined in equations (3.2) and (3.3) below. 

  (3.1) 
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  (3.2) 

  (3.3) 

We define the ‘canonical polygonal representation’ (CPR) of P as 

  (3.4) 

where  defines a sequence and the ‘normalized canonical polygonal representation’ (NCPR) of P 

as 

  (3.5) 

which is obtained from  as explained below, where the anchor index a defines the starting vertex which 

is unique for the polygon; note that 1 ≤ i ⊕ n = mod(i + n, n) ≤ n for 1 ≤ i ≤ n. The Figure 3.1 shows 

components of a distance vector for a vertex. 

 

Figure 3.1 The components of a distance vector (Vi is a vertex of the polygon) 

3.3.2) Normalized Canonical Representation 

We proposed an algorithm Normalize String to compute NCPR PN of P [Soysal06]. The algorithm 

searches iteratively for a unique starting vertex by comparing distance vectors. The algorithm begins by 

finding all maximal distance vectors; each such vector is called a ‘head’ H. If more than one max distance 

vectors are found at the first iteration, then the string is partitioned into sub-strings, called ‘segment’ S. 

Each segment is a sequence starting from a head to the next head; the sequence excluding the head is 

called ‘tail’ T of the segment. Therefore, each segment is composed of a head and a tail. After 

construction of segments, the algorithm searches for the max segment by comparing their tails. If more 

than one max segment is found, then max segments are merged with smaller ones making a longer 

segment. This comparison-and-merging process continues until a unique max segment is found. The 

formal definitions are given in the sequel. 

Comparison of distance vectors: Given two distance vectors  and  and a threshold , the 

inequality  is true if one of these two conditions are satisfied: 

δ2,1 

c 

δ1,1 
V1 

V2 
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1)  

2)  
(3.6) 

Comparison of sequences: Given two sequences  and , the 

inequality  is true if one of these conditions are satisfied: 

 
1)  

2)  such that  
(3.7) 

 

Computation of max segment: Let  for some n > 0, denotes a 

‘head’ and T denotes a ‘tail’, which is the sub-sequence between two successive heads  and  

for t = 1, 2, .., |H|, and let  denotes a segment of . We compute max of two segments 

 and  using 

  (3.8) 

Computation of parent segments: Let  and  denote the set of segments and number of 

segments at iteration k, respectively, and  denotes the head index of each segment to be computed at 

iteration k + 1. Then a parent segment is computed by 

 
 

(3.9) 

 

  (3.10) 

 

  (3.11) 

 

  (3.12) 

for  

  (3.13) 

where . 

3.3.2.1) Algorithm Normalize String 

Strategy: Divide and conquer cyclically while constructing a tree in bottom-up form (An operation 

such as find, merge, and compare are done cyclically.). 

Goal: To find a unique ordering among the cyclic permutations of PC. 
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Input: A cyclic string . 

Output: The normalized form PN of string PC. 

1. [Initialization]: Set of initial segments: 

. 

2. [Terminal layer construction]: Find all heads of  and store their indices in 

 and compute . Make  the terminal layer of the tree. 

3. [Parent layer construction: ]: Repeat until  or a symmetrical case 

 will be decided. 

a. Compute the set  of parent segments from the set  of child segments by 

equation (3.9). 

b. Find the max segments , and store their index in  by equation (3.13) using 

the following operations: 

i. First compare the segments in length, 

ii. If more than one max length segment exist, then compare these segments pair-

wise using equation (3.8). 

4. , . 

As an example, let a cyclic string 

 

then  will be computed as  

 

where segments are  and  with H = 〈(5, 1)〉 and 

T1 = 〈(3, 1), (4, 1)〉 and T2 = 〈(3, 1), (2, 1)〉, and δa = δ3. 

A symmetrical example is , so δa will be any of head δ3 

or δ6. For an illustration of the algorithm see the Figure 3.2. 

Theorem (Complexity of the Algorithm): Let k = 0, 1, 2, .., K (≥ 0) denotes the iteration count,  

denotes computation complexity of comparison of some tails in length,  denotes computation 

complexity of pair-wise comparison of the tails,  denotes computation complexity of updating , and 

 denotes the total computation complexity. The complexity of the algorithm normalize string is 

. 

Proof: The number of maximum segments will be halved at successive iteration for a worst-case 

scenario. Hence 

 

  (3.14) 
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Figure 3.2 Illustration of the algorithm Normalize String 

Using equation (3.14) and  which is obtained in computation of max of  

, we obtain 

 

  (3.15) 

If we iterate , we obtain equation (3.16) as given below 

: , , , hence  

: , , , , hence  

: , , , , hence  

.. 

: , , , , hence 

 

.. 

: , , , , hence 

 

  (3.16) 

Since  ,  for k > 1, and  rearranging equation (3.16) we get 

1 3 5 7 9 11 15 13 

1 5 9 13 

1 9 1 

9 〉〈= 9)3(I  

 

〉〈= 9 ,1)2(I  

 

〉〈= 15 ,13 ,11 ,9 ,7 ,5 ,3 ,1)0(I  

 

〉〈= 13 ,9 ,5 ,1)1(I  

 

* Max segment index 

Merge 

Child to Parent 

Cyclic mirror 

* 
Max segment index 
before merge 

LEGEND 
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(3.17) 

 

Substituting equation (3.15), we get 

  (3.18) 

Since , then . 

Justification of Worst-case scenario: If the number of segments is not halved, then one of the 

segments will grow up at successive iteration faster than others, and it will be identified as the unique 

max. Hence, in the worst-case scenario, at every successive iteration, segments must grow in balance until 

all of them will merge into one segment�. 

3.3.3) Robustness of the Representation 

In this section, we elaborate on the robustness conditions of the canonical representation in case of 

some vertices are located with an error . Let  and  

denote actual location of a vertex and its new observed location after perturbation by the error, 

respectively. 

Let  and  denote the true sequence of vertices (say, in 

clockwise direction) and the observed clockwise vertex sequence, respectively. Under the robustness 

conditions that we will identify in the sequel, the order of  and  must be satisfied and moreover  

for  i = 1, 2, …, n and . Thus, the anchor  index  computed by the canonical representation 

algorithm from   using a threshold  must be the same as the actual anchor  index a computed 

using . 

Let  denotes the distance between  and   for every i = 

1, 2, …, n. The  is said to be within ‘ε-error of’  if the distance  is at most ε for some ε > 0. 
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We also say that the corresponding distance vector sequence  is within ‘ε-error of’ 

. 

The new centroid will move to a new location  due to the error. The centroid is given 

by 

  (3.19) 

similarly, 

  (3.20) 

where 

  (3.21) 

The new distance vector  will be computed using 

  (3.22) 

 

  (3.23) 

Let an observed vertex  be located at the vicinity of an actual vertex  bounded by radius . Let an 

equivalence class  of a distance value d for an error ε specified denotes a set of all distance values 

 in the closed interval of the segment . That is, all of the distance values  within the 

interval maps to . Formally, . 

The robustness conditions of the representation using a threshold  for  i, j = 1, 2, …, n and 

 are 

(1) Distance distinction:  and  

(2) Order preserving:  

 Figure 3.3 is used for illustration of lemmas stated below. In all the lemmas below, we assume that 

 is within ε-error of . 

Lemma-1:  and  . 

We remark that the condition   must be satisfied under the assumption ‘within ε-error’.  

Recall the assumption that the observed vertex sequence  preserves the ordering given by the actual 

vertex sequence ; that is, we will not get any observed vertex sequence such as 

. Also, the robustness conditions must assure that the observed 

vertices are distinctive. Now, if we have some actual vertices  and  such that 

,  then we might have  =  or an out-of-order vertex sequence shown above. 



36 

 

 

Figure 3.3 Illustration for lemmas 

Lemma-2: Robustness conditions (1) and (2) with  are satisfied iff condition (3.24) is satisfied 

for i, j = 1, 2, .., n; i ≠ j 

  (3.24) 

Proof: Let’s show that (A) If the robustness conditions (1) and (2) are true, then (3.24) must be true: 

The condition (2),  , is true, that is (A.1): 

 is true; then,     . Now, (A.2): if 

, then  , which is obvious. 

(B) Now, let’s show that if condition (3.24) is true, then the robustness conditions (1) and (2) must be 

true: 

That is if  is true, then condition (2), , must be 

true. (B.1):     

, and (B.2):  must be true. Now,    

  . 

Now, let’s show the condition (1) is true when  is true; (C.1):  

must be true.    . (C.2):  

 must be true.   . (C.3): 

 must be true.     

 , since , . (C.4):  must be 

true.    . 

Theorem-1: The robustness of the representation is satisfied for edge distance comparison iff the 

conditions (1) and (2) are satisfied. 

Proof: See lemma 1 and lemma2. 

  

 

  

 

The boundary of possible vertex locations in which an observed vertex may reside 

 

ε 

min( ) 

 

 
  

max( ) 
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Theorem-2: The robustness of the representation is satisfied for radial distance comparison iff the 

conditions (1) and (2) are satisfied by replacing  by  and  by . 

Proof: See lemma-3 and lemma-4. 

Lemma-3: In existence of an error at some vertices, possible locations of the center  of the observed 

vertices are bounded by a circle centered at the actual location c with a radius ε. That is 

  (3.29) 

Proof: Given  and   i = 1, 2, …, n and recall . From (3.21), 

. So, . Hence, . 

Lemma-4: For the radial distances , we have , 

. Let us define . 

Proof: ; that is, all the error vectors are in the same direction except  

that is in the opposite direction, formally, . Then, the total 

error . So, . 

Similarly, . 

Theorem-3: The robustness of the representation is satisfied iff Theorem-1 and Theorem-2 are 

satisfied. 

3.4) Pattern Features 

As we mentioned earlier, imjects can be recognized by some patterns exploring scalar or spatial 

relations. In some cases, employing the primitive content or higher level patterns directly may not be 

feasible due to the curse of dimensionality. Also, the primitive content of an image data may not provide 

enough information about the imject to discriminate from other imjects. Instead of using the raw data, 

some salient features can be extracted to reduce the computation time and the amount of data to be used 

in recognition. Therefore, the higher level content may need to be transformed into some abstract patterns 

called features. Features can increase “between-class pattern variability” while “minimizing the within-

class variability” [LeonC98 p. 7]. A feature is a salient descriptor of a pattern. The feature extraction can 

be achieved by many methods such as obtaining histograms, using some spatial filters as in edge patterns, 

obtaining shape representation as in canonical representation of a polygon, or computing texture features 

from co-occurrence. In this dissertation, we utilized two classes of pattern features: 1) geometric features 

and 2) photometric features. 

3.4.1) Geometric Features 

In this dissertation, we employed three types of shape features: 1) Spectral shape feature, 2) 

circularity features including elongation, eccentricity, circularity by radial distance, circularity by CPR, 
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and circularity by spectral feature, 3) regional features including normalized Euler’s number, 

compactness, and convexity. We first introduce our novel shape feature and then rest of the features 

[Sonka98, Gallo75, Haralic73] is explained; among these, we proposed three new circularity measures, 

which are circularity by CPR, circularity by spectral feature, and circularity by radial distance. 

3.4.1.1) Spectral Shape Feature 

In the previous section, we introduced Normalized Canonical Polygonal Representation. Here, we 

introduce a novel spectral shape feature [Soysal08] which is obtained from NCPR of a polygon 

[Soysal07]. The spectral feature is a set of Fourier coefficients of a shape function derived from . As a 

spectral descriptor, the Fourier coefficients that are obtained by discrete Fourier transform can be 

employed in shape representation. The performance of the Fourier descriptor is acknowledged in 

[Zhang03]. 

3.4.1.2) Derivation of the Shape Function 

In this section, we describe how to derive a shape function which is used to obtain the proposed shape 

feature. We propose three methods to derive a descriptive function for the shape. After obtaining the 

function, an interpolation is necessary to obtain a normalized axis with equal intervals for the discrete 

Fourier transform. The shape function derivation methods proposed are: 

1. Values for the dependent variable y are obtained from the set of δ1i and values for the 

independent variable x are obtained from the set of δ2i, formally: 

  (3.25) 

where  for , and c > 0. 

2.  is a combination of the sequence  followed by the sequence , and  is obtained 

from indexes, formally: 

  (3.26) 

 where , for , and c > 0. 

3. Odd indexed y values are obtained from  and even indexed y values are obtained from , 

formally: 

  (3.27) 

where , for , and , and c > 0. 

In this dissertation,  and  denote the radial distance and the edge distance, respectively. 

3.4.1.3) The Algorithm to obtain NCPR Shape Function 

Input: NCPR . 

Output: The shape function . 
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1. Using equations (3.25) - (3.27), obtain the shape function  that is obtained from  

or by changing sign of even indexed  values, e.g.  and so on, or from 

combination of derivative and sign change. 

2. Apply linear interpolation to  to obtain . 

In this dissertation, we applied sign change and then derivative to the function defined in (3.26), 

, interpolation interval is 0.01, linear interpolation is applied, and first 50 Fourier 

coefficients are used. 

3.4.1.4) The Feature Vector 

A feature vector is an abstract representation in a vector form. In this dissertation, the Fourier 

coefficients are used as a feature vector due to its discriminative property. The feature vector  is defined 

as  

  (3.28) 

where  is the discrete Fourier transform of  and  is the size of . 

3.4.2) Second Group Shape Features 

Elongation is calculated from an ellipse which is fitted to the boundary points of the ROI [Halif00, 

Hansel]; it is defined as 

  (3.29) 

Eccentricity is defined as 

  (3.30) 

Circularity by radial distance is defined as  

  (3.31) 

Circularity by CPR is a global similarity measure between PCPR (CPR of the ROI’s polygon P) and 

PE_CPR (CPR of an equilateral polygon PE) which has the same number of vertices with P whose vertices 

are on a unit circle; it is defined as 

  (3.32) 

where  and  (which are ) that are defined by (3.33) are distances between PCPR and 

PE_CPR (given by (3.38)) α ∈ [0°, 90°] that is defined by (3.36) is the angle in degrees,  refers to 

Euclidean norm of a vector, and  refers to an absolute value. The distances are 

  (3.33) 
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where Q and R are given by 

   (3.34) 

where  and  are distance vector  elements of PCPR, and similarly 

   (3.35) 

where  and  are distance vector  elements of PE_CPR. 

 

 

 (3.36) 

CPR of an equilateral polygon PE of n vertices is computed by equation (3.37). Let , , and 

 denote edge length of an equilateral triangle whose corners are located at the centroid and 

successive two vertices Vi and Vi+1 of the polygon PE where  and  are radial distance from the 

center of the polygon to the vertices Vi and Vi+1, respectively, and  is the edge distance between two 

vertices; notice that r =  =  = 1 and  for i, j = 1, 2, .., n . Let θ denotes the angle 

between two radial edges. Using the cosine theorem 

 

 

 

 

(3.37) 

Using equation (3.4), we get 

  (3.38) 

Circularity by Spectral Feature measures the similarity between the equilateral polygon PE and the 

polygon P using their spectral feature fE and f, respectively. 

  (3.39) 
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where  and  are distances between fE and f;  and  are computed by (3.33) and (3.36) 

substituting Q = f and R = fE. 

The normalized Euler’s number measures how much a ROI is composed of several sub regions. It is 

defined as 

  (3.40) 

where  is the Euler’s number and ε is a very small positive number; the Euler’s number defined as 

the difference between the number of contiguous regions and the number of holes in the imject. 

Compactness gives an idea about the smoothness of the boundary; it is given by 

  (3.41) 

Convexity is given by 

  (3.42) 

3.4.3) Photometric Features 

Gray level associations conveyed by an imject can be described by photometric features. The main 

objective of these features is to define some textural variations within a region so that imjects can be 

discriminated by means of these features. An image region can be described based on its texture 

coarseness [Haralic79]. In this dissertation, we utilized two textural features: 1) co-occurrence features 

and 2) run-length features. 

Co-occurrence features are obtained from the co-occurrence matrix of the imject. Co-occurrence 

matrix is an N by N dimensional array whose elements are the number of pixels with the same gray values 

 within a neighbor specified [Sonka98 p.651]. The neighbor can be defined by a radius and an 

angle; in this dissertation, we used a rectangular disk neighbor. After computation of the matrix, all 

elements are divided by the sum of elements to obtain probability matrix P. Given a co-occurrence 

probability matrix P of N by N and a gray-level set a, b ∈ G which is obtained from the imject, the co-

occurrence features used in this dissertation are defined below [Sonka98 p. 651, Haralic79]. 

Energy: The higher the value of the energy is obtained, the higher the homogeneity exists; it is 

defined by 

  (3.43) 

Entropy: The higher the in-homogeneity exists, the higher the entropy is obtained. Since entropy 

gives a value in the interval [0, ], we normalized it; the normalized entropy is defined by 
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  (3.44) 

Contrast: The contrast gives expected differences among all gray levels; so it measures gray level 

variations. The normalized contrasts are defined by 

 

 

 

 

(3.45) 

The Inverse difference moment: It gives expected reciprocal of differences among all gray levels; it is 

given by 

 

  (3.46) 

The Correlation among the gray levels: The higher the correlation is obtained, the higher the 

homogeneity exists. It is defined as 

  (3.47) 

where 

 
,  

,  
(3.48) 

Run-length features of an imject are obtained from its run-length array. The run-length array B has 

two dimensions, namely gray-levels G and run-lengths R. An element B(g, r) of the array is the number 

pixels which has r max connected gray-level g pixels within a neighbor specified. Given a run-length 

matrix B of M by N, the run-length features are defined below. 

  (3.49) 

Modified gray-level non-uniformity: We used the quadratic form of the regular non-uniformity and divide 

run-length values by r and g to increase the contrast and accordingly the discrimination capability of the 

measure. It is defined as 

 
 

(3.50) 

Short-run emphasis is given by 
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  (3.51) 

Long-run emphasis is given by 

  (3.52) 

Run percentage is given by 

  (3.53) 

Modified run-length non-uniformity is given by 

  (3.54) 

In calculation of the run-length non-uniformity, we used the quadratic form based on the reason explained 

in gray-level non-uniformity. 
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CHAPTER 4. DATA PREPARATION 
The raw data needs to be pre-processed before obtaining feature vector set for training and testing. 

This preprocessing includes 1) creation of VOI from slice series, 2) scale normalization, 3) slice selection, 

4) smoothing, and 5) obtaining polygonal representation of the boundaries. 

The nodule and non-nodule image series are provided by National Cancer Institute from National 

Cancer Imaging Archive [NCIA] and by Lake P.E.T. Imaging Center [LakePet], respectively. The 

nodules were marked by four different radiologists and their location is saved as an XML file. The non-

nodule imjects are obtained semi-automatically using the tool SHAHIN developed; its user interface is 

seen in the Figure 4.1. In this research, we used 80 nodules and non-nodules imjects in total with 40 

imjects from each class. Image series has a resolution of 512 by 512 resolution and slice thickness from 2 

to 5 mm. 

Collection Strategies of Samples: Samples to be used in training and testing can be collected in 

several ways depending on how to design feature type predictors that is used in model layer 1. A classifier 

can be designed to analyze a certain slice only (say 1st slice of the transverse plane), a certain plane only, 

or a certain feature regardless of slice/plane location. Hence samples can be collected by any of the three 

methods as summarized in the Table 4.1. 

Table 4.1 Collection strategies of samples (using 3 planes, S slices per plane, K features per slice) 

Collection Strategy To Analyze Samples From Sets Of Samples # Classifiers 

Slice-specific slicess {1, 2, .., S} slices {1, 2, .., S} 3 S 3 S K 

Plane-specific planes {1, 2, 3} all slices from the plane 3 3 K 

Feature-specific features {1, 2, .., K} all slices from each plane 1 K 

 

Slice-specific sample collection: Each classifier is assigned to a specific slice of the plane. The 

training set is composed of the feature vectors obtained from the specific slice location, say from 1st slice 

of the first plane. Hence a classifier is specific to a certain slice. As an example, if 3 slices per plane and 

10 features are used, then there will be 9 sets of samples namely samples from plane 1 slice 1, plane 1 

slice 2, and so on; therefore, the total number of classifiers will be equal to the number of slices times the 

number of planes times the number of features, which is 90 in total. 

Plane-specific sample collection: Each classifier is assigned for analyzing a specific plane, e.g. X-Y 

plane. The training set is a composition of the feature vectors obtained from all slices in a specific plane. 

Hence a classifier is specific to a certain plane. There will be 3 sets of samples and therefore the total 

number of classifiers will be equal to the number of planes times the number of features, which is 30 in 

total. 
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Figure 4.1 The interface for visualization and feature extraction tool 

Feature-specific sample collection: Each classifier is assigned for analyzing a specific feature 

regardless of the slice location in the VOI. The training set is a composition of the feature vectors 

obtained from all slices in the VOI. Hence a classifier is specific to a feature. Therefore, the total number 

of classifiers will be equal to the number of features which is 10 in total. 

Retrieval of VOI: We developed a tool to retrieve the VOI outlines from the XML file which stores 

information about nodule image series; its process diagram is shown in Figure 4.3. Since image series are 

stored in different ranges, images are shifted to the gray level range starting from 1 for foreground pixels 

while making background pixels as zero; this also relieves the photometric feature extraction. The 

coordinate system of the images and the software (MATLAB) are synchronized. A mask is placed around 

ROI to filter out the rest of the image pixels. Then slices are stacked to obtain the whole VOI. Non-nodule 
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imjects are extracted by the author of this dissertation using the tool developed from a patient image 

series that does not have any nodules in it. 

 
Figure 4.2 Image data retrieval unit of the framework 

4.1) Preprocessing of VOIs 

Since all of the VOIs are not at the same size and also some slices may have a ROI which does not 

have enough pixels to extract some features, scale normalization and slice selection processes are applied 

before the feature extraction. 

VOI Normalization: Image voxels are not isotropic and they differ among image series. An 

interpolation (e.g. trilinear or nearest neighbor) is applied to each VOI to obtain isotropic voxels; the 

interpolation helps to make all VOI from each plane have the same number of slices. This normalization 

is necessary to make each sample group has the same number of slices; because the size of feature vectors 

at model layer 2 requires a fix number of predictions as an input. 

Slice Selection: Since a VOI may not have a regular shape, a series of slices through a plane direction 

may have 2D regions whose size is less than 9 pixels. This type of slices cannot be used to extract feature 

vectors. They are replaced by the nearest slice whose ROI has an area of more than 9 pixels. If a VOI has 

a slice on which more than one disconnected regions exist, then the region which has the max area is 

automatically selected while deleting others. After finding the max region, its boundary is smoothed for 

shape feature extraction. The algorithm to select a slice is given below. 

Input: 2D image with background pixels 

Output: 2D image with max region 

Get ROI Borders 

Read 
Border 

Coordinates 

MATLAB 
File 

Synchronize 
Coordinate 

Systems 

Image Data Retrieval 

Get Slices 

Read Image 
Series 

Match 
Slices 

Read ROI Info 

Obtain VOI 

Get ROI Masks 

Combine  
sub-ROI Masks 

Compute 
Common Frame 

Convert from XML to 
MATLAB structure 

 

XML File 
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1. Find all regions 

a. Trace the image line by line from the first pixel to the last 

i. Find the first non-background pixel 

ii. Label each non-background neighbor pixel with the same value 

iii. If a non-background neighbor pixel does not have the same label, correct the 

labels. 

2. Compute the area of each region 

3. Delete all regions whose area less than the max area 

4. Apply smoothing to the boundary of max area 

5. Re-obtain the ROI from the smoothed boundary 

6. Return the slice 

4.1.1) Auto-Polygonalization 

The boundary of a ROI and its polygonal approximation are obtained automatically. The polygon is 

used to compute shape features. The algorithm requires five parameters, namely min length for 

horizontal, for vertical, and for diagonal segments and a tolerance angle to decide if two successive line 

segments are inline. The algorithm auto-polygonize is given below. 

Input: 2D image with background pixels, parameters of min segment lengths and inline tolerance 

angle 

Output: Polygon of the ROI boundary 

1. Trace the boundary from the first pixel to the last in counter clock direction 

a. Obtain a line segment 

b. Check if an inline condition occurs between the new line segment and the previous one 

c. If the neighbor line segments are inline, then combine them to obtain one line segment. 

i. Successively trace back to eliminate any line segment which becomes inline due 

to combining neighbor line segments 

2. If the size of the polygon less than a specified value, then decrease the parameter values and re-

run the step 1. 

3. Return the polygon vertices. 

4.2) Features 

After obtaining set of ROIs, the next step is to extract feature vectors which are utilized to train and 

test the decision engine. In this dissertation, we used two feature classes each having two feature types, 

namely FC = {Geometric, Photometric} and FT = {{Spectral Feature, Circularity}, {Co-Occurrence, 

Run-length}}, and two object class C = {Nodule, Non-Nodule}; notice that  Spectral feature, 

 Co-Occurrence feature and so on. 
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Two types of shape features, namely spectral feature and circularity combined with some regional 

shape features, are used. The size of the spectral feature vector is selected as 50 which half of the Fourier 

coefficients computed as described in section (3.4.1.1). The second feature type is used to measure 

circularity of a ROI along with some regional features. Its feature vector is composed of 5 circularity 

measures including elongation, eccentricity, circularity by radial distance, circularity by CPR, circularity 

by spectral feature, and 3 regional measures including normalized Euler’s number, compactness, and 

convexity. 

Photometric features are computation starts with binning (with a bin size of 10) over the gray level 

range so that the matrix dimension is reduced significantly. The gray level range is selected as [1, 1200] 

because the number of occurrences of gray levels above this range is not significant as seen in Figure 4.3; 

notice that gray levels of original image slices are shifted to 1 as mentioned earlier. We used a ‘disk 

neighbor’ which includes all pixels within a rectangular 3 by 3 window. The disk neighbor enables a 

rotation invariance property. The direction of run-length trace is selected as {0, -45, -90, -135} so that a 

previously visited pixel at the same line is not counted more than once. 

 

 

Figure 4.3 Gray levels histogram of imjects used (normalization factor: 210.5 for nodule, 14.6 for non-
nodule counts) 

0

1

2

3

4

5

6

7

8

9

1 50 99 14
8

19
7

24
6

29
5

34
4

39
3

44
2

49
1

54
0

58
9

63
8

68
7

73
6

78
5

83
4

88
3

93
2

98
1

10
30

10
79

11
28

11
77

12
26

12
75

13
24

13
73

14
22

14
71

C
ou

nt
s (

no
rm

al
iz

ed
)

Gray Levels

Nodule

Non-nodule



49 

 

4.3) A Discussion Related to Invariance Issue 

One of the important challenges in pattern recognition is that imjects to be classified differ in size, 

rotation, and location. In general, Machine Vision may require rigid body invariance in features used to 

represent patterns; that is the translation, rotation, and scale invariance properties may be necessary. As 

regard to the nodule detection, the location information may help; so, relative location information also 

can be helpful as an attribute. But this location information does not need to be reflected in a shape or 

photometric feature; so these features can be represented removing spatial-origin information of the 

pattern location. Also the same argument is valid for the orientation of the imject; as regard to the shape 

representation, in general, orientation information is removed before extraction of the shape feature 

(rotation invariance). On the other hand, orientation information may be important to represent an imject 

using photometric content as in co-occurrence or run-length features. The third property of the rigid body 

transformation (or deformation) is the scale invariance. Shapes that are similar under rigid-body 

deformation (that is parallel lines remain parallel preserving aspect ratios after removing location, 

orientation, and scale information) can be grouped in the same cluster; if an application requires 

representing all shapes in the same cluster, then a single feature will be enough to represent all of these 

shapes. On the other hand, if the application requires preserving scale information, then each shape should 

be represented with its own feature. Another shape similarity clustering would be normalizing each shape 

on a square (or on a cube for 3D volumes) and extracting a single feature for all similar shapes after 

removing translation and orientation information. In Figure 4.4, three shape clusters are given; a single 

feature is enough to represent the middle cluster shapes; for the left cluster, each shape may require its 

own feature or all shapes can be represented by the feature derived from the normalized shape (located at 

the center); the shapes in the right cluster have the same number of vertices but their shape feature will 

different. In this dissertation, we derived shape features after applying ‘cube normalization’ by 

interpolating each VOI to transform them into 50 by 50 by 50 cube in pixels. 

 
Figure 4.4 Scale invariance over shape clusters. Left cluster: Square (or cube) normalization, middle 

cluster: rigid body normalization, right cluster: A different cluster of shapes. 
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CHAPTER 5. MODULAR DECISION ENGINE MODEL 
We propose three different modular decision engine models: Inter-Slice Inter-Plane (ISIP) Model, 

Inter-Slice Intra Plane (ISAP) Model, and Intra-Slice Intra-Plane (ASAP) Model. In this dissertation, we 

implemented the first model and left the other two as future research. The ISIP model analyzes a volume 

based on each feature-type separately and then synthesizes these individual feature-type predictions for 

each feature-class separately before reaching the final classification; i.e., we are first looking for the 

answer to a question like “What is class of the imject in the VOI according to the spectral feature?” to be 

used as a basis prediction. The ISAP model analyzes each plane separately based on all feature-types, and 

then synthesizes predictions obtained from this analysis to be used in plane level prediction, after the 

plane level synthesization the final classification is obtained; hence we seek first an answer to a question 

like “What is class of the imject in the VOI according to all feature-types when we look through a plane?” 

before further predictions. The ASAP model analyzes each slice based on all features followed by feature-

class predictions separately, and then plane level predictions are obtained from these slice level 

predictions before the final classification at the volume level. 

The each proposed decision engine model is a hierarchical engine which has several tiers. The engine 

analyzes a volumetric data based on selected features by obtaining some intermediate decisions from the 

first layer to the final layer. The intuition behind the proposed models is improving accuracy of a 

prediction through hierarchically connected information levels. Our experimental results show that this 

multi-level approach has a capability of obtaining the most improved decision at the final level. The 

engine is composed of several layers which contain several modules of a predictor and a regrouping 

processor. Each module at the same model layer is totally independent from each other while they are 

integrated to some modules at the successive layers. This independent processing makes it possible to 

implement the decision engine in a parallel processing environment. 

5.1) The Data Model of the Modular Decision Engine 

The decision engine analyzes a volumetric data at different information levels. These levels include 

spatial levels as slice, plane, and volume and feature levels as feature-class and feature-type. Spatial 

information levels are obtained by partitioning 3D space into three orthogonal planes♣

                                                      
♣ As a convention, the term ‘slice’ alone refers to ‘spatial slice’ on a plane and the term ‘plane’ alone refers to 
‘spatial plane’ in 3D Cartesian coordinate system. 

  namely 

transverse (x-y), coronal (x-z), and sagittal (y-z)  and the data in the direction of each plane is sub-

divided into 2D slice sequences which are composed by the most primitive unit (voxel). At the slice level, 

a prediction is obtained independently for each slice; at the plane level, predictions are performed for all 

slices of the plane. Similarly, the volume level synthesization utilizes the plane level outputs to reach a 

higher level decision. Feature-class (or feature-type) information level synthesization is performed using 
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prediction results of other information levels by employing a specific feature-class (or feature-type) 

predictor. In a non-modular predictor, all of the volumetric data is utilized together to obtain a decision. In 

contrast, the modular approach partitions the raw data into several spatial and feature levels and combines 

a hierarchy of predictions at these levels in an efficient way, as explained below. Therefore, the proposed 

modular engine model mimics a human expert who analyzes a VOI from different projections; further, the 

engine, after obtaining machine coded features from the raw data, enhances the decision-making process 

with multi-level feature analysis which is beyond the limit of a human intelligence. 

The raw data used by the modular engine is a region as opposed to a non-modular classifier which 

utilizes all voxels within a volume. Formally, let a voxel  on a slice s of a planar direction p (located 

at a grid point m of s) where s = 1, 2, ..,  and m = 1, 2, ..,  where  denotes the number of 

slices per plane and  denotes the number of voxels per slice; when Cartesian coordinate system is 

used, p = 1, 2, 3 corresponds to transverse, coronal, and sagittal plane’s direction. We define a region as 

; accordingly a volume in the perspective of plane p can be represented by a 

sequence of voxels  or by a sequence of regions 

. Hence, input feature vector of a modular decision engine will be 

 while  for the non-

modular classifier where f(⋅) and g(⋅) are functions from the regions and the voxels to a feature space, 

respectively. Figure 5.1 illustrates a non-modular classifier with a volumetric data as an input. In this 

dissertation, we use region-based representation in such a way that each slice has one region. 

 

Figure 5.1 A non-modular classifier whose inputs are voxels of a specified plane (Number of voxels 
, number of slices  on the plane p = 1) 
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5.2) The Modular Decision Engine Structure 

The engine is composed of several integrated layers. Each layer has some modules which output a 

prediction to be used in the next layer. A module contains a predictor and a regrouping processor. The 

predictor can be any type of processor which employs a supervised (or unsupervised) learning algorithm. 

All predictors in the engine produce an output in continuous domain; at the last layer a threshold is 

applied to obtain the final decision. On the other hand, predictors can be designed to produce an 

intermediate decision in discrete form, e.g., using {0, 1} in case of binary classification, which represents 

predicted class of the input vector. In this dissertation, we implemented the former approach. The 

regrouping processor transforms the set of output responses of a predictor into an input vector for the 

modules at the next layer. 

5.2.1) Predictor Design 

A predictor can be any supervised or un-supervised learning model such as ANN, Support Vector 

Machine, Bayesian Network model, a multi-dimensional regression model, or a rule based system.  In this 

dissertation, we employed ANN with supervised learning algorithm Backpropagation. A predictor is 

composed of input, generalization, and output units. Input unit accepts set of vectors and feed them to the 

generalization unit to adjust weights, then generalization unit’s response is compared with the target; 

finally, the output unit displays the result with an appropriate coding. A spatial information level predictor 

is trained in such a way that it can make a prediction based on an input feature vector regardless of its 

spatial origin. In other words, domain of a predictor spans input vector space of all planes and slices; 

hence the same predictor is utilized for a single feature-type. 

A predictor can be designed to make analysis at the slice level using a supervised (and un-supervised) 

learning method. Also, an un-supervised learning method can be employed following a supervised 

predictor unit. This approach can assist to cluster input feature vectors into some intermediate feature-

clusters then the feature level analysis is performed using cluster information of the samples. In this 

dissertation, we implemented the supervised learning method alone. These two approaches are illustrated 

in Figure 5.2. 

 
Figure 5.2 Prediction methods (m < n, : Feature-cluster value of the input feature-vector for the cluster 

i) 

 Unsupervised Learning Supervised Learning   

Supervised Learning  
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5.2.2) Regrouping Processor Design 

Let  and  be the size of an output set and of an input vector, respectively. The regrouping 

processor’s ( ) job is to transform a 1 by  output set at a layer l to a  by  input vector 

to be used by the modules at next layers. The size of an input vector and of output set  are determined 

before training of the engine. The output set can be composed of several groups and each group can be 

composed of several blocks of elements such as slices. The detail of the processor is explained with an 

example in the Section (5.3.1). 

5.3) Inter-Slice Inter-Plane (ISIP) Model 

The inter-slice inter-plane decision engine start analyzing a VOI from the slices of a plane to obtain 

some predictions at the feature-type level. Then, a synthesization occurs at the plane level followed by the 

volume level synthesization; the overall decision is obtained by the module . Figure 5.3 and Figure 5.4 

illustrate ISIP structure of the modular decision engine model with two feature-classes of two feature-

types for each. The model layers are explained in the sequel. 

Layer 1. Feature-type Analysis of the VOI: This layer is composed of feature-type modules ; e.g., 

 is composed of  and . The first prediction about each slice based on a specific 

feature-type is obtained at this layer. The decision engine seeks for an answer to a question like “to what 

extent does the imject in the slice belong to the nodule class according to each individual feature-type?”. 

Layer 2. Plane and Volume Level Synthesization: This layer is composed of plane level modules  

and volume level modules ; e.g.,  is composed of  and , and  is composed of  

and . An analysis is conducted separately on the VOI based on each individual feature type; first, a 

prediction is obtained at the plane level, and then output of the 3 plane predictors are used to obtain a 

volume level prediction. The decision engine seeks for an answer to a question like “to what extent does 

the imject in the VOI belong to the nodule class according to a shape feature when we look through 

planes individually first then altogether?”. On the other hand, instead of using two types of module 

(namely plane and volume level modules), plane level prediction can be skipped and only volume level 

synthesization can be performed; this is depicted as dashed line box (MP•) in Figure 5.3. 

Layer 3. Feature-Class Level Synthesization: This layer is composed of feature-class level modules 

; e.g.,  is composed of  and . A prediction about the VOI is obtained based on all 

features types of the feature-classes’ outputs. The decision engine seeks for an answer to a question like 

“to what extent does the imject in the VOI belong to the nodule class according to predictions considering 

all geometric features?”. 

Layer 4. Final Decision: This layer has a module  which produces the final decision about the 

VOI. The module has a threshold operator after the predictor unit to obtain the final classification result. 

The decision engine seeks for an answer to a question like “to what extent does the imject in the VOI 

belong to the nodule class considering geometric and photometric features altogether?”. 
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Figure 5.3 The ISIP conceptual model structure (MFk: Feature-type level module, MP•: Plane level 
module, MV•: Volume level module, MFC•: Feature-class level module, MO: Overall classification module, 

Ek: Feature Extractor of a feature type k) 
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Figure 5.4 An example of ISIP implementation model structure (with two feature-classes and two feature-types in each class. : Feature-type level 
predictor, : Plane level predictor, : Volume level predictor, : Feature-class level predictor, : Overall classifier) 
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5.3.1) Regrouping Process 

In ISIP model, the regrouping processor takes output set of a module as an input and returns an input 

vector for the next layer. Let , , and  be the number of slices per plane, the number of planes, and 

the number of imjects, respectively. At the first model layer, there will be  groups,  blocks in each 

group, and  elements in each block where the block elements corresponds to slices of a plane, so the 

size of an output set is ; in this dissertation, , ,  (48 for training, 16 

for validation, and 16 for testing).  takes the output set and returns  input vectors of  

attributes in each. At model layer two, the plane decider produces  outputs and  returns  

input vectors with  attributes in each. The volume, feature-class, and overall classification modules (at 

layers three, four, and five, respectively) produce  outputs and  returns  input vectors with 

 (= 2 in this dissertation) attributes for a feature-type FT(i, j) and  returns  (= 2 in this 

dissertation) attributes for a feature-class FC(i). Figure 5.5 and Figure 5.6 illustrate the regrouping process. 

Formally, Let  denotes a predicted value for a slice s,  denotes a block for a 

plane p,  denotes a group for an imject k, and   denotes a 

set of output groups obtained from a feature-type predictor  at model layer l as a response to the 

feature vectors of . A group is made of  blocks where each block corresponds to a plane and the 

size of each block is  . The input vector of the second layer with 3 planes will be 

 

  (5.1) 

where  denotes the transpose operator. Let a group ; similarly, the second layer has 

an output set  whose blocks (  for p = 1, 2, 3) correspond to a plane with one 

element in each as a response to input vectors . The input prediction vector of the third layer will 

be 

 

  (5.2) 

Let  denotes a prediction for the kth imject and jth feature type, and  

denotes a set of outputs of a volume feature predictor  at the model layer three. The prediction 

vectors of the fourth model layer are obtained by combining output of the previous layer classifiers as 

defined below 

 

  (5.3) 
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Figure 5.5 Regrouping process at layer 1 (ISIP Model with 5 slices per plane, 3 planes per imject) 
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Figure 5.6 Regrouping process at layers 2, 3, and 4 (ISIP Model) 

Similarly, let  denotes a prediction for the kth imject and ith feature class,   

denotes a set of outputs of a feature-class predictor  at the model layer four. The input prediction 

vectors of the last model layer are obtained by grouping output of the fourth layer predictors as defined 

below 

  (5.4) 

5.4) Inter-Slice Intra-Plane (ISAP) Model 

The inter-slice intra-plane decision engine explores a VOI by analyzing slices of a plane starting at 

the feature-type level predictions; then feature-class level synthesization is performed followed by the 

plane level synthesization before reaching the final decision. Figure 5.7 illustrates ISAP structure of the 

modular decision engine model. 

Layer 1. Feature-type Analysis: This layer is composed of feature-type modules . The VOI is 

analyzed through slices considering a specific feature-type. The first prediction about each slice based on 

a specific feature-type is obtained at this layer. The decision engine seeks for an answer to a question like 

“to the what extent does the imject in the slice belong to the nodule class according to each individual 

feature-type?”. 

Layer 2. Feature-Class Level Synthesization: This layer is composed of feature-type synthesizing 

modules  and feature-class modules . A feature-class level prediction about the VOI is obtained 

by synthesization of feature-type level results. The decision engine seeks for an answer to a question like 

“to the what extent does the imject in the VOI belong to the nodule class according to the geometric 
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features?”. As an alternative, synthesization of feature-type level results can be skipped and feature-class 

level prediction can be applied directly; this is depicted as dashed line box (MFS•) in Figure 5.7. 

Layer 3. Plane Level Synthesization: This layer is composed of plane level modules . The 

prediction about the VOI is updated considering results of feature-class level predictions. The decision 

engine seeks for an answer to a question like “to the what extent does the imject in the VOI belong to the 

nodule class according to predictions about all feature-classes for a?”. 

Layer 4. Final Decision: This layer has a classifier module MO which produces the final decision 

about the VOI. The decision engine seeks for an answer to a question like “to the what extent does the 

imject in the VOI belong to the nodule class considering predictions about all?”. 

5.5) Intra-Slice Intra-Plane (ASAP) Model 

The intra-slice intra-plane decision engine explores a VOI by analyzing slices of a plane starting from 

the feature-type level predictions; then feature-class level synthesization is performed followed by the 

plane level synthesization before reaching the final decision. ASAP model differs from ISAP model such 

that each slice, in ASAP model, is processed individually for all feature-types and the results are 

synthesized to obtain an intermediate prediction while ISAP model synthesizes predictions obtained from 

different slices for the same feature-type. Figure 5.8 illustrates ASAP structure of the modular decision 

engine model. 

Layer 1: Feature-type Analysis: This layer is composed of feature-type modules . Each slice is 

analyzed individually considering all features. The first prediction about the slice based on all feature-

types is obtained at this layer. The decision engine seeks for an answer to a question like “to the what 

extent does the imject in the slice belong to the nodule class according to each individual feature-?”. 

Layer 2. Feature-Class Level Synthesization: This layer is composed of feature-class  and 

feature-class synthesizing modules ; the predictions obtained from each feature-type analysis are 

synthesized at this layer. The decision engine seeks for an answer to a question “to the what extent does 

the imject in the slice belong to the nodule class according to all feature-classes?”. Besides applying an 

intermediate synthesization to obtain predictions at feature-class level, the synthesization can be 

performed directly (at the feature-class level by MFCS•) for all feature-types from each feature-class; this is 

illustrated as dashed line box (MFC•) in Figure 5.8. 

Layer 3. Plane Level Synthesization: This layer is composed of plane level modules . The first 

prediction about the VOI is obtained based on plane level synthesization. The decision engine seeks for 

an answer to a question like “to the what extent does the imject in the VOI belong to the nodule class 

according to predictions for all slices of the plane?”. 

Layer 4. Final Decision: This layer has a classifier module  which produces the final decision 

about the VOI. The decision engine seeks for an answer to a question like “to the what extent does the 

imject in the VOI belong to the nodule class considering predictions for all planes?”. 
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Figure 5.7 The ISAP conceptual model structure (MF•: Feature-type level module, MFS•: Feature-type 
synthesizing module, MFC•: Feature-class level module, MP•: Plane level module, MO: Overall classifier 

module, Ek: Feature Extractor of a feature type k) 
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Figure 5.8 The ASAP conceptual model structure (MF•: Feature type level module, MFC•: Feature-class 
level module, MFCS•: Feature-class synthesis module, MP•: Plane level module, MO: Overall classification 

module, Ek: Feature Extractor of a feature type k) 
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CHAPTER 6. PERFORMANCE ASSESSMENT MEASURES 
Assessment measures are used to measure goodness of the classification according to a set of 

classifier outputs; besides, they help to compare different classifier models in terms of tendency and error 

occurred during the classification process. Each assessment measure is computed over confusion matrix, 

which is given in Table 6.1, entries which are the number of true positives TP, the number of true 

negatives TN, the number of false positives FP, the number of false negatives FN, and the number of total 

samples N. The main goal of each performance measure is to produce one score which summarizes four 

outcomes presented in the confusion matrix of the test results. In assessment of the experiments’ result of 

this research, several performance measures including sensitivity, goodness of classification (GC) based 

on true positive rate (GCTP), GC based on false positive rate (GCFP), specificity, GC based on true 

negative rate (GCTN), GC based on false negative rate (GCFN), area under the ROC curve Az, Matthews 

Correlation Coefficient (MCC), and expected closeness value (ECV) are employed. 

Table 6.1 Confusion Matrix 

  CLASSIFICATION  

  
Predicted as 

Positive 
(NODULE) 

Predicted as 
Negative 

(NON-NODULE) 
TOTAL 

D
IA

G
N

O
SI

S Positive (NODULE) TP FN (type II error) P = TP + FN 

Negative 
(NON-NODULE) FP (type I error) TN P’ = FP + TN 

 TOTAL Q = TP + FP Q’ = FN + TN N 

 

Sensitivity measures how many of true positive samples (nodules) out of all positive samples are 

detected [Kraemer]. It is defined as 

  (6.1) 

On the other hand, sensitivity alone does not say how much agreement exists between the classifier 

and the diagnosis considering both true and false positives; GCTP can be used for this purpose. It is the 

number of correctly positive classified samples normalized by the average of total positive and positively 

predicted samples. If the GCTP is higher than the sensitivity, then nodules are under-predicted; if it is 

less, then they are over-predicted. On the other hand, it yields another comparison measure, the difference 
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; the higher the difference, the higher the tendency towards type II error, i.e. missing rate of 

nodule will be higher; this relation is given in equation (6.3). GCTP is defined as 

  (6.2) 

 

 

 

 

 

(6.3) 

Another measure of tendency (or type I error) is GCFP. GCFP gives an idea about how much error 

observed in prediction of negative class samples. It is computed by first normalizing false positive 

predictions with average of total negative samples and total positively predicted samples; then the 

resulting normalized value is complemented so that it can give an idea about degree of not having type I 

error. It is defined as 

  (6.4) 

GCFN is employed in analysis of type II error. GCFN is a measure of how many positive class 

samples is missed by the classifier; GCFN is obtained by normalizing the number of false negative 

predictions with the average of the total positive samples and the total negatively predicted samples; then 

the resulting normalized value is complemented so that it can give an idea about degree of not having type 

II error. In case of nodule detection, GCFN score is crucial due to cost of life. It is defined as 

  (6.5) 

Similar to sensitivity, specificity measures how many of true negative samples (non-nodules) out of 

all negative samples are detected [Kraemer]. It is defined as 

 

  (6.6) 

Again, specificity alone does not say how much agreement exists between the classifier and the 

diagnosis considering both true and false negative classes; GCTN can serve for this purpose. If the GCTN 

is higher than the specificity, then an under-prediction of non-nodules is observed; if it is less, then over-

prediction exists. The higher the difference  is, the higher the type I error exists; this relation is 

given in equation (6.8). GCTN is defined as 

 

  (6.7) 
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(6.8) 

 

The area under the ROC curve Az is another measure of classification performance in terms of 

sensitivity and complement of specificity [Lasko05]. The ROC curve is obtained by applying some 

threshold values to the classifier output and then calculating corresponding true positive rates (sensitivity) 

and false positive rates (1 - specificity). The max value of the area is 1 which refers to the perfect 

classification and the min value is 0.5 which refers to the poorest one; i.e. the classifier yields a result no 

better than tossing a coin. The area can be interpreted in different ways: a) average sensitivity b) average 

specificity c) the probability that a test will produce an output which is higher for a randomly selected 

diseased subject than for a randomly selected healthy one [Metz86, Obuch03, Lasko05]. 

The correlation coefficient which is also known as Matthews correlation coefficient (MCC) in the 

literature, [Baldi] measures the correlation between diagnosis and classification outputs. Given target set 

T = {ti} and classification output sets O = {oi}, means  and , and standard deviations  and  for 

target and classification sets, respectively, MCC is defined by [Baldi] as 

  (6.9) 

It gives an index of how targets and corresponding classification outputs are aligned in sign and value 

using their normalized values by their sample mean and standard deviations. MCC can be further 

expressed in terms of confusion matrix elements for two classes with two categories as 

  (6.10) 

ECV performance score measures complement of average error at the output of the classifier 

compared to the corresponding target value. It is defined as 

  (6.11) 

It gives an idea how close output values to the target before applying a threshold which is utilized to 

decide the class of the input feature. 
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CHAPTER 7. ANALYSIS OF RESULTS 
In this research, we used 80 nodules and non-nodules imjects in total with 40 imjects from each class. 

We evaluated our detection technique using a test data set that has 16 imject samples of 8 nodules and 8 

non-nodules. The training data set has 48 imjects and validation data set has 16 imjects; the both data set 

has equal number of nodule and non-nodule samples. We tested our model employing six experiment 

groups; each group has several sub-groups. In the following sections, we analyze results of each 

experiment group. 

7.1) Experiment Group A 

In this experiment group, we applied the Levenberg-Marquet learning algorithm using batch 

processing approach. We conducted 72 experiments with changing training parameters mu_dec = {0.05, 

0.1, 0.5}, mu_inc = {5, 10}, mu_max = {100, 1000, 10e10}, epochs = {10, 10, 500, 1000}, and keeping 

others constant which are mu = 0.001, time = 60 min max, goal = 0, min_grad = 1e-10, max_fail = 3. 

Significant of these parameters are explained in the Section (2.5). The network structure is composed of 1 

hidden layer. The number of nodes in the hidden layer of each predictor is given in Table 7.1; the output 

layer of each ANN has 1 node. 

Table 7.1 Number of hidden nodes in each ANN predictor (ML: Model Layer) 
Feature Class Feature Type ML 1 ML 2 ML 3 ML 4 ML 5 

Geometric 
Spectral 2 1 2 

2 

2 
Circularity 9 1 2 

Photometric 
Co-occurrence 11 1 2 

2 
Run-length 12 1 2 

7.1.1) Comparison of Experimental Parameters 

In this section we analyze nodule and non-nodule detection performance based on assessment 

measures introduced in Chapter 6. Also, we extend our analysis by exploring tendency towards each 

imject type (type I and II errors), accuracy of Decision Engine output, correlation between classification 

results and actual classes, variation in performance scores, and all parameter sets observed to find a set 

which yields better classification performance. Figure 7.1 depicts a summary of classification 

performances at the last layer of the Decision Engine for the experiments group-A; in subsections, all 

analysis refers to Figure 7.1 otherwise said. 

7.1.1.1) Goodness of Classification for Nodule Imjects 

Max-curve reads that the Decision Engine classifies all nodules perfectly for some parameter sets 

(with Sensitivity = 100%). We can infer from the median and mean curves that most of the parameter sets 
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yield a classification performance above the mean according to sensitivity and GCTP medians which are 

88% and 82%, respectively. This indicates that, in classification of nodule imjects, the Decision Engine is 

not affected too much by the parameters selected for a sample set. The MIN curve shows that some of the 

parameter sets cannot yield a good classification. 

 
Figure 7.1 Overall classification performance of the Decision Engine against parameter variations 

(summary of all experiments for the final layer) 

7.1.1.2) Tendency to Nodule (type I error analysis) 

The max GCFP value among the experiments is 100%; that is the Decision Engine does not have a 

prediction tendency towards nodules for some parameter sets. Since the median difference between 

Sensitivity and GCTP is 6%, then we can conclude that there is a slight tendency towards the nodule 

prediction in most of the parameter sets. We can have a similar conclusion when we compare medians for 

sensitivity = 88% against specificity = 75% and GCTP = 82% against GCTN = 80%. Also GCFN = 87% 

is larger than GCFP = 76%, that is type II error is less than type I error in most of the experiments, this is 

good for a nodule detector. 

7.1.1.3) Goodness of Classification for Non-nodule Imjects 

According to the max-curve, the Decision Engine classifies all nodules perfectly for some parameter 

sets (with specificity = 100%). The median and mean curves read that most of the parameter sets yield a 

classification performance above the mean according to specificity (75%) and GCTN (80%). This 

indicates that, in classification of non-nodule imjects, the Decision Engine is not affected too much by the 

parameters observed. 

7.1.1.4) Tendency to Non-nodule Imjects (type II error analysis) 

The max GCFN value is 100%; that is the Decision Engine does not have a tendency towards non-

nodules for some parameter sets. The median value of GCFN (87%) is slightly above the mean value 

(85%) and below the max value (100%); i.e. more than half of the parameter sets does not produce a 

result in favor of non-nodule prediction which is a parallel result with type I error analysis. 
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7.1.1.5) Accuracy of the Classification Outputs 

Some parameter sets produce a perfect prediction values (ECV = 100%). The accuracy (ECV) of the 

Decision Engine is 73% on average. Most of the Decision Engine output values (median of 74%) are 

above the mean. 

7.1.1.6) Correlation between Prediction and Actual Classes 

The max correlation between predictions and true classes is 100% as seen with ECV. The median 

MCC value 63% depicts that most of the experiment sets produce predictions which are correlated with 

the true class of imjects. Notice that MCC is a measure of goodness of classification considering 

prediction results of both classes. 

7.1.1.7) Analysis of Performance Variations 

Variation in performance is 30%, 28%, 28%, and 27% among specificity, among MCC, and among 

GCTN performance scores, respectively. This means that they are more sensitive than other measures to 

the parameter changes. The variation is 16% for GCTP, that is the nodule detection by the Decision 

Engine are affected less than non-nodule detection. The variation is 15% for GCFN and 20% for GCFP; 

we can conclude that type II error is less sensitive to the parameter differences than type I error. The 

variation among ECV scores is 14%, which is the min among the others; that is prediction output values 

are less sensitive to parameter variation. 

7.1.1.8) The Parameter Set Which Yields a Better Classification Performance 

Parameter sets of some selected experiments are shown in Table 7.2 and their corresponding 

performance scores is given in Table 7.3. The correlation among the experiment parameters are shown in 

Table 7.4. As seen from Table 7.4, the elapsed time is not sensitive to these parameter variations. Table 

7.5 to Table 7.12 show the confusion matrixes obtained from the experiment 42 for each Decision Engine 

layers. 

Table 7.2 Parameters of some selected experiments from group-A 

 Epochs mu_dec mu_inc mu_max Elapsed Time (sec.) 
Exp-42 500 0.05 10 1E+11 19 
Exp-26 50 0.1 5 1000 20 
Exp-33 50 0.5 5 1E+11 11 
Exp-55 1000 0.05 5 100 13 
Exp-69 1000 0.5 5 1E+11 12 

Table 7.3 Goodness of classification scores for experiment 42 in group-A 

Sensitivity GCTP GCFP Specificity GCTN GCFN Az ECV MCC 

100 100 100 100 100 100 100 100 100 

Table 7.4 Correlation between elapsed time and group-A experimental parameters 
 mu_dec mu_inc mu_max 

Elapsed time -0.16 -0.01 0.01 
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Table 7.5 Confusion matrix of model layer 1 (Exp-42) 

 
Spectral Feature Circularity CoOccurence RunLength 

True Positive 711 925 988 866 
False Negative 489 275 212 334 
False Positive 412 324 192 675 
True Negative 788 876 1008 525 

Table 7.6 % Confusion matrix of model layer 1 (Exp-42) 

 
Spectral Feature Circularity CoOccurence RunLength 

True Positive 30 39 41 36 
False Negative 20 11 9 14 
False Positive 17 14 8 28 
True Negative 33 37 42 22 

Table 7.7 Confusion matrix of model layer 2 (Exp-42) 

 
Spectral Feature Circularity CoOccurence RunLength 

True Positive 24 24 22 15 
False Negative 0 0 2 9 
False Positive 16 11 4 10 
True Negative 8 13 20 14 

Table 7.8 % Confusion matrix of model layer 2 (Exp-42) 

 
Spectral Feature Circularity CoOccurence RunLength 

True Positive 50 50 46 31 
False Negative 0 0 4 19 
False Positive 33 23 8 21 
True Negative 17 27 42 29 

Table 7.9 Confusion matrix of model layer 3 (Exp-42) 

 
Spectral Feature Circularity CoOccurence RunLength 

True Positive 8 8 8 6 
False Negative 0 0 0 2 
False Positive 4 2 0 5 
True Negative 4 6 8 3 

Table 7.10 % Confusion matrix of model layer 3 (Exp-42) 

 
Spectral Feature Circularity CoOccurence RunLength 

True Positive 50 50 50 38 
False Negative 0 0 0 13 
False Positive 25 13 0 31 
True Negative 25 38 50 19 

Table 7.11 Confusion matrix of model layer 4 and 5 (Exp-42) 
 Geometric Photometric Overall 
True Positive 8 8 8 
False Negative 0 0 0 
False Positive 4 0 0 
True Negative 4 8 8 
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Table 7.12 % Confusion matrix of model layer 4 and 5 (Exp-42) 

 
Geometric Photometric Overall 

True Positive 50 50 50 
False Negative 0 0 0 
False Positive 25 0 0 
True Negative 25 50 50 

7.1.2) Change of Classification Performance through Each Decision Engine Layer 

In this section we analyze prediction performance for experiment 42 (number of epochs = 500, 

mu_dec = 0.05, mu_inc = 10, mu_max = 1010, and elapsed time = 19 sec). As seen from Figure 7.2, the 

classification performance improves from the first layer of the Decision Engine to the final layer, in 

general. 

7.1.2.1) Nodule Detection Performance 

At the first layer of the Decision Engine, Figure 7.2  shows the overall nodule detection scores which 

are 73% (sensitivity), 71% (GCTP), 79% (Az), 68% (GCFP) and 72% (GCFN), and 65% (ECV). These 

results, and also the comparison of GCTP versus sensitivity, show that nodule detection rate is slightly 

higher than the non-nodule detection while the type II error rate is slightly lower than the type I error; 

accuracy of predictions (ECV) is somehow above the toss-a-coin (50%) level. Figure 7.3 portrays 

performance measures of each predictor through model layers; the nodule detection performance by the 

spectral feature is 59%, 61%, 65% for sensitivity, GCTP, GCFP, respectively, while they are 77%, 76%, 

and 74% if the circularity shape feature is employed; when co-occurrence feature is used, the performance 

measures increases to 82%, 83%, 84% and run-length feature yields around 72%, 63%, and 51% as 

shown in Figure 7.3. Among the feature type predictors, the co-occurrence based prediction gives the 

highest score, then circularity based prediction follows; the min nodule detection result is obtained when 

the spectral based prediction employed, but it yields less type I error than the run-length based prediction. 

The Az score depicts the similar results. Predictors other than the spectral-based one show higher 

performance for type II error as compared to type I error. The difference (GCFN – GCFP) is the highest 

for run-length predictor (17%); it is -4%, 3%, and -2% for the spectral, circularity, and co-occurrence 

based predictions, respectively. When we analyze the results for each plane using the Figure 7.4, we can 

see that prediction results are not the same for each plane slices. 

The second layer modules, on which the slice level analysis is applied by synthesizing prediction 

results of the same plane slices, improve the nodule detection rate as Figure 7.2 depicts; sensitivity (89%) 

and type II (86%) scores increase while type I  error (63%) decreases. As seen from Figure 7.3, the both 

geometric feature-based predictors reach the perfect performance as regard to the sensitivity and type II 

error. On the other hand, the type I error performance gets worse for geometric based predictions. That 

means this class of predictors over-predict nodule samples. This can be also concluded from the tables 

Table 7.5 to Table 7.8 where TP = 30 (50), FP = 17 (33) in the first layer (second layer). The difference 

(GCFN – GCFP) is 50%, 37%, 7%, 3% for the spectral, circularity, co-occurrence, and run-length based 



70 

 

predictors, respectively. This shows that type I error increases versus type II error for the geometric 

predictors. The reason for such a result may be due to using ‘cube normalization’ as discussed in the 

Section (4.3) (A Discussion Related to Invariance Issue). Analysis of results for slices of a plane shows 

that the geometric based prediction produces almost the same result while photometric based prediction 

performance keeps changing among planes as seen in the Figure 7.4. 

 
Figure 7.2 Average change of classification performance through Decision Engine Layers 

 
Figure 7.3 Change of classification performance in the Decision Engine layers (Analysis of nodule 

detection) 

The third layer that combines decisions from all planes improves the decision made in the previous 

layers as Figure 7.2 depicts; sensitivity (94%), type II (93%), and type I error (70%)  scores increase from 

89%, 86%, and 63% respectively. This shows that non-nodule detection rate also improves at this model 

layer. Figure 7.3 portrays a detail look for each individual feature predictor; geometric feature-based 
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prediction reaches the perfect score for nodule detection and type II error while still showing some type I 

errors (GCFP = 60% and 78%). On the other hand, the co-occurrence-based prediction reaches the perfect 

score at each performance score while the run-length based prediction has a slight improvement. 

At the fourth layer, both feature class-based predictions produce the perfect performance for nodule 

detection and type II error, but the geometric feature prediction module still yields type I error (GCFP 

60%). The Engine reaches the perfect classification at the final layer. 

7.1.2.2) Non-Nodule Detection Performance 

At the first layer of the Decision Engine, Figure 7.2 shows the overall nodule detection scores which 

are 67% (specificity), 69% (GCTN); as we mentioned earlier non-nodule detection rate is slightly less 

than nodule detection rate. The spectral (circularity) based predictor scores are specificity of 66% (73%) 

and GCTN of 64% (75%) while the co-occurrence based predictor scores are specificity of 84% (44%) 

and GCTN of 83% (51%) as seen in Figure 7.5. The co-occurrence based prediction is the highest as it 

was for nodule prediction at layer 1. The Figure 7.6 depicts prediction result for slices of each plane. The 

performance differs from plane to plane for each feature type; for example, the geometric feature based 

predictors yield a higher score in slices of plane 2 while the co-occurrence based prediction is high on 

slice of the first plane and run-length predictor is good on the slices of the plane 3 according to specificity 

measure. 

For the second layer modules, the specificity score decreases from 67% to 57% in overall predictions 

as seen in Figure 7.2. This decline may arise from the geometric based predictions; as seen in Figure 7.5, 

both geometric predictions have a lower specificity than the first layer’s predictions of this feature class. 

In the third layer, overall prediction improves as seen in Figure 7.2. The co-occurrence prediction has 

the highest score and circularity, spectral, and run-lengths follow in the order. At the fourth layer, 

specificity keeps increasing and it reaches the perfect score at the final layer. 

 
Figure 7.4 Change of classification performance in the Decision Engine layers 1 and 2 (Analysis of 

nodule detection at slice level for each plane) 
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Figure 7.5 Change of classification performance in the Decision Engine layers (Analysis of non-nodule 

detection) 

 
Figure 7.6 Change of classification performance in the Decision Engine layers 1 and 2(Analysis of non-

nodule detection at slice level for each plane) 
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difference is that all ANNs have only one node at the hidden layers. The comparison of Figure 7.1 and 

Figure 7.7 show that the group one parameter sets produce slightly better result than the second group 

overall. The experiment 62 of this group produced the best detection result; the parameters of this 

experiment are: 1) epoch = 1000, 2) mu_dec = 0.1, 3) mu_inc = 5, 4) mu_max = 1000, and 5) max_fail = 
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3. Figure 7.8 depicts the detection performance of the experiment 62; even sensitivity and type II error 

(GCFN) performances reach the perfect score at the final layer, other scores did not reach that level. 

Therefore, some non-nodule imjects could not be detected by the engine. The performance of group-A at 

the model layer 1 is slightly higher than the performance of the group-B; we can conclude from this result 

that increasing the number of hidden nodes may not yield a big performance difference. 

The parameters for some selected experiments from group-B are listed in the Table 7.13. The 

comparison of the Table 7.2 with the Table 7.13 shows that ANN structures with different number of 

hidden nodes may produce similar result using different parameters. 

 
 
Table 7.13 Parameters of some selected experiments from group-B 

Experiment 
Number Epochs mu_dec mu_inc mu_max Elapsed Time 

(sec.) 
Exp-62 1000 0.1 5 1000 8 
Exp-19 50 0.05 5 100 8 
Exp-60 1000 0.5 10 1010 10 
Exp-59 1000 0.05 10 1000 8 
Exp-63 1000 0.1 5 1010 8 

 
 
 
 
 

 
 

Figure 7.7 Overall classification performance of the Decision Engine against parameter variations 
(summary of all group-B experiments) 
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Figure 7.8 Average change of classification performance through Decision Engine layers for experiments 

group-B 

7.3) Experiment Group C 

Experiment group-C is conducted to explore effect of increasing training time by allowing the 

network to continue training until one of the learning performance value is achieved; i.e. making the 

parameter max_fail as 3 (experiment G3) and infinity (experiment G3_1). In this experiment group, all 

the parameters are the same with the group-B except max_fail = Inf and the number of hidden layer nodes 

at the model layer 1 is the same as in the group-A, see the Table 7.1. The Table 7.14 shows the parameter 

set for the experiment which produced the best result. The elapsed time difference is not so high but the 

detection rate is significantly higher at the model layer 1 and 4, even both models reach the perfect score 

at the final layer. At the model layer 3, specificity and type 1 error decline when G3 set is used; this 

would arise due to lack of time allowed for adjusting weights of the ANNs at this layer. So the network 

could not be trained for a better generalization. 

Table 7.14 Parameters of the selected experiments from group-C 

 
epochs mu_dec mu_inc mu_max max_fail elapsed time (sec.) 

G3 (Exp-18) 10 0.5 10 10^10 3 10 
G3_1 (Exp-33) 50 0.5 5 10^10 Inf 36 

 

The Figure 7.9 and Figure 7.10 depict overall classification performance of the Decision Engine used 

in G3 and G3_1 experiments, respectively. As seen from the figures, performance of the engine is not 

affected so much for more than half of the parameter settings; besides, G3_1 responds better than G3 

against parameter variations. 
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Figure 7.9 Overall classification performance of the Decision Engine against parameter variations 

(summary of all G3 experiments) 

A closer look at each predictor type is shown in the Figure 7.10 which is a detailed version of the 

Figure 7.9 for the model layer 1. As the figure depicts, G3_1 set produces a better result, in general; on 

the other hand, the spectral feature classifier performance of G3_1 set is lower than the performance of 

G3 set at the plane 1 according to specificity and type 1 error measures. This may arise from an over-

generalization for the non-nodule samples. 

 
Figure 7.10 Overall classification performance of the Decision Engine against parameter variations 

(summary of all G3_1 experiments) 
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Figure 7.11 Comparison of Engine Models with different taining times (MxF: Max_fail) 

 

 

Figure 7.12 Comparison of Engine Models with different taining times (Model layer 1 detail analysis, 
MxF: Max_fail) 
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7.4) Experiment Group D 

In this experiment group, we explored effect of adding extra network layer while keeping the number 

of hidden nodes the same; hence this group is another version of the experiment G3_1 with some extra 

hidden layers. We experimented additional two sets of ANN structures, namely G5 and G6, where G5 has 

two hidden layers while G6 has three hidden layers at the first model layer of the Decision Engine. The 

number of hidden nodes is given in Table 7.15. The parameter sets are given in Table 7.16. The execution 

time for the network structure of 3 hidden layers was 130 sec while it was 432 sec when two hidden 

layers were used. 

Table 7.15 Number of nodes in hidden layers for experiment group-D (hl: Hidden layer) 

Feature Class Feature Type 
G5 G6 

hl-1 hl-2 hl-1 hl-2 hl-3 

Geometric Spectral 1 1 1 1 n/e 
Circularity 5 4 6 2 1 

Photometric Co-occurrence 6 5 6 3 2 

Run-length 6 6 7 3 2 
 

Table 7.16 Parameters of the selected experiments from group-D (epoch = 1000, max_fail = Inf) 

 
mu_dec mu_inc mu_max elapsed time (sec.) 

G5 (Exp-16) 0.5 10 100 432 
G6 (Exp-1) 0.05 5 100 130 

 

Figure 7.13 and Figure 7.14 depict overall classification performance of the Decision Engine used in 

G5 and G6 experiments, respectively. As seen from the figures, performance of the engine is not affected 

so much for more than half of the parameter setting except the non-nodule detection performance is 

affected slightly less than nodule detection by variation of parameters for G6; other than that, G5 and G6 

show a similar response against parameter variations. 

Figure 7.15 - Figure 7.19 portray an overall comparison of group-A to group-D experiments based on 

sensitivity, type II error (GCFN), specificity, and type I error (GCFP) performances. All experiment sub-

groups produced the perfect sensitivity score at the final layer of the engine while G3_1, G6, G5 and G1, 

G2, and G3 yield scores between 70 and 80 in the order at the first layer of the engine  (Figure 7.13).  The 

type II error performance is almost the same (Figure 7.14). When specificity (i.e. non-nodule detection 

performance) and type I error performance were considered, G3_1, G3, G1 produced the perfect 

performance while all others reached 88%, as seen in Figure 7.15 and Figure 7.16. The accuracy 

performance of predictors at the final layer is shown in Figure 7.17; G3_1 and G1 produced the perfect 

output value, they were followed by the G5, G6 G3, and G2 in the order. We can conclude from these 

results that 1) allowing a longer training time can increase performance (as in G3_1), 2) a single layer 
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hidden network with enough nodes can produce a perfect score (as in G2) with the early stop training, and 

3) adding some extra hidden layers may not yield a perfect result when the training goal is ‘continue until 

one of the performance value is met’. 

Figure 7.13 Overall classification performance of the Decision Engine against parameter variations 
(summary of all G5 experiments) 

 

 
Figure 7.14 Overall classification performance of the Decision Engine against parameter variations 

(summary of all G6 experiments) 
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Figure 7.15 An overall comparison of the experiment sub-groups based on Sensitivity 

 

 
Figure 7.16 An overall comparison of the experiment sub-groups based on  GCFN 
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Figure 7.17 An overall comparison of the experiment sub-groups based on  Specificity 

 
Figure 7.18 An overall comparison of the experiment sub-groups based on  GCFP 
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Figure 7.19 An overall comparison of the experiment sub-groups based on  ECV 

7.5) Experiment Group E 

The experiment group-E includes several sub groups of experiments utilizing a heuristic method that 

combine adaptive learning rate with momentum. Each sub-group has 72 experiments with the parameters 

tested lr = {0.01, 0.05, 1}, lr_dec = {0.35, .7}, lr_inc = {1.05, 3.15}, max_perf_inc = {1.05, 3.15}, mc = 

{0.25, 0.5, .9}, max_fail = Inf, and epochs = 1000. Experiment sub-groups differ from each other based 

on their network structure; the output layer of each ANN has 1 node. These sub-groups are 1) the G1 has 

1 hidden layer and the number of nodes in the hidden layer of each predictor is given in Table 7.1, 2) the 

G2 has 1 hidden layer with 1 node in each, 3) the G3_1 has 1 hidden layer with 1 node in each except the 

first layer whose number of nodes is the same with G1’s first model layer ({2, 9, 11, 12}), 4) G5 has two 

hidden layers for each ANN; the number of nodes are given in the Table 7.15, and 5) G6 has three hidden 

layers at the first model layer of the Decision Engine. The parameters of the experiments which produced 

the best performance are given in Figure 7.17. 

Table 7.17 Parameters of the selected experiments from group-E (max_fail = Inf, epoch = 1000) 

 
lr lr_dec lr_inc max_perf_inc mc elapsed time (sec.) 

G1 (Exp-38) 0.05 0.7 1.05 1.05 0.5 165 
G2 (Exp-25) 0.05 0.35 1.05 1.05 0.25 248 
G3_1 (Exp-39) 0.05 0.7 1.05 1.05 0.9 244 
G5 (Exp-16) 0.01 0.7 1.05 3.15 0.25 91 
G6 (Exp-1) 0.01 0.7 1.05 3.15 0.9 124 
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The response of the Decision Engine against parameter variations are depicted in Figure 7.20 - Figure 

7.24. As seen, in all experiment groups, half of the parameter sets yield a performance above 75% 

(sensitivity) and 76% (type II error performance). 

 

 
Figure 7.20 Overall classification performance of the Decision Engine against parameter variations 

(summary of all G1 experiments) 

 
Figure 7.21 Overall classification performance of the Decision Engine against parameter variations 

(summary of all G2 experiments) 
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Figure 7.22 Overall classification performance of the Decision Engine against parameter variations 

(summary of all G3_1 experiments) 

 

 
Figure 7.23 Overall classification performance of the Decision Engine against parameter variations 

(summary of all G5 experiments) 
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Figure 7.24 Overall classification performance of the Decision Engine against parameter variations 

(summary of all G6 experiments) 

As seen in the Figure 7.25, the comparison of experiment sub-groups based on sensitivity shows that 

all of them except G6 started with a prediction performance around 70% at the model layer 1, on the other 

hand all sub-groups reached the perfect classification score. Among these groups, the G3_1 inclined 

quickly to the perfect score; it was followed by G1, G2, G5, and G6 in the order. The GCFP response was 

similar to the sensitivity as depicted in the Figure 7.26. According to the specificity and GCFP scores, 

G1, G3_1, and G5 reached the perfect score while G2 and G6 reached 88% at the final layer, as seen in 

Figure 7.27 and Figure 7.28. The average accuracy of the prediction outputs is depicted in the Figure 

7.29; as seen, G1 accomplished the perfect score and it was followed by G3_1 closely (97%), and then 

G2, G5, and G6 come in the order. 

 
Figure 7.25 An overall comparison of the experiment sub-groups based on  Sensitivity 
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Figure 7.26 An overall comparison of the experiment sub-groups based on  GCFN 

 

 

Figure 7.27 An overall comparison of the experiment sub-groups based on  Specificity 
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Figure 7.28 An overall comparison of the experiment sub-groups based on  GCFP 

 
Figure 7.29 An overall comparison of the experiment sub-groups based on  ECV 

7.6) Experiment Group F 

The experiment group F is conducted to explore how good is the proposed method over different test 

data. We used k-fold cross validation with k = 5 and run the decision engine for using the network 

structure and parameters that are used in the experiment G1. Among 72 experiments, the experiment 26 

parameters, which are epochs = 50, mu_dec = 0.1, mu_inc = 5, and mu_max = 1000, produce a good 

result. The summary and classification performance of 5-runs at the model layer 5 for the experiment 26 

are seen in Figure 7.30 and Figure 7.31, respectively. As seen from the figures, the proposed model yields 

high performance for different test data sets; this leads us to conclude that the modular decision engine is 

a very promising classifier. 
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Figure 7.30 Classification Performance (summary of all runs, Exp-26) 

 
Figure 7.31 Classification Performance (comparison of runs, at model layer 5, Exp-26) 

7.7) Comparison with Relevant Studies 

An extensive literature review of the nodule detection methods are introduced in the Section (2.4). 

We summarize them here including their assessment scores to compare our results with them. All of them 

used their own data set except [Way2006], which used LIDC (Lung Imaging Database Consortium) 

database. The assessment measures used by these studies were area Az under the ROC curve and/or 

sensitivity with FP (false positive) rate. The Table 7.18 shows a list of some nodule detection methods 

with their performance. 
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Table 7.18 Comparison of Lung  Nodule Detection Methods (Az: Area under the ROC curve, FP: False 
positive, FPC: FP candidate, T2: Type-II error, kfv: k-fold cross validation, loo: Leave-one-out, VAL.: 
Validation, nm: Not mentioned, REF: Reference) 

METHOD YEAR # NODULE 
(Non-Nodule) 

ASSESMENT 
MEASURE 

ASSESMENT 
SCORE VAL. REF. 

Proposed modular method 2009 8 (8) 

Average 
Sensitivity, 
specificity, 

Type I error, 
Type II error, 

Az, etc. 

 
100%, 
88%, 

88.8%, 
100%, 
96% 

kfv 
(k=5) 

This 
dissertati

on 

k-means clustering followed 
by 3D active contour 2006 23 Az 83% ±4 loo Way2006 

Threshold followed by LDA 2005 31 Az 
85.6% w/ 9.5 
FP/case (0.04 

FP/image) 
loo Zhang05 

Ellipse fit + LDA 2005 116 Sensitivity 80% w/ 0.37 
FP/section loo Ge2005 

Gray-level threshold and 
region growing, statistical 
shape model 

2004 - Sensitivity 90% w/ 5.6 
FP/date set loo Paik2004 

Massive Training Artificial 
Neural Network 2004 109; 38 Sensitivity 

83%, 5.8 
FP/scan; 84%, 

5.9 FP/scan 
nm Arim04 

Threshold followed by LDA 2003 470 (212,236) Az; FPC 79%; 15,266 loo Arma03 

Massive Training Artificial 
Neural Network 

2003 71 (1726) Sensitivity 
80.3, 4.8 

FP/patient (0.18 
FP/section) 

nm Suzuki03 

Weighted k-means clustering 
and manual segmentation 2002 63 (>8,000) Sensitivity 84% w/ 1.74 

FP/section nm Gurc02 

Volume projection 2002 34; 32 Sensitivity 
67.6%; 71.9 % 
w/ FP/slice (for 

both) 
nm Wei2002 

Threshold followed by LDA 2001 20 to 40 Sensitivity; Az 70%; 90% nm Arma01 
GA template matching 
algorithm 2001 98 (88,318) Sensitivity 72% with 1.1 

FP/section nm Lee001 

rule based followed by LDA 2001 31 (>5344) Sensitivity 84% w/ 1.75 
FP/slice nm Gurc01 

Threshold + LDA 2000 300 (27,917) Az; T2; FPC 93%; 4.4%; 
65.8% nm Arma03 

3D deformable surface model 
approach + LDA 2000 128 Az 97% loo Kawa00 

A 3D region growing is 
employed + rule based 1999 23 Sensitivity 

100% for size ≥ 
5 mm (n=10) 
and 95.6% for 
size ≥ 3 mm 

(n=23) with 15 
FP/study (< 1 

per image) 

nm Fieb99 

Threshold + circularity 1999 18 Sensitivity; 
Specificity 89.9%; 11.1% nm Lou99 

Threshold followed by LDA 1999 187 Sensitivity; Az 72% w/ 4.6 
FP/section; 93% loo Arma99 

Segmentation using 3D 
geometric approach  + LDA 1999 128 Az 92% loo Kawa99 

VNQ-filter 1998 21 Sensitivity 100% w/ 93.5% 
FP nm Okumur9

8 

A tree based on four threshold  1994 - Sensitivity 94% w/ 1.25 
FP/case nm Gige94 

An exact comparison with these studies would be difficult; because the data sets used are not the 

same. Another difficulty in comparison is that most of the studies have reported their assessment results 

based on sensitivity with FP rate/section (case) and Az while the ratio of positive class samples to 
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negative class samples is so low. This kind of assessment would be misleading because a classifier that 

tends to classify samples as ‘nodule’ will have a higher FP rate. On the other hand, FP rates are given as 

either per section (slice, image) or per case (scan) and they sometimes report the total number of non-

nodules (FP candidates); this makes more difficult to compare specificities. In addition, almost all studies 

did not mention their type II error performance, which is crucial to evaluate a classifier for nodule 

detection due to cost of a life. Also, current research reports did not mentioned how their approaches are 

sensitive to parameter variations. 

We used 80 imjects (image objects) of 40 nodules and 40 non-nodules. The nodule samples were 

extracted from 20 patients’ image series provided by National Cancer Institute from National Cancer 

Imaging Archive and non-nodule samples were extracted from a healthy person’s image series, which 

were provided by [LakePet]. We tested our model employing six experiment groups; each group has 

several sub-groups. In each sub-group, 72 experiments were conducted except in two sub-groups, which 

have 18 experiment combinations. 

In this dissertation, we used several assessment measures to evaluate our system from different 

aspects, especially, including type I and type II error assessment. In addition, we have experimented with 

many combinations of parameters for different network structures to test effect of parameter variations on 

the performance. The results show that most of the parameter sets (at least more than half of the 

experiment cases) are able to produce very good performance while it is possible to get so weak 

performance for some parameter sets. Test results show that, the proposed modular model can produce a 

perfect classification as regard to nodule detection, non-nodule detection, type I and type II error 

performance measures. 

As regard to multi-perspective analysis, current approaches perform 3D detection through transverse 

plane. Most of the studies did not mention their training times except [Fieb99] where the computation 

time is reported as 5 min using an O2 workstation of 250 MHz for detection of 23 nodules. In [Lee001], 

GA template matching is used for detection. It takes 23 min. The same authors used a template matching 

algorithm alone; they reported that it takes 164 min. for detection by ANN. Its training takes 29.9 hours 

with Pentium 1.7 GHz PC-based workstation. In our detection scheme, the min and max training time of 

the best parameter set observed for Levenberg-Marquet approach are 8 sec (G1) and 432 sec (G5), 

respectively; they are 91 sec (G5) and 248 sec (G2) for variable learning rate with momentum approach, 

respectively. We used Intel workstation dual core PC of 3.20 GHz and 3.19 GHz with 3.9 GB of ram. 

There are so many feature vectors used in the current literature as reviewed in the Section 2.5. We 

used four feature vector types, namely spectral shape feature, which we derived from our canonical 

representation, circularity-topology-compactness features, co-occurrence based features, and run-length 

based features. Our spectral feature vector performance is around 80%; this score may go higher if one 

uses scale invariance as we discussed in Section 4.3. 
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CHAPTER 8. CONCLUSION AND FUTURE DIRECTIONS 
Lung cancer is one of the most lethal cancer types. Researches in computer aided detection (CAD) 

and diagnosis (CADD) for lung cancer aim at providing effective tools to assist physicians in cancer 

diagnosis and treatment to save lives. The current imaging technology in medicine produces huge amount 

of images to be analyzed by radiologists. It has been reported that radiologist may overlook some nodules 

due to heavy load of number of images and fatigue. A CADD system can decrease the amount of load 

from a radiologist as well as can provide a ‘second opinion’ to increase their interpretation performance. 

8.1) Contributions 

In this dissertation, our main goal is to develop a comprehensive CAD framework encompassesing a 

state of the art decision engine model that mimics the way human experts approach the nodule detection 

task, combines spatial higher dimensional analysis with multi-type feature analysis, accommodates multi-

learning scheme, allows flexibility to be modified without affecting entire system, suits to parallel 

processing implementation, and be able to accomplish all these capabilities with demanding less 

computational resources and efficient processing. 

As the central part of the proposed framework, we develop a novel hierarchical modular decision 

engine implemented by ANN. The second main contribution of this dissertation is developing a novel 

shape representation technique that can be employed in pattern recognition and retrieval applications. In 

addition, we proposed several shape feature derived from the proposed shape representation. 

The proposed framework is composed of several integrated units including data retrieval, pre-

processing, feature extraction, and modular decision engine for pattern classification. The data retrieval 

unit is responsible mainly from creation of VOIs to be used in training and testing. The feature extraction 

unit computes feature vectors from VOIs and organizes them for modular multi-level decision process. 

The modular decision engine that encompasses important properties mentioned above performs 

classification based on spatial and feature level analysis and synthesis. 

We proposed three modular hierarchical decision engine models; these models are Inter-Slice Inter-

Plane (ISIP) model, Intra-Slice Intra-Plane (ISAP) model, and Intra-Slice Intra-Plane (ASAP) model. The 

intuition behind the proposed models is mimicking a radiologist’s image reading technique; besides, 

taking advantage of machine intelligence that can perform beyond the human vision limited capacity. 

We implemented ISIP model by ANN with Backpropagation learning technique. The model is 

assembled by five layers and its each layer has several modules that are composed of a predictor and a 

regrouping processor. We tested this model utilizing two Backpropagation learning algorithms, which are 

Levenberg-Marquet and variable learning rate with momentum. 

The data model of the modular engine differs from that of non-modular classifier in such a way that 

all of the volumetric data is utilized together to obtain a decision while the modular approach partitions 

the raw data into several spatial and feature analysis-synthesis levels. Therefore, the proposed modular 
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engine model mimics a human expert who analyzes a VOI from different perspectives; further, the 

engine, after obtaining machine coded features from the raw data, enhances the decision-making process 

with multi-level feature analysis which is beyond the limit of a human intelligence. 

An efficient algorithm is developed to compute the new polygonal shape representation proposed, 

namely ‘canonical polygonal representation’ (CPR), and its normalized version ‘normalized canonical 

polygonal representation’ (NCPR). The NCPR can provide a unique representation of a polygon under 

rigid transformation and can be applied to affine transformation with some additional processes. We 

derived three shape features, which are ‘spectral shape feature’ and two circularity features, from this 

canonical representation to be used in implementation. 

Another contribution of this dissertation is development of a fully-automated polygonalization 

algorithm that allows a user to select how smooth the boundary will be represented by a polygon. 

As a part of the proposed framework, we developed several tools to automate the entire system such 

as data retrieval tool and feature extraction tool. In addition, we developed image data visualization and 

processing tool SHAHIN that is integrated with a user-interface to analyze, test, and extract VOIs. 

Assessment of the method is performed using several measures for different training models and 

parameters. These assessment methods are sensitivity, goodness of classification (GC) based on true 

positive rate, GC based on false positive rate, specificity, GC based on true negative rate, GC based on 

false negative rate, area under the ROC curve, Matthews Correlation Coefficient, and expected closeness 

value. 

We used 80 imjects (image objects) of 40 nodules and 40 non-nodules. The nodule samples were 

extracted from 20 patients’ image series provided by National Cancer Institute from National Cancer 

Imaging Archive and non-nodule samples were extracted from a healthy person’s image series, which 

were provided by Lake P.E.T. Imaging Center. We tested our model employing six experiment groups; 

each group has several sub-groups. In each sub-group, 72 experiments were conducted except in two sub-

groups, which have 18 experiment combinations. 

The experimental results show that detection capability is improved at each layer and the perfect 

classification is achieved at the final stage for some parameter sets. In addition, these results show that the 

final classification is not sensitive to at least half of the parameter sets while producing a high 

performance result. 

The min and max training time of the best parameter set observed for Levenberg-Marquet approach 

are 8 sec (G1) and 432 sec (G5), respectively; they are 91 sec (G5) and 248 sec (G2) for variable learning 

rate with momentum approach, respectively. 

As a limitation of this study, the size of the testing set is small, we did not experiment effect of the 

propose shape features on overall detection performance, and we did not explore reason behind getting 

low detection performance in some parameter sets. These issues will be explored in our future research 

proposals. 
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8.2) Future Directions 

This dissertation shows that the modular decision engine proposed is a promising CAD model. On the 

other hand, during our research and development we observed that there are still so many challenges and 

improvements are waiting to be explored and experimented. 

Applying the approach proposed to computer aided diagnosis: The current framework can be used to 

classify benign and malignant tumors without any structural design modification; the only simple 

modification is to define class definitions as ‘malignant’ or ‘benign’ for positive and negative class, 

respectively. 

Implementation of other two models proposed: ISAP and ASAP models can be implemented to 

explore how well they combine multi-level multi-perspective analysis and synthesis. 

Multi-class pattern recognition: The modules in the current scheme are designed to predict for binary-

classification. Fortunately, its nature can cope with multi-class decision systems. 

Testing the model with different learning algorithms: Another interesting research challenge would be 

applying the proposed approach to a multi-learning scheme in which several learning algorithms, such as 

ANN methods like delayed networks and LVQ, statistical models like HMM, fuzzy-logic, co-operate in 

this modular hierarchical architecture. 

Designing hardware architecture of the modular decision engine: The proposed modular scheme can 

be integrated into a standalone device to be used in clinical environment. 

Utilizing different performance cost functions for weight adjustment: In this dissertation we used sum 

of square errors as the performance cost function. Performance of other cost functions such as cross-

entropy error can be explored for this kind of binary classification problems. 

Enhancement of the framework with tools such as automatic lung area extraction and nodule 

candidate region search: The current framework assumes that the candidate volume is provided; a full 

automated system requires lung area to be extracted from each slice and candidate regions should be 

found once the image series of a case is provided. 

Adding new feature-types and eliminating highly correlated features: We have explored and showed 

that the proposed modular approach is promising with two feature-classes and two feature-types in each 

class. Additional feature-types can be applied over a larger data set to increase discrimination capability. 

Candidate search without segmentation: An important challenge in image pattern recognition is 

obtaining candidate regions by segmentation which is still a challenging problem in image processing 

area. The complex nature of lung imposes more challenge for the segmentation. Therefore, a method 

which does not require segmentation will make a big practical impact. 

Exploring cluster of feature vector samples: Selection of samples affects the training performance. 

Training samples should be able to span whole feature vector space for a better generalization. So a 

feature vector clustering can be applied first for obtaining a representative training and validation sets. 
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