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ABSTRACT 

The transmitter identification of the DTV systems becomes crucial nowadays. 

Transmitter identification (TxID, or transmitter fingerprinting) technique is used to detect, 

diagnose and classify the operating status of any radio transmitter of interest. A pseudo 

random sequence was proposed to be embedded into the DTV signal before transmission. 

Thus, the transmitter identification can be realized by invoking the cross-correlation functions 

between the received signal and the possible candidates of the pseudo random sequences. 

Gold sequences and Kasami sequences are two excellent candidates for the transmitter ID 

sequences as they provide a large family of nearly-orthogonal codes. In order to investigate 

the sensitivity of the transmitter identification in different topologies and Kasami sequences 

with different length, we present the analysis here for four different geometric layouts, 

namely circular distribution, doubly concentric and circular distribution, square array and 

hexagonal tessellation. The covered area and the lowest received signal-to-interference ratio 

are considered as two essential parameters for the multiple-transmitter identification. It turns 

out to be that the larger the Kasami sequence length, the larger the received 

signal-to-interference ratio. Our new analysis can be used to determine the required Kasami 

sequence length for a specific broadcasting coverage. 
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1. INTRODUCTION OF CURRENT DIGITAL TERRESTIAL TELEVISION 

SYSTEMS 

1.1 Historical View of DTV 

Digital Terrestrial Television (DTV) is a new type of advanced broadcasting 

technology that can televise videos using the digital signals instead of the analog 

signals propagated by analog TV. The most significant advantage for switching analog 

TV to digital TV is that digital TV channels demand less bandwidth. The required 

bandwidths correspond to the conveyed image quality which depends on the 

compression level. Therefore, DTV will enable broadcasters to supply televised 

programs with better picture and sound quality. Meanwhile, multiple programming 

choices and interactive capabilities can also be facilitated by digital terrestrial 

broadcasts. However, new equipments and costly antenna installation are necessary a 

digital TV system is in place. It also increases the electricity consumption and the 

switching time between channels due to digital receivers. 

This switch from analog broadcast television to digital broadcast television is 

called the digital TV (DTV) transition. The first country which adopted the digital 

broadcasting systems was Luxembourg, in 2006. The Netherlands, Finland, Andorra, 

Sweden, Switzerland, Germany and Portugal have made the transition since then. 

Since November 1998, the DTV services were initiated to cover North America [1]. 

In the United States, an additional broadcast channel distribution was set up for each 

broadcast TV station in 1996 so that stations can attempt to carry out digital broadcast 

while still keeping their analog broadcast channels simultaneously. With special 
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dispensation, some major full-power broadcast television stations started to broadcast 

solely on digital airwaves on February 17, 2009. On June 12, 2009, all television 

stations are projected to stop broadcasting analog signals and to switch to digital 

signals. All over-the-air signals will be transformed digital and the analog TV 

transmission will finally disappear in the United States on that day. Several countries, 

includes China, Japan and the United Kingdom, etc., have been scheduled to make the 

analog to digital TV transition just in a few years. 

The technology and the systems used in the DTV broadcasting vary all over the 

world. The standards developed by the Advanced Television Systems Committee 

(ATSC), have been widely adopted in North America and South Korea for DTV 

transmission. Most European countries, Australia, New Zealand, Colombia, Uruguay 

and some African countries adopted the DVB-T standards instead. The DTV systems 

used in China now comply with the DMB-T/H standards while the ISDB-T standard 

is used in Japan. 

1.2 DTV receivers 

There are several different approaches for the DTV reception. Three among them 

are normally used in our daily life. The traditional means of receiving the DTV 

signals is to establish antennae toward the broadcasting tower nearby. However, the 

channel accessibility strictly limits the number of TV channels (programs) available to 

the users. On the other hand, the most two popular ways to receive DTV signals for a 

board accessibility of channels are via digital satellites and digital cables. Nowadays, 



3 

 

we also can watch DTV programs through mobile devices facilitating the DTV 

standards such as DMB and DVB-H. 

In the United States, the ATSC is the official standard for the DTV transmission 

and the terrestrial video broadcasting. The ATSC digital television standard, which 

has been developed by the Advanced Television Systems Committee Technology 

Group on Distribution (T3), was released in 1995. This standard describes a DTV 

system designed to transmit high quality video and audio and ancillary data over a 

single-frequency channel at 6 MHz. Such a system can reliably deliver about 19 Mbps 

of throughput in each 6-MHz terrestrial broadcasting channel and about 38 Mbps of 

throughput in each 6-MHz cable television channel. The objective of this standard is 

to represent the video, audio, and data subject to the high compression ratio while 

preserving the minimum level of quality required for any specific application. 

1.3 DTV System Block Diagram 

The block diagram illustrating the DTV transmitter specified by the ATSC 

standard addressed in Section 1.2 is shown in Figure 1 [2]. 

The video subsystem and the audio subsystem are employed for source coding 

and data compression so as to encode the video and audio data in a digital compressed 

form. The similar compression techniques are also applied for both ancillary data and 

control data. The purpose of this coder is to greatly reduce the multimedia information 

to be delivered such that the allocated narrow TV channels can still effectively carry 

on. The current digital television systems adopt the MPEG-2 video stream syntax for 
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the video compression and use the Digital Audio Compression (AC-3) standard for 

the audio compression.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The service multiplex and transport mechanisms in Figure 1 refers to the 

functions of dividing the digital data stream, including video, audio and ancillary data, 

into information packets and multiplexing all kinds of data packets into a single 

stream after each packet category is identified. The digital television systems adopt 

the MPEG-2 transport stream syntax for the packetization and the multiplexing of 

video, audio and ancillary data. The MPEG-2 transport stream syntax was developed 

for the applications where the channel bandwidth or the recording medium capacity is 

limited and the requirement for an efficient transport mechanism is paramount. It was 
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also designed to facilitate the interoperability with the ATM (asynchronous transfer 

mode) transport mechanism. 

The RF (radio frequency) system in Figure 1 is employed for the channel coding 

and the modulation and the signaling. The channel coder creates the redundant 

information and embeds it into the bit steam in order to help the receiver to 

reconstruct the original data from the received signal enduring the channel distortion. 

The modulation subsystem converts the original data to the transmitted signal of 

appropriate form. The modulation subsystem in the ATSC standard offers two modes: 

a terrestrial broadcast mode (8 VSB) and a high data-rate mode (16 VSB). 
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2. TRANSMITTER IDENTIFICATION TECHNIQUES IN DTV SYSTEM 

The transmitter identification of the aforementioned DTV systems becomes 

crucial nowadays. For example, the identification of ENG (electronic news gathering) 

crews is very important and necessary for live televised programs. Hence, the 

transmitter identification techniques are in demand for modern DTV systems. In the 

following sections, the introduction will be made for the data frame of transmitted 

DTV signals and the embedded pseudo random sequences. 

2.1 Data Frame Structure for DTV Transmission 

Transmitter identification (TxID, or transmitter fingerprinting) technique is used 

to detect, diagnose and classify the operating status of any radio transmitter of interest. 

In the DTV applications, the transmitter identification refers to the (static or mobile) 

station identification for the television channels. Due to the rapid development of 

DTV and the increasing numbers of DTV channels, the need for the television 

channel identification becomes an urgent issue. As a result, transmitter identification 

has been recognized as an important feature in the ATSC Synchronization Standard 

for Distributed Transmission [3]. 

Figure 2 shows how every data frame is constructed for the DTV signal 

transmission [2]. According to Figure 2 and [2], a DTV data frame consists of two 

data fields, each containing 313 data segments. The first segment of each data field is 

a unique synchronizing signal (Data Field Sync) and includes the training sequence to 

be used by the equalizer at the receiver. Each of the remaining 312 data segments 



7 

 

carries the data from one 188-byte transport packet plus its associated FEC overhead. 

The actual data contained in each data segment comes from several transport packets 

because of data interleaving. Each data segment consists of 832 symbols. The first 

four symbols are transmitted in binary form to facilitate the segment synchronization 

data. This Data Segment Sync signal (the four symbols) also represents the sync byte 

of the 188-byte MPEG-compatible transport packet. The remaining 828 symbols of 

each data segment carry the remaining 187 bytes of a transport packet and its 

associated FEC overhead. 

2.2 Pseudo Random Sequences Embedded in DTV Signal 

In the DTV transmitter identification, the TV station’s information is added into 

the DTV transport data stream and it can be obtained by demodulating the DTV signal. 

However, successful reception is not always guaranteed due to many reasons in the 

real scenario. The transmitter ID acquired this way only provides the identification of 

the transmitter associated with the strongest signal path [3]. Therefore, the 

identification of a weak source signal is impossible [3]. Hence, a pseudo random 

sequence was proposed to be embedded into the DTV signal before transmission [3]. 

Thus, the transmitter identification can be realized by invoking the cross-correlation 

functions between the received signal and the possible candidates of the pseudo 

random sequences. The illustration of the DTV signal with injected pseudo random 

sequences is shown in Figure 3. 
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Figure 3−One field of the transmitted ATSC signal embedded with pseudo 

random sequences. 
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In this method [3], one essential property of the pseudo random sequences for the 

transmitter identification is that they are nearly orthogonal to each other. Another 

important property is that the pseudo random sequence is embedded into the DTV 

signal in a low power level so that the reception of the DTV signal will not be 

impacted virtually. Transmitter identification is processed by calculating the 

cross-correlation function between the received DTV signal and the original 

embedded pseudo random sequence, which does not depend on the additional 

resource. 

In addition to the two aforementioned essential properties, the size of the pseudo 

random sequence set also needs to be considered since each sequence can only be 

used to identify one channel in the world-wide area [3]. Therefore, an enough number 

of pseudo random sequences must be available in practice. 

Gold sequences [4, 5] and Kasami sequences [6, 7] are two excellent candidates 

for the transmitter ID sequences as they provide a large family of nearly-orthogonal 

codes. Kasami sequences have period N = 2
n
-1, where n is a positive even integer. 

There are two classes of Kasami sequences: the small set and the large set. The large 

set contains all the sequences belonging to the small set. However, only the small set 

is optimal in the sense of matching Welch's lower bound for the correlation functions. 

Although the small set of Kasami sequences can provide the better identification 

performance than the Kasami sequences from the large set due to their correlational 

properties, the total number of the pseudo random sequences from the small Kasami 

set is limited (similar restriction can be found for the Gold sequences). Therefore, 
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Kasami sequences from the large set are employed as the most desirable pseudo 

random sequences for the transmitter identification of DTV signals.  
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3. MATHEMATICAL PROPERTIES OF KASAMI SEQUENCES 

As previously discussed in Chapter 2, the Kasami sequences are adopted as the 

transmitter ID sequences in the modern DTV systems. Hence, we would like to 

introduce how to generate Kasami sequences and their essential mathematical 

properties for transmitter ID in the following sections. 

3.1 Algebraic Methods for Binary Sequence Construction 

Binary sequences are important for spread-spectrum systems, code-division 

multiple-access (CDMA) systems and broadband satellite communications [8, 9]. 

Among all binary sequence families, those who have low non-zero-lag autocorrelation 

values, low cross-correlation values, large family size [10] and large linear span [11] 

are preferred in practice. These correlation properties are exploited to minimize the 

interference among the emitted signals so as to facilitate the signal detection even at 

the low signal-to-noise ratios [12]-[16]. 

Many binary sequences are built upon the elementary family, namely the 

maximal-length binary sequences (m-sequences). The m-sequences can be simply 

represented based on the trace function 𝑡𝑟𝑚
𝑛 𝑥 ≝  𝑥2𝑚𝑖𝑛−1

𝑖=0 , where 𝑥 ∈ 𝐺𝐹 2𝑛 . 

Since the m-sequences have ideal autocorrelation properties, it is natural to study the 

cross-correlation function between an m-sequence and its decimations. Many families 

of low-correlation sequences have been constructed using m-sequences and their 

decimations [17, 18]. For example, the Gold sequence family [19, 20] was constructed 

from a pair of m-sequences given by 
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{𝑡𝑟1
𝑛(𝑥)} and {𝑡𝑟1

𝑛(𝑥2𝑘+1)}.                      (1) 

For an odd n and an arbitrary integer k with gcd(n, k)=1.The small set of Kasami 

sequences can be constructed from 

{𝑡𝑟1
𝑛(𝑥)} and {𝑡𝑟1

𝑛(𝑥2𝑛/2+1)} for even n.                (2) 

The large set of Kasami sequences can be further extended here [9]. We assume 

that n is even and take k to satisfy gcd(k, n)=2 for odd n/2 or gcd(k, n)=1 for even n/2. 

The three m-sequences 

{𝑡𝑟1
𝑛(𝑥)}, {𝑡𝑟1

𝑛(𝑥2𝑘 +1)} and {𝑡𝑟1
𝑛/2

(𝑥2𝑛 /2+1)}               (3) 

can be used to obtain the large set of Kasami sequences [9]. 

The Gold sequence and Kasami sequences both can be constructed by the 

maximum-length sequences [21]. Often, maximal linear feedback shift registers are 

used for generating the maximum-length sequences. The resulting sequences are 

periodic and can be reproduced by the shift registers (i.e., a length-m register produces 

an m-sequence of length 2
m
-1). The autocorrelation function of a maximum-length 

sequence is very similar to a train of Kronecker delta functions. An example of 

maximum-length sequence generated by a shift register of length 4 is shown in Figure 

4.  

 

 

 

 

 

A2 A4 A3 A1 S(n) 

Figure 4−A maximum-length sequence generator of length 4. 
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The sequence generation illustrated by Figure 4 can be expressed as follows: 

 

𝐴𝑘  𝑛 + 1 =  
𝐴3 𝑛 + 𝐴1 𝑛 ,      𝑘 = 2

𝐴𝑘+1 𝑛 ,          otherwise
  ,                     (4) 

 

where n is the time index, k is the register position, and + represents a modulo-2 

addition.  

3.2 Correlation Properties of m-sequences, Gold Sequences and Kasami 

Sequences 

The arbitrary pair of m-sequences 𝑥𝑖  and 𝑥𝑗  lead to a three-valued 

cross-correlation over a code period N=2
n
-1, which is given by 

𝜌𝑖𝑗  𝜏 =  

−1,     
−𝑡 𝑛 ,

    𝑡 𝑛 − 2,
                              (5) 

where 𝑡 𝑛 ≝ 2(𝑛+2)/2 + 1. Eq. (5) will serve as the backbone for the correlation 

properties of Gold sequences and Kasami sequences since the latter families are built 

upon the m-sequences. 

A Gold sequence is produced by the binary addition of two maximum-length 

sequences which have the same sequence length N=2
m
-1. Gold sequences take 

advantage of the fact that, the favorable correlation property of the resulted sequences 

is guaranteed because only the τ1- and τ2-step time-shifting operations and the 

modulo-2 addition are involved with two distinct m-sequences. Consider every unique 

combination of (τ1, τ2 ), which can engender a unique Gold sequence. Thus, a large 

number of distinct Gold sequences can be generated for the communications 
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applications. However, the Gold sequences possess worse autocorrelation properties 

than the maximal-length sequences but better cross-correlation properties on the other 

hand. Similar to Eq. (5), an arbitrary pair of Gold sequences 𝑥𝑖  and 𝑥𝑗  lead to a 

three-valued cross-correlation over a code period N=2
n
-1 [22]: 

𝜌𝑖𝑗  𝜏 =  

−1,     
−𝑡 𝑛 ,

    𝑡 𝑛 − 2,
                            (6) 

where 𝑡 𝑛 ≝  
2(𝑛+1)/2 + 1,   if 𝑛 is odd.  

2(𝑛+2)/2 + 1,   if 𝑛 is even.
  

 

Besides, Kasami sequences have the similar correlation properties to the Gold 

sequences since they also arise from the maximum-length sequences. However, the 

Kasami sequences have an even better cross-correlation property than the Gold 

sequences. As mentioned in Chapter 2, there are two different sets of Kasami 

sequences, namely the large set and the small set. For an arbitrary pair of sequences 

𝑥𝑖  and 𝑥𝑗  drawn from the small set of Kasami sequences, the autocorrelation and the 

cross-correlation over a code period N=2
n
-1, both can be characterized as the 

following three-valued function: 

𝜌𝑖𝑗  𝜏 =  

−1,     
−𝑠 𝑛 ,

    𝑠 𝑛 − 2,
                           (7) 

where 𝑠 𝑛 ≝ 2𝑛 2 + 1. 

Since |s(n)|<|t(n)| according to Eqs. (6) and (7), Kasami sequences have better 

autocorrelation and cross-correlation properties than Gold sequences. In fact, Kasami 

sequences have excellent cross-correlation properties because they approach the 

Welch lower bound [23]. Hence, Kasami sequences are significantly effective for the 
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transmission identification. Here, the Welch lower bound addresses that the 

cross-correlation value between any pair of binary sequences in a set consisting of M 

distinct sequences with the period N is bounded as 

𝜙𝑚𝑎𝑥 ≥ 𝑁 
𝑀−1

𝑀𝑁−1
,                          (8) 

where 𝜙𝑚𝑎𝑥  specifies the maximum magnitude of any cross-correlation value 

among this set. 

The large set of Kasami sequences have a much larger population than that of the 

small set of Kasami sequences and hence the former can serve for a large capacity of 

users. The autocorrelation and the cross-correlation for the large set of Kasami 

sequences over a code period N=2
n
-1 can be characterized as the following 

five-valued function: 

𝜌𝑖𝑗  𝜏 =

 
 
 

 
 

    −𝑡(𝑛),     

−𝑠 𝑛 ,
  −1,

𝑠 𝑛 − 2,
𝑡 𝑛 − 2,

                         (9) 

where 

𝑡 𝑛 ≝ 1 + 2(𝑛+2) 2  

and 

𝑠 𝑛 ≝
𝑡 𝑛 + 1

2
 

For example, a 16-bit Kasami sequence drawn from the large set can have the 

cross-correlation values as -513, -257, -1, 255, and 511 according to Eq. (9). For the 

auto-correlation values of an n-bit Kasami sequence, we can still employ Eq. (9) to 

obtain the non-zero-lag values except that we have a constant value of 2
n
-1 for the 

zero-lag autocorrelation. Note that the actual length for an ”n-bit Kasami sequence” 
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should be 2
n
-1 due to the name convention by most literature. 

The family populations differ from the way of generating Kasami sequences. To 

generate the small set of Kasami sequences, we begin with a maximal-length 

sequence s of length N=2
n
-1 where n is an even integer. A new shorter sequence s’ 

(with length 2
n/2

+1) can be formed by sampling every 2
n/2

+1 elements of the original 

sequence s. The resulted sequence s’ is periodic with a period of 2
n/2

-1 thereby. Then 

we can generate the small set of Kasami sequences by taking the modulo-2 sum of s 

with all (2
n/2

-1) cyclic shifts of s’ including itself. The collection of all cyclic shifts of 

s’ will form a new sequence of length 2
n
-1.To obtain the Kasami sequences of the 

large set, we also take a maximal-length sequence s of length N=2
n
-1 where n is an 

even integer. Similarly, two new shorter sequences s’ and s’’ can be formed by 

sampling every 2
n/2

+1 and every 2
(n+2)/2

+1 elements, respectively. By taking the 

modulo-2 sum of s with all cyclic shifts of s’  and s’’, we can generate the large set of 

Kasami sequences. The family size of the large-set Kasami sequences is 2
3n/2

 if n is a 

multiple of 4 and 2
3n/2

+2
n/2

 if (n mod 4)=2. Note that we express (n mod 4) as mod4(n) 

from now on. 

The comparison of Gold Sequences, Kasami sequences (small set) and Kasami 

sequences (large set) is illustrated below. 

Note that 𝜍𝑚𝑎𝑥 , 𝜙𝑚𝑎𝑥   denote the maximum magnitudes of the autocorrelation 

and the cross-correlation, respectively 
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Table I−A COMPARISON OF THE ESSENTIAL FEATURES OF GOLD AND KASAMI 

SEQUENCES 

 

Sequence 

Len

gth 

(N) 

Family Size (M) 𝜍𝑚𝑎𝑥  𝜙𝑚𝑎𝑥  

Gold 2
n
-1 2

n
+1 2

n
-1 

2
(n+1)/2

+1 if 

n odd 

2
(n+2)/2

+1 if 

n even 

Kasami 

(small set) 

2
n
-1 2

n/2
 2

n
-1 2

n/2
+1 

Kasami 

(large set) 

2
n
-1 

2
3n/2

+2
n/2

  if 

mod4(n)=2 

2
3n/2        

if 

mod4(n)=0 

2
n
-1 2

n/2
+1 

3.3 Kasami Sequence generator 

Figure 5 illustrates how to generate the large set of Kasami sequences which 

n=16 in practice. The shift registers are used in the hardware implementation. 

The Kasami sequence generator is similar to the Gold sequence generator. The 

difference between the two generators is that the Kasami sequence generator needs a 

third sequence generator. In Figure 5, the three preloading (seed) codes, which are set 

up at the beginning, are circular-shifted and modulo-2 added at some special positions 
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in order to generate Kasami sequences. The generated Kasami sequence set is 

efficient for the transmission identification. In this example, for the large set of 

Kasami sequences, we have mod4(16)=4 and hence the family size is 

2
3n/2

=2
24

=16,777,216. 

A part of a Kasami code generated by the example of Figure 5 is shown below: 

 1 1 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0 1 1

 0 0 0 0 1 0 1 1 0 1 0 1 1 0 0 0 1 1 1

 0 1 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1

 1 1 0 1 1 1 0 0 1 1 1 0 0 0 1 1 0 0 0

 0 1 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 1 0

 0 1 1 1 1 0 0 0 0 1 1 1 0 1 0 0 0 1 0

 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 1

 1 1 0 1 1 0 1 0 0 0 0 1 1 0 0 1 1 0 1

 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0 1 0 0 0

 1 0 0 1 1 0 0 1 1 1 0 1 0 0 0 1 1 1 0

 1 0 0 1 0 0 0 0 1 0 1 1 0 0 0 1 1 0 1

B1 B2 

 

B3 

 

B4 

 

B5 

 

B6 

 

B7 

 

B8 

 

C1 

 

C2 

 

C7 

 

B15 

 

A15 

 

A11 

 

A12 

 

A13 

 

A14 

 

C3 

 

C4 

 

C5 

 

C6 

 

C8 

 

B9 

 

B10 

B10 

 

B13 

 

B14 

 

B16 

 

A16 

 

A1 A2 

 

A3 

 

A4 A5 A6 A7 A8 A9 A10 

0 

B11 

 

B12 

 

Figure 5−An example of the 16-bit Kasami sequence generator. 
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 0 0 0 1 1 1 1 1 1 0 0 0 0 1 0 0 0 1 1

 1 0 1 0 1 1 0 1 0 0 1 0 0 0 0 0 0 0 1

 0 0 1 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0

 0 0 0 0 1 1 1 1 0 0 1 1 1 0 1 1 0 0 1

 0 1 0 0 1 1 1 1 1 1 0 1 0 0 0 0 1 0 1

 0 0 0 1 0 0 0 1 1 1 0 0 1 1 0 1 1 0 1

 1 1 0 1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0

 0 1 0 1 1 0 0 0 1 0 1 1 1 1 0 1 0 0 0

 1 1 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1

 0 1 0 1 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0

 1 0 0 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0

 1 0 1 0 0 1 0 0 0 0 1 1 1 0 1 0 0 0 1

 0 0 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0

 1 1 0 0 0 1 0 1 0 0 1 0 0 1 0 1 1 0 0

 1 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 0

 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 0 0 1 1

 0 1 1 0 0 1 1 0 1 0 1 1 1 1 0 0 0 1 1

 1 1 0 0 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0

 0 1 0 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 0

 0 1 1 0 1 0 0 1 0 1 1 1 0 0 0 0 1 0 1

 1 0 0 1 1 1 1 0 1 1 1 1 1 0 0 0 1 0 0

 1 0 1 0 1 1 1 0 1 0 0 1 1 1 0 1 0 1 0
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 1 0 1 1 0 1 1 0 0 1 0 0 1 1 1 1 0 1 1 

This subsequence is depicted in Figure 6. 

 

 

Figure 6−A section of a 16-bit Kasami sequence. 
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4. STATISTICAL STUDIES OF THE TX-ID USING KASAMI SEQUENCES 

Following the discussion in the previous chapters, we would like to study and 

illustrate the correlation properties for the transmitter identification when the Kasami 

sequences are adopted for DTV systems. In this thesis, we focus on the large set of 

Kasami sequences since it will be used in practice. According to Chapter 3, all 

Kasami sequences are periodic. Hence, we need to study the periodic correlation 

functions. 

In general, the periodic correlation function 𝑅𝑖 ,𝑗  𝜏  of the two binary sequences 

{si(t)} and (sj(t)) of period 2
n
-1 is defined as 

𝑅𝑖𝑗  𝜏 ≝   (−1)𝑠𝑖 𝑡 −sj (𝑡+𝜏)2𝑛−1
𝑡=0 .                (10) 

Kasami sequences from the large set as addressed in Chapter 3 are employed for 

the DTV transmitter identification. We generate an arbitrary 16-bit Kasami sequence 

and use MATLAB to carry out the normalized autocorrelation function 
𝑅𝑖𝑖  𝜏 

𝑅𝑖𝑖  0 
, which 

is depicted in Figure 7. We also generate another 16-bit Kasami sequence to undertake 

the normalized cross-correlation function 
𝑅𝑖𝑗  𝜏 

 𝑅𝑖𝑖  0 𝑅𝑗𝑗  0 
 between these two sequences 

as well, which is depicted in Figure 8. 

The significant magnitude difference between the zero-lag autocorrelation value 

𝑅𝑖 ,𝑖 0  and other autocorrelation values 𝑅𝑖 ,𝑖 𝜏 , 𝜏 ≠ 0  and cross-correlation values 

𝑅𝑖 ,𝑗  𝜏 , ∀τ  are obvious according to Figures 7 and 8. We also plot the 

cross-correlation function within a small section in Figure 9. It can be verified that the 

cross-correlation values 𝑅𝑖 ,𝑗  𝜏  can only be either -513, -257, -1, 255 or 511. 
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Figure 7−The autocorrelation function of a 16-bit Kasami sequence from the large set 

(𝜏 is the lag index). 

 

Figure 8−The cross-correlation function of two 16-bit Kasami sequences 

(𝜏 is the lag index). 
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Figure 9−Cross-correlation of two 16-bit Kasami sequences (expanded view). 
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5. GEOMETRIC STUDIES FOR MULTI-TRANSMITTER IDENTIFICATION 

USING KASAMI SEQUENCES 

 In the previous chapters, we introduce the emerging need of the DTV transmitter 

identification and the adoption of the Kasami sequences mandated by the modern 

ATSC DTV standards. However, there hardly exists any geometric study on the 

capacity of the multiple transmitter identification using the Kasami sequences to the 

best of our knowledge. Hence we would like to dedicate this thesis to address this 

important issue.  

5.1 Introduction of the Geometric Model for DTV Tx-ID 

Based on the mathematical properties and the relevant discussion stated in the 

previous chapters, new geometric studies of the multiple-transmitter-identification 

using Kasami sequences will be carried out in this chapter. Assume that several DTV 

signals are sent to one user (or station) simultaneously. The interference and noise 

need to be considered for the multi-transmitter identification thereby. For example, a 

television station dispatches several broadcasting vehicles for live news reports. 

Different DTV signals returned from different vehicles should be identified by the 

television station. Thus, the geometric model for this scenario is illustrated in Figure 

10. 

The total number of the transmitters is assumed to be L. Consider the subject 

transmitter (indexed by k1) delivers its transmitter ID sequence 𝑠𝑘1
(𝑡) to the station. 

It will be interfered by the signal 𝑠𝑘𝑙
(𝑡) sent by another transmitter (indexed by kl 

and l≠ 1). For simplicity, we further assume that all transmissions occur in the open 
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area such that no multiple paths exist.  

 

 

Figure 10−An example of geometric model for multiple-transmitter. identification. 

Thus, for each broadcasting truck, the signal-to-interference ratio (SIR) can be 

defined as 

𝑆𝐼𝑅 =
𝑅𝑘1𝑘1

 0 

 𝑅𝑘1𝑘𝑙
(𝜏1,𝑙)

𝐿
𝑙=2

 

                      (11) 

where both 𝑅𝑘1𝑘1
 0  and 𝑅𝑘1𝑘𝑙

(𝜏𝑙) are defined by Eq. (10). 

The numerator in Eq. (11) refers to the autocorrelation of the subject 

broadcasting truck while the denominator refers to the summed cross correlation 

between the subject transmitter ID sequence and the others. 
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5.2 Correlation Value of Multiple-Transmitter System 

Focused on the scenario given by Section 5.1, we perform the analysis here. 

From the Monte Carlo simulations, the distributions (histograms) of the 

multi-transmitter ID cross-correlations (autocorrelations) are illustrated in Figures 

11-13 where the horizontal axis refers to the correlation values and the vertical axis 

refers to the corresponding frequencies to the correlation values. 

 

 

Figure 11−The distribution of the correlation (autocorrelation) values for 1 user. 
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Figure 12−The distribution of the cross-correlation values for 2 users. 

  

 

 

Figure 13−The distribution of the cross-correlation values for 4 users. 
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5.3 Bounding Analysis of the Signal-to-Interference Ratio for 

Multiple-Transmitter ID Sequences 

According to Eq. (11), we have the following bound for the SIR when the 

multiple transmitter ID sequences are simultaneously sent, such that 

SIR ≥
𝑅𝑘1𝑘1

 0 

  𝑅𝑘1𝑘𝑙
(𝜏1,𝑙) 

𝐿
𝑘=2

  =
𝑅𝑘1𝑘1

 0 

 𝑅𝑘1𝑘2
(𝜏1,2) +  𝑅𝑘1𝑘3

(𝜏1,3) ⋯⋯ +  𝑅𝑘1𝑘𝐿
(𝜏1,𝐿) 

 

             (12) 

where 𝜏𝑙 ,𝑙′ specifies the arrival time difference at the base station between the l
th

 and 

the l’
th

 transmitted ID signals. 

For the worst scenario (lowest SIR bound given by Eq. (12)), we set  

 𝑅𝑘1𝑘𝑙
(𝜏𝑙)  as its maximum value |-t(n)|=1+2(n+2)/2, ∀𝑙, according the Eq. (9) and 

set 𝑅𝑘1𝑘1
 0 = 2𝑛 − 1 according to Table I. Thus, the inequality in Eq. (12) can be 

simplified as 

SIR ≥
2𝑛 − 1

 𝐿 − 1 ∙  1 + 2
𝑛+2

2  
 

                     (13) 

Note that Eq. (13) can be utilized to measure the geometric capacity for sending 

multiple TX-ID sequences simultaneously in the same region. 

5.4 A Example for 10 Transmitters within a Circular Area 

In this subsection, we would like to present a simple example to illustrate the 

geometric studies of the TX-ID capacity. Assume that there are 10 broadcasting trucks 

(L=10) sent by the same TV station in the same circular area and the distance between 
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each broadcasting truck and the TV station is equal to r (the radius of this circle), this 

simple model is shown in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

According the geometric layout of the multiple transmitters as depicted in Figure 

14, Figure 15 illustrates the corresponding relationship between the SIR and the 

Kasami sequence length according to Eq. (13). Figure 16 demonstrates the same 

figure as Figure 15 while the SIR is measured in dB instead. Note that the SIR 

measures are considered at the base station for the primary TX-ID purpose. 

A minimum allowable SIR threshold is usually predetermined to guarantee the 

fidelity of the received TX-ID sequences at the base station. For instance, we take 10 

dB as such an SIR threshold in practice. Therefore, for a satisfactory reception of 

DTV TX-ID signal, the SIR has to be larger than or equal to 10 dB for the reception 

O 

Y 

X 

k3 

k1 

k8 

k10 

k9 

k2 

k4 

k5 

k6 

k7 

r 

Figure 14−An example of 10 transmitters gathering within a circular area of radius 

r. Small circles denote the transmitters’ locations. 
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Figure 15−The relationship between the SIR and the Kasami sequence length for the 

multiple TX layout in Figure 14. 

 

Figure 16−The relationship between the SIR (in dB) and the Kasami sequence length. 
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of any transmitter ID sequence. Consequently, according to Figure 16, the Kasami 

sequence length has to be larger than 10 bits. The received SIR is 33.47dB when the 

Kasami sequence length is 16 bits, which greatly exceeds the minimum required SIR.  

5.5 Signal-to-Interference Ratio Analysis for Multiple Tx-ID Transmission with 

Mobility 

Assume that one of the transmitter, say kl, in Figure 14 moves a distance D away 

from or toward the origin, where a negative D means that kl moves into the circle of 

radius r and a positive D means that kl moves out of this circle. Based on this mobility, 

we would like to study the impact on the received SIR of the multiple TX-ID 

transmission. Figure 17 illustrates this scenario. 

 

 

 

 

 

 

 

 

 

Figure 17−An example of the circularly employed transmitters with some mobility. 

Consider that the radius r is significantly larger than the height difference 

between any transmitter and the base station; one ray model is therefore appropriate 

D 

r 
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for our discussion. In the one ray model, we assume that is no obstruction between the 

base station and any transmitter so that each ID signal propagates along a straight line 

to reach the station. Then the channel model is called line-of-sight (LOS), and the 

corresponding received signal is called the LOS signal or ray. In this type of LOS 

channels, the relationship between the transmitted signal power Pt and the received 

signal power Pr with respect to the distance C between them is characterized as  

𝑃𝑟

𝑃𝑡
=  

 𝐺𝑙λ

4𝜋𝐶
 

2

                         (14) 

where  𝐺𝑙  is the product of the transmitting- and receiving-antenna field-radiation 

patterns along the LOS direction and 𝜆 is the signal wavelength [22]. 

From Eq. (14), we can derive the new expression of SIR when the mobility of a 

transmitter is addressed. Without loss of generality, we consider that the transmitter k1 

moves and tries to evaluate the SIR for the l
th

 received ID signal associated with the 

transmitter kl, which is denoted by SIRl , l =1, 2, …, L. 

For the transmitter k1, we have 

SIR1 ≥

1
 𝑟 + 𝐷 2 𝑟 + 𝐷 2 𝑅𝑘1𝑘1

(0)

 
1

 𝑟 + 𝐷 2𝑟2
𝐿
𝑙=2 𝑅𝑘1𝑘𝑙

(𝜏1,𝑙)
 

=

1
 𝑟 + 𝐷 2 𝑅𝑘1𝑘1

(0)

 
1
𝑟2 𝑅𝑘1𝑘𝑙

𝐿
𝑙=2 (𝜏1,𝑙)

 

        =
𝑟2

(𝑟 + 𝐷)2

𝑅𝑘1𝑘1
(0)

 𝑅𝑘1𝑘𝑙
𝐿
𝑙=2 (𝜏1,𝑙)

 

               (15) 

For any other transmitter kl (𝑙 ≠ 1), we have 
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SIR𝑙 ≥

1
𝑟2𝑟2 𝑅𝑘𝑙𝑘𝑙

(0)

1
(𝑟 + 𝐷)2𝑟2 𝑅𝑘𝑙𝑘1

(𝜏𝑙,1) +  
1

𝑟2𝑟2
𝐿
𝑙′=2,𝑙′≠𝑙 𝑅𝑘𝑙𝑘𝑙′

(𝜏𝑙 ,𝑙′)
 

=

1
𝑟2 𝑅𝑘𝑙𝑘𝑙

(0)

1
 𝑟 + 𝑑 2 𝑅𝑘𝑙𝑘1

(𝜏𝑙,1) +  
1
𝑟2

𝐿
𝑙′=2,𝑙′≠𝑙 𝑅𝑘𝑙𝑘𝑙′

(𝜏𝑙 ,𝑙′)
 

   =
(𝑟 + 𝑑)2𝑅𝑘𝑙𝑘𝑙

(0)

𝑟2𝑅𝑘𝑙𝑘1
(𝜏𝑙 ,1) +  (𝑟 + 𝑑)2𝐿

𝑙′=2,𝑙′≠𝑙 𝑅𝑘𝑙𝑘𝑙′
(𝜏𝑙 ,𝑙′)

     

(16) 

where 𝑅𝑘𝑙𝑘𝑙′
(𝜏𝑙′)) refers to the cross-correlation between the transmitter kl and a 

transmitter other than k1. 

Consider the worst SIR scenario and choose the Kasami ID sequence of n bits 

according to Eqs. (12), (13), SIRl , l =1, 2, …, L, can be expressed as 

SIR𝑙 ≥

 
 
 

 
 

𝑟2

(𝑟 + 𝐷)2 𝐿 − 1 

2𝑛 − 1

1 + 2
𝑛+2

2

,                          𝑙 = 1

(𝑟 + 𝐷)2

 𝑟2 +  𝐿 − 2 (𝑟 + 𝐷)2 

2𝑛 − 1

1 + 2
𝑛+2

2

,            𝑙 ≠ 1

 . 

          (17) 

where L is the total number of the transmitters and n is the bit-length of the Kasami 

ID sequences 

Let’s take an example here to illustrate Eq. (17). If  𝑆𝐼𝑅𝑙 ≥ 10dB, ∀𝑙  are 

required, when L=10 and n=16, the range of D is given by 

−0.5423 𝑟 ≤ 𝐷 ≤ 0.1914 𝑟                   (18) 

Therefore, the allowable moving area for the transmitter k1 to achieve 𝑆𝐼𝑅𝑙 ≥

10dB, ∀𝑙 is shown in Figure 18. 
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Figure 18−The allowable moving area (within the two dashed circles) for the 

transmitter k1 to achieve SIR𝑙 ≥ 10dB, ∀𝑙. 

5.6 Signal-to-Interference Ratio Analysis for Multiple Tx-ID Transmission 

Subject to Different Topologies 

In order to investigate the sensitivity of the transmitter identification in different 

topologies, we present the analysis here for four different geometric TX layouts, 

namely (i) circular distribution, (ii) doubly concentric and circular distribution, (iii) 

square array and (iv) hexagonal tessellation. They are discussed in the following 

subsections. 

5.6.1 ID Transmission by Circularly Distributed Transmitters 

Similar to Section 5.5, the circularly distributed transmitters (L=16) transmitters 

as depicted in Figure 19 and 16-bit Kasami sequences from the large set are 

considered in this example (Scenario I). In this section, d is always defined as the 

−0.5423𝑟 ≤ 𝐷 ≤ 0.1914𝑟 

O 

Y 

X 

 

r 

 k1 
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distance from the station to the nearest transmitter. Hence, d is the radius in Figure 19. 

 

 

 

 

 

 

 

 

 

Figure 19−The transmitters are circularly distributed (Scenario I). 

From Figure 19, we can find that the received SIRs for all transmitters are the 

same. In Scenario I, for any transmitter kl,, we have 

SIR ≥

1
𝑑2

1
𝑑2 𝑅𝑘𝑙𝑘𝑙

(0)

15 ∙
1
𝑑2

1
𝑑2 𝑅𝑘𝑙𝑘𝑙′

(𝜏𝑙 ,𝑙′)
 

=
𝑅𝑘𝑙𝑘𝑙

(0)

15 ∙ 𝑅𝑘𝑙𝑘𝑙′
(𝜏𝑙 ,𝑙′)

 

(19) 

where 𝑅𝑘𝑙𝑘𝑙′
(𝜏𝑙′) indicates the cross-correlation values between the different Kasami 

ID sequences which arrive at the base station. 

For the worst situation, we set 𝑅𝑘𝑙𝑘𝑙′
(𝜏𝑙 ,𝑙′) as its maximum absolute value 

|-t(n)|=1+2
(n+2)/2

 and  𝑅𝑘𝑙𝑘𝑙
(0) equals to 2

n
 -1 for n=16. Thus, we have the lower 

bound of any received SIR as 

𝑆𝐼𝑅𝑙 ≥ 8.5167, ∀𝑙.                          (20) 

O 

Y 

X 

d 

kl 
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5.6.2 ID Transmission by Doubly and Concentrically Circularly Distributed 

Transmitters 

A more complex topology can be shown in Figure 20 (Scenario II). 

 

 

 

 

 

 

 

 

 

Figure 20−The transmitters are doubly- and concentrically-circularly distributed 

(Scenario II). 

From Figure 20, we only need to consider two different sets of transmitters. Within 

each individual set, the received SIRs for all transmitters perform the isotropic 

property. Two arbitrary transmitters (k1, k2), each from an individual set, can be 

considered for the SIR analysis and they are illustrated in Figure 20. Note that 

𝑅𝑘𝑙𝑘𝑙′
(𝜏𝑙′)  indicates the cross-correlation value between two different Kasami 

sequences corresponding to the transmitters kl and kl’. Consequently, for the any 

transmitter k1 along the inner circle as depicted in Figure 20, we get 

SIR1 ≥

1
𝑑2

1
𝑑2 𝑅𝑘1𝑘1

(0)

7 ∙
1
𝑑2

1
𝑑2 𝑅𝑘1𝑘𝑙

(𝜏1,𝑙) + 8 ∙
1
𝑑2

1
4𝑑2 𝑅𝑘1𝑘𝑙′

(𝜏1,𝑙′)
 

X 

Y 

k1 

k2 

d 

O 
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≥
𝑅𝑘1𝑘1

(0)

9 ∙ 𝑅𝑘1𝑘𝑙

𝑚𝑎𝑥   

 (21) 

where 

𝑅𝑘1𝑘𝑙

𝑚𝑎𝑥 = max
                        l,l′ ,𝜏𝑙

{ 𝑅𝑘1𝑘𝑙
(𝜏1,𝑙) ,  𝑅𝑘1𝑘𝑙′

(𝜏1,𝑙′) } ∀ 𝑙, 𝑙′ . 

For the any transmitter k2 along the outer circle as depicted in Figure 20, we get 

 

𝑆𝐼𝑅2 ≥

1
4𝑑2

1
4𝑑2 𝑅𝑘2𝑘2

(0)

8 ∙
1

4𝑑2
1
𝑑2 𝑅𝑘2𝑘𝑙

(𝜏2,𝑙) + 7 ∙
1

4𝑑2
1

4𝑑2 𝑅𝑘2𝑘𝑙′
(𝜏2,𝑙′)

 

≥

1
16 𝑅𝑘2𝑘2

(0)

(2 +
7

16
)𝑅𝑘2𝑘𝑙

𝑚𝑎𝑥
 .                                

(22) 

where 

𝑅𝑘2𝑘𝑙

𝑚𝑎𝑥 = max
                        l,l′ ,𝜏𝑙

{ 𝑅𝑘2𝑘𝑙
(𝜏2,𝑙) ,  𝑅𝑘2𝑘𝑙′

(𝜏2,𝑙′) } ∀ 𝑙, 𝑙′  

For the worst situation, we set 𝑅𝑘1𝑘𝑙

𝑚𝑎𝑥 = 𝑅𝑘2𝑘𝑙

𝑚𝑎𝑥 =  −𝑡(𝑛) = 1 + 2(n+2)/2 ,  and  

𝑅𝑘1𝑘1
 0 = 𝑅𝑘2𝑘2

 0 = 2𝑛 − 1 for n=16. 

The SIR values for the transmitters k1 and k2 on the inner and outer circles, which 

are denoted by SIR1 and SIR2 respectively, are bounded as 

SIR1 ≥ 14.1945,                                                            (23) 

SIR2 ≥ 3.2757                                                               (24) 

5.6.3 ID Transmission by an Array of Transmitters 

Now we consider another example where the transmitters are distributed in an 
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array as depicted in Figure 21. Similar to the discussion in Section 5.6.2, we can 

categorize the transmitters into three isotropic groups. Within each group, we can 

arbitrarily pick up a transmitter to evaluate the received SIR for representing all other 

peer transmitters. For instance, three represented transmitters (k1, k2, k3), each from an 

individual group, are illustrated in Figure 21. 

 

 

 

 

 

 

 

 

 

Figure 21−The transmitters are distributed in an array (Scenario III). 

 

For any transmitter k1 from Group 1, we get  

SIR1 ≥

1
𝑑2

1
𝑑2 𝑅𝑘1𝑘1

(0)

3 ∙
1
𝑑2

1
𝑑2 𝑅𝑘1𝑘𝑙

(𝜏1,𝑙) + 8 ∙
1
𝑑2

1
5𝑑2 𝑅𝑘1𝑘𝑙′

(𝜏1,𝑙′) + 4 ∙
1
𝑑2

1
9𝑑2 𝑅𝑘1𝑘𝑙′′

(𝜏1,𝑙′′)
 

≥
𝑅𝑘1𝑘1

(0)

(3 +
8
5

+
4
9)𝑅𝑘1𝑘𝑙

𝑚𝑎𝑥
.                     

                                                    

(25) 

O 

Y 

X 

k1 k2 

k3 

d 
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where 𝑅𝑘1𝑘𝑙

𝑚𝑎𝑥 =max{ 𝑅𝑘1𝑘𝑙
(𝜏1,𝑙) ,  𝑅𝑘1𝑘𝑙′

(𝜏1,𝑙′) ,  𝑅𝑘1𝑘𝑙′′
(𝜏1,𝑙′′) } ∀ 𝑙, 𝑙′ , 𝑙′ ′. 

For any transmitter k2 from Group 2, we can bound its SIR as 

SIR2 ≥

1
5𝑑2

1
5𝑑2 𝑅𝑘2𝑘2

(0)

4 ∙
1

5𝑑2
1
𝑑2 𝑅𝑘2𝑘𝑙

(𝜏2,𝑙) + 7 ∙
1

5𝑑2
1

5𝑑2 𝑅𝑘2𝑘𝑙′
(𝜏2,𝑙′) + 4 ∙

1
5𝑑2

1
9𝑑2 𝑅𝑘2𝑘𝑙′′

(𝜏2,𝑙′′)
 

       ≥

1
25

𝑅𝑘2𝑘2
(0)

(
4
5

+
7

25
+

4
45

)𝑅𝑘2𝑘𝑙

𝑚𝑎𝑥
 .                                                                 

(26) 

where 𝑅𝑘2𝑘𝑙

𝑚𝑎𝑥 =max{ 𝑅𝑘2𝑘𝑙
(𝜏𝑙) ,  𝑅𝑘2𝑘𝑙′

(𝜏𝑙′) ,  𝑅𝑘2𝑘𝑙′′
(𝜏𝑙′′) } ∀ 𝑙, 𝑙′ , 𝑙′ ′. 

Finally, for any transmitter k3 from Group 3, we can bound the corresponding 

SIR as 

 

SIR3 ≥

1
9𝑑2

1
9𝑑2 𝑅𝑘3𝑘3

(0)

4 ∙
1

9𝑑2
1
𝑑2 𝑅𝑘3𝑘𝑙

(𝜏3,𝑙) + 8 ∙
1

9𝑑2
1

5𝑑2 𝑅𝑘3𝑘𝑙′
(𝜏3,𝑙′) + 3 ∙

1
9𝑑2

1
9𝑑2 𝑅𝑘3𝑘𝑙′′

(𝜏3,𝑙′′)
 

      ≥

1
81 𝑅𝑘3𝑘3

(0)

(
4
9 +

8
45

+
3

81)𝑅𝑘3𝑘𝑙

𝑚𝑎𝑥
                                                                

(27) 

where 𝑅𝑘3𝑘𝑙

𝑚𝑎𝑥 =max{ 𝑅𝑘3𝑘𝑙
(𝜏3,𝑙) ,  𝑅𝑘3𝑘𝑙′

(𝜏3,𝑙′) ,  𝑅𝑘3𝑘𝑙′′
(𝜏3,𝑙′′) } ∀ 𝑙, 𝑙′ , 𝑙′ ′. 

For the worst situation, we set 𝑅𝑘1𝑘𝑙

𝑚𝑎𝑥 = 𝑅𝑘2𝑘𝑙

𝑚𝑎𝑥 = 𝑅𝑘3𝑘𝑙

𝑚𝑎𝑥 =  −𝑡(𝑛) = 1 + 2(n+2)/2,  

and  𝑅𝑘1𝑘1
 0 = 𝑅𝑘2𝑘2

 0 = 𝑅𝑘3𝑘3
(0) = 2𝑛 − 1 for n=16. 

According to (25)-(27), we can have the numerical bounds for the SIRs of the 

transmitters belonging to each individual group as 
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SIR1 ≥ 25.3250,                                                       (28) 

SIR2 ≥ 4.3717,                                                          (29) 

SIR3 ≥ 2.3923.                                                          (30) 

5.6.4 ID Transmission by a Hexagonal Tessellation of Transmitters 

The scenario Ⅳ has this kind of topological distribution and the Figure 22 is 

shown as below. 

 

 

 

 

 

 

 

 

 

 

Figure 22−The transmitters are distributed in a hexagonal tessellation (Scenario IV). 

Finally, we consider a topology depicted in Figure 22. From Figure 22, four 

isotropic groups of transmitters can be categorized similarly. We denote the 

transmitter indices (k1, k2, k3, k4 ), each drawn from an individual group, are illustrated 

in Figure 22. 

 

X 
O 

Y 

d 

k1 

k2 

k3 

k4 
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For any transmitter k1 from Group 1, we get 

SIR1 ≥
1

𝑑2
1

𝑑2𝑅𝑘1𝑘1 (0)

2∙
1

𝑑2
1

𝑑2𝑅𝑘1𝑘𝑙
(𝜏1,𝑙)+3∙

1

𝑑2
1

4𝑑2𝑅𝑘1𝑘𝑙′
(𝜏1,𝑙′)+6∙

1

𝑑2
1

7𝑑2𝑅𝑘1𝑘𝑙′′
(𝜏1,𝑙′′)+4∙

1

𝑑2
2

25𝑑2𝑅𝑘1𝑘𝑙′′′
(𝜏1,𝑙′′′)

  

≥
𝑅𝑘1𝑘1

(0)

(2 +
3
4 +

6
7 +

8
25

)𝑅𝑘1𝑘𝑙

𝑚𝑎𝑥
                                                                             

(31) 

where 𝑅𝑘1𝑘𝑙

𝑚𝑎𝑥 =max{ 𝑅𝑘1𝑘𝑙
(𝜏1,𝑙) ,  𝑅𝑘1𝑘𝑙′

(𝜏1,𝑙′) ,  𝑅𝑘1𝑘𝑙′′
(𝜏1,𝑙′′) ,  𝑅𝑘1𝑘𝑙′′′

(𝜏1,𝑙′′′) } 

∀ 𝑙, 𝑙′ , 𝑙′′, 𝑙′′′. 

For any transmitter k2 from Group 2, we get 

SIR2 ≥
1

4𝑑2
1

4𝑑2𝑅𝑘2𝑘2 (0)

3∙
1

4𝑑2
1

𝑑2𝑅𝑘2𝑘𝑙
(𝜏2,𝑙)+2∙

1

4𝑑2
1

4𝑑2𝑅𝑘2𝑘𝑙′
(𝜏2,𝑙′)+6∙

1

4𝑑2
1

7𝑑2𝑅𝑘2𝑘𝑙′′
(𝜏2,𝑙′′)+4∙

1

4𝑑2
2

25𝑑2𝑅𝑘2𝑘𝑙′′′
(𝜏2,𝑙′′′)

  

≥

1
16 𝑅𝑘2𝑘2

(0)

(
3
4 +

1
8 +

3
14 +

2
25

)𝑅𝑘2𝑘𝑙

𝑚𝑎𝑥
                                                                        

(32) 

where 𝑅𝑘2𝑘𝑙

𝑚𝑎𝑥 =max{ 𝑅𝑘2𝑘𝑙
(𝜏2,𝑙) ,  𝑅𝑘2𝑘𝑙′

(𝜏2,𝑙′) ,  𝑅𝑘2𝑘𝑙′′
(𝜏2,𝑙′′) ,  𝑅𝑘2𝑘𝑙′′′

(𝜏2,𝑙′′′) } 

∀ 𝑙, 𝑙′ , 𝑙′′, 𝑙′′′. 

For any transmitter k3 from Group 3, we get 

SIR3 ≥
1

7𝑑2
1

7𝑑2𝑅𝑘3𝑘3 (0)

3∙
1

7𝑑2
1

𝑑2𝑅𝑘3𝑘𝑙
(𝜏3,𝑙)+3∙

1

7𝑑2
1

4𝑑2𝑅𝑘3𝑘𝑙′
(𝜏3,𝑙′)+5∙

1

7𝑑2
1

7𝑑2𝑅𝑘3𝑘𝑙′′
(𝜏3,𝑙′′)+4∙

1

7𝑑2
2

25𝑑2𝑅𝑘3𝑘𝑙′′′
(𝜏3,𝑙′′′)

  

≥

1
49 𝑅𝑘3𝑘3

(0)

(
3
7 +

3
28 +

5
49 +

8
175

)𝑅𝑘3𝑘𝑙

𝑚𝑎𝑥
 

                                (33) 

where 𝑅𝑘3𝑘𝑙

𝑚𝑎𝑥 =max{ 𝑅𝑘3𝑘𝑙
(𝜏3,𝑙) ,  𝑅𝑘3𝑘𝑙′

(𝜏3,𝑙′) ,  𝑅𝑘3𝑘𝑙′′
(𝜏3,𝑙′′) ,  𝑅𝑘3𝑘𝑙′′′

(𝜏3,𝑙′′′) } 

∀ 𝑙, 𝑙′ , 𝑙′′, 𝑙′′′. 
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For any transmitter k4, we can bound its SIR as 

SIR4 ≥

2

25𝑑2
2

25𝑑2𝑅𝑘4𝑘4 (0)

3∙
2

25𝑑2
1

𝑑2𝑅𝑘4𝑘𝑙
(𝜏4,𝑙)+3∙

2

25𝑑2
1

4𝑑2𝑅𝑘4𝑘𝑙′
(𝜏4,𝑙′)+6∙

2

25𝑑2
1

7𝑑2𝑅𝑘4𝑘𝑙′′
(𝜏4,𝑙′′)+3∙

2

25𝑑2
2

25𝑑2𝑅𝑘3𝑘𝑙′′′
(𝜏4,𝑙′′′)

  

≥

4
625

𝑅𝑘4𝑘4
(0)

(
6

25
+

3
50

+
12

175
+

12
625

)𝑅𝑘4𝑘𝑙

𝑚𝑎𝑥
 

                                 (34)  

where 𝑅𝑘4𝑘𝑙

𝑚𝑎𝑥 =max{ 𝑅𝑘4𝑘𝑙
(𝜏4,𝑙) ,  𝑅𝑘4𝑘𝑙′

(𝜏4,𝑙′) ,  𝑅𝑘4𝑘𝑙′′
(𝜏4,𝑙′′) ,  𝑅𝑘4𝑘𝑙′′′

(𝜏4,𝑙′′′) } 

∀ 𝑙, 𝑙′ , 𝑙′′, 𝑙′′′. 

For the worst situation, we set 𝑅𝑘1𝑘𝑙

𝑚𝑎𝑥 = 𝑅𝑘2𝑘𝑙

𝑚𝑎𝑥 = 𝑅𝑘3𝑘𝑙

𝑚𝑎𝑥 = 𝑅𝑘4𝑘𝑙

𝑚𝑎𝑥 =  −𝑡(𝑛) = 1 +

2(n+2)/2,  and  𝑅𝑘1𝑘1
 0 = 𝑅𝑘2𝑘2

 0 = 𝑅𝑘3𝑘3
 0 = 𝑅𝑘4𝑘4

(0) = 2𝑛 − 1 for n=16. 

According to (31)-(34), we can bound the received SIRs for each group as 

SIR1 ≥ 32.5301,                      (35) 

SIR2 ≥ 6.8284,                       (36) 

SIR3 ≥  3.8146,                       (37) 

SIR4 ≥  2.1085.                       (38) 

 

Assume that the radius for the coverage area by every broadcasting truck is d. 

The analytic SIR results for different topologies are given in Table II. According to 

Table II, we depict the relationships between the covered area and the lowest received 

SIR (absolute value or dB value) in Figures 23, 24. 
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Table II−THE ANALYTIC SIR RESULTS FOR DIFFERENT TOPOLOGIES (n=16) 

 

Scenario Covered area The lowest SIR The lowest SIR(dB) 

Ⅰ 12.57 d
2
 8.52 9.30 

Ⅱ 28.27d
2
 3.28 5.15 

Ⅲ 32 d
2
 2.39 3.79 

Ⅳ 41.57d
2
 2.11 3.24 

 
Figure 23−The relationship between the covered area and the lowest received SIR. 
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Figure 24− The relationship between the covered area and the lowest received SIR (in 

dB). 

5.7 Comparative Studies for Different Kasami Sequence Lengths 

Now we vary the Kasami sequence length (n=14, 18) to follow Section 5.6 for 

the SIR analysis again. Different scenarios described in Section 5.6 are also 

considered here. Tables III, IV list the analytic SIR results for these four topologies 

when the Kasami sequence lengths are n=14 and n=18.   

We also depict the relationships between the covered area and the lowest 

received SIR (absolute value or dB value) for three different Kasami sequence lengths. 

According to Tables III, IV, and Figures 25, 26, we can find that the larger the Kasami 

sequence length, the larger the received SIR. However, the receiver processing time 
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Table III−THE ANALYTIC SIR RESULTS FOR DIFFERENT TOPOLOGIES (n=14) 

 

Scenario Covered area The lowest SIR The lowest SIR(dB) 

Ⅰ 12.5664 d
2
 4.2498 6.2837 

Ⅱ 28.2743d
2
 1.6345 2.1338 

Ⅲ 32 d
2
 1.1938 0.7693 

Ⅳ 41.5692 d
2
 1.0521 0.2206 

 

Table IV THE ANALYTIC SIR RESULTS FOR DIFFERENT TOPOLOGIES (n=18) 

 

Scenario Covered area The lowest SIR The lowest SIR(dB) 

Ⅰ 12.5664 d
2
 17.0500 12.3172 

Ⅱ 28.2743d
2
 6.5577 8.1675 

Ⅲ 32 d
2
 4.7893 6.8027 

Ⅳ 41.5692 d
2
 4.2210 6.2542 
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Figure 25−The relationship between the covered area and the lowest received SIR for 

three different Kasami sequence lengths. 

 

Figure 26−The relationship between the covered area and the lowest received SIR (in 

dB) for three different Kasami sequence lengths. 
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and complexity both are proportional to the ID sequence length and there should be 

some trade-off to seek. 
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CONCLUSION 

The multiple-transmitter identification in digital terrestrial television systems has 

been studied in this thesis. According to the ATSC standard, the Kasami sequences are 

adopted as the embedded ID sequences due to its excellent correlation properties 

compared to other pseudo random sequences. We employ the crucial mathematical 

properties of the Kasami sequences and evaluate the received signal-to-interference 

ratio measures at the base station for the transmitted ID signals. 

On the other hand, different topologies are investigated for the transmitter ID 

signal quality at the base station. The covered area and the lowest received 

signal-to-interference ratio are considered as two essential parameters for the 

multiple-transmitter identification. It turns out to be that the larger the Kasami 

sequence length, the larger the received signal-to-interference ratio. Our new analysis 

can be used to determine the required Kasasmi sequence length for a specific 

broadcasting coverage. 
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