Louisiana State University

LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2009
Scheduling and reconﬁguration of interconnection
network switches

Krishnendu Roy
Louisiana State University and Agricultural and Mechanical College, kroyl @ece.lsu.edu

Follow this and additional works at: https://digitalcommons.Isu.edu/gradschool dissertations

b Part of the Electrical and Computer Engineering Commons

Recommended Citation

Roy, Krishnendu, "Scheduling and reconfiguration of interconnection network switches" (2009). LSU Doctoral Dissertations. 2842.
https://digitalcommons.lsu.edu/gradschool _dissertations/2842

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in

LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/2842?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

SCHEDULING AND RECONFIGURATION OF
INTERCONNECTION NETWORK SWITCHES

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and
Agricultural and Mechanical College
in partial fulfillment of the
requirements for the degree of
Doctor of Philosophy

in

The Department of Electrical and Computer Engineering

by
Krishnendu Roy
B.Sc., University of Calcutta, India, May 2000
B.Tech., University of Calcutta, India, May 2003
M.S., Louisiana State University, USA, December 2005
August 2009

Acknowledgments

| would like to thank all the members of my final examinatiomuuoittee — Dr. Jagannathan Ra-
manujam, Dr. David Koppelman, Dr. Brygg Ullimer, and Dr. AmB@&ngupta, and the members of
my general examination committee — Dr. Suresh Rai and Dr. Rajgéannan who could not be in
my final examination committee. | would also like to thank d@ordelon for all his help related
to executing the simulations.

| consider myself very fortunate to be able to make so mangtgreends during my doctoral
study at LSU, and | want to thank all of them as well. Theirridship and support has meant a lot
to me. | want to recognize the support and understandingrlgdamily has shown to me. Thank
you for your unwavering confidence in me.

Finally, | want to express my sincere gratitude to my adwdor. Ramachandran Vaidyanathan
and Dr. Jerry L. Trahan. This dissertation is just a fracttbrwhat | have learnt from interact-
ing with them. Without their support, time, guidance, ande®e this work would have been

impossible. Thanks for everything.

Table of Contents

ACKNOWIEAGMENLSo e e e e i
LiSt Of Tables . . .o o v
LISt Of FIQUIES . . .ttt et e e e e e e e e e Vi
A S ACT . .. o e Vil
Chapter 1: IntroduCtioN e 1
1.1 Crossbar-Based Input-Queued Switch 3
1.2 Circuit-Switched Tree e 6
1.3 Fat-TreeSwitch 7
Chapter 2: Crossbar-Based Switches: Conditions for Logaritimic Delay 9
2.1 Introductionand Background 9
2.2 Slots,Roundsand Frames. i e 14
2.3 StabilityandDelay 17
2.4 Necessary Conditions for LogarithmicDelay 19
2.4.1 UniformRandom Traffic 02
24.2 BurstyTraffic 22
2.5 SimulationResults e 23
2.5.1 Uniform Random Traffic 52
252 BurstyTraffic 31
2.6 SUMMAIY e e e e 39
Chapter 3: Fast Scheduling Algorithm on Mesh-of-Trees 41
3.1 Introduction 41
3.2 Kelsen'sO(log®n) Bipartite Matching Algorithm onthe PRAM 44
3.3 Reconfigurable Mesh Preliminaries 46
3.4 R-Mesh Bipartite Matching Algorithm 50
3.5 TimeComplexity e e e 55
3.5.1 Other Considerations 56
3.6 Summary e 57
Chapter 4: Scheduling and Configuration of the Circuit-Switched Tree 58
4.1 CSTBackground 58
4.1.1 Structureofthe CST 0 6
41.2 Communicationsona CST 61
4.1.3 CSTConfiguration 63
4.2 The Configuration Algorithm for Widti* Communication Sets 64
4.3 Width-1 CommunicationSets. e 71
4.3.1 Modified CST Configuration Algorithms for Width-1 Sets 72

4.3.2 Oriented, Well-nested, Width-1 Point-to-Point Comimation Sets CST

Configuration Algorithm 74
4.3.3 Width-1 MulticastSets 0. 77

4.4 Well-Nested, Widttw Communication Sets 81
4.4.1 Algorithm Adaptation 82

442 Correctnessof Phasesland2 83

443 ProofofOptimality 85
45 SUMMAIY o e e e e e e e 87
Chapter 5: Routing Algorithm for an R-Mesh Based Fat-Tree Swith 88
5.1 Introduction e . 88
5.2 Routing Algorithm for a Fat-Tree Switch Implemented agaMlesh 90
5.2.1 Examples lllustrating the Algorithm 94
5.3 Summary e e e e 97
Chapter 6: Summary of Results and Open Problems 98
6.1 Crossbar-Based Input-Queued Switches 98

6.2 Fast Scheduling Algorithm on Mesh-of-Trees 99

6.3 Circuit-Switched Tree Switches 101

6.4 Fat-Tree Switch 102

6.5 OtherDirections. e 103
REIEIENCESot 105
AV /1= 111

List of Tables

2.1 VOQ occupancy as observed by an incoming packegigee=1. 26
2.2 VOQ occupancy as observed by an incoming packgiger=2. 28
2.3 VOQ occupancy as observed by an incoming packgigee=3. 28
2.4 VOQ occupancy as observed by an incoming packgigee=4. 29
2.5 VOQ occupancy as observed by an incoming packgiger=5. 29
2.6 VOQ occupancy as observed by an incoming packgigee=1andb=3. 34
2.7 VOQ occupancy as observed by an incoming packgige=2 andb=3. 34
2.8 VOQ occupancy as observed by an incoming packgiger=3 andb=3. 34
2.9 VOQ occupancy as observed by an incoming packgigee=4 andb=3. 34
2.10 VOQ occupancy as observed by an incoming packgiges=5andb=3. 35
2.11 VOQ occupancy as observed by an incoming packgtger=1andb=6. 35
2.12 VOQ occupancy as observed by an incoming packgide=2 andb=6. 35
2.13 VOQ occupancy as observed by an incoming packgtges=3 andb=6. 35
2.14 VOQ occupancy as observed by an incoming packgige=4 andb=6. 37
2.15 VOQ occupancy as observed by an incoming packgide=5andb=6. 37
2.16 VOQ occupancy as observed by an incoming packgtde=8 andb=6. 37
2.17 VOQ occupancy as observed by an incoming packgtges= 10 ando=6.. . . . 37
3.1 tagofactive PEs based gmsow andpSor- -+ -« v v o o e e 51
3.2 Internal bus connections dependingag 51
4.1 The functionfs for well-nested, width-1 CST configuration algorithm. 74
4.2 The functionf; for well-nested, width-1 CST configuration algorithm. 75
4.3 The functionfs for width-1 multicast CST configuration algorithm.79
4.4 The functionf. for width-1 multicast CST configuration algorithm. 80
5.1 PE configurations for creating busestotheright. 94
5.2 Position of sources and destinationsonthe R-Mesh. 95

Vv

List of Figures

1.1 Basicstructureofaswitch. e
1.2 Basic architecture of anx n crossbar-based input-queued packet switch. . . .
1.3 Crosspointconfigurations. e
1.4 CommunicationsonaCST. i
1.5 A fat-tree with multiple edges between two nodes degdtigher bandwidth. . . .

2.1 Basic structure of aswitch. e ..

8

2.2 Structure of am x ninput-queued packet switch with a crossbar-based datafabd 1

2.3 Schedulingona83crossbar.
2.4 Slots, rounds, and frames. e e
2.5 SlotsandframesinNeegtal.[59]. L.
2.6 Delay for various switch sizes for differgops
2.7 VOQ occupancy as observed by an incoming packet.

2.8 Percentage packet loss for differeps oL
2.9 Percentage packet loss for different VOQ sizes.

2.10 Delay for differentframe sizes. oo
2.11 Theon-offtrafficmodel.
2.12 Average delay for bursty traffic for differepps
2.13 VOQ occupancy as observed by an incoming packet for imeah size 3.
2.14 VOQ occupancy as observed by an incoming packet for in@shsize 6.
2.15 Percentage packet loss for bursty traffic with for adfgpps
2.16 Percentage packet loss for different VOQ sizes fofi¢raiith mean burst size 3.

2.17 Percentage packet loss for different VOQ sizes fofi¢raith mean burst size 6.

2.18 Average delay for different frame sizes for burstyfitafith mean burst size 3. . .

2.19 Average delay for different frame sizes for burstyfitafith mean burst size 6. . .

3.1 Example of equivalence between crossbar schedulingipadite matching.

Vi

39
39
40
40

42

3.2
3.3
3.4
3.5
3.6
3.7
4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

Maximal size bipartite matchingbyKelsen. 45
An example of Kelsen's algorithm. 46
A3x5DR-Mesh. e 47
Prefix sums computationonanR-Mesh. 49
Neighbor localizationonanR-Mesh. 49
Procedurbalve 53
The Self-Reconfigurable Gate Array. oL 59
Communicationsona CST. e 60
Some arbitrary configurations ofa CST switch. 61
Amulticastset. 62
A well-nested communicationset. e 63
The internal structure ofaCST switch. 64
Some switch configurations. L Lo 66
Pseudocode for Phase 3 of the algorithm. 68
An example of the general CST configuration algorithm. 69
Two different multicast sets with same source-destingattern. 78
Computation of IDs for a well-nested communicationset.. 82
Part of a CST showing a maximum source incompatible. 86

An 8-leaf fat-tree; multiple edges between two switdiesote higher bandwidth. . 88

Alevelk+21switch. 89
The R-Mesh inside the fat-tree switch. 92
Examples of allowed and conflicting configurations. 94
Exampleillustrating Stagd). 95
Example illustrating Stag@di). oo 96
Final bus configurations. e 96
Bus configurationsof example 2.o 96

Vil

Abstract

Interconnection networks are important parts of modernmging systems, facilitating commu-
nication between a system’s components. Switches comgegrious nodes of an interconnection
network serve to move data in the network. The switch’s datay throughput impact the overall
performance of the network and thus the system. Schedufiogeat movement of data through
a switch and configuring the switch to realize a schedule fentain themes of this research.
We consider various interconnection network switchesuiticig (i) crossbar-based switches,)
circuit-switched tree switches, aiiil) fat-tree switches.

For crossbar-based input-queued switches, a recent etablished that logarithmic packet
delay is possible. However, this result assumes that packetmission time through the switch
is no less than schedule-generation time. We prove thabwitthis assumption (as is the case
in practice) packet delay becomes linear. We also repoultsesf simulations that bear out our
result for practical switch sizes and indicate that a fabedaling algorithm reduces not only
packet delay but also buffer size. We also propose a fast-ofeshes based distributed switch
scheduling (maximal-matching based) algorithm that hagdqp complexity.

A circuit-switched tree (CST) can serve as an interconnegtsire for various computing ar-
chitectures and models such as the self-reconfigurableagatyg and the reconfigurable mesh. A
CST is a tree structure with source and destination proagesements as leaves and switches as
internal nodes. We design several scheduling and configaralkgorithms that distributedly parti-
tion a given set of communications into non-conflicting sibsand then establish switch settings
and paths on the CST corresponding to the communications.

A fat-tree is another widely used interconnection struetarmany of today’s high-performance
clusters. We embed a reconfigurable mesh inside a fat-triéehsw generate efficient connections.
We present an R-Mesh-based algorithm for a fat-tree switaittieates buses connecting input and

output ports corresponding to various communicationsgusiat switch.

viii

Chapter 1
Introduction

Most of today’s computing systems, ranging from large paralystems and high-performance
clusters to a single chip System-on-Chip (SoC), that need eorimation among multiple con-
stituents, use interconnection networks. Interconnacteiworks are one of the main factors in de-
termining the performance of such architectures, affgdtie message latency, bandwidth, routing
complexity, switching structure, system scalability,Ifaalerance and overall cost. Additionally,
advances in interconnect technology often lag the devetogsnin other aspects of computing,
especially processing speed. Hence, the performance aftdreonnection network is often the
critical limiting factor in many of today’s computing systs [16].

The topology is one of the main design choices for any intemeation network that dictates
various other considerations like routing and flow cont®ésearchers have proposed various
topologies [16, 20, 46]. There are two main classes of intamection network topologies — di-
rect and indirect. A direct network is one where all the noaetsas sources and destinations of
data and participate in the routing of the data as well. Amrgad network, on the other hand, is
one in which the source/destination nodes and routing naedistinct.

Indirect networks are often switch-based networks, wheramunication between source and
destination nodes is realized through one or nmewch or router nodes. Data paths exist be-
tween source and destination nodes through switches. Titkehew are usually connected to other
switches as well. The arrangement of switches connectmgdhrces and destinations determines
the topology of the entire network.

Most of today’s fastest supercomputers use indirect nétsvéror example, the Earth Simulator,
the fastest supercomputer between the years 2002 and 2t dang to the top500.org website

[37]), uses a crossbar-based switch; Cray’s XT5m [38] engpiyy torus-based switches. These

switches only forward or route data rather than produce oseme data. Many of the current
Networks-on-Chip (NoCs) [9, 10, 54] also use indirect netwgork

This dissertation deals primarily with network switchegyufe 1.1 depicts the basic structure
of a network switch. A switch has several input and outputgthrough which data arrives and
leaves the switch. Each switch has a data unit, also refesraslswitch fabric or data plane, which
is responsible for the physical transmission of data froenitiput ports to the output ports. There
is no one universal structure for this data plane and matwrias of switches use various architec-
tures ranging from crossbars and multi-dimensional tortdtistage interconnection networks.
Additionally, each switch has a control unit, also refert@ds the control plane, arbiter or switch
processor, that controls the way the data unit handles @datsrhission. The data and control planes
of a switch are separate entities and their architecturerapgmentation need not be related. The
control plane can operate at a separate rate compared tattheldne and can have a centralized

or a distributed architecture.

I = Control Unit Il !

. |
. |
. |
|_pot1 |

—1 otz | Data Unit Port 2

. (Switching Fabric)
Input ports Output Port

FIGURE 1.1. Basic structure of a switch.

Given a set of input-output connection requests, it is thegbthe control unit to construct
an efficientscheduleof transmissions between input and output ports. Moreakiercontrol unit

must also establish paths between inputs and outputs torpetiiese transmissions. This is done

by configuringthe switch to connect the appropriate input and output pdstpically, not all
requested paths can be established simultaneously (doediogiical and architectural constraints
of the switch). The scheduling algorithm should be cogrizdthese constraints in constructing
a schedule and configure the switch accordingly. These twetifuns of the control unit, namely
scheduling and configuration, are critical and determiree dberall performance of the switch
including delay, throughput, and complexity.

This dissertation examines scheduling and configuratioimrefe classes of switches that find

applicability in networks ranging from the Internet to Netks on (a) chip (NoCs):

1. crossbar-based input-queued switches,
2. circuit-switched trees, and

3. switches of fat-tree based interconnection networks.

The next few sections introduce our work on network switchesach of these sections, we
first present some background needed to frame our contiigullowed by an overview of our

contributions.

1.1 Crossbar-Based Input-Queued Switch
A crossbar-based switch is one whose data fabric is a crgsaba x n crossbar switch (see
Figure 1.2) has input ports (conventionally to the left) andoutput ports (at the bottom). An
input-queued switch is one in which input ports have buffeat temporarily queue arriving pack-
ets before scheduling them for transmitting to the appateidutput port. The buffers at each input
port is organized am queues, one for each output port. For ang L j < n, queuéi, j) holds
packets arriving at input and destined to outpyt This form of maintaining a separate queue
for each output is called virtual output queuing (VOQ). $hés with VOQs are scalable, capable
of very high throughput (100% in theory) and avoid the heatinef blocking problem [56] that
reduces the throughput to 5%6.

This dissertation studies packet scheduling, packet dekayd buffer requirements for these

switches. Itis clear that fast algorithms generally insestne switch throughput and reduce packet

3

|npUtS queue (1,1) \‘ Data Fabrlc
] gl [
1—» ‘)
e N RL AN ol
] e w n B o
2 e /S puuE ppn e
‘ > Controller
queue (n, 1)
e e &l
Outputs 1 2 3 n

FIGURE 1.2. Basic architecture of @ax n crossbar-based input-queued packet switch.

delay (at least they do not degrade it). However, the pricé foat speed is usually in hardware
cost, complexity, and power consumption. In our work we skioat there is a disproportionately
high benefit to using a very fast scheduling algorithm fouiagueued crossbar switches. While it
drastically reduces delay, it pays (if at all) a much smaiece in hardware cost and power. We
make our contributions more specific later in this section.

A crossbar usually transmits a packet from input pootoutput portj by sending it right along
row i to columnj, and then turning down at columnto reach outpuj. For this, the crosspoint
(internal switch of the crossbar) at romand columnj configures as in Figure 1.3(a), and all

other crosspoints configure as in Figure 1.3(b). Duringgmaission of this packet fromto j, no

@ (b)
FIGURE 1.3. Crosspoint configurations.

other packet can be transmitted froror to j. That is, the crossbar has at most one set crosspoint

(configuration of Figure 1.3(a)) in a row and at most one sespoint in a column. This restriction,

called thecrossbar constrainand affects the way packets are scheduled on the crosspareHi.2
shows a partial configuration of a crossbar that satisfiesrthgsbar constraint.

At any point in time, the crossbar has a set of packets to eleliv its input ports. It selects
a subset of waiting packets (or a schedule) to transmit. Kamele, in Figure 1.2 the crossbar
selects to send packets from inputs 1, 2 anal outputs 2n and 1, respectively, and configures the
crossbar accordingly. Other packets (such as from input2otar output port 1, for example) must
wait for another schedule. The time between a packet'samivan input port and the point when
it leaves the input queue (for its destination output partalled itsdelay.

Packet transmission time is the amount of time needed tsrirarall bits in a packet. Call the
time unit of one packet transmission aslat Until recently, packet scheduling algorithms for an
n x n crossbar with uniform traffic attained an average packetydefQ(n) slots. Neely, Modiano,
and Cheng [59] developed the Fair Frame scheduling algorittanreduces delay t®(logn)
slots. The result of Neelgt al. assumes that schedule generation time is no more than thetpac
transmission time. Packet transmission time, howeveggpon the medium bandwidth and the
packet length and is independent of the schedule time. biipegpacket transmission time is much
smaller than schedule times for large crossbars. We imagstihe effect on the delay of the Fair
Frame algorithm of decoupling schedule generation time fpacket transmission time.
Contribution of Our Work: Let tg; (0r a slot time) denote the packet transmission time, and
let t,oung (Or @ round time) denote schedule generation time. Defjpse= trt‘;#”td as the packets per
schedule or the number of packets that a switch can transmnitdn input port in the time needed
to construct a schedule. Wigips= 1, Neelyet al.[59] proved that the average packet delay on an
n x n crossbar iD(logn) slots.

In Chapter 2, we analytically show that whpps > 1 (as is usually the case in practice), then
packet delay jumps tQ(n). It is easy to show that packet delayQ@glogn) [59]. Therefore our
result establishes that fpps> 1 the packet delay jumps directly fro®(logn) to ©(n). Our result
is also counter-intuitive as is establishes that there ignaceful degradation of packet delay as

ppsincreases beyond 1.

Next, we examine the applicability of our result to pradticaebssbar sizes through extensive
simulations. We show that, f@ps> 2, packet delay degrades significantly. pps= 2, the delay
is reasonable for network sizes used in practice. We alse ghour simulations that for higher
ppsthe number of input buffers needed for a given level of penfonce (say, packet drop rate)
is significantly higher. This points to the possibility thaty savings in computational hardware
and power consumption afforded by a large valupmgmay be lost to a larger demand for buffer
space. These results are presented in Chapter 2.

Having established the importance of a fast schedulingilfgo, we construct one in Chapter 3.
This algorithm runs in polylog timeQ(log*nloglogn) time for ann x n crossbar) on a mesh-of-
trees type structure that closely resembles the crossbaloy. In devising this algorithm we also
construct a polylog time maximal matching algorithm for eaefigurable mesh [77]; this may be

of independent interest.

1.2 Circuit-Switched Tree

The circuit-switched tree (CST) is an interconnect strieduas a binary tree with processing ele-
ments (PESs) at leaves and switches at internal nodes (seeeHigl). It facilitates communication

between PEs at the leaves.

switch -

FIGURE 1.4. Communications on a CST; a dark (resp., shaded) leabegysea source (resp., destination).

Each switch-switch or PE-switch connection is a pair of ety directed edges. Each di-
rected edge of the CST can carry only one communication atea fitms necessitates an efficient

scheduling for communication among PEs. For example, iar€i@.4 communication between PE

pairs(2, 7) and(4, 6) cannot be simultaneous. To implement a schedule, the sgitcha CST
must configure to establish paths between communicating PEs

A key descriptor of a set of communications on a CST is its Wjai}. A set of communications
with width w requires at least rounds to complete. However, a widtheommunication set may
require more thaw rounds.
Contribution of Our Work: We devise a distributed algorithm that schedules any widg®t of
(point-to-point) communications. The algorithm termeginr rounds, wherav < r < 2w, and
configures the CST for each round of scheduled communicatWesidapt this algorithm for two
special cases that are provably optimal. The first is a widthriented communication set and
the second a widthv, oriented, well-nested set; these are described in moeal detChapter 4.
The significant feature of the algorithm for these casesasdhch PE starts off with just a local
descriptor of whether it is a source or a destination. Thecand destination PEs do not know
each other’s identities or position on the CST. That is, tigerdhm builds on local information to
construct an optimal global schedule and configuration &heound of that schedule.

We also present a multicasting algorithm for oriented, welted communications. In addition
to local information (about whether a PE is a source or amlatstin), here a PE that is at the “end”
of a multicast chain needs to be flagged as well. We prove thlabut this additional information,

no two-pass algorithm (such as ours) can solve this problem.

1.3 Fat-Tree Switch

A fat-tree [46, 47] is a variation of the simple tree where Handwidth between the switches
increases exponentially with increasing levels of the,teseshown in Figure 1.5. Fat trees are a
popular choice for connecting processors and devices ity matoday’s high performance com-
puting environments [37]. In a general tree, there is a unigath between a source-destination
pair. However, in a fat-tree, there are multiple links besawany two switches. Hence, while the
set of switches traversed from a given source to a givenrdgiin is unique, with multiple links
between these switches, the control unit needs to effigisetect a link connecting each pair of

switches.

level 3

level 2

level 1

End Nodes

level O
FIGURE 1.5. A fat-tree with multiple edges between two nodes denoting higimeiviadth.

A significant amount of research has been carried out in thigesft design, implementation,
routing, as well as performance analysis of fat-tree-basedconnection networks [4, 19, 34, 51,
61, 72, 82]. In most of these results, especially those ®irfiniBand architecture, some form of
table lookup determines the intra-switch routing. A sediaeoomputation of these routes does not
scale well. To our knowledge no research has so far focuseddmstributed approach to routing
within the fat-tree switch. We use an R-Mesh [77], a versatit®mnfigurable computational model,
to implement the switch.

Contribution of Our Work: This part of the research is preliminary. We have identifiecap-
proach to the problem and have developed a basic stratedyrtber development. Specifically,
for a given? x 2¥t1 R-Mesh (representing a fat-tree switch with2 links to the parent and*2
links to each child), we have devised an R-Mesh algorithmeffatiently matches requests from
input ports to available output ports in the desired dimecof the fat-tree. The algorithm gener-
ates a schedule (configuration of the R-Mesh) and configueeddta plane to accommodate this

schedule.

Chapter 2

Crossbar-Based Switches: Conditions for
Logarithmic Delay

2.1 Introduction and Background

Interconnection networks used in many current systemsdieect (see Chapter 1). In an indirect
network, switches act as intermediate routing nodes thaisia packets from the source towards
the destination. Depending on the type of switching, packatersing the network could be tem-
porarily stored at the switches as well. Figure 2.1 showstsic structure of a network switch.
The data unit or data plane represents the physical fahrigaoket transfer. The control unit or-
chestrates the flow of packets in the data plane. In a typettihg, packets arrive at input ports
with each packet destined to an output port. The controlgfactors in topological and archi-
tectural constraints of the switch to construct a schedugécket transfer. Then the data plane
configures to deliver packets according to the scheduléisrchapter (and the next) we consider
packet scheduling.

Various data fabric structures exist. We consider a crodshsed data fabric, one of the most
common structures used in interconnection network swetchiggure 2.2 depicts the structure of a
crossbar. Am x n crossbar ham rows, n columns, and? crosspoints. The usual convention is to
connect each row to an input port and each column to an ougputThe crossbar sets crosspoints
(depicted as boxes with darkened circles in Figure 2.2; lseeRigure 1.3(a) on Page 4) to connect
a row to a column. By configuring other crosspoints in that rod eolumn to as in Figure 1.3(b)
on Page 4, the crossbar establishes a path from an inputgart butput port through which
data is transmitted. For example in Figure 2.2, the set poassat the intersection of row 1 and
column 2 connects input port 1 to output port 2. The crossbarrion-blocking network. That is,
ann x n crossbar can connect each input to a distinct output acaptdi any of then! possible
permutations. A given set of communications may not be a p&ton, however. For example,

an input may have packets destined for several outputs ougputomay be the destination for

packets from several inputs. However, an input can trandaté to only one output at a time and
an output can receive data from only one input at any time. §/éeconsidering point-to-point
communications through the crossbar here. For multicastégle input can send the same data
to multiple outputs simultaneously.) This means that comigations at any given point must be
a restriction of a permutation. Put differently, at any pamtime, the crossbar configuration can
have at most one of thecrosspoints connected on each row or each column. We catisiriction
thecrossbar constraintin constructing a schedule, the control plane must acdouthe crossbar

constraint.

I = Control Unit Il !

. |
. |
. |
e

— Ptz |~ Data Unit bort 2

. (Switching Fabric)
Input ports Output Port

FIGURE 2.1. Basic structure of a switch.

There are many practical examples of routers and switclasethploy a crossbar. These in-
clude the Intel Teraflop Router — Cavallino [11], Cray’s T3E [68], the Reliable Router [17],
SGI's SPIDER [30], the Chaos Router [5, 6], the Arctic Router] [6#P’s R2 router, the Ariadne
router, IBM’s SP2 switch, and the Inmos C104 switch [20]. Thettfe&imulator, the fastest su-
percomputer from 2002 to 2004, uses a 64010 single-stage crossbar. The interconnect families
of Infiniband, Myrinet, and Quadrics together account fo¥3af the current top 500 supercom-
puters [37]. Infiniband, Myrinet, and Quadrics implemerissbars of sizes 24 24, 32x 32,

and 8x 8, respectively [36]. Examples of other routers and swidamaploying a crossbar include

10

|npUtS queue (1,1) \‘ Data Fabrlc
] gl [
1—» ‘)
e N RL AN ol
] e w n B o
2 e /S puuE ppn e
‘ > Controller
queue (n, 1)
e e &l
Outputs 1 2 3 n

FIGURE 2.2. Structure of anx ninput-queued packet switch with a crossbar-based data fabric.
IBM’s OSMOSIS project’s optical switch that employs ax684 crossbar [83] and Huawei’s Quid-
way S6500 series high-end multi-service switch [40] andd@aly S8500 series 10G core routing
switch [41].

The crossbar switches we consider have buffers at inpus ploat temporarily store incoming
packets before they are transmitted to the appropriateibptpt. On am x ninput-queued cross-
bar these input buffers are organizedraseparate queues (quéuej) for 1 <i, j <n). Here
queuéi, j) holds packets arriving at inputand destined to outpyt We call this method of orga-
nizing input buffers as Virtual Output Queuing (VOQ). VO(hhe benefit of avoiding the head of
line (HOL) blocking problem [56] that can significantly imgiahe switch throughput. In practice,
there are different ways of implementing VOQs. They rangefhaving separate physical queues
to having a single queue at an input with additional mechmasi® emulate separate VOQs on it.
Figure 2.2 depicts an input-queued crossbar switch with ¥0Q

Thus, in an input-queued crossbar switch with VOQ, packetgeeat input ports and are queued
according to the destination ports. The distribution offlaekets at the VOQs is represented as an
n x n traffic matrix whose entry in rowand columnj gives the number of packets in quéu¢).
For instance, Figure 2.3(b) shows the traffic matrix for tkaneple in that Figure 2.3(a). Period-

ically, the control plane takes a snapshot of the traffic maind generates a schedule of parallel

11

communications on the crossbar. Packets at input queugedardheir turn in a schedule. The
amount of time between the arrival of a packet at an input gadtits exiting the input queue for
transmission to the output port is thelayof the packet.

Crossbar switches with queues at only output ports are alssilije. However, such a switch
instantly transmits any arriving data packets through tleesbar to the output port. For the worst
case, this requires the data fabric of mx n crossbar to operate at a rateimes faster than
the input raté. This condition makes the implementation of output-quecredsbar switches im-
practical from a scalability point of view [13]. Combined utpoutput queued (CIOQ) crossbar
switches employing both input and output queuing exist a [#/8]. A relatively newer idea is
to have queues at each crosspoint along with input queugs\Wetcall these combined input-
crosspoint queued (CICQ) switches. The common name for CICQIls®gtin the literature is
buffered-crossbar switches. The common name for switcli®wut any crosspoint buffers is un-
buffered switches (in spite of the fact that they do havedysfat input and/or output ports). Various
CICQ switches exist ranging from ones that employ a singlesbaiff each crosspoint [65] to ones
that employ a constant number of buffers per output port.[Btffered crossbars often require
less complicated scheduling algorithms compared to uakedfones that provide guaranteed per-
formance in terms of throughput, rate, and delay [14].

Our research considers an input-queued crossbar switthM@0) (see Figure 2.2). Of all the
crossbar-based packet switch architectures, the inpeuegipacket switch with VOQs is one of
the most widely used. As we noted earlier, it does not suftanfthe HOL blocking phenomenon.
These switches also offer high scalability and throughg@i 5, 63]. Often, these switches operate
on fixed length units of data calleglls The switch breaks variable length packets into cells at the
input and reassembles them at the output. In this dissamtatie ignore the issue of packet sizes
for the most part, assuming all packets to be one cell long.mhAin problem that we address is

that of scheduling packets from input queues to output ditise switch [12, 49, 59]. The control

1The ratio of operation rate of the data fabric of a switch e lcket arrival rate at its input is called smeedupA constant speedup (around
2) is considered acceptable.

12

unit of an input-queued switch periodically generates dales based on packets queued at the
input ports, and the data plane then sets its crosspointflect the schedule. Subsequently, for
each connected input-output pair, the switch transmitkgtég) from the top of the corresponding
VOQ. Many switches do this scheduling and packet transonssi fixed intervals of time.

It is customary to divide time in a switch into discredl®tswhere a slot is the time needed to
transmit a packet [59]. However, most results also assunhat gosbe long enough to generate a
schedule as well. For the purpose of this work, let us calctiralition that a slot is long enough
to generate a schedule the “upjisconditior?”. Practical systems often do not meet the yps
condition. The time to transmit a packet (or a slot) is tyfycan the range of 50ns [12, 29, 83],
but for large crossbars this is not sufficient time to corttaugood schedule.

In this chapter we show that the uppscondition is necessary for one recent significant result
to hold. More specifically, Neely, Modiano and Cheng [59] reétgeshowed that with the unfips
condition, packets can be scheduled omamn crossbar switch witl®(logn) average delay. This
result is significant as all previous results could only lmbthe delay tdO(n). The significance of
our work is to prove that without the urppsassumption, packet delay@n). That is, unitppsis
necessary to achieve logarithmic packet delay. Our relsdtshows that there is no middle ground
between logarithmic and linear packet delays. This undeesahe importance of meeting the unit
ppscondition, perhaps by developing a fast schedule requiroxgnore than one slot.

An Example: Before we proceed to the formal description of the problem igsmxdolution, we
illustrate some of the ideas described so far through a swalhple. Consider a:33 crossbar
with packets shown in Figure 2.3(a). The correspondindj¢rafatrix is in Figure 2.3(b). Suppose
during the first slot the control plane schedules a packen firgout port 1 to output port 1 and
another from input port 3 to output port 2 (these are inditdg red circles in the traffic matrix

of Figure 2.3(b)). After those packets are sent out, the maffic matrix is as in Figure 2.3(c).

2The termppsstands for number of packets per schedule and is defined fa@edtion 2.2. Here “unipps’ simply means that the time to
generate a schedule is no more than a slot (packet transmisan

13

queue (1,1) mm

qeve 3 mp 1O—P—P
queue (2, 1)
feid =} o000
11@[1]1
ueve (3. 2 .} s D— DD 2 (1]1]0
queue (3, 3) | 3 0 @ 1
' Ouztput ’ 1 2 3
(@) (b) Initially.
111@]1 1|@|ol1 1/0/0[2
2 |@l1|0 2 0|0 210|/0]|0
3/0[0(D 3/0[0/|0 3/0/0/|0
1 2 3 1 2 3 1 2 3
(c) After schedule 1. (d) After schedule 2. (e) After schedule 3.

FIGURE 2.3. Scheduling on ax33 crossbar.
It is customary to not consider new packet arrivals (if angliluhe current matrix is exhausted.
Figures 2.3(c), 2.3(d) and 2.3(e) show the subset of patlkatsmitted in the next three slots.

The entire schedule for this iteration spans four slots ®jtB, 2, and 1 packets transmitted in
these slots, respectively. For this span of four slots, tleeaye packet delay for the eight packets
iS(2x143x2+2x3+1x4)/8=18/8=2.25; we have assumed that all eight packets arrived
at the input just before the first slot in the example.

In the next two sections we formally define the quantitied ttteracterize the problem ad-

dressed.

2.2 Slots, Rounds and Frames
As we noted earlier, time is discretized into slots on a dwitt/e now relate a slot to two other
important time intervals, round and frame, for scheduliagh®ts on a switch. Figure 2.4 shows

these quantities.

Slot: A slot is the atomic unit in which time is divided for the crbss. Denoted by, it equals

the amount of time needed to transmit a packet from an inpdttp@n output port. If the

14

/ Traffic matrix updated ﬁ

Frame k > Frame k+1

Frame k-1

HRound 1 HHRound 2. . 47RoundT)

<-Slotl-> <-Slot2-><-Slot3-> K-Slotl-> <-Slot2<>Slot3-> | <rSlotl-> <-Slot2<-Slot3->
| |
| |
| |

» Time

-: Time to transnmt a packet

FIGURE 2.4. Slots, rounds, and frames.
data path from an input port to an output port can dellvéits/second and a packet has a

length ofp bits, thentgjot = f.

Round:A round is the amount of time needed for the control plane teeggte a schedule from
a traffic matrix and for the data plane to configure for thisesithe. This quantity, denoted
by tround, depends on the hardware available(itpperform the computation to produce a
schedule andii) to configure the data plane. This hardware complexity algzedés on
n, the size of the switch. Thugyng is independent of;, the slot time. In most practical
systemstyoung > tsior. Since scheduling and packet transmission are interlaavee switch
(see the “Fair Frame” algorithm below), there is no beneftosidering,oung < tsior as the
scheduler cannot produce a new schedule until the curréof packets is sent. Thus, we

assume thatound > tsiot-

We define the quantitJ(t{;Lo'::J aspps(packets per schedule), and it plays an important role
in this chapter. For a given schedule and a switch configuratdorresponding to it, it is
possible to transmit as many pgspackets in a round. All these packets must use the same

configuration, however.

15

For convenience and without loss of generality, we assumdgth dividest,oung, SO

tround

pPpPS=

tsiot .
Frame: A frame is a sequence of rounds. Denote frame size (in rounds) A frame is largely
used as an analysis tool, though it also has some signifiaartbe scheduling algorithm

described below.

The Fair Frame Algorithm: As we noted earlier, our work in this chapter builds on resaoft
Neelyet al.[59]. They use an algorithm, called Fair Frame, that we blytenodify for our work
(while retaining the same name).

Divide time into slots and let a sequenceppfslots constitute a round. A sequencelafounds
forms a frame (see Figure 2.4). At the start of Frakn¢he algorithm takes a snapsh\zlg of
the traffic matrix. This matrix is the target of packet tramssion during Framé&. Let the rounds
of Framek berk, rk ... rk. In Roundrk the scheduler takes the initial traffic matfiz§ and
generates a subset of packets that can be scheduled sienuliy while respecting the crossbar
constraint. It also configures the crosspoints accordingly.

In Roundr'g (the second round), the schedule and configuration genle'raté (the first round)
is used to send packets on the data plane. As mamppspackets are sent between each input-
output pair connected in the schedule. In fact, if inpatconnected to outpytin the schedule and
if queudi, j) hasx packets in it, then mifx, pps} packets are sent froito j in Roundr'g. At the
end of Round'{, the control plane adjusts the initial traffic matmg to account for the packets to
be sent in Rounds. Denote this new matrix biX.

While the data plane is transmitting packets during Ror.ﬁndhe control plane makes a new
schedule based d\vﬂ'{ In general, for RoundX (for 1 < z < T), the control plane generates a
schedule on the basis of the traffic matkd ,, while the data plane transmits packets according
to the schedule and the configuration generated during Rcﬁi@d herer'é is the last round of

Framek — 1.

3The Fair Frame algorithm computes a maximum matching betweenghedutput pairs with packets waiting to be transmitted leetmthem.
More details of this matching appear in Chapter 3.

16

The last schedule of the current frame (Frakhand the adjusted traffic matrix are computed
at the end of Round-'}, the last round. Since the algorithm aims to send all packetirag in
Framek — 1 by the end of Framg, the traffic matrixM¥ should ideally be empty. kX is not
empty, the remaining packets (calledn-conforming packetsare treated as if they arrived in
Framek.

At the start of Framé&+ 1, the control plane generates the initial traffic maMS<+1 which in-
cludes all arrivals during Frameand all non-conforming packets remaining\lﬂf. The scheduler

then proceeds as in Frarke

2.3 Stability and Delay

In any switch, the average overall packet arrival rate caarceed the average packet output rate
(average throughput). A switch satisfying this conditisrsaid to bestable An unstable switch
will require unbounded buffer space and packets will incolbaunded delay. In a stable switch
the input and output rates (averaged over a large enough déireeequal. In the context of the Fair
Frame algorithm, the length of the frame founds) is this “large enough time”. Aftdr rounds

of Framek, the algorithm should have sent out (nearly) all packetsahased before the start of
Framek. Note that other researchers in this area have used the tenne to define a set of slots
but with different criteria as far as what groups those dlogether. For example, Loet al. [52],

X. Li etal.[49], and Y. Liet al. [50] defined a frame as a set of slots for which a single scteedul
is generated. Rojas-Cesshal. [66] defined a frame as a set of cells (fixed-size units intoctvhi
variable-size packets are divided) that can be transnttigether.

Beyond this point we will take the length of a frame to mean ost fhe interval for updating the
traffic matrix for new packet arrivals, but also as a largeugitime to send out nearly all packets
that arrived before the end of the previous frame. That isamé has, with high probability, no
non-conforming packets.

If a frame sizeT has no non-conforming packets, then no packet waits loger ZI' rounds.

Thus the frame size can be a useful tool to determine the pdelkay.

17

The Result of Neely, Modiano and Cheng [59]Neely et al. [59] used a special case of the

Fair Frame algorithm of Section 2.2 to establish the folluguiesult.

Theorem 2.3.1. (Neelet al. [59]): For uniform traffic, Poisson arrivdl, and pps= 1, an nx n

input-queued crossbar can schedule packets wilbgh) delay. O

The above result is a significant improvement over previd(ry delay bounds. The basic idea
of the analysis by Neelgt al. [59] is to show that fofT = ©(logn), the probability of a packet
becoming non-conforming is very Iov@(ﬁlz)), then use this fact to show that the average delay is
O(T) = O(logn). A significant assumption in this result is thgis= 1, that is, the schedule time
does not exceed the slot time (as in Figure 2.5).

Our Contribution: The unitppsassumption in Neelgt al.[59] is not always true in practice. For
example, the crossbar-based optical switch in IBM’s OSMQ®tect [83] required only 52 ns to
transmit a packet. However, constructing a good scheduéglefinding a matching on a2node
bipartite graph (see Chapter 3) and can be quite time conguimimargen. Our contribution is in
examining thepps> 1 case.

In the next section, we prove that tl€logn) packet delay of Neelgt al. [59] holds only for
thepps= 1 case. Moreover, for theps> 2 case, the packet delay jumps®¢n), with no middle
ground between the logarithmic and linear delays.

In Section 2.5 we present results from extensive simulattorshow that our analytical result
hold practical importance. We also use these simulatiorshtov that largepps values require
larger buffer sizes. Thus, lowerimgpshas the benefit of not just lowering delay, but potentially
offsetting some of the hardware costs for doing so. Otheersaj@3, 49, 50, 66] related to frame-
based scheduling algorithms present simulation resultverall delay experienced by packets for
various switch sizes and frame sizes (different frame diage different meanings in these papers
based on the definition of frame as mentioned above). Howewvee of these papers analytically

determines packet delay (except for trivial bounds).

“Traffic refers to the distribution of packet destinationsider uniform traffic, each packet is independently destioeahy of then possible
destinations with probability /n. The arrival on the other hand, refers to the temporal digiiob of arriving packets, without considering their
destinations.

18

/ Traffic matrix updated ﬁ

Frame k > Frame k+1

Frame k-1

«—-Slotl —>»<—=Slot2 —» -+ < —SGlotT — ™

» Time

B ic o transnit a packet

FIGURE 2.5. Slots and frames in Neadyal.[59].

The results described so far is for uniform traffic. We alsespnt results (both analytical and

simulation-based) for bursty traffic in Sections 2.4.2 artd2

2.4 Necessary Conditions for Logarithmic Delay

As noted earlier, a frame-based scheduling algorithm dwitiime into frames, rounds, and slots
(see Figure 2.4). A slot has duratity, time to transmit a packet across the switch. A round
containgpps= t;‘;%’ slots, and it represents time to execute the schedulingitdgo At the end of
Framek — 1, the algorithm takes a snapshot of the input queues; thsstiot represents a $&8T

of packets that have arrived during Frake 1. During each round of Franmie the scheduling
algorithm computes a configuration of the crossbar switdefan a bipartite matching of input
and output ports and transfers a subset of packePKin to their output ports. Each round uses
a single switch configuration. Therefore, if input poris connected to output poit during a
round, then any packet leavingluring that round must be destined jtoAfter each round, the
scheduling algorithm updat&®KT to account for transmitted packets. The scheduler accdoints
newly arrived packets only at the beginning of each frame gdal of the scheduling algorithm
is to route all packets iRKT by the end of Fram&. This results in a delay that is linearly upper
bounded in the frame size. Selecting the numberf rounds per frame to achieve this goal is the

focus of this section.

19

Recall thatpps= tf&%’ For pps= 1 andT = O(logn), this scheduling method fits the Fair
Frame algorithm of Neelgt al. [59]. The Fair Frame algorithm schedules all the packetsiagr
in one frame during the next frame with high probability. hetcase where it does not route all
outstanding packets in the next frame, it will insert theramutilized rounds in subsequent frames.
This will not significantly contribute to the average pacttelay [59].

We examine the natural extension of the Fair Frame algorithpps> 1 as described in Sec-
tion 2.2. That is, when the scheduling algorithm schedulpsti porti with output portj during
a round and hask packets destined tp then the algorithm sends m{ik pps} packets fromi to
j during that round. Since at mogpspackets can be sent in a round, we can also have at most
ppsarrivals in a round (nominally); this corresponds to onekpaper slot per input port on an
average. Note that this extension does not allow changmgulitch configuration during a round.
Therefore if porti has packets destined dadifferent destinations, then the switch needs at Idast
rounds to move all packets in

We now derive a relationship betwepps the number of slots per round, afdthe number of

rounds per frame.

2.4.1 Uniform Random Traffic

In this section we establish that for uniform random traffitwno correlation between two suc-
cessive packet arrival3, can beO(logn) only whenpps= 1, wheren is the number of input or
output ports in the switch. The traffic is uniform if each aimg packet has an equal probability of

being destined to any of theoutput ports (independently of any other packet).

Lemma 2.4.1.For large n, the average number of distinct output ports agwyrandomly destined

packets is (il — e‘%), where n is the number of output ports in the switch.

Proof. Consider the problem of randomly tossindalls inton bins. It is well known that the
average number of empty binsngl — r—l])q ~ nen for largen [58, 67]. In our case, empty bins
correspond to ports with no packets destined to them. Heéheaverage number of distinct ports

to which packets are destinedris-ne 7 2 n(1—e n). O

20

In a frame-based scheduling algorithm wikhrounds per frame angpsslots per round, the
upper bound on the average number of packets arriving dariingme at each input port of the

switch isT - pps With ¢ =T - pps we have the following corollary.

Corollary 2.4.2. For uniform random traffic and <T < n, pps< 2 In () on an average.

Proof. From Lemma 2.4.1, the average number of distinct outpusg@orong the packets arriving
at an input port during a frame i1 — e~ Hhe). Since each round has only one switch configura-
tion, a scheduling algorithm needs at leagt — e*T%) rounds to fully deplete the input queue.
For a frame-based scheduling algorithm this quantity neesho more thad, the number of

rounds in aframe. Thatis(l1—e~) < T. Simplifying this inequality completes the proof[]
Lemma 2.4.3.For 1< T < n, the function {T) = 2In(:"5) is an increasing function of T.

Proof. Lety = ——+. Then, we can expredsT) asF(y), where

Fly) = (l—#%) In(1+y).

Since 1< T < n andy increases withil', we havenTl1 <y < n-1 for this range of values of.
Now,

dF _ y-—In(y+1)

dy y?
Fory>1,In(y+1) <y. Hence, fory > 1, the right hand side of the above equation evaluates to

greater than zero. Fgr< 1, using a power series expansion we get the following.

y—In(y+1) =

3 4
- i;yz (2 +1)
- 27 (G

Now, 2i(1—y)+1> 0, fory < 1. This implies tha — In;21+y) > 0 fory < 1 as well. This shows

thatF (y) increases witly and, hencef (T) increases witfT . O

21

This brings us to our main result, Theorem 2.4.4, where weetbat logarithmic delay is

possible only whempps= 1.

Theorem 2.4.4.For uniform traffic and pps> 1, an nx n input-queued crossbar has an average

packet delay o€(n).

Proof. Let T = g for some constard. Then,

@ - jolety) - o)

Forc > 1.26, thatis,T < 55, we have the following by Corollary 2.4.2

c
< — :
pps < cin (c—l) < 2

By Lemma 2.4.3,f(T) is an increasing function of, so if pps> 2, thenT must be at least

n
1.26° 0

Theorem 2.4.4 proves that ti@logn) delay derived by Neelgt al. [59] is possible only if

pps= 1 and does not hold even whpps= 2.

2.4.2 Bursty Traffic

In this section we extend our results for bursty tr&ffiEor bursty traffic we consider an on-off
arrival process modulated by a two-state Markov chain. hsuprocess ip is the probability of

an on-period ending at a time slot, thers- 1/p is the mean burst size [12]. Since the upper bound
on the average packet arrivals over a frame ipps then for bursty traffic the upper bound on the

average number of bursts per framdispps/b.

Corollary 2.4.5. For bursty traffic andl < T < n, 5 < 1In (") on an average.

Proof. ReplacingT - ppsby T - pps/b in the proof of Corollary 2.4.2 and simplifying, we get the

above expression. O

Theorem 2.4.6.For traffic with mean burst sizeb 1 and pps> 2b, an nx n input-queued crossbar

has an average packet delay®@ftn).

SWe describe bursty traffic in more detail in Section 2.5.2.

22

Proof. Clearly, prS is equivalent tgpsin the proof of Theorem 2.4.4. The main difference is that,
unlike pps prs may not be an integer. Consequentlypifs> 2b (or prSZ 2), then the delay is

Q(n). N

Note: Whenpps< b, T = O(logn) is possible by a simple extension of the result of Ne=ll.
[59]. Additionally, there is a small range of valuestmof pps< 2b for which T = O(logn) remains
possible. Simulation results in the next section supp@tthservation. Simulation results of Neely
et al. for a modified version of Fair Frame on bursty traffic showedatgun consistent with an
increase of delay that is logarithmicmthough they did not analytically prov@(logn) delay for
bursty traffic.

As noted earlier, Theorems 2.4.4 and 2.4.6 point to the fettlbgarithmic delay is possible
only for pps= 1 for non-bursty traffic angps< 2b for bursty traffic. This points to the important
and hitherto unrecognized insight that reduction.q, and consequentlgps causes a huge
improvement from linear delay to logarithmic delay, andtisithe main contribution of this part

of the dissertation.

2.5 Simulation Results

In the last section, we analytically established that wi{eogn) average packet delay is achiev-
able forpps= 1 (result of Neelyet al. [59]), pps> 1 impliesQ(n) delay. The constants in the
notation could determine the true tradeoff between scleedyleed and packet delay for practical
networks. In this section we study this through simulatigndelayed packet is stored in a buffer.
The longer the average delay, the larger the buffer occyp&tace, we also examine the impact
of VOQ sizes on packet delay and the relationship betweem-bpffer size and average packet
delay. On the whole, our simulations show the expected a@éparbetweerpps= 1 and large
values ofpps For uniform traffic,pps= 2 seems to be reasonably closefis= 1 for practical

values ofn. Similar results are obtained for bursty traffic.

23

We built a software framework using the OMNET++ simulatiowieonment [42] to simulate
the Fair Frame algorithm for various values s for both uniform random as well as bursty
traffic. Our simulations considered switch sizes rangiognfil6x 16 to 100x 100.

Each simulation ran for 15000 slots at each input by whicle tihe system has reached a steady
state for a large amount of time. The results from the sinanatmatch our analytical results from
the previous section and display the effects of constatbifadidden in the asymptotic notation
there. For all the graphs (unless otherwise stated), wed/éine packet arrivals for different switch
sizes and differenppsin such a way that the load at each input port is close.(De., on
average ® packets arrive per slét)We also varied the size of each virtual output queue; we
considered two scenarios, infinite and finite VOQs. For fini@Qs, we varied buffer size in the
rangel[l1, [Inn]]. To support our analytical proofs we studied the delay asatfon of pps input
load, and frame size. We also studied VOQ occupancy (foriiafdOQs) as observed by an
incoming packet for different values pps Further, we looked at the percentage of packets lost
for finite VOQs.

In our simulations we always kepio: fixed and expressed the overall delay in terms of slots. In
order to achieve different values gps we varied;oung. We also defined the duration of a frame to
bet,oung [INN]. Hence, with varyind,oung, the duration of the frame also varied. This implies that
for pps> 1, even though the delay 8(n), the frame size was kept @{logn). This allows more
frequent updates to the traffic matrix in thps> 1 cases than that allowed by Fair Frame. Thus
our simulation results could potentially show more improeats if the right frame size was used.
Further note that fopps> 1, we always transmitteppspackets per round (if there are packets to
transmit).

The switch sizes for each simulation reported in this sactiere in the range 18 16 to 100x

100. However, we ran some simulations for 50800 and 100& 1000 switches to verify that the

6Stability conditions of a switch dictates that on averagenast a single packet can arrive per slot at each input pois fFanslates to a
maximum load of 1 at each input port. However, to successfaledule packets arriving with a load of 1, the schedulingrtlgm must generate
schedules that connect each input to some output at eaciklstis practically infeasible. Hence, for practical s\wkisimulations, an input load
close to but less than 1 is considered.

24

general trends shown in the results of switch sizes up tox1000 translate to the bigger switch

sizes.

2.5.1 Uniform Random Traffic

In this section we present results for uniform random traffiackets arrive at each input port
following a Poisson distribution, and the arrival of eaclck®t is completely independent of any
other packet’s arrival. Destinations of arriving packets aniformly distributed among all output
ports. Except when explicitly studying VOQ size, we useditéi queues for these simulations.
Delay: Our main result proved that logarithmic delay is possibly éor pps= 1, and forpps> 1,
the delay becomes linear. Nedy al.’s result of logarithmic delay is a significant improvement
over any existing algorithm in terms of delay. So our resutiich defines the limits of Neelgt

al.’s result, is also important. The delay graphs (Figure 2u@psrt our results.

160 | I ! T T T T T
In(n) —— l
140 + pps=1 »
pps:2 TIT L ““
& 120 | PpsS=3 v L
- - 4 e
< 100} ppS =5 = @ - “‘o _
E N3 - *
: 80 | " * -
g @
(] “
2 60 . _
E . . *
< Aor e |
“ WU e T E ““““““
“ “““““““““ E llllllll
20 - @ - - _
E‘-“.".‘ ------- Werriannannn RLEELRRh ,
° T [e — [l
10 20 30 40 50 60 70 80 90 100
n (# ports)

FIGURE 2.6. Delay for various switch sizes for differguuts

Figure 2.6 shows the average delay of packets for switchearafus sizes for X pps< 5.
We found wherpps= 1, delay is nearly In, as shown in the graph. Further, wheps> 2, the
delay is visibly higher. For the case pps= 2, experimental results show that the delay is slightly
greater than In, and the delay appears clearly linear pms> 3. This corroborates our result that

for uniform random trafficO(logn) delay is only possible whepps= 1. While thepps= 2 case

25

is also linear (from our analytical results), the assoda@nstants are sufficiently small to make
the results seem close torffior practical values of.
VOQ Occupancy: In an input-queued switch, the queues at the input ports deanipy store the
incoming packets till they are transmitted through the switFor the same input load, a switch
with less delay will have to store the packets for a shortemarhof time. Hence, the delay affects
the size of VOQs needed as well. Our results on VOQ occupdrigyre 2.7) show that when
pps= 1 the VOQ occupancy (buffer requirement) is less thamdimost 100% of the time. This
percentage decreases slightly with increagipg

We look at the distribution of the number of waiting packetshe corresponding VOQ, as
observed by an incoming packet, for variguss(Figure 2.7). Figure 2.7 plots a stacked histogram
where the percentage of packets encountering an empty guereval, the percentage of packets
that encounter a queue with one existing packet, and so oplatted along a single bar in a
cumulative way (Tables 2.1 - 2.5 shows the actual numbers)shown in Figure 2.7(a), when
pps= 1 almost 85% of the incoming packets for ax1&6 switch and almost 95% of the incoming
packets for a 10& 100 switch encounter an empty VOQ on arrival. (This suggistswith no
input buffer, the drop rate for a 100100 switch is only about 5%.) Agpsincreases, a higher

percentage of incoming packets encounters a VOQ with oneoog packets already waiting in it.

TABLE 2.1. VOQ occupancy as observed by an incoming packgtpse 1.

Percentage of arriving packets that encountered
0 | 1 | 2 | 3 | 4 | 5
Switch size packet(s) in the queue

16x16 | 84.01| 1453| 1.36| 0.10| 0.01 0.00
32x32 || 8951 | 9.86 | 0.60| 0.03| 0.00 0.00
52x52 || 9336| 6.40 | 0.24| 0.01| 0.00 0.00
72x72 || 9426 | 556 | 0.18| 0.00 | 0.00 0.00
100x 100 || 95.80 | 4.10 | 0.20| 0.00 | 0.00 0.00

This result points to the important fact thgisaffects the VOQ size as well. For the Fair Frame

algorithm, a logarithmic VOQ size will be sufficient (i.ehet probability of a packet loss due to

26

100 [100

80 - 80 |-

oOFRrNwWA~O

60 - 60 |-

% of total
% of total

40 |- 40 e

20 |

100 [100 [

80 |-

oRrNWkhO

% of total

60 |- 60 |-

% of total

40 | 40t

20 fooe

Switch size

(c) pps=3

100

80

60

% of total

40

20

(e) pps=5

FIGURE 2.7. VOQ occupancy as observed by an incoming packet.

VOQ overflow is pretty much zero) only wheps= 1. But asppsincreases, more packets will be

dropped.
Packet Loss for Different Switch Sizes angps For large switch sizes, the amount of memory

needed to store the packets at the input port is an impomatdrf Previously, our results showed

27

TABLE 2.2. VOQ occupancy as observed by an incoming packgifse 2.

Percentage of arriving packets that encountered
o | 1 | 2| 3] 4| 5
Switch size packet(s) in the queue

16x 16 7260 | 2258 | 4.17 | 0.56 | 0.09 0.01
32x32 79.68 | 17.73 | 2.33| 0.24 | 0.02 0.00
52x52 || 8548|1317 |1.25|0.09|0.01 0.00
72x72 || 87.14|1183| 0.96| 0.06 | 0.00 0.00
100x 100 | 89.89| 9.46 | 0.61 | 0.03| 0.00 0.00

TABLE 2.3. VOQ occupancy as observed by an incoming packetfse 3.

Percentage of arriving packets that encountered
o | 1 | 2| 3] 4| 5
Switch size packet(s) in the queue

16x 16 60.62 | 28.07 | 851 | 2.17 | 0.50 0.11
32x 32 65.63 | 2545| 6.83 | 1.60 | 0.37 0.09
52x 52 69.02 | 2313 | 593 | 1.44 | 0.36 0.09
72x 72 69.70| 2268 | 5.75| 1.41 | 0.34 0.08
100x 100 || 71.02 | 21.60 | 5.49| 1.39 | 0.36 0.09

that different values gbpstranslate to different queue-length requirements to guaeano packet
loss. In these results we limit the size of VOQs and obsereeeffect of the limited sizes to
the corresponding percentage packet losses. Many appfisaespecially ones without real-time
constraints, can tolerate a certain amount of packet lag®wi any major problem. So, if a switch
designer knows what the application requirements are mgef allowable packet loss, then the
designer could select an optimum VOQ size. The graphs insetion (packet loss for various
switch sizes with fixed VOQ lengthiin(n)|) and the next section (packet loss for two fixed switch
sizes with variable VOQ sizes) attempt to shed some lighbmMOQ-size — packet loss trade-off.
Figure 2.8 depicts the percentage of lost packets for diffeswitch sizes for differemgps In
Figure 2.8, we limit the size of each VOQ fm(n)], and like before, used an input load 090As
ppsincreases beyond 3, the percentage of dropped packetststartrease quite drastically.
Packet Loss for Different VOQ Sizes:We also selected two switch sizes,660 and 100« 100,
varied the VOQ sizes for each switch in the rangidIn(n)]], and observed the packet loss for

each VOQ size. Figure 2.9 presents the result. This resalshhat ifppsincreases then for a

28

TABLE 2.4. VOQ occupancy as observed by an incoming packgifse 4.

Percentage of arriving packets that encountered
o | 1] 2 [3] 4| 5
Switch size packet(s) in the queue

16x16 | 4982|2981 | 1290|484 |175| 059
32x 32 5170|2854 | 1208 | 4.71| 1.82 0.70
52x 52 |/ 5282|2721 |1165|4.83|204| 085
72x72 | 5285|2699 | 1164 |492|207| 088
100x 100 || 5328 | 26.28 | 11.48| 5.00| 2.20| 0.98

TABLE 2.5. VOQ occupancy as observed by an incoming packegtfse 5.

Percentage of arriving packets that encountered
o | 1] 2 [3] 4| 5
Switch size packet(s) in the queue

16x16 || 4173 |29.01| 1562 | 7.48|3.44| 155
32x32 || 4197|2793 |1504| 760|381 185
52x52 || 4237 | 26.66 | 1455| 7.72| 408 | 216
72x72 || 4218|2646 | 1450| 7.80| 4.18| 225
100x 100 || 4244 | 2599 | 14.34| 7.81| 4.26 | 236

fixed VOQ size the number of dropped packets also rises, edlydor the lower VOQ sizes. As
shown in Figure 2.9ps= 1 translates to very low VOQ size requirements for limitiragket loss
to a given level. This, however, is not true for higher valoéppsand indirectly reinforces the
fact that ensuringps= 1 leads to big gains in delay (VOQ size is related to delayhddewe can
use the graphs of Figure 2.9 to determine the VOQ size redjtorensure that the packet loss does
not exceed a certain value, given a fiygus Conversely, given a fixed VOQ size and a maximum
allowable loss percentage, using Figure 2.9 we can sugli@stale values opps

If one views reducing round time as an investment in the cdmginardware cost of the switch,
then the added cost of a larger number of buffers neededrfyetigung could make it worthwhile
to reducé;oung.
Different Frame Sizes: The Fair Frame algorithm schedules all conforming packeds arrive
in any frame during the next frame. Hence, the maximum délay & conforming packet can

experience is twice the frame size. We ran simulations wiiferént frame sizes andpsmainly

29

10

| T T
16 x 16 Switch =——t—
50 x 50 Switch
g L 72 X 72 Switch =+-#::+
100 x 100 Switch g i
S
)
()]
o
-
o
X
(8]
S
a
FIGURE 2.8. Percentage packet loss for diffengos
100 - ; ; 100 - . .
pps =1 —— pps=1 —+—
9 I pps=2 1 90 | pps=2 i
pps:3 T O pp5:3 T OT
80 pps = 4 i] 80 - PPS = 4 e .
- L =5 4 — L =5 4
S 70 | pps S 70 | pps
o 60 . w60 .
S sof . S s} .
g _ g ot i
3 5
s . o 30 L. -

I
o &

VOQ Size VOQ Size
(a) Switch size: 5& 50. (b) Switch size: 106 100.

FIGURE 2.9. Percentage packet loss for different VOQ sizes.

to see whether this relationship between the frame size alay tholds forpps> 2. The results
showed that for a fixedps different frame sizes do not make a big difference in thaylel

In our simulations we considered frame size& T < 5 and observed the average delay for a
50x 50 and a 10& 100 switch for 1< pps< 5. For each of these switches, we wanted to observe
the effects of different frame sizes from 1 up[tan], hence the intervdll,5]. The results are in
Figure 2.10.

Another interesting trend in Figure 2.10 is that for lowelues ofpps the delay increases with
increasing frame size, while with higher valueppf delay decreases with increasing frame size.

This happens because a higher valugop$ means a scheduled input-output pair must receive

30

80 T T T 160 T T T
pps=1 =—t— PPS=1. m=tg=—
70 |- pps=2 - 140 - Pps=2 L
ppS—3 T O ppS—3 T O
w60 | Pps=4 i i & 120 | pps=4 B i
E pps=5 8 pps=5
n 0
> 50 g s = . p! =~ 100 g B o a |
2 40+ . 2 8o} e
Q [
g 30 B g 60 - B
% 20 L SAALRLLEEREEEEEE PWerrrrsnnnnnneees Woornnneennnnees L SRR j' :% 40 Mererereeeee [YTTIITIIIIII Weceannnnnnisan YTTII L
10 . 20 B
0 1 1 1 0
1 2 3 4 5 1 2 3 4 5
Frame Size Frame Size
(a) Switch size: 5& 50. (b) Switch size: 106 100.

FIGURE 2.10. Delay for different frame sizes.
more packets in order to have something to transmit in eathegipsslots. Since higher frame
size means a lower update frequency of queue informatierprbbability of having more packets
in any particular VOQ is higher. Hence, with higher framessiwhenever an input-output pair is
scheduled, the number of packets transmitted will be clasepsrelative to lower frame size,
thus reducing the delay. On the other hand, with lower vabfgsps arrival of pps packets at
an input port destined to the same output port is relativadger. Hence, with higher frame size,

those packets have to wait longer in the VOQ before the qudaemation is updated, resulting in

increased delay.

2.5.2 Bursty Traffic

Most Internet traffic is bursty in nature, so we ran our siriafes for bursty traffic as well.
For bursty traffic we use the on-off traffic model modulatedabiwo-state Markov chain [12].

Figure 2.11 shows the arrival process at each input porinDuahe on period, an input port con-

P

1- c‘ 1-c

q
FIGURE 2.11. The on-off traffic model.

tinues to receive packets destined to the same output pgrisithe probability of starting an off

31

period andq is the probability of starting an on period, then the mean enog lengthb (burst

size) is ¥/ p, the mean off period length i€l — q) /g, and the offered load at each input port is

q
g+p—pq’

We use these expressions to model bursty traffic for tweifit mean burst sizes, 3 and
6. We ran all the simulations as in the uniform random trafisecfor each of the burst sizes as

well.

Delay: Figure 2.12 shows the average delay for bursty traffic fdedéht values opps In The-

35 T T T T T T T T 70 T T T T T T T T
In(n) =t IN(n) =t .
L pps=1 i L pps=1 [UURIRIRE L
30 pp5:2 T O 60 ppSZZ T OT “.-‘A
w pps =3 e Tn‘ pps =3 Bl
5 251 pps=4 B 5 50 pps=4 e R
5 pps=5 5 ppSfS‘h,..--""" — A
g of 1 & o4op pRISLIC b -
Q [- AT
la} la} pps'= 10 g denan=r=
o 15 Y - D g 30 4 e .o b
g \\\\\ & a - g k“’ o PRI LA et *
5: 10 g e Wrrasnnrnnnnnnnnnnny » <>E 20 e - 7
______ P YTTTTITIIIIIEE Chi L4 R = TR
LV v Y TP | - R - o
5[gussssssasfassssssssssgassasasasssifisasssasassssaed 101 g s IR oo *
- FPEPEY
0 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
n (# ports) n (# ports)
(a) Mean burst size: 3 (b) Mean burst size: 6

FIGURE 2.12. Average delay for bursty traffic for differgags

orem 2.4.6 we showed that fpps> 2b, the delay iS2(n). We also pointed out that faps< b,
delay can be logarithmic, but gpsstarts to exceet, the mean burst size, the delay quickly be-
comesQ(n). In this study we primarily focus oh < pps< 2b as thepps> 2b case is very similar
to the non-bursty case. In Figure 2.12(a), whijes< b the average delay is indeed logarithmic.
(Note that[Inn] ranges from 3 to 5 asranges from 16 to 100.)
VOQ Occupancy: For bursty traffic we also analyzed the distribution of thenber of waiting
packets in the corresponding VOQ, as observed by an incopameget, for variougpps (Fig-
ures 2.13 and 2.14). For bursty traffic whh= 3, we expected that the number of arriving packets
that will encounter between 0 and 2 waiting packets will doaie the percentage. In Figure 2.13
this is indeed the case. (Tables 2.6 - 2.17 shows the actogbens).

As before, fopps= 1, a very high percentage of packets sees between 0 wadting packets

at the VOQ. However, appsexceedd, a higher percentage of packets encounters morelihan

32

waiting packets on arrival. This observation points to thlatronship between VOQ lengths and

value ofppsrelative tob for bursty traffic. Fob = 6 similar trends are visible in Figure 2.14.

100 100
80 80
] 60] 60
8 2
S S
£ 40 £ 40
20 20
0 0
L +\’00
Switch size
100 - 13 100 -
12
80 |- 0 80 |-
9
s 60 ? 8 60
2 6 2
© 5 S
S 40 2 S 40 -
3
2
20 |- 1 20 |-
0
0 % Q S P 0
6, 2 L 2 2,
% + + + e)
¢ - S 2.
s e o +z00 o +\700
Switch size Switch size
(c) pps=3 (d) pps=4
100 13
12
of i
9
T 60l 8
2 6
© 5
S 40 4
3
2
20 | 1
0
0

(e) pps=5

FIGURE 2.13. VOQ occupancy as observed by an incoming packet fan imerst size 3.

33

Percentage of arriving packets that encounts

o | 1] 2 | 3] 4] 5
Switch size packet(s) in the queue
16x 16 | 2956 | 24.62| 2347 | 17.02| 3.83| 0.94
32x32 | 3075|2349 |1785|1480|9.78| 234
52x 32 | 3145|2350 | 17.67 | 1448 | 9.52| 233
72x72 || 3163|2300 1650|1218 |9.00| 5.55
100x 100 || 3195|2312 | 1643 | 1205 | 8.88| 5.48

TABLE 2.6. VOQ occupancy as observed by an incoming packetpgse 1 andb = 3.

red

TABLE 2.7. VOQ occupancy as observed by an incoming packatpse= 2 andb = 3.

Percentage of arriving packets that encountered
0 | 1] 2] 3] 4567

Switch size packet(s) in the queue
16x16 | 2875|2218 | 1664 | 1277 |9.37 | 596 | 2.79| 0.92
32x32 || 2994 | 2175|1557 |11.21| 796|560 3.82| 235
52x32 || 3100|2198 | 1545|1088 | 7.69 | 5.38 | 3.65 | 2.26
72x72 || 3117|2187 | 1521|1050 7.29|5.06 | 3.43| 2.29
100x 100 || 3166 | 2200 | 1515|1042 | 7.20| 494 | 3.35| 2.23

TABLE 2.8. VOQ occupancy as observed by an incoming packgipgse= 3 andb = 3.

Percentage of arriving packets that encountered

o | 1] 2| 3 | 4|56 7| 8] 9|10
Switch size packet(s) in the queue
16x 16 2734|2099 | 1578 | 1160 | 830|591 |4.09| 274 | 1.68| 0.84 | 0.37
32x32 29.00| 2117 | 1527|1094 | 7.75| 5.36| 3.68 | 253 | 1.67| 1.12 | 0.71
52x 32 3025|2154 | 1521 | 1065|742 | 5.10| 3.48 | 235|156 | 1.01 | 0.65
72x72 3058|2150 | 1506 | 1051 | 7.28| 499 |3.41(231|154| 101|068
100x 100 || 31.14 | 2166 | 1501 | 1036 | 714|488 | 3.32| 225|151 | 1.00| 0.65

TABLE 2.9. VOQ occupancy as observed by an incoming packgipgse= 4 andb = 3.

Percentage of arriving packets that encountered

o | 1] 2| 3 | 4|56 7| 8] 9|10
Switch size packet(s) in the queue
16x 16 26.02 | 2043 | 1551 | 1147 |8.30| 597 |4.22|289| 195|131 0.82
32x32 27.76 | 2059 | 1511 | 1097 | 7.89| 558 | 390|271 | 1.86| 1.25| 0.87
52x 32 29.35]21.08| 1500|1066 | 750 | 522|364 | 251| 171|116 |0.77
72x 72 29.75| 2113 | 1498 | 1056 | 7.39 | 514 | 355|245| 1.68| 1.14 | 0.76
100x 100 || 3049 | 21.35| 1493|1041 | 7.21|5.00| 3.44| 2.35|1.60| 1.08| 0.72

34

TABLE 2.10. VOQ occupancy as observed by an incoming packeifges= 5 andb = 3.

Percentage of arriving packets that encountered

0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10
Switch size packet(s) in the queue
16x 16 24.64| 1945 | 1507 | 1143|856 | 6.30| 449 | 3.16| 2.25| 1.56 | 1.03
32x 32 26.38 | 1993 | 1487 | 11.02 | 8.06 | 585|422 | 297 | 2.08| 1.47 | 1.02
52x 32 2810 | 2055|1490 | 10.73| 7.69 | 547 | 386 | 2.71| 190 | 1.31| 0.91
72x72 2861 | 2066 | 1489 | 1066 | 757 | 5.36| 3.75| 2.62 | 1.84| 1.28 | 0.88
100x 100 || 2945 | 2094 | 1489 | 1053 | 740|518 | 361|249 | 1.74| 1.19| 0.82

TABLE 2.11. VOQ occupancy as observed by an incoming packeiges= 1 andb = 6.

Percentage of arriving packets that encountered

o | 1] 2] 3] 4| 5 | 6] 7] 8] 9]10
Switch size packet(s) in the queue
16x 16 1479 | 1526 | 26.27 | 2842 | 857 | 2.88 | 1.56 | 0.89 | 0.51| 0.30 | 0.19
32x32 1517 | 1453 | 1569 | 2097 | 2081 | 6.67 | 255| 1.37| 0.80| 0.49| 0.32
52x 32 1542 | 1465 | 1568 | 20.87 | 2058 | 6.72 | 255| 1.39| 0.83 | 0.50 | 0.30
72x 72 1549 | 1423 | 1323|1482 | 1652 | 1495|557 | 221 | 1.16 | 0.69 | 0.40
100x 100 || 1563 | 1432 | 1325 | 1479 | 16.47 | 1480 | 547 | 222 | 1.15| 0.70 | 0.42

TABLE 2.12. VOQ occupancy as observed by an incoming packeiges= 2 andb = 6.

Percentage of arriving packets that encountered

o | 1] 2] 3] 4| 5 | 6] 7] 8] 9]10
Switch size packet(s) in the queue
16x 16 1460 | 1344 | 1343|1518 | 1533|1301 | 7.68 | 3.19| 1.52 | 0.89 | 0.56
32x32 15.06 | 1333 | 1178 | 1092 | 10.70| 1042 | 9.63 | 7.98 | 4.82| 216 | 1.14
52x 32 1545|1356 | 11.88 | 1091 | 1057 | 1013 | 9.45| 7.92| 484 | 2.20 | 1.15
72x 72 1552|1347 | 1163|1011 | 9.08 | 840 | 7.64 | 6.82| 6.02 | 4.82 | 2.95
100x 100 || 1567 | 1354 | 11.62 | 1009 | 9.03 | 833 | 7.52 | 6.77 | 6.02 | 4.83 | 2.97

TABLE 2.13. VOQ occupancy as observed by an incoming packeiges= 3 andb = 6.

Percentage of arriving packets that encountered

0 | 1 | 2 | 3] 4 |56 78] 9]10
Switch size packet(s) in the queue
16x 16 1450|1307 | 1185|1101 | 1022|950 |8.70| 7.54 | 5.66 | 3.36 | 1.72
32x 32 1491 |1302| 1136| 995 | 891 | 7.84|6.90| 6.11 | 5.36 | 4.65 | 3.88
52x 32 1533|1327 | 1151 | 997 | 881 | 7.71| 6.82| 595 | 5.22 | 461 | 3.82
72x 72 1538 | 1321|1131 | 971 | 840 | 7.27 | 6.23| 536 | 462 | 3.92| 3.35
100x 100 || 1555|1332 | 1137 | 9.73 | 840 | 7.23| 6.18 | 5.32| 456 | 3.89 | 3.35

35

100 - T == 13 100 =13
12 12
50 L _ 11 50 — 11
= 10 == 10
9 9
T el — A —
2 —— 6 £ — 6
o —a5 S —a5
S 40 - =4 8 40 = 4
3 3
— —
20 - N 20 (===
0 0
0 0
Switch size °
(@) pps=1
100 =~ T == 13 100 = 13
12 12
80 L _ 11 a0 — 1]
= 10 == 10
9 9
— (== - (=]
g 60 —t g 60 —_ 7
s — 2 —
= —a5 S —a5
K 40 [il — Y s 40 /4
3 3
— 2 — 2
20 - =1 20 =1
[0
0 \7 & 8 2. 0
5., B R, D 2
% = + + 2)
T R D T 1y %
. .) ; : 4
Switch size Switch size
(c) pps=3 (d) pps=4
100 13 100 13
12 12
op b wp 13
9 9
T eof- - 8
=1 6 = 6
s 5 5 5
S 40 [2 S 40 [2
3 3
2 2
20 [1 20 [1
0 0
0 % Q- S$- 2 Y 0
O W SY Y
% +; + + e)
TR D T Ay A
. .) - : 4
Switch size Switch size
(e) pps=5 (f) pps=8
100
80
T 60 [
2
k]
X 40
20
0
2,
%,
Switch size °
(9) pps=10

FIGURE 2.14. VOQ occupancy as observed by an incoming packet fan imerst size 6.

36

TABLE 2.14. VOQ occupancy as observed by an incoming packeiges= 4 andb = 6.

Percentage of arriving packets that encountered

o | 1] 2] 3 | 4]5] 6] 7| 8] 9]10
Switch size packet(s) in the queue
16x 16 1412 | 1266 | 11.29| 10211901 |8.02| 714 | 6.31 | 551|472 | 3.72
32x 32 1472 | 1276 | 11.06 | 9.67 | 842 | 7.30| 6.33 | 5.45| 4.65| 3.96 | 3.34
52x 32 1514 | 1302|1123 | 9.73 | 839 7.23|6.21|5.31| 452 | 3.86| 3.28
72x 72 1521 | 1300|1113 | 955 | 815|7.02| 6.00| 5.13| 4.34| 3.68 | 3.10
100x 100 || 1543|1316 | 1121 | 956 | 8.17| 7.00 | 5.97 | 5.08 | 4.29 | 3.64 | 3.07

TABLE 2.15. VOQ occupancy as observed by an incoming packeifges= 5 andb = 6.

Percentage of arriving packets that encountered

0 | 1 | 2 | 3| 4|56 78] 910
Switch size packet(s) in the queue

16x 16 1395| 1240|1094 | 9.79| 858 | 746 | 6.47 | 565|495 | 4.25| 3.61
32x 32 1451 | 1257|1093 |9.47|8.18| 7.08| 6.08| 520 | 4.46 | 3.78 | 3.24
52x32 | 1504|1289 |1106|9.53|8.21|7.02|6.00|5.08|435|368|3.13
72x72 || 1505|1287 | 1103 |9.44|8.05|6.87|5.87|4.99| 425|359 | 3.05
100x 100 || 1533|1304 | 11.12|9.47| 8.05| 6.86 | 5.85| 4.96 | 4.21 | 3.56 | 3.01

TABLE 2.16. VOQ occupancy as observed by an incoming packeiges= 8 andb = 6.

Percentage of arriving packets that encountered

0 | 1 | 2 | 3| 4]5] 6] 78] 910
Switch size packet(s) in the queue

16x16 | 13.06|1148|1025|9.09|7.97|7.01|6.15|5.32|4.61|4.00| 3.42
32x 32 1375|1189 | 1045|9.13| 7.95| 6.87 | 597 | 5.17 | 443 | 3.81| 3.24
52x 32 | 1443|1238 |1069|9.21|7.95|6.82|585|5.00 (429|365 311
72x72 || 1457 (1245|1072 9.22|7.91|6.78|5.78| 494 | 421 | 3.59 | 3.05
100x 100 || 1492 | 1269 | 1085 | 9.27| 792 | 6.77 | 5.76 | 490 | 4.17 | 3.55| 3.02

TABLE 2.17. VOQ occupancy as observed by an incoming packgiges= 10 andb = 6.

Percentage of arriving packets that encountered

0 | 1 | 2 [3] 4 5] 6] 7] 8] 910
Switch size packet(s) in the queue

16x 16 1255|1088 | 9.73 | 871 | 7.71|6.81| 6.02|5.26 | 4.61| 4.04 | 3.52
32x 32 1325|1138 | 1002|877 | 769 | 6.72 | 5.86 | 5.09 | 440 | 3.84 | 3.31
52x 32 1393 1196|1040|9.01|7.81|6.74|582|502|431|3.71| 3.17
72x 72 14.11| 1208 | 1044 | 9.02 | 7.80| 6.73 | 5.78 | 498 | 4.27 | 3.67 | 3.14
100x 100 || 1449 | 1234 | 1062 |9.12| 7.82 | 6.71 | 575|492 | 421 | 3.59 | 3.07

37

Figure 2.15 presents the percentage of packets that araikbsfinn| size VOQs for bursty
traffic. The packet loss becomes appreciably higher eveppgee 2.
Packet Loss for Different VOQ Sizes:Just like with uniform random traffic, we also selected two
switch sizes, 5& 50 and 100k 100, varied the VOQ sizes for each switch in the rafigéin(n)]],
and observed the packet loss for each VOQ size. Figures 2d 8.47 present the results. These
results, like their uniform traffic counterpart, show thahie schedule generation time of a switch
increases, thereby forcing an increas@psto ensure stability for an identical packet arrival pat-
tern, a fixed VOQ size leads to increasing number of droppet#igts, especially for the lower
VOQ sizes. As shown in Figure 2.16 and especially in 2pp&= 1 translates to very low VOQ
size requirements, while ensuring low packet loss. Thigidver, is not true for higher values of
ppsand indirectly reinforces the fact that ensurimgs= 1 leads to big gains in delay (VOQ size

is related to delay).

30 T " T T 55 L T T T T T T
Switch size: 16 X 16 =——+— Switch size: 16 X 16 =——+—
Switch size: 50 x 50 S0 I Switch size: 50 x 50
25 - Switch size: 72 X 72+« #x++ S 45 | Switch size: 72 X 72 ==
Switch size: 100 x 100 & 0 Switch size: 100 x 1007 B
,,,,,,,,,,,,,,]
20 BB e e L A .
2 @ 30l T g i
S 15 3
8 s % i
10 20 —
15 B
5 10 B
5 -
0 | e I I I 0 T I I I I I I I I
1 2 3 4 5 1 2 3 4 5 6 7 8 9 10
pps pps
(a) Mean burst size 3 (b) Mean burst size 6

FIGURE 2.15. Percentage packet loss for bursty traffic with for difigpps

Different Frame Sizes:
For bursty traffic we also varied the frame size in the intef¢gb] and observed the average
delay for a 50x< 50 (resp., 10« 100) switch and X pps< 5. Figure 2.18 (resp., Figure 2.19)

shows the results fdy = 3 (resp.b = 6).

38

100 T

Packet Loss (%)

VOQ Size
(a) Switch size: 5& 50.

Packet Loss (%)

100

VOQ Size

(b) Switch size: 106 100.

FIGURE 2.16. Percentage packet loss for different VOQ sizes ffictvgith mean burst size 3.

100 T

90 pps = 2 i

80 ¢, PPS=3
70 b “ppEas .
60 ;
50
40
30
20
10
0

Packet Loss (%)

VOQ Size

(a) Switch size: 5& 50.

Packet Loss (%)

100
90
80 ¢ ..
70 '
60
50
40
30
20
10
0

VOQ Size

(b) Switch size: 106 100.

FIGURE 2.17. Percentage packet loss for different VOQ sizes ffictvgith mean burst size 6.

2.6 Summary

In this chapter we presented the results from our researdherffect of the relationship be-

tween packet-transmission time and schedule-generatienan performance parameters like de-

lay, packet loss, and VOQ requirements for a crossbar-bapattqueued switch. We showed that

the logarithmic delay result of Nee#t al.[59] does not hold for the more practical scenario where

the packet-transmission time (slot) and schedule-geparaine (round) are not the same.

We proved that logarithmic delay is achievable only wherefigery schedule, a single packet is

transmitted between a scheduled input-output pair. Tisisicgion is acceptable in practice only if

the slots and rounds are of the same duration or if the packetlarate is low enough such that

39

30 T T T 40 T T T T
ppS=l —_—r pps:l —_—
pps=2 35 |- pps=2 -
25 pps=‘31 ; - pps:i ;
= pps=4 i o 30 | pps=4 B i
g pps=5 ol g pps=5
% 20 T S 5L ol
> . N >~ SO0 T e
® e ® et c
8 151 @ + & 2F = {
o e) ettt e
= [B e = 2 15F e - i
g Oge e Ll 3 & | e B -t
31 [T 3: w8 e -t 1
------------- -
i // s 3
0 1 1 1 O 1 1 1 1
1 2 3 4 5 1 2 3 4 5 6
Frame Size Frame Size
(a) Switch size: 5& 50. (b) Switch size: 106 100.
FIGURE 2.18. Average delay for different frame sizes for burstyitrafith mean burst size 3.
60 T T T = 80 T T T
pps=1 —— e pps=1 —— .
S= Y 70 - PpPs= ot
50 ggszs T Ot e ot b - 0 ppS=3 T Ot e -t
5 pps=4 B wen®” % 60 | Pps=4 v R -
IS pps=5 L 5 pps=5 e
B 40 pps=8 ..o’ T S g5l pps=8 1
% pp_s.:l‘O @ % pps‘?]‘o.d\.‘ ®
= b £ WL
2 30F . 2 afF .
Q [
& 2 30 4
9 2
< <

Frame Size Frame Size

(a) Switch size: 5& 50. (b) Switch size: 106 100.

FIGURE 2.19. Average delay for different frame sizes for burstyitrafith mean burst size 6.

in spite of the unutilized switch capacity (due to a rounchgenuch longer that a slot), stability is

possible.

These results point to the following important conclusions

e Logarithmic delay is possible only if the scheduling altjum is fast enough to match the

transmission time of a packet.
e Logarithmic queue length is sufficient to store all the péskehenpps= 1.

e The investment in additional computational hardware tacegpscould pay off in terms

of reduced hardware requirement for buffer space.

40

Chapter 3
Fast Scheduling Algorithm on Mesh-of-Trees

3.1 Introduction

In Chapter 2 we discussed the relationship between packedrtrission time and schedule-generation
time on performance parameters like delay, packet lossVar@ size for a crossbar-based input-
gueued switch. We proved that for uniform random traffic, wpps> 2 (i.e., the schedule gen-
eration time is more than the packet transmission timeketadelay isQ(n). We also proved for
bursty traffic with average burst sib¢hat wherpps> 2b, the delay i€2(n). This implies that there

is no alternative to reducinig,ng, the time to schedule a round of packets on the switch, if one
wants to achiev®(logn) packet delay. This underscores the need for a fast schgdljorithm.

We present one such algorithm in this chapter.

In an n x n input-queued switch, the set of non-empty virtual outpuewps (VOQs) deter-
mines the set of input-output connection requests. The praiolem that the scheduling algorithm
solves is that of selecting a subset of connection requatitewt violating the crossbar constraint.
This problem is equivalent to a matching probleon a Z-node bipartite graph, where the in-
put ports constitute one of the partitions and the outputspaonstitute the other partition. Edges
depict input-output connection requests. It is clear thatyeset of communications that satisfies
the crossbar constraint corresponds to a (set of) matd)img(this bipartite graph. Figure 3.1
shows an example of the relationship between crossbar slihgand bipartite matching. Fig-
ure 3.1(a) depicts a 8 3 crossbar with colored bars at input ports showing waitiagkgts for
output ports with the same color. Input-port 1 has queuedigiadestined for all the three output
ports, input-port 2 has packets destined for output portedl?2aand so on. Figure 3.1(b) shows the

corresponding bipartite graph that has an edge correspgtalieach input-output port pair with a

1A matching on a grapls is a subseM of edges ofG such that no two edges are incident on a common vertex. A matéhiagnaximaliff
there is no strict superset ¥fthat is also a matching. Matchingis maximum iff no other matching has more edges tamhe matchings defined
here are size-based matchings, in contrast to weight basetiimgg described in Footnote 2 on Page 42.

41

packet to transmit between them. Figure 3.1(c) shows a nabxmatching of the bipartite graph
of Figure 3.1(b). In Figure 3.1(d) crosspoints of the crassdre set (shown as darkened circles

inside boxes) to reflect the maximal matching of Figure 3.1(c

Inputs Inputs
=2 Inputs Outputs Inputs Outputs = 2
=3 = 3—]

1 1 1 1
Yvy
5 2 5 5 Yyvy
1 2 3 1 23
Outputs 3 3 3 3 Outputs
(b) ©

(a) (d)

FIGURE 3.1. Example of equivalence between crossbar schedulingigaudite matching.

While a matching ensures that the crossbar constraint icesgh a large matching allows a
large number of packets to be transmitted in parallel. A maxn matching maximizes the number
of parallel communications. The Fair Frame algorithm [58€s1a maximum matching. However,
it is difficult to compute a maximum matchin@(n'°logn) [59] on a Z-node bipartite graph).
A maximal matching on the other hand, is easier to compOtalpgn) [59]) an can replace a
maximum matching if the switch has a speedup or 2 [59] (speésldefined in Footnote 1 on
Page 12). Even thi®(nlogn) time is insufficient for unippsfor large values ohf. In this section
we devise a fast (polylog time) maximal matching.

Matching, in the context of input-queued switch schedylis@ well-studied problem. Leonardi
et al.[48] and Tassiulast al.[76] used a maximum-weight matchitp generate a schedule. Giac-
coneet al.[31] presented three randomized algorithms for weightefasatching in a scheduling
algorithm that achieve performance in terms of delay closhat of maximum-weight based al-
gorithms. One of those algorithms has linear complexity arstcond one nearly s®(n) and
O(nlog?n)). Zhenget al. [81] presented a similar weight-based randomized matchiggrithm

for input-queued switches. Th8LIP algorithm designed by McKeown [55] generates a maximal

2A weight-based matching uses a bipartite graph with edgehi@igisually representing buffer loads). The sum of the hisigf the edges in
a matching is the largest possible for a maximum weight matching.

42

size bipartite matchings and is one of the most widely ussttiduted crossbar scheduling al-
gorithms. The Cisco Gigabit Switched Router (GSR) us§idP. The average time complexity
of iSLIP is O(logn), but its worst case time complexity can be linear [55]. Alksk matching
methods [48, 55, 76] result in an average packet del&)(of slots.

Distributed switch scheduling methods, such@isIP, can generate a schedule in each round.
This approach is faster, more efficient, and scales bettéariger switches than sequential schedul-
ing. In this chapter we present a distributed maximal-sipartite matching algorithm to generate
schedules for a crossbar switch. Our algorithm has a gusedrgolylog running time. Addition-
ally, we use a reconfigurable structure that closely resesnalcrossbar. More specifically, the
approach is to use a mesh-of-trees (an implementable nessdstructure with trees in rows
and columns) inside a switch as the distributed controli¢aliZoming back to the Fair Frame
scheduling algorithm (see Chapter 2), each round computesxamal matching from the set of
input ports to the set of output ports corresponding to tHéeted packetd More precisely, let
| ={i1,iz, -+ ,in} andd = {]j1,]2, -, jn} be the sets of input and output ports. Construct bipartite
graphG = (I UJ,E) such thaf(iy, jy) € E if and only ifiy has a packet destined jp. A matching
ensures that each input connects (if at all) to just one aw@pd vice versa. A maximal matching
ensures that for uniform random trafficpips= 1 the delay i$D(logn) [59]. A similar result holds
for bursty traffic as well.

Bipartite matching on parallel architectures is also a wtlldied problem. Fayyazsit al. [27]
presented a linear-time PRAM algorithm for finding a maximweight matching in general bi-
partite graphs. Hanckowiadt al.[35] presented an algorithm for a distributed graph thatmoies
a maximal matching of its own (unknown) topology in polylagnmber of communication rounds.
Kelsen [44] presented a maximal-size bipartite matchiggrahm that runs in timé)(log3 n) on
an EREW PRAM Withlomg—}rr‘1 processors. We base our mesh-of-trees algorithm on thisitm.

In the next section we briefly describe Kelsen’s bipartiteéahiamg algorithm. We then design our

3Note that Fair Frame [59] computes a maximum and not a maximal léaratching, but a maximal bipartite matching algorithm witial
guarantee stability and logarithmic delay with a speedup. & &8peedup of 2 is common in today’s routers. For example, CigR8-C has an
internal speedup of.8 [39].

43

algorithm for the R-Mesh model, which can be efficiently siatatl on a mesh-of-trees structure
(proved in Lemma 3.3.3). Section 3.3 describes detailstabelR-Mesh architecture and its sim-

ulation on a mesh-of-trees, and Section 3.4 details the RaMgmrtite matching algorithm.

3.2 Kelsen'sO(log®n) Bipartite Matching Algorithm on the
PRAM
m

Kelsen [44] presented an algorithm that run®itiog® n) time with Iog%: processors on an EREW
PRAM to generate a maximal matching on a directed bipartigply6 with n vertices andm
edges. The algorithm also applies to an undirected bipagtaph where each edge is replaced by
two oppositely directed edges, as shown in Figures 3.3@Ba8(b). Figure 3.2(a) shows the basic
structure of the algorithm.

The general idea of the algorithm is to start with an emptyplgramatching)Xo and iteratively
add vertices and edges to it so ta{output ofit" iteration) is always a matching on the original
graphG. The algorithm terminates after iteratiarwhen adding more edges Xg causes it to not
be a matching. Figure 3.2(a) illustrates the structure @ftlgorithm.

The algorithm has two main proceduresatchandhalve In iterationi, procedurenatch(Fig-
ure 3.2(b)) takes as input gra@h and computes a matchirig; incident on at least /6 of the
edges ofG;. This guarantees tha¢ will be a maximal matching afte®(logn) iterations of the
loop in Figure 3.2(a). The exact number of iterations to poeda maximal match depends on how
“good” (large)M is. Procedurenatchis also iterative and in iteratiopcalls procedurdalvefor
graphG;; to halve the degree of each vertexGy).

Proceduréhalveis called bymatchand accepts grapj; as its parameter. L&ij = {V;j, Eij },
and, for each vertex € Vjj, let 5(v) denote its degree. Then, procedbadvereturns a subgraph
H = {Vij, £} of Gjj such that for each vertaxof #, the degree of in # is either(%")} or L@J.

The main idea ohalveis to compute an Euler partition @jj, i.e., a decomposition d&;; into

edge-disjoint paths with the property that every vertexhvatld (resp., even) degree is an end-

vertex of exactly one (resp., zero) path. Kelsen defined ®lationships among the edges of the

44

G_i : input graph

j=0
G_ij =G_i
plv] = NIL for all

vertices v
P 2 el .
G : initial graph H H
X '
i=0 H for all vertices v of g_ij in parallel do H
G_i=G H « 1
K= 0 a :
' '
H '
5 '
'
«- H v has a degree one nbr. w ? 5
\4 H '
'

Call match on G_i
Returns a matching M_i

H Include (v, w) in current match : — -
H .
A v Remove w from G' H G_ij : initial grap
'

G_(i+1) = G_i -- vertices in M_i B H

X_(i+1) = X_i U M_i A4

v Calculate partner and
successor for each edge

i=i+1

call halve on G_jj
Returns a subgraph H of G_ij
with degree of all vertices halved
j=j+1 A4
Gij=H

Compute graph G*,
based on successors

Yes

Any edges left in G_i ? Yes \4

Any edges left in G_ij?

2-color G*
Remove vertices
of one color
v
X = X Ffetur;n imal Two separate matches
=x ah' axima found at this point. Return G' with
matching Return the larger degree of all
match, M_i vertices halved
(a) Main Algorithm. (b) Procedurenatch (c) Procedurénalve

FIGURE 3.2. Maximal size bipartite matching by Kelsen.

bipartite graphpartnersandsuccessorsand used that to find the Euler partitions. Kelsen paired

among edges incident on the same verdexXf G; and defined them as partners. Further, for an

edge(u,v) in Gj, definesuccessdu, v) = partner(v,u). For example, in Figure 3.3(b) edgesu)

and(a,v) are partners of each other, and so @r&) and (u,c), since both these pairs of edges

are incident on the same vertaxandu respectively. Moreoveguccessd, u) = partner(u,a) =

(u,c). Intuitively, during generating matchings, if an edge islied in a matching, then neither

its partner nor its successor can be included in that magckiraphG* represents the set of Euler

partitions ofG;jj. Figure 3.3(c) show&* corresponding to the bipartite graph of Figure 3.3(b).

45

b % v

C W - =W
(a) Original undirected (b) Corresponding di-
bipartite graph. rected bipartite graph.

(™) (™)
o () (o) ()
/ \ / \
' '
& @
e (ol) (o]
(v
(c) GraphG*. (d) 2 coloring onG*.
FIGURE 3.3. An example of Kelsen’s algorithm.
Each edge of Figure 3.3(b) is a vertexGi. There is an edge iG* between two vertices if one of
the corresponding edges @; is thesuccessoof the other. Two coloring the edges on each path
in G* and selecting only one of the colors results in halving thgreke of each vertex. For details
of the correctness of this algorithm, refer to Kelsen [44].
Kelsen used parallel list ranking to accomplish the two gotp We will take a different ap-

proach, exploiting the bus structure of the Euler partiéenrembedded in an R-Mesh, to achieve

the same end.

3.3 Reconfigurable Mesh Preliminaries

A reconfigurable mesh (R-Mesh) is a well-studied reconfigeralochitecture [77]. A linear di-
rected R-Mesh (DR-Mesh) consists of an array of processimgezies (PEs) connected by a mesh-
based interconnection fabric. A PE connects to each of itfieighbors using a pair of oppositely
directed links. Each PE has four pairs of poMs,E, W, S, each of which has an incoming and an

outgoing port represented by, N,, etc. A PE can internally connect an incoming port to anysf it

46

outgoing ports to create a bus. We represent each internaéction inside a PE as an ordered pair,
for example(NiS,) represents a connection from the north incoming to the souttjoing port.
Figure 3.4 shows a 8 5 DR-Mesh with 15 PEs. Figure 3.4 also shows a few pairs of buses
connecting th&V set of ports of PE(20) with theN set of ports of PE(01), another connecting
the S set of ports of PE(23) with theE set of ports of PE(24), and a third connecting th& set

of ports of PEO,0) with theW set of ports of PED,2). Once a bus is created, any PE can write

(resp., read) data to (resp., from) any of its ports that tieedpans.

FIGURE 3.4. A 3x 5 DR-Mesh.

In a general (undirected) R-Mesh, all ports and buses areaeagatdd. The algorithm in this
paper uses an R-Mesh to create pairs of parallel buses thstraceured as though in a DR-Mesh.
Although our algorithm does not use the directionality efg@ buses, we describe it as though it
was run on a DR-Mesh because the description is simpler. HBadofnects corresponding pairs
of ports (as in Figure 3.4), for example, if a PE conné¢tand S, then it also connect§ and
No. A 2 x 2 block of R-Mesh processors can emulate (in an undirecteq thayconnections of a
DR-Mesh processor making such connections.

A horizontal-vertical R-Mesh (HVR-Mesh) is one in which evdays lies on a single row or

column, or in other words none of the buses has any bends.

Lemma 3.3.1. (Matsumae and Tokura [53]):An nx n HVR-Mesh can simulate each step of an

nx n R-Mesh in Qlog?n) time. O

4In general, we use the notatigN, S) to represent the connectiofls;) and(SN) simultaneously.

47

A 1 x nHVR-Mesh is a segmentable Bug circuit-switched-tree (CST) (see also Chapter 4) is

a binary tree-like structure where each leaf is a PE and edemal node is a switch.

Lemma 3.3.2. (El-Boghdadiet al. [24]): An n-processor CST can simulate each step of an n-

processor segmentable bus iil@yn) time. O

The CST elements needed to simulate a segmentable bus ate somputational gates. Thus,
the O(logn) time refers to computational gate delays. In a system witbmponents, a log bit
address is typically used. Even the decoder for this addvesl haveO(logn) gate delay. Thus,
the delay for emulating a segmentable bus would be a few dypclles in practice.

An nx n HVR-Mesh is ann x n array of PEs with a segmentable bus in each row and each
column. Ann x n mesh-of-trees is analogous to an HVR-Mesh in that it i;mam array of PEs

with a CST in each row and column.

Lemma 3.3.3.A nx n mesh-of-trees can simulate each step of amrR-Mesh in Qlog®n) time.

Proof. By Lemma 3.3.1, an HVR-Mesh can simulate any step of an R-Me$(lmg?n) time.
By Lemma 3.3.2, am-processor CST can simulate a step of a row or column moka HVR-
Mesh inO(logn) time, so am x n mesh-of-trees can simulate a step ohann HVR-Mesh in the
same time. Hence, a mesh-of-trees can simulate an R-Me3tiag®n) time, which proves the

lemma. O

Efficient R-Mesh solutions for various problems exist [77} \@escribe solutions to two such
problems — prefix sums and neighbor localization. We useetBekitions later in R-Mesh algo-
rithms.

Prefix Sums: For 0< i < n, theith prefix sum of a set of bitbg,by,---,bhisbg+b1+---+
bi. We use am+ 1 x n R-Mesh as shown in Figure 3.5. We assumé®E& (0 < i < n) holds
bi. To start, each P®,i) broadcastd; down its column. Each non-top-row PE receigsand

configures itself based on the valuetpflf by = 1, then the PE configures itself @8E, SW); that

5An n-PE segmentable bus is a linear bus with 1 segment switches, each connected to a PE. PEs can openelssswitches to partition
the bus into blocks of contiguous PEs. Each PE can write &etjsnent and all other processors incident on the segmentaditheswritten data.
A segmentable bus is equivalent to a one-dimensional R-Mesh.

48

is connectingN andE ports andS andW ports as two separate connections. Otherwise, the PE
configures itself aéEW). These steps will create a bus connectingvihport of PEO, 0) to theE

port of PEN" pre fix sumn) (shown in bold). PED, 0) then sends a signal on ¥ port. PHi, j)

(for any 0< j < n) receives that signal at ifs port iff the ji" prefix sum is. For more details refer

to Vaidyanathan and Trahan [77].
row 0

row 1

FIGURE 3.5. Prefix sums computation on an R-Mesh.

An R-Mesh is often implemented as a mesh-of-trees in pradtidbdat case, a one-dimensional
R-Mesh with a row tree can compute prefix sums using the rowirtrkgn iterations.
Neighbor Localization: Given a one-dimensional R-Mesh with each PE flagged with andit i
cating it to be either active or inactive, neighbor locdiiza finds a list of active PEs in the order
of their position. In this algorithm, initially, each PE set variablenbr to NIL. Then, as shown
in Figure 3.6, each inactive PE makes the connediit\V), while each active PE disconnects all
ports internally. Now, each active PE writes its column dttetheW port and reads the value writ-
ten to itsE port and stores it imbr, at which pointnbr contains the column index of the neighbor

of each active PE. Refer to Vaidyanathan and Trahan [77] foerdetails.

0 1 2 3 4
active/inactive 1 1 0 0 1
Q O N N Q
nbr 1 4 none

FIGURE 3.6. Neighbor localization on an R-Mesh.

49

3.4 R-Mesh Bipartite Matching Algorithm

For our purposes we assume @ n crossbar switch has amx n R-Mesh as the distributed
computation fabric that create the schedule. We now plaeeniditching algorithm in the context
of the scheduling algorithm for the input-queued switch.

At the beginning of each frame, for eachli, j < n, processors calculate the traffic matrix in
the form of a value (i, j) representing the number of rounds required to transmihalptckets
in queuéi, j) destined from input port to output portj. The R-Mesh does not updaté, j)
for incoming packets until the beginning of the next frameten however, that a PE decrements
r(i, j) by one whenever the corresponding input-output pair isgotaa a matching, that is, when a
packet in queué, j) has been scheduled. We flag a PE) asactive(resp.inactive if r(i, j) >0
(resp.r(i, j) =0). These flags constitute the adjacency matrix of g@pimput to the matching
algorithm.

The R-Mesh implementation of each stepwditch(except forhalve is straightforward and can
be achieved by neighbor localization. To accomplish the gbthe PRAM version ohalve(Fig-
ure 3.2(c)), the R-Mesh likewise computes an Euler partitout differently than the PRAM) and
two-colors vertices (again differently than the PRAM). ThR-Mesh embeds an Euler partition
of the input bipartite graph using two oppositely directed jparallel buses. While implementing
halve we create buses connecting active PEs in such a manneatitaaetive PE connects to the
next active PE (if any) on its row (resp., column) by a row jgresolumn) bus-segment. We call
two active PEs connected by a row (resp., column) bus-segasemow-neighbors (resp, column-
neighbors). Additionally, at each active PE, each bus b&ondsa row to a column in one direction
and from the same column to the row in the other. A limitatibarmy mesh-based structure is that
no two buses in the same direction can overlap. We actuadlyhis limitation to our advantage in
creating an elegant bus structure that we use later to tww-ttee active PEs on a bus.

The following pseudo-code describes Procedtalee

50

TABLE 3.1.tag of active PEs based qusow and pso.

| ” odd pSow | EVENPSow |
odd psol 3 0
evenp<ol 2 1

TABLE 3.2. Internal bus connections dependingag

tag | 0 | 1 | 2 | 3 |

l ! ! l

Procedurehalve

Input: A 2n—node bipartite grapf; represented on amx n R-Mesh as an adjacency matrix. Each
edge in the graph is represented by a PE flagged as activg, [PE flagged as active to denote
the edge between verticeandj.)

Output:A bipartite graph with degree of each vertex of the input tigiagraph halved, represented
on ann x n R-Mesh. Each edge in the graph is represented by a PE flaggetivas a

Algorithm:

1. Calculate prefix sums of active PEs in each row and each eolamactive (resp., inactive)
PE contributes a 1 (resp., 0). Each active PE receives ifsxjg@m from its row and from

its column, denoted bpsow and psql, respectively.

2. Each active PE disconnects all its internal connectiontbeach inactive PE connects as

(N,S) and(E,W).

3. Each active PE generatesam, 0 < tag < 3, using itspsow and pso values as shown in

Table 3.1.
4. Each active PE wittag# 3 makes the internal connections as shown in Table 3.2.

5. Call Procedurelect-leaderwhich flags the topmost-leftmost PE in each bus as leader.

51

6. Each leader PE in rowand columnj writes the value 0O to th&, port. Additionally, if the

leader PE had not received its own indicesid] in procedureelect-leaderit writes 1 to the

S port.

7. Each active PE with some internal connection reads frotim th@ incoming ports that have
internal connections (see Table 3.2). If it reads a valuee§p(; 1) either from it&; or W

(resp.,N; or §) port, then it makes its status inactive.

The main aspect of our implementatiorhafiveis the way the bus structure creates the Euler par-
tition. Figure 3.7 shows the execution as well as resuttad¥eon a 4x 4 DR-Mesh. Figure 3.7(a)
shows the bipartite graph that is the inputi@ve Kelsen’s algorithm works on a directed graph.
Hence, each edge in Figure 3.7(a) is actually two oppositiected edges which we do not show
here. PEs with bold (resp., thin) outlines in Figure 3.7@present active (resp., inactive) PEs.
Note that each active PE corresponds to an edge in the bégiréph.

Kelsen’s algorithm determined a partner and a successoedoln edge. For example, edge
(a,u)’s partner and successor will §a,v) and (u,c) respectively. Our algorithm’s bus creation
mechanism automatically captures these partner and swraedationships. Edges of the bipar-
tite graph denoted by two successive active PEs connectaddy (resp., column) bus are each
other’s partner (resp., successor).

Kelsen’s algorithm created a grafi corresponding to the Euler partition Gj. A vertex in
G* corresponds to an edge @) and an edge 6" is based on successor relationshipSin In
our case, active PEs in the same row or column indicate eddgg incident on the same vertex.
Additionally, active PEs directly connected by a row/cofubus indicate partner/successor. Since
we are using a mesh structure, pairing neighboring actiwedPEow and column directly produces
an Euler partition. To achieve this pairing, Step 1 compptefix sums for each active PE, and Step
4 creates internal connections pairing an odd PE with theewe@n one in each row and column by
establishing a bus through each active PE spanning botbviteand column neighbors. This bus

corresponds to an Euler partition. In Kelsen’s algorithiiges(a,u) and (u,c) of Figure 3.7(a)

52

b Vv
Cc w
d X
(a) Input graph. (b) Beforehalve

a u
b %
Cc w
d X
(c) After halve (d) Output graph.

FIGURE 3.7. Procedurealve

would have been nodes @& with an edge frona, u) to (u,c). The bus directly connecting them
in Figure 3.7(b) denotes the same.

For example, if we consider Figures 3.7(a) and 3.7(b), e&cmHMFigure 3.7(b) corresponding
to an edge in Figure 3.7(a) is active. If we consider the €tlger), then the corresponding PE,
PE(b, v) will have odd row and even column prefix sums. This signifiesatv neighbor is to its
right and column neighbor is above it. Accordingly, (BEv) connects its north and east ports to
make a bus spanning its row and column neighbors.

Once these buses corresponding to an Euler partition aateckewe want to choose alternate
active PEs on each bus to include in the matching. We achiev®y first picking a leader in each

bus. The leader then picks one of the two oppositely direbtédparallel buses and informs all

53

the others. Note that in the direction of the bus, active Rtesrate with bus entering on the row,
leaving on the column and bus entering on the column, leamnitne row. We use this as the basis
of two-coloring. In contrast, Kelsen used parallel listkisng to two-color the paths in his Euler
partition.

Figure 3.7(c) shows the R-Mesh after the executiohal¥e Note that half of the active PEs in
each row and column have now become inactive. Figure 3.h@ysthe resultant bipartite graph
with the degree of each vertex halved.

We now present our proceduetect-leader That procedure selects the topmost-leftmost active

PE in each bus as the leader (the topmost-leftmost activeilP&ways havetag = 3).

Procedureelect-leader

Input: An n x n R-Mesh with one or more buses connecting active PEs. Eacled®li has &ag
in [0, 3] associated with it.
Output: The topmost-leftmost PE in each bus flagged as the leader.

Algorithm:

1. Each active PE withag = 3 and no internal connections repeats the following threpsst

until it receives either its own indices or no value:

(a) Each active P&, j) with tag= 3 writes the valuesand]j to its E, andS, port.

(b) Each active Pg, j) with tag= 3 reads from itE; (resp.,S) port, and if there is a
value, stores it in variabldg and/; (resp. ke and/,).
(c) i. IfPE(i, j) read avalue atitg; portin Step 1b) and if¢; < j or (/1 = j andk; <),
then make the internal connections correspondirigge= 3 from Table 3.2.
ii. IfPE(i, j)readavalue atit§ portin Step 1b) andifé2 < jor (¢/2 = j andks <),

then make the internal connections correspondirtgge= 3 from Table 3.2.

2. Each active P§, j) with tag= 3 and no internal connections additionally flags itself as

leader

54

The goal ofelect-leadeiis to designate a single PE on each bus as leader. Our desaiecof
leaderensures that the leftmost-topmost PE becomes the leadeleflimost-topmost PE on each
bus will always havéag= 3. However, each bus can have multiple PEs wath= 3. For example,
the longer bus in Figure 3.7(b) spanning eight active PEswa®Es withtag= 3. The main idea
in elect-leadeiis that in each iteration, each HE) with tag= 3 communicates with the next PE
with tag = 3 along the bus in both the directions, and based on the i@fiiomit receives from
othertag= 3 PEs, PH, j) either drop out of contention from the leader election otipigiate in

the next iteration.

Lemma 3.4.1. The topmost-leftmost PE of any bus will have £ag.

Proof. We prove this by contradiction. Let us assume that the topteftsnost PE of a bus has
tag= 0. This means itpsow calculated in Step 1 dfalveis even, that is, the row contains an even
number of active PEs including the leftmost in its row betweelumn 0 and its column. This
implies this PE will be connected to another PE to its left bgw bus-segment which contradicts

our assumption. Similar arguments are valid for the othgs thus proving the lemma.]
Lemma 3.4.2. Procedure elect-leader elects a leader ifl&@yn) time.

Proof. Let PKi1, j1) and PEiy, j2) be twotag 3 PEs directly connected by a bus. Since these are
two distinct PEs, at least one of the relations: i> and j1 # j» always holds. This means at least
one of the four conditions of Steps$c).(i) and Xc)(ii) is satisfied for one of these PEs. Hence, that
PE drops-out of contention for being the leader. Since, iperidghm removes at least one out of
two consecutivéag 3 PEs from contention in any iteration, in at most toigerations all but one

PE will be removed from contention.]

3.5 Time Complexity

An R-Mesh can calculate the prefix sumshalvein O(logn) time [18]. Procedurelect-leader
will also takeO(logn) time on an R-Mesh as each iteration of the loop eliminatesast lealf
of the PEs on a bus wittag = 3 from the leader election. Hendealve takesO(logn) time to

complete.

55

Proceduranatchinvokeshalve until each vertex in the bipartite graph has a single neighbo
Since each iteration halves the degree of a ver@ogn) iterations ofhalve will reduce the
degree of each vertex to at most 1. 8mtchcompletes irD(log?n) time.

As noted earlierQ(logn) iterations ofmatchproduce the maximal matching. Hence, the total
time needed to generate the maximal matching on an R-Me@ﬁo’g3 n).

In Lemma 3.3.3 we showed that arx n mesh-of-trees can simulate a step ofhann R-Mesh

in O(log®n) time. Hence, our algorithm will run on a mesh-of-tree©ilog® n) time.

Theorem 3.5.1. A maximal-size bipartite matching on a graph with n vertiaegach partition

can be generated in g n) time on an n< n mesh-of-trees. O

This complexity of the bipartite matching determines theeticomplexity of the Fair Frame
algorithm. Hence, our matching algorithm in the Fair Framieesluling method will complete a

schedule ir0(log®n) time.

Corollary 3.5.2. Scheduling packets on an<xm switch can be completed in([x')g6 n) time on an

n x n mesh-of-trees. O

The above time complexity is the worst case. The best (anoigpity the average) case can be
significantly faster. As noted in the remarks after LemmaZ3 for all practical purposes the simu-
lation of the segmentable bus runs in a few clock cycles. Tihasvay one, could say that the time
complexity of the scheduling algorithm B(log®n). Additionally, the simulation of Matsumae
and Tokura [53] represents the worst case where arbitraryeBaMbuses are possible. Our case
involves only linear buses for which a better simulation nbaypossible. Th®(logn) calls to
halveassume nodes to ha@n) degree. For a limited degree graph (such as, for exampley whe

the frame ha®(logn) slots),halvewill only need®(loglogn) iterations.

3.5.1 Other Considerations
In Section 3.4, for simplicity we assumed that the numberooihdsr (i, j) needed to transmit
all the packets in a queugueudi, j) was available at PE j). Even if we do not make that

assumption, we can modify the algorithm to ensure no losfficiency. Since the frame size is

56

O(logn), at mostO(logn) packets can arrive during a frame at an inpuso, we can interleave
the queue-status update for the next frame with computafidime current frame. For example, if
we assume inputreceives a packet for outpyitand is connected to outpktin the current frame,
theni can broadcast a message on its row bus to indicate g PEa new arrival. At the start of

the next frame, each RE j) would hold a current status gleuéi, j).

3.6 Summary
In this chapter we designed a maximal-size bipartite matchigorithm that runs in polylog time
on a mesh-of-trees. This is a significant improvement ovistieg sequential algorithms that run
in linear time and distributed algorithms that are expentally shown to run in logarithmic time,
but can take linear time in the worst case.

Open problems include improving the algorithm by using #gufarity of the bus structure in

finding the leader. If we are successful, then this will spepdhe algorithm by a factor of lay

57

Chapter 4

Scheduling and Configuration of the
Circuit-Switched Tree

In this chapter we present efficient scheduling and conftguralgorithms for theircuit-switched
tree (CST). The CST is an important interconnect used to implemgmamhically reconfigurable
architectures. A CST has a binary tree structure with soweeslestinations as leaves and switches
as internal nodes. These leaves communicate among th&sseding the links of the tree. In a
parallel processing environment these sources and déstiador a communication are processing
elements (PEs). Key components for successful commuaitati a CST are scheduling individual
communications and configuring the CST switches to estallisha paths. Patterns and conflicts
created by the positions of source and destination leavesrgie various CST-switch scheduling
and configuration problems. Here, we present algorithmslieeseveral such problems. The al-
gorithms are distributed and require only local informatiget they capture the global picture to
ensure proper communication. In the next section we prdssrkground information about the
CST. The section includes applications of the CST, its strecand a description of various com-
munication sets created by relative positions of sourcdsdastinations of communications on a

CST. Sections 4.2 — 4.4 present the algorithms for CST-swilbbduling and configuration.

4.1 CST Background

Dynamic reconfiguration is a versatile computing techniqfaious dynamically reconfigurable
architectures like the reconfigurable mesh (R-Mesh) offéneexely fast solutions to many prob-
lems [77]. Though these theoretical models are very powelfeir assumption of constant delay
for buses of arbitrary size and shape makes their implerientdifficult.

Field-programmable gate arrays (FPGAS), on the other haogide a practical reconfigurable
platform [8, 15, 62]. FPGAs typically depend on off-chip @#ébr configuration. Thus they need
large reconfiguration times making them unsuitable to irmgliet extremely fast, R-Mesh-type,

dynamically reconfigurable models. Though advances likéighaeconfiguration [80], context-

58

switching [7, 45, 75], and configuration bitstream compies§62] have reduced reconfiguration
times, they are yet to reach the speed and flexibility reguisgemodels like the R-Mesh.

The Self-Reconfigurable Gate Array (SRGA) architecture [23,iF an FPGA-like structure
that can reconfigure using on-chip data at run time (see €&igur). Hence, reconfiguration is
very quick, possibly within a few clock cycles. Individualgoessing elements (PEs) use local
information to reconfigure the SRGA at run time. This feattin@t individual PEs act on local

information to reconfigure at run time, makes the SRGA simidahe R-Mesh.

FIGURE 4.1. The Self-Reconfigurable Gate Array.

The CST [21] is a key component of the SRGA architecture actmthe building block for
its interconnection fabric. The CST can implement other dyically reconfigurable architectures
with R-Mesh-like structures [23, 25]. The CST supports séva@mmunication patterns with im-
portant applications [24]. It may also serve as an interechim Infiniband-type networks [51] and
networks-on-chip (NoCs) [3, 9, 10].

One of the most important aspects of using the CST to fa@ldghamic reconfiguration is the
algorithm that configures the switches to establish deglitdata paths among PEs. The other,
equally important, issue with using a CST for communicatisngiven a set of communications,
how to schedule them in an efficient order. We define this sdiveglof communications on the
CST later.

A communicatiomrefers to the transfer of data from a source PE to a destm&€ that is, it

is a point-to-point communication. Because the CST is a trael) eommunication corresponds

59

to a unique path from the source leaf to the destination ERafommunication sas simply a set
of communications. Figure 4.2 depicts a communication eetising three communications,
(0,1), (2,7), and(4,6) (each pair of numbers refers to source of the communicatidrttze cor-

responding destination).

switch -

./\ 2.0 N

4

L S

FIGURE 4.2. Communications on a CST; a dark (resp., shaded) leabegisea source (resp., destination).

A CST can simultaneously perform multiple communicatiortedir paths share no edge in the
same direction. Define theidth of a communication set as the maximum number of communica-
tions (paths) that share an edge in the same direction [21TB4 communication set of Figure 4.2
has a width of 2, as communicatiof® 7) and(4, 6) use edgein the same direction. On the other
hand, the absence of eith@; 7) or (4,6) would make the width of the communication set 1. The
significance of the width is that a widt-communication set requires at leastounds to com-
plete. In the current example, the width-2 communicatidrreguires two rounds to complete as
(2,7) and(4,6) cannot be performed simultaneously (they share ejige

In each round of performing communications, the CST confiumaalgorithm must select a
subset of communications that are compatible, then comfigawitches accordingly. We define this
partitioning of the communication set into blocks of coniplat communications ascheduling
Note that a width-1 communication set has a trivial schedirlee there are no conflicting com-

munications.

4.1.1 Structure of the CST

The CST (Figure 4.2) is a balanced binary tree in which eadhideaPE (or, in general, a source

and/or destination of a communication) and each interndéns a switch. The edges of the CST

60

are full duplex links capable of carrying data in both dir@es simultaneously. Thus, each switch
of the CST has three data inputs and three data outputs: attanfaut pair to each of its two
children and its parent (if any). Configuring a switch amouatsstablishing connections from its

inputs to its outputs. Several configurations are possdlary switch (Figure 4.3 shows some).

FIGURE 4.3. Some arbitrary configurations of a CST switch.

Configuring the switches of the CST establishes direct datesshong PEs. For example, in
Figure 4.2, configuring switch as shown plays a role in establishing a data path from PE 0O to
PE 1. Hence, configuring the CST for a given set of communigateonounts to configuring the
switches to establish the required data paths. It shouldimgul out that an input from a neighbor
of a switch (child or parent) cannot be directed to the sanghber. This restriction limits every
path between leaves of amleaf CST to traverse at most 2lnog- 1 switches. This upper bound
on the path delay motivates the argument [7] that a signatreaerse up or down the tree very
quickly (potentially in one clock cycle). The algorithmsathwe present here use a small constant

number of traversals of the CST (upto 8 per round for the algoriof Section 4.4).

4.1.2 Communications on a CST

In a widthw communication setw > 1), two communications ar@compatibleif they share a
common edge in the same direction. Communicationsauece incompatibléresp.,destination
incompatibl@ if they share an edge in the upward (resp., downward) daecEor example, com-
munications(2,7) and (4,6) in Figure 4.2 are destination incompatible. Two incomgatitom-
munications cannot be simultaneously routed on a CST; thmyineetwo separate steps. Hence, a
width-w communication set requires at leassteps to route in a CST. If a CST can perform these

communications in exactlw steps, then call the communication setadth partitionable[21].

61

There exist communication sets that are not width partifde. If a configuration algorithm opti-
mally schedules and configures a width-partitionable, ivicommunication set, then in each of
w rounds, the width of the set of communications that is nosgbeduled decreases by one.

A multicast(s,D) consists of a source P&and a seD of destination PEs; in a multicas,
sends a piece of information to all PEsIn If D = {d} is a single element set, thés {d})
or simply (s,d) is apoint-to-point communicatiotWe use the terrmommunicatiortoosely in this
chapter to mean a point-to-point communication, and tha teulticastdenotes a set of multicasts.
Figure 4.2 shows point-to-point communicatigfsl), (2,7), and(4,6). Figure 4.4 shows a set of
two multicastaVl; = (0,{1,2}) andM2 = (3,{4,5,6}).

switch

FIGURE 4.4. A multicast set.

A communication set isight orientedif, for every communication in that set, each destination
is to the right of the corresponding source; similarly, iteft orientedif, for every communica-
tion in that set, each destination is to the left of the cqroesling source. The communication set
in Figure 4.2 is right oriented as each destination is to itlet rof its corresponding source. The
algorithms presented here are for right-oriented comnatioic sets; clearly they have trivial adap-
tations to left-oriented sets. Note that one can partiti@@@munication set into a right-oriented
set and a left-oriented set.

One can also classify communication sets according to ttierpa the constituent communi-
cations form. Awell-nestedcommunication set is one in which the communications cpoed

to a balanced, well-nested parenthesis expression. EiguPeand 4.5 show well-nested commu-

62

nication sets. Oriented, well-nested sets are width pamable [21]. The well-nested property of
a communication set also apply to multicasts. More formallyvell-nested multicast is one in
which the source and any one destination of each multicastg@ond to a balanced, well-nested

parenthesis expression.

7NN

(C ¢ Yy Yo H)Co)

FIGURE 4.5. A well-nested communication set; a source (resp., destinato@sponds to a left (resp.,
right) parenthesis.

The SRGA architecture uses a CST for communication over eagltotumn. Sidhuet al.
[73, 74] presented a CST routing algorithm that handles onky @dmmunication on a CST at a
time. This limit is substantially short of the full commuaton and computation capacity of the
architecture. The CST configuration algorithm of EI-Boghd&di] allows multiple communica-
tions on a CST, but it restricts the communications to be aligjeint, i.e., no two communications

can use any edge of the CST even in opposite directions.

4.1.3 CST Configuration
A CST configuration algorithm is key to communicating over a CB¥e algorithm presented here
configures CST switches to establish requisite data patleisdommunication set.

Figure 4.6 shows the basic internal structure of a CST swith [The switch contains two parts:
the control unit and the data unit. The control unit receimésmation about communications that
need to use that switch from the left and right children of $hxétch and uses them to generate
information to send to the switch’s parent. Subsequeihtéy/cbntrol unit receives information from
the parent switch instructing it to configure itself in somawio establish the required paths. The
control unit uses this information to instruct the data wmi¢stablish data paths. Furthermore, the

control unit passes down appropriate control informatarttie configuration of its child switches.

63

DU Data Unit
CU control Unit

D; :SetofIDs received in Phase
: Set of IDs sent in Phase 2
a,b . IDs received in Phase 3

q,b_ 8. by :IDs sentin Phase 3

FIGURE 4.6. The internal structure of a CST switch.
We say that the source of a communicatioatchests corresponding destination at a switch
if the control information emanating from the source anddbmetrol information emanating from
the destination meet at For this,u has to be the lowest common ancestor of the source and the
destination. Further, the assumption that the commuwicatet is right oriented means that for a
source-destination pair to matalnmust receive the source information from the left subtres an

the destination information from the right subtree.

4.2 The Configuration Algorithm for Width- w
Communication Sets

The algorithm we present has five phases, which correspondaaound of scheduling and
switch configuration for a widthv communication set. Subsequent rounds repeat the same proce
dure, with the completed communications removed. For exanopr algorithm will schedule the
communications0, 1) and(2, 7) of the communication set of Figure 4.2 in the first round fokal
by (4,6) in the second round.

The five synchronous phases of the algorithm are as follows.

The General CST Configuration Algorithm

Phasel: Assign an ID to each communication in the communicationsaniquely identify it.
Phase2: Each PE that is a source or destination of a communicatiodssigs ID to its parent.
These IDs flow up the tree towards the root until meeting a matih each switch recording the

IDs that reach it.

64

Phase3: Starting from the root, switches send control informati@nvd to the leaves. Based on
this information, switches configure themselves. The siend destinations of the communica-
tions for which the algorithm establishes a path receivé liaeir own IDs, while the other sources
and destinations receivenall symbol.

Phased: Source PEs for which Phase 3 configured their communicattrsmow write their data;
corresponding destinations read.

Phaseb: Determine whether all communications have been complétedy communication re-

mains to be scheduled, then go to Phase 1. Otherwise, thetllgdéerminates.

As pointed out earlier, these five phases will iterate at \disnes for a widthw communication
set.

Phase 1 assigns a common ID to the source and destinatioolo€emmunication. In general,
the IDs may need to be supplied to the algorithm as input. Edam communication classes, the
algorithm itself can calculate IDs for the communicatioas our algorithm for the well-nested
class will do). Note that the IDs themselves need not neggsba unique to uniquely identify
each communication. As we will see later, for the well-néstiass, non-unique IDs suffice.

In Phase 2, each switch receives a set of source IDs and adestoiation IDs from each of its
children (these sets could be empty). If a switidieceives a source 1D from its left child and the
same destination I from its right child, then that source-destination pair ohats atu. In that
caseu does not send I to its parent and instead sends to its parent only those I>hnot
match atu.

Formally, in Phase 2 (see Figure 4.6), each switch receiges@f source ID§_ (resp.,Sr) and
destination IDD,_ (resp.,DR) from its left (resp., right) child. Each switch sends thssd# source
IDs Sand destination ID® to its parent wher&= (S — Dr)USgandD =D U(Dr—9S)). The
set§ N Dg at any switch gives the IDs of the communications that mat¢hat switch. Because

the communications are right oriented, IDsDp and Sk do not find matches at the switch. We

65

note that for particular communication classes (Sectidi, 4he algorithm could send a small set
of identifiers without having to send the entire set.

In Phase 3, each switch configures itself based on the canfasmation that it receives from
its parent and the information received in Phase 2 from ifgli@n. It then generates control infor-
mation for its children. At the end of this phase, schedulsngomplete for some communications.

As shown in Figure 4.6, each switch receives two symbasdb from its parent in Phase 3.
Symbola (resp.,b) is the ID of a source (resp., destination) onidl. A switch receiving such an
ID configures itself to establish data paths correspondindt source or destination. The exact
configuration depends upon the valueaahdb as well as contents of the s&s D, Sg, andDg.
After configuring, each switch generates control informatflDs) for its children and sends this
down asa, by, ar, andbg as shown in Figure 4.6. We assume that the root receaiveb = null.

As shown in Figure 4.7, we label the data ports of a switch &s,ri,ro, pi, and po. Port/; (resp.,
¢o) is the input (resp., output) port betwearand its left child. Other ports are defined similarly.

To configure a data pathi,connects an input port to an output port.

(@) (b) © (d) ©
FIGURE 4.7. Some switch configurations.

In Phase 3u will configure the data path as instructed by its parent. Addally, u will route a
communication (if any) that matcheswaand is compatible with the communication(s) whose data
path(s)u previously configured. In our algorithm, if bothandb arenull for a switchu, then the
parent ofu is instructingu to not configure any data paths througto or from its parent. Nexu)
will route a communication (if any) that matchesuatonfiguring itself as shown in Figure 4.7(a).

If ureceives one or two IDs from its parent, then the parent isin8ngu to configure data paths
corresponding to the identified communication(s). Figuresthhows various switch configurations.

Note that a switch can connect its ports to simultaneoudigbish more than one of the five

66

configurations shown in Figure 4.7. One such configuratiariccbe the superposition of those in
Figures 4.7(a), 4.7(b), and 4.7(e).

The control information received by a PE at the end of Phasddms it whether the CST
contains the path for its communication. Those PEs whodasgdave indeed been configured
communicate, while the remainder again participate in # round.

Figure 4.8 presents Phase 3 of the algorithm in pseudocante that some cases, sucheas R
andb € D, can occur simultaneously, so the switch makes both pomexions and sends out
both symbols.

In Phase 5, after the completion of data transmission betweesource and destination PEs of
the configured communication(s), the algorithm determihegresence of any communication(s)
not yet configured. Any source or destination PE that redeaseull symbol in Phase 3 sends a 1
to its parent. All the switches forward the OR of the symbbkst it received from its children. If
the result at the root is 1, then the root broadcasts a casiggoél instructing the PEs to initiate a
new round.

Figure 4.9 shows an example of the execution of one roundeafdéimeral CST configuration al-
gorithm. Figure 4.9(a) shows three communications with1P®, and 3. As shown in Figure 4.9(a)
during phase 2 of the algorithm, each source/destinatiosegipBs its ID to its parent, and these IDs
flow up the tree until meeting their matches. For example,d@rsesponding to communication 2
match at the switclp. Hence, they are not propagated up the tree beyond

Figure 4.9(b) depicts Phase 3. In Phase 3, starting fromabie switches send control infor-
mation (shown by numbers with boxes around them) down tleg éred based on this information
each switch configures itself before sending the contrarmation down. For example, the root
picks the matching communication 1 and configures itself@mpately and sends down the con-
trol information corresponding to communication 1 as shawthe figure. Each switch configures

itself based on the control information and the IDs thatdeireed in Phase 2. If a switch does not

67

input : Indicesa, b from parent (if any), setS_, Dy, Sg,Dr from Phase 2.
output : Internal switch configuration; indices , b_ (for left child) and
aR, br (for right child).

Initialize a_, by, ar, br < null
disconnect all ports af
if a= b= null then [* u receives null symbols from its parent
if § NDr# 0then
e« any one element & N DR

connectj tor, [* Configuration */
a «—e [* Symbols for children */
bR «— e

endif

else /* u receives an ID from its parertf

if ae KRthen
connectr; to po [* Configuration */
aR—a /* Symbol */

endif

if b€ D then
connectp; to o [* Configuration */
b.—Db [* Symbol */

endif

if aec§ —Dgrthen
connect; to po /* Configuration */
a «—a [* Symbol */

endif

if be DR— S then
connectp; torg [* Configuration */
br<—b [* Symbol */

endif

if ag = bgr = null andS_ N DR # 0 then
e« any one element dj N DR

connectj torg [* Configuration */
a «—e /* Symbols */
bR «— e

endif

endif

¥/

FIGURE 4.8. Pseudocode for Phase 3 of the algorithm.

matching communication and send appropriate control inétion down the treé.

68

receive any control information from its parent (switg) it is free to establish paths from any

1A switchuiis at liberty to establish connections for a communication hiatgat it even whem receives some control information (unlik
as long as the matched communication is compatible with the coneation indicated by the control information from the parent.

switch - -

(b) Phase 3.

FIGURE 4.9. An example of the general CST configuration algorithm.

We now prove the correctness of the algorithm. For the praofssume that the IDs assigned

in Phase 1 are unique.

Lemma 4.2.1. The general CST configuration algorithm establishes comesbetween match-

ing source and destination pairs.

Proof. Let c be any communication that matches at a switcRurther, letz be the ID assigned to
cin Phase 1. As IDs are unique, no other communication willssgamed the Iz. This ensures
that the corresponding source and destination paicsvafl match at switchu and with no other
destination or source.

In Phase 2, each of the source and the destinatiomalf sendzto its parent. Switches forward
z up the tree until reaching. Switch u will receive z from both children simultaneously and,
according to the algorithm, will not forward IBto its parent. So, in Phase 2, each switch in the

path from source or destination ofeceives information abowt

69

In Phase 3 of some round,will schedulec (see Figure 4.8). (This will happen when either
does not receive any ID from its parentwreceives ID(s) from its parent to configure a source
(resp., destination) in its right (resp., left) subtreegcérding to the algorithmy connect¥; to
ro and sendg to both children. The children of switahwill configure themselves, and each will
sendz down to the child from which it receivezlin Phase 2. In effect will retrace back the path
it traversed in Phase 2, thereby establishing a simple path the source o€ to u then to the

destination ot.]

Theorem 4.2.2.The general CST configuration algorithm correctly schedalesommunications

in any finite communication set.

Proof. Lemma 4.2.1 proves that for any communication, the algaritill establish correct con-
nections in some round. Hence, over all the rounds (a finiteb®u), the algorithm will correctly

connect each matching source-destination pair. O

There are, however, communication classes for which thegigtign completes the configuration
and scheduling in more than the optimal number of roundsofidm 4.2.3 sets an upper bound on

the number of rounds that the algorithm spends to scheduldth-w communication set.

Theorem 4.2.3.The general CST configuration algorithm establishes commesfor all commu-

nications of a width-w communication setdw — 1 rounds.

Proof. Let c; be any arbitrary communication of a widiih-communication set, matching at an
arbitrary switchu. Hence,u will connect its left and right child to establish a connenticorre-
sponding tacy in some round.

By definition of a widthw communication set, at most— 1 communications are source incom-
patible withcy and at mostv— 1 communications are destination incompatible withSo, at most
2w — 2 rounds include a scheduled communication incompatibile eyi Since during any round,
if no scheduled communication is incompatible with thenu will necessarily schedule; (by
Phase 3 of the general CST configuration algorithm), hencelgogithm will schedules; during

any round on or before roundh2- 1, which proves the theorem. n

70

Remark: Erlebackt al.[26] in their research related to wavelength routing onadad fiber trees
proved that any greedy algorithm needs at le@8tByavelenghts to route a set of communication
request of loaflw. Wavelength routing problem is similar to CST schedulingnéte we expect

(suitable modified versions) of our algorithm to apply to el@ngth routing as well.

4.3 Width-1 Communication Sets

The algorithm presented in Section 4.2 works correctly for ariented, widthas communication

set. The case where the width of the communication set is @ngsspecial attention. In a width-1
communication set, no two communications share any eddeed®8T in the same direction. We
now show that this algorithm is optimal for any width-1 conmroation set. As earlier, we consider

right-oriented sets.

Theorem 4.3.1.The algorithm optimally schedules all the communicatidresxoriented, widtht

communication set in one round.

Proof. Let C be any right-oriented width-1 communication set, and ssppa= C is a commu-
nication that is not scheduled in the first round by the athari Letu be the switch at whicle
matches.

As C is of width 1, no other source (resp., destination) in thé (efsp., right) subtree dfi
matches au or at any switch above. If u receivesa = b = null in Phase 3 of round 1, then
according to the algorithm will schedulec. Sincec was not scheduled in round dmust receive
an ID in that round. If atu, a # null (resp.,b # null), thena (resp.,b) must be the ID of a
source (resp., destination) u's right (resp., left) subtree. The algorithm will configurdor c,

contradicting that is not routed in round 1. n
The general algorithm can also be simplified for a width-1 gamication set as shown in the
following lemma.

Lemma 4.3.2.A modified algorithm with Phase 5 removed and Phases 2 and 3ohexgufficient

to route all the communications of a widilheommunication set.

2Load in [26] is analogous to our width

71

Proof. By Theorem 4.3.1, the algorithm routes communications ofdtlwi communication set
in a single round. This makes Phase 5 redundant.

Because exactly one path connects each source-destinaiiom@m CST and because, in a
width-1 communication set, no source-destination paiflads with any other, then each switch in
Phase 2 can configure itself according to the source anahdésti IDs that it receives. If it receives
a matching pair, then it connects the corresponding pditgelceives an unmatched source, then it
connects that incoming port to the outgoing parent portsamdarly for an unmatched destination.
Because of the absence of conflict, it is not necessary to wratoihtrol information from Phase 3.
Consequently, Phases 2 and 3 can be merged into a single phaséo(example, the algorithm in
Section 4.3.1) making one pass from the leaves to the roarevwitches configure themselves

as soon as they receive information from their children. n

4.3.1 Modified CST Configuration Algorithms for Width- 1 Sets

In this section we detail two algorithms for configuring theTO8r oriented, width-1 communi-
cation sets, the first for well-nested point-to-point seid he second for multicast sets. As before
we assume that each PE holds only local information. Spatiifieach PE holds whether it is a
source, a destination, or neither. That is, a source is nateawf the identity of its destination and
vice versa.

Structure of the Algorithms:

1. Each leaf (PE) generates an initial symbol that refleststdtus in the communication in

guestion; for example, a PE may indicate that it is a sourckestination or neither.

2. Symbols propagate up the tree from the leaves to the rodigcwing switches on their way.
Specifically, each switch receives two input symbalandp, from its children and produces
an output symbofs(a, B) for its parent. (The root also generates this output symtbtiaen
ignores it.) The switch also produces a second oufglat,3) to configure the data path(s)

of the switch.

72

3. The algorithm completes when the root configures itself.

We will call an algorithm with the above structur@ae-passlgorithm, as one traversal of the
tree from leaves to the root suffices for the configuratiore dlgorithms in this paper use functions
fs and f; that can be implemented with simple combinational logiasTdillows for speedy con-
figuration and data transmission, possibly within a few klogcles [21, 74]. The main task of the
configuration algorithm is to translate local informatidrtee PEs to global information about the
entire communication set. Specifically, each PE may be awrmlyeof its status as a source, desti-
nation, or neither. This in itself is not sufficient to configuhe switches. For example, although
PEs 0 and 2 of Figure 4.2 are both sources, the switches aptreints assume different configu-
rations (because of the information in PEs 1 and 3). Sinyil&Es 1 and 7 are both destinations,
but their parents assume different configurations. In geneeiis possible for the configuration of
a switch quite far from PEs to be affected by the informatibtina PEs of its subtree.

One could view the configuration algorithm as a distributEpbi@thm initiated at the leaves
and triggered by input symbols at the switches. Not all comigation sets are amenable to this
manner of handling.

Specifying the Algorithms:

Defining the following will specify a configuration algoritnof the form described as above.

e Set(of configurations of a switch. This is the same as that desdrdy El-Boghdadet al.

[24]. Tables 4.2 and 4.4 show the configurations used in tbikw

Symbol sets.

Initial symbol assignment for PEs.

Symbol functionfs: § x § — .

Configuration functiorfc: § x S — C.

73

4.3.2 Oriented, Well-nested, Widthd Point-to-Point Communication Sets

CST Configuration Algorithm
Now we present the CST configuration algorithm for orientedllawested, width-1, point-to-

point communication sets.
Well-Nested, Width-1 CST Configuration Algorithm
e 5 ={s,d,b,n}, wheres denotes a source, denotes a destinatioh, denotes a situation
where both a source and a destination exist in a subtrea) dadotes neither a source nor
a destination. (Elements ¢f are in a different font compared ®andd used to denote a

source or a destination PE.)

¢ Initial symbol assignment: A leaf sends symbdkesp.d orn) to its parent iff it is a source

(resp., destination or neither).

e Symbol function: See Table 4.1. Blank cells in Tables 4.1 a@d:drrespond to impossible

situations.

e Configuration function: See Table 4.2.

TABLE 4.1. The functionfs for well-nested, width-1 CST configuration algorithm.

| fss[d[n]b]
S nis|s
di|lb d
niis|d|n|b
b d{b|b

We now address the correctness of the well-nested, widthT1d@8figuration algorithm. For a
2P PE CST, arrange the nodespnt 1 levels, Q--- , p, with PEs at level 0 and the root at level
Let 7, denote the subtree rooted at any nad8ubtreeZ;, contains anatchedsource iff the source
and its corresponding destination are both leave®,08ubtreeZ;, contains arunmatchedource
if the source is infZ; but the corresponding destination is not. Define matchedusmdatched

destinations similarly.

74

TABLE 4.2. The functionf. for well-nested, width-1 CST configuration algorithm.

[fe] s | d |

?

M

Lemma 4.3.3.Let u be any node at levé] whereO < ¢ < p, of the CST. Under the well-nested,
width-1 CST configuration algorithm, let u generate symbal S to send to its parent, if any. The

following assertions hold.

1. If o = s, then, has an unmatched source s and the algorithm establisheshafipan s to

the parent of u.

2. If o = 4, thenZ, has an unmatched destination d and the algorithm estaldial@ath from

the parent of u to d.

3. If 0 = b, thenZ, has an unmatched source s and an unmatched destination eéoMin the

algorithm establishes paths from the parent of u to d, anchfsato the parent of u.
4. If o = n, then‘Z; has no unmatched source or destination.
5. The algorithm establishes paths betweer{mlhtched source-destination pairs a.

6. All unspecified entries of Tabldsl and4.2 represent impossible situations.

75

Proof. We prove the correctness of Assertion 1 by induction on tiel lef switches. As a base
case, ifuis at level/ = 0, thenu will generateo = s iff uis a source of a communication. Hence,
7, indeed has an unmatched sous@®rresponding te@ and a path exists fromto u's parent.

Assume the assertion holds for all tree levels up to lkyvahd consider node (switch)at level
k+ 1. According to the symbol function (Table 4.li)generates = s only if it receives either ag
from the left child anch from the right child, or bh from the left child ands from the right child,
or c) s from the left child and from the right child. For all these three cases, sinceceives an
s from one of its children, and since Assertion 1 is valid & children, there is an unmatched
source in the subtree rooted at onausfchildren and a path exists from that unmatched source to
u.

For cases a) and b), the unmatched sogrcerresponding te is not matched at. Addition-
ally, u establishes a path from its left child in case a) and rightddhi case b) to its parent (see
Tables 42). For case c), the subtree rootedratleft child has an unmatched source and the sub-
tree rooted atr's right child has an unmatched source and an unmatchechdsgsti. Since, we
are considering a right-oriented, well-nested, width-thomunication set, the unmatched source in
the subtree rooted ats left child must match the unmatched destination in theregbrooted at
u's right child. This leaves an unmatched source in the sebteted au’s right child. As shown
in Table 42, u establishes a path connecting its right child to its par@atin each of these three
cases, there is an unmatched sourc€jinandu establishes a path connecting the corresponding
child to its parent, thereby establishing a path from the atahned source ta's parent. This proves
Assertion 1.

Similar arguments are valid for Assertions 2, 3, and 4 as,\wedreby proving them.

We also prove the correctness of Assertion 5 by inductiorhendvel of switches. For the base
case, ifuis at levell = 0, there cannot be any matched source-destination paichvgnoves the
assertion.

Assume the assertion holds for all tree levels up to lkyahd consider node (switch)at level

k+ 1. Since the assertion holds for all nodes up to l&yéhe algorithm correctly creates all paths

76

corresponding to all matched source-destination pairsirees rooted at each ok children.
This leaves us to prove that the paths corresponding toe@bdlirce-destination pairs that match
atu are correctly created.

The correctness of Assertions-}4 proves that the algorithm correctly creates a pathnfrom
the source and the destination nodes of a source-destinadio that matches at Switchu re-
ceives ars or ab from its left child and &l or ab from its right child corresponding to the matched
source-destination pair. As shown in Tabl&,4n all of these casasestablishes a path connecting
its left child to its right child. This means switehindeed creates a path for any source-destination
pair that matches at, thus proving the assertion.

Each of the four unspecified entries of Table% will lead to a width-2 communication set.

Hence, they represent impossible situations, thus proAssgrtion 6. n

The proof of Assertion 5 of Lemma 4.3.3 establishes the fatig result.

Theorem 4.3.4.The CST can be configured in one pass to perform all commuoisatf any

oriented, well-nested, width<communication set. O

4.3.3 Width-1 Multicast Sets
In this section we address the more general situation ofhaddtoriented, well-nested, multi-
cast sets. Given only the flags indicating source, destinatrr neither, a destination may not
uniquely match a source and vice versa. For example, Figui€ga) and 4.10(b) show two dif-
ferent width-1 multicast sets, each with two multicastsvainan red and blue, that have the same
source-destination pattern. Hence, flags indicating amlyce, destination or neither are not suffi-
cient for matching. Therefore, we assume that each multisg3) has a unique ID associated with
it that is known tos and all members dD. We do not assume that an ID encodes the destination
set or the identity of the rightmost destination.

Even the assumption of known unique IDs is not sufficient, éew, to configure the CST with

a one-pass algorithm.

77

(a) Multicast set 1. (b) Multicast set 2.

FIGURE 4.10. Two different multicast sets with same source-destinatiorrpatte
Lemma 4.3.5.No one-pass algorithm exists to configure a CST for widthalticast sets in which

PEs hold communication IDs and are flagged only as sourcéindgi®n, or neither.

Proof. Again consider the example of Figures 4.10(a) and 4.10(w)tc8 b receives symbols
containing a source ID from PE 2 and a destination ID from PEi@mating from members of
the multicast shown in red in both the figures. In Figure 4)1@(l connections of the multicast
shown in red have been established &ndioes not need to forward any information about that
multicast to the root. In Figure 4.10(), receives the same information, however, this time it
needs to propagate information about the multicast showedrto the root. Since receives the
same information in both the cases, it cannot distinguightvo situations under any one-pass

algorithm with the given information.]

The situation changes, however, if the CST can identify feheaulticast when all its destina-
tions have been matched. For a right-oriented multicaggiitey the rightmost destination suffices.
For simplicity, we assume the multicast set to be right dednThe end of this section handles the
general case. Now we present the CST configuration algoridimdht-oriented, width-1, mul-
ticast communication sets. For brevity, henceforth we ttedl algorithm width-1 multicast CST
configuration algorithm.

Width- 1 Multicast CST Configuration Algorithm

e Symbol set: Let = {s,d,r,—} wheres, d, andr denote source, non-rightmost destination,
and rightmost destination. The charactedenotes a don't care entry. Lebe the set of all

possible IDs of a multicast. Definke= | U {—}.

78

TABLE 4.3. The functionfs for width-1 multicast CST configuration algorithm.

| fs lsmg— - —d mg— — — —[— - m{s mgd, m4s, mgr, My

S, My, —, — if mM=my s, Mm, —, —|if Mm=my S, Mg, —, —
S, My, —, — — =, =, —
else else
s, my,d, My S, My,l, My
—, —d, my s, mgd, mg —, —d, my —, —d, mpy —, — 1, My s, mg,d, My s, mgr, My
- == —lssm -, - - —-d mgd —, —, —, —| —, =, m4gs mgd, mys, ngd, My
—, =, Myl S, M,l, My —, =, My
s, Mm,d, ny if mMp=my | s, m,d, mg if mu=mu S, mg,d, Ny
s, m,d, ny —, —,d, mp
else else
S, Mm,d, My S, My, MYy
S, My,r, Ny S, mg,t, Mgs, m,r, My —, —,I, Ny S, Mg,r, My

The symbol setig =U x J x U x J. A typical member ofs has the form(a, 3,y,d), where

a,y €U andp,d € J. The intuition behind this symbol set is as follows. Eachenothy have
to send information about (at most) two multicasts; one watrce inZ;, and the other with
destination(s) irZ,. (Recall thatZ, is the subtree rooted at nod®f the CST.) The informa-
tion of each multicast consists of and, orr and its ID. Therefore(a, 3) and(y, 8) represent

the two multicasts. The don’t-care symbol accounts forsasth fewer than two multicasts.

¢ Initial symbol assignment: A leaf sends symbdlesp.,d orr) to its parent iff it is a source

(resp., non-rightmost destination or rightmost destorgtalong with its multicast ID.

e Symbol function: Table 4.3 givek.

e Configuration function: Table 4.4 gives.

We now address the correctness of the multicast algorithmsi@er any multicasts,D). Let
r € D be the rightmost destination. A subtréehas anatchedsourcesiff s;r € 7. SubtreeZ, has
a matched destinatiahe D iff d € 7, and eitheis € 7, or 7, has a destinatiod’ € D such thad’
is to the right ofd. A multicast(s,D) is completedn subtreeZ;, if sand eachd € D are leaves of
7.

79

TABLE 4.4. The functionf, for width-1 multicast CST configuration algorithm.

|| fC || s,Mmg, —, — | _a_ad;rn4 | IR | —,—,T,My | svrnSvdvnM- | s,Mg,r,My ”
i i

s ‘
s,My, —, —

¢

T

NEsE

S
—
S

s,M,d, M

EHE
THEF | EREER

=

ERmE
EHER EHERE

s,My,r,Mp

Notice that we have defined matched source and destinatidesms of the seD. The actual
algorithm uses multicast IDs to ascertain a match and doeseqaire determination dD. Ar-
guments similar to the ones presented in proof of Lemma 4@8l@ for the following lemma as

well.

Lemma 4.3.6. Let u be any node at levél where0 < ¢/ < p, of the CST. Under the width-
multicast CST configuration algorithm, let u generate syntbioB,y,d) € S to send to its parent,

if any. The following assertions hold.

80

1. If a = s, thenZ, has an unmatched source s of multicésD). The algorithm establishes

paths from s to the parent of u and &thatched destinations of D that are iffy,.

2. Ify=dor r, thenT, contains an unmatched destination of multiqagsD) and the algorithm

establishes a path from the parent of u to this destination.
3. Ifa = —, then‘Z, contains no unmatched source.
4. If y= —, thenZ, contains no unmatched destination.

5. For a multicasts,D) that is completed withiff,, the algorithm establishes a path withig)

from s to all elements of D.

6. All unspecified entries of Tablds3 and4.4 represent impossible situations. a

So far, we have assumed a right-oriented multicast set. Ig|¢lais approach also works for a
left-oriented set. If we drop the assumption of orientednd®en both the leftmost and rightmost
(extreme) destinations need to be flagged. The width-1 cagitiCST configuration algorithm will

still work with minor modifications to Tables 4.3 and 4.4 ahd tefinition of a match.

Theorem 4.3.7.The CST can be configured in one pass to perform all commuoisatf any

width-1 multicast set. O

4.4 \Well-Nested, Widthw Communication Sets

In this section we apply the general CST configuration algoriof Section 4.2 to configuring the
CST for a well-nested, right-oriented, widiih-communication set. Well-nested communication
sets are width partitionable [21], so an optimal algorithiti take exactlyw rounds to route all
communications in the communication set.

Before providing the details, we define thesting depthof a communication belonging to
a well-nested communication set. A right-oriented comroation (a,b) coverscommunication
(a,b’) iff the PE indices satisfia < & < b’ < b; for example, communicatiof®,7) covers com-
munication(4,6) in Figure 4.2. The nesting depth of a communicatios the number of commu-

nications that covec. For example, the nesting depth of communicati4s6) in Figure 4.2 is 1.

81

For a source at depth the next element to its right at depths its matching destination. It is easy

to verify that nesting depths of well-nested communicaipassess the following properties.

1. No two communications with the same depth share a commonedg4 in the same direc-

tion.

2. If a communicatiorc; covers another communicatian and no other communicatioty
coverscy but notcy, then the depth of; is one less than the depth @f.

4.4.1 Algorithm Adaptation
We now provide details of the general CST configuration atoriadopted to a well-nested com-
munication set. Sections 4.4.2 and 4.4.3 prove this adaptti be correct and optimal, respec-
tively.
Phase 1:The PEs calculate the nesting depth of their correspondinghnications and assign
this value as the ID of each communication. To calculate #sting depth of a communication,
corresponding PEs compute prefix sums where each sourcgbotes a 1 and each destination
contributes a—1. Each source PE then subtracts 1 from its prefix sum. Figure ghows the
computation of IDs for an example well-nested communicesiet. Dharmasena and Vaidyanathan
[18] gave a prefix sums algorithm that traverses the CST franeaves to the root and then back

to the leaves.

NN N

Initial Value : 1 -1 1 1 1 -1 01 1 -1 -1 -1 -1
Prefix Sums : 1 0 1 2 3 2 3 4 3 2 10
Nesting Depth : 0 0o 0 1 2 2 2 3 3 2 10

FIGURE 4.11. Computation of IDs for a well-nested communication set.

Phase 2:This phase is similar to that given in Section 4.2. The onffedénce is that instead of
switchu sending a se$ of sources (seD of destinations) to its parent,sends the indices of the

lowest valued and the highest valued source (destination).

82

Phases 3, 4, and 5Same as the general CST configuration algorithm.

Each of Phases 1, 2, 3, and 5 requires at most two passes of Théega8es to root or root to
leaves) and runs i®(logn) time. Each switch spends a constant amount of time for camgpirt
each phase, so tl@(logn) time complexity arises due to the lodneight of ann-processor CST.
Phase 4 take®(1) time and we show that there arerounds involving all phases. Consequently,
the algorithm to schedule and route a widthwell-nested communication set runs@fwlogn)

time.

4.4.2 Correctness of Phases 1 and 2
Lemma 4.4.1. For each communication, the ID computed during Phase 1 spoads to the

nesting depth of that communication.

Proof. A right-oriented, well-nested communication set corregfgoto a balanced parenthetical
expression where each source (resp., destination) magsftqi@sp., right) parenthesis.

The prefix sum for each source indicates the number of sobefese it (including itself) whose
destinations have not been encountered. This sum is oneth@ré¢he source’s depth as the com-
munications with unmatched sources cover this commupoicalihe prefix sum for each desti-
nation indicates the number of sources before it whoserdg&ins have not been encountered.
Consequently, the prefix sum at a source is one greater thatefig sum at its matching destina-
tion. Subtracting one from each source prefix sum ensurésriiihing source-destination pairs

have the same ID which will also correspond to the nestingrdep O

Lemma 4.4.2 establishes that the IDs of two communicatiansbe the same, yet all the com-
munications can be uniquely identified, as unmatched IDsuargue in any switch’s subtree.
Moreover the IDs satisfy Properties 1 and 2 for the nestimjtdeof a well-nested communication

set.

Lemma 4.4.2.In the subtree of any switch, no two unmatched sources can hawaame ID and

no two unmatched destinations can have the same ID.

83

Proof. Let us assume that there are two unmatched sources withrtteel®am in the subtree of a
switchc. Let us call the left (resp., right) one of thesn(resp.,sr). Clearly,c receives information
from both of them and the corresponding matching destinat@we outside the subtree rooted.at

Since the communication set is well-nested, the destinatwresponding te. will be some-
where to the right of the destination correspondinggoHence, the communication with source
sr is completely nested within the communication with sowsiceSo (by Property 2) the ID of.
computed during Phase 1 will be less than the IBrofontradicting our assumption thatandsg
have the same ID.

With similar arguments, one can also show that no two unneatdestinations in any switch’s

subtree can have the same ID. O

In Phase 2 of the algorithm, instead of switckending a seb(resp.,D) of sources (resp., desti-
nations) to its parent) sends only the smallest and the largest value3(oésp.,D). Lemma 4.4.3
proves that the elements 8{resp.,D) will consist of contiguous IDs, so the closed interval fewhn

by the smallest and the largest values ident@ésesp.,D).

Lemma 4.4.3.1n Phase 2 of the algorithm, if a switch ¢ sends-$p,] (resp., D= [p,q]) to its
parent, then there are g p+ 1 unmatched sources (resp., destinations) with IDpp1,---,q

that form a continuous interval in the subtree rooted at c.

Proof. We prove the correctness of the lemma by induction on thd th&witches (with PEs at
level 0 and the root at level logfor ann-leaf CST). We present the argument for the sources; the
argument for the destinations is analogous.

As a base case, at level 0 (PEs), if a PE holds a saortteen it send$S= [p, p| to its parent,
identifying this unmatched source. If a processor holds owree, then it sendS = null to its
parent indicating no unmatched sources.

Assume the lemma holds for all tree levels up to ldgednd consider switch at levelk + 1.

In Phase 2, suppose thateceivedS. = [I1,l2] andSg = [r1,r2] from its left and right children,

respectively, and ser® = [p,q| to its parent. For a right-oriented communication set, aay p

84

matching at must have its source in the left subtree and destinatioreingint subtree. For a well-
nested communication set, the matching pairs must be tlermost on the nesting, with largest
IDs (Property 2), and by the inductive hypothesis, the sega®f their IDs must be contiguous.
Let [m,I2] denote the interval of matching source IDs in the left subttédnmatched intervals are
S —Dr=[l1,m—1] andSR = [r1,r2].

All sources between souree— 1 and source; match, contributing O to the prefix sum. Since
IDs follow from prefix sumst1 = (m—1)+1=m. Thus,S= (S —Dr)USR=[l1,m—1ju[m,ry] =

[I1,ro] is itself a continuous interval, proving the lemma. O

The fact that an interval tersely represents the SeisdD makes the algorithm very efficient.
Moreover the operations needed to compute SetsdD in Phase 2 reduce to performing a small

number of comparisons @(logn) bit IDs.

4.4.3 Proof of Optimality
In this section we show that our algorithm is indeed optirthef is, it routes all communications of
a well-nested, widtlw communication set imv rounds. A widthw communication set must have
a subset ofv sources (ow destinations) that use a common directed edge of the treb. &set is
called amaximum incompatiblélo prove a schedule optimal, it suffices to show that it reatee
communication in each round from each maximum incompajiilé

Consider any maximum incompatible(Figure 4.12). Let the edge(s) used by walcommu-
nications be upward, sbcontains source PEs. (An analogous argument holds for andésh
incompatible.) Let switclu be the lowest common ancestor of the sourcdsliet v be the lowest
level switch where at least one among thes®urces matches. For right-oriented communications,
thew sources must belong to the left subtreavzoBince the source incompatible is maximum, no
other source can join these sources at any switch betweaadv.

In Phase 3 of the algorithrmy,will receive symbolsa andb from its parent, whera is a source

ID or is null andb is a destination ID or iswll. If both a andb arenull, thenv will configure a

85

W sources

w — b sources b sources

FIGURE 4.12. Part of a CST showing a maximum source incompatible for aaidhmmunication set.
communication that matchesatBy definition ofv, at least one such communication exists and

all matching communications have their sourcek in

If vreceives an ID in Phase 3, then the following three cases &ssume that, in Phase ¥,

received source and destination sgtsD, from its left child andSg, Dr from its right child.

1. Ifae §, thenac |. Hence, one source from the maximum source incompatibtauied.
2. The casé € Dris not possible in a widthv, oriented, well-nested set.

3. Ifa¢ § and(be D orae &), then the communications corresponding smdb cannot be
incompatible with communications matchingvaBy the lastf statement in the pseudocode

of Figure 4.8y will configure a communication that matchesvatnd whose source is from

Hence, Phase 3 will route one source of each maximum soucoenjpatible and subsequently

the width will reduce by 1. This proves the algorithm to beiimad.

86

Theorem 4.4.4.Every oriented, well-nested communication set can be rooptdnally on the
CST. Moreover, each switch step uses a constant-time conguuéatd communicates a constant

number of words with its neighbors. O

Section 4.3 presented a simplified algorithm that sufficesfgeneral width-1 communication
set. For a well-nested, width-1 communication set, an everersimplified algorithm with Phase
1 removed suffices.

Phase 1 of the algorithm assigns IDs to each communicationitpuely identify them. In the
width-1 case, the path between the source (resp., destiati any communication and the switch
where the communication matches is not shared by any othecesdresp., destination). This
implicit property of the width-1 case is sufficient to iddptany source (resp., destination) within
the subtree rooted at the switch where the communicatioregponding to that source (resp.,

destination) matches. Hence, Phase 1 becomes redundant.

4.5 Summary
In this chapter we described our research in scheduling anfigtiration of communications on
a CST. We presented various properties of communicatiorliketa/idth and oriented-ness, and
looked at both point-to-point and multicast communicasets.

We presented a CST configuration algorithm for a widticommunication set. We also pre-
sented special adaptations of that algorithm for width-ibptm-point and multicast communica-
tion sets. Lastly, we also presented algorithm adaptatmmsidth-w well-nested communication

sets for which the algorithm is provably optimal.

87

Chapter 5

Routing Algorithm for an R-Mesh Based Fat-Tree
Switch

5.1 Introduction

We presented a brief introduction to fat-trees [46, 47] in|@al. A fat-tree is an extension of
the simple tree topology where the bandwidth between saneekevels increases exponentially
as shown in Figure 5.1. Many of today’s high-performancetels, especially ones using the In-
finiband, Myrinet, or Quadrics interconnection familiespay a fat-tree structure [32, 33]. These
three interconnection families taken together accountdaghly one third of the current top 500
supercomputers [37]. Research related to interconneatiddeCs also widely use fat-tree or fat-
tree type structures like the H-tree [9, 10, 54]. Fat-trdes have application in interconnection

networks for high-performance disk storage architect[#8s79].

level 3
level 2

level 1

End Nodes
level O

FIGURE 5.1. An 8-leaf fat-tree; multiple edges between two switches deigitertbandwidth.

In a tree a unique path exists between a source-destinadiorirpa fat-tree, on the other hand,
there are multiple edges between any two switches. Henees th a scope for deriving benefit
by properly choosing (for a communication) one of the miatimks that connect two switches.
The precise choice of the link depends on the link loads,céwhisection bandwidth and other
communications attempting to use the switch at the same #ngeneral level (k+ 1) fat-tree
switch (see Figure 5.1) ha&'? bidirectional ports connecting it to its parent. Addititlgait has
2¢ ports to each child. More precisely, consider the lével1 switch shown in Figure 5.2, where
0 < k < n, with the root at leveh. In routing from a source to a destination, the global (Hgyel)

path is fixed. For example, we may already know that the pdtloms (say) left child to the parent

88

of the switch in Figure 5.2. However, the communication msg any of the 21 input links from

the left child and exit to any of the’ Dutput links to the parent.

to parent
k+1

level k+1 switch

to left child to right child

FIGURE 5.2. A levek + 1 switch.

Routing, performance analysis, and implementation ofrisg-based interconnection networks
are well studied problems [34, 61, 72]. Let al. [51] used thek-ary n-tree structure to implement
a fat-tree using fixed-size switches in InfiniBand networkseylalso proposed a routing scheme
based on assigning multiple LIDs (local identifiers, whick alentifiers used to address all the
end systems in an InfiniBand network) to all the end nodes tzeitmultiple paths that exist
between any source-destination pair in a fat-tree. Garhak[32] designed a deterministic routing
algorithm for a fat-tree (implemented ag-ary n-tree). They used the idea of using a pre-defined
path for the ascending part of a route for each source-d@ggtinpair to achieve the deterministic
routing. Their algorithm balanced the overall network lo&ley also presented simulation results
to show that the performance of the deterministic algorithoomparable to or better than adaptive
algorithms for similar network traffic. Gomext al. [33] used their earlier algorithm developed in
[32] to design a simplified switch architecture for a fatetrehich effectively almost halved the
switch hardware complexity. Dingt al. [19] proposed a level-wise scheduling algorithm for a
fat-tree interconnection network. This algorithm usedglanformation to select upward routing
paths instead of using just local information availableaatteswitch. This reduced the number of

conflicts between communications and hence improved thedsithbility ratio.

89

With fat-tree based interconnects gaining popularityeaeshers are also investigating various
related research problems. Sem-Jacoleted. [70, 71] looked at dynamic fault tolerance and its
effect on quality of service on fat-trees. Alonsbal. [1, 2] researched power related issues in
fat-trees.

Usually, fat-tree switch routing algorithms (especiatiythe fat-tree switches of supercomputer
interconnects), employ a table lookup. A table lookup israredized approach, and hence it suf-
fers from the disadvantages that a centralized approachlyswas in terms of scalability and
performance. Hence, a distributed approach to connect pattiin a switch merits investigation.

In our research related to a fat-tree switch, we design an BaiMeased algorithm to generate
the intra-switch connections while achieving a certainrdegf load balancing in a greedy man-
ner. This algorithm is a work in progress and needs additie@salts (modeling and simulations)
to evaluate its performance. In Chapter 3, we used the R-Me#fieasontrol plane to generate
schedules for the crossbar. The crossbar establishedtesgonding paths by setting appropriate
crosspoints. Here too we are using the R-Mesh as the con&moédbr a fat-tree switch. The data
plane is assumed to be any mesh structure that accommobatpaths created by the R-Mesh’s
buses.

The R-Mesh itself creates the data paths by creating busasgihit. Our research in this area

is still preliminary, hence we present only the basic idedthe algorithm in the next section.

5.2 Routing Algorithm for a Fat-Tree Switch Implemented as
an R-Mesh

In this section we outline the algorithm that we have degigiwecreate configurations of an
R-Mesh, each of which will establish a set of buses conneamgce and destination ports of
a fat-tree switch. Note that our main motivation for thisalthm is that we want to embed an
R-Mesh inside a fat-tree switch and then use the reconfiguyabi the R-Mesh to dynamically

create paths from source ports to destination ports inkiglswitch.

1For detailed background on R-Mesh refer to Section 3.3.

90

We assume that the switch haspbrts connected to each of the left and right children drid 2
ports connected to its parent. We further assume that the s$hiebedded inside the switch has
a size off x 21 where each PE in thé'0(top) row (or parent side) is connected to a port that is
connected to the parent and each PE in(the 1)!" row (child side) is connected to a port that is
connected to a left or a right child. We do not impose any ictg&in on the value of, and assume
1</<n.

The algorithm that we present here creates buses for congationis that are going from the left
or right child of the switch to the parent; the other casem{fparent to child and between children)
are analogous. In this context, the parent (resp., chith ef the R-Mesh can also be called the
input (resp., output) side. Note that a bus correspondirgydbild-to-parent communication can
connect a specified input port to any output port on the pasieiet Simple variations of the same
idea can take care of the four other possible source-déstingairings.

We flag input ports ason-emptyr empty(depending on whether they have any packets waiting
to be sent at the input buffers). We flag output port$utisor ready (depending on whether they
have room to accept a packet). The state of an outputoporay be determined by an underlying
flow-control mechanism that reflects possibly the state etilifers at the input port of the neigh-
boring switch to which the output paatis directly connected. We do not discuss this flow control.
We also assume that whenever an input or output port dispatcpacket to an output port (within
the switch) or an input port (in the neighboring switch) sprely, the corresponding states of the
ports are automatically adjusted. Our algorithm runs camtusly in rounds (as in the scheduling
algorithm of Section 2.2). In each round it creates pathsr(@sy as possible) from non-empty
input ports to ready output ports. If it is not possible to mwect some non-empty input port to an
output port in the current round, then it is considered in lassquent round. The algorithm has
three stages:

(i) Construct straight buses.

(i) Construct buses to the right.

91

(ii) Construct buses to the left.
The last two stages are analogous and so we only describesSitagnd ii).

Consider the levét+ 1 switch in Figure 5.2 that useda 21 R-Mesh for some ¥ ¢ < 2Kt1,
Figure 5.3 shows the internal structure of such a switch.othput ports (only those to the parents

i
Skl

Input
Row

Output
Row

Aol dd

AL g

FIGURE 5.3. The R-Mesh inside the fat-tree switch.

are shown) are labelejg (0<y < 21). The input ports (only those from the children are shown)
are labeledy (0<y< 2k+1), At this point we do not specify which input ports connecatteft
child or right child. However, the s¢t= {iy: 0 <y < 2k+1} is partitioned into B-element settg
andl_ that connect to the switches at the right and left childrespeetively. Denote the PE in row
x and columry by PEx,y) where 0< x < ¢ and 0<y < 2k*1, Clearly, PEO,y) and PE/—1,y)
access output and input poitsandiy respectively.

We now describe the algorithm; examples in Section 5.i%tilates how it works.

Initially, the algorithm marks all non-empty input ports&@r source) ports and all ready output
ports adD (or destination) ports.

Stage(i)— Constructing straight buses:

For each columiy whose portsy and j, areSandD ports, respectively, a vertical bus through the
column suffices to connect these ports. All PEs in such cofuare configured to connect their

south port to their north port.

92

Beyond this point these ports are no longer considered ireStag and(iii).

Stage(ii)— Constructing buses to the right:

In this stage we connect input ports to output ports in colsienthe right. This stage has three

steps described below.

Stepl — Compute Prefix Sums:
For each source poij, set a source weightis(y) to 1. For all other non-source poits, set

Ws(y') to 0. Similarly uséNy(y) to flag all destination poriy.

Compute the “source prefix sumBs(y) of the source weights. That is, for eachiQ/ <

2k+1’
y
Ps(y) = ;Ws(u)~

Similarly, compute the destination prefix sums
y
Pa(y) = > Wa(u).
2

Step2 — For each columry with a destination porfy, determine the row(y) through which

some source port could connectjio
r(y) = (Pa(y) —Ps(y) — 1)(mod¢) = (£+Pu(y) — Ps(y) — 1)(mod¢)

Recall that we are using ahx 21 R-Mesh.

Step3 — Set up buses to the right:
This step establishes the connections between an inpuaipdran output port to its right,

whenever possible.

Each PE of the R-Mesh configures its ports as described in Bable

Stage(iii)— Constructing buses to the left:

All source-destination pairs connected in Sta@geand(ii) are removed from consideration at this

stage. However, their connections remain.

93

TABLE 5.1. PE configurations for creating buses to the right.

PE

| Configurations

PE(x,y) is in source columiy

PE(x,y) is in destination columgy

All other PEs

i

Stage(iii) works just as Stagéi), except in the opposite direction (right to left). If thisge

calls upon a PE to configure itself in a manner that conflicth w$ configuration created in an

earlier stage, then the algorithm defers to the earlier gardtion. Figure 5.4 shows example of

allowed and conflicting configurations.

&,

(0

@ conflict

allowed

@ allowed

conflict

FIGURE 5.4. Examples of allowed and conflicting configurations.

5.2.1 Examples lllustrating the Algorithm

We illustrate the algorithm with two examples each onxal® R-Mesh. We use 10 columns only

for the purpose of illustrations. The fat-tree switch h&s'Zolumns for somé > 0.

Example 5.2.1:Suppose we have the source and destination ports shown iab#es 5.2. Stage

94

TABLE 5.2. Position of sources and destinations on the R-Mesh.

Columny 012 3 45 6 7 89
Source/Destinatiof S S S D D D DS D S S

() connects the porig and js. After Stage(i), these ports are no longer considered in subsequent
stages. Figure 5.5 illustrates Stéige For clarity, only those connections between PEs that ate pa

of buses are shown.

y 0 1 2 3 4 5 6 7 8 9
0 Yy o ?—@ N o O O O
1 o ? f g o D O

Source/

Destination S S S D D D D S S
W) 1 1 1 0 0 0 0 0 1 1
Wy o 0 0o 1 1 1 0 1 0 0
PRy 1 2 3 3 3 3 3 3 4 5
Pd(Y) 0 0 0 1 2 3 3 4 4 4
ry) - - — 0 1 2 - 0 - -

FIGURE 5.5. Example illustrating Stagg).

Observe that even though column 7 has a ready destinationtip@sources in column 8 and 9
do not find it as they are looking to the right. In Stdge) they will seek to create buses to the left
shown in Figure 5.6.

Figure 5.7 shows the final bus configuration of the R-Mesh. Téssilts in the following pair-
ings: (io, j3), (i1, Ja), (i2, j5), (i, j&), @nd(ig, j7). Notice that while there is a bus emanating from
ig, it does not head to any output port. PEs at output ports aréigmbol on their buses and PEs at
input ports try to read this symbol. Those that do not readyiabol (input portg in this example)

are reconsidered in the next round.

95

o OO 0O 0000 O O
1 O 00 0000 O
2 O O 0O 0000 ANy

y 0 1 2 3 4 5 6 7 8 9
o O O ?—@ O O
o -
2 (oo < O
FIGURE 5.7. Final bus configurations

y 0 1 2 3 4 7 8 9

o O O i i S @ i O O

1 O i ;ﬁ ;ﬁ O O O
Source/
Destination S S S D S D

N
N
a1
[6;]

Ps(y) 1 2 3 4 4 4

o
[
N
w
N
N

RO o 0 0
ry) 2

[N
N

FIGURE 5.8. Bus configurations of example 2.
Example 5.2.2:Here we omit columns which has a non-empty source and a resstiydtion port.
Thus we omit Stagéi) from the following illustration. Figure 5.8 shows Stagg. Althoughig

has a bus emanating from it, it does not lead to a destinatanIpleads tojs which is full in our

96

illustration. Also,ip cannot make any connections in Stgde. Thus,ip will have to wait till the

next round.

5.3 Summary

In this chapter we introduced the fat-tree switch. We disedssome of the related research in
this field that motivated us to look at embedding an R-Mesh iatdrée switch for generating
connections. We presented the broad algorithm that créatess connecting source-destination

pair while taking into account associated loads in a coaskidn.

97

Chapter 6
Summary of Results and Open Problems

In this dissertation we presented our research on inteexdium-network switch scheduling and

configuration. We studied the following interconnecticgtwork switches:
1. Crossbar-based input-queued switches used in many of$ddgh-performance routers;

2. The circuit-switched tree (CST), atree interconnect aiplications in reconfigurable struc-

tures and NoCs; and
3. Fat-tree switches used extensively in high-performaooeputing clusters.

In this chapter we summarize our main results and identiigations for future research.

6.1 Crossbar-Based Input-Queued Switches
A crossbar-based input-queued switch with VOQs is one offrtbst popular switch architectures.
Such switches have very high throughput, do not suffer fiteerhiead-of-line blocking problem, are
non-blocking, and have a simple internal data-fabric stméc These advantages resulted in many
switch and router manufacturers adopting this switch &chire in their production models. A
recent result [59] showed th&Xlogn) packet delay is possible on arx n input-queued crossbar
with the use of a slotted, frame-based scheduling algoritfims algorithm defines a slot as the
time to send a packet and a frame as a collection of slots g&xt a fixed (unupdated) traffic
matrix for scheduling. During each slot, the algorithm generates a schedule andrhits a packet
between each scheduled input-output pair.

One of the assumptions made in the above algorithm is thatirtfeeto generate a schedule
(round time) is no more than the time to transmit a packet.racgcal systems this assumption

does not hold as the time needed to send a packet is typicalty smaller than the time needed

1The algorithm updates the traffic matrix at the beginning ehetame and accounts for packets arriving during a frame aigfgganing of the
next frame.

98

to generate a schedule. In Chapter 2, we proved that if therdifte in packet transmission time
and schedule generation time forces a crossbar schedldjogthhm to transmit multiple packets
per schedule, then the delay<gn). This proof also showed that transmitting a single packet pe
schedule is the only case that achieves a logarithmic délayalso performed extensive simula-
tions for uniform as well as bursty traffic to support our tregizal result in practical environments.

We further underscored the importance of a fast schedulggrithm by showing that large
schedule times result in the need for large buffers. Thistiatel buffer requirement can negate
any saving in computing hardware and power consumptiondaatbe obtained from slowing
down the scheduling algorithm.

Open Problems:Our work decoupled the schedule time and the packet trasgemiime of the
crossbar-based scheduling algorithm of Ne&tlal. [59] and studied the effect of this on packet
delay and VOQ requirements. Other results in this area us#asislotted scheduling scheme
without treating schedule time (round) and transmissime t{slot) differently [50, 66]. It is worth
investigating whether our approach of decoupling round glatitimes will add new insights to
these results.

The simulation framework of Section 2.5 can facilitate gind other relationships such as
frame-sizes (minimum number of rounds needed to schedudst™packet arrivals from the pre-
vious frame) needed for a givgaps Although we know that this frame size will be linear fgps
> 2, our results clearly show that the constants for the ligeawth depend on the value pps

We have presented simulation results that show trade-offsng delay, packet loss, VOQ re-
quirement, angps Developing analytical relationships among these quastis another open

problem.

6.2 Fast Scheduling Algorithm on Mesh-of-Trees

The main result of Chapter 2 pointed to the fact that in ordeadimeve logarithmic delay in an
input-queued crossbar, the schedule generation musttegresty fast and should be comparable to
the time needed to transmit a packet. We designed a fast afdsfes based scheduling algorithm

in Chapter 3. This algorithm runs in polylog tim®(log*nloglogn) for ann x n crossbar). In

99

designing this algorithm, we also constructed a polylogetmmaximal matching algorithm for an
R-Mesh.

Open Problems: A sub-procedure of our R-Mesh-based maximal-size bipantégching algo-
rithm is a leader-election algorithm that executeOflogn) time. In the main algorithm, we
generate several very regular-shaped buses on which terletection commences. An open
problem is to investigate whether it is possible to utiliais regularity of the bus structure to con-
struct a faster leader-election algorithm. This would Bigantly increase the speed of the entire
scheduling algorithm. If leader election takegt) time, then the scheduling algorithm runs in
O(tlog®nloglogn) time. A constant time leader election would cut the time I&(kbgn) factor.

Fairness of a scheduling algorithm is an important issuayrsavitch. Our R-Mesh based match-
ing algorithm does not explicitly address fairness. Howewe expect simple modifications to
suffice, such as running the same algorithm on an R-Mesh withitabée permutation of row
and column indices, to work well for this purpose. For thissaanfigurable-torus (which is not
significantly different from the R-Mesh) can be used. One @@drmute the PE indices (without
permuting port indices) by simply “declaring” differentqmessors in the torus to be nodk 0) —
the origin. Since a torus is vertex and edge symmetric, thests an R-Mesh (subgraph of torus)
consistent with these new origin.

Our algorithm includes efficient solutions to several graptblems like degree-halving, two-
coloring, and leader election on a mesh-based structureder do achieve maximal bipartite
matching. All these methods could have other computatiapalications. For example, bipar-
tite matching is used in protein structure matching, 3-Deobjecognition, and multi-objective
optimization. It would be useful to extend our R-Mesh aldoritto other applications such as
those identified above.

Current GPGPUs [60] have a large number of small processiitg with a rich interconnect
between them. Is it possible to port R-Mesh algorithms to@kgie parallelism inherent in GPG-

PUs?

100

The R-Mesh is very well suited to handle faults (by dynamjcabtinstructing buses to bypass
faulty PEs and link$) Can our algorithm exploit this ability of the R-Mesh to impéatilt toler-
ance to the control and data plane of the switch. Addressifigaults algorithmically is another
possible direction.

The algorithm for am x n switch runs on am x n R-Mesh. In general, the R-Mesh may not
scale well to run larger sized problems than the availabiévisare [77]. That s, if g x p R-Mesh

is used for am x n switch (wherep < n), then how efficient will our algorithm be?

6.3 Circuit-Switched Tree Switches

The CST is an important interconnect used to implement dycelipireconfigurable architectures.
A CST-type structure can have applications in other devikesNoCs that employ a tree intercon-
nect. In Chapter 4 we presented our research related to CS@udeigeand configuration. The
main problem in a CST is twofold: scheduling — given a set obmpatible communications,
partition them into compatible subsets in a distributed mesnand configuration — given a set of
compatible communications, create the correspondingspatithe CST in a distributed fashion
using only local information available at the leaves. Weglesd an efficient algorithm to achieve
these goals. Our algorithm performed the scheduling anddhéguration concurrently in an iter-
ative way. In each iteration the algorithm generated a adeeahd configured the CST based on
that schedule. We also presented modified versions of tleeigdo for special cases like width-1
communication sets and multicasts. Finally, we preserftedent adaptations of our algorithm for
an important communication class called well-nested, foictv our algorithm is optimal.

Open Problems:While our algorithm has an approximation ratio of 2 for any coumication set,
there exists another algorithm (developed for optical oek®) with an approximation ratio 03‘
that is provably optimal [26]. However, our algorithm is saferably simpler and requires min-

imal computational capability at each node. It is worthwho simulate practical optical routing

2Refer to Fernandez-Zepedhal. [28] for research related to finding a fault-free sub-R-Migsh faulty R-Mesh.

101

examples to ascertain whether the simplicity of our algoniis a good trade-off considering its
slightly higher approximation ratio.

We proved that our algorithm is optimal for the important ecoomication class of well-nested
communication sets. In related research, El-Boghdadi [22¢ldbped power-aware, optimal rout-
ing algorithms for well-nested communications and shownad his algorithm is more efficient in
terms of power-awareness compared to ours. In the futueecan to explore the possibility of
extending our algorithm as well as power-aware CST configurand scheduling algorithms to

other important classes other than well-nested commuaicat

6.4 Fat-Tree Switch

A fat-tree is an important interconnection structure tisatused extensively in many of today’s
high-performance clusters as well as other areas like baglacity disk-storage interconnections.
In Chapter 5 we presented our preliminary research relat&dNesh-based routing in fat-tree
switches. We presented an algorithm to generate configngatf an R-Mesh to match the input
port requests with available output ports of a fat-treedwiEor reference below, call this thasic
algorithm

Open Problems:The general idea is to iteratively apply the basic algoritbrechedule and route
as many connection requests as possible. The followinggpagphs outline an approach to build

on the basic algorithm.

Incremental Algorithm: The current approach is to apply the basic algorithm (stgnvith an
R-Mesh with no connections) at each round. That is, a givesetudf connection requests is
scheduled, routed, then removed from the traffic matrix tifexcurrent connections are torn
down and remaining requests are routed all over again. Thayebe significant advantages
to reusing connections made in previous rounds. In caserevehgarticular connection can
be employed for several packets, the connection can be usedsamultiple rounds. All
these point to the need for an incremental algorithm thdtlbwain a previous configuration,

rather than start all over again each time.

102

Adding Weights: It is well known that good load balancing achieves good tghput. Weights
can be associated with input and output ports of the R-Mestréa switch) to reflect their
loads; for example, a full input port has large weight as @l be addressed as soon as
possible. A weight-aware schedule that prioritizes cotioes by weights could balance

loads across the switch and, hence, across the network.

Simulation: Most of the work described above requires simulations batihe evaluation of the
methods and for determining parameter values. For exartif@desimulation can determine
the granularity of weights for the ports. Currently, we havea-level (Boolean) weighting
system for the ports. Is much to be gained by changing thisha weights? As another
example, the number of rounds needed to schedule a set of woications is a good mea-
sure of the algorithm’s effectiveness. This can be aseetddy simulations. Finally, overall

network performance can also be evaluated in the contekiegbtoposed methods.

6.5 Other Directions

Here we identify research directions other than those texpecific chapters.

The ideas of CSTs and fat-trees can be generalized to a trdgéh switches are connected by
links of arbitrary bandwidth. For example, a lewelat-tree switch has*links to the parent and
21 links to each child. These quantities are all 1 for the CSTenegal a switch can havig(k),
fi(k), and f; (k) links to its neighbors. Particular cases of this abstract@n be of importance in
current and future technological settings. For instarfc, (k), fi(k), andf; (k) are 1 in a fat-tree
up to a certain levelky, and a different constant value for higher levels, then wee teatwo-tier
tree that is possibly much leaner at the top than a fat-trbis. dould be used in settings such as
stacked-die interconnects with a relatively lower intemoect density between dies than within a
die. The same abstraction works for pin-limited settingst tlestrict the number of connections

between chips and boards.

103

On the whole, in this dissertation we have studied schegaimd configuration of three broad
categories of network switches that are currently used ftings ranging from local and wide
area networks to high-performance clusters and netwanks-chip. History has taught us that
these environment boundaries are not rigid. For exampls;equis that were used a decade ago
only is long-haul networks are now used within a chip. Ourkngrat a sufficiently high level of
abstraction to allow porting of results from this disseaa&cross application boundaries and hold

relevance beyond the present state-of-the-art.

104

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]
[13]

M. Alonso, S. Coll, J. M. Martinez, V. Santonja, P. Lopendal. Duato. “Dynamic Power
Saving in Fat-Tree Interconnection Networks Using On/Qffids,” 20th Intl. Parallel and
Distributed Processing Symposiupp. 8, Apr. 2006.

M. Alonso, S. Coll, V. Santonja, J. M. Martinez, P. Lopendal. Duato, "Power-Aware
Fat-Tree Networks Using On/Off Links[ecture Notes in Computer Science - Third In-
ternational Conference on High Performance Computing and Camnrations vol. 4782,
pp. 472-483, 2007.

L. Benini and G. De Micheli, “Networks on Chips: A New SoC Rdigm,”IEEE Computer
pp. 70-78, Jan. 2002.

A. Bermudez, R. Casado, F. J. Quiles, and J. Duato, “Handlopplogy Changes in Infini-
Band,” IEEE Tran. on Parallel and Distributed Systentebruary 2007, (Vol. 18, No. 2),
pp. 172-185.

K. Bolding, S-C. Cheung, S-E. Choi, C. Ebeling, S. Hassoun,. TNgo, and R. Wille, “The
Chaos Router Chip: Design and Implementation of an AdaptivedROUEIP Transactions
A, vol. A-42, pp. 311-320, 1994.

K. Bolding, S-C. Cheung, S-E. Choi, C. Ebeling, S. Hassoun,. INgo, and R. Wille, “The
Chaos Router Chip: Design and Implementation of an Adaptive ®duh Proc. Interna-
tional Conference on VLSpp. 311-320, 1993.

K. Bondalapati and V. K. Prasanna, “Hardware Object Salacfor Mapping Loops onto
Reconfigurable Architectures?roc. Int. Conf. Par. and Distr. Proc. Techniques and Appl.
pp. 1104-1110, 1999.

K. Bondalapati and V. K. Prasanna, “Reconfigurable Comguipstems,Proc. IEEE 2002,
vol. 90, no. 7, pp. 1201-1217.

A. Bouhraoua and M. E. Elrabaa, “An Efficient Network-onigArchitecture Based on the
Fat-Tree (FT) Topology,in Proc. International Conference on Microelectronigp. 28-31,
2006.

A. Bouhraoua and M. E. Elrabaa, “Addressing Heterogasd®andwidth Requirements in
Modified Fat-Tree Networks-on-Chipsii Proc. 4th IEEE International Symposium on Elec-
tronic Design, Test and Applicationgp. 486—490, 2008.

J. Carbonaro, and F. Verhoorn, “Cavallino: The Teraflopt®oand NIC,”in Proc. Hot In-
terconnects Symposium,lpp. 157-160, 1996.

H. J. Chao and B. LiuHigh Performance Switches and Routaféley-IEEE Press, 2007.

S-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “MatglOutput Queueing with a
Combined Input Output Queued SwitchE2EE Journal on Selected Areas in Communica-
tions vol. 17, no. 6, pp. 1030-1039, 1999.

105

[14] S-T. Chuang, S. lyer, and N. McKeown “Practical Algontk for Performance Guarantees in
Buffered Crossbarsjh Proceedings of IEEE INFOCOMp. 981-991, 2005.

[15] K. Compton and S. Hauck, “Reconfigurable Computing: A SunfeSystems and Software,”
ACM Computing Survey2002, vol. 34, no. 2, pp. 171-210.

[16] W. J. Dally and B. TowlesPrinciple and Practices of Interconnection Netwarkéorgan
Kaufmann, 2005.

[17] W. J. Dally, L. R. Dennison, D. Harris, K. Kinhong, and Taithopoulos, “Architecture and
Implementation of the Reliable RoutePfoc. Hot Interconnects Symposiumpp. 197-208,
1994,

[18] H. P. Dharmasena and R. Vaidyanathan, “The Mesh with Bifaee Networks: An En-
hanced Mesh with Low Bus-Loadingl'he Journal of Interconnection Network®l. 5, no. 2,
June 2004, pp.131-150.

[19] Z. Ding, R. R. Hoare, and A. K. Jones, “Level-wise Scheuyhlgorithm for Fat Tree Inter-
connection Networks,jh Proc. Super Computing 0@p. 9-9, Tampa, Florida, 2006.

[20] J. Duato, S. Yalamanchilli, and L. Ninterconnection Networks an Engineering Approach
Morgan Kaufmann, 2003.

[21] H. M. El-Boghdadi, “On Implementing Dynamically Reconfigble Architectures,” Ph.D.
Thesis, Dept. Electrical and Computer Engg., LouisianaeStatversity, 2003.

[22] H. M. El-Boghdadi, “Power-Aware Routing for Well-Nest&@bmmunications on the Circuit
Switched Tree,Journal of Parallel and Distributed Computingol. 69, no. 2, pp. 135-142,
20009.

[23] H. M. ElI-Boghdadi, R. Vaidyanathan, J. L. Trahan, and S.‘Raplementing Prefix Sums
and Multiple Addition Algorithms for the Reconfigurable Mesh the Reconfigurable Tree
Architecture,”Proc. Int. Conf. Parallel and Distrib. Proc. Techniques angph, 2002, vol. 3,
pp. 1068-1074.

[24] H. M. EI-Boghdadi, R. Vaidyanathan, J. L. Trahan, and S, R the Communication Capa-
bility of the Self-Reconfigurable Gate Array Architectur8th Reconfigurable Architectures
Workshopn Proc. Int. Parallel and Distrib. Proc. Sym2002).

[25] H. M. El-Boghdadi, R. Vaidyanathan, J. L. Trahan, and S, R Designing Implementable
Algorithms for the Linear Reconfigurable MesH®Ptoc. Int. Conf. on Parallel and Distrib.
Proc. Tech. and Apg2002), pp. 241-246.

[26] T. Erlebach, K. Jansen, C. Kaklamanis, M. Mihail, and &skano, “Optimal Wavelength
Routing on Directed Fiber TreesTheor. Comput. S¢i221(1-2), pp. 119-137, 1999.

[27] M. Fayyazi, D. Kaeli, and W. Meleis, “Parallel Maximumaight Bipartite Matching Algo-
rithms for Scheduling in Input-Queued SwitcheBrbc. 18th. Intl. Parallel and Distributed
Processing Symposiymp. 4b, 2006.

106

[28] J. A. Fernandez-Zepeda, A. Estrella-Balderrama, ard./Bourgeois, “Designing Fault Tol-
erant Algorithms for Reconfigurable Meshdatl. J. Foundations of Computer Scvol. 16,
no. 1, pp. 71-88, 2005.

[29] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R.dkell, T. Seely, and S. C.
Diot, “Packet-Level Traffic Measurements from the SprintB&ckbone,’Network, IEEE
vol. 17, no. 6, pp. 6-16, December 2003.

[30] M. Galles, “Scalable Pipelined Interconnect for Distted Endpoint Routing: The SPIDER
Chip,” in Proc. Hot Interconnects Symposiupp. 7-22, 1996.

[31] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized 8thgdAlgorithms for High-
Aggregate Bandwidth SwitchesEEE J. Select. Areas Commuwol. 21, pp. 546-559, 2003.

[32] C. Gomez, F. Gilabert, M.E. Gomez, P. Lopez, and J. Du&iteterministic versus Adaptive
Routing in Fat-Trees,in Proc. Parallel and Distributed Processing Symposjyp. 1-8,
2007.

[33] C. Gomez, F. Gilabert, M. E. Gomez, P. Lopez, and J. DUROFT: Simplifying the Fat-
Tree Topology,'in Proc. International Conference on Parallel and DistribdtSystems (IC-
PADS) pp. 153-160, 2008.

[34] R. I. Greenberg and L. Guan, “An Improved Analytical Mbfla Wormhole Routed Net-
works with Application to Butterfly Fat-TreesProc. ICPP 97 pp. 44-48.

[35] M. Hanckowiak, M. Karonski, and A. Panconesi, “On thestBibuted Complexity of Com-
puting Maximal Matchings,SIAM J. Discrete Mathvol. 15, no. 1, pp. 41-57, 2001.

[36] T. Hoefler, T. Schneider, and A. Lumsdaine, “Multisté@yeitches are Not Crossbars: Effects
of Static Routing in High-Performance Network®joc. IEEE International Conference on
Cluster Computing2008, pp. 116-125.

[37] http://www.top500.org/

[38] http://lwww.cray.com/Assets/PDF/products/xt/CrayXT5m Brochure.pdf

[39] http://www.cisco.com/en/US/products/ps5763/

[40] http://www.huawei.com/products/datacomm/detailitem/ view.do?id=960&rid=69
[41] http:/lwww.huawei.com/products/datacomm/detailitem/ view.do?id=958&rid=70
[42] http:/lwww.omnetpp.org/

[43] S. lyer and N. McKeown, “Maximum Size Matchings and IhQueued Switches,” id0th
Annual Allerton Conf. on Communication, Control, and Compytd@p2.

[44] P. Kelsen, “Optimal Parallel Algorithm for Maximal Mating,” Information Processing Let-
ters vol. 52, no. 4, pp, 223-228, 1994.

107

[45] D.I. Lehn, K. Puttegowda, J. H. Park, P. Athanas, anddvie3, “Evaluation of Rapid Context
Switching on a CSRC DeviceProc. Intl. Conf. on Engineering of Reconfigurable Systems
and Algorithms (ERSA022002, pp. 154-160.

[46] F. T. Leighton/ntroduction to Parallel Algorithms and Architectures:rays- Trees Hyper-
cubes Morgan Kaufmann, 1992.

[47] C. E. Leiserson, “Fat Trees: Universal Networks for Heade Efficient Supercomputing,”
IEEE Trans. on Computerspl. 34, no. 10, pp. 892-901, 1985.

[48] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “Boundsa Average Delays and Queue
Size Averages and Variances in Input-Queued Cell-Based &sgfcin IEEE INFOCOM
pp. 1095-1103, 2001.

[49] X. Liand I. Elhanany, “Stability of Frame-Based Maximé&kight Matching Algorithms with
Reconfiguration Delay,Workshop on High Performance Switching and Routpg 942—
944, May, 2005.

[50] Y. Li, S. Panwar and H. J. Chao, “Frame-Based Matching Atgms for Optical Switches”,
Proc. Workshop on High Performance Switching and Routopg 97-102, Jun 2003.

[51] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang, “A Multiple LID Raing Scheme for Fat-Tree
Based Infiniband NetworksProc. Int. Parallel and Distrib. Proc. Symppp. 11, 2004.

[52] J. Lou and X. Shen, “Frame-Based Packet-Mode Schedfdimgput-Queued Switchestd
appear in IEEE Transactions on Computelsly, 2009.

[53] S. Matsumae and N. Tokura, “Simulation Algorithms amdnhanced Mesh ModelsE-
ICE Transactions on Information and Systend. E82-D, no. 10, pp. 1324-1137, 1999.

[54] H. Matsutani, M. Koibuchi, and H. Amano, “Performan€&st, and Energy Evaluation of
Fat H-Tree: A Cost-Efficient Tree-Based On-Chip Networik,"Proc. IEEE International
Parallel and Distributed Processing Symposilza07.

[55] N. McKeown, “The iSLIP Scheduling Algorithm for Inpi@ueued SwitchesEEE/ACM
Transactions on Networkingol. 7, no. 2, pp. 188-201, 1999.

[56] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Wald, “Achieving 100% Throughput
in an Input-Queued Switch[EEE Transactions on Communication®l. 47, no. 8, August
1999.

[57] L. Mhamdi, “A Partially Buffered Crossbar Packet SwitegiArchitecture and its Schedul-
ing,” Proc. IEEE Symposium on Computers and Communicatpms942-948, July 2008.

[58] M. Mitzenmacher and E. UpfaRrobability and Computing: Randomized Algorithms and
Probabilistic AnalysisCambridge University Press, 2005.

[59] M. J. Neely, E. Modiano, and Y. S. Cheng, “Logarithmic 8gfor n x n Packet Switches
Under the Crossbar ConstrainZEE/ACM Transactions on Networkingol. 15, no. 3, pp.
3-9, June 2007.

108

[60] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scdalrarallel Programming with
CUDA,” Queuevol. 6, no. 2, pp. 40-53, 2008.

[61] S. R. Ohring, M. Ibel, S. K. Das, and M. J. Kumar, “On Gettieel Fat Trees,Proc. 9th
International Parallel Processing Symposiupp 37—-44, April 1995.

[62] J. H. Pan, T. Mitra, and W-F. Wong, “Configuration Bitstre€ompression for Dynamically
Reconfigurable FPGAsjh Proc. IEEE/ACM International Conference on Computer Aided
Design pp. 766—773, 2004.

[63] D. Pang and Y. Yang, “Localized Independent Packet Salveg for Buffered Crossbar
Switches,"IEEE Transactions on Computersl. 58, no. 2, pp. 260-274, February 2009.

[64] G. Papadopoulos, G. A. Boughton, R. Greiner, and M. J. B&K&T: Integrating Building
Blocks for Parallel Computingjh Proc. Supercomputingp. 624—635, 1993.

[65] H. Qiu, Y. Li, P. Yi, and JiangXing Wu, “PIFO Output Quedi&witch Emulation by a One-
cell-Crosspoint Buffered Crossbar Switcti®foc. Internation Conference on Communica-
tions, Circuits and Systemdune 2006, pp. 1767-1771.

[66] R. Rojas-Cessa and C. Lin, “Captured-Frame Eligibility andufitbRobin Matching for
Input-Queued Packet SwitchesEE Communications Lettersol. 8, no. 9, Sept. 2004,
pp. 585-587.

[67] S. RossProbability Models for Computer Scienddarcourt/Academic Press, 2002.

[68] S. L. Scott, “Synchronization and Communication in T3mINprocessor,in Proc. 7th In-
ternational Conference on Architectural Support for Progmaing Languages and Operating
Systemspp. 26—-36, 1996.

[69] S. L. Scott and G. Thorson, “The Cray T3E Network, AdagtiRouting in a High Perfor-
mance 3D Torus,in Proc. Hot Interconnects Symposium M96.

[70] F. O. Sem-Jacobsen and T. Skeie, “Maintaining Qualitgervice with Dynamic Fault Toler-
ance in Fat-Trees[’ecture Notes in Computer Science - 15th International Conteréligh
Performance Computingol. 5374, pp. 451-464, 2008.

[71] F. O. Sem-Jacobsen, T. Skeie, O. Lysne, and J. DuatmdbByc Fault Tolerance with Mis-
routing in Fat Trees,in Proc. International Conference on Parallel Processipg. 33-42,
2006.

[72] H. Sethu, C. B. Stunkel, and R. F. Stucke, “IBM RS/6000 SP tatenection Network
Topologies for Large Systemg?toc. International Conference on Parallel Processith§98,
pp. 620-627.

[73] R. Sidhu and V. K. Prasanna, “Efficient Metacomputatiaing Self-ReconfigurationProc.
12th. Int. Workshop on Field Prog. Logic and App002, Springer Verlag Lecture Notes in
Computer Sc., vol. 2438, pp. 698-709.

109

[74] R. Sidhu, S. Wadhwa, A. Mei, and V. K. Prasanna, “A Self-&®dgurable Gate Array Ar-
chitecture,’Int. Conf. on Field Programmable Logic and Applicatip@800, Springer Verlag
Lecture Notes in Computer Sc., vol. 1896, pp. 106—120.

[75] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadatg E. M. Chaves Filho, “Mor-
phoSys: An Integraged Reconfigurable System for Data-leaeald Computation-Intensive
Applications,”IEEE Trans. Comput2000, vol. 49, no. 5, pp. 465-481.

[76] L. Tassiulas and A. Ephremides, “Stability Propertié€onstrained Queueing Systems and
Scheduling Policies for Maximum Throughput in Multihop Radietworks,”IEEE Trans-
actions on Automatic ContrpVvol. 37, no. 12, pp. 1936-1949, Dec, 1992.

[77] R. Vaidyanathan and J. L. Trahabynamic Reconfiguration: Architectures and Algorithms
Kluwer Academic/Plenum Publishers, 2004.

[78] Z. Wang, K. Zhou, D. Feng, and J. Liu, “Disk Tree: A Fake&rBased Heterogeneous Multi-
Tier Storage Architecturejh Proc. 4th International Workshop on Storage Network Archi-
tecture and Parallel I/Ospp. 47-54, 2007.

[79] Z. Wang, K. Zhou, D. Feng, L. Zeng, and J. Liu, “FTRAID: AtFBree Based Parallel Storage
Architecture for Very Large Disk Array]h Proc. International Conference on Networking,
Architecture, and Storagep. 185-192, 2007.

[80] Xilinx, “Virtex Series Configuration Architecture Us&uide,” Xilinx application note XAPP
151, 2000.

[81] Y. Zheng and W. Gao, “Randomized Parallel Schedulingofithm for Input Queued Cross-
bar Switches,Proceedings of the Fifth International Conference on Commpanel Informa-
tion Technologypp. 424-428, 2005.

[82] J. Zhou, X. Lin, C. Wu, and Y. Chung, “Multicast in Fat-Tr&ased InfiniBand Networks,”
Proceedings of the 2005 Fourth IEEE International Symposan Network Computing and
Applications (NCAO0S)pp. 239-242, 2005.

[83] www.zurich.ibbm.com/ ~fab/Osmosis/

110

Vita

Krishnendu Roy received his bachelor of science with honmoisomputer science in 2000, and
bachelor of technology in information technology in 2008tHfrom University of Calcutta, Cal-
cutta, India. He joined the Department of Electrical and CotepEngineering at Louisiana State
University in August 2003. Krishnendu obtained his masfesoience in electrical engineering -
computers area in December 2005, and is expected to contdet®ctor of philosophy in elec-
trical engineering - computers area in August 2009. Krisldoewill join the Mathematics and
Computer Science Department at Valdosta State Universilglogta, Georgia, U.S.A in August

20009.

111

	Louisiana State University
	LSU Digital Commons
	2009

	Scheduling and reconfiguration of interconnection network switches
	Krishnendu Roy
	Recommended Citation

	Bursty_6_Diff_Frame_Size_100.eps

