
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2007

Predictive data compression using adaptive
arithmetic coding
Claudio Jose Iombo
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Iombo, Claudio Jose, "Predictive data compression using adaptive arithmetic coding" (2007). LSU Master's Theses. 2717.
https://digitalcommons.lsu.edu/gradschool_theses/2717

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/2717?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2717&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


 

 

PREDICTIVE DATA COMPRESSION 
USING ADAPTIVE ARITHMETIC CODING 

 

 

 

A Thesis 
Submitted to the Graduate Faculty of the 

Louisiana State University and 
Agricultural and Mechanical College 

in partial fulfillment of the 
requirements for the degree of 

Master of Science in Electrical Engineering 
in 

The Department of Electrical Engineering 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

by 
Claudio Iombo 

EIT., B.S., Louisiana State University, 2003 
August 2007 



ii 

 

Table of Contents 
 

Abstract .......................................................................................................................... iv 
 
Introduction ...................................................................................................................... 1 

Types of Data ............................................................................................................... 1 
Data Compression System ........................................................................................... 2 
What Is This Thesis About ........................................................................................... 3 

 
Chapter 1  Information Theory ......................................................................................... 6 

Information ................................................................................................................... 6 
Entropy...................................................................................................................... 6 
Joint and Conditional Entropy ................................................................................... 7 
Mutual Information .................................................................................................... 8 

 
Chapter 2 Entropy Coding ............................................................................................. 10 

Introduction ................................................................................................................ 10 
Prefix Codes ............................................................................................................... 10 
Kraft’s Inequality ......................................................................................................... 11 
Huffman Coding ......................................................................................................... 12 

Alternate Implementation ........................................................................................ 13 
Adaptive Huffman ................................................................................................... 14 

Arithmetic Coding ....................................................................................................... 16 
Advantages of Arithmetic Coding ............................................................................ 16 
Disadvantages of Arithmetic Coding ....................................................................... 17 
Optimality of Arithmetic Coding ............................................................................... 19 
Adaptive Arithmetic Coding ..................................................................................... 20 

 
Chapter 3  Data Modeling .............................................................................................. 23 

Introduction ................................................................................................................ 23 
What Do We Know About The Data ........................................................................ 23 
Worst Case Scenario .............................................................................................. 24 
Best Case Scenario ................................................................................................ 24 
Application to Compression .................................................................................... 24 

Sources ...................................................................................................................... 24 
Markov Models ........................................................................................................ 25 
Adaptive Arithmetic Compression Using Data Models ............................................ 28 

 
Chapter 4  Implementation of Arithmetic Coder ............................................................. 32 

Introduction ................................................................................................................ 32 
Modeler ...................................................................................................................... 32 
Encoder ...................................................................................................................... 33 

E1 and E2 Scaling .................................................................................................. 33 
E3 Scaling ............................................................................................................... 35 

Decoder ...................................................................................................................... 37 



iii 

 

Modified Arithmetic Coder .......................................................................................... 39 
Modeler ................................................................................................................... 40 
Encoder ................................................................................................................... 40 
Decoder .................................................................................................................. 42 

 
Chapter 5  Implementation of Huffman Coding.............................................................. 45 

Node ........................................................................................................................... 45 
Tree ............................................................................................................................ 45 

Tree Operations ...................................................................................................... 46 
Encode ....................................................................................................................... 51 
Decode ....................................................................................................................... 52 

 
Chapter 6  Simulation Results ....................................................................................... 57 

Files ............................................................................................................................ 57 
Results ....................................................................................................................... 57 
Discussion .................................................................................................................. 59 

 
Conclusions and Future Work ....................................................................................... 61 
 
Bibliography ................................................................................................................... 62 
 
Vita ................................................................................................................................ 64 
 



iv 

 

Abstract 

The commonly used data compression techniques do not necessarily provide 

maximal compression and neither do they define the most efficient framework for 

transmission of data.  In this thesis we investigate variants of the standard compression 

algorithms that use the strategy of partitioning of the data to be compressed. Doing so 

not only increases the compression ratio in many instances, it also reduces the 

maximum data block size for transmission.  The partitioning of the data is made using a 

Markov model to predict if doing so would result in increased compression ratio. 

Experiments have been performed on text files comparing the new scheme to adaptive 

Huffman and arithmetic coding methods. The adaptive Huffman method has been 

implemented in a new way by combining the FGK method with Vitter’s implicit ordering 

of nodes. 
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Introduction 

We deal with information every day.  It comes in many forms.  We watch 

television, use computers, and listen to radio.  This information requires a large amount 

of storage and bandwidth and it needs to be digitized in order to be processed.  Doing 

so eases processing of data and reduces errors by making it less susceptible to noise.  

Maximum sampling rates are typically used to represent these signals in digital form, 

and this does not take into account the periods of inactivity and redundancy that exist in 

most messages.   For example, 8 bits are used to represent text alphabet symbol, 

although has been shown that as few as four bits are enough to convey the same 

information [6].  The same can be said about video data which contains regions where 

little change occurs from frame to frame.  Using this knowledge, the data can be 

represented using fewer bits.  Data compression is the means developed to minimize 

the amount of bits used to represent data.  The reduction of storage and bandwidth is 

measured against the increase in processing power required to compress the message. 

We must keep this tradeoff in mind when designing a system for data compression. 

Types of Data 

Data to be compressed can be divided into symbolic or diffuse data [6].  

Symbolic data is data that can be discerned by the human eye.  These are 

combinations of symbols, characters or marks.  Examples of this type of data are text 

and numeric data.  Unlike the symbolic data, diffuse data cannot be discerned by the 

human eye.  The meaning of the data is stored in its structure and cannot be easily 

extracted.  Examples of this type of data are speech, image, and video data. 
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The approaches taken to compress diffuse and symbolic data are different but 

not exclusive.  In symbolic data the approach most taken is reduction of redundancy.  

This is an approach that uses lossless compression techniques, meaning that the 

compression process is reversible with 100 percent accuracy.  Lossless compression 

algorithms include entropy coding and dictionary based compression.  For diffuse data 

the approach to compression is the removal of unnecessary information.  If a sufficiently 

small amount of information is removed from a video segment, most viewers would not 

be aware of the change.  Therefore, some of this data can be discarded.  Lossy data 

compression techniques include transform coding.  The two approaches for diffuse and 

symbolic data can be used together in the same compression system.  For example, 

both transform data compression techniques and entropy coding is used in H.264 video 

compression. 

Data Compression System 

A data compression system is a combination of data compression techniques 

and data modeling.  The two parts of the system are the encoder and the decoder.  The 

encoder consists of input, pre-processing, modeling, and encoding.  The decoder 

consists of modeling, decoding, and post-processing.  The pre-processing transforms 

the data into an intermediate form that would facilitate encoding.  The post-processing 

reverses the data from the intermediate form. The modeling gathers information about 

the data that will be used in encoding or decoding.  An example of a compression 

system is shown in figure 1. 

A digital system uses the data compression system to produce an output for the 

user: it gathers the data, encodes the data, stores the data, transmits the data, decodes 
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the data, and outputs the data to the end user.  The decoding and encoding of this 

system is done by the data compression system.  An example of a digital system is 

shown in figure 2. 

 
Figure 1. Data Compression System 

 

 
Figure 2. Digital System 
 

What Is This Thesis About 

This thesis deals with the construction of a digital compression system for text 
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discuss the issues and approaches used to maximize the effectiveness of arithmetic 

coding.  In particular, we address optimization by partitioning the data.  Lastly, we 

formulate a sequential block partitioning approach that results in higher compression 

ratio and/or smaller average block size.  

Several papers [4,8,9] have been devoted to optimizing the packet size in a 

communication system.  This issue helps to maximize efficiency and throughput. 

If the packet size is too small there are two pitfalls.  In the case of a constant rate 

transmitter, the small packets would require more packets to be sent to keep the same 

bit rate.  This would result in increased packets and congestion in the network.  The 

second issue is the required overhead in these packets.  Small packets would not justify 

the amount of overhead needed to encapsulate the packet into the header. 

The case of large packet size also results in two unwanted outcomes.  First, 

large packets tend to be discarded more frequently than smaller packets.  This is due to 

link and transport layer error checking mechanisms that discard a packet with multiple 

errors. The second issue is inefficient fragmentation of the large packets.  This occurs in 

size-constrained networks such as Ethernet where packets are fragmented into MTUs 

(Maximum Transfer Units) of 1500 bytes.   These fragmentation operations increase 

bandwidth usage and additional delays. 

Several procedures have been researched to find the optimum static or variable 

network packet size [4].  In our results, we show that we can break up a large message 

into significantly smaller packets with very little or no loss in compression. In [14], the 

notion of partitioning the file to increase compression was established.  The paper left 
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the partition selection for future developments.  In this thesis we plan to use prediction 

to calculate partition sizes and locations within a file. 
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Chapter 1  

Information Theory 

 

Information 

The basis for data compression is the mathematical value of information.  

Information contained in a symbol x is given by, I(x) =
)(

1
log2

xp
.   This value also 

describes the number of bits necessary to encode the symbol.  This definition reinforces 

our notion of information.  First, the more probable the occurrence of a symbol, the less 

information it provides by its occurrence, and also less bits are used to represent it. 

Conversely, the least frequent symbols provide more information by their occurrence.  

Secondly, if we have n equally probable messages, we know that log2n bits will be 

required to encode each message.  This is the information value of each message I=

p

1
log2 =log2n.  Finally, information of two independent messages should be additive. 

Consider two independent messages A and B.  Here we have, 

I(AB)= 
)()(

1
log2

BpAp
= 

)(

1
log 2

Ap
+

)(

1
log 2

Bp
=I(A)+I(B) 

Entropy 

Entropy can also be defined as the measure of the average information [7].  

According to Shannon, entropy of a discrete source for a finite alphabet X is given by,  

∑
∈

=
Xx xp

xpxH
)(

1
log)()( 2  
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Properties of Entropy 

Theorem 1.1. 0≤H(X)≤log2n where X={x1,x2,….,xn} 

Proof: 

If p(x)=1 for some x, then H(X)=0. 

n
xp

xp
xp

xpXH
Xx Xx

222 log
)(

1
)(log

)(

1
log)()( =≤=∑ ∑

∈ ∈

 

If p(x)=1/n for all x, we have 

∑ ∑ ∑∑
∈ ∈ ∈∈

==−−=−=
Xx Xx XxXx

nn
n

n
nnn

xH 22222 loglog
1

log1log
11

log
1

)(  [12] 

Joint and Conditional Entropy 

The joint entropy H(X,Y) of two discrete random variables X and Y with joint 

probability distribution p(x,y) is given as, ∑∑
∈ ∈

=
Xx Yy yxp

yxpYXH
),(

1
log),(),( 2 = -

∑∑
∈ ∈Xx Yy

yxpyxp ),(log),( 2  

The joint H(X,Y) distribution can be seen as the overall average uncertainty of the 

information source. 

The conditional entropy H(X|Y) is the average information in X after Y has been 

defined or revealed.  It is given as, ∑
∈

=
),(),(

2
),(

)(
log),()|(

YXyx yxp

yp
yxpYXH  

Properties of Joint and Conditional Entropy 

Theorem 1.2. Chain Rule: H(X,Y)=H(X)+X(Y|X) 

Proof: 

H(X,Y)= ∑∑
∈ ∈

−
Xx Yy

yxpyxp ),(log),( 2 =∑∑
∈ ∈Xx Yy xp

yxp
xpyxp

)(

),(
)(log),( 2   
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           = ∑∑
∈ ∈

−
Xx Yy

xpxypxp )(log)|()( 2 +∑∑
∈ ∈Xx Yy yxp

xp
yxp

),(

)(
log),( 2  

           = ∑
∈

+=+−
Xx

XYHXHXYHxpxp )|()()|()(log)( 2  [12] 

Theorem 1.3.  H(X|Y)� ���� where equality holds only if X and Y and independent 

Proof: 

H(X|Y)-H(X)=�� ��	
 ����
����
�� log2
������
� � � ��	���� log2

����� 
                           =� ��	
 ����
����
�� log2

������
�� � ��	���
����
�� log2
����� 

                         =� ��	
 ����
����
�� log2
����������
� =

����� ��	
 ����
����
�� log2
����������
�  

                   � ����� ��	
 ����
����
�� �����������
� � �� 
                      � ���� �� ��	����� � � ��	
 ����
����
����
����
�� � 
                      0 if p(x,y)=p(x)p(y) [12] 

 

Mutual Information 

The mutual information I(X;Y) is the uncertainty of X that is resolved due to 

observing Y.  It is defined by I(X;Y)=H(X)-H(X|Y) 

Properties of Mutual Information 

1. I(X;Y)=I(Y;X) 

2. I(X;Y)≥0 

3. I(X;Y)=H(Y)-H(Y|X) 

4. I(X;Y)=H(X)+H(Y)-H(X,Y) 

5. I(X;X)=H(X) 
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The concepts of information and entropy [7] which are summarized above are basic 

to the development of data compression techniques.  The next chapter discusses 

methods that use entropy explicitly. 
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Chapter 2 

Entropy Coding 

Introduction 

Entropy coding is compression algorithms that use the message statistics to 

compress the message.  There are two basic approaches to entropy coding.  The first 

approach includes the coding of individual symbols in the message alphabet.  This 

employs the use of prefix codes.  One such example is Huffman code [1].  The second 

type is the coding of the message or messages as a whole.  This is the approach taken 

by Arithmetic coding [1]. 

Prefix Codes 

In compression we can use fixed-length codes to simplify decidability.  We find 

that for optimal compression variable length codes yield the best results. In variable 

length coding the decoder has to be aware when a codeword starts and ends.  In order 

to be able to effectively decode a message, we must be able to do this without 

ambiguity and without having to transfer extra decoding information. Let us suppose 

that we have the code {(a,1),(b,00),(c,10),(d,0)}.  The message 100 would have multiple 

interpretations.  It could be decoded as cd or ab.  Therefore, one necessary property of 

coding is unique decodability.  

Prefix code is a type of uniquely decodable code in which no codeword is a prefix 

for another codeword.  In the context of a binary tree, each message is a leaf of the 

tree.  This tree is referred to as the prefix-code tree[1]. 
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Figure 2.1. Prefix code tree. Codewords are 0,10,11. 
 

Kraft’s Inequality 

The average code length of a set of m messages is given by L=� ���� � xi)ni  

where ni =length of symbol i in bits 

Theorem 2.1. The codeword lengths for any uniquely decodable code must satisfy 

Kraft-McMillan Inequality given as  � !�� � -ni� � [1] 

Theorem 2.2. For any  alphabet X, a uniquely decodable code follows H(X)��L 

Proof: 

H(X)-L� � ��	���� log2
������ � ��	���� nx=� ���� log2

������ nx� � �� ���� log2
������ log22nx  

           � � ��	���� log2(2-nx/p(x)) 

         ��� log2�� !"#$��� ) 

            � % [1] 

 

Theorem 2.3. For any  alphabet X, a uniquely decodable optimal code follows 

L��H(X)+1 

Proof:  

Continued on next page 

Symbol 1 
Symbol 2 

Symbol 
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root 
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For optimality, we set nx=log2
����� 

& � � ��	���� '� � � ��	���� ()* �����  
������ � ��	���� +� , ()* �����- � � , � ��	���� +()* �����- � � , ���� [1] 

Huffman Coding 

 Huffman coding is the best known form of entropy coding.  The premise behind 

Huffman coding is that more frequently occurring symbols are coded using longer code 

words.  To accomplish this, variable length code words are assigned to symbols based 

on their frequency of occurrence.  Huffman code satisfies two conditions: 

1. All code words are uniquely decodable 

2. No delimiters or extra information is inserted in the code words to facilitate 

decidability 

The first condition is accomplished by the use of prefix code.  This leads to the second 

condition.  No markers are needed to separate the code words because of the use of 

prefix code. 

 The coding is performed using a binary tree.  First, the symbols are arranged in 

order of decreasing probability of occurrence.  Then the two least occurring symbols are 

combined to form a new node.  The result of this node is placed in the tree in a position 

that preserves the order.  Then the new node is combined with the next least occurring 

symbol to create yet another node. This process is repeated until all nodes have been 

processed.  Afterwards a traversal back to the tree is done to tag one branch as 0 and 

the other as 1.  Traversal from the final node back to the originating node would give 

you the codeword for the symbol.  The final node is designated the root. 
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Figure 2.2. Huffman Code Construction. From this example the message ddccab would 
be coded as 11000000111101. 
 

Alternate Implementation 

A more graphical representation of Huffman coding is often used.  This 

representation consists of leaves and internal nodes.  Leaves are symbols and the 

internal nodes are nodes that contain the sum of the weights of its children.  Whenever 

two leaves are combined, they form an internal node.  The internal nodes in turn 

combine with other nodes or leaves to form more internal nodes.  The leaves and nodes 

are ordered in increasing order from left to right. 

For the input in example 1, the tree is shown in figure 2.3. 

 

  
Figure 2.3. (a) Diagram of leaf and nodes.(b) Code tree for example 1. Alphabet: a-
110,b-10,c-111,d-0 
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Adaptive Huffman 

Scanning of all the data is needed to provide accurate probabilities In order to 

perform Huffman coding.  In some instances this may be an immense amount of data or 

the data may not be available at all.  Adaptive Huffman coding schemes were created to 

deal with this problem,.  In these schemes, the probabilities are updated as more inputs 

are processed.  Instead of two passes through the data, only one pass is needed.  One 

of the most famous types of adaptive Huffman algorithms is the FGK algorithm 

developed by Faller and Gallager.  The algorithm was later improved by Cormack and 

Horspool with a final improvement by Knuth [7]. 

The sibling property is used in the FGK algorithm,.  A tree follows the sibling 

property if every internal node besides the root has a sibling and all nodes can be 

numbered and arranged in nondecreasing probability order.  The numbering 

corresponds to the order in which the nodes are combined in the algorithm. This tree 

has a total of 2n-1 nodes. Another property is lexicographical ordering.  A tree is 

lexicographically ordered if the probabilities of the nodes at depth d are smaller than the 

probabilities of the nodes at depth d-1.  If these two properties are employed, it will 

ensure that a binary prefix code tree is a Huffman tree[7]. 

In order for the adaptive Huffman algorithm to work, two trees must be 

maintained.  One tree is in the encoder and the other is in the decoder.  Both encoder 

and decoder start with the same tree. When a new symbol is observed, the old symbol 

code is send to the decoder and its frequency in the tree is incremented.  If the new 

incremented value causes the tree to violate the sibling property, exchange the node 

with the rightmost node with frequency country lower than the incremented node. 



15 

 

When a new value arrives, the update is carried out in two steps.  The first step 

transforms the tree into another Huffman tree that ensures that the sibling property is 

maintained.  The second step is incrementing of the leaves. 

The first step starts from the leaf of the new symbol as the current node.  The 

current node and its subtree is swapped with the highest numbered node with the same 

weight.  The current node becomes the swapped node.  Then we move to the swapped 

node’s parent.  The same swap is repeated here.  This step repeats until the root is 

reached. 

Example 2.2 

Consider the dynamically created tree in figure 2.4.  Notice that if we get a new 

input of “o” and increment the leaf immediately, the tree would no longer satisfy the 

sibling property.  Therefore, the tree must be updated before incrementing the “o” node. 

The current node starts with “o” or node 3.  First, node 3 and 4 are swapped.  The 

current node becomes 8. Then, node 8 and 9 are swapped.  The current node becomes 

node 12.  It does not find any matching nodes, so the next node becomes node 13.  The 

updating of the tree ends and node 3 is incremented. The final tree satisfies the sibling 

property. 

   

Figure 2.4. (a)Initial tree before “o” is observed (b) “o” is swapped with “t” 
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Figure 2.5. Continuation of Figure 2.4. (a) Node 8 is swapped with 9 (b) the “o” is 
incremented. 
 

Vitter’s algorithm Λ [15] further optimizes the FGK algorithm.  In the original FGK 

algorithm, it was sufficient for the nodes of a given depth to increase in probability from 

left to right.  In Vitter’s algorithm all leaves must precede the internal nodes of the same 

probability and depth. This change ensures that the dynamic algorithm encodes a 

message of length s bits with less than s bits more than with the static Huffman.  The 

algorithm minimizes ∑wjlj, max lj, and ∑lj.  To accomplish this Vitter used implicit 

numbering.  Nodes where numbered in non-decreasing probability order from left to 

right and top to bottom. 

Arithmetic Coding 

Unlike other types of compression, in Arithmetic coding a sequence of n symbols 

is represented by a number between 0 and 1.  Arithmetic coding came from Shannon’s 

observation that sequences of symbols can be coded by their cumulative probability. 

Advantages of Arithmetic Coding 

The first advantage of Arithmetic coding is its ability to keep the coding and the 

modeler separate.  This is its main difference from Huffman coding.  This change also 

makes adaptive coding is easier because changes in symbol probabilities do not affect 
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the coder.  Unlike Huffman coding, no code tree needs to be transmitted to the receiver.  

Encoding is done to a group of symbols not symbol by symbol. This leads to higher 

compression ratios.  The final advantage of Arithmetic coding is its use of fractional 

values.  In Huffman coding is that there is code waste.  It is only optimal for coding 

symbols with probabilities that are negative powers of 2.  Huffman coding will rarely 

reach optimality in real data because H(s) will never be an integer. Therefore, for an 

alphabet with entropy H(s), Huffman will use up to 1 unnecessary bit. 

Disadvantages of Arithmetic Coding 

The first disadvantage of Arithmetic coding is its complex operations.  Arithmetic 

coding consists of many additions, subtractions, multiplications, and divisions.  It is 

difficult to create efficient implementations for Arithmetic coding.  These operations 

make Arithmetic coding significantly slower than Huffman coding.  The final 

disadvantage of Arithmetic coding is referred to as the precision problem [11].  

Arithmetic coding operates by partitioning interval [0,1) into infinitively smaller and 

smaller intervals.  There are two issues in implementation: there are no infinite precision 

structures to store the numbers and the constant division of interval may result in code 

overlap.  There are many implementations that address these issues. 

The main aim of Arithmetic coding is to assign an interval to each potential symbol.  

Then a decimal number is assigned to this interval.  The algorithm starts from the 

interval [0, 1).  After each read input, the interval is subdivided into a smaller interval in 

proportion to the input symbol’s probability.  The symbols in the alphabet are scaled into 

the new alphabet. 
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In order to perform the interval reshaping needed for coding cumulative distributions 

are needed to keep upper and the lower bound values for the code intervals.  Each 

rescaling will be based on the current symbol’s range of cumulative probability.  

Therefore, each symbol’s rescaling will be different. 

For a symbol sk, we have the cumulative probability .�/0� � � ��/�0� � � where 

P(si)=probability of symbol si. 

Low bound for symbol sk=� ��/�0"�� � � � .�10"�� 
High bound for symbol sk =� ��/�0� � � � .�10"�� , ��/0� � .�10� 
The low and high values are initially set to 0 and 1 respectively. Whenever a new 

symbol sj is received, the low and the high are updated as follows: 

range=high-low 

Low=()2 , � ��/�3"�� � � 4 �56*5 � ()2� � ()2 , .713"�8 4 91'*: 

High=()2 , � ��/�3� � � 4 �56*5 � ()2� � ()2 , .7138 4 91'*: 

The process runs recursively for all symbols in the input sequence.  The final 

code value will be between the high and low values. 

The decoder is similar to the encoder.  The low and high are initially set to 0 and 

1. Suppose we have the received code C.  Suppose this value falls within symbol k’s 

low and upper bound value.  Symbol k’s values are used to ensure that low ≤ C ≤ high 

values.  The range low becomes C(ak-1) and high becomes C(ak) 

For all symbols:   

Low=()2 , � ��/�0"�� � � 4 �56*5 � ()2� � ()2 , .�10"�� 4 91'*: 

High=()2 , � ��/�0� � � 4 �56*5 � ()2� � ()2 , .�10� 4 91'*: 

The next symbol k is such that Low≤ Low + C(ak-1)*range and Low + C(ak)*range ≤ High 
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Example 2.3 
 
Table 2.1 Symbol statistics 
Symbol Probability Cumulative Distribution low high 

A 0.4 0.4 0 0.4 

B 0.4 0.8 0.4 0.8 

L 0.2 1.0 0.8 1.0 

 

Encoding 

Sequence BALL 

Encode ‘B’: low=0+0.4*1=0.4    high=0+0.8*1=0.8 

Encode ‘A’: low=0.4+(0)*(0.4)=0.4   high=0.4+(0.4)(0.4)=0.56 

Encode ‘L’: low=0.4+(0.8)*(0.16)=0.528   high=0.4+(1.0)(0.16)=0.56 

Encode ‘L’: low=0.528+(0.8)*(0.032)=0.5536  high=0.528+(1.0)(0.032)=0.56 

Decoding 

Suppose code is 0.79 

Decode ‘B’ 

Low=0+0.4=0.4    high=0+0.8=0.8 

Low=0.4+0*(0.8-0.4)=0.4   high=0.4+(0.4)(0.4)=0.56=>Decode ‘A’  

Low=0.4+0.8*(0.56-0.4)=0.528  high=0.4+(1.0)(0.16)=0.56=>Decode ‘L’ 

Low=0.528+0.8*(0.56-0.528)=0.5536 high=0.528+(1.0)(0.032)=0.56=>Decode ‘L’ 

Optimality of Arithmetic Coding 

From the decoding algorithm, we can see that as the interval is divided, the 

number of binary sequence also doubles.  Therefore we can say that for an arbitrary 

code range, lN, the minimum encoding length, Lmin=-log2 (lN) bits. 
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For an encoding sequence S, the number of bits per symbol is bounded by: LS≤

symbolbits
N

lN /
)(log2−σ

Ω   where σ  is the total compression overhead including bits 

required for saving the file, bits representing number of symbols, and information about 

the probabilities.  Given that
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The average number of bits is bounded by the entropy. 

N
HLH

σ
+Ω≤≤Ω

−

)()(  

Therefore, as ∞→N , the average number of bits approaches entropy.  We can see that 

Arithmetic coding achieves optimal performance. 

Adaptive Arithmetic Coding 

As with Adaptive Huffman, Adaptive Arithmetic coding also reduces the number 

of passes through the data from two to one.  The difference between the two is that 

there is no need to keep a tree for the codewords.  The only information that needs to 

be synchronized is the frequency of occurrence of the symbols. 

Example 2.4 

For this example, we will rework example 2.3.  Unlike the previous example, the 

statistics table will be updated as symbols are encoded.  The symbols are also updated 

when symbols are decoded. 
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Table 2.2. Initial table 
symbol frequency probability low high 

A 4 0.4 0 0.4 

B 4 0.4 0.4 0.8 

L 2 0.2 0.8 1 

 

Encode ‘B’: low=0+0.4*1=0.4    high=0+0.8*1=0.8  
 
Table 2.3. Table after ‘B’ is encoded 
symbol frequency probability low high 

A 5 4/11 0 4/11 

B 4 5/11 4/11 9/11 

L 2 2/11 9/11 1 

 

Encode ‘A’: low=0.4+(0)*(0.4)=0.4   high=0.4+(0.4)(4/11)=6/11 
 

Table 2.4. Table after ‘A’ is encoded 
symbol frequency probability low high 

A 5 5/12 0 5/12 

B 5 5/12 5/12 10/12 

L 2 2/12 10/12 1 

 

Encode ‘L’: low=0.4+(8/55)*(10/12)=86/165  high=0.4+(1.0)(8/55)=0.56 
 
Table 2.5. Table after ‘L’ is encoded 
symbol frequency probability low high 

A 5 5/13 0 5/13 

B 5 5/13 5/13 10/13 

L 2 3/13 10/13 1 

 

Encode ‘L’: low=(86/165)+(10/13)*(44/1815)=0.53986

 high=(86/165)+(1)(44/1815)=0.54545 

Decoding 

Input=0.54 Decode ‘B’ 

low=0+0.4*1=0.4    high=0+0.8*1=0.8 
 
Table 2.6. Table after ‘B’ is decoded 
symbol frequency probability low high 

A 5 4/11 0 4/11 

B 4 5/11 4/11 9/11 

L 2 2/11 9/11 1 
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low=0.4+(0)*(0.4)=0.4   high=0.4+(0.4)(4/11)=6/11 
 
Decode  ‘A’ 
 
Table 2.7. Table after ‘B’ is encoded 
symbol frequency probability low high 

A 5 5/12 0 5/12 

B 5 5/12 5/12 10/12 

L 2 2/12 10/12 1 

 

low=0.4+(8/55)*(10/12)=86/165   high=0.4+(1.0)(8/55)=0.56 
 
Decode ‘L’ 
 
Table 2.8. Table after ‘L’ is decoded 
symbol frequency probability low high 

A 5 5/13 0 5/13 

B 5 5/13 5/13 10/13 

L 2 3/13 10/13 1 

 

low=(86/165)+(10/13)*(44/1815)=0.53986 high=(86/165)+(1.0)(44/1815)=0.54545 

Decode ‘L’ 
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Chapter 3  

Data Modeling 

 

Introduction 

Data sources hold certain characteristics that enables for better compression of 

the data.  For example, consider the statement “Raving mount”.  If we were examining 

an English text input, there is low probability that the next phrase would be “red suit”.  

The modeling of the behavior or characteristics of data enables the compression system 

to further compress the data.  It would be improbable for one to code a computer to 

recognize all possible combinations of phrases.  Therefore, we must create a model 

describing the structure rather than a phrase dictionary. 

In order to examine a model for data, we need to examine the information we 

currently hold about it. This includes what we know about the data’s structure and 

composition, its worst case scenario for compression, and its best case scenario for 

compression. 

What Do We Know About the Data 

The first step is defining our basic knowledge of the data.  For example, in text 

data we know that the alphabet consists of the ASCII symbols.  If we were to get more 

specific, we can define language.  Language lets us know about frequencies of words 

and letters.  For example, Latin languages have more words that start with vowels than 

Germanic languages. 
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Worst Case Scenario 

In defining the bounds of the data, it would be helpful to know what would be the 

worst conditions that would deter compression.  This case involves high uncertainty and 

complexity in the data. The data in these types of sources have low symbol repetition.   

In entropy coding, this is characterized by high source entropy.  

Best Case Scenario 

The best case scenario is the case where we get the highest compression ratio.  

This case involves highly predictable data.  A data sequence with highly repetitive data 

would be characteristic of these sources.  This is characterized by low entropy value in 

entropy coding. 

Application to Compression 

In entropy coding, the statistics of the source data is used in the data 

compression.  In dictionary algorithms, a table of known words is used in compression 

of the data.  In video compression there is temporal, spatial, and color space 

redundancy in the data. 

Another important application of data modeling is in prediction. One can predict future 

behavior based on present data or past data. In this paper, we will use this prediction 

behavior to predict the information content of future data. 

Sources 

We need to formulate a mathematical model that describes the data in question 

from an information source.  In the beginning of the chapter we discussed the entropy 

model.  This model was based on Shannon’s measure of information. Though helpful in 
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describing the data, it does not fully characterize the relationship between the data 

elements in the source.  Here we describe the Markov model. 

Markov Models 

In his famous paper [13] Shannon proposed a statistical structure in which finite 

symbols in the alphabet depend on the preceding symbol and nothing else.  This type of 

process is known as a Markov chain. 

Definition: A stochastic process {Xn:n=0,1,..} with a finite alphabet S is a Markov chain, 

if for any a,b ЄS 

 P(Xn+1=b|Xn=a,Xn-1=an-1,….,X0=a0)=P(Xn+1=j|Xn=1) [13] 

The process is then described using a set of transition probabilities pij=P(Xn+1=j|Xn=i).  

These denote the probability of symbol i being followed by symbol j.  The probability 

transition matrix for 1st order transitions probabilities 

��3 � ;
��� ��� < ��=��� > >> >�=� �=� ? �==@ 

This would be sufficient if we were dealing with transitions between two symbols.  For 

instance, in language we know that often the length of words is two of more letters.  We 

can reach more words and get a better approximation if our model can reach longer 

length of transitions.  We can put this in terms Pikj, which is the probability of a letter I 

being followed by some k, which in turn is followed by j.  This probability is given by: 

Pikj=� ��0∞0 A �03 [13] 

Shannon devised source models and showed how they approach language. 

General types of approximations as described by Shannon: 

1. Zero-order: Symbols are independent and equally probable 
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Example: XFOML RXKHRJFFJUJ ZLPWCFWKCYJ FFJEYVKCQSGHYD 

QPAAMKBZAACIBZLHJQD 

2. First-order: Symbols independent but with frequencies of English text 

Example: OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA TH EEI 

ALHENHTTPA OOBTTVA NAH BRL 

3. Second-order: digram as in English(second order markov model) 

Example: ON IE ANTSOUTINYS ARE T INCTORE ST BE S DEAMY ACHIN D 

ILONASIVE TUCOOWE AT TEASONARE FUSO TIZIN ANDY TOBE SEACE 

CTISBE 

4. Third-order: trigram as in English 

Example: IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID 

PONDENOME OF DEMONSTRURES OF THE REPTAGIN IS REGOACTIONA 

OF CRE 

5. First-order word: words independent with frequencies of English text 

Example: REPRESENTING AND SPEEDILITY IS AN GOOD APT OR COME 

CAN DIFFERENT NATURAL HE THE A IN CAME THE TO OF TO EXPERT 

GRAY COME TO FURNISHES THE LINE MESSAGE HAD BE THESE. 

6. Second-order word: word transition probabilities used 

Example: THE HEAD AND IN FRONTAL ATTACK ON A ENGLISH WRITER 

THAT THE CHARACTER OF THIS POINT IS THEREFORE ANOTHER 

METHOD FOR THE LETTERS THAT THE TIME OF WHO EVER TOLD THE 

PROBLEM FOR AN UNEXPECTED. 



27 

 

Models in Compression 

There are two types of modeling, static and dynamic.  In static modeling, there 

are preset values that describe the data in question.  Examples would be dictionaries 

used in dictionary compression and probabilities in entropy coding.  Dynamic modeling 

is done as the data is processed.  In this section we explore dynamic modeling and how 

it will be exploited to optimize Arithmetic coding. 

In communication, partitioning of data has many useful advantages.  It enables 

easier decoding, it helps in minimizing burst errors, and it preserves channel bandwidth.   

Theorem 3.1. For any data there can be a partition of size smaller than or equal to the 

size of the data to be processed that if employed can yield code smaller than if the total 

data was coded.   

This is usually the case in data that contains blocks of entropy much smaller than 

the total file.  Let us look at some examples. 

This is usually the case in data that contains blocks of entropy much smaller than 

the total file.  Let us look at some examples. 

Example 3.1 

A simple example would be the data sequence “aaaacabc”.  Using optimal 

coding we get 11 bits for the message (one bit for each “a” and two bits for each b and 

c). 

If we code the first part “aaaaca” then the second part “bc”, we get six bits for the 

first part (one bit for each “a” and one bit for each c) and two bits for the second part 

(one bit for each “b” or “c”). It takes a total of eight bits to code these two sequences. 

Breaking the total sequence into two parts saves three bits.  
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Example 3.2 

Let us look at the sequence “aaaabbbbccccdddd”. 

Coding the entire sequence, we get 32 bits (two bits to code each letter).  If we break 

the file into 4 sequences (aaaa,bbbb,cccc,dddd), we get only 4 bits for each sequence 

(one bit for each letter). Here we save 16 bits. 

These are small examples, but they highlight our point.  If we could recognize 

when partitioning the data would help data compression, this would be a useful tool 

when dealing with large files. 

To employ partitioning in a dynamic compression algorithm, the received input 

data has to be analyzed, then the algorithm has to predict if the coding of this portion of 

data will yield higher compression than the data combined with the rest of the file.  In 

order for this prediction to be valid, future values of the data must also be predicted.  

This is possible through the use of the entropy and Markov models. 

Adaptive Arithmetic Compression Using Data Models 

Adaptive Arithmetic coding is most effective on large files.  Since we are dealing 

with extremely large files, obviously, the amount of data coded before a new value 

arrives can also be large.  We content that, by using theorem 3.1, we can partition this 

portion of data without risking loss of compression ratio.  In order for this method to be 

effective, all symbol probabilities for a segment must be cleared after each data is sent.  

Furthermore, instead of beginning each coding segment with an empty symbol list, we 

will initialize all symbols with 1 occurrence.  This will keep the program from multiple 

transmissions of unobserved symbols for each code block. 
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Partition Conditions 

Theorem 3.2.  A sequence within a file of n characters with entropy H1 can be 

partitioned into its own code if it satisfies:   

'�� , �B � '���
C��DE� � B�C��DE�
FEFCG 
Theorem 3.3.  Assuming the worst case where rest of the sequence, H2,approx, has 

equally probable symbol distributions, the above condition may be restated as: 

'�� , �B � '�H �B � '
I"#
� � ()*��B � '� � B�C��DE�
FEFCG 

This simplifies to 

'�� , �B � '�()*��B � '� � B�C��DE�
FEFCG 
'�� � B�C��DE�
FEFCG � �B � '�()*��B � '� 

 where N is the size of the total data sequence to be coded, and Happrox,total is the 

approximate total entropy if the data was coded together. 

Theorem 3.4. Theorem 3 is a strong condition of theorem 3.2, in that if it holds theorem 

3.2 also holds. 

Proof:  Let us examine an arbitrary H2 that satisfies theorem 3.2. 

'�� , �B � '��� � B�C��DE�
FEFCG 
We know that B�C��DE�
FEFCG � �B � '�()*��B � '� � B�C��DE�
FEFCG � �B � '��� 

Therefore if '�� � B�C��DE�
FEFCG � �B � '�()*��B � '� then '�� � B�C��DE�
FEFCG �
�B � '��� 

We chose to use the strong condition here to compensate for the coding loss due 

to repeated transfer of probability data after each coding.  The condition had to be 

sufficient to justify the premature coding. 
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In order for the test to be effective, the data sequence has to be significantly 

large.  If the data sequence is significantly smaller than the total sequence, then 

�B�()*��B� J Happrox,total for the test to pass.  This situation would never happen 

because the expression �B�()*��B� is the upper bound value. 

Additionally, we must limit the amount of times the test is administered. If the test 

does not pass for n, it is a very low possibility that it will pass for n+1.  Therefore, it the 

tests are significantly spaced apart, unnecessary tests will be avoided. 

Approximation of Symbol Statistics 

To approximate the total entropy of the sequence of data, we need to employ the 

models discussed earlier.  These are entropy and Markov model. 

Entropy Model 

The entropy model is the simplest.  It does not require prediction of symbol 

occurrences. The only measure is the total entropy values.  Taking into account, the 

previous statistical information, we can predict the future statistics.  In this case, we will 

use previously calculated statistics to calculate entropy.  This would require a language 

based entropy value. 

Markov Model 

Markov model will involve the generation of approximate data using 1st order 

Markov model.  The sequence data would start with the data with the highest frequency 

and move from symbol to symbol based on symbol transition probabilities.  Like the 

entropy model, the static Markov modeling would get its transition probabilities from a 

language based table.  In the dynamic modeling, the transition probabilities would come 

from the data being compressed. 
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To generate the characters, we first recreate the probability matrix so that it 

becomes a frequency matrix. 

K�3 � LMM
NO�� O�� < O�=O�� > >> >O=� O=� ? O== PQ

QR 
 

First, we start from the first symbol.  We then find the highest frequency symbol.  

Then the location in the matrix of the corresponding symbol is decremented. The 

symbol becomes the current state.  The process is repeated until N-n symbols have 

been generated.  Therefore as N-n goes to infinity the entropy of the generated 

sequence will approach the upper bound. 

Theorem 3.5. No symbol will experience starvation, a state in which it will never be 

visited even though it is reachable from any other symbols(s).  

Proof:  Let us assume that a state k is only reachable from state r.  If the lowest 

frequency transition of any symbol greater than k is fk+1, than after fk+1 passes through 

the symbol r, fk becomes the highest frequency.  Therefore, state r will be visited. 
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Chapter 4 

Implementation of Arithmetic Coder 

 

Introduction 

The implementation was done using only integer arithmetic. It helped in simplicity 

and speed. At the heart of the basic Arithmetic coder is the rescaling of the intervals.  In 

our implementation, we use scaling techniques employed by Bodden, Clasen, and 

Kneis [2]. The coder is broken up into three sections: modeler, encoder, and decoder. 

Modeler 

Since the model is dynamic, symbol frequencies must be updated after each 

symbol is observed.  All the values used in the implementation are integers; therefore, 

the frequencies instead of probabilities were kept. The properties of each symbol are 

frequency, frequency lower bound, frequency upper bound, and cumulative frequency.  

The modeler has also contains the global property of total frequency.  As mentioned 

earlier, all the values are integers. The total frequency and the symbol frequency will be 

used to calculate the symbol probabilities.  These probabilities will be used in the 

rescaling mentioned in chapter three.  

Algorithm 4.1. Operation to update the symbol statistics 

Model_Update(new_symbol) 
 Increment freq[symbol] 
 Increment total_freq 
 For all symbols i until new_symbol 
  Set low_Freq[i]=cum_Freq[i-1] 
  Set cum_Freq[i]=low_Freq[i] 
                       Set high_Freq[i]=cum_Freq[i]+freq[i] 
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Encoder 

In the implementation 32 bits were used.  The initial low value is zero, and the 

initial high value is 0x7FFFFFFFF. The 32th bit was used to store overflows after addition 

operations. We add one to the range because High represents the open upper bound 

value.  The real interval is larger by one.  We also subtracted one from the new High 

value should be lower than low of next subinterval.  We also normalize the cumulative 

frequencies into the cumulative probabilities by dividing them by the total frequencies. 

Algorithm 4.2 Operation to encode a file 

Encoder(file) 
 Start with LOW=0 and HIGH=0x7FFFFFFFF 
 Until end of file 
  Get symbol 
  RANGE = HIGH – LOW + 1 

HIGH = HIGH +( RANGE * Cum_Freq[ symbol ] / total_freq )- 1 
LOW = LOW + RANGE * Cum_Freq[ symbol-1)]/ total_freq 
Encoder_Scale() 

                            Model_Update(symbol) 

 

  The values of low and high will inevitably converge.  Scaling will need to be done 

to keep this from happening.  This will also allow infinite precision in our coding using 

finite precision integers.  There are 3 types of scaling: E1, E2, and E3 [2]. 

E1 and E2 Scaling 

Converging happens when either the low value is in the top half of the range or 

the high value is in the bottom half of the range.  We know that once this happens, the 

values will never leave this range.  Therefore, we can send the most significant bits of 

the low and high values to the output and shift the low and high values.  E1 scaling 

deals with the situation when the high value is in the bottom half. E2 scaling deals with 

the situation when the low value is in the top half.  Both of the scaling is performed by 
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doubling the range and shifting.  We output a zero if E1 is performed and a one if E2 is 

performed. 

E1 Scaling 

High=2*High+1 

Low=2*Low 

High=0xxxxx...  becomes xxxxx1 

Low=0xxxx... becomes xxxxxx0 

 
Figure 4.1. E1 Scaling 
 

E2 Scaling 

High=2*(High-Half)+1 

Low=2*(Low-Half) 

High=1xxxxx...  becomes xxxxx1 

Low=1xxxx... becomes xxxxxx0 

 
Figure 4.2. E2 Scaling 
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E3 Scaling 

E3 scaling deals with situations were low and high are small values around the 

halfway point that cannot be represented with our available precision.  In this case, E1 

and E2 do not apply. 

 
Figure 4.3. E3 Scaling 
 
Quarter=!�"� for m-bit integer 

High = (High-Quarter)*2+1 

Low = (Low-Quarter)*2 

Low = 01xxxxx becomes 0xxxxxx0 

High = 10xxxxx becomes 1xxxxxx1 

Once E3 Scaling is done, we still will not know which half will contain the result.  

This will only be apparent in the next E1 or E2 scaling.  Therefore, instead of outputting 

a bit, we store the number of E3 scalings and output the corresponding bits in the next 

E1 or E2 scaling.  We can output the signal for the E3 scalings in the E1 and E2 

scalings this is because of the theorem below. 

Theorem 4.1. Given the notation S� T �S3�#U n Ej scalings followed by an Ei scaling 

We have: S� T �SV�# � �S��# T S��1'W�S� T �SV�# � �S��# T S�� 
Proof: Continued on next page 
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We know that for the interval [a,b)  

 S�X1
 Y� � X!1
 !Y���������S��#X1
 Y� � X!#1
 !#Y� 
 S�X1
 Y� � X!1 � �
!Y � ����������S��#X1
 Y� � X!#1 � !# , �
 !#Y � !# , �� 
 SVX1
 Y� � �!1 � �� 
 !Y � ��-��������S��#X1
 Y� � �!#1 � !#"� , �� 
 !#Y � !#"� , ��- 

Therefore, 

S� T �S��#X1
 Y� � S� Z!#1 � !#"� , �! 
 !#Y � !#"� , �![
� X!#\�1 � !# , �
 !#\�Y � !# , �� 

 �S��# T S�X1
 Y� � �S��#X!1
 !Y� � X!#\�1 � !# , �
 !#\�Y � !# , �� 
           Similarly, 

 S� T �S3�#X1
 Y� � S2 �2#1 � 2
#"1 , 1

2

 2#Y � 2

#"1 , 1

2
- � �2#\11 � 2

#
 2#\1Y � 2
#8 

 �S1�# T S2X1
 Y� � �S1�#X21 � 1
2Y � 1� � �2#\11 � 2
#
2#\1Y � 2

#8 
To terminate the encoding, we have to tell the decoder the location of the final 

interval and handle any remaining E3 scalings.  In the end, we have two scenarios for 

our interval: Low<Quarter<Half≤High and Low<Half<Half+Quarter≤High. 

To tell the encoder that the final interval is the first scenario we simply send a 01 

and output 1’s depending on the number of remaining E3 scalings.  For the second 

scenario we send a 1.  We also would send zeros based on E3 scalings. 

Algorithm 4.3. Operation to output the bits and rescale the intervals 

Encoder_Scale() 
 While E1, E2, or E3 scaling is possible 
  If E3(low>Quarter and high<Half+Quarter) 
   High=(High-Quarter)*2+1; 
   Low=(Low-Quarter)*2 
   E3_Scalings=E3_Scalings+1 
  If E1(High<Half) or E2(Low>Half) 
   Output 0 for E1 and 1 for E2 

Continue on next page 
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   High=High*2+1 
   Low=Low*2 
   For all E3_Scalings 
    Output 1 if E1 or 0 if E2 

 

Algorithm 4.4. Operation to properly terminate the encoding 

Encoder_Termination() 
 If (low<Quarter) 
  Output 01 
  For all E1 scalings 
   Output 1 
 Else 
  Output 1 

 

 
Figure 4.4. Encoding Flowchart 
 

Decoder 

The decoder basically reverses the process from the encoder.   The decoder 

starts by reading the first 31 bits of the output.  This is used as a target to get the code 
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values.  The code value is used to find the symbol according to symbol low and high 

cumulative frequencies.  The target is updated using the decoder scalings.  For each 

scaling, a new bit is shifted into the target.  The operation continues until all symbols 

have been outputted. 

Algorithm 4.5. Operation to decode a file 

Decoder(file) 
 LOW=0 

 HIGH=0x7FFFFFFFF 
 Get target from file 

 Until end of file 
  RANGE=HIGH-LOW+1 
  Code=(target-LOW)/(Range/total_freq) 
  Symbol=FindSymbol(Code) 
  Output symbol 

HIGH = HIGH +( RANGE * Cum_Freq[ symbol ] / total_freq )- 1 
LOW = LOW + RANGE * Cum_Freq[ symbol-1)]/ total_freq 
Target=Decoder_Scale(target) 

                      Model_Update(symbol) 

 

Algorithm 4.6. Operation to find a symbol base on a code target 

FindSymbol(target) 
 For all symbols j 
  If(low_freq[j]<=target and high_freq[j]>target) 

symbol=j 
                                output symbol  

 

Algorithm 4.7. Operation to rescale the intervals and get bits from the file 

Decoder_Scale(target) 
 While E1, E2, or E3 scaling is possible 
  If E3(low>Quarter and high<Half+Quarter) 
   High=(High-Quarter)*2+1; 
   Low=(Low-Quarter)*2 
   Target=target*2 
   Target=target+Get_Bit() 
  If E1(High<Half) or E2(Low>Half) 
   High=High*2+1 
   Low=Low*2 
   Target=target*2 
   Target=target+Get_Bit() 
 Output target 
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Figure 4.5. Decoding flowchart 
 

Modified Arithmetic Coder 

For the second implementation of the coder, predictive compression was used.  

Instead of coding the entire message, the message was broken up into blocks.  A 

function was created to calculate these blocks.  The model changes because now we 

have to keep track of the transition frequencies.  The transition probabilities are used to 

predict the entropy value of the remaining file.  The entropy is used predict the final 

compression. 
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Modeler 

The modeler is updated to keep the symbol transition frequencies.  Whenever a 

new symbol is observed, the transition frequency from the previous symbol to the 

current symbol is updated.  The entropy of the alphabet is also kept. The rest of the 

values remain the same. 

Algorithm 4.8. Operation to update symbol statistics and transitions 

Model_Update(new_symbol,previous_symbol) 
 Increment transition(previous_symbol,new_symbol) 
 Increment freq[symbol] 
 Increment total_freq 
 For all symbols i until new_symbol 
  Set low_Freq[i]=cum_Freq[i-1] 
  Set cum_Freq[i]=low_Freq[i] 
  Set high_Freq[i]=cum_Freq[i]+freq[i] 

 

Algorithm 4.9. Operation to calculate model entropy 

Entropy(model) 
 Total=0 
 For all symbols i 
  Total=total+freq[i] 
               Entropy=Total/total_freq 

 

Encoder 

Encoder keeps two models, global and local.  The global model is kept 

throughout the entire file.  The local model is restarted whenever a block of data is 

coded. 

Algorithm 4.10. Operation to encode a file 

Encoder(file) 
 Start with LOW=0 and HIGH=0x7FFFFFFFF 
 Until end of file 
  Get symbol 
  RANGE = high_Freq[symbol] – low_Freq_Local[symbol] + 1 

HIGH = HIGH +( RANGE * Cum_Freq_Local[ symbol ] / total_steps )- 1 
Continued on next page 
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LOW = LOW + RANGE * Cum_Freq_Local[ symbol-1)]/ total_steps 
Encoder_Scale() 
local_model=Model_Update(symbol) 
global_model=Model_Update(symbol) 
If Can_Partition(n,N, global_model,local_model) 
 Local=Restart _Model() 

                                           Output _Termination() 

 

Recall the partition condition '�1 � '�C��DE�
FEFCG � �B � '�()*2�B � '� where N is the 

total file size, n is the size of the current segment. 

 
Figure 4.6. File location 
 
We will also have some signaling to signify the end and beginning of code blocks. In this 

case we will use 128 bits. 

 
Algorithm 4.11. Operation to test if the file can be partitioned 

Can_Partition(n,N, global_model,local_model) 
 Happrox=Markov(global,N) 
 Can Partition:  

           if n*Entropy(Local)<N*Happrox-(N-n)*Log2(N-n) 

 

Algorithm 4.12. Operation to predict symbols based on global model 

Markov(global,N) 
 For N characters 
  j=max_symbol(transition(j,k)) 
  temp_Model_Update(j) 
 Entropy=temp_Model_Entropy 

 

n 0 
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Current Segment 

 

N-n Remaining file 
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Figure 4.7. Encoder with block partitioning flowchart 
 

Decoder 
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  RANGE=HIGH-LOW+1 
  Code=(target-LOW)/(Range/total_freq) 
  Symbol=FindSymbol(Code) 
  Output symbol 

HIGH = HIGH +( RANGE * Cum_Freq[ symbol ] / total_steps )- 1 
LOW = LOW + RANGE * Cum_Freq[ symbol-1)]/ total_steps 
Decoder_Scale(target) 
Model=Model_Update(symbol) 
If block termination reached 
 Model=Restart _Model() 
 Get encoded block termination signals 

                                           Get target from file 

 

 
Figure 4.8. Decoder with block partitioning flowchart 
 

Example 4.1 
 
Table 4.1. Encoding table for word HELLO 
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Table 4.2. Decoding table for word HELLO 

Buffer Value Total Symbol 

Symb
ol 
Lower 
Bound 

Symb
ol 
Upper 
Bound High Low 

Operati
ons 

Scaled 
High 

Scaled 
Low 

6038741
50 72 257 H 72 73 609985590 601629624 

 E2(1) 
E1(1) 
E2(1) 
E2(0) 
E3(1) 
E3(0) 
E3(1) 

18424861
43 

77292236
8 

1060221
813 69 258 E 69 70 1063114087 

105896849
2 

 E2(1) 
E1(1) 
E1(1) 
E1(1) 
E1(0) 
E1(1) 
E1(1) 
E2(1) 

15742668
79 

51299430
4 

8338447
27 78 259 L 78 79 836702886 832605310 

 E2(0) 
E1(0) 
E1(0) 
E2(0) 
E2(0) 
E2(0) 
E1(0) 
E1(0) 
E3(0) 

21163740
15 18414592 

6529960
96 78 260 L 78 80 663940511 647802364 

 E2(0) 
E1(0) 
E2(0) 
E2(0) 
E1(0) 
E1(0) 

16900034
55 

65716198
4 

9895608
32 83 261 O 83 84 989570731 985613485 

 E2(0) 
E1(0) 
E1(0) 
E1(0) 
E2(0) 
E1(0) 
E2(0) 
E1(0) 

20745205
75 

10614653
44 
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Chapter 5 

Implementation of Huffman Coding 

Two conditions have to be met for implementing the adaptive Huffman program.  

First is the sibling property as described in [7], and the second is that every internal 

node must proceed any leaf. 

Node 

The nodes in the tree have several properties: parent, weight, orientation, type, 

left, and right.  The parent property refers to a node’s parent.  The weight property 

refers to the frequency value of a node or its children. The node orientation refers to its 

position in respect to its parent.  The orientation can be left or right.  The type property 

specifies if the node is an internal node, a leaf, or the root.  The left and right properties 

refer to left and right children of a node.  

Tree 

The tree contains a collection of nodes in an ordered list.  The Huffman tree 

essentially is the code, therefore maintaining the tree is essential.  There are three 

essential operations on the tree: insert, add, and reorder.  The insert operation is called 

when a new symbol is observed.  The add operation is called when an already 

observed symbol is once again encountered.  The reorder operation is called whenever 

after both the insert or add operations.  It ensures that the tree maintains correct 

numbering and satisfies the sibling property. 
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Tree Operations 

The tree initially is composed of the root and the zero or dummy node.  In the first 

insertion, the new node is the root’s right child.  In subsequence insertions, a new 

parent node is created and inserted in the position of the dummy leaf.  The dummy leaf 

and the leaf for the new symbol are the new parent’s left and right child respectively.  To 

keep consistent numbering, the new parent is numbered two; the new node is 

numbered one, and the dummy node remains number 0.  The rest of the nodes are 

shifted to accommodate this numbering. 

 

Figure 5.1. (a) Initial tree with the root and dummy leaf (b) Inserting the first symbol k 
(c) Inserting a symbol j 
 

Algorithm 5.1. Operation to insert a new symbol into the tree 
Insert_Symbol(newSymbol) 

 Shift_list() 
Create_Node(newSymbol) 

 If only dummy node 
Continued on next page 
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  Right(root)=new_Node 
 Else 
  Create New Parent 
  Left(Parent(zero))=NewParent 
  Parent(zero)=NewParent 
  Parent(newSymbol)=NewParent 
  Right(NewParent)=new_Node 
  Left(NewParent)=zero 
  Update_Immediate_Parents(Parent,old_node,new_node,wt_difference) 
   Update_Distant_Parents(Parent2, node2,node1,Weight_Difference) 
  Reorder_Tree(Number(NewParent)) 

 

Algorithm 5.2. Operation that shifts the node list to accommodate the new nodes 

Shift_List() 
 For all nodes 
               List(i+2)=List(i) 

 

The add operation serves two purposes.  The first is whenever we encounter the 

add situation in the encoding operation.  Not only do we increment the leaf and its 

parent’s weights, but we also output the path to the leaf, with 0 being a move to the left 

child and 1 a move to the right child.  The second situation happens whenever we 

decode a bit sequence until we reach a leaf.  Here we simply increment the value in the 

decoded leaf and its parents. 

Algorithm 5.3. Operation to increment an already observed symbol during encoding 

Add_Symbol(symbol) 
 Starting from Current=root 
 If Value(current)=symbol 
  Weight(current)=Weight(current)+1 
                           Update_Immediate_Parents(Parent,invalid,invalid,1)   
                 Update_Distant_Parents(Parent2, invalid,invalid,1) 
  Reorder_Tree(Number(current)) 
  Stop 
 If IsChild(Right(current),symbol) 
 
  Current=Right(current) and Output 1 

If IsChild(Left(current),symbol) 
  Current=Left(current) and Output 0 
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Algorithm 5.4. Operation to increment an already observed symbol during decoding 

Add_Leaf(current_leaf) 
 Weight(current)=Weight(current_leaf)+1 

Update_Immediate_Parents(Parent,invalid,invalid,1)   
 Update_Distant_Parents(Parent, invalid,invalid,1) 

Reorder_Tree(ADD) 
   

 

The reorder operation is the most important operation in the Huffman 

implementation.  From previous operations, we know that the tree is ordered except 

possibly in the position of the node inserted or added.  This node is either has a weight 

greater than some node(s) higher in the list or it violates Vitter’s condition.  The nodes 

higher in the list consist of nodes with previously had higher weights. In order to test for 

compliance to the conditions we go through the list to find a lower numbered node with 

higher weights than the higher numbered node.  We store the positions where swapping 

is possible. We swap the node with the highest numbered node that violates the 

properties.  If no swapping is possible, we move to the node’s parent node and continue 

comparisons until we reach the root. On a swap, we have to be aware of two situations 

for node traversal.  If we swap two nodes of the same type, we can make the swapped 

node’s parent the next node for comparison.  When there are two nodes of a different 

type the tree might not comply with the node precedence condition or the sibling 

property.  Let us look at the situations where this could happen.   

Imagine a situation in which we have a leaf for symbol “H” with weight k followed 

by N leaves with weight k and an internal node of weight k.  If we receive a new “H”, 

according to our reorder procedure, the leaf for “H” and the internal node would be 

swapped.  If we were to move on the internal node’s parent, the node precedence 
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condition would stay unsatisfied.  Therefore, in this situation we would have to return to 

the swapped node and start the comparisons from that node. 

The second situation occurs during the insert operation.  When we create a new 

node and give it a weight of two.  If we have a distant leaf of weight two and we perform 

a swap.  If we have a node in between these two nodes, the swap would cause the tree 

to violate the sibling property.  We also have to return to the previous position to 

continue the comparisons. 

 
Figure 5.2. Conditions in which swapping would require a return to the swapped 
position instead of the parent position. 

   

 
 Figure 5.3.(a) Tree after incrementing “e”.  Node traversal shown by arrows starting 
from “e”.  Nodes to be swapped are shaded. (b) Tree after leaf 9 and leaf 5 are 
swapped.(c) Tree after nodes 5 and 6 are swapped 
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Algorithm 5.5. Operation to reorder the tree nodes after an add or insert operation 

Reorder_Tree(Start_number) 
Swap_pos=invalid 
Until the end of the node list 
 For all nodes i starting from Start_number 
  If(Weight(i)>Weight(i+k)) 
   Swap_pos=i+k 
  Else 
   If swap_pos is valid 
    Swap(i, swap_pos) 
    If nodes are of different types 
     Go to next node i 
   Set node i to parent of swapped position 

 
Algorithm 5.6. Operation to swap two nodes 

Swap(node1,node2) 
 Temp=Number(node1) 
 Number(node1)=Number(node2) 
 Number(node2)=Number(node1) 
 Parent1=Parent(node1) 
 Parent2=Parent(node2) 

Weight_Difference=Weight(node1)-Weight(node2) 
Update_Immediate_Parents(Parent1,node1,node2, Weight_Difference) 
Update_Distant_Parents(Parent1,node1,node2,Weight_Difference) 
Update_Immediate_Parents(Parent2,node2,node1, Weight_Difference) 
Update_Distant_Parents(Parent2, node2,node1,Weight_Difference) 

 
Algorithm 5.7. Operation to swap a node’s immediate parents 

Update_Immediate_Parents(Parent,old_node,new_node,wt_difference) 
 If(Orientation(old_node)=Right) 
  Right(Parent)=new_node 
 Else 
  Left(Parent)=new_node 
 If old_node and new_node are valid  
  Remove_Child(Parent,old_node) 
  Add_Child(Parent,new_node) 
  Weight(Parent)=Weight(Current)+wt_difference  

 
Algorithm 5.8. Operation to swap a node’s ancestors 

Update_Distant_Parents(Parent,old_node,new_node,Weight_Difference) 
 Current=Parent 
 Until current=root 
  Current=Parent(Current) & Weight(Current)=Weight(Current)+Difference 
  If old_node and new_node are valid 
  Remove_Child(Current,old_node) and Add_Child(Current,new_node) 
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Encode 

In the encoding of the file, a symbol is encoded as it is observed.  If observed for 

the first time, we output the code for the dummy leaf followed by the symbol itself.  This 

will signal to the decoder that it is a first occurrence.  For an already observed symbol 

its code from the tree is outputted.  The code tree is updated after both the insert or the 

add operations. 

Algorithm 5.9. Operation to encode a file 

Encode(file) 
For all symbols in file 

Get symbol 
If(Is_First_Occurence(symbol)) 

Output zero occurrence 
Output symbol  
Insert_Symbol(symbol) 

Else 
   Add_Symbol(symbol) 
                                        Reorder tree() 

 

 
Figure 5.4. Encoding flowchart 
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Decode 

In decoding the file, we follow the bit sequence in the file bit by bit.  If the 

observed bit is 1 we traverse to the right of the current node, if it is zero we traverse to 

the left.  We do this until we reach a leaf.  If we reach the dummy leaf, we read the next 

symbol in the file and then output it to the output file.  If we reach another leaf besides 

the dummy, we output the symbol inside the leaf. 

Algorithm 5.10. Operation to decode a file 

Decode(file)  
Current=root 
Until the end of file 
 Read bit 
 If bit is 0 
  Current=Right_Child(current) 
 Else 
  Current=Left_Child(current) 
 If current is a leaf 
  Output current(symbol) 
  Add_Leaf(current) 
  Set Current=root 
 If current=dummy 
  Read symbol 
  Output symbol 
                          Insert_Symbol(symbol) 
  Set Current=root 

 

Example 5.1 

Encoding for the word HELLO 
 

 
Figure 5.5. Initial tree 

1 1

1 0
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Figure 5.6. Inserting “H”. Operation: output 0, output “H”, insert H 

 
Figure 5.7. Inserting “E”. Operation: output 0, output “E”, insert “E”, reorder tree 

 
Figure 5.8. Inserting “L”. Operation: output 10, output “L”,insert “L”, reorder tree 
 

 
Figure 5.9. Adding “L”. Operation: output 01,increment “L”, reorder tree 
 

Figure 5.10. Inserting “O”. Operation: output 00, output “O” insert “O”, reorder tree 

1 1

1 0

dummy

1
1

1 0

dummy

1 1

H

2 2

1 0

dummy

root

1 1

H

2 2

1 0

dummy

root

1 3

H

2 4

root

1 1

E

2 2

1 0

dummy

2 4

root

11

E

2 3

1 0

dummy

1 2

H

4
6

3

1 3

5

E

2 4

root

11

E

2 3

1 0

dummy

1 2

H

4 6

3

1 3

14

H
5

E

1 0

dummy

2

1 1

2

L

1 0

dummy

2

1 1

2

L

14

H

4
6

3

1 3

5

E

1 0

dummy

2

11

2

L

14

H

4
6

3

1 3

5

E

1 0

dummy

2

21

2

L

14

H

4
6

3

2 3

5

L
1 0

dummy

2

11

2

E

14

H

4
6

3

2 3

5

L

1 0

dummy

2

11

2

E

14

H

6 8

3 7

1 4

H

3 6

52

L

13

E

1 0

dummy

2 2

1 1

O

6 8

4 7
2 6

13

E

12

H

1 0

dummy

2 4

1 1

O

52

L



54 

 

 
Decoding 
Input buffer: 0H0E10L0100O 
 

 
Figure 5.11. Initial tree 
 

 
Figure 5.12. Read 0. Read “H”. Operation: output “H”, insert H 

 
Figure 5.13. Read 0. Read “E”. Operation: output “E”, insert “E”, reorder tree 

 
Figure 5.14. Read 01. Read “L”. Operation: output “L”, insert “L”, reorder tree 
 

 
Figure 5.15. Read 01. Operation: output “L”, increment “L”, reorder tree 
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Figure 5.16. Read 00. Read “O”. Operation: output “O” insert “O”, reorder tree 
 

 
Figure 5.17. Decoding flowchart 
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weight of one instead of zero.  This changes the updates when a new unobserved 

symbol is inserted into the tree.  The new parent node moves up the tree quicker in the 

beginning of the files. 
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Chapter 6 

Simulation Results 

For the results we created six files with differing measures of information.  The 

files were compressed using adaptive Arithmetic coding, Huffman coding, and modified 

Arithmetic coding.  The main testing parameter is the compression ratios of the various 

algorithms. 

Files 

There were three file types used in the compressions: character file, language 

text, and image files.  The character files were sequences of characters in no particular 

order.  The first file, Chars2.txt, was a 108732 byte character file.  It was high entropy 

and low redundancy.  The second file was a 200889 byte character file.  The file was 

low entropy, high redundancy file.  For the language files, two files were used.  The first 

file was a 152089 byte file of English text, and the second file was a 133754 byte file of 

French text.  The image files consisted of a 141168 byte simple image, Simple.bmp, 

and a 109674 byte complex image, Logo.bmp. 

 

Results 

As expected, Arithmetic coding yielded slightly better compression ratios than the 

Huffman coding.  In complex files the normal Arithmetic coding yielded results slightly 

better than the modified version by less than a percent.  On the simple files the modified 
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version created two or three partitions.  In the instance of the simple image file, it 

outperformed the Arithmetic coding. 

In the results, the modified coder was able to take advantage of the 

characteristics of the files to produce a file with more partitions and satisfactory 

compression ratio.  In the more complex files, chars2.txt and Logo.bmp, the coder was 

conservative.  The slight loss of compression arose from the processing overhead.  In 

the other files, the coder was able to partition into two or more blocks. 

(a) (b)

(c) (d)

(f)(e)
 

Figure 6.1. (a) Chars2.txt (b) Chars.txt (c) English.txt (d) French.txt (e) Logo.bmp (f) 
Simple.bmp 
 
Table 6.1. Compression Results 

File Attributes Compression Attributes 

File Name File Size  Algorithm Size Partitions Ratio 

chars2.txt 108732 

Adapt. Huffman 84553 1 0.222372439 

Normal Adapt. 
Arithmetic 

Coding 
82615 1 0.240196078 

Modified 
Arithmetic 

Coding 
82623 1 0.240122503 

    Continued on next page 
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chars.txt 200889 

Adapt. 
Huffman 

43446 1 0.783731314 

Normal Adapt. 
Arithmetic 

Coding 
41388 1 0.793975778 

Modified 
Adapt. 

Arithmetic 
Coding 

40565 3{140616,40176,20097} 0.798072567 

English.txt 152089 

Adapt. 
Huffman 

87795 1 0.422739317 

Normal Adapt. 
Arithmetic 

Coding 
87136 1 0.427072306 

Modified 
Adapt. 

Arithmetic 
Coding 

87336 2{121664,30425} 0.425757287 

French.txt 133754 

Adapt. 
Huffman 

77125 1 0.423381731 

Normal Adapt. 
Arithmetic 

Coding 
76744 1 0.426230244 

Modified 
Adapt. 

Arithmetic 
Coding 

76844 2{107000,26754} 0.425482602 

Logo.bmp 109674 

Adapt. 
Huffman 

98259 1 0.104081186 

Normal Adapt. 
Arithmetic 

Coding 
97622 1 0.109889308 

Modified 
Adapt. 

Arithmetic 
Coding 

97630 1 0.109816365 

Simple.bmp 141168 

Adapt. 
Huffman 

89863 1 0.363432223 

Normal Adapt. 
Arithmetic 

Coding 86175 
1 0.389557123 

Modified 
Adapt. 

Arithmetic 
Coding 

85710 3{266063,76018,38017} 0.392851071 

 

Discussion 

From the results, we see that modified coder was able to create partitions for 

most of the files.  More complex files have the least amount partitions.  In fact, the most 

complex files, Chars2.txt and Logo.bmp, have no partitions.  The two files with least 
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complexity, Chars.txt and Simple.bmp, created three partitions each.  The two files with 

English and French text created two partitions each. 

The files with lower entropy are more likely to be partitioned because the left side 

of the equation '�1 � B�C��DE�
FEFCG � �B � '�()*2�B � '� is smaller for those files.  

This makes the test for partition more likely to pass. 

Taking a close examination of the partitions created by the coder, we see that the 

first partition is significantly larger than the subsequent partitions.  The reason for this is 

in the way that future symbols are predicted.  Our Markov model starts by creating 

symbols based on the previous occurrences and transitions of the symbols.  After all the 

symbols have been visited for at least their frequency of occurrence in the files, all the 

symbols are equally probable.  All subsequent symbol predictions will visit any symbol 

with equal frequency.  Therefore, the entropy of the generated symbols will approach 

maximum entropy.  This maximum entropy increases with ratio of remaining file size to 

current segment size, N/n.  The higher the ratio, the higher that entropy becomes.  

Therefore, N≈N-n and Happrox,total≈log2(N-n).  Once the test for the partition condition is 

administered using '�1 � B�C��DE�
FEFCG � �B � '�()*2�B � '� , the right side will 

approach zero.  In order for the test to pass, n has to be significantly large and H1 has to 

be significantly low. 
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Conclusions and Future Work 

In this thesis we covered the theory of data compression.  We created 

implementations of Huffman and Arithmetic coding.  We optimized the compression 

ratio of a system using Arithmetic coding and Markov models.  We were able to create a 

greedy algorithm that partitions the data by predicting compression size.  We also 

showed in our simulations that our partitions show little loss in compression ratio, and, 

at times, it improved the compression ratio. 

Next efforts in optimizing the data compression system would be in combining 

our technique with data preprocessing techniques.  In particular, we can use techniques 

such as Run-length encoding, Burrows-Wheeler transform, and Move-To-Front coding 

[1].  Each of these techniques changes the complexity of data, therefore, changing the 

effect of predictive compression. 

Markov prediction models can also be applied to other compression techniques. 

We can explore its application to video compression.  We compare Markov prediction to 

existing variable block size techniques used in video.  One of the classical problems in 

video and image compression is DCT block size selection.  We can study how to apply 

prediction to solve this problem. 

Now that we have shown its effectiveness in a data compression system, the 

next step is to show how the system would help in classical packet optimization 

situations.  These include wireless systems where noise is high and highly congested 

systems with high packet loss.  We can next study the effects of constraining the packet 

sizes based not only on measures of noise and congestion, but also our reduction of 

compression ratio.
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