
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2007

Predictive data compression using adaptive
arithmetic coding
Claudio Jose Iombo
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Iombo, Claudio Jose, "Predictive data compression using adaptive arithmetic coding" (2007). LSU Master's Theses. 2717.
https://digitalcommons.lsu.edu/gradschool_theses/2717

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/2717?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

PREDICTIVE DATA COMPRESSION
USING ADAPTIVE ARITHMETIC CODING

A Thesis
Submitted to the Graduate Faculty of the

Louisiana State University and
Agricultural and Mechanical College

in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering
in

The Department of Electrical Engineering

by
Claudio Iombo

EIT., B.S., Louisiana State University, 2003
August 2007

ii

Table of Contents

Abstract .. iv

Introduction .. 1

Types of Data ... 1
Data Compression System ... 2
What Is This Thesis About ... 3

Chapter 1 Information Theory ... 6

Information ... 6
Entropy.. 6
Joint and Conditional Entropy ... 7
Mutual Information .. 8

Chapter 2 Entropy Coding ... 10

Introduction .. 10
Prefix Codes ... 10
Kraft’s Inequality ... 11
Huffman Coding ... 12

Alternate Implementation .. 13
Adaptive Huffman ... 14

Arithmetic Coding ... 16
Advantages of Arithmetic Coding .. 16
Disadvantages of Arithmetic Coding ... 17
Optimality of Arithmetic Coding ... 19
Adaptive Arithmetic Coding ... 20

Chapter 3 Data Modeling .. 23

Introduction .. 23
What Do We Know About The Data .. 23
Worst Case Scenario .. 24
Best Case Scenario .. 24
Application to Compression .. 24

Sources .. 24
Markov Models .. 25
Adaptive Arithmetic Compression Using Data Models .. 28

Chapter 4 Implementation of Arithmetic Coder ... 32

Introduction .. 32
Modeler .. 32
Encoder .. 33

E1 and E2 Scaling .. 33
E3 Scaling ... 35

Decoder .. 37

iii

Modified Arithmetic Coder .. 39
Modeler ... 40
Encoder ... 40
Decoder .. 42

Chapter 5 Implementation of Huffman Coding.. 45

Node ... 45
Tree .. 45

Tree Operations .. 46
Encode ... 51
Decode ... 52

Chapter 6 Simulation Results ... 57

Files .. 57
Results ... 57
Discussion .. 59

Conclusions and Future Work ... 61

Bibliography ... 62

Vita .. 64

iv

Abstract

The commonly used data compression techniques do not necessarily provide

maximal compression and neither do they define the most efficient framework for

transmission of data. In this thesis we investigate variants of the standard compression

algorithms that use the strategy of partitioning of the data to be compressed. Doing so

not only increases the compression ratio in many instances, it also reduces the

maximum data block size for transmission. The partitioning of the data is made using a

Markov model to predict if doing so would result in increased compression ratio.

Experiments have been performed on text files comparing the new scheme to adaptive

Huffman and arithmetic coding methods. The adaptive Huffman method has been

implemented in a new way by combining the FGK method with Vitter’s implicit ordering

of nodes.

1

Introduction

We deal with information every day. It comes in many forms. We watch

television, use computers, and listen to radio. This information requires a large amount

of storage and bandwidth and it needs to be digitized in order to be processed. Doing

so eases processing of data and reduces errors by making it less susceptible to noise.

Maximum sampling rates are typically used to represent these signals in digital form,

and this does not take into account the periods of inactivity and redundancy that exist in

most messages. For example, 8 bits are used to represent text alphabet symbol,

although has been shown that as few as four bits are enough to convey the same

information [6]. The same can be said about video data which contains regions where

little change occurs from frame to frame. Using this knowledge, the data can be

represented using fewer bits. Data compression is the means developed to minimize

the amount of bits used to represent data. The reduction of storage and bandwidth is

measured against the increase in processing power required to compress the message.

We must keep this tradeoff in mind when designing a system for data compression.

Types of Data

Data to be compressed can be divided into symbolic or diffuse data [6].

Symbolic data is data that can be discerned by the human eye. These are

combinations of symbols, characters or marks. Examples of this type of data are text

and numeric data. Unlike the symbolic data, diffuse data cannot be discerned by the

human eye. The meaning of the data is stored in its structure and cannot be easily

extracted. Examples of this type of data are speech, image, and video data.

2

The approaches taken to compress diffuse and symbolic data are different but

not exclusive. In symbolic data the approach most taken is reduction of redundancy.

This is an approach that uses lossless compression techniques, meaning that the

compression process is reversible with 100 percent accuracy. Lossless compression

algorithms include entropy coding and dictionary based compression. For diffuse data

the approach to compression is the removal of unnecessary information. If a sufficiently

small amount of information is removed from a video segment, most viewers would not

be aware of the change. Therefore, some of this data can be discarded. Lossy data

compression techniques include transform coding. The two approaches for diffuse and

symbolic data can be used together in the same compression system. For example,

both transform data compression techniques and entropy coding is used in H.264 video

compression.

Data Compression System

A data compression system is a combination of data compression techniques

and data modeling. The two parts of the system are the encoder and the decoder. The

encoder consists of input, pre-processing, modeling, and encoding. The decoder

consists of modeling, decoding, and post-processing. The pre-processing transforms

the data into an intermediate form that would facilitate encoding. The post-processing

reverses the data from the intermediate form. The modeling gathers information about

the data that will be used in encoding or decoding. An example of a compression

system is shown in figure 1.

A digital system uses the data compression system to produce an output for the

user: it gathers the data, encodes the data, stores the data, transmits the data, decodes

3

the data, and outputs the data to the end user. The decoding and encoding of this

system is done by the data compression system. An example of a digital system is

shown in figure 2.

Figure 1. Data Compression System

Figure 2. Digital System

What Is This Thesis About

This thesis deals with the construction of a digital compression system for text

data. This compression includes lossless compression using arithmetic coding. We

Encoding

Modeling

Modeling

Post-ProcessingPre-Processing

OutputInput

Encoder Decoder

Decoding

Input
E

N

C

O

D

E

R

S

T

O

R

A

G

E

OutputD

E

C

O

D

E

R

Transmission
S

T

O

R

A

G

E

4

discuss the issues and approaches used to maximize the effectiveness of arithmetic

coding. In particular, we address optimization by partitioning the data. Lastly, we

formulate a sequential block partitioning approach that results in higher compression

ratio and/or smaller average block size.

Several papers [4,8,9] have been devoted to optimizing the packet size in a

communication system. This issue helps to maximize efficiency and throughput.

If the packet size is too small there are two pitfalls. In the case of a constant rate

transmitter, the small packets would require more packets to be sent to keep the same

bit rate. This would result in increased packets and congestion in the network. The

second issue is the required overhead in these packets. Small packets would not justify

the amount of overhead needed to encapsulate the packet into the header.

The case of large packet size also results in two unwanted outcomes. First,

large packets tend to be discarded more frequently than smaller packets. This is due to

link and transport layer error checking mechanisms that discard a packet with multiple

errors. The second issue is inefficient fragmentation of the large packets. This occurs in

size-constrained networks such as Ethernet where packets are fragmented into MTUs

(Maximum Transfer Units) of 1500 bytes. These fragmentation operations increase

bandwidth usage and additional delays.

Several procedures have been researched to find the optimum static or variable

network packet size [4]. In our results, we show that we can break up a large message

into significantly smaller packets with very little or no loss in compression. In [14], the

notion of partitioning the file to increase compression was established. The paper left

5

the partition selection for future developments. In this thesis we plan to use prediction

to calculate partition sizes and locations within a file.

6

Chapter 1

Information Theory

Information

The basis for data compression is the mathematical value of information.

Information contained in a symbol x is given by, I(x) =
)(

1
log2

xp
. This value also

describes the number of bits necessary to encode the symbol. This definition reinforces

our notion of information. First, the more probable the occurrence of a symbol, the less

information it provides by its occurrence, and also less bits are used to represent it.

Conversely, the least frequent symbols provide more information by their occurrence.

Secondly, if we have n equally probable messages, we know that log2n bits will be

required to encode each message. This is the information value of each message I=

p

1
log2 =log2n. Finally, information of two independent messages should be additive.

Consider two independent messages A and B. Here we have,

I(AB)=
)()(

1
log2

BpAp
=

)(

1
log 2

Ap
+

)(

1
log 2

Bp
=I(A)+I(B)

Entropy

Entropy can also be defined as the measure of the average information [7].

According to Shannon, entropy of a discrete source for a finite alphabet X is given by,

∑
∈

=
Xx xp

xpxH
)(

1
log)()(2

7

Properties of Entropy

Theorem 1.1. 0≤H(X)≤log2n where X={x1,x2,….,xn}

Proof:

If p(x)=1 for some x, then H(X)=0.

n
xp

xp
xp

xpXH
Xx Xx

222 log
)(

1
)(log

)(

1
log)()(=≤=∑ ∑

∈ ∈

If p(x)=1/n for all x, we have

∑ ∑ ∑∑
∈ ∈ ∈∈

==−−=−=
Xx Xx XxXx

nn
n

n
nnn

xH 22222 loglog
1

log1log
11

log
1

)([12]

Joint and Conditional Entropy

The joint entropy H(X,Y) of two discrete random variables X and Y with joint

probability distribution p(x,y) is given as, ∑∑
∈ ∈

=
Xx Yy yxp

yxpYXH
),(

1
log),(),(2 = -

∑∑
∈ ∈Xx Yy

yxpyxp),(log),(2

The joint H(X,Y) distribution can be seen as the overall average uncertainty of the

information source.

The conditional entropy H(X|Y) is the average information in X after Y has been

defined or revealed. It is given as, ∑
∈

=
),(),(

2
),(

)(
log),()|(

YXyx yxp

yp
yxpYXH

Properties of Joint and Conditional Entropy

Theorem 1.2. Chain Rule: H(X,Y)=H(X)+X(Y|X)

Proof:

H(X,Y)= ∑∑
∈ ∈

−
Xx Yy

yxpyxp),(log),(2 =∑∑
∈ ∈Xx Yy xp

yxp
xpyxp

)(

),(
)(log),(2

8

 = ∑∑
∈ ∈

−
Xx Yy

xpxypxp)(log)|()(2 +∑∑
∈ ∈Xx Yy yxp

xp
yxp

),(

)(
log),(2

 = ∑
∈

+=+−
Xx

XYHXHXYHxpxp)|()()|()(log)(2 [12]

Theorem 1.3. H(X|Y)� ���� where equality holds only if X and Y and independent

Proof:

H(X|Y)-H(X)=�� ��	
 ����
����
�� log2
������
� � � ��	���� log2

�����
 =� ��	
 ����
����
�� log2

������
�� � ��	���
����
�� log2
�����

 =� ��	
 ����
����
�� log2
����������
� =

����� ��	
 ����
����
�� log2
����������
�

 � ����� ��	
 ����
����
�� �����������
� � ��
 � ���� �� ��	����� � � ��	
 ����
����
����
����
�� �
 0 if p(x,y)=p(x)p(y) [12]

Mutual Information

The mutual information I(X;Y) is the uncertainty of X that is resolved due to

observing Y. It is defined by I(X;Y)=H(X)-H(X|Y)

Properties of Mutual Information

1. I(X;Y)=I(Y;X)

2. I(X;Y)≥0

3. I(X;Y)=H(Y)-H(Y|X)

4. I(X;Y)=H(X)+H(Y)-H(X,Y)

5. I(X;X)=H(X)

9

The concepts of information and entropy [7] which are summarized above are basic

to the development of data compression techniques. The next chapter discusses

methods that use entropy explicitly.

10

Chapter 2

Entropy Coding

Introduction

Entropy coding is compression algorithms that use the message statistics to

compress the message. There are two basic approaches to entropy coding. The first

approach includes the coding of individual symbols in the message alphabet. This

employs the use of prefix codes. One such example is Huffman code [1]. The second

type is the coding of the message or messages as a whole. This is the approach taken

by Arithmetic coding [1].

Prefix Codes

In compression we can use fixed-length codes to simplify decidability. We find

that for optimal compression variable length codes yield the best results. In variable

length coding the decoder has to be aware when a codeword starts and ends. In order

to be able to effectively decode a message, we must be able to do this without

ambiguity and without having to transfer extra decoding information. Let us suppose

that we have the code {(a,1),(b,00),(c,10),(d,0)}. The message 100 would have multiple

interpretations. It could be decoded as cd or ab. Therefore, one necessary property of

coding is unique decodability.

Prefix code is a type of uniquely decodable code in which no codeword is a prefix

for another codeword. In the context of a binary tree, each message is a leaf of the

tree. This tree is referred to as the prefix-code tree[1].

11

Figure 2.1. Prefix code tree. Codewords are 0,10,11.

Kraft’s Inequality

The average code length of a set of m messages is given by L=� ���� � xi)ni

where ni =length of symbol i in bits

Theorem 2.1. The codeword lengths for any uniquely decodable code must satisfy

Kraft-McMillan Inequality given as � !�� � -ni� � [1]

Theorem 2.2. For any alphabet X, a uniquely decodable code follows H(X)��L

Proof:

H(X)-L� � ��	���� log2
������ � ��	���� nx=� ���� log2

������ nx� � �� ���� log2
������ log22nx

 � � ��	���� log2(2-nx/p(x))

 ��� log2�� !"#$���)

 � % [1]

Theorem 2.3. For any alphabet X, a uniquely decodable optimal code follows

L��H(X)+1

Proof:

Continued on next page

Symbol 1
Symbol 2

Symbol

3

root

0

1

0

1

12

For optimality, we set nx=log2
�����

& � � ��	���� '� � � ��	���� ()* �����
������ � ��	���� +� , ()* �����- � � , � ��	���� +()* �����- � � , ���� [1]

Huffman Coding

 Huffman coding is the best known form of entropy coding. The premise behind

Huffman coding is that more frequently occurring symbols are coded using longer code

words. To accomplish this, variable length code words are assigned to symbols based

on their frequency of occurrence. Huffman code satisfies two conditions:

1. All code words are uniquely decodable

2. No delimiters or extra information is inserted in the code words to facilitate

decidability

The first condition is accomplished by the use of prefix code. This leads to the second

condition. No markers are needed to separate the code words because of the use of

prefix code.

 The coding is performed using a binary tree. First, the symbols are arranged in

order of decreasing probability of occurrence. Then the two least occurring symbols are

combined to form a new node. The result of this node is placed in the tree in a position

that preserves the order. Then the new node is combined with the next least occurring

symbol to create yet another node. This process is repeated until all nodes have been

processed. Afterwards a traversal back to the tree is done to tag one branch as 0 and

the other as 1. Traversal from the final node back to the originating node would give

you the codeword for the symbol. The final node is designated the root.

13

Example 1

d

a

c

b

Prob

0.4

0.3

0.2

0.1

0.3

0.3

0.6

0.4

0

10

0
1

1

Alphabet

a: 111

b: 01

c: 000

d:1

Figure 2.2. Huffman Code Construction. From this example the message ddccab would
be coded as 11000000111101.

Alternate Implementation

A more graphical representation of Huffman coding is often used. This

representation consists of leaves and internal nodes. Leaves are symbols and the

internal nodes are nodes that contain the sum of the weights of its children. Whenever

two leaves are combined, they form an internal node. The internal nodes in turn

combine with other nodes or leaves to form more internal nodes. The leaves and nodes

are ordered in increasing order from left to right.

For the input in example 1, the tree is shown in figure 2.3.

Figure 2.3. (a) Diagram of leaf and nodes.(b) Code tree for example 1. Alphabet: a-
110,b-10,c-111,d-0

Weight Weight

Leaf
Internal Node

(a)

0.4

1

0.3

0.1 0.2

0.3

0.6

0
1

10

10

a c

b

d

(b)

14

Adaptive Huffman

Scanning of all the data is needed to provide accurate probabilities In order to

perform Huffman coding. In some instances this may be an immense amount of data or

the data may not be available at all. Adaptive Huffman coding schemes were created to

deal with this problem,. In these schemes, the probabilities are updated as more inputs

are processed. Instead of two passes through the data, only one pass is needed. One

of the most famous types of adaptive Huffman algorithms is the FGK algorithm

developed by Faller and Gallager. The algorithm was later improved by Cormack and

Horspool with a final improvement by Knuth [7].

The sibling property is used in the FGK algorithm,. A tree follows the sibling

property if every internal node besides the root has a sibling and all nodes can be

numbered and arranged in nondecreasing probability order. The numbering

corresponds to the order in which the nodes are combined in the algorithm. This tree

has a total of 2n-1 nodes. Another property is lexicographical ordering. A tree is

lexicographically ordered if the probabilities of the nodes at depth d are smaller than the

probabilities of the nodes at depth d-1. If these two properties are employed, it will

ensure that a binary prefix code tree is a Huffman tree[7].

In order for the adaptive Huffman algorithm to work, two trees must be

maintained. One tree is in the encoder and the other is in the decoder. Both encoder

and decoder start with the same tree. When a new symbol is observed, the old symbol

code is send to the decoder and its frequency in the tree is incremented. If the new

incremented value causes the tree to violate the sibling property, exchange the node

with the rightmost node with frequency country lower than the incremented node.

15

When a new value arrives, the update is carried out in two steps. The first step

transforms the tree into another Huffman tree that ensures that the sibling property is

maintained. The second step is incrementing of the leaves.

The first step starts from the leaf of the new symbol as the current node. The

current node and its subtree is swapped with the highest numbered node with the same

weight. The current node becomes the swapped node. Then we move to the swapped

node’s parent. The same swap is repeated here. This step repeats until the root is

reached.

Example 2.2

Consider the dynamically created tree in figure 2.4. Notice that if we get a new

input of “o” and increment the leaf immediately, the tree would no longer satisfy the

sibling property. Therefore, the tree must be updated before incrementing the “o” node.

The current node starts with “o” or node 3. First, node 3 and 4 are swapped. The

current node becomes 8. Then, node 8 and 9 are swapped. The current node becomes

node 12. It does not find any matching nodes, so the next node becomes node 13. The

updating of the tree ends and node 3 is incremented. The final tree satisfies the sibling

property.

Figure 2.4. (a)Initial tree before “o” is observed (b) “o” is swapped with “t”

10

2

2 2

4

6

11

13

10
9

65

e h

l7

1 1

2

31

a o

4

1 1

2

42

w t

8

12

(a)

10

2

2 2

4

6

11

13

10
9

65

e o

l

7

1 1

2

31

a t

4

1 1

2

42

w o

8

12

(b)

16

Figure 2.5. Continuation of Figure 2.4. (a) Node 8 is swapped with 9 (b) the “o” is
incremented.

Vitter’s algorithm Λ [15] further optimizes the FGK algorithm. In the original FGK

algorithm, it was sufficient for the nodes of a given depth to increase in probability from

left to right. In Vitter’s algorithm all leaves must precede the internal nodes of the same

probability and depth. This change ensures that the dynamic algorithm encodes a

message of length s bits with less than s bits more than with the static Huffman. The

algorithm minimizes ∑wjlj, max lj, and ∑lj. To accomplish this Vitter used implicit

numbering. Nodes where numbered in non-decreasing probability order from left to

right and top to bottom.

Arithmetic Coding

Unlike other types of compression, in Arithmetic coding a sequence of n symbols

is represented by a number between 0 and 1. Arithmetic coding came from Shannon’s

observation that sequences of symbols can be coded by their cumulative probability.

Advantages of Arithmetic Coding

The first advantage of Arithmetic coding is its ability to keep the coding and the

modeler separate. This is its main difference from Huffman coding. This change also

makes adaptive coding is easier because changes in symbol probabilities do not affect

10

2

2 2

4

6

11

13

109

65

e h

l

7

1 0.2

2

31

a
t

4

1 1

2

42

w o

8

12

(a)

11

2

2 2

4

7

11

13

109

65

e h

l

7

1 0.2

2

31

a
t

4

1 2

3

42

w o

8

12

(b)

17

the coder. Unlike Huffman coding, no code tree needs to be transmitted to the receiver.

Encoding is done to a group of symbols not symbol by symbol. This leads to higher

compression ratios. The final advantage of Arithmetic coding is its use of fractional

values. In Huffman coding is that there is code waste. It is only optimal for coding

symbols with probabilities that are negative powers of 2. Huffman coding will rarely

reach optimality in real data because H(s) will never be an integer. Therefore, for an

alphabet with entropy H(s), Huffman will use up to 1 unnecessary bit.

Disadvantages of Arithmetic Coding

The first disadvantage of Arithmetic coding is its complex operations. Arithmetic

coding consists of many additions, subtractions, multiplications, and divisions. It is

difficult to create efficient implementations for Arithmetic coding. These operations

make Arithmetic coding significantly slower than Huffman coding. The final

disadvantage of Arithmetic coding is referred to as the precision problem [11].

Arithmetic coding operates by partitioning interval [0,1) into infinitively smaller and

smaller intervals. There are two issues in implementation: there are no infinite precision

structures to store the numbers and the constant division of interval may result in code

overlap. There are many implementations that address these issues.

The main aim of Arithmetic coding is to assign an interval to each potential symbol.

Then a decimal number is assigned to this interval. The algorithm starts from the

interval [0, 1). After each read input, the interval is subdivided into a smaller interval in

proportion to the input symbol’s probability. The symbols in the alphabet are scaled into

the new alphabet.

18

In order to perform the interval reshaping needed for coding cumulative distributions

are needed to keep upper and the lower bound values for the code intervals. Each

rescaling will be based on the current symbol’s range of cumulative probability.

Therefore, each symbol’s rescaling will be different.

For a symbol sk, we have the cumulative probability .�/0� � � ��/�0� � � where

P(si)=probability of symbol si.

Low bound for symbol sk=� ��/�0"�� � � � .�10"��
High bound for symbol sk =� ��/�0� � � � .�10"�� , ��/0� � .�10�
The low and high values are initially set to 0 and 1 respectively. Whenever a new

symbol sj is received, the low and the high are updated as follows:

range=high-low

Low=()2 , � ��/�3"�� � � 4 �56*5 � ()2� � ()2 , .713"�8 4 91'*:

High=()2 , � ��/�3� � � 4 �56*5 � ()2� � ()2 , .7138 4 91'*:

The process runs recursively for all symbols in the input sequence. The final

code value will be between the high and low values.

The decoder is similar to the encoder. The low and high are initially set to 0 and

1. Suppose we have the received code C. Suppose this value falls within symbol k’s

low and upper bound value. Symbol k’s values are used to ensure that low ≤ C ≤ high

values. The range low becomes C(ak-1) and high becomes C(ak)

For all symbols:

Low=()2 , � ��/�0"�� � � 4 �56*5 � ()2� � ()2 , .�10"�� 4 91'*:

High=()2 , � ��/�0� � � 4 �56*5 � ()2� � ()2 , .�10� 4 91'*:

The next symbol k is such that Low≤ Low + C(ak-1)*range and Low + C(ak)*range ≤ High

19

Example 2.3

Table 2.1 Symbol statistics
Symbol Probability Cumulative Distribution low high

A 0.4 0.4 0 0.4

B 0.4 0.8 0.4 0.8

L 0.2 1.0 0.8 1.0

Encoding

Sequence BALL

Encode ‘B’: low=0+0.4*1=0.4 high=0+0.8*1=0.8

Encode ‘A’: low=0.4+(0)*(0.4)=0.4 high=0.4+(0.4)(0.4)=0.56

Encode ‘L’: low=0.4+(0.8)*(0.16)=0.528 high=0.4+(1.0)(0.16)=0.56

Encode ‘L’: low=0.528+(0.8)*(0.032)=0.5536 high=0.528+(1.0)(0.032)=0.56

Decoding

Suppose code is 0.79

Decode ‘B’

Low=0+0.4=0.4 high=0+0.8=0.8

Low=0.4+0*(0.8-0.4)=0.4 high=0.4+(0.4)(0.4)=0.56=>Decode ‘A’

Low=0.4+0.8*(0.56-0.4)=0.528 high=0.4+(1.0)(0.16)=0.56=>Decode ‘L’

Low=0.528+0.8*(0.56-0.528)=0.5536 high=0.528+(1.0)(0.032)=0.56=>Decode ‘L’

Optimality of Arithmetic Coding

From the decoding algorithm, we can see that as the interval is divided, the

number of binary sequence also doubles. Therefore we can say that for an arbitrary

code range, lN, the minimum encoding length, Lmin=-log2 (lN) bits.

20

For an encoding sequence S, the number of bits per symbol is bounded by: LS≤

symbolbits
N

lN /
)(log2−σ

Ω where σ is the total compression overhead including bits

required for saving the file, bits representing number of symbols, and information about

the probabilities. Given that
N

k

kN spl
1

)(
=

∏= , we get LS≤ symbolbits
N

sp
N

k

k

/

)(log
1

2∑
=

−σ

The expected number of bits per symbol is

N
H

N

mpmp

N

spE

LEL

N

k

M

m

N

k

k

S

σ
σσ

+Ω≤

−

=

−

≤=

∑∑∑
=

−

==
−

)(

)]([log)()]([log

][1

2

1

01

2

The average number of bits is bounded by the entropy.

N
HLH

σ
+Ω≤≤Ω

−

)()(

Therefore, as ∞→N , the average number of bits approaches entropy. We can see that

Arithmetic coding achieves optimal performance.

Adaptive Arithmetic Coding

As with Adaptive Huffman, Adaptive Arithmetic coding also reduces the number

of passes through the data from two to one. The difference between the two is that

there is no need to keep a tree for the codewords. The only information that needs to

be synchronized is the frequency of occurrence of the symbols.

Example 2.4

For this example, we will rework example 2.3. Unlike the previous example, the

statistics table will be updated as symbols are encoded. The symbols are also updated

when symbols are decoded.

21

Table 2.2. Initial table
symbol frequency probability low high

A 4 0.4 0 0.4

B 4 0.4 0.4 0.8

L 2 0.2 0.8 1

Encode ‘B’: low=0+0.4*1=0.4 high=0+0.8*1=0.8

Table 2.3. Table after ‘B’ is encoded
symbol frequency probability low high

A 5 4/11 0 4/11

B 4 5/11 4/11 9/11

L 2 2/11 9/11 1

Encode ‘A’: low=0.4+(0)*(0.4)=0.4 high=0.4+(0.4)(4/11)=6/11

Table 2.4. Table after ‘A’ is encoded
symbol frequency probability low high

A 5 5/12 0 5/12

B 5 5/12 5/12 10/12

L 2 2/12 10/12 1

Encode ‘L’: low=0.4+(8/55)*(10/12)=86/165 high=0.4+(1.0)(8/55)=0.56

Table 2.5. Table after ‘L’ is encoded
symbol frequency probability low high

A 5 5/13 0 5/13

B 5 5/13 5/13 10/13

L 2 3/13 10/13 1

Encode ‘L’: low=(86/165)+(10/13)*(44/1815)=0.53986

 high=(86/165)+(1)(44/1815)=0.54545

Decoding

Input=0.54 Decode ‘B’

low=0+0.4*1=0.4 high=0+0.8*1=0.8

Table 2.6. Table after ‘B’ is decoded
symbol frequency probability low high

A 5 4/11 0 4/11

B 4 5/11 4/11 9/11

L 2 2/11 9/11 1

22

low=0.4+(0)*(0.4)=0.4 high=0.4+(0.4)(4/11)=6/11

Decode ‘A’

Table 2.7. Table after ‘B’ is encoded
symbol frequency probability low high

A 5 5/12 0 5/12

B 5 5/12 5/12 10/12

L 2 2/12 10/12 1

low=0.4+(8/55)*(10/12)=86/165 high=0.4+(1.0)(8/55)=0.56

Decode ‘L’

Table 2.8. Table after ‘L’ is decoded
symbol frequency probability low high

A 5 5/13 0 5/13

B 5 5/13 5/13 10/13

L 2 3/13 10/13 1

low=(86/165)+(10/13)*(44/1815)=0.53986 high=(86/165)+(1.0)(44/1815)=0.54545

Decode ‘L’

23

Chapter 3

Data Modeling

Introduction

Data sources hold certain characteristics that enables for better compression of

the data. For example, consider the statement “Raving mount”. If we were examining

an English text input, there is low probability that the next phrase would be “red suit”.

The modeling of the behavior or characteristics of data enables the compression system

to further compress the data. It would be improbable for one to code a computer to

recognize all possible combinations of phrases. Therefore, we must create a model

describing the structure rather than a phrase dictionary.

In order to examine a model for data, we need to examine the information we

currently hold about it. This includes what we know about the data’s structure and

composition, its worst case scenario for compression, and its best case scenario for

compression.

What Do We Know About the Data

The first step is defining our basic knowledge of the data. For example, in text

data we know that the alphabet consists of the ASCII symbols. If we were to get more

specific, we can define language. Language lets us know about frequencies of words

and letters. For example, Latin languages have more words that start with vowels than

Germanic languages.

24

Worst Case Scenario

In defining the bounds of the data, it would be helpful to know what would be the

worst conditions that would deter compression. This case involves high uncertainty and

complexity in the data. The data in these types of sources have low symbol repetition.

In entropy coding, this is characterized by high source entropy.

Best Case Scenario

The best case scenario is the case where we get the highest compression ratio.

This case involves highly predictable data. A data sequence with highly repetitive data

would be characteristic of these sources. This is characterized by low entropy value in

entropy coding.

Application to Compression

In entropy coding, the statistics of the source data is used in the data

compression. In dictionary algorithms, a table of known words is used in compression

of the data. In video compression there is temporal, spatial, and color space

redundancy in the data.

Another important application of data modeling is in prediction. One can predict future

behavior based on present data or past data. In this paper, we will use this prediction

behavior to predict the information content of future data.

Sources

We need to formulate a mathematical model that describes the data in question

from an information source. In the beginning of the chapter we discussed the entropy

model. This model was based on Shannon’s measure of information. Though helpful in

25

describing the data, it does not fully characterize the relationship between the data

elements in the source. Here we describe the Markov model.

Markov Models

In his famous paper [13] Shannon proposed a statistical structure in which finite

symbols in the alphabet depend on the preceding symbol and nothing else. This type of

process is known as a Markov chain.

Definition: A stochastic process {Xn:n=0,1,..} with a finite alphabet S is a Markov chain,

if for any a,b ЄS

 P(Xn+1=b|Xn=a,Xn-1=an-1,….,X0=a0)=P(Xn+1=j|Xn=1) [13]

The process is then described using a set of transition probabilities pij=P(Xn+1=j|Xn=i).

These denote the probability of symbol i being followed by symbol j. The probability

transition matrix for 1st order transitions probabilities

��3 � ;
��� ��� < ��=��� > >> >�=� �=� ? �==@

This would be sufficient if we were dealing with transitions between two symbols. For

instance, in language we know that often the length of words is two of more letters. We

can reach more words and get a better approximation if our model can reach longer

length of transitions. We can put this in terms Pikj, which is the probability of a letter I

being followed by some k, which in turn is followed by j. This probability is given by:

Pikj=� ��0∞0 A �03 [13]

Shannon devised source models and showed how they approach language.

General types of approximations as described by Shannon:

1. Zero-order: Symbols are independent and equally probable

26

Example: XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD

QPAAMKBZAACIBZLHJQD

2. First-order: Symbols independent but with frequencies of English text

Example: OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI

ALHENHTTPA OOBTTVA NAH BRL

3. Second-order: digram as in English(second order markov model)

Example: ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D

ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE

CTISBE

4. Third-order: trigram as in English

Example: IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID

PONDENOME OF DEMONSTRURES OF THE REPTAGIN IS REGOACTIONA

OF CRE

5. First-order word: words independent with frequencies of English text

Example: REPRESENTING AND SPEEDILITY IS AN GOOD APT OR COME

CAN DIFFERENT NATURAL HE THE A IN CAME THE TO OF TO EXPERT

GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE.

6. Second-order word: word transition probabilities used

Example: THE HEAD AND IN FRONTAL ATTACK ON A ENGLISH WRITER

THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER

METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE

PROBLEM FOR AN UNEXPECTED.

27

Models in Compression

There are two types of modeling, static and dynamic. In static modeling, there

are preset values that describe the data in question. Examples would be dictionaries

used in dictionary compression and probabilities in entropy coding. Dynamic modeling

is done as the data is processed. In this section we explore dynamic modeling and how

it will be exploited to optimize Arithmetic coding.

In communication, partitioning of data has many useful advantages. It enables

easier decoding, it helps in minimizing burst errors, and it preserves channel bandwidth.

Theorem 3.1. For any data there can be a partition of size smaller than or equal to the

size of the data to be processed that if employed can yield code smaller than if the total

data was coded.

This is usually the case in data that contains blocks of entropy much smaller than

the total file. Let us look at some examples.

This is usually the case in data that contains blocks of entropy much smaller than

the total file. Let us look at some examples.

Example 3.1

A simple example would be the data sequence “aaaacabc”. Using optimal

coding we get 11 bits for the message (one bit for each “a” and two bits for each b and

c).

If we code the first part “aaaaca” then the second part “bc”, we get six bits for the

first part (one bit for each “a” and one bit for each c) and two bits for the second part

(one bit for each “b” or “c”). It takes a total of eight bits to code these two sequences.

Breaking the total sequence into two parts saves three bits.

28

Example 3.2

Let us look at the sequence “aaaabbbbccccdddd”.

Coding the entire sequence, we get 32 bits (two bits to code each letter). If we break

the file into 4 sequences (aaaa,bbbb,cccc,dddd), we get only 4 bits for each sequence

(one bit for each letter). Here we save 16 bits.

These are small examples, but they highlight our point. If we could recognize

when partitioning the data would help data compression, this would be a useful tool

when dealing with large files.

To employ partitioning in a dynamic compression algorithm, the received input

data has to be analyzed, then the algorithm has to predict if the coding of this portion of

data will yield higher compression than the data combined with the rest of the file. In

order for this prediction to be valid, future values of the data must also be predicted.

This is possible through the use of the entropy and Markov models.

Adaptive Arithmetic Compression Using Data Models

Adaptive Arithmetic coding is most effective on large files. Since we are dealing

with extremely large files, obviously, the amount of data coded before a new value

arrives can also be large. We content that, by using theorem 3.1, we can partition this

portion of data without risking loss of compression ratio. In order for this method to be

effective, all symbol probabilities for a segment must be cleared after each data is sent.

Furthermore, instead of beginning each coding segment with an empty symbol list, we

will initialize all symbols with 1 occurrence. This will keep the program from multiple

transmissions of unobserved symbols for each code block.

29

Partition Conditions

Theorem 3.2. A sequence within a file of n characters with entropy H1 can be

partitioned into its own code if it satisfies:

'�� , �B � '���
C��DE� � B�C��DE�
FEFCG
Theorem 3.3. Assuming the worst case where rest of the sequence, H2,approx, has

equally probable symbol distributions, the above condition may be restated as:

'�� , �B � '�H �B � '
I"#
� � ()*��B � '� � B�C��DE�
FEFCG

This simplifies to

'�� , �B � '�()*��B � '� � B�C��DE�
FEFCG
'�� � B�C��DE�
FEFCG � �B � '�()*��B � '�

 where N is the size of the total data sequence to be coded, and Happrox,total is the

approximate total entropy if the data was coded together.

Theorem 3.4. Theorem 3 is a strong condition of theorem 3.2, in that if it holds theorem

3.2 also holds.

Proof: Let us examine an arbitrary H2 that satisfies theorem 3.2.

'�� , �B � '��� � B�C��DE�
FEFCG
We know that B�C��DE�
FEFCG � �B � '�()*��B � '� � B�C��DE�
FEFCG � �B � '���

Therefore if '�� � B�C��DE�
FEFCG � �B � '�()*��B � '� then '�� � B�C��DE�
FEFCG �
�B � '���

We chose to use the strong condition here to compensate for the coding loss due

to repeated transfer of probability data after each coding. The condition had to be

sufficient to justify the premature coding.

30

In order for the test to be effective, the data sequence has to be significantly

large. If the data sequence is significantly smaller than the total sequence, then

�B�()*��B� J Happrox,total for the test to pass. This situation would never happen

because the expression �B�()*��B� is the upper bound value.

Additionally, we must limit the amount of times the test is administered. If the test

does not pass for n, it is a very low possibility that it will pass for n+1. Therefore, it the

tests are significantly spaced apart, unnecessary tests will be avoided.

Approximation of Symbol Statistics

To approximate the total entropy of the sequence of data, we need to employ the

models discussed earlier. These are entropy and Markov model.

Entropy Model

The entropy model is the simplest. It does not require prediction of symbol

occurrences. The only measure is the total entropy values. Taking into account, the

previous statistical information, we can predict the future statistics. In this case, we will

use previously calculated statistics to calculate entropy. This would require a language

based entropy value.

Markov Model

Markov model will involve the generation of approximate data using 1st order

Markov model. The sequence data would start with the data with the highest frequency

and move from symbol to symbol based on symbol transition probabilities. Like the

entropy model, the static Markov modeling would get its transition probabilities from a

language based table. In the dynamic modeling, the transition probabilities would come

from the data being compressed.

31

To generate the characters, we first recreate the probability matrix so that it

becomes a frequency matrix.

K�3 � LMM
NO�� O�� < O�=O�� > >> >O=� O=� ? O== PQ

QR

First, we start from the first symbol. We then find the highest frequency symbol.

Then the location in the matrix of the corresponding symbol is decremented. The

symbol becomes the current state. The process is repeated until N-n symbols have

been generated. Therefore as N-n goes to infinity the entropy of the generated

sequence will approach the upper bound.

Theorem 3.5. No symbol will experience starvation, a state in which it will never be

visited even though it is reachable from any other symbols(s).

Proof: Let us assume that a state k is only reachable from state r. If the lowest

frequency transition of any symbol greater than k is fk+1, than after fk+1 passes through

the symbol r, fk becomes the highest frequency. Therefore, state r will be visited.

32

Chapter 4

Implementation of Arithmetic Coder

Introduction

The implementation was done using only integer arithmetic. It helped in simplicity

and speed. At the heart of the basic Arithmetic coder is the rescaling of the intervals. In

our implementation, we use scaling techniques employed by Bodden, Clasen, and

Kneis [2]. The coder is broken up into three sections: modeler, encoder, and decoder.

Modeler

Since the model is dynamic, symbol frequencies must be updated after each

symbol is observed. All the values used in the implementation are integers; therefore,

the frequencies instead of probabilities were kept. The properties of each symbol are

frequency, frequency lower bound, frequency upper bound, and cumulative frequency.

The modeler has also contains the global property of total frequency. As mentioned

earlier, all the values are integers. The total frequency and the symbol frequency will be

used to calculate the symbol probabilities. These probabilities will be used in the

rescaling mentioned in chapter three.

Algorithm 4.1. Operation to update the symbol statistics

Model_Update(new_symbol)
 Increment freq[symbol]
 Increment total_freq
 For all symbols i until new_symbol
 Set low_Freq[i]=cum_Freq[i-1]
 Set cum_Freq[i]=low_Freq[i]
 Set high_Freq[i]=cum_Freq[i]+freq[i]

33

Encoder

In the implementation 32 bits were used. The initial low value is zero, and the

initial high value is 0x7FFFFFFFF. The 32th bit was used to store overflows after addition

operations. We add one to the range because High represents the open upper bound

value. The real interval is larger by one. We also subtracted one from the new High

value should be lower than low of next subinterval. We also normalize the cumulative

frequencies into the cumulative probabilities by dividing them by the total frequencies.

Algorithm 4.2 Operation to encode a file

Encoder(file)
 Start with LOW=0 and HIGH=0x7FFFFFFFF
 Until end of file
 Get symbol
 RANGE = HIGH – LOW + 1

HIGH = HIGH +(RANGE * Cum_Freq[symbol] / total_freq)- 1
LOW = LOW + RANGE * Cum_Freq[symbol-1)]/ total_freq
Encoder_Scale()

 Model_Update(symbol)

 The values of low and high will inevitably converge. Scaling will need to be done

to keep this from happening. This will also allow infinite precision in our coding using

finite precision integers. There are 3 types of scaling: E1, E2, and E3 [2].

E1 and E2 Scaling

Converging happens when either the low value is in the top half of the range or

the high value is in the bottom half of the range. We know that once this happens, the

values will never leave this range. Therefore, we can send the most significant bits of

the low and high values to the output and shift the low and high values. E1 scaling

deals with the situation when the high value is in the bottom half. E2 scaling deals with

the situation when the low value is in the top half. Both of the scaling is performed by

34

doubling the range and shifting. We output a zero if E1 is performed and a one if E2 is

performed.

E1 Scaling

High=2*High+1

Low=2*Low

High=0xxxxx... becomes xxxxx1

Low=0xxxx... becomes xxxxxx0

Figure 4.1. E1 Scaling

E2 Scaling

High=2*(High-Half)+1

Low=2*(Low-Half)

High=1xxxxx... becomes xxxxx1

Low=1xxxx... becomes xxxxxx0

Figure 4.2. E2 Scaling

Max

Half

0

Max

Half

0

E2 SCALING

Ma

x

Hal

f

0

Ma

x

Hal

f

0

E1

SCALING

35

E3 Scaling

E3 scaling deals with situations were low and high are small values around the

halfway point that cannot be represented with our available precision. In this case, E1

and E2 do not apply.

Figure 4.3. E3 Scaling

Quarter=!�"� for m-bit integer

High = (High-Quarter)*2+1

Low = (Low-Quarter)*2

Low = 01xxxxx becomes 0xxxxxx0

High = 10xxxxx becomes 1xxxxxx1

Once E3 Scaling is done, we still will not know which half will contain the result.

This will only be apparent in the next E1 or E2 scaling. Therefore, instead of outputting

a bit, we store the number of E3 scalings and output the corresponding bits in the next

E1 or E2 scaling. We can output the signal for the E3 scalings in the E1 and E2

scalings this is because of the theorem below.

Theorem 4.1. Given the notation S� T �S3�#U n Ej scalings followed by an Ei scaling

We have: S� T �SV�# � �S��# T S��1'W�S� T �SV�# � �S��# T S��
Proof: Continued on next page

Max

Half

0

Max

Half

0

E3 SCALING

36

We know that for the interval [a,b)

 S�X1
 Y� � X!1
 !Y���������S��#X1
 Y� � X!#1
 !#Y�
 S�X1
 Y� � X!1 � �
!Y � ����������S��#X1
 Y� � X!#1 � !# , �
 !#Y � !# , ��
 SVX1
 Y� � �!1 � ��
 !Y � ��-��������S��#X1
 Y� � �!#1 � !#"� , ��
 !#Y � !#"� , ��-

Therefore,

S� T �S��#X1
 Y� � S� Z!#1 � !#"� , �!
 !#Y � !#"� , �![
� X!#\�1 � !# , �
 !#\�Y � !# , ��

 �S��# T S�X1
 Y� � �S��#X!1
 !Y� � X!#\�1 � !# , �
 !#\�Y � !# , ��
 Similarly,

 S� T �S3�#X1
 Y� � S2 �2#1 � 2
#"1 , 1

2

 2#Y � 2

#"1 , 1

2
- � �2#\11 � 2

#
 2#\1Y � 2
#8

 �S1�# T S2X1
 Y� � �S1�#X21 � 1
2Y � 1� � �2#\11 � 2
#
2#\1Y � 2

#8
To terminate the encoding, we have to tell the decoder the location of the final

interval and handle any remaining E3 scalings. In the end, we have two scenarios for

our interval: Low<Quarter<Half≤High and Low<Half<Half+Quarter≤High.

To tell the encoder that the final interval is the first scenario we simply send a 01

and output 1’s depending on the number of remaining E3 scalings. For the second

scenario we send a 1. We also would send zeros based on E3 scalings.

Algorithm 4.3. Operation to output the bits and rescale the intervals

Encoder_Scale()
 While E1, E2, or E3 scaling is possible
 If E3(low>Quarter and high<Half+Quarter)
 High=(High-Quarter)*2+1;
 Low=(Low-Quarter)*2
 E3_Scalings=E3_Scalings+1
 If E1(High<Half) or E2(Low>Half)
 Output 0 for E1 and 1 for E2

Continue on next page

37

 High=High*2+1
 Low=Low*2
 For all E3_Scalings
 Output 1 if E1 or 0 if E2

Algorithm 4.4. Operation to properly terminate the encoding

Encoder_Termination()
 If (low<Quarter)
 Output 01
 For all E1 scalings
 Output 1
 Else
 Output 1

Figure 4.4. Encoding Flowchart

Decoder

The decoder basically reverses the process from the encoder. The decoder

starts by reading the first 31 bits of the output. This is used as a target to get the code

Start

Update model

E1?

Get Symbol

Output 0

Output 1 m

times

Update intervals

Output 1

Output 0 m times

Increment m

End of

file?

E3?E2?

End

yes
no

no

yes

no no

yes yes

Is Low <

Quarter

Output 01

Output 1 m

times

Output 1

yes

no

38

values. The code value is used to find the symbol according to symbol low and high

cumulative frequencies. The target is updated using the decoder scalings. For each

scaling, a new bit is shifted into the target. The operation continues until all symbols

have been outputted.

Algorithm 4.5. Operation to decode a file

Decoder(file)
 LOW=0

 HIGH=0x7FFFFFFFF
 Get target from file

 Until end of file
 RANGE=HIGH-LOW+1
 Code=(target-LOW)/(Range/total_freq)
 Symbol=FindSymbol(Code)
 Output symbol

HIGH = HIGH +(RANGE * Cum_Freq[symbol] / total_freq)- 1
LOW = LOW + RANGE * Cum_Freq[symbol-1)]/ total_freq
Target=Decoder_Scale(target)

 Model_Update(symbol)

Algorithm 4.6. Operation to find a symbol base on a code target

FindSymbol(target)
 For all symbols j
 If(low_freq[j]<=target and high_freq[j]>target)

symbol=j
 output symbol

Algorithm 4.7. Operation to rescale the intervals and get bits from the file

Decoder_Scale(target)
 While E1, E2, or E3 scaling is possible
 If E3(low>Quarter and high<Half+Quarter)
 High=(High-Quarter)*2+1;
 Low=(Low-Quarter)*2
 Target=target*2
 Target=target+Get_Bit()
 If E1(High<Half) or E2(Low>Half)
 High=High*2+1
 Low=Low*2
 Target=target*2
 Target=target+Get_Bit()
 Output target

39

Figure 4.5. Decoding flowchart

Modified Arithmetic Coder

For the second implementation of the coder, predictive compression was used.

Instead of coding the entire message, the message was broken up into blocks. A

function was created to calculate these blocks. The model changes because now we

have to keep track of the transition frequencies. The transition probabilities are used to

predict the entropy value of the remaining file. The entropy is used predict the final

compression.

Start

Update model

E1?

Get target

Update

intervals and

target

End

of

file?

E3

?

E2

?

End

Find symbol

Output symbol

no no

no

no

yes

yes

yes

yes

40

Modeler

The modeler is updated to keep the symbol transition frequencies. Whenever a

new symbol is observed, the transition frequency from the previous symbol to the

current symbol is updated. The entropy of the alphabet is also kept. The rest of the

values remain the same.

Algorithm 4.8. Operation to update symbol statistics and transitions

Model_Update(new_symbol,previous_symbol)
 Increment transition(previous_symbol,new_symbol)
 Increment freq[symbol]
 Increment total_freq
 For all symbols i until new_symbol
 Set low_Freq[i]=cum_Freq[i-1]
 Set cum_Freq[i]=low_Freq[i]
 Set high_Freq[i]=cum_Freq[i]+freq[i]

Algorithm 4.9. Operation to calculate model entropy

Entropy(model)
 Total=0
 For all symbols i
 Total=total+freq[i]
 Entropy=Total/total_freq

Encoder

Encoder keeps two models, global and local. The global model is kept

throughout the entire file. The local model is restarted whenever a block of data is

coded.

Algorithm 4.10. Operation to encode a file

Encoder(file)
 Start with LOW=0 and HIGH=0x7FFFFFFFF
 Until end of file
 Get symbol
 RANGE = high_Freq[symbol] – low_Freq_Local[symbol] + 1

HIGH = HIGH +(RANGE * Cum_Freq_Local[symbol] / total_steps)- 1
Continued on next page

41

LOW = LOW + RANGE * Cum_Freq_Local[symbol-1)]/ total_steps
Encoder_Scale()
local_model=Model_Update(symbol)
global_model=Model_Update(symbol)
If Can_Partition(n,N, global_model,local_model)
 Local=Restart _Model()

 Output _Termination()

Recall the partition condition '�1 � '�C��DE�
FEFCG � �B � '�()*2�B � '� where N is the

total file size, n is the size of the current segment.

Figure 4.6. File location

We will also have some signaling to signify the end and beginning of code blocks. In this

case we will use 128 bits.

Algorithm 4.11. Operation to test if the file can be partitioned

Can_Partition(n,N, global_model,local_model)
 Happrox=Markov(global,N)
 Can Partition:

 if n*Entropy(Local)<N*Happrox-(N-n)*Log2(N-n)

Algorithm 4.12. Operation to predict symbols based on global model

Markov(global,N)
 For N characters
 j=max_symbol(transition(j,k))
 temp_Model_Update(j)
 Entropy=temp_Model_Entropy

n 0
N

Current Segment

N-n Remaining file

42

Figure 4.7. Encoder with block partitioning flowchart

Decoder

The difference between the modified decoder and the normal decoder is that we

now check for termination condition. The termination condition tells the decoder to

restart the model and get another termination coding for the next partition.

Algorithm 4.13. Operation to decode a file

Decoder(file)
 Start with LOW=0 and HIGH=0x7FFFFFFFF
 Get encoded block termination signals

 Get target from file
 Until end of file

Continued on next page

Start

Get Symbol

Update local and

global models

Encode Symbol

Partition

?
Finish Block

Reset Local

Model

End of

File?

Finish Block

End

yes

yes

no

no

Scale and update

intervals

43

 RANGE=HIGH-LOW+1
 Code=(target-LOW)/(Range/total_freq)
 Symbol=FindSymbol(Code)
 Output symbol

HIGH = HIGH +(RANGE * Cum_Freq[symbol] / total_steps)- 1
LOW = LOW + RANGE * Cum_Freq[symbol-1)]/ total_steps
Decoder_Scale(target)
Model=Model_Update(symbol)
If block termination reached
 Model=Restart _Model()
 Get encoded block termination signals

 Get target from file

Figure 4.8. Decoder with block partitioning flowchart

Example 4.1

Table 4.1. Encoding table for word HELLO

Inpu
t

Symbo
l low

Symbo
l High

Total
freqs Low High

Scaled
High Scaled Low Operations Output

H 72 73 257 609985590 609985590
184248614

3 772922368
E2 E1 E2 E2 E3
E3 E3 100

E 69 70 258
106311408

7
105896849

2
157426687

9 512994304
E2 E1 E1 E1 E1
E1 E1 E2

111111111
0

L 78 79 259 836702886 832605310
211637401

5 18414592
E2 E1 E1 E2 E2
E2 E1 E1 E3 1100011

L 78 80 260 663940511 647802364
169000345

5 657161984
E2 E1 E2 E2 E1
E1 110011

O 83 84 261 989570731 985613485
207452057

5
106146534

4
E2 E1 E1 E1 E2
E1 E2 E1 1110101

Start

Get Target

Output Symbol

Find Symbol

Is end

of

block?

Reset Local

Model

End of

File?

End

yes

yes

no

no

Scale and

update intervals

Update Model

44

Table 4.2. Decoding table for word HELLO

Buffer Value Total Symbol

Symb
ol
Lower
Bound

Symb
ol
Upper
Bound High Low

Operati
ons

Scaled
High

Scaled
Low

6038741
50 72 257 H 72 73 609985590 601629624

 E2(1)
E1(1)
E2(1)
E2(0)
E3(1)
E3(0)
E3(1)

18424861
43

77292236
8

1060221
813 69 258 E 69 70 1063114087

105896849
2

 E2(1)
E1(1)
E1(1)
E1(1)
E1(0)
E1(1)
E1(1)
E2(1)

15742668
79

51299430
4

8338447
27 78 259 L 78 79 836702886 832605310

 E2(0)
E1(0)
E1(0)
E2(0)
E2(0)
E2(0)
E1(0)
E1(0)
E3(0)

21163740
15 18414592

6529960
96 78 260 L 78 80 663940511 647802364

 E2(0)
E1(0)
E2(0)
E2(0)
E1(0)
E1(0)

16900034
55

65716198
4

9895608
32 83 261 O 83 84 989570731 985613485

 E2(0)
E1(0)
E1(0)
E1(0)
E2(0)
E1(0)
E2(0)
E1(0)

20745205
75

10614653
44

45

Chapter 5

Implementation of Huffman Coding

Two conditions have to be met for implementing the adaptive Huffman program.

First is the sibling property as described in [7], and the second is that every internal

node must proceed any leaf.

Node

The nodes in the tree have several properties: parent, weight, orientation, type,

left, and right. The parent property refers to a node’s parent. The weight property

refers to the frequency value of a node or its children. The node orientation refers to its

position in respect to its parent. The orientation can be left or right. The type property

specifies if the node is an internal node, a leaf, or the root. The left and right properties

refer to left and right children of a node.

Tree

The tree contains a collection of nodes in an ordered list. The Huffman tree

essentially is the code, therefore maintaining the tree is essential. There are three

essential operations on the tree: insert, add, and reorder. The insert operation is called

when a new symbol is observed. The add operation is called when an already

observed symbol is once again encountered. The reorder operation is called whenever

after both the insert or add operations. It ensures that the tree maintains correct

numbering and satisfies the sibling property.

46

Tree Operations

The tree initially is composed of the root and the zero or dummy node. In the first

insertion, the new node is the root’s right child. In subsequence insertions, a new

parent node is created and inserted in the position of the dummy leaf. The dummy leaf

and the leaf for the new symbol are the new parent’s left and right child respectively. To

keep consistent numbering, the new parent is numbered two; the new node is

numbered one, and the dummy node remains number 0. The rest of the nodes are

shifted to accommodate this numbering.

Figure 5.1. (a) Initial tree with the root and dummy leaf (b) Inserting the first symbol k
(c) Inserting a symbol j

Algorithm 5.1. Operation to insert a new symbol into the tree
Insert_Symbol(newSymbol)

 Shift_list()
Create_Node(newSymbol)

 If only dummy node
Continued on next page

47

 Right(root)=new_Node
 Else
 Create New Parent
 Left(Parent(zero))=NewParent
 Parent(zero)=NewParent
 Parent(newSymbol)=NewParent
 Right(NewParent)=new_Node
 Left(NewParent)=zero
 Update_Immediate_Parents(Parent,old_node,new_node,wt_difference)
 Update_Distant_Parents(Parent2, node2,node1,Weight_Difference)
 Reorder_Tree(Number(NewParent))

Algorithm 5.2. Operation that shifts the node list to accommodate the new nodes

Shift_List()
 For all nodes
 List(i+2)=List(i)

The add operation serves two purposes. The first is whenever we encounter the

add situation in the encoding operation. Not only do we increment the leaf and its

parent’s weights, but we also output the path to the leaf, with 0 being a move to the left

child and 1 a move to the right child. The second situation happens whenever we

decode a bit sequence until we reach a leaf. Here we simply increment the value in the

decoded leaf and its parents.

Algorithm 5.3. Operation to increment an already observed symbol during encoding

Add_Symbol(symbol)
 Starting from Current=root
 If Value(current)=symbol
 Weight(current)=Weight(current)+1
 Update_Immediate_Parents(Parent,invalid,invalid,1)
 Update_Distant_Parents(Parent2, invalid,invalid,1)
 Reorder_Tree(Number(current))
 Stop
 If IsChild(Right(current),symbol)

 Current=Right(current) and Output 1

If IsChild(Left(current),symbol)
 Current=Left(current) and Output 0

48

Algorithm 5.4. Operation to increment an already observed symbol during decoding

Add_Leaf(current_leaf)
 Weight(current)=Weight(current_leaf)+1

Update_Immediate_Parents(Parent,invalid,invalid,1)
 Update_Distant_Parents(Parent, invalid,invalid,1)

Reorder_Tree(ADD)

The reorder operation is the most important operation in the Huffman

implementation. From previous operations, we know that the tree is ordered except

possibly in the position of the node inserted or added. This node is either has a weight

greater than some node(s) higher in the list or it violates Vitter’s condition. The nodes

higher in the list consist of nodes with previously had higher weights. In order to test for

compliance to the conditions we go through the list to find a lower numbered node with

higher weights than the higher numbered node. We store the positions where swapping

is possible. We swap the node with the highest numbered node that violates the

properties. If no swapping is possible, we move to the node’s parent node and continue

comparisons until we reach the root. On a swap, we have to be aware of two situations

for node traversal. If we swap two nodes of the same type, we can make the swapped

node’s parent the next node for comparison. When there are two nodes of a different

type the tree might not comply with the node precedence condition or the sibling

property. Let us look at the situations where this could happen.

Imagine a situation in which we have a leaf for symbol “H” with weight k followed

by N leaves with weight k and an internal node of weight k. If we receive a new “H”,

according to our reorder procedure, the leaf for “H” and the internal node would be

swapped. If we were to move on the internal node’s parent, the node precedence

49

condition would stay unsatisfied. Therefore, in this situation we would have to return to

the swapped node and start the comparisons from that node.

The second situation occurs during the insert operation. When we create a new

node and give it a weight of two. If we have a distant leaf of weight two and we perform

a swap. If we have a node in between these two nodes, the swap would cause the tree

to violate the sibling property. We also have to return to the previous position to

continue the comparisons.

Figure 5.2. Conditions in which swapping would require a return to the swapped
position instead of the parent position.

 Figure 5.3.(a) Tree after incrementing “e”. Node traversal shown by arrows starting
from “e”. Nodes to be swapped are shaded. (b) Tree after leaf 9 and leaf 5 are
swapped.(c) Tree after nodes 5 and 6 are swapped

11

3

3 2

5

7

11

13

109

65

e h

l

7

1 1

2

31

DUMMY o

4

1 1

2

42

w t

8

12

(a)

11

3

2

5

7

11

13

109

65

h

l

7

1 1

2

3

1

DUMMY

o

4

1 1

22

w

t

8

12

(b)

3

e

4

11

3

2

5

7

11

13

109

6
5

h

l

7

1 1

2

3

1

DUMMY

o

4

1 1

2

2

w

t

8

12

(c)

3

e

4

k K K+1 N leaves 2 1 2

(a) (b)

50

Algorithm 5.5. Operation to reorder the tree nodes after an add or insert operation

Reorder_Tree(Start_number)
Swap_pos=invalid
Until the end of the node list
 For all nodes i starting from Start_number
 If(Weight(i)>Weight(i+k))
 Swap_pos=i+k
 Else
 If swap_pos is valid
 Swap(i, swap_pos)
 If nodes are of different types
 Go to next node i
 Set node i to parent of swapped position

Algorithm 5.6. Operation to swap two nodes

Swap(node1,node2)
 Temp=Number(node1)
 Number(node1)=Number(node2)
 Number(node2)=Number(node1)
 Parent1=Parent(node1)
 Parent2=Parent(node2)

Weight_Difference=Weight(node1)-Weight(node2)
Update_Immediate_Parents(Parent1,node1,node2, Weight_Difference)
Update_Distant_Parents(Parent1,node1,node2,Weight_Difference)
Update_Immediate_Parents(Parent2,node2,node1, Weight_Difference)
Update_Distant_Parents(Parent2, node2,node1,Weight_Difference)

Algorithm 5.7. Operation to swap a node’s immediate parents

Update_Immediate_Parents(Parent,old_node,new_node,wt_difference)
 If(Orientation(old_node)=Right)
 Right(Parent)=new_node
 Else
 Left(Parent)=new_node
 If old_node and new_node are valid
 Remove_Child(Parent,old_node)
 Add_Child(Parent,new_node)
 Weight(Parent)=Weight(Current)+wt_difference

Algorithm 5.8. Operation to swap a node’s ancestors

Update_Distant_Parents(Parent,old_node,new_node,Weight_Difference)
 Current=Parent
 Until current=root
 Current=Parent(Current) & Weight(Current)=Weight(Current)+Difference
 If old_node and new_node are valid
 Remove_Child(Current,old_node) and Add_Child(Current,new_node)

51

Encode

In the encoding of the file, a symbol is encoded as it is observed. If observed for

the first time, we output the code for the dummy leaf followed by the symbol itself. This

will signal to the decoder that it is a first occurrence. For an already observed symbol

its code from the tree is outputted. The code tree is updated after both the insert or the

add operations.

Algorithm 5.9. Operation to encode a file

Encode(file)
For all symbols in file

Get symbol
If(Is_First_Occurence(symbol))

Output zero occurrence
Output symbol
Insert_Symbol(symbol)

Else
 Add_Symbol(symbol)
 Reorder tree()

Figure 5.4. Encoding flowchart

Is

symbol

new?

Output Path

to symbol’s

leaf

Insert new

symbol

Is end

of file?

Start

End

Output Path

to dummy

node
Add to

symbol

Read symbol

Output

symbol

52

Decode

In decoding the file, we follow the bit sequence in the file bit by bit. If the

observed bit is 1 we traverse to the right of the current node, if it is zero we traverse to

the left. We do this until we reach a leaf. If we reach the dummy leaf, we read the next

symbol in the file and then output it to the output file. If we reach another leaf besides

the dummy, we output the symbol inside the leaf.

Algorithm 5.10. Operation to decode a file

Decode(file)
Current=root
Until the end of file
 Read bit
 If bit is 0
 Current=Right_Child(current)
 Else
 Current=Left_Child(current)
 If current is a leaf
 Output current(symbol)
 Add_Leaf(current)
 Set Current=root
 If current=dummy
 Read symbol
 Output symbol
 Insert_Symbol(symbol)
 Set Current=root

Example 5.1

Encoding for the word HELLO

Figure 5.5. Initial tree

1 1

1 0

dummy

53

Figure 5.6. Inserting “H”. Operation: output 0, output “H”, insert H

Figure 5.7. Inserting “E”. Operation: output 0, output “E”, insert “E”, reorder tree

Figure 5.8. Inserting “L”. Operation: output 10, output “L”,insert “L”, reorder tree

Figure 5.9. Adding “L”. Operation: output 01,increment “L”, reorder tree

Figure 5.10. Inserting “O”. Operation: output 00, output “O” insert “O”, reorder tree

1 1

1 0

dummy

1
1

1 0

dummy

1 1

H

2 2

1 0

dummy

root

1 1

H

2 2

1 0

dummy

root

1 3

H

2 4

root

1 1

E

2 2

1 0

dummy

2 4

root

11

E

2 3

1 0

dummy

1 2

H

4
6

3

1 3

5

E

2 4

root

11

E

2 3

1 0

dummy

1 2

H

4 6

3

1 3

14

H
5

E

1 0

dummy

2

1 1

2

L

1 0

dummy

2

1 1

2

L

14

H

4
6

3

1 3

5

E

1 0

dummy

2

11

2

L

14

H

4
6

3

1 3

5

E

1 0

dummy

2

21

2

L

14

H

4
6

3

2 3

5

L
1 0

dummy

2

11

2

E

14

H

4
6

3

2 3

5

L

1 0

dummy

2

11

2

E

14

H

6 8

3 7

1 4

H

3 6

52

L

13

E

1 0

dummy

2 2

1 1

O

6 8

4 7
2 6

13

E

12

H

1 0

dummy

2 4

1 1

O

52

L

54

Decoding
Input buffer: 0H0E10L0100O

Figure 5.11. Initial tree

Figure 5.12. Read 0. Read “H”. Operation: output “H”, insert H

Figure 5.13. Read 0. Read “E”. Operation: output “E”, insert “E”, reorder tree

Figure 5.14. Read 01. Read “L”. Operation: output “L”, insert “L”, reorder tree

Figure 5.15. Read 01. Operation: output “L”, increment “L”, reorder tree

1 1

1 0

dummy

1 1

1 0

dummy

1
1

1 0

dummy

1 1

H

2 2

1 0

dummy

root

1 1

H

2 2

1 0

dummy

root

1 3

H

2 4

root

1 1

E

2 2

1 0

dummy

2 4

root

11

E

2 3

1 0

dummy

1 2

H

4
6

3

1 3

5

E

2 4

root

11

E

2 3

1 0

dummy

1 2

H

4 6

3

1 3

14

H
5

E

1 0

dummy

2

1 1

2

L

1 0

dummy

2

1 1

2

L

14

H

4
6

3

1 3

5

E

1 0

dummy

2

11

2

L

14

H

4
6

3

1 3

5

E

1 0

dummy

2

21

2

L

14

H

4
6

3

2 3

5

L
1 0

dummy

2

11

2

E

14

H

55

Figure 5.16. Read 00. Read “O”. Operation: output “O” insert “O”, reorder tree

Figure 5.17. Decoding flowchart

In this chapter, we implement an adaptive Huffman algorithm that satisfies both

the sibling property and Vitter’s implicit numbering. There are several differences

between this implementation and Vitter and FGK. The first different is that instead of

updating the tree before adding a new symbol to the tree, this implementation updates

after the symbol is added. The second difference is that the dummy node is given a

4
6

3

2 3

5

L

1 0

dummy

2

11

2

E

14

H

6 8

3 7

1 4

H

3 6

52

L

13

E

1 0

dummy

2 2

1 1

O

6 8

4 72 6

13

E

12

H

1 0

dummy

2 4

1 1

O

52

L

dummy

leaf?

Output

symbol

Insert new

symbol

Is end

of file?

Start

End

Read symbol

Add to

symbol

Read bit

Output

symbol

Bit?
Go to right

child

Go to left

child

Is

node a

leaf?

Go to root

node

56

weight of one instead of zero. This changes the updates when a new unobserved

symbol is inserted into the tree. The new parent node moves up the tree quicker in the

beginning of the files.

57

Chapter 6

Simulation Results

For the results we created six files with differing measures of information. The

files were compressed using adaptive Arithmetic coding, Huffman coding, and modified

Arithmetic coding. The main testing parameter is the compression ratios of the various

algorithms.

Files

There were three file types used in the compressions: character file, language

text, and image files. The character files were sequences of characters in no particular

order. The first file, Chars2.txt, was a 108732 byte character file. It was high entropy

and low redundancy. The second file was a 200889 byte character file. The file was

low entropy, high redundancy file. For the language files, two files were used. The first

file was a 152089 byte file of English text, and the second file was a 133754 byte file of

French text. The image files consisted of a 141168 byte simple image, Simple.bmp,

and a 109674 byte complex image, Logo.bmp.

Results

As expected, Arithmetic coding yielded slightly better compression ratios than the

Huffman coding. In complex files the normal Arithmetic coding yielded results slightly

better than the modified version by less than a percent. On the simple files the modified

58

version created two or three partitions. In the instance of the simple image file, it

outperformed the Arithmetic coding.

In the results, the modified coder was able to take advantage of the

characteristics of the files to produce a file with more partitions and satisfactory

compression ratio. In the more complex files, chars2.txt and Logo.bmp, the coder was

conservative. The slight loss of compression arose from the processing overhead. In

the other files, the coder was able to partition into two or more blocks.

(a) (b)

(c) (d)

(f)(e)

Figure 6.1. (a) Chars2.txt (b) Chars.txt (c) English.txt (d) French.txt (e) Logo.bmp (f)
Simple.bmp

Table 6.1. Compression Results

File Attributes Compression Attributes

File Name File Size Algorithm Size Partitions Ratio

chars2.txt 108732

Adapt. Huffman 84553 1 0.222372439

Normal Adapt.
Arithmetic

Coding
82615 1 0.240196078

Modified
Arithmetic

Coding
82623 1 0.240122503

 Continued on next page

59

chars.txt 200889

Adapt.
Huffman

43446 1 0.783731314

Normal Adapt.
Arithmetic

Coding
41388 1 0.793975778

Modified
Adapt.

Arithmetic
Coding

40565 3{140616,40176,20097} 0.798072567

English.txt 152089

Adapt.
Huffman

87795 1 0.422739317

Normal Adapt.
Arithmetic

Coding
87136 1 0.427072306

Modified
Adapt.

Arithmetic
Coding

87336 2{121664,30425} 0.425757287

French.txt 133754

Adapt.
Huffman

77125 1 0.423381731

Normal Adapt.
Arithmetic

Coding
76744 1 0.426230244

Modified
Adapt.

Arithmetic
Coding

76844 2{107000,26754} 0.425482602

Logo.bmp 109674

Adapt.
Huffman

98259 1 0.104081186

Normal Adapt.
Arithmetic

Coding
97622 1 0.109889308

Modified
Adapt.

Arithmetic
Coding

97630 1 0.109816365

Simple.bmp 141168

Adapt.
Huffman

89863 1 0.363432223

Normal Adapt.
Arithmetic

Coding 86175
1 0.389557123

Modified
Adapt.

Arithmetic
Coding

85710 3{266063,76018,38017} 0.392851071

Discussion

From the results, we see that modified coder was able to create partitions for

most of the files. More complex files have the least amount partitions. In fact, the most

complex files, Chars2.txt and Logo.bmp, have no partitions. The two files with least

60

complexity, Chars.txt and Simple.bmp, created three partitions each. The two files with

English and French text created two partitions each.

The files with lower entropy are more likely to be partitioned because the left side

of the equation '�1 � B�C��DE�
FEFCG � �B � '�()*2�B � '� is smaller for those files.

This makes the test for partition more likely to pass.

Taking a close examination of the partitions created by the coder, we see that the

first partition is significantly larger than the subsequent partitions. The reason for this is

in the way that future symbols are predicted. Our Markov model starts by creating

symbols based on the previous occurrences and transitions of the symbols. After all the

symbols have been visited for at least their frequency of occurrence in the files, all the

symbols are equally probable. All subsequent symbol predictions will visit any symbol

with equal frequency. Therefore, the entropy of the generated symbols will approach

maximum entropy. This maximum entropy increases with ratio of remaining file size to

current segment size, N/n. The higher the ratio, the higher that entropy becomes.

Therefore, N≈N-n and Happrox,total≈log2(N-n). Once the test for the partition condition is

administered using '�1 � B�C��DE�
FEFCG � �B � '�()*2�B � '� , the right side will

approach zero. In order for the test to pass, n has to be significantly large and H1 has to

be significantly low.

61

Conclusions and Future Work

In this thesis we covered the theory of data compression. We created

implementations of Huffman and Arithmetic coding. We optimized the compression

ratio of a system using Arithmetic coding and Markov models. We were able to create a

greedy algorithm that partitions the data by predicting compression size. We also

showed in our simulations that our partitions show little loss in compression ratio, and,

at times, it improved the compression ratio.

Next efforts in optimizing the data compression system would be in combining

our technique with data preprocessing techniques. In particular, we can use techniques

such as Run-length encoding, Burrows-Wheeler transform, and Move-To-Front coding

[1]. Each of these techniques changes the complexity of data, therefore, changing the

effect of predictive compression.

Markov prediction models can also be applied to other compression techniques.

We can explore its application to video compression. We compare Markov prediction to

existing variable block size techniques used in video. One of the classical problems in

video and image compression is DCT block size selection. We can study how to apply

prediction to solve this problem.

Now that we have shown its effectiveness in a data compression system, the

next step is to show how the system would help in classical packet optimization

situations. These include wireless systems where noise is high and highly congested

systems with high packet loss. We can next study the effects of constraining the packet

sizes based not only on measures of noise and congestion, but also our reduction of

compression ratio.

62

Bibliography

1. Blellock, Guy E. "Introduction to Data Compression." Carnegie Mellon University.
16 October 2001.

2. Bodden, E., Clasen, M., & Kneis, J. (2002). Arithmetic Coding Revealed: A

guided tour from theory to praxix. Seminar Data Compression .

3. Cleary, John G., Radford M. Neal, and Ian H. Witten. "Arithmetic Coding for Data

Compression." Communications of the ACM 30(1987): 520-540.

4. Eytan, Modiano. "An Adaptive algorithm for optimizing the packet size used in
wireless ARQ protocols." Wireless Networks 5(1999): 279-286.

5. Gallager, R. G., 1978. Variations on a theme by Huffman. IEEE Transactions on

Information Theory, Vol. 24, pp. 668-674, November 1978.

6. Hoffman, Roy. Data Compression in Digital Systems. New York: Chapman &
Hall, 1997.

7. Khalid, Sayood. Lossless Compression Handbook. San Diego: Academic Press

Series in Communications, Networking, and Multimedia, 2003.

8. Korhonen, Jari, and Wang. "Effect of Packet Size on Loss Rate and Delay in
Wireless Links." IEEE Communications Society 3(2005): 1608 - 1613.

9. Massey, Greg, and Jon McClintock. "Packet Size Matters in IP Transport." Radio

World 2006:

10. Moffat, Alistair, Radford M. Neal, and Ian H. Witten. "Arithmetic Coding
Revisited." ACM Transactions on Information Systems 16(1998): 256-294.

11. Pu, Ida Mengyi. Fundamental Data Compression. Oxford: Butterworth-

Heinemann, 2006.

12. Roman, Steven. Coding and Information Theory. New Work: Springer-Verlag,
1992.

13. Ross, Sheldon M. Introduction to Probability Models. 8. New Work: Academic

Press, 2003.

14. Saeed, Faisel, Huizhu Lu, and G. E. Hedrick. “Data compression with Huffman
coding; an efficient dynamic implementation using file partitioning." Proceedings
of the 1990 Symposium on Applied Computing (1990): 348-354.

63

15. Shannon, Claude E., and Warren Weaver. The Mathematical Theory of
Communciation. 1. Chicago: The University of Illinois Press, 1969.

16. Vitter, J.S, 1987. Design and analysis of dynamic Huffman codes. Journal of the

ACM, Vol. 34, pp. 823-843, October 1987.

64

Vita

Claudio Iombo is a native of Cabinda, Angola. Angola is a country in the Southwest

coast of the continent of Africa. He is a graduate of Louisiana State University in

electrical and computer engineering in December 2003. He is currently a candidate for

master’s degree in the Department of Electrical and Computer Engineering at Louisiana

State University. His interests include communication and software systems design.

	Louisiana State University
	LSU Digital Commons
	2007

	Predictive data compression using adaptive arithmetic coding
	Claudio Jose Iombo
	Recommended Citation

	tmp.1483774927.pdf.vyD4n

