
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2007

Optimum energy allocation for detection in
wireless sensor networks
Krishna Kishore Gunturu
Louisiana State University and Agricultural and Mechanical College, kguntu1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Gunturu, Krishna Kishore, "Optimum energy allocation for detection in wireless sensor networks" (2007). LSU Master's Theses. 2266.
https://digitalcommons.lsu.edu/gradschool_theses/2266

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2266&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2266&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/2266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F2266&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


OPTIMUM ENERGY ALLOCATION FOR DETECTION IN WIRELESS SENSOR NETWORKS

Thesis

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Master of Science in Electrical Engineering

in

The Department of Electrical Engineering

by
Krishna Kishore Gunturu

B.S. in Electronics and Communications Engineering., Andhra University, India 2005
December, 2007



Acknowledgments

I would like to express my gratitude to my advisor, Dr. Morteza Naraghi Pour for

his guidance and motivation towards the completion of this thesis. His technical

advice and suggestions helped me overcome hurdles and kept me enthusiastic and

made this a wonderful learning experience. I would like to thank him for being

very supportive and patient with me during my thesis and write up. I have learned

a lot from him which will help me in my academic and professional career.

I would like to thank my committee members Dr. Jorge Aravena and Dr. Xue-

Bin Liang for taking time out of their busy schedule and agreeing to be a part of

my committee.

I would like to thank all my friends at LSU who made my stay at LSU pleasant

and enjoyable. I would like to thank Chetan Chitnis for helping me with my write

up.

Finally, I would like to thank my parents and sister for the support and uncondi-

tional love they provided me throughout my life. They have supported me in every

decision I made in my life. I hope the completion of my degree will be a stepping

stone for my academic and professional career.

ii



Table of Contents

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .    iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     v

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   vii

Chapter 1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .      1
1.2 Topologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . .      2
1.3 Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    5
1.4 Energy Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    9

Chapter 2  Error Probability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    12
      2.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    12
        2.2  System Model  . . . . . . . . . . . . … . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     13
        2.3  Bitwise Energy Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..     14
        2.4  Multiple Bits with Equal Energy Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    20
                2.4.1  Two Bit Case with QPSK Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     23

Chapter 3  Distance Measure . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . .   26
      3.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    26
        3.2  Bitwise Energy Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     29
        3.3  Multiple Bits with Equal Energy Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      32
               3.3.1  Single Bit Case ... . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     33

Chapter 4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36
      4.1  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    36
        4.2  M-ary Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . .    36
                4.2.1  Error Probability Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    37
                4.2.2  Distance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     43
        4.3  Binary Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    48
                4.3.1  Error Probability Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    49
                4.3.2  Distance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     53
        4.4   Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    61

Chapter 5 Conclusions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . ..  63

References. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67
                                                   iii



List of Tables

       4.1   WSN Configuration for L = 5  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37

      4.2   Optimum α values for Different Sensor Index .. . . . . . . . . . . .. . . . . . . . . . .   38

      4.3    Optimum quantizer thresholds for Four-level quantizer for QPSK  
                Modulation  for the Error Probability . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .    39
       
       4.4    Optimum quantizer outputs for Four-level quantizer for QPSK  
                Modulation  for the Error Probability Criteria . . . . . . . . . . . . . . . . . . . . . . .    39

       4.5    Lloyd-Max quantizer thresholds for the Four-level quantizer . . . . . . . . . . .    39   
  
       4.6    WSN Configuration for L=8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    40

       4.7    Optimum quantizer thresholds for Four-level quantizer for QPSK  
                Modulation  for the Distance Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   44

4.8 WSN configuration for L=5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  46

       4.9    Optimum quantizer thresholds for Four-level quantizer for Binary  
                  Modulation  for the Error Probability Criteria  . . . . . . . . . . . . . . . . . . . . . .   49     

      4.10   Optimum quantizer outputs for Four-level quantizer for Binary  
          Modulation  for the Error Probability Criteria . . . . . . . . . . . . . . . . . . . . . . .   49 

      4.11    Optimum quantizer thresholds for Four-level quantizer for Binary  
          Modulation  for the Distance Measure . . . . .  . . . . . . . . . . . . . . . . . . . . . . .    56

      4.12   Error Probabilities for Different Methods for the two Cost Functions . . . .    61

                                         

                                                       
                                                        

                                                                  

                                                                   iv



List of Figures

       1.1    Parallel Topology of WSN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   2

      1.2  Series Topology of WSN  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    3

      1.3    Tree Topology of WSN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    4

       1.4    Quantizer  . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    6

       2.1    System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    13

       2.2    System Block Diagram for Bitwise Allocation . . . . . . . . . . . . . . . . . . . . . . .   14

       2.3    System Block Diagram for M-ary Modulation . . . . . . . . . . . . . . . . . . . . . . .    21

       4.1    Probability of Eerror vs Global Threshold . . . . . . . . . . . . . . . . . . . . . . . . . .    38

       4.2    Energy Allocation for the Sensor Nodes for L=5 using Error Probability
                Criteria for Four-level Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    41

       4.3    Energy Allocation for the Sensor Nodes for L=8 using Error Probability
                Criteria for Four-level Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    41

       4.4    Energy Allocation for the Sensor Nodes for L=5 using Error Probability
                Criteria for Binary-level Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    42

      4.5    Energy Allocation for the Sensor Nodes for L=8 using Error Probability
                Criteria for Binary-level Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   42

      4.6    Energy Allocation for the Sensor Nodes for L=5 using Distance Measure
                Criteria for Four-level Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    44

      4.7    Energy Allocation for the Sensor Nodes for L=8 using Distance Measure
                Criteria for Four-level Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    45

      4.8    Energy Allocation for the Sensor Nodes for L=5 using Distance Measure
                Criteria for Binary Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   46

     4.9    Energy Allocation for the Sensor Nodes for L=8 using Distance Measure
                Criteria for Binary Quantization  . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    47

       4.10  Energy Allocation for the Sensor Nodes for L=5 using Distance Measure
                Criteria for Binary Quantization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    48

      4.11  Energy Allocation for  Nodes  using Error Probability Criteria   for Four-
           level Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .      51

                                           

                                                                    v



      

4.12    Bitwise Energy Allocation for Four-level Quantization at SNR of 10 dB
          for Error Probability Criteria  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .  . . . . .      51

4.13    Bitwise Energy Allocation for Four-level Quantization at SNR of 20 dB
           for Error Probability Criteria  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   52

4.14    Bitwise Energy Allocation for Eight-level Quantization at SNR of 10 dB
           for Error Probability Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .      53

4.15    Bitwise Energy Allocation for Eight-level Quantization at SNR of 20 dB
           for Error Probability Criteria. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .    54

4.16    Energy Allocation for the Bits at Different SNR . . . . . . .  . .. . . . . . . . . . . . .     55

4.17    Energy Allocation for  Nodes  using Distance Measure  for Four-level
           Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .   57

4.18    Bitwise Energy Allocation for Four-level Quantization at SNR of 10 dB
           for Distance Measure Criteria  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.19   Bitwise Energy Allocation for Four-level Quantization at SNR of 20 dB
           for Distance Measure  Criteria  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .   58

4.20    Bitwise Energy Allocation for Eight-level Quantization at SNR of 10 dB
           for Distance Measure Criteria  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

4.21   Bitwise Energy Allocation for Eight-level Quantization at SNR of 20 dB
     for Distance Measure  Criteria  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . .   60

                                         

                   

                                    
                                                      

                                                                vi



Abstract

The problem of binary hypothesis testing in a wireless sensor network is studied

in the presence of noisy channels and for non-identical sensors. We have designed

a mathematically tractable fusion rule for which optimal energy allocation for in-

dividual sensors can be achieved. In this thesis we considered two methods for

transmitting the sensor observations; binary modulation and M-ary modulation.

In binary modulation we are able to allocate the energy among the sensors and

protect the individual quantized bits where as the M-ary modulation provides op-

timum energy allocation only among the sensors. The goal is to design a fusion

rule and an energy allocation for the nodes subject to a limit on the total energy

of all the nodes so as to optimize a cost function. Two cost functions were consid-

ered; the probability of error and the J-divergence distance measure. Probability

of error is the most natural criteria used for binary hypothesis testing problem.

Distance measure is applied when it is difficult to obtain a closed form for the error

probability. Results of optimal energy allocation and the resulting probability of

error are presented for the two cost functions. Comparisons are drawn between

the two cost functions regarding the fusion rule, energy allocations and the error

probability.

vii



Chapter 1
Introduction

1.1 Overview

With the development of micro electromechanical systems (MEMS), sensors can

be made smaller and cheaper [3]. This along with the advances in low power VLSI,

digital signal processing and low manufacturing costs have lead to the develop-

ment of wireless sensor networks (WSN) [17], [15]. These technologies allow for

development of small and inexpensive wireless sensor nodes, which can be easily

distributed over a large geographic area. The nodes can collect information and

relay that information to a center where the information is processed to make an

appropriate decision. In this way wireless sensor networks can be used for environ-

mental monitoring (temperature, pressure, and pollution levels), situation aware-

ness, intrusion detection and denial of access, to name a few. They can be the first

line of defense in many applications where access is limited such as detection of

biological hazards, chemical spills, health monitoring, fire detection, etc.

In many of the above detection problems, a decision needs to be made among a

set of possibilities. In particular in many applications we are interested in a decision

between two alternatives (e.g, presence or absence of a chemicals, an intruder, etc).

In detection, such a problem is referred to as binary hypothesis testing, where a

decision must be made between two alternatives, H1 and H0. Hypothesis H1 repre-

sents the presence of the target while H0 corresponds to the absence of the target.

In more general cases with multiple alternatives, we have a multi-hypothesis test-

ing problem where a decision is made in favor of M hypothesis H0, H1, · · · , HM−1

whose prior probabilities are denoted by P (H = Hi) = pi, i = 0, 1, · · · ,M − 1.

1



1.2 Topologies

In wireless sensor networks the measurements are made at the sensors whereas the

decisions are made at the fusion center. Wireless sensor networks can be organized

in a number of configurations depending on the distribution of the sensors and

the fusion center. The three major topologies used for distributed detection are

parallel, serial and tree topologies. In a parallel configuration (Fig.1.1), there is

no communication between the individual sensors . In the parallel topology , the

sensor i passes the information bi to the fusion center where the decision is made

by the fusion center based on the received information (b1, b2, · · · , bL).

PHENOMENON H

S1 S2

X1 X2 XL-1 XL

b1
b2 bL

DECISION

SL-1 SL

bL -1

FUSION
CENTER

FIGURE 1.1. Parallel Topology of WSN
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In a serial or tandem topology (Fig.1.2), all the sensors are connected in series

and make observations of the common phenomenon. Each sensor makes a decision

about the hypothesis based on the information it receives and forwards that de-

cision to the next sensor. The decision of the first sensor is completely based on

its own observation. This decision is transmitted to the second sensor which uses

it along with its own observation to make a decision and transmits it to the adja-

cent sensor. The output of the last sensor is the final decision about the observed

phenomenon.

PHENOMENON H

S1 S2

X1 X2 XL -1 XL

b1 b2 bL-1SL-1 SL
bL -1

DECISION

FIGURE 1.2. Series Topology of WSN

In the tree topology (Fig.1.3), the decision at each sensor is made based on its

own observation and the decisions from its immediate predecessor. This decision

is transmitted to its immediate successor. The information from the sensors flows

on a unique path to the final center, which forms the root of the tree. Work has

been done on detection for the tree topology in [25]. In the topologies discussed so

far , the information is transmitted only in the direction of the fusion center. The

sensors observe the phenomenon and transmit their decision toward s the fusion

center.

3



S3 S4 S6S5

S2

S1

S0

X3 X4
X5 X6

X2

X1

X0

DECISION

b3

b2

b4 b5 b6

b1

FIGURE 1.3. Tree Topology of WSN
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1.3 Literature

In our thesis we will be considering the parallel configuration with a fusion center.

The observations made at the sensor nodes are transmitted to the fusion center

for the final decision. The local observation at the node is often a real valued

measurement corrupted by noise. In classical theory of sensor signal processing

[12], the detection is performed based on the real valued observation transmitted

by the sensors. This type of detection is referred as centralized detection.

An alternative approach called decentralized detection is introduced in [31]. In

this case, the sensors quantize the real valued measurements before transmission to

the fusion center in order to reduce the communication bandwidth requirements.

Such quantization degrades the performance of the fusion decision rule and thus

leads to a trade off between the quality of the final decisions and the communication

costs. Thus decentralized scheme is proffered in cases where bandwidth is limited.

A quantizer (Fig.1.4) maps the real valued measurement into a finite set of output

values {qj} based on the threshold values {tj}. Based on the distance between

the thresholds, quantizers are classified into uniform and non-uniform quantizer.

In a uniform quantizer, the thresholds are equally spaced and the output values

are at the center of the intervals, while in a non uniform quantizer the thresholds

and output values are optimized based on the optimization of a cost function. A

quantizer is defined using the quantizer outputs qi and thresholds ti as follows:

q : �−→{q1, q2, · · · , qM}

Where

Q(X) = qi, if ti−1 ≤ X ≥ ti

where t0 = −∞, tM+1 = ∞.

5



t1 t2 t3 t5 t6 t7

q8

q7

q6

q5

q4

q3

q2

q1

output

input

FIGURE 1.4. Quantizer

In [31], [32], [34], [36] and [33], the observations made at the sensors are quan-

tized to a single bit which may be considered as the sensors local decisions. In

[33] the author shows that using likelihood-ratio test as the local decision at the

sensor nodes is optimal when the observations are conditionally independent given

the hypothesis. The authors consider identical local decisions for all the sensors.

Shannon-Gallagher-Berklekamp lower bound is applied to prove that using iden-

tical local decision rules at the sensors is optimal when the observations are inde-

pendent and identically distributed [33]. However counter examples for which non-

identical local decisions are optimal have also been identified [32].

In a binary hypothesis testing a sensor transmits a one if its decision is in favor

of H1 and a zero if its decides in favor of H0. The fusion center then makes a final

decision based on the local decisions transmitted by the sensors. Assuming that

the two hypothesis are equally likely, the optimal decision rule at the sensors is a

6



majority rule on the decisions of the sensors. The decision is made in favor of H1 if

more ones are received and in favor of H0 otherwise. In [31]-[33], the sensor nodes

and the fusion center are designed to minimize the probability of error for the final

decision at the fusion center.

Designing multi-level quantizer for binary hypothesis testing is difficult because

the probability of error does not yield a tractable solution. In such cases, Ali-

Silvey Distance measures [1] such as the J-divergence, Matsusita distance or the

Bhattacharya distances have been employed as the cost function because of the

theorems relating the maximum distance values to the minimum probability of

error. In [26], multi-level quantizer for binary hypothesis testing is designed based

on the maximization of the distance measures. To be specific, four-level quantizer

is designed for the detection of signals corrupted by additive Gaussian noise.

The work done on decentralized detection until now has not taken into account

important features of the sensor networks and of the wireless channel between the

sensors and the fusion center. Perfect reception of the sensor output is assumed

at the fusion center neglecting the effects of the wireless channel. There has been

great deal of interest among the research community with regards to the inclusion

of resource constraints such as power, cost and spectral bandwidth into the binary

hypothesis problem.

The assumption of reliable transmission fails with the incorporation of wireless

channel between the sensors and the fusion center. This limitation is made worse

by the consideration of the stringent delay constraints. In [27], the author proposes

a scheme where the information from neighboring nodes is combined through inter

network signal processing to improve the reliability of the network. This paper

([27]) considers the use of feedback, retesting and rebroadcasting of the updated

decisions to make the sensors arrive at a particular consensus. Fast and optimum

7



are the two modes of operation in [27]. In a fast mode, a decision is reached rapidly

while in a optimum mode, consensus is reached after several rounds of information

sharing.

In [4], the authors include noisy channels between the sensors and the fusion

center for a binary hypothesis testing problem. The sensors have identical local

decisions because the observations made by them are assumed as independent and

identically distributions (i.i.d) [33]. The channel between a sensor and the fusion

center is modeled by a binary symmetric channel. In [4], the sensor nodes and the

fusion center are designed by minimizing the probability of error.

The assumption of independent observations makes the problem convenient and

tractable for analysis but may not hold for arbitrary systems. For example, the

sensor observations are correlated when they are located close to each other. In

[35], the authors worked on the problem of decentralized detection with correlated

sensors. The sensor nodes are placed in a straight line with a constraint on power

per unit distance. The observations at the sensors are samples of a stochastic

process and are assessed using the theory of large deviations at the fusion center

to arrive at a final decision.

The scattered nature of the sensors will cause their respective communication

channels to have different mean path gains, with certain nodes having much better

connection than others. The quality of the wireless channel is also affected by the

changes in the environment, interference and motion of the sensors. Thus, it is

advisable to consider the impact of fading on the performance of wireless sensor

networks.

Fading and noisy channels are introduced between the sensors and the fusion

center for a binary hypothesis testing problem in [8]. The authors designed the

optimum likelihood-ratio based fusion rule for wireless sensor networks with a
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fading channel. This rule requires perfect knowledge of the local decision statistics

and state of the communication channels. They also proposed the maximum ratio

combining statistic and two stage approach using Chair-Varshney fusion rule to

alleviate the above requirements. To further robustify the fusion rule, a statistic

analogous to equal gain combiner that requires minimum a priori information is

proposed [8]. The cost of calculating the instantaneous channel information can be

reduced by the use of a fusion rule which requires only channel statistics [30].

The need for spectral bandwidth can be reduced by using a scheme where there

is no fusion center and the sensors transmit their observations to their selected

neighbors. All the sensors have the same a prior probabilities and update their

decision when they make an observation or when they receive information from

their neighbors. This process continues until a consensus is reached about the

hypothesis among the sensors [7]. This work has been heavily influenced by the

work done on distributed estimation [5].

1.4 Energy Constraint

The nodes in wireless sensor networks are powered by batteries for which replace-

ment, if at all possible, is very difficult and expensive. Thus in many scenarios,

wireless sensor nodes are expected to operate without battery replacement for

long periods or the life of the sensor. Consequently constraining the energy con-

sumption in the nodes is an very important design consideration. The life of the

sensor battery can be prolonged by using energy harvesting radios as described in

[28].

Research has been done on different aspects of energy efficient wireless sensor

networks such as estimation, TCP/IP layer algorithms, modulation, detection etc.

In [9], modulation strategy required to send a given number of bits under the energy

constraint is analyzed. The total energy of the network includes the transmission
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energy and the circuit energy consumption. Thus by optimizing the modulation

and the transmission parameters, energy consumption can be minimized. The au-

thor states that 80% energy savings is achievable over non-optimized systems for

uncoded systems. They also show the variation of the benefits of coding with the

transmission distance and underlying modulation schemes.

In [22], quantization of sensor data and energy allocation for the purpose of

estimation under energy constraint is considered. Due to bandwidth and energy

constraint, the sensor transmits a finite number of bits to the fusion center, where

the unknown parameter is estimated. The authors uses the mean reconstruction

error as the cost function for optimizing the system parameters which includes the

number of levels of quantizer and energy fractions at the nodes. Estimation in a

wireless sensor network with correlated sensor nodes under energy constraint is

considered in [19].

Energy efficient algorithms in each layer of wireless sensor networks are designed

in [11]. Medium access control (MAC) and routing algorithms under energy con-

straint are considered in [16] and [24], respectively. The detection process with a

constraint on the expected cost arising from transmission and measurements is

introduced in [29] and [2]. The sensor node consists of four units: sensing unit, mi-

croprocessor, a communication unit and a power supply. The work proposes that

energy can be saved by switching some of the components off periodically. They

propose three modes of operation: active, mute and sleeping. The sensor node is

active when all of its units are powered up. It can be in mute with its commu-

nication unit off when it plays no role in detection process. The sensor node is

sleeping when all its units are switched off. In [29], the authors suggest that en-

ergy can be saved if nodes communicate with the rest of the network only when

necessary where as in [2], the author proposes that significant energy can be saved
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by switching off the node completely whenever the information content of its next

observation is likely to be small.

In this thesis we consider the problem of binary hypothesis testing using wireless

sensor networks under energy constraint. Traditionally, the decentralized detection

problem has been investigated assuming identical sensor nodes. For example the

work reported in [36], considers identically distributed observations for all the

sensor nodes and error-free transmissions from the nodes to the fusion center. In

this thesis we do not assume identically distributed observations. In particular the

observation noise experienced by each sensor may be different. Furthermore, the

wireless channels between the sensor nodes and the fusion center are assumed to

be a noisy channels. Our goal is to design a fusion rule and an energy allocation for

the nodes so as to minimize a cost function subject to a limit on the total energy

of all the nodes. We consider two types of cost functions. The probability of error

at the fusion center as well as the divergence distance measure.

The remainder of this thesis is organized as follows. The problem of energy

allocation for the probability of error and the J-divergence cost functions is studied

in Chapter 2 and 3, respectively. The results are presented in Chapter 4 and the

conclusions are drawn in Chapter 5.
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Chapter 2
Error Probability

2.1 Introduction

Consider a binary hypothesis testing problem where a decision is made between

two hypothesis, H1 and H0 with prior probabilities P (H = H1) = p1 and P (H =

H0) = p0. Each sensor makes an observation, quantizes it and transmits it to the

fusion center where a decision is made between H0 and H1 based on the received

data from all the sensors. Traditionally an ideal channel has been assumed between

the sensors and the fusion center. In this thesis a noisy channel is assumed between

each sensor and the fusion center.

The goal is to design a fusion rule and an energy allocation for the nodes subject

to a limit on the total energy of all the nodes so as to optimize a cost function.

The cost function is defined in terms of the performance of the fusion rule. Two of

the mostly used cost functions are the distance measures [26] and the probability

of error [36]. Probability of error is the most natural criteria used for the decision

making process. However, probability of error calculation requires the knowledge of

the prior probabilities. In cases where obtaining the prior probabilities is difficult,

Neyman-Pearson criteria is used. In Neyman-Pearson criteria the probability of

detection is maximized subject to a limit on the probability of false alarm [34].

In this chapter, we will use the error probability criteria to optimize the system

parameters. We denote by ET the total energy of the L sensors. The fraction of

energy allocated to sensor i is denoted by θi. This implies that the energy of sensor

i for transmission of its observation is given by θiET and
∑L

i=1 θi = 1.
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2.2 System Model

Consider a network of L wireless sensors with sensor i acquiring a measurement Xi

about the observed phenomenon. Each observation consists of two signals s0 and

s1, where s1 = −s0 = d, corrupted by additive Gaussian noise with mean zero and

variance σi
2. Although Gaussian noise is assumed here, the results can be extended

to other cases. With this assumption we have

pXi
(x|H0) ∼ N (−d, σ2

i )

pXi
(x|H1) ∼ N (d, σ2

i ) (2.1)

H

Q(X1)

Modulation

AWGN
Channel

Demodulation

Decision
Rule

Q(X2)

Modulation

AWGN
Channel

Demodulation

Q(XL)

Modulation

AWGN
Channel

Demodulation

S1 S2 SL

X1 X2 XL

Fusion
Center

X1
^ ^

^X2
XL

FIGURE 2.1. System Block diagram
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Each sensor quantizes its real-valued measurement before transmission to the

fusion center in order to reduce the communication bandwidth requirements. The

quantizer for sensor i uses output values {qij}M
j=1 and the thresholds {tij}M

j=0, where

ti0 = −∞ and tiM = ∞ for all i. Each quantizer output is subsequently encoded

into bits bi1, bi2, · · · , biN , where N = log2M .

The channel between the sensors and the fusion center is assumed to be an addi-

tive white Gaussian noise channel (AWGN). A modulation scheme is assumed for

transmission of the quantizer output bits across the AWGN channel. The system

block diagram is shown in Figure 2.1. We denote the output of the ith demod-

ulator by (zi1, zi2, · · · , ziN). These bits are used to construct an estimate of the

observation signal Xi, which we denote by X̂i. The fusion center uses the vector

X̂ = (X̂1, X̂2, · · · , X̂L) to make a decision regrading the hypothesis H .

2.3 Bitwise Energy Allocation

In this section the quantized bits bi1, bi2, · · · , biN are modulated using a binary mod-

ulation scheme such as BPSK or BFSK. Consequently the channel between sensor

i and the fusion center can be modeled by a binary symmetric channel. Let βij de-

note the fraction of energy of sensor i used to transmit the jth bit. Then cross over

probability εij is given in terms of channel noise power spectral density, N0

2
, and the

bit energy Eb. For example for BPSK modulation εij = Q(
√

2Eb

N0
) = Q(

√
2βijθiET

N0
)

and for BFSK modulation εij = Q(
√

Eb

N0
) = Q(

√
βijθiET

N0
). The demodulated bits

QUANTIZER
Q (X 1)

BPSK
MODULATION

RECONSTRUCTIONDEMODULATOR

Xi
Xi
^zi1 ,zi2 ,..., ziN

AWGN
CHANNEL

b1,bi2 ,..., biN

FIGURE 2.2. System Block Diagram for Bitwise allocation

zi1, zi2, · · · , ziN are used to reconstruct the observation signal X̂i. The fusion center
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receives the reconstructed signal sequence X̂1, X̂2, · · · , X̂L and must decide on the

value of H .

Finding the optimum decision rule for H based on X̂ is mathematically in-

tractable. The optimal decision rule requires the conditional distribution of X̂

given the hypothesis H . This is difficult to calculate because of the complexity

introduced by the quantizer operation as well as the effects of the channel. Sup-

pose the fusion rule has access to the exact values of the sequence (X1X2, · · · , XL).

This ignores the quantizer noise and the channel errors. It is well known that the

optimum decision rule based on the observation (X1, X2, · · · , XL) is given by

ξ(x1, x2, · · · , xL) =

⎧⎪⎨
⎪⎩

H1,
∑L

i=1 αixi ≥ τ

H0,
∑L

i=1 αixi < τ
(2.2)

where αi = 1
σ2

i
, i = 1, 2, · · · , L and τ is the threshold used at the fusion center.

With this in mind, and assuming that the quantizer noise is small and the

channel error effects are insignificant we opt for the following fusion rule for the

received sequence X̂ = (X̂1, X̂2, · · · , X̂L). Let

ξ(x̂1, x̂2, · · · , x̂L) =

⎧⎪⎨
⎪⎩

H1,
∑L

i=1 αix̂i ≥ τ

H0,
∑L

i=1 αix̂i < τ
(2.3)

Evaluation of the performance of this rule requires the distribution of Y =∑
αiX̂i. Assuming a large number of sensors (L→∞), we use an asymptotic con-

ditional distribution of Y given the value of H . For this we invoke a form of central

limit theorem which is derived from Lyapanov’s theorem on the limiting distribu-

tion of the sum of non-identically distributed random variables [10]. Specifically, it

is shown in [10] that the distribution of Y converges to that of a Gaussian random

variable provided that
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E(X̂i) ≤ ∞, var(X̂i) ≤ ∞,

and the ratio of the coefficients αi remains bounded , i.e,

|αi

αj
| ≤ B <∞, ∀ i, j.

In view of this, to compute the conditional distribution of Y givenH we only need

to compute the conditional mean and variance of Y given H (since the conditional

distribution is Gaussian). The conditional moments of Y are then evaluated as

follows.

E(Y |H�) =
∑

αiE(X̂i|H�), var(Y |H�) =
∑

αi
2 var(X̂i|H�), 	 = 0, 1 (2.4)

The reconstructed signal (X̂i) is a discrete random variable which takes the

quantizer output values (qi1, qi2, · · · , qiM) based on the values of the received bits

zi1, zi2, · · · , ziN . The conditional moment of the reconstructed signal X̂i is given

by:

E(X̂i|H0) =

M∑
j=1

qijP (X̂i = qij |H0) (2.5)

Let E(X̂i|H0) = ωi0. Then

var(X̂i|H0) =
M∑

j=1

qij
2P (X̂i = qij |H0) − ωi0

2 (2.6)

Similarly for hypothesis H1, we have

E(X̂i|H1) =

M∑
j=1

qijP (X̂i = qij |H1) (2.7)

Let E(X̂i|H1) = ωi1. Then

var(X̂i|H1) =

M∑
j=1

qij
2P (X̂i = qij |H1) − ωi1

2 (2.8)

For 	 = 0, 1, let var(X̂i|H�) = γi�
2.
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In order to calculate the conditional moments we need to determine the probabil-

ity distribution of reconstructed signal X̂i. Suppose the quantizer output value qij is

mapped to the binary vector zi1, zi2, · · · , ziN . Then having received (zi1, zi2, · · · , ziN ),

the reconstruction of X̂i produces X̂i = qij .

The probability distribution function of X̂i is given as follows for 	 = 0, 1.

P (X̂i = qij)|H�) = P (zi1, zi2, · · · , ziN |H�)

=

1∑
k1=0

· · ·
1∑

kN=0

P (zi1, · · · , ziN |bi1 = k1, · · · , biN = kN , H�)

P (bi1 = k1, · · · , biN = kN |H�)

=

1∑
k1=0

, ..,

1∑
kN=0

N∏
j=1

P (zij |bij = kj)

P (bi1 = k1, · · · , biN = kN |H�) (2.9)

The transition probability P (zij = 1|bij = 0) is given by εij . The probability

P (bi1 = k1, · · · , biN = kN |H�) is determined by the distribution of Xi and the

quantizer thresholds. For example, if bi1 = k1, bi2 = k2, · · · , biN = kN represents

the quantizer output qij , then

P (bi1 = k1, · · · , biN = kN |H�) = P (Xi = qij |H�) = P (tij ≤ Xi ≤ tij+1|H�) (2.10)

From (2.9) and (2.10), we can obtain the probability mass function of the re-

constructed variable X̂i. Thus, the conditional moments of the signal Y can be

determined.

In Binary hypothesis testing problem, if a decision is taken in favor of H1 when

H0 is true, the error is called false alarm and the associated conditional probability

of error is the probability of false alarm, denoted as PF . A miss is said to occur, if

a decision is in favor of H0 when H1 is true. The corresponding conditional prob-

ability of error is the probability of miss denoted by PM . Probability of detection
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(PD) is the conditional probability that the decision is made in favor of H1 when

H1 is true.

Based on the fusion rule in (2.3), the probability of false alarm is given by

PF = P (Y ≥ τ |H0), (2.11)

Since the distribution of Y =
∑
αiX̂i is approximated by a Gaussian distribution

with conditional moments given by (2.4),

PF = Q

⎛
⎝τ − ∑L

i=1 αiωi0√∑L
i=1 αi

2γi0
2

⎞
⎠ (2.12)

and the probability of detection is given by

PD = P (Y ≥ τ |H1)

= Q(
τ − ∑L

i=1 αiωi1√∑L
i=1 αi

2γi1
2

) (2.13)

Thus the probability of miss is given by:

PM = P (Y ≤ τ |H1)

= 1 − PD (2.14)

Finally the probability of error is given as

Pe = p(H = H0)P (Y ≥ τ |H0) + P (H = H1)P (Y ≤ τ |H1)

= p0PF + p1PM

= p0PF + p1(1 − PD)

= p0Q

⎛
⎝τ − ∑L

i=1 αiωi0√∑L
i=1 αi

2γi0
2

⎞
⎠ + p1[1 −Q

⎛
⎝τ − ∑L

i=1 αiωi1√∑L
i=1 αi

2γi1
2

⎞
⎠ (2.15)

Let θ = (θ1, θ2, · · · , θL), βi = (βi1, βi2, · · · , βiN). Also let y = (α1, α2, · · · , αL).

Our goal is to minimize the probability of error by designing the fusion rule and
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allocating energies to the each transmitted bit of each sensor subject to a limit

on the total energy of the sensor network.The optimization problem can now be

stated as follows.

Minimize Pe(τ, θ, {βi}L
i=1,y, tij, qij)

Subject to
∑L

i=1 θi = 1∑N
j=1 βij = 1, i = 1, 2, · · · , N

θi ≥ 0 & βij ≥ 0, i = 1, 2, · · · , L. j = 1, 2, · · · , N

(2.16)

where we have written Pe(τ, θ, {βi}L
i=1,y, tij, qij) for the probability of error Pe in

order to show its dependence on the set of parameters.

This is a non-linear programming problem that can be solved using the method

of Lagrange multipliers. Lagrange multiplier converts a constrained problem of n

variables with k constraints into an unconstrained problem of n+ k variables. The

method introduces a new parameter called lagrange multiplier for each constraint

in order to convert the problem into an unconstrained problem [6].

For our problem a Lagrangian is formulated as follows:

L(τ, θ, {βi}L
i=1,y, tij, qij , {κi}, μ, {ψij}, χi) =

Pe(τ, θ, {βi}L
i=1,y, tij, qij)+

L∑
i=1

κiθi+μ(

L∑
i=1

θi − 1)+

L∑
i=1

χi

N∑
j=1

(βij − 1)+

L∑
i=1

N∑
j=1

ψijβij

(2.17)

The optimal solution of the Lagragian is obtained by applying the Karush-

kuhn-Tucker (KKT) conditions.The Karush-kuhn-Tucker (KKT) conditions [18],

[20] is a generalization of the method of Lagrange multipliers. It gives the necessary

conditions for the solution to be optimal. The Karush-kuhn-Tucker (KKT) [18],

[20] conditions dictate that there must exist γ ≥ 0, {κi ≥ 0}L
i=1, {ψij ≥ 0, ∀i, j},
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{χi}L
i=1 and μ such that

θi ≥ 0, κiθi = 0, i = 1, 2, .., L, ψijβij ≥ 0, j = 1, 2, .., N.

L∑
i=1

θi = 1

N∑
j=1

βij = 1, ∀i

γ∇Pe(τ, θ, {βi}L
i=1,y, tij, qij) + ∇

L∑
i=1

κiθi

+∇μ(
L∑

i=1

θi − 1) + ∇
L∑

i=1

N∑
j=1

ψijβij + ∇
L∑

i=1

χi(
N∑

j=1

βij − 1) = 0 (2.18)

Where ∇ denotes gradient.

According to the necessary condition of KKT ([20], [18]), there exists a local

minimum at point (x) if the objective function and the constraints are continuously

differentiable at a point x. The sufficient condition of KKT state that there is

a feasible global optimum satisfying the above equation (2.18) if the objective

function and the non-equality constraints are convex and the equality constraints

are affine. By solving the constrained problem (2.16), we can obtain the optimal

energy allocations (θ, βi) and the fusion rule (y, τ). To get a better understanding

of the above problem, we present the results for N = 3 and N = 1 in Chapter 4.

2.4 Multiple Bits with Equal Energy Allocation

In this section we use M-ary modulation to transmit the quantized observation

across the channel. The quantizer outputs qi1, qi2, · · · , qiM are mapped to symbols

l1, l2, · · · , lM respectively. The transmission symbol ui takes the value of one of

the mapped symbols depending on the distribution of the observation signal Xi.

The value of ui is transmitted across the AWGN channel and zi denotes the de-

modulated symbol. The demodulated symbol zi is used to get an estimate of the
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observation signal Xi, which is denoted by X̂i. The system model is given by Figure

2.3.

The fusion center receives the reconstructed signal sequence X̂ = (X̂1, X̂2, · · · , X̂L)

and must decide on the value of H . In order to make the fusion rule optimal and

tractable we opt for the fusion rule given by (2.3). Evaluation of this rule requires

the distribution of Y =
∑
αiX̂i. Assuming a large number of sensors (L→∞), we

invoke the central limit theorem [10] on the conditional distribution of Y given the

value of H .

The conditional moments of Y are given by (2.4). In order to obtain the condi-

tional moments of Y , we need to determine the conditional moments of X̂i which

are given by Equations (2.5, 2.6, 2.7 and 2.8). The reconstructed signal X̂i is a

discrete random variable which takes the quantizer output values qi1, qi2, · · · , qiM
depending on the received symbol zi.

Suppose the quantizer output value qij is mapped to the symbol lj . Then having

received zi = lj, the reconstruction of X̂i produces an estimate X̂i = qij .

The conditional distribution of X̂i is given by:

P (X̂i = qij |H�) = P (zi = lj |H�)
M∑

k=1

P (zi = lj|ui = lk, H�)P (ui = lk|H�)

M∑
k=1

P (zi = lj|ui = lk)P (ui = lk|H�) (2.19)
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where P (zi = lj |ui = lk) is the transition probability that the symbol lj is received

when the symbol lk is transmitted across the channel.

The transition probability is determined as follows.

Let sj(t) be the modulated signal for the jth symbol (lj) and r(t) denote the

output of the channel. Lets denote the kth orthonormal basis function by δk(t).

For an AWGN channel, the conditional distribution of the received signal is given

in [14] as follows

P (r|ui = lj) = (πN0)
N
2 exp[− 1

N0

N∑
k=1

(rk − sjk)
2] (2.20)

where sjk =
∫ T

t=0
sj(t)δk(t)dt and rk =

∫ T

t=0
r(t)δk(t)dt. Thus the transition proba-

bilities for the discrete memoryless channel are given by:

P (zi = lm|lj) =

∫
Rm

(πN0)
N
2 exp[− 1

N0

N∑
k=1

(rk − sjk)
2]drk. (2.21)

where Rm is the decision region used by the demodulator for the symbol lm.

The transition probabilities P (zi|ui) depend on the energy ET θi required to

transmit the symbol across the channel. The probability P (ui = lj|H�) is deter-

mined by the distribution of Xi and the quantizer thresholds. For example, if the

symbol lj represents the quantizer output qij , then

P (ui = lj|H�) = P (Q(Xi) = qij|H�) = P (tij ≤ Xi ≤ tij+1|H�) (2.22)

From (2.21) and (2.22) the conditional distribution of the reconstructed signal X̂i

is calculated. Thus, the conditional moments of X̂ can be determined (4).

The probability of false alarm is given by (2.12) and the probability of detection

by (2.13). Finally the probability of error is given by:

Pe = p0PF + p1PD (2.23)
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The optimization problem can now be stated as follows.

minimize Pe(τ, θ,y, tij, qij)

Subject to
∑L

i=1 θi = 1

θi ≥ 0 i = 1, 2, · · · , L

(2.24)

As discussed in the previous section, the optimization problem can be solved

using Lagrange multipliers. For this a Lagragian is formulated as follows

L(τ, θ,y, tij, qij, {κi}, μ) =

Pe(τ, θ,y, tij, qij) +

L∑
i=1

κiθi + μ(

L∑
i=1

θi − 1) (2.25)

The optimal solution of the Lagragian is obtained by applying the Karush-kuhn-

Tucker (KKT) conditions. The Karush-kuhn-Tucker (KKT) condition [18], [20] is

a generalization of the method of Lagrange multipliers. The Karush-kuhn-Tucker

(KKT) [18], [20] conditions dictate that there must exist γ ≥ 0, {κi ≥ 0}L
i=1, and

μ such that

θi ≥ 0, κiθi = 0, i = 1, 2, .., L.

L∑
i=1

θi = 1

γ∇Pe(τ, θ,y, tij, qij) + ∇
L∑

i=1

κiθi + ∇μ(

L∑
i=1

θi − 1) = 0 (2.26)

where ∇ denotes gradient.

The optimal energy allocations (θ) and the fusion rule (y, τ) can be obtained by

solving the lagrange multiplier problem (2.26) and (2.26).

2.4.1 Two Bit Case with QPSK Modulation

To get a better understanding of the problem, we solved the above problem using

a four-level quantizer. The observations made at the senors are quantized into

finite output values qi1, qi2, qi3, qi4 and subsequently mapped to symbols l1, l2, l3, l4
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respectively. Let ui be the symbol transmitted by the sensor i across the channel

and received as zi. The channel is modeled by a discrete memoryless channel.

The received symbol zi is processed to get an estimate of the observation signal

Xi, denoted by X̂i. The fusion center receives the reconstructed sequence X̂ =

(X̂1, X̂2, · · · , X̂L) and makes a decision on the value of H using the fusion rule

(2.3).

In order to evaluate the performance of the this rule, we need the distribution

of Y =
∑
αiX̂i. The conditional distribution of Y is given by (2.4). To determine

the conditional distribution of the signal Y we need to determine conditional dis-

tribution of X̂i. The conditional distribution of X̂i is given by (2.19). This requires

the knowledge of the transition probabilities for the channel.

The transition probabilities of the channel are determined as follows:

Let sj(t) be the modulated signal for the jth symbol (lj) and r(t) denote the

output of the channel. Lets denote the kth orthonormal basis function by δk(t).

The conditional distribution of the received signal is given by [14]

P (r|ui = lj) = πN0 exp[− 1

N0

2∑
k=1

(rk − sjk)
2] (2.27)

where sjk =
∫ T

t=0
sj(t)δk(t)dt and rk =

∫ T

t=0
r(t)δk(t)dt. For a QPSK modulation,

they are given by ({sj1, sj2} = {(±
√

ET θi

2
,±

√
ET θi

2
),∀j) for symbols l1, l2, l3, l4

respectively.

The transition probabilities of the channel are given by

P (zi = lm|lj) =

∫
Rm

P (r|ui = lj)drk. (2.28)

The decision regions for the four symbols l1, l2, l3, l4 are given by {(r1 ≥ 0, r2 ≥
0), (r1 ≤ 0, r2 ≥ 0), (r1 ≥ 0, r2 ≤ 0), (r1 ≤ 0, r2 ≤ 0)} respectively in a two

dimensional plane. Thus we can determine the transition probabilities (2.28). The
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conditional distribution of Y can now be determined (4). Applying the conditional

moments of Y , we finally arrive at the probability of error (2.15).

The optimization problem is now given by (2.24). The optimization problem can

be solved using Lagragian multipliers. For this a Lagragian is formulated by (2.25).

The Karush-kuhn-Tucker (KKT) [18], [20] conditions dictate that there must exist

γ ≥ 0, {κi ≥ 0}L
i=1, and μ such that

θi ≥ 0, κiθi = 0, i = 1, 2, .., L.

L∑
i=1

θi = 1

γ∇Pe(τ, θ,y, tij, qij) + ∇
L∑

i=1

κiθi + ∇μ(

L∑
i=1

θi − 1) = 0 (2.29)

where ∇ denotes gradient. The optimal energy allocations (θ) and the fusion rule

(y, τ) can be obtained by solving the constrained problem.
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Chapter 3
Distance Measure

3.1 Introduction

In general we would like to perform the energy allocation using the error probability

as the cost function. However, as noted in the previous chapter obtaining the

optimal detection rule may be intractable. In addition, it is difficult to obtain the

closed form expression for the error probability if we are using an M-level quantizer

to quantize the sensor observations. To overcome this problem, we use the Ali-

Silvey class of distance measures [1]. This class of Ali-silvey distance measures is

defined between the probability distributions P0 = P (x|H0) and P1 = P (x|H1)

and is written as follows:

d(P0, P1) = f{E0{C(L)}} (3.1)

where d(P0, P1) is the distance between the probability distributions, f is an in-

creasing function, C is a convex function and L is the likelihood ratio dP1

dP0
and

E0 denotes expectation w.r.t P0. The Three examples of the Ali-Silvey distance

measures are given in the following:

• J-Divergence [21] : E0{(L−1) logL} . This expression fulfills all the require-

ments of the Ali-silvey distance measures. It can be expanded as follows to

make it easier for analysis.

J −Divergence = E0{(L− 1) logL}

=

∫
dP1 − dP0

dP0
logL dP0

=

∫
logL dP1 − logL dP0

= E1(logL) −E0(logL) (3.2)
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This form of J-divergence (3.2) is widely used in the detection problems [26].

• Matsusita’s Distance [23] : d = [E0{(
√
L − 1)2}]2. In this case the convex

function C(L) is given by (
√

(L) − 1))2 and the increasing function f(d)

by
√
d. Both the functions satisfy the requirements of Ali-Silvey distance

measures (3.1).

• Bhattacharya distance : B = − log(1 − d2) (d is Matsusita’s distance). The

bhattacharya distance has the same convex function as the matsusita distance

while the increasing function f(d) is given by log(1 − d).

These distance measures are frequently used in detection problems because of

the theorems relating the maximum distance to the minimum probability of error

[26]. Lets apply the theorem to the classic binary hypothesis testing problem where

a decision is made at the fusion between two hypothesis, H1 and H0. The fusion

center makes a decision based on the decision vector X̂. A solution to the problem

is obtained by classifying the sample space into two complementary regions R1 and

R2 and allocating to H� if X̂ ∈ R�.

Let P1 be the distribution of X̂ under hypothesis H1 and P0 under hypothesis

H0.

The probability of error for this case is given by:

pe = π1

∫
R1

P1dx̂+ π0

∫
R0

P0dx̂ (3.3)

where π1 and π0 are the prior probabilities of the hypothesis,H1 and H0 respec-

tively.

If R1 is chosen to minimize pe, we have [1]

R1 = {x̂ : P1/P0 < π1/π0},
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and consequently

R0 = {x̂ : P1/P0 ≥ π1/π0},

In [1], it is shown that

1 − pe = π0 + π1

∫
L>

π1
π0

[L− π1

π0
]dx̂

= π1E0|L− π1

π0
| (3.4)

Thus we have

1 − 2pe = π1E0|L− π1

π0

| (3.5)

In the Equation 3.5, the coefficient 1− 2pe reelects the distance between the prob-

ability distributions. Thus this relates the minimum error probability to the max-

imum distance measures.

This has triggered the application of Ali-Silvey distance measures in signal de-

tection theory. They are applied in [26] to design a generalized quantizer for binary

hypothesis testing problem. They have been applied to signal selection and radar

technology in [13]. We apply them here to derive a tractable design procedure

for the binary hypothesis testing. The design of the application depends on the

type of distance measure being used. Therefore, the selection of a suitable distance

measure is important. In our thesis, we use the J-divergence distance measure in

particular because it gives a tractable solution to the energy allocation problem.

Our goal is to design a fusion rule and an energy allocation for the nodes so as to

maximize the J-divergence with a limit on the total energy of all the nodes. In the

case of J-Divergence, we will desgin a generalized quantizer. Generalized quantizer

involves the design of the thresholds only. The quantizer outputs can be obtained

from the thresholds.
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3.2 Bitwise Energy Allocation

The observations made by the sensors are quantized into bits (bi1, · · · , biN) before

being transmitted to the fusion center in order to reduce the bandwidth require-

ments. The bits are modulated using a binary modulation scheme such as BPSK

and BFSK. Consequently the channel between the sensor i and the fusion center

can be modeled by a binary symmetric channel. The received signal is demodu-

lated by the ith demodulator into bits zi1, zi2, · · · , ziN which are used to estimate

the observation signal, which is denoted by X̂i. The reconstructed signal X̂i takes

the quantizer output values {qi1, qi2, · · · , qiM} depending on the received bits. The

reconstructed signal sequence X̂ = (X̂1, X̂2, · · · , X̂L) is used by the fusion center

to make a decision on the observed hypothesis H . The optimal fusion rule is a

likelihood- ratio test [34] .

ξ(x̂1, x̂2, · · · , x̂L) =

⎧⎪⎨
⎪⎩

H1, ln p(X̂|H1)

p(X̂|H0)
≥ τ

H0, ln p(X̂|H1)

p(X̂|H0)
< τ

(3.6)

We can write

T (X̂) = ln
p(X̂|H1)

p(X̂|H0)
=

L∑
i=1

ln
p(X̂i|H1)

p(X̂i|H0)
(3.7)

Our goal is to to design a fusion rule and an energy allocation for the nodes

subject to a limit on the total energy of all the nodes so as to maximize the

distance measure. Probability of error is the most natural criteria used for decision

making process. In order to calculate the probability of error , we need to determine

the probability of false alarm (PF ) and probability of detection (PD) for the fusion

rule. The probability of false alarm is given by

PF = P (T (X̂) ≥ τ |H0) (3.8)

and the probability of detection is given by

PD = P (T (X̂) ≥ τ |H1) (3.9)
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It is difficult to obtain a closed form for the above equations (3.8)and (3.9). The

fusion rule does not give a tractable design solution if we are using error probability

criteria as the cost function. Therefore, in this chapter we opt for an alternative cost

function, namely the J-divergence distance measure which belongs to the class of

Ali-Silvey distance measures [1] between probability measures. The J-divergence

distance measure gives us an tractable solution even though it may not be an

optimal solution.

Let θ = (θ1, θ2, · · · , θL) and βi = (βi1, βi2, · · · , βiN , ∀i).
The J-divergence distance measure is given by (3.2):

J(θ, {βi}L
i=1, tij) = EH1

[
T (X̂)

]
− EH0

[
T (X̂)

]

= EH1

[
ln
p(X̂|H1)

p(X̂|H0)

]
−EH0

[
ln
p(X̂|H1)

p(X̂|H0)

]

= EH1

[
L∑

i=1

ln
p(X̂i|H1)

p(X̂i|H0)

]
−EH0

[
L∑

i=1

ln
p(X̂i|H1)

p(Mi|H0)

]

=

L∑
i=1

EH1

[
ln
p(X̂i|H1)

p(X̂i|H0)

]
−EH0

[
ln
p(X̂i|H1)

p(X̂i|H0)

]

(3.10)

Thus J(θ, {βi}L
i=1, tij) =

∑L
i=1 J(θi, βi, {tij}M−1

j=1 , {qij}M
j=1), where

J(θi, βi, {tij}M−1
j=1 ) = EH1 [ln

p(X̂i|H1)

p(X̂i|H0)
] − EH0 [ln

p(X̂i|H1)

p(X̂i|H0)

=
M∑

j=1

p(X̂i = qij|H1)

[
ln
p(X̂i = qij |H1)

p(X̂i = qij |H0)

]

−p(X̂i = qij |H0)

[
ln
p(X̂i = qij|H1)

p(X̂i = qij|H0)

]

(3.11)

In order to determine the J-divergence , we need the probability mass function

of the reconstructed signal X̂i. This is given by (2.9).
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The optimization problem can now be formulated as follows.

Maximize
∑L

i=1 J(θi, βi, {tij}M−1
j=1 )

Subject to
∑L

i=1 θi = 1∑N
j=1 βij = 1, i = 1, 2, · · · , L

θi ≥ 0 & , βij ≥ 0, i = 1, 2, · · · , L. j = 1, 2, · · · , N.

(3.12)

For this a lagrangian is formulated as follows:

L(θ, {βi}L
i=1, tij , {κi}, μ, {ψij}, χi) =

−
L∑

i=1

J(θi, βi, {tij}M−1
j=1 )+

L∑
i=1

κiθi+μ(
L∑

i=1

θi − 1)+
L∑

i=1

χi

N∑
j=1

(βij − 1)+
L∑

i=1

N∑
j=1

ψijβij

(3.13)

The Karush-kuhn-Tucker(KKT) [18], [20] is a generalization of the method of

Lagrange multipliers. They state the necessary conditions for the solution to be

optimal. The Karush-kuhn-Tucke(KKT) [18], [20] conditions dictate that there

must exist γ ≥ 0, {κi ≥ 0}L
i=1, {ψij ≥ 0, ∀i, j}, χi and μ such that

θi ≥ 0, κiθi = 0, i = 1, 2, .., L, ψijβij ≥ 0, j = 1, 2, .., N.

L∑
i=1

θi = 1

N∑
j=1

βij = 1, ∀i

−γ∇
L∑

i=1

J(θi, βi, {tij}M−1
j=1 ) + ∇

L∑
i=1

κiθi

+∇μ(
L∑

i=1

θi − 1) + ∇
L∑

i=1

N∑
j=1

ψijβij + ∇
L∑

i=1

χi(
N∑

j=1

βij − 1) = 0 (3.14)

where ∇ denotes gradient.

The solution of the constrained problem (Eq.3.12) gives the optimum system

design for the wireless sensor networks under energy constraint. The results for

both N = 3 and N = 2 are presented in the Chapter 4.
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3.3 Multiple Bit with Equal Energy Allocation

In this section the quantizer outputs qij are modulated using M-ary modulation

before transmission across the channel. The quantizer outputs qi1, qi2, · · · , qiM are

mapped to symbols l1, l2, · · · , lM respectively. The transmitted symbol ui takes

the value of one of the mapped symbols depending on the distribution of the

observation signal Xi. The channel is modeled as discrete memoryless channel

whose transition probabilities are given by (2.21). The value of ui is transmitted

across this channel and zi denotes the received symbol. The received symbol zi is

used to get an estimate of the observation signal Xi, which is denoted by X̂i. The

system model is given by Figure 2.3. The fusion center takes a decision based on

the reconstructed signal sequence X̂ = {X̂1, X̂2, · · · , X̂L}. The optimal fusion rule

is given by (3.6).

It is difficult to obtain a closed form for the error probability for this fusion

rule. Therefore, we opt for an alternative cost function, namely the J-divergence

distance measure which belongs to the class of Ali-Silvey distance measures. The

j-divergence is given as follows:

Let θ = (θ1, θ2, · · · , θL)

J(θ, {tij}M−1
j=1 ) =

L∑
i=1

EH1

[
ln
p(X̂i|H1)

p(X̂i|H0)

]
−EH0

[
ln
p(X̂i|H1)

p(X̂i|H0)

]

Thus J(θ, tij) =
∑L

i=1 J(θi, {tij}M−1
j=1 ), where

J(θi, tij) = EH1 [ln
p(X̂i|H1)

p(X̂i|H0)
] − EH0 [ln

p(X̂i|H1)

p(X̂i|H0)
(3.15)

=

M∑
j=1

p(X̂i = qij |H1)[ln
p(X̂i = qij |H1)

p(X̂i = qij |H0)
]

−p(X̂i = qij |H0)[ln
p(X̂i = qij|H1)

p(X̂i = qij|H0)
]

where qij represents the quantizer output values.

32



The probability mass function of the reconstructed signal X̂i is given by (2.19).

The optimization problem for the J-divergence is formulated as follows.

Maximize
L∑

i=1

j(θi, tij) (3.16)

Subject to

L∑
i=1

θi = 1 (3.17)

θi ≥ 0 (3.18)

The above non linear programming problem can be solved using the method of

Lagrange multipliers. The Lagrangian is formulated as follows:

L(θ, tij{κi}, μ) = −
L∑

i=1

J(θi, {tij}M−1
j=1 ) +

L∑
i=1

κiθi + μ(
L∑

i=1

θi − 1) (3.19)

The Karush-kuhn-Tucker(KKT) [18], [20] conditions dictate that there must

exist γ ≥ 0, {κi ≥ 0}L
i=1, and μ such that

θi ≥ 0, κiθi = 0, i = 1, 2, .., L,

L∑
i=1

θi = 1

−γ∇
L∑

i=1

J(θi, {tij}M−1
j=1 ) + ∇

L∑
i=1

κiθi + ∇μ(

L∑
i=1

θi − 1) = 0 (3.20)

where ∇ denotes gradient.

The optimal and tractable system design can be obtained by solving the con-

strained problem (3.18). To get a better understanding of the problem , we will

solve the problem for N = 2 where we use QPSK modulation to modulate the

quantized bits. The results presented in chapter.4 will corroborate the discussion.

3.3.1 Single Bit Case

In this section , the observations made by the sensors are quantized using a binary

quantizer. The output of the bi-level quantizer is considered as the local decision
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made by the sensor. For the given observation (2.1), the sensor i computes a local

binary decision ui according to

ui =

⎧⎪⎨
⎪⎩

1, if ln(
pXi

(x|H1)

pXi
(x|H0)

) ≥ λi

0, if ln(
pXi

(x|H1)

pXi
(x|H0)

) < λi

For the given distribution (2.1), the optimal value of λk is given by

λi =
σi

2(log2 q0 − log2 q1)

2d
(3.21)

The channel between sensor i and the fusion center is modeled by a binary sym-

metric channel. The value of ui is transmitted to the fusion center over this channel

and zi denotes the received bit. For the sake of concreteness we assume that the

sensors use a BPSK modulation scheme. . The fusion center receives the sequence

Z = (z1, z2, · · · , zL) and must decide on the state of H . The fusion rule is given by

(3.6). In this case obtaining an expression for the error probability that is suitable

for energy allocation is difficult. Therefore, in this section we opt for an alternative

cost function, namely the J-divergence distance measure.

J(θ) = EH1 [T (z)] − EH0 [T (z)] (3.22)

where T (z) is the log-likelihood ratio function given by T (Z) = ln p(z|H1)
p(z|H0)

and EH�

is expectation operation under the hypothesis H�. We can write

T (z) = ln
p(z|H1)

p(z|H0)
=

L∑
i=1

ln
p(zi|H1)

p(zi|H0)
(3.23)

From (3.10), we have J(θ) =
∑L

i=1 j(θi).
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In order to calculate the J-divergence, we need to determine the conditional

distribution of zi. The conditional distribution of zi is given by

P (zi = 1|H0) = P (zi = 1|ui = 0, H0)P (ui = 0|H0)

+P (zi = 1|ui = 1, H0)P (ui = 1|H0)

= εi

[
1 −Q

(
λiσi

2d
+
d

σi

)]
+ (1 − εi)Q

(
λiσi

2d
+
d

σi

)
(3.24)

where εi = Q(2ET θi

N0
).

Similarly for hypothesis H1, we have

P (zi = 1|H1) = P (zi = 1|ui = 0, H1)P (ui = 0|H1)

+P (zi = 1|ui = 1, H1)P (ui = 1|H1)

= εi

[
1 −Q

(
λiσi

2d
− d

σi

)]
+ (1 − εi)Q

(
λiσi

2d
− d

σi

)
(3.25)

Thus we can determine the J-divergence.

The optimization problem for this case is given by (3.18). The lagragian is given

by (3.19). The optimal solution for the lagragian can be obtained by using the KKT

conditions [18], [20]. The KKT conditions dictate that there must exist {κ}L
i=1 and

μ such that:

θi ≥ 0, κi ≥ 0, κθi = 0, i = 1, 2, ...., L

L∑
i=1

θi = 0

−∇(

L∑
i=1

J(θi) + ∇(

L∑
i=1

κiθi) + ∇(μ(

L∑
i=1

θi − 1)) = 0 (3.26)

By solving this problem we can obtain the optimal energy allocation scheme.
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Chapter 4
Results

4.1 Introduction

In this thesis, we consider a binary hypothesis testing problem where a decision is

made between two hypothesis, H1 and H0 with prior probabilities P (H = H1) = p1

and P (H = H0) = p0. The decision is made at the fusion center based on the

quantized observations transmitted by the sensor. The decision is made using a

fusion rule which is designed by optimizing the cost function. In this thesis we

used two different cost functions; the error probability criteria and J-divergence

distance measure. Apart from designing the fusion rule, we are also interested in

the energy allocation for the nodes with a limit on the total energy of all the nodes.

Previously in the Chapter 2 and 3, we presented the fusion rule used by the

fusion center for both the error probability and J-divergence distance measure. We

derived the optimization problem for both the cost functions. We also presented the

analytical formulation required to solve the optimization problem. In this chapter

we will apply them to obtain at results which will provide us with an optimal

fusion rule and energy allocation for wireless sensor networks with a limit on the

total energy for all the nodes.

4.2 M-ary Modulation

In this section, we will present the results for the case where an M-ary modulation

is used to modulate the quantizer outputs. The quantizer outputs qi1, qi2, · · · , qiM
are mapped to symbols l1, l2, · · · , lM before modulation. Since the quantized ob-

servations are transmitted as symbols, we will have energy allocation only among

the sensors. All the bits representing the symbol are allocated equal energy. The
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received symbols at the fusion center are processed to get an estimate of the ob-

servation signal Xi, denoted by X̂i. This reconstructed signal X̂i is used by the

fusion center to make a decision on the value of H .

In this thesis, we will be designing the optimum fusion rule and energy allocation

with a limit on the total network energy so as to optimize the cost function.

The two different cost functions used in this thesis are error probability and the

distance measure. In this section we will present the results obtained by solving the

analytical formulations presented in Chapter 2 and 3 for the M-ary modulation.

4.2.1 Error Probability Criteria

The optimal fusion rule and the energy allocations obtained by minimizing the error

probability are presented in this section. The fusion rule for the error probability

criteria is considered to be optimal for αi = 1
σi

2 (2.3). To show the efficacy of this

prediction rule (2.3), we consider the case where N = 1. We also assume error free

channel between the sensors and the fusion center. By using N = 1, we reduce the

number of variables that determine the error probability but see an increase in the

quantization noise.

TABLE 4.1. WSN Configuration for L=5.
Sensor index (i) 1 2 3 4 5

σi
2 1 2 3 4 5

The analytical formulation for this case is presented in Chapter 2. The system

parameters to be optimized are the αi values and τ . The wireless sensor network

is assumed to have five sensors with the noise variances given in Table 4.1. We can

observe that the optimal value of αi increases with the decrease in noise variance σi
2

(Table 4.2). Therefore the sensor with a high noise variance will have no importance

in the decision making process. We plot the error probability for the optimal values

of {αi} (given in Table.4.2) as a function of τ in Figure 4.1. For comparison, we
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TABLE 4.2. Optimum α values for Different Sensor Index.
Sensor 1 2 3 4 5

α 2.023 0.52 0.33 0.26 0.23

have also plotted the error probability for αi = 1
σi

2 . It can be seen that both cases

result in similarly small error probabilities albeit for different values of τ . This

indicates that if optimization over τ is performed then αi = 1
σi

2 results in good

performance. Since we obtained the optimal fusion rule for the error probability
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FIGURE 4.1. Probability of error vs global threshold.

criteria, we are now interested in the energy allocations for the nodes with a limit

on the total energy for all the nodes. In this section, we will present the results for

N = 2 and N = 1. For N = 2, we will be using QPSK modulation to transmit the

quantizer outputs. The analytical formulation for this case is given in Chapter 2.

The WSN configuration for L = 5 and L = 8 are given in Table 4.1 and Table

4.6. The parameters to be optimized for this case are αi, the quantizer thresholds

tij , quantizer outputs qij , τ and θi. θi is the fraction of total energy ET allocated to

the sensor i. From Figure 4.1, we considered the optimal αi to be 1
σi

2 . The optimal
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quantizer thresholds obtained by solving the analytical formulations are given in

Table 4.3. The corresponding quantizer outputs qij are presented in the Table 4.4.

The spacing between the quantizer thresholds increases with the increase in the

sensor noise variance. We also obtained the quantizer thresholds for Lloyd-Max

quantizer (Table 4.5). The optimal quantizer thresholds follow the same trend

as the Lloyd-Max quantizer. But the value of the thresholds are different to the

Lloyd-Max quantizer.

TABLE 4.3. Optimum qunatizer thresholds for Four-level quantizer for QPSK Modula-
tion for the Error Probability.

Sensor t1 t2 t3
1 -0.2443 0.0354 0.3151
2 -0.4694 -0.0671 0.3353

3 -1.0828 -0.0784 0.9261
4 -1.2740 0.0161 1.3602

5 -1.5888 0.0071 1.6301

TABLE 4.4. Optimum qunatizer output for Four-level quantizer for QPSK Modulation
for the Error Probabiltiy Criteria.

Sensor q0 q1 q2 q3
1 -2.5112 -0.1443 0.1360 2.6692

2 -2.8826 -0.1771 0.1653 2.7404

3 -2.9543 -0.6844 0.7009 2.9942
4 -3.1139 -0.9797 0.9294 3.1356

5 -3.2870 -0.9108 0.8802 3.2947

TABLE 4.5. Lloyd-Max qunatizer thresholds for the Four-level Quantizer.
Sensor t1 t2 t3

1 -0.8058 0 0.8058

2 -1.1491 0 1.1490
3 -1.470 0 1.471

4 -1.681 0 1.681
5 -1.8195 0 1.8195

The optimal energy allocation at the nodes for L = 5 is given by Figure 4.2. The

corresponding values of τ and the error probability are presented in the Figure 4.2.

The energy allocation for the nodes decreases with the increase in the noise variance
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(σi
2). This result sounds appropriate because the sensor with less noise variance

provides more accurate information about the observed hypothesis at the fusion

center for the decision making process. The sensor with a very high noise variance

will be allocated no energy at all. This will censor the node from transmission.

Thus saving the cost of energy and the bandwidth.

The optimal energy fractions (θi) at the nodes for L = 8 is presented in Figure

4.3. Similar to L = 5, the sensors with smaller noise variance are allocated higher

energy for L = 8. The optimal τ and the resulting error probability are given in

Figure 4.3. We can observe that the sensor with equal noise variance are allocated

equal energy. The allocated energy is used by the sensor to modulate and transmit

the symbols across the channel. The error probability for L = 5 and L = 8 is

a quasi-convex function of τ for the given αi and θi values. The convex function

has its minimum at 0.0133 for L = 5. The minimum is at 0.062 for L = 8. It

is noticeable that the error probability for L = 8 is better than that of L = 5.

The error probability is expected to increase with the increase in the number of

sensors (L). The error probability is also affected by the noise variances of the

additional sensors. We also observed that the Lloyd-Max quantizer results in a low

error probability. This is comparable to the error probability obtained by using the

optimal theshhold. Thus we can reduce the complexity of the problem by using

the Lloyd-Max quantizer.

TABLE 4.6. WSN Configuration for L=8.
Sensor node index(i) 1 2 3 4 5 6 7 8

σ2 1 2 3 4 5 3 2 1

We now present the results for the binary level quantization. In this case the

quantizer outputs are considered as the local decisions made by the sensors. Tra-

ditionally [34], identical local decisions are considered at the sensors. We consider

40



1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

E
ne

rg
y 

A
llo

ca
tio

n 
fo

r 
th

e 
S

en
so

rs
 θ

i

Sensor index

τ = 0.0133, Error Probability = 1.2*10−6

FIGURE 4.2. Energy Allocation for the Sensor Nodes for L=5 using Error Probability
Criteria for Four-level Quantization
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FIGURE 4.3. Energy Allocation for the Sensor Nodes for L=8 using Error Probability
Criteria for Four-level Quantization
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FIGURE 4.4. Energy Allocation for the Sensor Nodes for L=5 using Error Probability
Criteria for Binary-level Quantization

non-identical local decisions because the observations made by the sensors are not

i.i.d. The local decisions for the individual sensors is given by (3.21). The param-

eters to be optimized are τ and the energy fractions (θi). The quantizer outputs

are modulated using binary modulation. Thus the channel is modeled by binary

symmetric channel with cross over probability (Q(ET θi

N0
)). The optimal energy allo-

cations, τ and the resulting error probabilities for L = 5 are presented in Figures

4.4. As expected the sensors with smaller noise variance are allocated higher en-

ergy. The energy fractions for L = 8 (Figure 4.5) follow the same trend as the

L = 5. As expected the error probability for L = 8 is better than that of L = 5 for

the given noise variances.

Comparing the results for N = 2 with N = 1, we can observe that the error

probability for N = 2 is better than that of N = 1. But the case N = 1 is easy to
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FIGURE 4.5. Energy Allocation for the Sensor Nodes for L=8 using Error Probability
Criteria for Binary-level Quantization

design and has lot of work done with respect to the identical sensors ([31], [32], [34],

[36] and [33]). The number of parameters to be optimized are naturally reduced

with the quantizer levels. This will result in a trade off between the performance,

complexity and the bandwidth requirement.

4.2.2 Distance Measure

In the previous section, we presented the results for the case where error probability

is used as the cost function. This requires a closed form solution for the error

probability. For the fusion rule (3.6), it is difficult to obtain a closed form solution

for the error probability. Therefore we opt for an alternative cost function termed as

the J-Divergence distance measure (3.10). Our goal is to design an optimal fusion

rule and an energy allocation for the nodes so as to maximize the J-divergence

cost function subject to a limit on the total energy of all the nodes. The analytical
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formulation for the J-Divergence cost function is given in Chapter 3. In this section

we will present the results that will corroborate the analytical formulation.
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FIGURE 4.6. Energy Allocation for the Sensor Nodes for L=5 using Distance measure
criteria for Four-level Quantization

TABLE 4.7. Optimum qunatizer thresholds for Four-level quantizer for QPSK Modula-
tion for the Distance measure.

Sensor t1 t2 t3
1 -0.4305 0.02 0.4280
2 -0.6002 0.52 0.6001

3 -0.9179 0.0124 0.9175
4 -1.5896 0 1.5895

5 -1.8423 0 1.8423

For the distance measure criteria, we use the log-likelihood ratio test as the

optimal fusion rule (3.6). According to [34], log-likelihood ratio test is an optimal

fusion rule if you are willing to minimize the error probability of the system.

The optimal energy calculations for the distance measure criteria are presented

in the Chapter 3. The error probability for the distance measure is calculated by
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FIGURE 4.7. Energy Allocation for the Sensor Nodes for L=8 using Distance Measure
criteria for Four-level Quantization

simulating the system model (Figure 2.3). The simulation is done at an optimal

value of τ = 0.

The optimal quantizer thresholds for the distance measure criteria are presented

in Table 4.7. The quantizer thresholds follow the same trend as the error probability

criteria. The spacing between the thresholds increases with the increase in the noise

variances. The optimal energy allocations and the resulting error probabilities for

L = 5 are given in Figure 4.6. The M-ary modulation provides energy allocation

only among the sensors. As expected the sensor with less noise variance is allocated

more energy. The optimal energy allocation for L = 8 is given by Figure 4.7. The

energy fractions for the sensors increase with the decrease in the sensor noise

variance and the sensors with equal noise variance are allocated equal energy. The

error probability for L = 8 is presented in Figure 4.7. As discussed, the error

probability is obtained by simulating system model (Figure 2.3) at τ = 0. The

error probability for L = 8 is better than that of L = 5 for the distance measure
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criteria. The results for the distance measure follow the same trend as the error

probability criteria.
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FIGURE 4.8. Energy Allocation for the Sensor Nodes for L=5 using Distance Measure
for binary quantization

TABLE 4.8. WSN Configuration for L=5.
Sensor index (i) 1 2 3 4 5

σi
2 1 4 9 16 25

We now present the results for the binary-level quantization. The local thresholds

for the quantizer are given by (3.21). The results (energy fractions and the error

probabilities) for the binary-level quantization are presented in Figures 4.8 for

L = 5. The sensor with less noise variance gets more energy as expected. Figure 4.10

shows that the sensor with a very high noise variance (σi
2 = 25) will be allocated

no energy. The WSN configuration for the Figure 4.10 is given by Table 4.8. The

modulation and transmission costs are reduced for the given WSN configuration

(Table 4.8) because the sensor with a very high noise variance is censored.
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FIGURE 4.9. Energy Allocation for the Sensor Nodes for L=8 using Distance Measure
for binary quantization

The energy fractions for L = 8 is presented in Figure 4.9. The energy fractions

for L = 8 follows the same trend as L = 5. The sensor with smaller noise variance

gets higher energy. The error probability for L = 8 is better than that of L = 5. We

can notice a decrease in the error probability with an increase in the quantization

levels. We can observe that the error probability for the error probability crite-

ria is better than that of the distance measure criteria for the M-ary modulation

case. This trend follows for both the four-level quantization and binary-level quan-

tization. However, the distance measure criteria is easy to design and provides a

more tractable solution. The distance measure requires less amount of complexity

compared to the error probability.
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FIGURE 4.10. Energy Allocation for the Sensor Nodes for L=5 using Distance Measure
for binary quantization

4.3 Binary Modulation

In the M-ary modulation case, we observed that there is energy allocation only

among the sensors. We could not protect the individual bits because all the bits

are allocated equal energy. In order to protect the individual bits, we transmit

them individually across the channel using the binary modulation. This will pro-

vide energy allocation among the sensors and the individual bits. For the sake of

concreteness the sensors use BPSK modulation. Thus the channel is modeled as

a binary symmetric channel with cross over probability εi = Q(
√

2βijθiET

N0
). The

channel output is demodulated into bits which are used to reconstruct the obser-

vation signal Xi, denoted by X̂i. The fusion center makes a decision on the value

of H using the reconstructed signal sequence. The goal is to design an optimum

fusion rule and energy allocations so as to optimize the cost functions. The ana-
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lytical formulation for both the cost functions is given in Chapter 2 and Chapter

3. The results obtained by solving the analytical formulations are presented in this

section.

4.3.1 Error Probability Criteria

As discussed previously, the fusion rule (2.3) is considered optimal for αi = 1
σi

2

given the fusion center has access to the complete observations. From the Figure

4.1, we can observe that the fusion rule (2.3) is optimal for αi = 1
σi

2 even if the

fusion center does not have access to the complete observations.

TABLE 4.9. Optimum qunatizer thresholds for Four-level quantizer for Binary Modula-
tion for the Error Probability criteria.

Sensor t1 t2 t3
1 -1.0176 0 1.0176

2 -1.2733 0 1.2733
3 -1.9987 0.001 1.9985

4 -2.1261 0 2.1261

5 -2.6334 0.0002 2.6335

TABLE 4.10. Optimum qunatizer output for Four-level quantizer for Binary Modulation
for the Error Probability criteria.

Sensor q0 q1 q2 q3
1 -2.4833 -0.593 0.593 2.4833

2 -2.9025 -0.766 0.766 2.9025
3 -2.9663 -0.952 0.952 2.9663

4 -2.9820 -0.978 0.978 2.9820
5 –2.9841 -1.0581 1.0581 2.9841

The optimal quantizer thresholds and outputs for this case are presented in Table

4.9 and Table 4.10. The spacing between the thresholds increases with the increase

in the noise variances. They follow the same trend as the Lloyd-Max quantizer. The

optimal energy allocation for the binary modulation includes the energy allocation

at the nodes and the individual bits. The optimal energy fractions (θ) at the

nodes are depicted in Figure 4.11. The optimal value of τ and the resulting error

probability are presented in the Figure 4.11. As expected the sensors with smaller
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noise variance are allocated a higher fraction of the energy. Figure 4.11 depicts the

fraction of the total energy ET allocated to the nodes. The total energy allocated

to the nodes for processing its observations is given by ET θi. This energy (ET θi)

is used by the sensor i to modulate and transmit the quantized bits across the

channel to the fusion center for the final decision on the value of H .

The energy allocations βij for the individual bits is given by the Figure 4.12.

From the Figure 4.12, we can observe that most of the energy is allocated to the

most significant bit for a SNR of 10 dB. This will reduce the bandwidth requirement

because the second bit is censored from transmission. The bitwise energy allocation

for a SNR of 20 dB is given in Figure 4.13. This shows the priority of the the most

significant bit over the remaining bits. This is an important result because an error

in the most significant bit causes the reconstructed signal X̂i to favor a hypothesis

which is different to the observed hypothesis.

The error probability for the binary modulation is similar to the M-ary modula-

tion. But the binary modulation reduces the bandwidth requirement because some

of the bits are censored from transmission. Thus saving the bandwidth without

any degradation in the performance.

The energy fractions for N = 3 at SNR of 10 dB is presented in Figure 4.14.

Similar to N = 2, all the energy is allocated to the first bit for N = 3 at SNR of

10 dB. Thus saving the bandwidth by censoring the remaining bits. Therefore it is

advisable to use binary-level quantization at a low SNR. The energy fractions at

SNR of 20 dB are given in the Figure 4.15. The Figure 4.15 shows the importance

of the first bit over the remaining bits.

We can observe from the results that the amount of energy allocated to the

most significant bit decreases with the SNR. In order to fortify this observation,

we determined the energy allocations for the bits at different SNR (Figure 4.16).
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FIGURE 4.11. Energy Allocation for nodes using Error Probability Criteria for Four-level
Quantization

FIGURE 4.12. Bitwise Energy Allocation for a Four-level Quantization at SNR of 10 dB
for Error Probability Criteria
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FIGURE 4.13. Bitwise Energy Allocation for a Four-level Quantization at SNR of 20 dB
for Error Probability Criteria
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We plotted the bitwise energy allocations for different SNR in Figure 4.16. The

energy fraction for the first bit decreases with the SNR and remains constant at

0.333 for higher SNR. The energy fraction for the remaining bits increases with

the SNR and remains constant at higher SNR. Thus it is advisable to use low-

level quantization for a low SNR. From Figure 4.15 and Figure 4.13, we can notice

that the energy allocation to the first bit decreases with the increase in the noise

variances (σi
2) for the error probability criteria.

FIGURE 4.14. Bitwise Energy Allocation for a Eight-level Quantization at SNR = 10
dB for Error Probability Criteria

4.3.2 Distance Measure

In this section we will present the optimal fusion rule and the energy allocations

that maximizes the J-divergence distance measure with a limit on the total energy

of the network.
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FIGURE 4.15. Bitwise Energy Allocation for a Eight-level Quantization at SNR = 20
dB for Error Probability Criteria
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As discussed previously, the log-likelihood ratio test is considered as an optimal

fusion rule for the distance measure criteria [34]. The optimal quantizer thresholds

are given by Table 4.11. We now determine the optimal energy allocation for the

wireless sensor network. The optimal energy fractions (θi) at the nodes for N = 2 is

given by Figure 4.17. The resulting error probability is presented in the Figure 4.17.

The energy allocation at the nodes increases with the decrease in the sensor noise

variances. The total energy allocated to the sensor i is given by ET θi. This energy

is used by the sensor to modulate and transmit its observations. The amount of

energy required to transmit the individual bits is given in Figure 4.18. We can

observe that all the sensor energy (ET θ) is allocated to the most significant bit for

a small SNR (SNR = 10 dB). This reduces the bandwidth requirement because

the second bit is censored from transmission. We also obtained the bitwise energy

allocation for SNR = 20 dB (Figure 4.19). Similar to the error probability criteria,

the most significant bit is given more priority compared to the second bit for the

distance measure criteria. The error probability for the error probability criteria is

better than that of Distance measure.

TABLE 4.11. Optimum qunatizer thresholds for Four-level quantizer for Binary Modu-
lation for the Distance measure.

Sensor t1 t2 t3
1 -1.44 0 1.44

2 -1.6456 0 1.6476
3 -1.767 0.0176 1.7720

4 -1.9749 0 1.9751
5 -2.101 0 2.102

The bitwise energy allocation for N = 3 at SNR of 10 dB is given by Figure

4.20. The second and the third bit are censored from transmission because all

the energy is allocated to the first bit. This will reduce the cost of transmission

and the bandwidth requirement. The bitwise energy allocation at SNR of 20 dB
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FIGURE 4.17. Energy Allocation for nodes using Distance measure for Four-level Quan-
tization

FIGURE 4.18. Bitwise Energy Allocation for a Four-level Quantization at SNR of 10 dB
for Distance Measure Criteria
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FIGURE 4.19. Bitwise Energy Allocation for a Four-level Quantization at SNR of 20 dB
for Distance Measure Criteria
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FIGURE 4.20. Bitwise Energy Allocation for a Eight-level Quantization at SNR = 10
dB for Distance Measure Criteria
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FIGURE 4.21. Bitwise Energy Allocation for a Eight-level Quantization at SNR = 20
dB for Distance Measure Criteria
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is presented in Figure 4.21. Figure 4.21 demonstrates the importance of the first

bit over the remaining bits. This result is important because an error in the first

bit will cause the reconstructed variable X̂i to favor a hypothesis different to the

observed hypothesis. Similar to the error probability criteria, the energy allocated

to the first bit decreases with the SNR for the distance measure. The amount of

energy allocated to the first bit increases with the noise variances of the sensor

for the distance measure (Figure 4.19 and Figure 4.21). This trend follows for all

values of SNR.

4.4 Comparisons

The efficiency of the detection process is determined by the error probability. The

error probabilities for different methods used in this thesis are presented in the Ta-

ble 4.12. The error probability for the distance measure is calculated by simulating

the system model for a global threshold of τ = 0 because it is difficult to obtain a

closed form for the error probability.

TABLE 4.12. Error Probabilities for Different methods for the two Cost functions
Cost functions Error Probability Distance Measure

Bitwise Allocation 2.5 ∗ 10−6 6 ∗ 10−4

Multiple Bits with Equal Energy 1.2 ∗ 10−6 9 ∗ 10−4

Single bit case 4 ∗ 10−3 8.8 ∗ 10−3

Although the error probabilities are similar for the cases where binary modula-

tion and M-ary modulation is used to transmit the quantizer outputs, the amount

of bandwidth required is reduced for binary modulation at small SNR. This is

because most of the energy is allocated to the first bit for a small SNR. This trend

follows for both the cost functions, error probability and distance measure.

The error probability for the error probability cost function is better than that

of distance measure cost function. Although the distance measure has less error

probability, it results in a much easier and tractable solution for the system design.
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The amount of complexity required is less for the distance measure. Thus creating

a trade off between performance, complexity and the bandwidth requirement. We

can also observe an increase in the performance with the quantization levels. The

results for the distance measure follow the same trend as the error probability

criteria. Therefore distance measure is an appropriate alternative for the error

probability.
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Chapter 5
Conclusions

We have studied the problem of binary hypothesis testing in a wireless sensor

network in the presence of noisy channels and for non-identical sensors. We have

designed a mathematically tractable fusion rule for which optimal energy alloca-

tion for individual sensors can be achieved. We also designed an optimal energy

allocation for the bits when multi-level quantization is used by the sensors to quan-

tize its observation. The objective is to optimize a cost function with a constraint

on the total network energy. Two cost functions were considered; the probability

of error and the J-divergence distance measure.

We have presented the results of optimal energy allocation for sensors and bits

for the case where binary modulation is used to transmit the quantized observa-

tions. For M-ary modulation, we presented the optimal energy allocation at the

sensors. The optimal fusion rule, energy allocation and the resulting error prob-

ability are presented for the two cost functions. Comparisons are drawn between

the performance of the two cost functions. The error probability cost function has

better error probability compared to the J-divergence cost function. However, the

J-divergence cost function yields a much easier and tractable solution.

This work can be extended in many ways. We could incorporate a fading channel

between the sensors and the fusion center. Diversity techniques could be used at

the fusion center to process the signal received. This thesis assumes a constraint

on the total energy of the network. We can extend it by assuming a limit on the

individual sensor energy.
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