
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2009

Scheduling and reconfiguration of interconnection
network switches
Krishnendu Roy
Louisiana State University and Agricultural and Mechanical College, kroy1@ece.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Electrical and Computer Engineering Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Roy, Krishnendu, "Scheduling and reconfiguration of interconnection network switches" (2009). LSU Doctoral Dissertations. 2842.
https://digitalcommons.lsu.edu/gradschool_dissertations/2842

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/2842?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2842&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

SCHEDULING AND RECONFIGURATION OF
INTERCONNECTION NETWORK SWITCHES

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Electrical and Computer Engineering

by
Krishnendu Roy

B.Sc., University of Calcutta, India, May 2000
B.Tech., University of Calcutta, India, May 2003

M.S., Louisiana State University, USA, December 2005
August 2009

Acknowledgments

I would like to thank all the members of my final examination committee – Dr. Jagannathan Ra-

manujam, Dr. David Koppelman, Dr. Brygg Ullmer, and Dr. AmbarSengupta, and the members of

my general examination committee – Dr. Suresh Rai and Dr. Rajgopal Kannan who could not be in

my final examination committee. I would also like to thank John Bordelon for all his help related

to executing the simulations.

I consider myself very fortunate to be able to make so many great friends during my doctoral

study at LSU, and I want to thank all of them as well. Their friendship and support has meant a lot

to me. I want to recognize the support and understanding thatmy family has shown to me. Thank

you for your unwavering confidence in me.

Finally, I want to express my sincere gratitude to my advisors Dr. Ramachandran Vaidyanathan

and Dr. Jerry L. Trahan. This dissertation is just a fractionof what I have learnt from interact-

ing with them. Without their support, time, guidance, and patience this work would have been

impossible. Thanks for everything.

ii

Table of Contents

Acknowledgments .. ii

List of Tables .. v

List of Figures .. vi

Abstract .. viii

Chapter 1: Introduction .. 1
1.1 Crossbar-Based Input-Queued Switch 3
1.2 Circuit-Switched Tree 6
1.3 Fat-Tree Switch .. . 7

Chapter 2: Crossbar-Based Switches: Conditions for Logarithmic Delay 9
2.1 Introduction and Background 9
2.2 Slots, Rounds and Frames 14
2.3 Stability and Delay 17
2.4 Necessary Conditions for Logarithmic Delay 19

2.4.1 Uniform Random Traffic . 20
2.4.2 Bursty Traffic . 22

2.5 Simulation Results .. . 23
2.5.1 Uniform Random Traffic . 25
2.5.2 Bursty Traffic . 31

2.6 Summary . 39

Chapter 3: Fast Scheduling Algorithm on Mesh-of-Trees 41
3.1 Introduction .. . 41
3.2 Kelsen’sO(log3n) Bipartite Matching Algorithm on the PRAM 44
3.3 Reconfigurable Mesh Preliminaries 46
3.4 R-Mesh Bipartite Matching Algorithm 50
3.5 Time Complexity .55

3.5.1 Other Considerations .. 56
3.6 Summary . 57

Chapter 4: Scheduling and Configuration of the Circuit-Switched Tree 58
4.1 CST Background . 58

4.1.1 Structure of the CST . 60
4.1.2 Communications on a CST . 61
4.1.3 CST Configuration . 63

4.2 The Configuration Algorithm for Width-w Communication Sets 64
4.3 Width-1 Communication Sets 71

4.3.1 Modified CST Configuration Algorithms for Width-1 Sets 72

iii

4.3.2 Oriented, Well-nested, Width-1 Point-to-Point Communication Sets CST
Configuration Algorithm . 74

4.3.3 Width-1 Multicast Sets .. . 77
4.4 Well-Nested, Width-w Communication Sets . 81

4.4.1 Algorithm Adaptation .. 82
4.4.2 Correctness of Phases 1 and 2 .. 83
4.4.3 Proof of Optimality .. 85

4.5 Summary . 87

Chapter 5: Routing Algorithm for an R-Mesh Based Fat-Tree Switch 88
5.1 Introduction .. . 88
5.2 Routing Algorithm for a Fat-Tree Switch Implemented as anR-Mesh 90

5.2.1 Examples Illustrating the Algorithm 94
5.3 Summary . 97

Chapter 6: Summary of Results and Open Problems 98
6.1 Crossbar-Based Input-Queued Switches 98
6.2 Fast Scheduling Algorithm on Mesh-of-Trees 99
6.3 Circuit-Switched Tree Switches 101
6.4 Fat-Tree Switch .. . 102
6.5 Other Directions 103

References .. 105

Vita .. 111

iv

List of Tables

2.1 VOQ occupancy as observed by an incoming packet forpps= 1. 26

2.2 VOQ occupancy as observed by an incoming packet forpps= 2. 28

2.3 VOQ occupancy as observed by an incoming packet forpps= 3. 28

2.4 VOQ occupancy as observed by an incoming packet forpps= 4. 29

2.5 VOQ occupancy as observed by an incoming packet forpps= 5. 29

2.6 VOQ occupancy as observed by an incoming packet forpps= 1 andb = 3. 34

2.7 VOQ occupancy as observed by an incoming packet forpps= 2 andb = 3. 34

2.8 VOQ occupancy as observed by an incoming packet forpps= 3 andb = 3. 34

2.9 VOQ occupancy as observed by an incoming packet forpps= 4 andb = 3. 34

2.10 VOQ occupancy as observed by an incoming packet forpps= 5 andb = 3. 35

2.11 VOQ occupancy as observed by an incoming packet forpps= 1 andb = 6. 35

2.12 VOQ occupancy as observed by an incoming packet forpps= 2 andb = 6. 35

2.13 VOQ occupancy as observed by an incoming packet forpps= 3 andb = 6. 35

2.14 VOQ occupancy as observed by an incoming packet forpps= 4 andb = 6. 37

2.15 VOQ occupancy as observed by an incoming packet forpps= 5 andb = 6. 37

2.16 VOQ occupancy as observed by an incoming packet forpps= 8 andb = 6. 37

2.17 VOQ occupancy as observed by an incoming packet forpps= 10 andb = 6. 37

3.1 tagof active PEs based onpsrow andpscol. 51

3.2 Internal bus connections depending ontag. 51

4.1 The functionfs for well-nested, width-1 CST configuration algorithm. 74

4.2 The functionfc for well-nested, width-1 CST configuration algorithm. 75

4.3 The functionfs for width-1 multicast CST configuration algorithm. 79

4.4 The functionfc for width-1 multicast CST configuration algorithm.80

5.1 PE configurations for creating buses to the right. 94

5.2 Position of sources and destinations on the R-Mesh. 95

v

List of Figures

1.1 Basic structure of a switch. 2

1.2 Basic architecture of ann×n crossbar-based input-queued packet switch. 4

1.3 Crosspoint configurations. 4

1.4 Communications on a CST. .. 6

1.5 A fat-tree with multiple edges between two nodes denoting higher bandwidth. . . . 8

2.1 Basic structure of a switch. 10

2.2 Structure of ann×n input-queued packet switch with a crossbar-based data fabric. 11

2.3 Scheduling on a 3×3 crossbar. 14

2.4 Slots, rounds, and frames. 15

2.5 Slots and frames in Neelyet al. [59]. 19

2.6 Delay for various switch sizes for differentpps. 25

2.7 VOQ occupancy as observed by an incoming packet. 27

2.8 Percentage packet loss for differentpps. 30

2.9 Percentage packet loss for different VOQ sizes. 30

2.10 Delay for different frame sizes. 31

2.11 The on-off traffic model. 31

2.12 Average delay for bursty traffic for differentpps. 32

2.13 VOQ occupancy as observed by an incoming packet for meanburst size 3. 33

2.14 VOQ occupancy as observed by an incoming packet for meanburst size 6. 36

2.15 Percentage packet loss for bursty traffic with for differentpps. 38

2.16 Percentage packet loss for different VOQ sizes for traffic with mean burst size 3. . 39

2.17 Percentage packet loss for different VOQ sizes for traffic with mean burst size 6. . 39

2.18 Average delay for different frame sizes for bursty traffic with mean burst size 3. . . 40

2.19 Average delay for different frame sizes for bursty traffic with mean burst size 6. . . 40

3.1 Example of equivalence between crossbar scheduling andbipartite matching. . . . 42

vi

3.2 Maximal size bipartite matching by Kelsen. 45

3.3 An example of Kelsen’s algorithm. 46

3.4 A 3×5 DR-Mesh. 47

3.5 Prefix sums computation on an R-Mesh. 49

3.6 Neighbor localization on an R-Mesh. 49

3.7 Procedurehalve. 53

4.1 The Self-Reconfigurable Gate Array. 59

4.2 Communications on a CST. .. 60

4.3 Some arbitrary configurations of a CST switch. 61

4.4 A multicast set. .. . 62

4.5 A well-nested communication set. 63

4.6 The internal structure of a CST switch. 64

4.7 Some switch configurations. 66

4.8 Pseudocode for Phase 3 of the algorithm. 68

4.9 An example of the general CST configuration algorithm. 69

4.10 Two different multicast sets with same source-destination pattern. 78

4.11 Computation of IDs for a well-nested communication set.. 82

4.12 Part of a CST showing a maximum source incompatible. 86

5.1 An 8-leaf fat-tree; multiple edges between two switchesdenote higher bandwidth. . 88

5.2 A levelk+1 switch. 89

5.3 The R-Mesh inside the fat-tree switch. 92

5.4 Examples of allowed and conflicting configurations. 94

5.5 Example illustrating Stage(ii). 95

5.6 Example illustrating Stage(iii). 96

5.7 Final bus configurations. 96

5.8 Bus configurations of example 2. 96

vii

Abstract

Interconnection networks are important parts of modern computing systems, facilitating commu-

nication between a system’s components. Switches connecting various nodes of an interconnection

network serve to move data in the network. The switch’s delayand throughput impact the overall

performance of the network and thus the system. Scheduling efficient movement of data through

a switch and configuring the switch to realize a schedule are the main themes of this research.

We consider various interconnection network switches including(i) crossbar-based switches,(ii)

circuit-switched tree switches, and(iii) fat-tree switches.

For crossbar-based input-queued switches, a recent resultestablished that logarithmic packet

delay is possible. However, this result assumes that packettransmission time through the switch

is no less than schedule-generation time. We prove that without this assumption (as is the case

in practice) packet delay becomes linear. We also report results of simulations that bear out our

result for practical switch sizes and indicate that a fast scheduling algorithm reduces not only

packet delay but also buffer size. We also propose a fast mesh-of-trees based distributed switch

scheduling (maximal-matching based) algorithm that has polylog complexity.

A circuit-switched tree (CST) can serve as an interconnect structure for various computing ar-

chitectures and models such as the self-reconfigurable gatearray and the reconfigurable mesh. A

CST is a tree structure with source and destination processing elements as leaves and switches as

internal nodes. We design several scheduling and configuration algorithms that distributedly parti-

tion a given set of communications into non-conflicting subsets and then establish switch settings

and paths on the CST corresponding to the communications.

A fat-tree is another widely used interconnection structure in many of today’s high-performance

clusters. We embed a reconfigurable mesh inside a fat-tree switch to generate efficient connections.

We present an R-Mesh-based algorithm for a fat-tree switch that creates buses connecting input and

output ports corresponding to various communications using that switch.

viii

Chapter 1
Introduction

Most of today’s computing systems, ranging from large parallel systems and high-performance

clusters to a single chip System-on-Chip (SoC), that need communication among multiple con-

stituents, use interconnection networks. Interconnection networks are one of the main factors in de-

termining the performance of such architectures, affecting the message latency, bandwidth, routing

complexity, switching structure, system scalability, fault-tolerance and overall cost. Additionally,

advances in interconnect technology often lag the developments in other aspects of computing,

especially processing speed. Hence, the performance of theinterconnection network is often the

critical limiting factor in many of today’s computing systems [16].

The topology is one of the main design choices for any interconnection network that dictates

various other considerations like routing and flow control.Researchers have proposed various

topologies [16, 20, 46]. There are two main classes of interconnection network topologies – di-

rect and indirect. A direct network is one where all the nodesact as sources and destinations of

data and participate in the routing of the data as well. An indirect network, on the other hand, is

one in which the source/destination nodes and routing nodesare distinct.

Indirect networks are often switch-based networks, where communication between source and

destination nodes is realized through one or moreswitch or router nodes. Data paths exist be-

tween source and destination nodes through switches. The switches are usually connected to other

switches as well. The arrangement of switches connecting the sources and destinations determines

the topology of the entire network.

Most of today’s fastest supercomputers use indirect networks. For example, the Earth Simulator,

the fastest supercomputer between the years 2002 and 2004 (according to the top500.org website

[37]), uses a crossbar-based switch; Cray’s XT5m [38] employs 2-d torus-based switches. These

1

switches only forward or route data rather than produce or consume data. Many of the current

Networks-on-Chip (NoCs) [9, 10, 54] also use indirect networks.

This dissertation deals primarily with network switches. Figure 1.1 depicts the basic structure

of a network switch. A switch has several input and output ports through which data arrives and

leaves the switch. Each switch has a data unit, also referredto as switch fabric or data plane, which

is responsible for the physical transmission of data from the input ports to the output ports. There

is no one universal structure for this data plane and manufacturers of switches use various architec-

tures ranging from crossbars and multi-dimensional tori tomultistage interconnection networks.

Additionally, each switch has a control unit, also referredto as the control plane, arbiter or switch

processor, that controls the way the data unit handles data transmission. The data and control planes

of a switch are separate entities and their architecture andimplementation need not be related. The

control plane can operate at a separate rate compared to the data plane and can have a centralized

or a distributed architecture.

Port n

Port 1

Port 2

Port n

Port 1

Port 2... ...

Control Unit

Data Unit

(Switching Fabric)

Input ports Output Ports

FIGURE 1.1. Basic structure of a switch.

Given a set of input-output connection requests, it is the job of the control unit to construct

an efficientscheduleof transmissions between input and output ports. Moreover,the control unit

must also establish paths between inputs and outputs to perform these transmissions. This is done

2

by configuring the switch to connect the appropriate input and output ports. Typically, not all

requested paths can be established simultaneously (due to topological and architectural constraints

of the switch). The scheduling algorithm should be cognizant of these constraints in constructing

a schedule and configure the switch accordingly. These two functions of the control unit, namely

scheduling and configuration, are critical and determine the overall performance of the switch

including delay, throughput, and complexity.

This dissertation examines scheduling and configuration ofthree classes of switches that find

applicability in networks ranging from the Internet to Networks on (a) chip (NoCs):

1. crossbar-based input-queued switches,

2. circuit-switched trees, and

3. switches of fat-tree based interconnection networks.

The next few sections introduce our work on network switches. In each of these sections, we

first present some background needed to frame our contribution, followed by an overview of our

contributions.

1.1 Crossbar-Based Input-Queued Switch

A crossbar-based switch is one whose data fabric is a crossbar; an n× n crossbar switch (see

Figure 1.2) hasn input ports (conventionally to the left) andn output ports (at the bottom). An

input-queued switch is one in which input ports have buffersthat temporarily queue arriving pack-

ets before scheduling them for transmitting to the appropriate output port. The buffers at each input

port is organized asn queues, one for each output port. For any 1≤ i, j ≤ n, queue(i, j) holds

packets arriving at inputi and destined to outputj. This form of maintaining a separate queue

for each output is called virtual output queuing (VOQ). Switches with VOQs are scalable, capable

of very high throughput (100% in theory) and avoid the head ofline blocking problem [56] that

reduces the throughput to 58.6%.

This dissertation studies packet scheduling, packet delays, and buffer requirements for these

switches. It is clear that fast algorithms generally increase the switch throughput and reduce packet

3

1 2 3Outputs

Inputs

2

1

n

n

queue (n, n)

queue (1,1)

queue (1, n)

queue (n, 1)

Data Fabric

Controller

FIGURE 1.2. Basic architecture of ann×n crossbar-based input-queued packet switch.

delay (at least they do not degrade it). However, the price paid for speed is usually in hardware

cost, complexity, and power consumption. In our work we showthat there is a disproportionately

high benefit to using a very fast scheduling algorithm for input-queued crossbar switches. While it

drastically reduces delay, it pays (if at all) a much smallerprice in hardware cost and power. We

make our contributions more specific later in this section.

A crossbar usually transmits a packet from input porti to output portj by sending it right along

row i to column j, and then turning down at columnj to reach outputj. For this, the crosspoint

(internal switch of the crossbar) at rowi and column j configures as in Figure 1.3(a), and all

other crosspoints configure as in Figure 1.3(b). During transmission of this packet fromi to j, no

(a) (b)

FIGURE 1.3. Crosspoint configurations.

other packet can be transmitted fromi or to j. That is, the crossbar has at most one set crosspoint

(configuration of Figure 1.3(a)) in a row and at most one set crosspoint in a column. This restriction,

4

called thecrossbar constraintand affects the way packets are scheduled on the crossbar. Figure 1.2

shows a partial configuration of a crossbar that satisfies thecrossbar constraint.

At any point in time, the crossbar has a set of packets to deliver at its input ports. It selects

a subset of waiting packets (or a schedule) to transmit. For example, in Figure 1.2 the crossbar

selects to send packets from inputs 1, 2 andn to outputs 2,n and 1, respectively, and configures the

crossbar accordingly. Other packets (such as from input port 2 to output port 1, for example) must

wait for another schedule. The time between a packet’s arrival at an input port and the point when

it leaves the input queue (for its destination output port) is called itsdelay.

Packet transmission time is the amount of time needed to transmit all bits in a packet. Call the

time unit of one packet transmission as aslot. Until recently, packet scheduling algorithms for an

n×n crossbar with uniform traffic attained an average packet delay ofΩ(n) slots. Neely, Modiano,

and Cheng [59] developed the Fair Frame scheduling algorithmthat reduces delay toO(logn)

slots. The result of Neelyet al.assumes that schedule generation time is no more than the packet

transmission time. Packet transmission time, however, depends on the medium bandwidth and the

packet length and is independent of the schedule time. In practice packet transmission time is much

smaller than schedule times for large crossbars. We investigate the effect on the delay of the Fair

Frame algorithm of decoupling schedule generation time from packet transmission time.

Contribution of Our Work: Let tslot (or a slot time) denote the packet transmission time, and

let tround (or a round time) denote schedule generation time. Definepps= tround
tslot

as the packets per

schedule or the number of packets that a switch can transmit from an input port in the time needed

to construct a schedule. Withpps= 1, Neelyet al. [59] proved that the average packet delay on an

n×n crossbar isO(logn) slots.

In Chapter 2, we analytically show that whenpps> 1 (as is usually the case in practice), then

packet delay jumps toΩ(n). It is easy to show that packet delay isO(logn) [59]. Therefore our

result establishes that forpps> 1 the packet delay jumps directly fromO(logn) to Θ(n). Our result

is also counter-intuitive as is establishes that there is nograceful degradation of packet delay as

ppsincreases beyond 1.

5

Next, we examine the applicability of our result to practical crossbar sizes through extensive

simulations. We show that, forpps> 2, packet delay degrades significantly. Forpps= 2, the delay

is reasonable for network sizes used in practice. We also show in our simulations that for higher

pps the number of input buffers needed for a given level of performance (say, packet drop rate)

is significantly higher. This points to the possibility thatany savings in computational hardware

and power consumption afforded by a large value ofppsmay be lost to a larger demand for buffer

space. These results are presented in Chapter 2.

Having established the importance of a fast scheduling algorithm, we construct one in Chapter 3.

This algorithm runs in polylog time (O(log4nlog logn) time for ann×n crossbar) on a mesh-of-

trees type structure that closely resembles the crossbar topology. In devising this algorithm we also

construct a polylog time maximal matching algorithm for a reconfigurable mesh [77]; this may be

of independent interest.

1.2 Circuit-Switched Tree

The circuit-switched tree (CST) is an interconnect structured as a binary tree with processing ele-

ments (PEs) at leaves and switches at internal nodes (see Figure 1.4). It facilitates communication

between PEs at the leaves.

70 1 2 3 4 5 6

a

e

PE

switch

FIGURE 1.4. Communications on a CST; a dark (resp., shaded) leaf represents a source (resp., destination).

Each switch-switch or PE-switch connection is a pair of oppositely directed edges. Each di-

rected edge of the CST can carry only one communication at a time. This necessitates an efficient

scheduling for communication among PEs. For example, in Figure 1.4 communication between PE

6

pairs(2, 7) and(4, 6) cannot be simultaneous. To implement a schedule, the switches of a CST

must configure to establish paths between communicating PEs.

A key descriptor of a set of communications on a CST is its width[21]. A set of communications

with width w requires at leastw rounds to complete. However, a width-w communication set may

require more thanw rounds.

Contribution of Our Work: We devise a distributed algorithm that schedules any width-w set of

(point-to-point) communications. The algorithm terminates in r rounds, wherew≤ r < 2w, and

configures the CST for each round of scheduled communications. We adapt this algorithm for two

special cases that are provably optimal. The first is a width-1, oriented communication set and

the second a width-w, oriented, well-nested set; these are described in more detail in Chapter 4.

The significant feature of the algorithm for these cases is that each PE starts off with just a local

descriptor of whether it is a source or a destination. The source and destination PEs do not know

each other’s identities or position on the CST. That is, the algorithm builds on local information to

construct an optimal global schedule and configuration for each round of that schedule.

We also present a multicasting algorithm for oriented, well-nested communications. In addition

to local information (about whether a PE is a source or a destination), here a PE that is at the “end”

of a multicast chain needs to be flagged as well. We prove that without this additional information,

no two-pass algorithm (such as ours) can solve this problem.

1.3 Fat-Tree Switch

A fat-tree [46, 47] is a variation of the simple tree where thebandwidth between the switches

increases exponentially with increasing levels of the tree, as shown in Figure 1.5. Fat trees are a

popular choice for connecting processors and devices in many of today’s high performance com-

puting environments [37]. In a general tree, there is a unique path between a source-destination

pair. However, in a fat-tree, there are multiple links between any two switches. Hence, while the

set of switches traversed from a given source to a given destination is unique, with multiple links

between these switches, the control unit needs to efficiently select a link connecting each pair of

switches.

7

Switches

End Nodes

level 3

level 2

level 1

level 0

FIGURE 1.5. A fat-tree with multiple edges between two nodes denoting higher bandwidth.

A significant amount of research has been carried out in the efficient design, implementation,

routing, as well as performance analysis of fat-tree-basedinterconnection networks [4, 19, 34, 51,

61, 72, 82]. In most of these results, especially those for the InfiniBand architecture, some form of

table lookup determines the intra-switch routing. A sequential computation of these routes does not

scale well. To our knowledge no research has so far focused ona distributed approach to routing

within the fat-tree switch. We use an R-Mesh [77], a versatilereconfigurable computational model,

to implement the switch.

Contribution of Our Work: This part of the research is preliminary. We have identified an ap-

proach to the problem and have developed a basic strategy forfurther development. Specifically,

for a givenℓ×2k+1 R-Mesh (representing a fat-tree switch with 2k+1 links to the parent and 2k

links to each child), we have devised an R-Mesh algorithm thatefficiently matches requests from

input ports to available output ports in the desired direction of the fat-tree. The algorithm gener-

ates a schedule (configuration of the R-Mesh) and configures the data plane to accommodate this

schedule.

8

Chapter 2
Crossbar-Based Switches: Conditions for
Logarithmic Delay

2.1 Introduction and Background

Interconnection networks used in many current systems are indirect (see Chapter 1). In an indirect

network, switches act as intermediate routing nodes that forward packets from the source towards

the destination. Depending on the type of switching, packets traversing the network could be tem-

porarily stored at the switches as well. Figure 2.1 shows thebasic structure of a network switch.

The data unit or data plane represents the physical fabric for packet transfer. The control unit or-

chestrates the flow of packets in the data plane. In a typical setting, packets arrive at input ports

with each packet destined to an output port. The control plane factors in topological and archi-

tectural constraints of the switch to construct a schedule for packet transfer. Then the data plane

configures to deliver packets according to the schedule. In this chapter (and the next) we consider

packet scheduling.

Various data fabric structures exist. We consider a crossbar-based data fabric, one of the most

common structures used in interconnection network switches. Figure 2.2 depicts the structure of a

crossbar. Ann×n crossbar hasn rows,n columns, andn2 crosspoints. The usual convention is to

connect each row to an input port and each column to an output port. The crossbar sets crosspoints

(depicted as boxes with darkened circles in Figure 2.2; see also Figure 1.3(a) on Page 4) to connect

a row to a column. By configuring other crosspoints in that row and column to as in Figure 1.3(b)

on Page 4, the crossbar establishes a path from an input port to an output port through which

data is transmitted. For example in Figure 2.2, the set crosspoint at the intersection of row 1 and

column 2 connects input port 1 to output port 2. The crossbar is a non-blocking network. That is,

an n×n crossbar can connect each input to a distinct output according to any of then! possible

permutations. A given set of communications may not be a permutation, however. For example,

an input may have packets destined for several outputs or an output may be the destination for

9

packets from several inputs. However, an input can transmitdata to only one output at a time and

an output can receive data from only one input at any time. (Weare considering point-to-point

communications through the crossbar here. For multicasts,a single input can send the same data

to multiple outputs simultaneously.) This means that communications at any given point must be

a restriction of a permutation. Put differently, at any point in time, the crossbar configuration can

have at most one of then crosspoints connected on each row or each column. We call this restriction

thecrossbar constraint. In constructing a schedule, the control plane must accountfor the crossbar

constraint.

Port n

Port 1

Port 2

Port n

Port 1

Port 2... ...

Control Unit

Data Unit

(Switching Fabric)

Input ports Output Ports

FIGURE 2.1. Basic structure of a switch.

There are many practical examples of routers and switches that employ a crossbar. These in-

clude the Intel Teraflop Router – Cavallino [11], Cray’s T3E [68,69], the Reliable Router [17],

SGI’s SPIDER [30], the Chaos Router [5, 6], the Arctic Router [64], HP’s R2 router, the Ariadne

router, IBM’s SP2 switch, and the Inmos C104 switch [20]. The Earth Simulator, the fastest su-

percomputer from 2002 to 2004, uses a 640×640 single-stage crossbar. The interconnect families

of Infiniband, Myrinet, and Quadrics together account for 31% of the current top 500 supercom-

puters [37]. Infiniband, Myrinet, and Quadrics implement crossbars of sizes 24× 24, 32× 32,

and 8×8, respectively [36]. Examples of other routers and switches employing a crossbar include

10

1 2 3Outputs

Inputs

2

1

n

n

queue (n, n)

queue (1,1)

queue (1, n)

queue (n, 1)

Data Fabric

Controller

FIGURE 2.2. Structure of ann×n input-queued packet switch with a crossbar-based data fabric.

IBM’s OSMOSIS project’s optical switch that employs a 64×64 crossbar [83] and Huawei’s Quid-

way S6500 series high-end multi-service switch [40] and Quidway S8500 series 10G core routing

switch [41].

The crossbar switches we consider have buffers at input ports that temporarily store incoming

packets before they are transmitted to the appropriate output port. On ann×n input-queued cross-

bar these input buffers are organized asn separate queues (queue(i, j) for 1≤ i, j ≤ n). Here

queue(i, j) holds packets arriving at inputi and destined to outputj. We call this method of orga-

nizing input buffers as Virtual Output Queuing (VOQ). VOQ has the benefit of avoiding the head of

line (HOL) blocking problem [56] that can significantly impact the switch throughput. In practice,

there are different ways of implementing VOQs. They range from having separate physical queues

to having a single queue at an input with additional mechanisms to emulate separate VOQs on it.

Figure 2.2 depicts an input-queued crossbar switch with VOQs.

Thus, in an input-queued crossbar switch with VOQ, packets arrive at input ports and are queued

according to the destination ports. The distribution of thepackets at the VOQs is represented as an

n×n traffic matrix whose entry in rowi and columnj gives the number of packets in queue(i, j).

For instance, Figure 2.3(b) shows the traffic matrix for the example in that Figure 2.3(a). Period-

ically, the control plane takes a snapshot of the traffic matrix and generates a schedule of parallel

11

communications on the crossbar. Packets at input queues wait for their turn in a schedule. The

amount of time between the arrival of a packet at an input portand its exiting the input queue for

transmission to the output port is thedelayof the packet.

Crossbar switches with queues at only output ports are also possible. However, such a switch

instantly transmits any arriving data packets through the crossbar to the output port. For the worst

case, this requires the data fabric of ann× n crossbar to operate at a raten times faster than

the input rate1. This condition makes the implementation of output-queuedcrossbar switches im-

practical from a scalability point of view [13]. Combined input-output queued (CIOQ) crossbar

switches employing both input and output queuing exist as well [13]. A relatively newer idea is

to have queues at each crosspoint along with input queues [14]. We call these combined input-

crosspoint queued (CICQ) switches. The common name for CICQ switches in the literature is

buffered-crossbar switches. The common name for switches without any crosspoint buffers is un-

buffered switches (in spite of the fact that they do have buffers at input and/or output ports). Various

CICQ switches exist ranging from ones that employ a single buffer at each crosspoint [65] to ones

that employ a constant number of buffers per output port [57]. Buffered crossbars often require

less complicated scheduling algorithms compared to unbuffered ones that provide guaranteed per-

formance in terms of throughput, rate, and delay [14].

Our research considers an input-queued crossbar switch with VOQ (see Figure 2.2). Of all the

crossbar-based packet switch architectures, the input-queued packet switch with VOQs is one of

the most widely used. As we noted earlier, it does not suffer from the HOL blocking phenomenon.

These switches also offer high scalability and throughput [49, 55, 63]. Often, these switches operate

on fixed length units of data calledcells. The switch breaks variable length packets into cells at the

input and reassembles them at the output. In this dissertation, we ignore the issue of packet sizes

for the most part, assuming all packets to be one cell long. The main problem that we address is

that of scheduling packets from input queues to output portsof the switch [12, 49, 59]. The control

1The ratio of operation rate of the data fabric of a switch to the packet arrival rate at its input is called thespeedup. A constant speedup (around
2) is considered acceptable.

12

unit of an input-queued switch periodically generates schedules based on packets queued at the

input ports, and the data plane then sets its crosspoints to reflect the schedule. Subsequently, for

each connected input-output pair, the switch transmits packet(s) from the top of the corresponding

VOQ. Many switches do this scheduling and packet transmission at fixed intervals of time.

It is customary to divide time in a switch into discreteslotswhere a slot is the time needed to

transmit a packet [59]. However, most results also assume a slot to be long enough to generate a

schedule as well. For the purpose of this work, let us call thecondition that a slot is long enough

to generate a schedule the “unitppscondition2”. Practical systems often do not meet the unitpps

condition. The time to transmit a packet (or a slot) is typically in the range of 50ns [12, 29, 83],

but for large crossbars this is not sufficient time to construct a good schedule.

In this chapter we show that the unitppscondition is necessary for one recent significant result

to hold. More specifically, Neely, Modiano and Cheng [59] recently showed that with the unitpps

condition, packets can be scheduled on ann×n crossbar switch withO(logn) average delay. This

result is significant as all previous results could only bound the delay toO(n). The significance of

our work is to prove that without the unitppsassumption, packet delay isΩ(n). That is, unitppsis

necessary to achieve logarithmic packet delay. Our result also shows that there is no middle ground

between logarithmic and linear packet delays. This underscores the importance of meeting the unit

ppscondition, perhaps by developing a fast schedule requiringno more than one slot.

An Example: Before we proceed to the formal description of the problem andits solution, we

illustrate some of the ideas described so far through a smallexample. Consider a 3×3 crossbar

with packets shown in Figure 2.3(a). The corresponding traffic matrix is in Figure 2.3(b). Suppose

during the first slot the control plane schedules a packet from input port 1 to output port 1 and

another from input port 3 to output port 2 (these are indicated by red circles in the traffic matrix

of Figure 2.3(b)). After those packets are sent out, the new traffic matrix is as in Figure 2.3(c).

2The termppsstands for number of packets per schedule and is defined later in Section 2.2. Here “unitpps” simply means that the time to
generate a schedule is no more than a slot (packet transmissiontime).

13

queue (1, 2)
queue (1, 1)

queue (1, 3)

queue (2, 2)
queue (2, 1)

queue (2, 3)

queue (3, 3)
queue (3, 2)
queue (3, 1)

}
}
}

1

2

3

1 2 3

Input

Output

(a)

 1 2 3
3 0 1 1
2 1 1 0
1 2 1 1

(b) Initially.

1 1 1 1
2 1 1 0
3 0 0 1
 1 2 3

(c) After schedule 1.

1 1 0 1
2 0 1 0
3 0 0 0
 1 2 3

(d) After schedule 2.

1 0 0 1
2 0 0 0
3 0 0 0
 1 2 3

(e) After schedule 3.

FIGURE 2.3. Scheduling on a 3×3 crossbar.

It is customary to not consider new packet arrivals (if any) until the current matrix is exhausted.

Figures 2.3(c), 2.3(d) and 2.3(e) show the subset of packetstransmitted in the next three slots.

The entire schedule for this iteration spans four slots with2, 3, 2, and 1 packets transmitted in

these slots, respectively. For this span of four slots, the average packet delay for the eight packets

is (2×1+3×2+2×3+1×4)/8 = 18/8 = 2.25; we have assumed that all eight packets arrived

at the input just before the first slot in the example.

In the next two sections we formally define the quantities that characterize the problem ad-

dressed.

2.2 Slots, Rounds and Frames

As we noted earlier, time is discretized into slots on a switch. We now relate a slot to two other

important time intervals, round and frame, for scheduling packets on a switch. Figure 2.4 shows

these quantities.

Slot:A slot is the atomic unit in which time is divided for the crossbar. Denoted bytslot, it equals

the amount of time needed to transmit a packet from an input port to an output port. If the

14

Frame k Frame k+1Frame k−1

Time

Traffic matrix updated

. . .

: Time to generate a schedule

: Time to transmit a packet

Round 1 Round 2 Round T

<−Slot2−><−Slot1−> <−Slot3−> <−Slot3−> <−Slot3−><−Slot2−> <−Slot2−><−Slot1−> <−Slot1−>

FIGURE 2.4. Slots, rounds, and frames.

data path from an input port to an output port can deliverb bits/second and a packet has a

length ofp bits, thentslot =
p
b .

Round:A round is the amount of time needed for the control plane to generate a schedule from

a traffic matrix and for the data plane to configure for this schedule. This quantity, denoted

by tround, depends on the hardware available to(i) perform the computation to produce a

schedule and(ii) to configure the data plane. This hardware complexity also depends on

n, the size of the switch. Thustround is independent oftslot, the slot time. In most practical

systems,tround > tslot. Since scheduling and packet transmission are interleavedin the switch

(see the “Fair Frame” algorithm below), there is no benefit toconsideringtround < tslot as the

scheduler cannot produce a new schedule until the current set of packets is sent. Thus, we

assume thattround≥ tslot.

We define the quantity
⌊

tround
tslots

⌋

aspps(packets per schedule), and it plays an important role

in this chapter. For a given schedule and a switch configuration corresponding to it, it is

possible to transmit as many asppspackets in a round. All these packets must use the same

configuration, however.

15

For convenience and without loss of generality, we assume that tslot dividestround, so

pps=
tround

tslot
.

Frame:A frame is a sequence of rounds. Denote frame size (in rounds)by T. A frame is largely

used as an analysis tool, though it also has some significancein the scheduling algorithm

described below.

The Fair Frame Algorithm: As we noted earlier, our work in this chapter builds on results of

Neelyet al. [59]. They use an algorithm, called Fair Frame, that we suitably modify for our work

(while retaining the same name).

Divide time into slots and let a sequence ofppsslots constitute a round. A sequence ofT rounds

forms a frame (see Figure 2.4). At the start of Framek, the algorithm takes a snapshotMk
0 of

the traffic matrix. This matrix is the target of packet transmission during Framek. Let the rounds

of Framek be rk
1, rk

2, · · · , rk
T . In Roundrk

1 the scheduler takes the initial traffic matrixMk
0 and

generates a subset of packets that can be scheduled simultaneously while respecting the crossbar

constraint3. It also configures the crosspoints accordingly.

In Roundrk
2 (the second round), the schedule and configuration generated in rk

1 (the first round)

is used to send packets on the data plane. As many asppspackets are sent between each input-

output pair connected in the schedule. In fact, if inputi is connected to outputj in the schedule and

if queue(i, j) hasx packets in it, then min{x, pps} packets are sent fromi to j in Roundrk
2. At the

end of Roundrk
1, the control plane adjusts the initial traffic matrixMk

0 to account for the packets to

be sent in Roundrk
2. Denote this new matrix byMk

1.

While the data plane is transmitting packets during Roundrk
2, the control plane makes a new

schedule based onMk
1. In general, for Roundrk

z (for 1≤ z≤ T), the control plane generates a

schedule on the basis of the traffic matrixMk
z−1, while the data plane transmits packets according

to the schedule and the configuration generated during Roundrk
z−1; hererk

0 is the last round of

Framek−1.

3The Fair Frame algorithm computes a maximum matching between the input output pairs with packets waiting to be transmitted between them.
More details of this matching appear in Chapter 3.

16

The last schedule of the current frame (Framek) and the adjusted traffic matrix are computed

at the end of Roundrk
T , the last round. Since the algorithm aims to send all packet arriving in

Framek−1 by the end of Framek, the traffic matrixMk
T should ideally be empty. IfMk

T is not

empty, the remaining packets (callednon-conforming packets) are treated as if they arrived in

Framek.

At the start of Framek+1, the control plane generates the initial traffic matrixMk+1
0 which in-

cludes all arrivals during Framek and all non-conforming packets remaining inMk
T . The scheduler

then proceeds as in Framek.

2.3 Stability and Delay

In any switch, the average overall packet arrival rate cannot exceed the average packet output rate

(average throughput). A switch satisfying this condition is said to bestable. An unstable switch

will require unbounded buffer space and packets will incur unbounded delay. In a stable switch

the input and output rates (averaged over a large enough time) are equal. In the context of the Fair

Frame algorithm, the length of the frame (T rounds) is this “large enough time”. AfterT rounds

of Framek, the algorithm should have sent out (nearly) all packets that arrived before the start of

Framek. Note that other researchers in this area have used the term frame to define a set of slots

but with different criteria as far as what groups those slotstogether. For example, Louet al. [52],

X. Li et al. [49], and Y. Li et al. [50] defined a frame as a set of slots for which a single schedule

is generated. Rojas-Cessaet al. [66] defined a frame as a set of cells (fixed-size units into which

variable-size packets are divided) that can be transmittedtogether.

Beyond this point we will take the length of a frame to mean not just the interval for updating the

traffic matrix for new packet arrivals, but also as a large enough time to send out nearly all packets

that arrived before the end of the previous frame. That is, a frame has, with high probability, no

non-conforming packets.

If a frame sizeT has no non-conforming packets, then no packet waits longer than 2T rounds.

Thus the frame size can be a useful tool to determine the packet delay.

17

The Result of Neely, Modiano and Cheng [59]:Neely et al. [59] used a special case of the

Fair Frame algorithm of Section 2.2 to establish the following result.

Theorem 2.3.1. (Neelyet al. [59]): For uniform traffic, Poisson arrival4, and pps= 1, an n×n

input-queued crossbar can schedule packets with O(logn) delay. 2

The above result is a significant improvement over previousO(n) delay bounds. The basic idea

of the analysis by Neelyet al. [59] is to show that forT = Θ(logn), the probability of a packet

becoming non-conforming is very low (O(1
n2)), then use this fact to show that the average delay is

O(T) = O(logn). A significant assumption in this result is thatpps= 1, that is, the schedule time

does not exceed the slot time (as in Figure 2.5).

Our Contribution: The unitppsassumption in Neelyet al. [59] is not always true in practice. For

example, the crossbar-based optical switch in IBM’s OSMOSISproject [83] required only 52 ns to

transmit a packet. However, constructing a good schedule entails finding a matching on a 2n-node

bipartite graph (see Chapter 3) and can be quite time consuming for largen. Our contribution is in

examining thepps> 1 case.

In the next section, we prove that theO(logn) packet delay of Neelyet al. [59] holds only for

thepps= 1 case. Moreover, for thepps≥ 2 case, the packet delay jumps toΩ(n), with no middle

ground between the logarithmic and linear delays.

In Section 2.5 we present results from extensive simulations to show that our analytical result

hold practical importance. We also use these simulations toshow that largerppsvalues require

larger buffer sizes. Thus, loweringppshas the benefit of not just lowering delay, but potentially

offsetting some of the hardware costs for doing so. Other papers [43, 49, 50, 66] related to frame-

based scheduling algorithms present simulation results onoverall delay experienced by packets for

various switch sizes and frame sizes (different frame sizeshave different meanings in these papers

based on the definition of frame as mentioned above). However, none of these papers analytically

determines packet delay (except for trivial bounds).

4Traffic refers to the distribution of packet destinations. Under uniform traffic, each packet is independently destinedto any of then possible
destinations with probability 1/n. The arrival on the other hand, refers to the temporal distribution of arriving packets, without considering their
destinations.

18

Slot TSlot 2Slot 1

Frame k Frame k+1Frame k−1

Time

Traffic matrix updated

. . .

: Time to generate a schedule

: Time to transmit a packet

FIGURE 2.5. Slots and frames in Neelyet al. [59].

The results described so far is for uniform traffic. We also present results (both analytical and

simulation-based) for bursty traffic in Sections 2.4.2 and 2.5.2.

2.4 Necessary Conditions for Logarithmic Delay

As noted earlier, a frame-based scheduling algorithm divides time into frames, rounds, and slots

(see Figure 2.4). A slot has durationtslot, time to transmit a packet across the switch. A round

containspps= tround
tslot

slots, and it represents time to execute the scheduling algorithm. At the end of

Framek−1, the algorithm takes a snapshot of the input queues; this snapshot represents a setPKT

of packets that have arrived during Framek− 1. During each round of Framek, the scheduling

algorithm computes a configuration of the crossbar switch based on a bipartite matching of input

and output ports and transfers a subset of packets inPKT to their output ports. Each round uses

a single switch configuration. Therefore, if input porti is connected to output portj during a

round, then any packet leavingi during that round must be destined toj. After each round, the

scheduling algorithm updatesPKT to account for transmitted packets. The scheduler accountsfor

newly arrived packets only at the beginning of each frame. The goal of the scheduling algorithm

is to route all packets inPKT by the end of Framek. This results in a delay that is linearly upper

bounded in the frame size. Selecting the numberT of rounds per frame to achieve this goal is the

focus of this section.

19

Recall thatpps= tround
tslot

. For pps= 1 andT = O(logn), this scheduling method fits the Fair

Frame algorithm of Neelyet al. [59]. The Fair Frame algorithm schedules all the packets arriving

in one frame during the next frame with high probability. In the case where it does not route all

outstanding packets in the next frame, it will insert them inunutilized rounds in subsequent frames.

This will not significantly contribute to the average packetdelay [59].

We examine the natural extension of the Fair Frame algorithmto pps> 1 as described in Sec-

tion 2.2. That is, when the scheduling algorithm schedules input porti with output port j during

a round andi hask packets destined toj, then the algorithm sends min{k, pps} packets fromi to

j during that round. Since at mostppspackets can be sent in a round, we can also have at most

ppsarrivals in a round (nominally); this corresponds to one packet per slot per input port on an

average. Note that this extension does not allow changing the switch configuration during a round.

Therefore if porti has packets destined tod different destinations, then the switch needs at leastd

rounds to move all packets ini.

We now derive a relationship betweenpps, the number of slots per round, andT, the number of

rounds per frame.

2.4.1 Uniform Random Traffic

In this section we establish that for uniform random traffic with no correlation between two suc-

cessive packet arrivals,T can beO(logn) only whenpps= 1, wheren is the number of input or

output ports in the switch. The traffic is uniform if each arriving packet has an equal probability of

being destined to any of then output ports (independently of any other packet).

Lemma 2.4.1.For large n, the average number of distinct output ports among q randomly destined

packets is n(1−e−
q

n), where n is the number of output ports in the switch.

Proof. Consider the problem of randomly tossingq balls inton bins. It is well known that the

average number of empty bins isn(1− 1
n)q ∼= ne−

q

n for largen [58, 67]. In our case, empty bins

correspond to ports with no packets destined to them. Hence,the average number of distinct ports

to which packets are destined isn−ne−
q

n ∼= n(1−e−
q

n).

20

In a frame-based scheduling algorithm withT rounds per frame andppsslots per round, the

upper bound on the average number of packets arriving duringa frame at each input port of the

switch isT ·pps. With q = T ·pps, we have the following corollary.

Corollary 2.4.2. For uniform random traffic and1≤ T < n, pps≤ n
T ln

(

n
n−T

)

on an average.

Proof. From Lemma 2.4.1, the average number of distinct output ports among the packets arriving

at an input port during a frame isn(1−e−
T·pps

n). Since each round has only one switch configura-

tion, a scheduling algorithm needs at leastn(1−e−
T·pps

n) rounds to fully deplete the input queue.

For a frame-based scheduling algorithm, this quantity mustbe no more thanT, the number of

rounds in a frame. That is,n(1−e−
T·pps

n)≤ T. Simplifying this inequality completes the proof.

Lemma 2.4.3.For 1≤ T < n, the function f(T) = n
T ln

(

n
n−T

)

is an increasing function of T .

Proof. Let y = T
n−T . Then, we can expressf (T) asF(y), where

F(y) =

(

1+
1
y

)

ln(1+y).

Since 1≤ T < n andy increases withT, we have 1
n−1 ≤ y≤ n−1 for this range of values ofy.

Now,

dF
dy

=
y− ln(y+1)

y2

For y≥ 1, ln(y+ 1) < y. Hence, fory≥ 1, the right hand side of the above equation evaluates to

greater than zero. Fory < 1, using a power series expansion we get the following.

y− ln(y+1) =
y2

2
−

y3

3
+

y4

4
−·· ·

=
n

∑
i=1

y2i
(

1
2i
−

y
2i +1

)

=
n

∑
i=1

y2i
(

2i +1−2iy
2i(2i +1)

)

Now, 2i(1−y)+1> 0, for y< 1. This implies that
y− ln(1+y)

y2 > 0 for y< 1 as well. This shows

thatF(y) increases withy and, hence,f (T) increases withT.

21

This brings us to our main result, Theorem 2.4.4, where we prove that logarithmic delay is

possible only whenpps= 1.

Theorem 2.4.4.For uniform traffic and pps> 1, an n×n input-queued crossbar has an average

packet delay ofΩ(n).

Proof. Let T = n
c for some constantc. Then,

f
(n

c

)

=
n
n
c

ln

(

n
n− n

c

)

= cln

(

c
c−1

)

.

Forc≥ 1.26, that is,T ≤ n
1.26, we have the following by Corollary 2.4.2

pps ≤ cln

(

c
c−1

)

< 2.

By Lemma 2.4.3,f (T) is an increasing function ofT, so if pps≥ 2, thenT must be at least

n
1.26.

Theorem 2.4.4 proves that theO(logn) delay derived by Neelyet al. [59] is possible only if

pps= 1 and does not hold even whenpps= 2.

2.4.2 Bursty Traffic

In this section we extend our results for bursty traffic5. For bursty traffic we consider an on-off

arrival process modulated by a two-state Markov chain. In such a process ifp is the probability of

an on-period ending at a time slot, thenb = 1/p is the mean burst size [12]. Since the upper bound

on the average packet arrivals over a frame isT ·pps, then for bursty traffic the upper bound on the

average number of bursts per frame isT ·pps/b.

Corollary 2.4.5. For bursty traffic and1≤ T < n, pps
b ≤

n
T ln

(

n
n−T

)

on an average.

Proof. ReplacingT ·ppsby T · pps/b in the proof of Corollary 2.4.2 and simplifying, we get the

above expression.

Theorem 2.4.6.For traffic with mean burst size b≥1and pps≥2b, an n×n input-queued crossbar

has an average packet delay ofΩ(n).

5We describe bursty traffic in more detail in Section 2.5.2.

22

Proof. Clearly, pps
b is equivalent toppsin the proof of Theorem 2.4.4. The main difference is that,

unlike pps, pps
b may not be an integer. Consequently, ifpps≥ 2b (or pps

b ≥ 2), then the delay is

Ω(n).

Note: Whenpps≤ b, T = O(logn) is possible by a simple extension of the result of Neelyet al.

[59]. Additionally, there is a small range of values ofb< pps< 2b for whichT = O(logn) remains

possible. Simulation results in the next section support this observation. Simulation results of Neely

et al. for a modified version of Fair Frame on bursty traffic showed a pattern consistent with an

increase of delay that is logarithmic inn, though they did not analytically proveO(logn) delay for

bursty traffic.

As noted earlier, Theorems 2.4.4 and 2.4.6 point to the fact that logarithmic delay is possible

only for pps= 1 for non-bursty traffic andpps< 2b for bursty traffic. This points to the important

and hitherto unrecognized insight that reduction intround, and consequentlypps, causes a huge

improvement from linear delay to logarithmic delay, and this is the main contribution of this part

of the dissertation.

2.5 Simulation Results

In the last section, we analytically established that whileO(logn) average packet delay is achiev-

able forpps= 1 (result of Neelyet al. [59]), pps> 1 impliesΩ(n) delay. The constants in theΩ

notation could determine the true tradeoff between scheduler speed and packet delay for practical

networks. In this section we study this through simulations. A delayed packet is stored in a buffer.

The longer the average delay, the larger the buffer occupancy. Hence, we also examine the impact

of VOQ sizes on packet delay and the relationship between input-buffer size and average packet

delay. On the whole, our simulations show the expected separation betweenpps= 1 and large

values ofpps. For uniform traffic,pps= 2 seems to be reasonably close topps= 1 for practical

values ofn. Similar results are obtained for bursty traffic.

23

We built a software framework using the OMNET++ simulation environment [42] to simulate

the Fair Frame algorithm for various values ofpps for both uniform random as well as bursty

traffic. Our simulations considered switch sizes ranging from 16×16 to 100×100.

Each simulation ran for 15000 slots at each input by which time the system has reached a steady

state for a large amount of time. The results from the simulations match our analytical results from

the previous section and display the effects of constant factors hidden in the asymptotic notation

there. For all the graphs (unless otherwise stated), we varied the packet arrivals for different switch

sizes and differentpps in such a way that the load at each input port is close to 0.9 (i.e., on

average 0.9 packets arrive per slot)6. We also varied the size of each virtual output queue; we

considered two scenarios, infinite and finite VOQs. For finiteVOQs, we varied buffer size in the

range[1,⌈lnn⌉]. To support our analytical proofs we studied the delay as a function ofpps, input

load, and frame size. We also studied VOQ occupancy (for infinite VOQs) as observed by an

incoming packet for different values ofpps. Further, we looked at the percentage of packets lost

for finite VOQs.

In our simulations we always kepttslot fixed and expressed the overall delay in terms of slots. In

order to achieve different values ofpps, we variedtround. We also defined the duration of a frame to

betround⌈lnn⌉. Hence, with varyingtround, the duration of the frame also varied. This implies that

for pps> 1, even though the delay isΘ(n), the frame size was kept atO(logn). This allows more

frequent updates to the traffic matrix in thepps> 1 cases than that allowed by Fair Frame. Thus

our simulation results could potentially show more improvements if the right frame size was used.

Further note that forpps> 1, we always transmittedppspackets per round (if there are packets to

transmit).

The switch sizes for each simulation reported in this section were in the range 16×16 to 100×

100. However, we ran some simulations for 500×500 and 1000×1000 switches to verify that the

6Stability conditions of a switch dictates that on average, at most a single packet can arrive per slot at each input port. This translates to a
maximum load of 1 at each input port. However, to successfully schedule packets arriving with a load of 1, the scheduling algorithm must generate
schedules that connect each input to some output at each slot.This is practically infeasible. Hence, for practical switch simulations, an input load
close to but less than 1 is considered.

24

general trends shown in the results of switch sizes up to 100×100 translate to the bigger switch

sizes.

2.5.1 Uniform Random Traffic

In this section we present results for uniform random traffic. Packets arrive at each input port

following a Poisson distribution, and the arrival of each packet is completely independent of any

other packet’s arrival. Destinations of arriving packets are uniformly distributed among all output

ports. Except when explicitly studying VOQ size, we used infinite queues for these simulations.

Delay: Our main result proved that logarithmic delay is possible only for pps= 1, and forpps> 1,

the delay becomes linear. Neelyet al.’s result of logarithmic delay is a significant improvement

over any existing algorithm in terms of delay. So our result,which defines the limits of Neelyet

al.’s result, is also important. The delay graphs (Figure 2.6) support our results.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 D
el

ay
 (

sl
ot

s)

n (# ports)

ln(n)
pps = 1
pps = 2
pps = 3
pps = 4
pps = 5

FIGURE 2.6. Delay for various switch sizes for differentpps.

Figure 2.6 shows the average delay of packets for switches ofvarious sizes for 1≤ pps≤ 5.

We found whenpps= 1, delay is nearly lnn, as shown in the graph. Further, whenpps≥ 2, the

delay is visibly higher. For the case ofpps= 2, experimental results show that the delay is slightly

greater than lnn, and the delay appears clearly linear forpps≥ 3. This corroborates our result that

for uniform random traffic,O(logn) delay is only possible whenpps= 1. While thepps= 2 case

25

is also linear (from our analytical results), the associated constants are sufficiently small to make

the results seem close to lnn for practical values ofn.

VOQ Occupancy: In an input-queued switch, the queues at the input ports temporarily store the

incoming packets till they are transmitted through the switch. For the same input load, a switch

with less delay will have to store the packets for a shorter amount of time. Hence, the delay affects

the size of VOQs needed as well. Our results on VOQ occupancy (Figure 2.7) show that when

pps= 1 the VOQ occupancy (buffer requirement) is less than lnn almost 100% of the time. This

percentage decreases slightly with increasingpps.

We look at the distribution of the number of waiting packets in the corresponding VOQ, as

observed by an incoming packet, for variouspps(Figure 2.7). Figure 2.7 plots a stacked histogram

where the percentage of packets encountering an empty queueon arrival, the percentage of packets

that encounter a queue with one existing packet, and so on areplotted along a single bar in a

cumulative way (Tables 2.1 - 2.5 shows the actual numbers). As shown in Figure 2.7(a), when

pps= 1 almost 85% of the incoming packets for a 16×16 switch and almost 95% of the incoming

packets for a 100×100 switch encounter an empty VOQ on arrival. (This suggeststhat with no

input buffer, the drop rate for a 100× 100 switch is only about 5%.) Aspps increases, a higher

percentage of incoming packets encounters a VOQ with one or more packets already waiting in it.

TABLE 2.1. VOQ occupancy as observed by an incoming packet forpps= 1.

Percentage of arriving packets that encountered
0 1 2 3 4 5

Switch size packet(s) in the queue

16×16 84.01 14.53 1.36 0.10 0.01 0.00
32×32 89.51 9.86 0.60 0.03 0.00 0.00
52×52 93.36 6.40 0.24 0.01 0.00 0.00
72×72 94.26 5.56 0.18 0.00 0.00 0.00

100×100 95.80 4.10 0.10 0.00 0.00 0.00

This result points to the important fact thatppsaffects the VOQ size as well. For the Fair Frame

algorithm, a logarithmic VOQ size will be sufficient (i.e., the probability of a packet loss due to

26

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5

(a) pps= 1

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5

(b) pps= 2

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5

(c) pps= 3

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5

(d) pps= 4

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5

(e) pps= 5

FIGURE 2.7. VOQ occupancy as observed by an incoming packet.

VOQ overflow is pretty much zero) only whenpps= 1. But asppsincreases, more packets will be

dropped.

Packet Loss for Different Switch Sizes andpps: For large switch sizes, the amount of memory

needed to store the packets at the input port is an important factor. Previously, our results showed

27

TABLE 2.2. VOQ occupancy as observed by an incoming packet forpps= 2.

Percentage of arriving packets that encountered
0 1 2 3 4 5

Switch size packet(s) in the queue

16×16 72.60 22.58 4.17 0.56 0.09 0.01
32×32 79.68 17.73 2.33 0.24 0.02 0.00
52×52 85.48 13.17 1.25 0.09 0.01 0.00
72×72 87.14 11.83 0.96 0.06 0.00 0.00

100×100 89.89 9.46 0.61 0.03 0.00 0.00

TABLE 2.3. VOQ occupancy as observed by an incoming packet forpps= 3.

Percentage of arriving packets that encountered
0 1 2 3 4 5

Switch size packet(s) in the queue

16×16 60.62 28.07 8.51 2.17 0.50 0.11
32×32 65.63 25.45 6.83 1.60 0.37 0.09
52×52 69.02 23.13 5.93 1.44 0.36 0.09
72×72 69.70 22.68 5.75 1.41 0.34 0.08

100×100 71.02 21.60 5.49 1.39 0.36 0.09

that different values ofppstranslate to different queue-length requirements to guarantee no packet

loss. In these results we limit the size of VOQs and observe the effect of the limited sizes to

the corresponding percentage packet losses. Many applications, especially ones without real-time

constraints, can tolerate a certain amount of packet loss without any major problem. So, if a switch

designer knows what the application requirements are in terms of allowable packet loss, then the

designer could select an optimum VOQ size. The graphs in thissection (packet loss for various

switch sizes with fixed VOQ length,⌈ln(n)⌉) and the next section (packet loss for two fixed switch

sizes with variable VOQ sizes) attempt to shed some light on this VOQ-size – packet loss trade-off.

Figure 2.8 depicts the percentage of lost packets for different switch sizes for differentpps. In

Figure 2.8, we limit the size of each VOQ to⌈ln(n)⌉, and like before, used an input load of 0.9. As

ppsincreases beyond 3, the percentage of dropped packets starts to increase quite drastically.

Packet Loss for Different VOQ Sizes:We also selected two switch sizes, 50×50 and 100×100,

varied the VOQ sizes for each switch in the range[1,⌈ln(n)⌉], and observed the packet loss for

each VOQ size. Figure 2.9 presents the result. This result shows that ifpps increases then for a

28

TABLE 2.4. VOQ occupancy as observed by an incoming packet forpps= 4.

Percentage of arriving packets that encountered
0 1 2 3 4 5

Switch size packet(s) in the queue

16×16 49.82 29.81 12.90 4.84 1.75 0.59
32×32 51.70 28.54 12.08 4.71 1.82 0.70
52×52 52.82 27.21 11.65 4.83 2.04 0.85
72×72 52.85 26.99 11.64 4.92 2.07 0.88

100×100 53.28 26.28 11.48 5.00 2.20 0.98

TABLE 2.5. VOQ occupancy as observed by an incoming packet forpps= 5.

Percentage of arriving packets that encountered
0 1 2 3 4 5

Switch size packet(s) in the queue

16×16 41.73 29.01 15.62 7.48 3.44 1.55
32×32 41.97 27.93 15.04 7.60 3.81 1.85
52×52 42.37 26.66 14.55 7.72 4.08 2.16
72×72 42.18 26.46 14.50 7.80 4.18 2.25

100×100 42.44 25.99 14.34 7.81 4.26 2.36

fixed VOQ size the number of dropped packets also rises, especially for the lower VOQ sizes. As

shown in Figure 2.9,pps= 1 translates to very low VOQ size requirements for limiting packet loss

to a given level. This, however, is not true for higher valuesof ppsand indirectly reinforces the

fact that ensuringpps= 1 leads to big gains in delay (VOQ size is related to delay). Hence, we can

use the graphs of Figure 2.9 to determine the VOQ size required to ensure that the packet loss does

not exceed a certain value, given a fixedpps. Conversely, given a fixed VOQ size and a maximum

allowable loss percentage, using Figure 2.9 we can suggest allowable values ofpps.

If one views reducing round time as an investment in the computing/hardware cost of the switch,

then the added cost of a larger number of buffers needed for largetround could make it worthwhile

to reducetround.

Different Frame Sizes:The Fair Frame algorithm schedules all conforming packets that arrive

in any frame during the next frame. Hence, the maximum delay that a conforming packet can

experience is twice the frame size. We ran simulations with different frame sizes andppsmainly

29

 0

 2

 4

 6

 8

 10

 1 2 3 4 5

P
ac

ke
t L

os
s

(%
)

pps

16 x 16 Switch
50 x 50 Switch
72 x 72 Switch

100 x 100 Switch

FIGURE 2.8. Percentage packet loss for differentpps.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

P
ac

ke
t L

os
s

(%
)

VOQ Size

pps = 1
pps = 2
pps = 3
pps = 4
pps = 5

(a) Switch size: 50×50.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

P
ac

ke
t L

os
s

(%
)

VOQ Size

pps = 1
pps = 2
pps = 3
pps = 4
pps = 5

(b) Switch size: 100×100.

FIGURE 2.9. Percentage packet loss for different VOQ sizes.

to see whether this relationship between the frame size and delay holds forpps≥ 2. The results

showed that for a fixedpps, different frame sizes do not make a big difference in the delay.

In our simulations we considered frame size 1≤ T ≤ 5 and observed the average delay for a

50×50 and a 100×100 switch for 1≤ pps≤ 5. For each of these switches, we wanted to observe

the effects of different frame sizes from 1 up to⌈lnn⌉, hence the interval[1,5]. The results are in

Figure 2.10.

Another interesting trend in Figure 2.10 is that for lower values ofpps, the delay increases with

increasing frame size, while with higher values ofpps, delay decreases with increasing frame size.

This happens because a higher value ofpps means a scheduled input-output pair must receive

30

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5

A
ve

ra
ge

 D
el

ay
 (

sl
ot

s)

Frame Size

pps=1
pps=2
pps=3
pps=4
pps=5

(a) Switch size: 50×50.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 3 4 5

A
ve

ra
ge

 D
el

ay
 (

sl
ot

s)

Frame Size

pps=1
pps=2
pps=3
pps=4
pps=5

(b) Switch size: 100×100.

FIGURE 2.10. Delay for different frame sizes.

more packets in order to have something to transmit in each oftheppsslots. Since higher frame

size means a lower update frequency of queue information, the probability of having more packets

in any particular VOQ is higher. Hence, with higher frame size, whenever an input-output pair is

scheduled, the number of packets transmitted will be closerto pps relative to lower frame size,

thus reducing the delay. On the other hand, with lower valuesof pps, arrival of pps packets at

an input port destined to the same output port is relatively faster. Hence, with higher frame size,

those packets have to wait longer in the VOQ before the queue information is updated, resulting in

increased delay.

2.5.2 Bursty Traffic

Most Internet traffic is bursty in nature, so we ran our simulations for bursty traffic as well.

For bursty traffic we use the on-off traffic model modulated bya two-state Markov chain [12].

Figure 2.11 shows the arrival process at each input port. During the on period, an input port con-

on off

p

q

1−q1−p

FIGURE 2.11. The on-off traffic model.

tinues to receive packets destined to the same output port. If p is the probability of starting an off

31

period andq is the probability of starting an on period, then the mean on period lengthb (burst

size) is 1/p, the mean off period length is(1− q)/q, and the offered load at each input port is

q
q+p−pq. We use these expressions to model bursty traffic for two different mean burst sizes, 3 and

6. We ran all the simulations as in the uniform random traffic case for each of the burst sizes as

well.

Delay: Figure 2.12 shows the average delay for bursty traffic for different values ofpps. In The-

 0

 5

 10

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 D
el

ay
 (

sl
ot

s)

n (# ports)

ln(n)
pps = 1
pps = 2
pps = 3
pps = 4
pps = 5

(a) Mean burst size: 3

 0

 10

 20

 30

 40

 50

 60

 70

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 D
el

ay
 (

sl
ot

s)

n (# ports)

ln(n)
pps = 1
pps = 2
pps = 3
pps = 4
pps = 5
pps = 6
pps = 8

pps = 10

(b) Mean burst size: 6

FIGURE 2.12. Average delay for bursty traffic for differentpps.

orem 2.4.6 we showed that forpps≥ 2b, the delay isΩ(n). We also pointed out that forpps≤ b,

delay can be logarithmic, but asppsstarts to exceedb, the mean burst size, the delay quickly be-

comesΩ(n). In this study we primarily focus onb≤ pps< 2b as thepps≥ 2b case is very similar

to the non-bursty case. In Figure 2.12(a), whilepps≤ b the average delay is indeed logarithmic.

(Note that⌈lnn⌉ ranges from 3 to 5 asn ranges from 16 to 100.)

VOQ Occupancy: For bursty traffic we also analyzed the distribution of the number of waiting

packets in the corresponding VOQ, as observed by an incomingpacket, for variouspps (Fig-

ures 2.13 and 2.14). For bursty traffic withb = 3, we expected that the number of arriving packets

that will encounter between 0 and 2 waiting packets will dominate the percentage. In Figure 2.13

this is indeed the case. (Tables 2.6 - 2.17 shows the actual numbers).

As before, forpps= 1, a very high percentage of packets sees between 0 andb waiting packets

at the VOQ. However, asppsexceedsb, a higher percentage of packets encounters more thanb

32

waiting packets on arrival. This observation points to the relationship between VOQ lengths and

value ofppsrelative tob for bursty traffic. Forb = 6 similar trends are visible in Figure 2.14.

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4

(a) pps= 1

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6

(b) pps= 2

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(c) pps= 3

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(d) pps= 4

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(e) pps= 5

FIGURE 2.13. VOQ occupancy as observed by an incoming packet for mean burst size 3.

33

TABLE 2.6. VOQ occupancy as observed by an incoming packet forpps= 1 andb = 3.

Percentage of arriving packets that encountered
0 1 2 3 4 5

Switch size packet(s) in the queue

16×16 29.56 24.62 23.47 17.02 3.83 0.94
32×32 30.75 23.49 17.85 14.80 9.78 2.34
52×32 31.45 23.50 17.67 14.48 9.52 2.33
72×72 31.63 23.00 16.50 12.18 9.00 5.55

100×100 31.95 23.12 16.43 12.05 8.88 5.48

TABLE 2.7. VOQ occupancy as observed by an incoming packet forpps= 2 andb = 3.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7

Switch size packet(s) in the queue

16×16 28.75 22.18 16.64 12.77 9.37 5.96 2.79 0.92
32×32 29.94 21.75 15.57 11.21 7.96 5.60 3.82 2.35
52×32 31.00 21.98 15.45 10.88 7.69 5.38 3.65 2.26
72×72 31.17 21.87 15.21 10.50 7.29 5.06 3.43 2.29

100×100 31.66 22.00 15.15 10.42 7.20 4.94 3.35 2.23

TABLE 2.8. VOQ occupancy as observed by an incoming packet forpps= 3 andb = 3.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 27.34 20.99 15.78 11.60 8.30 5.91 4.09 2.74 1.68 0.84 0.37
32×32 29.00 21.17 15.27 10.94 7.75 5.36 3.68 2.53 1.67 1.12 0.71
52×32 30.25 21.54 15.21 10.65 7.42 5.10 3.48 2.35 1.56 1.01 0.65
72×72 30.58 21.50 15.06 10.51 7.28 4.99 3.41 2.31 1.54 1.01 0.68

100×100 31.14 21.66 15.01 10.36 7.14 4.88 3.32 2.25 1.51 1.00 0.65

TABLE 2.9. VOQ occupancy as observed by an incoming packet forpps= 4 andb = 3.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 26.02 20.43 15.51 11.47 8.30 5.97 4.22 2.89 1.95 1.31 0.82
32×32 27.76 20.59 15.11 10.97 7.89 5.58 3.90 2.71 1.86 1.25 0.87
52×32 29.35 21.08 15.00 10.66 7.50 5.22 3.64 2.51 1.71 1.16 0.77
72×72 29.75 21.13 14.98 10.56 7.39 5.14 3.55 2.45 1.68 1.14 0.76

100×100 30.49 21.35 14.93 10.41 7.21 5.00 3.44 2.35 1.60 1.08 0.72

34

TABLE 2.10. VOQ occupancy as observed by an incoming packet forpps= 5 andb = 3.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 24.64 19.45 15.07 11.43 8.56 6.30 4.49 3.16 2.25 1.56 1.03
32×32 26.38 19.93 14.87 11.02 8.06 5.85 4.22 2.97 2.08 1.47 1.02
52×32 28.10 20.55 14.90 10.73 7.69 5.47 3.86 2.71 1.90 1.31 0.91
72×72 28.61 20.66 14.89 10.66 7.57 5.36 3.75 2.62 1.84 1.28 0.88

100×100 29.45 20.94 14.89 10.53 7.40 5.18 3.61 2.49 1.74 1.19 0.82

TABLE 2.11. VOQ occupancy as observed by an incoming packet forpps= 1 andb = 6.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 14.79 15.26 26.27 28.42 8.57 2.88 1.56 0.89 0.51 0.30 0.19
32×32 15.17 14.53 15.69 20.97 20.81 6.67 2.55 1.37 0.80 0.49 0.32
52×32 15.42 14.65 15.68 20.87 20.58 6.72 2.55 1.39 0.83 0.50 0.30
72×72 15.49 14.23 13.23 14.82 16.52 14.95 5.57 2.21 1.16 0.69 0.40

100×100 15.63 14.32 13.25 14.79 16.47 14.80 5.47 2.22 1.15 0.70 0.42

TABLE 2.12. VOQ occupancy as observed by an incoming packet forpps= 2 andb = 6.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 14.60 13.44 13.43 15.18 15.33 13.01 7.68 3.19 1.52 0.89 0.56
32×32 15.06 13.33 11.78 10.92 10.70 10.42 9.63 7.98 4.82 2.16 1.14
52×32 15.45 13.56 11.88 10.91 10.57 10.13 9.45 7.92 4.84 2.20 1.15
72×72 15.52 13.47 11.63 10.11 9.08 8.40 7.64 6.82 6.02 4.82 2.95

100×100 15.67 13.54 11.62 10.09 9.03 8.33 7.52 6.77 6.02 4.83 2.97

TABLE 2.13. VOQ occupancy as observed by an incoming packet forpps= 3 andb = 6.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 14.50 13.07 11.85 11.01 10.22 9.50 8.70 7.54 5.66 3.36 1.72
32×32 14.91 13.02 11.36 9.95 8.91 7.84 6.90 6.11 5.36 4.65 3.88
52×32 15.33 13.27 11.51 9.97 8.81 7.71 6.82 5.95 5.22 4.61 3.82
72×72 15.38 13.21 11.31 9.71 8.40 7.27 6.23 5.36 4.62 3.92 3.35

100×100 15.55 13.32 11.37 9.73 8.40 7.23 6.18 5.32 4.56 3.89 3.35

35

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(a) pps= 1

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(b) pps= 2

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(c) pps= 3

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(d) pps= 4

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(e) pps= 5

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(f) pps= 8

 0

 20

 40

 60

 80

 100

16x16

32x32

52x52

72x72

100x100

%
 o

f t
ot

al

Switch size

0
1
2
3
4
5
6
7
8
9
10
11
12
13

(g) pps= 10

FIGURE 2.14. VOQ occupancy as observed by an incoming packet for mean burst size 6.

36

TABLE 2.14. VOQ occupancy as observed by an incoming packet forpps= 4 andb = 6.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 14.12 12.66 11.29 10.21 9.01 8.02 7.14 6.31 5.51 4.72 3.72
32×32 14.72 12.76 11.06 9.67 8.42 7.30 6.33 5.45 4.65 3.96 3.34
52×32 15.14 13.02 11.23 9.73 8.39 7.23 6.21 5.31 4.52 3.86 3.28
72×72 15.21 13.00 11.13 9.55 8.15 7.02 6.00 5.13 4.34 3.68 3.10

100×100 15.43 13.16 11.21 9.56 8.17 7.00 5.97 5.08 4.29 3.64 3.07

TABLE 2.15. VOQ occupancy as observed by an incoming packet forpps= 5 andb = 6.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 13.95 12.40 10.94 9.79 8.58 7.46 6.47 5.65 4.95 4.25 3.61
32×32 14.51 12.57 10.93 9.47 8.18 7.08 6.08 5.20 4.46 3.78 3.24
52×32 15.04 12.89 11.06 9.53 8.21 7.02 6.00 5.08 4.35 3.68 3.13
72×72 15.05 12.87 11.03 9.44 8.05 6.87 5.87 4.99 4.25 3.59 3.05

100×100 15.33 13.04 11.12 9.47 8.05 6.86 5.85 4.96 4.21 3.56 3.01

TABLE 2.16. VOQ occupancy as observed by an incoming packet forpps= 8 andb = 6.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 13.06 11.48 10.25 9.09 7.97 7.01 6.15 5.32 4.61 4.00 3.42
32×32 13.75 11.89 10.45 9.13 7.95 6.87 5.97 5.17 4.43 3.81 3.24
52×32 14.43 12.38 10.69 9.21 7.95 6.82 5.85 5.00 4.29 3.65 3.11
72×72 14.57 12.45 10.72 9.22 7.91 6.78 5.78 4.94 4.21 3.59 3.05

100×100 14.92 12.69 10.85 9.27 7.92 6.77 5.76 4.90 4.17 3.55 3.02

TABLE 2.17. VOQ occupancy as observed by an incoming packet forpps= 10 andb = 6.

Percentage of arriving packets that encountered
0 1 2 3 4 5 6 7 8 9 10

Switch size packet(s) in the queue

16×16 12.55 10.88 9.73 8.71 7.71 6.81 6.02 5.26 4.61 4.04 3.52
32×32 13.25 11.38 10.02 8.77 7.69 6.72 5.86 5.09 4.40 3.84 3.31
52×32 13.93 11.96 10.40 9.01 7.81 6.74 5.82 5.02 4.31 3.71 3.17
72×72 14.11 12.08 10.44 9.02 7.80 6.73 5.78 4.98 4.27 3.67 3.14

100×100 14.49 12.34 10.62 9.12 7.82 6.71 5.75 4.92 4.21 3.59 3.07

37

Figure 2.15 presents the percentage of packets that are lostwith ⌈lnn⌉ size VOQs for bursty

traffic. The packet loss becomes appreciably higher even forpps= 2.

Packet Loss for Different VOQ Sizes:Just like with uniform random traffic, we also selected two

switch sizes, 50×50 and 100×100, varied the VOQ sizes for each switch in the range[1,⌈ln(n)⌉],

and observed the packet loss for each VOQ size. Figures 2.16 and 2.17 present the results. These

results, like their uniform traffic counterpart, show that if the schedule generation time of a switch

increases, thereby forcing an increase inppsto ensure stability for an identical packet arrival pat-

tern, a fixed VOQ size leads to increasing number of dropped packets, especially for the lower

VOQ sizes. As shown in Figure 2.16 and especially in 2.17,pps= 1 translates to very low VOQ

size requirements, while ensuring low packet loss. This, however, is not true for higher values of

ppsand indirectly reinforces the fact that ensuringpps= 1 leads to big gains in delay (VOQ size

is related to delay).

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

%
 L

os
s

pps

Switch size: 16 x 16
Switch size: 50 x 50
Switch size: 72 x 72

Switch size: 100 x 100

(a) Mean burst size 3

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 1 2 3 4 5 6 7 8 9 10

%
 L

os
s

pps

Switch size: 16 x 16
Switch size: 50 x 50
Switch size: 72 x 72

Switch size: 100 x 100

(b) Mean burst size 6

FIGURE 2.15. Percentage packet loss for bursty traffic with for differentpps.

Different Frame Sizes:

For bursty traffic we also varied the frame size in the interval [1,5] and observed the average

delay for a 50× 50 (resp., 100× 100) switch and 1≤ pps≤ 5. Figure 2.18 (resp., Figure 2.19)

shows the results forb = 3 (resp.,b = 6).

38

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

P
ac

ke
t L

os
s

(%
)

VOQ Size

pps = 1
pps = 2
pps = 3
pps = 4
pps = 5

(a) Switch size: 50×50.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

P
ac

ke
t L

os
s

(%
)

VOQ Size

pps = 1
pps = 2
pps = 3
pps = 4
pps = 5

(b) Switch size: 100×100.

FIGURE 2.16. Percentage packet loss for different VOQ sizes for traffic with mean burst size 3.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4

P
ac

ke
t L

os
s

(%
)

VOQ Size

pps = 1
pps = 2
pps = 3
pps = 4
pps = 5
pps = 8

pps = 10

(a) Switch size: 50×50.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

P
ac

ke
t L

os
s

(%
)

VOQ Size

pps = 1
pps = 2
pps = 3
pps = 4
pps = 5
pps = 8

pps = 10

(b) Switch size: 100×100.

FIGURE 2.17. Percentage packet loss for different VOQ sizes for traffic with mean burst size 6.

2.6 Summary

In this chapter we presented the results from our research onthe effect of the relationship be-

tween packet-transmission time and schedule-generation time on performance parameters like de-

lay, packet loss, and VOQ requirements for a crossbar-basedinput-queued switch. We showed that

the logarithmic delay result of Neelyet al.[59] does not hold for the more practical scenario where

the packet-transmission time (slot) and schedule-generation time (round) are not the same.

We proved that logarithmic delay is achievable only when forevery schedule, a single packet is

transmitted between a scheduled input-output pair. This restriction is acceptable in practice only if

the slots and rounds are of the same duration or if the packet arrival rate is low enough such that

39

 0

 5

 10

 15

 20

 25

 30

 1 2 3 4 5

A
ve

ra
ge

 D
el

ay
 (

sl
ot

s)

Frame Size

pps=1
pps=2
pps=3
pps=4
pps=5

(a) Switch size: 50×50.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 1 2 3 4 5 6

A
ve

ra
ge

 D
el

ay
 (

sl
ot

s)

Frame Size

pps=1
pps=2
pps=3
pps=4
pps=5

(b) Switch size: 100×100.

FIGURE 2.18. Average delay for different frame sizes for bursty traffic with mean burst size 3.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5

A
ve

ra
ge

 D
el

ay
 (

sl
ot

s)

Frame Size

pps=1
pps=2
pps=3
pps=4
pps=5
pps=8

pps=10

(a) Switch size: 50×50.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5

A
ve

ra
ge

 D
el

ay
 (

sl
ot

s)

Frame Size

pps=1
pps=2
pps=3
pps=4
pps=5
pps=8

pps=10

(b) Switch size: 100×100.

FIGURE 2.19. Average delay for different frame sizes for bursty traffic with mean burst size 6.

in spite of the unutilized switch capacity (due to a round being much longer that a slot), stability is

possible.

These results point to the following important conclusions.

• Logarithmic delay is possible only if the scheduling algorithm is fast enough to match the

transmission time of a packet.

• Logarithmic queue length is sufficient to store all the packets whenpps= 1.

• The investment in additional computational hardware to reduceppscould pay off in terms

of reduced hardware requirement for buffer space.

40

Chapter 3
Fast Scheduling Algorithm on Mesh-of-Trees

3.1 Introduction

In Chapter 2 we discussed the relationship between packet-transmission time and schedule-generation

time on performance parameters like delay, packet loss, andVOQ size for a crossbar-based input-

queued switch. We proved that for uniform random traffic, when pps≥ 2 (i.e., the schedule gen-

eration time is more than the packet transmission time), packet delay isΩ(n). We also proved for

bursty traffic with average burst sizeb that whenpps> 2b, the delay isΩ(n). This implies that there

is no alternative to reducingtround, the time to schedule a round of packets on the switch, if one

wants to achieveO(logn) packet delay. This underscores the need for a fast scheduling algorithm.

We present one such algorithm in this chapter.

In an n× n input-queued switch, the set of non-empty virtual output queues (VOQs) deter-

mines the set of input-output connection requests. The mainproblem that the scheduling algorithm

solves is that of selecting a subset of connection requests without violating the crossbar constraint.

This problem is equivalent to a matching problem1 on a 2n-node bipartite graph, where the in-

put ports constitute one of the partitions and the output ports constitute the other partition. Edges

depict input-output connection requests. It is clear that every set of communications that satisfies

the crossbar constraint corresponds to a (set of) matching(s) on this bipartite graph. Figure 3.1

shows an example of the relationship between crossbar scheduling and bipartite matching. Fig-

ure 3.1(a) depicts a 3× 3 crossbar with colored bars at input ports showing waiting packets for

output ports with the same color. Input-port 1 has queued packets destined for all the three output

ports, input-port 2 has packets destined for output ports 1 and 2, and so on. Figure 3.1(b) shows the

corresponding bipartite graph that has an edge corresponding to each input-output port pair with a

1A matching on a graphG is a subsetM of edges ofG such that no two edges are incident on a common vertex. A matchingX is maximaliff
there is no strict superset ofX that is also a matching. MatchingX is maximum iff no other matching has more edges thanX. The matchings defined
here are size-based matchings, in contrast to weight based matchings described in Footnote 2 on Page 42.

41

packet to transmit between them. Figure 3.1(c) shows a maximal matching of the bipartite graph

of Figure 3.1(b). In Figure 3.1(d) crosspoints of the crossbar are set (shown as darkened circles

inside boxes) to reflect the maximal matching of Figure 3.1(c).

��
��
��
��

����
����

��
��
��
����
��
��
��

��
��
��
��

����

���� 1

2

3

1 32
Outputs

Inputs

(a)

1

2

3

1

2

3

OutputsInputs

(b)

1

2

3

1

2

3

OutputsInputs

(c)

�
�
�
�

��
��
��

��
��
��

��

����

�
�
�
�����

�
�
�
�

�
�
�
�

1

2

3

1 32
Outputs

Inputs

(d)

FIGURE 3.1. Example of equivalence between crossbar scheduling andbipartite matching.

While a matching ensures that the crossbar constraint is respected, a large matching allows a

large number of packets to be transmitted in parallel. A maximum matching maximizes the number

of parallel communications. The Fair Frame algorithm [59] uses a maximum matching. However,

it is difficult to compute a maximum matching (O(n1.5 logn) [59] on a 2n-node bipartite graph).

A maximal matching on the other hand, is easier to compute (O(nlogn) [59]) an can replace a

maximum matching if the switch has a speedup or 2 [59] (speedup is defined in Footnote 1 on

Page 12). Even thisO(nlogn) time is insufficient for unitppsfor large values ofn. In this section

we devise a fast (polylog time) maximal matching.

Matching, in the context of input-queued switch scheduling, is a well-studied problem. Leonardi

et al.[48] and Tassiulaset al.[76] used a maximum-weight matching2 to generate a schedule. Giac-

coneet al. [31] presented three randomized algorithms for weight-based matching in a scheduling

algorithm that achieve performance in terms of delay close to that of maximum-weight based al-

gorithms. One of those algorithms has linear complexity anda second one nearly so (O(n) and

O(nlog2n)). Zhenget al. [81] presented a similar weight-based randomized matchingalgorithm

for input-queued switches. TheiSLIP algorithm designed by McKeown [55] generates a maximal-

2A weight-based matching uses a bipartite graph with edge weights (usually representing buffer loads). The sum of the weights of the edges in
a matching is the largest possible for a maximum weight matching.

42

size bipartite matchings and is one of the most widely used distributed crossbar scheduling al-

gorithms. The Cisco Gigabit Switched Router (GSR) usesiSLIP. The average time complexity

of iSLIP is O(logn), but its worst case time complexity can be linear [55]. All these matching

methods [48, 55, 76] result in an average packet delay ofO(n) slots.

Distributed switch scheduling methods, such asiSLIP, can generate a schedule in each round.

This approach is faster, more efficient, and scales better for larger switches than sequential schedul-

ing. In this chapter we present a distributed maximal-size bipartite matching algorithm to generate

schedules for a crossbar switch. Our algorithm has a guaranteed polylog running time. Addition-

ally, we use a reconfigurable structure that closely resembles a crossbar. More specifically, the

approach is to use a mesh-of-trees (an implementable mesh-based structure with trees in rows

and columns) inside a switch as the distributed control fabric. Coming back to the Fair Frame

scheduling algorithm (see Chapter 2), each round computes a maximal matching from the set of

input ports to the set of output ports corresponding to the buffered packets3. More precisely, let

I = {i1, i2, · · · , in} andJ = { j1, j2, · · · , jn} be the sets of input and output ports. Construct bipartite

graphG = (I ∪J,E) such that(ix, jy) ∈ E if and only if ix has a packet destined tojy. A matching

ensures that each input connects (if at all) to just one output and vice versa. A maximal matching

ensures that for uniform random traffic, ifpps= 1 the delay isO(logn) [59]. A similar result holds

for bursty traffic as well.

Bipartite matching on parallel architectures is also a well-studied problem. Fayyaziet al. [27]

presented a linear-time PRAM algorithm for finding a maximum-weight matching in general bi-

partite graphs. Hanckowiaket al.[35] presented an algorithm for a distributed graph that computes

a maximal matching of its own (unknown) topology in polylog number of communication rounds.

Kelsen [44] presented a maximal-size bipartite matching algorithm that runs in timeO(log3n) on

an EREW PRAM with m+n
log3n

processors. We base our mesh-of-trees algorithm on this algorithm.

In the next section we briefly describe Kelsen’s bipartite matching algorithm. We then design our

3Note that Fair Frame [59] computes a maximum and not a maximal bipartite matching, but a maximal bipartite matching algorithm will also
guarantee stability and logarithmic delay with a speedup of 2. A speedup of 2 is common in today’s routers. For example, Cisco CRS-1 has an
internal speedup of 3.5 [39].

43

algorithm for the R-Mesh model, which can be efficiently simulated on a mesh-of-trees structure

(proved in Lemma 3.3.3). Section 3.3 describes details about the R-Mesh architecture and its sim-

ulation on a mesh-of-trees, and Section 3.4 details the R-Mesh bipartite matching algorithm.

3.2 Kelsen’sO(log3n) Bipartite Matching Algorithm on the
PRAM

Kelsen [44] presented an algorithm that runs inO(log3n) time with
m+n

log3n
processors on an EREW

PRAM to generate a maximal matching on a directed bipartite graph G with n vertices andm

edges. The algorithm also applies to an undirected bipartite graph where each edge is replaced by

two oppositely directed edges, as shown in Figures 3.3(a) and 3.3(b). Figure 3.2(a) shows the basic

structure of the algorithm.

The general idea of the algorithm is to start with an empty graph (matching)X0 and iteratively

add vertices and edges to it so thatXi (output ofith iteration) is always a matching on the original

graphG. The algorithm terminates after iterationα when adding more edges toXα causes it to not

be a matching. Figure 3.2(a) illustrates the structure of the algorithm.

The algorithm has two main procedures:matchandhalve. In iterationi, procedurematch(Fig-

ure 3.2(b)) takes as input graphGi and computes a matchingMi incident on at least 1/6 of the

edges ofGi. This guarantees thatX will be a maximal matching afterO(logn) iterations of the

loop in Figure 3.2(a). The exact number of iterations to produce a maximal match depends on how

“good” (large)M is. Procedurematchis also iterative and in iterationj calls procedurehalvefor

graphGi j to halve the degree of each vertex inGi j .

Procedurehalveis called bymatchand accepts graphGi j as its parameter. LetGi j = {Vi j ,Ei j},

and, for each vertexv∈Vi j , let δ(v) denote its degree. Then, procedurehalvereturns a subgraph

H = {Vi j ,E} of Gi j such that for each vertexv of H , the degree ofv in H is either⌈δ(v)
2 ⌉ or ⌊δ(v)

2 ⌋.

The main idea ofhalveis to compute an Euler partition ofGi j , i.e., a decomposition ofGi j into

edge-disjoint paths with the property that every vertex with odd (resp., even) degree is an end-

vertex of exactly one (resp., zero) path. Kelsen defined two relationships among the edges of the

44

(a) Main Algorithm. (b) Procedurematch. (c) Procedurehalve.

FIGURE 3.2. Maximal size bipartite matching by Kelsen.

bipartite graph,partnersandsuccessors, and used that to find the Euler partitions. Kelsen paired

among edges incident on the same vertexu of Gi and defined them as partners. Further, for an

edge(u,v) in Gi, definesuccessor(u,v) = partner(v,u). For example, in Figure 3.3(b) edges(a,u)

and(a,v) are partners of each other, and so are(u,a) and(u,c), since both these pairs of edges

are incident on the same vertexa andu respectively. Moreover,successor(a,u) = partner(u,a) =

(u,c). Intuitively, during generating matchings, if an edge is included in a matching, then neither

its partner nor its successor can be included in that matching. GraphG∗ represents the set of Euler

partitions ofGi j . Figure 3.3(c) showsG∗ corresponding to the bipartite graph of Figure 3.3(b).

45

u

v

w

a

b

c
(a) Original undirected
bipartite graph.

u

v

w

a

b

c
(b) Corresponding di-
rected bipartite graph.

va

bv

au

uc

cw

wa

aw
wc

cu

ua

av

vb

(c) GraphG∗.

va

bv

au

uc

cw

wa

aw
wc

cu

ua

av

vb

(d) 2 coloring onG∗.

FIGURE 3.3. An example of Kelsen’s algorithm.

Each edge of Figure 3.3(b) is a vertex inG∗. There is an edge inG∗ between two vertices if one of

the corresponding edges inGi j is thesuccessorof the other. Two coloring the edges on each path

in G∗ and selecting only one of the colors results in halving the degree of each vertex. For details

of the correctness of this algorithm, refer to Kelsen [44].

Kelsen used parallel list ranking to accomplish the two coloring. We will take a different ap-

proach, exploiting the bus structure of the Euler partitionas embedded in an R-Mesh, to achieve

the same end.

3.3 Reconfigurable Mesh Preliminaries

A reconfigurable mesh (R-Mesh) is a well-studied reconfigurable architecture [77]. A linear di-

rected R-Mesh (DR-Mesh) consists of an array of processing elements (PEs) connected by a mesh-

based interconnection fabric. A PE connects to each of it four neighbors using a pair of oppositely

directed links. Each PE has four pairs of ports,N, E, W, S, each of which has an incoming and an

outgoing port represented byNi,No, etc. A PE can internally connect an incoming port to any of its

46

outgoing ports to create a bus. We represent each internal connection inside a PE as an ordered pair,

for example(NiSo) represents a connection from the north incoming to the southoutgoing port4.

Figure 3.4 shows a 3×5 DR-Mesh with 15 PEs. Figure 3.4 also shows a few pairs of buses: one

connecting theW set of ports of PE(2, 0) with theN set of ports of PE(0, 1), another connecting

theSset of ports of PE(2, 3) with theE set of ports of PE(2, 4), and a third connecting theW set

of ports of PE(0,0) with theW set of ports of PE(0,2). Once a bus is created, any PE can write

(resp., read) data to (resp., from) any of its ports that the bus spans.

N

E

E i

W

W

Si So

i

o

o

i

No
0

1

2

0 21 3 4

FIGURE 3.4. A 3×5 DR-Mesh.

In a general (undirected) R-Mesh, all ports and buses are undirected. The algorithm in this

paper uses an R-Mesh to create pairs of parallel buses that arestructured as though in a DR-Mesh.

Although our algorithm does not use the directionality of these buses, we describe it as though it

was run on a DR-Mesh because the description is simpler. Each PE connects corresponding pairs

of ports (as in Figure 3.4), for example, if a PE connectsNi andSo, then it also connectsSi and

No. A 2×2 block of R-Mesh processors can emulate (in an undirected way) the connections of a

DR-Mesh processor making such connections.

A horizontal-vertical R-Mesh (HVR-Mesh) is one in which everybus lies on a single row or

column, or in other words none of the buses has any bends.

Lemma 3.3.1. (Matsumae and Tokura [53]):An n×n HVR-Mesh can simulate each step of an

n×n R-Mesh in O(log2n) time. 2

4In general, we use the notation(N,S) to represent the connections(NiSo) and(SiNo) simultaneously.

47

A 1×n HVR-Mesh is a segmentable bus5. A circuit-switched-tree (CST) (see also Chapter 4) is

a binary tree-like structure where each leaf is a PE and each internal node is a switch.

Lemma 3.3.2. (El-Boghdadiet al. [24]): An n-processor CST can simulate each step of an n-

processor segmentable bus in O(logn) time. 2

The CST elements needed to simulate a segmentable bus are simple computational gates. Thus,

theO(logn) time refers to computational gate delays. In a system withn components, a logn bit

address is typically used. Even the decoder for this addresswould haveO(logn) gate delay. Thus,

the delay for emulating a segmentable bus would be a few clockcycles in practice.

An n× n HVR-Mesh is ann× n array of PEs with a segmentable bus in each row and each

column. Ann×n mesh-of-trees is analogous to an HVR-Mesh in that it is ann×n array of PEs

with a CST in each row and column.

Lemma 3.3.3.A n×n mesh-of-trees can simulate each step of an n×n R-Mesh in O(log3n) time.

Proof. By Lemma 3.3.1, an HVR-Mesh can simulate any step of an R-Mesh inO(log2n) time.

By Lemma 3.3.2, ann-processor CST can simulate a step of a row or column of an×n HVR-

Mesh inO(logn) time, so ann×n mesh-of-trees can simulate a step of ann×n HVR-Mesh in the

same time. Hence, a mesh-of-trees can simulate an R-Mesh inO(log3n) time, which proves the

lemma.

Efficient R-Mesh solutions for various problems exist [77]. We describe solutions to two such

problems – prefix sums and neighbor localization. We use these solutions later in R-Mesh algo-

rithms.

Prefix Sums: For 0≤ i ≤ n, the ith prefix sum of a set of bitsb0,b1, · · · ,bn is b0 + b1 + · · ·+

bi. We use ann+ 1× n R-Mesh as shown in Figure 3.5. We assume PE(0, i) (0≤ i ≤ n) holds

bi. To start, each PE(0, i) broadcastsbi down its column. Each non-top-row PE receivesbi and

configures itself based on the value ofbi . If bi = 1, then the PE configures itself as(NE,SW); that

5An n-PE segmentable bus is a linear bus withn−1 segment switches, each connected to a PE. PEs can open/closethese switches to partition
the bus into blocks of contiguous PEs. Each PE can write to itssegment and all other processors incident on the segment can read the written data.
A segmentable bus is equivalent to a one-dimensional R-Mesh.

48

is connectingN andE ports andS andW ports as two separate connections. Otherwise, the PE

configures itself as(EW). These steps will create a bus connecting theW port of PE(0,0) to theE

port of PE(nth pre f ix sum,n) (shown in bold). PE(0,0) then sends a signal on itsW port. PE(i, j)

(for any 0≤ j ≤ n) receives that signal at itsE port iff the jth prefix sum isi. For more details refer

to Vaidyanathan and Trahan [77].

11 0 1

row 0

row 1

row 2

row 3

row 4

FIGURE 3.5. Prefix sums computation on an R-Mesh.

An R-Mesh is often implemented as a mesh-of-trees in practice. In that case, a one-dimensional

R-Mesh with a row tree can compute prefix sums using the row treein logn iterations.

Neighbor Localization: Given a one-dimensional R-Mesh with each PE flagged with a bit indi-

cating it to be either active or inactive, neighbor localization finds a list of active PEs in the order

of their position. In this algorithm, initially, each PE sets a variablenbr to NIL. Then, as shown

in Figure 3.6, each inactive PE makes the connection(EW), while each active PE disconnects all

ports internally. Now, each active PE writes its column index to theW port and reads the value writ-

ten to itsE port and stores it innbr, at which pointnbr contains the column index of the neighbor

of each active PE. Refer to Vaidyanathan and Trahan [77] for more details.

1 1 0 0 1

0 1 2 3 4

active/inactive

nbr 1 4 none

FIGURE 3.6. Neighbor localization on an R-Mesh.

49

3.4 R-Mesh Bipartite Matching Algorithm

For our purposes we assume ann× n crossbar switch has ann× n R-Mesh as the distributed

computation fabric that create the schedule. We now place the matching algorithm in the context

of the scheduling algorithm for the input-queued switch.

At the beginning of each frame, for each 1≤ i, j ≤ n, processors calculate the traffic matrix in

the form of a valuer(i, j) representing the number of rounds required to transmit all the packets

in queue(i, j) destined from input porti to output port j. The R-Mesh does not updater(i, j)

for incoming packets until the beginning of the next frame; note, however, that a PE decrements

r(i, j) by one whenever the corresponding input-output pair is present in a matching, that is, when a

packet in queue(i, j) has been scheduled. We flag a PE(i, j) asactive(resp.,inactive) if r(i, j) > 0

(resp.,r(i, j) = 0). These flags constitute the adjacency matrix of graphG, input to the matching

algorithm.

The R-Mesh implementation of each step ofmatch(except forhalve) is straightforward and can

be achieved by neighbor localization. To accomplish the goal of the PRAM version ofhalve(Fig-

ure 3.2(c)), the R-Mesh likewise computes an Euler partition(but differently than the PRAM) and

two-colors vertices (again differently than the PRAM). The DR-Mesh embeds an Euler partition

of the input bipartite graph using two oppositely directed but parallel buses. While implementing

halve, we create buses connecting active PEs in such a manner that each active PE connects to the

next active PE (if any) on its row (resp., column) by a row (resp., column) bus-segment. We call

two active PEs connected by a row (resp., column) bus-segment as row-neighbors (resp, column-

neighbors). Additionally, at each active PE, each bus bendsfrom a row to a column in one direction

and from the same column to the row in the other. A limitation of any mesh-based structure is that

no two buses in the same direction can overlap. We actually use this limitation to our advantage in

creating an elegant bus structure that we use later to two-color the active PEs on a bus.

The following pseudo-code describes Procedurehalve.

50

TABLE 3.1. tagof active PEs based onpsrow andpscol.

odd psrow evenpsrow

odd pscol 3 0
evenpscol 2 1

TABLE 3.2. Internal bus connections depending ontag.

tag 0 1 2 3

Procedurehalve

Input: A 2n−node bipartite graphGi represented on ann×n R-Mesh as an adjacency matrix. Each

edge in the graph is represented by a PE flagged as active. (PE(i, j) is flagged as active to denote

the edge between verticesi and j.)

Output:A bipartite graph with degree of each vertex of the input bipartite graph halved, represented

on ann×n R-Mesh. Each edge in the graph is represented by a PE flagged as active.

Algorithm:

1. Calculate prefix sums of active PEs in each row and each column. An active (resp., inactive)

PE contributes a 1 (resp., 0). Each active PE receives its prefix sum from its row and from

its column, denoted bypsrow andpscol, respectively.

2. Each active PE disconnects all its internal connections and each inactive PE connects as

(N,S) and(E,W).

3. Each active PE generates atag, 0≤ tag≤ 3, using itspsrow and pscol values as shown in

Table 3.1.

4. Each active PE withtag 6= 3 makes the internal connections as shown in Table 3.2.

5. Call Procedureelect-leader, which flags the topmost-leftmost PE in each bus as leader.

51

6. Each leader PE in rowi and columnj writes the value 0 to theEo port. Additionally, if the

leader PE had not received its own indicesi and j in procedureelect-leader, it writes 1 to the

So port.

7. Each active PE with some internal connection reads from both the incoming ports that have

internal connections (see Table 3.2). If it reads a value 0 (resp., 1) either from itsEi or Wi

(resp.,Ni or Si) port, then it makes its status inactive.

The main aspect of our implementation ofhalveis the way the bus structure creates the Euler par-

tition. Figure 3.7 shows the execution as well as result ofhalveon a 4×4 DR-Mesh. Figure 3.7(a)

shows the bipartite graph that is the input tohalve. Kelsen’s algorithm works on a directed graph.

Hence, each edge in Figure 3.7(a) is actually two oppositelydirected edges which we do not show

here. PEs with bold (resp., thin) outlines in Figure 3.7(b) represent active (resp., inactive) PEs.

Note that each active PE corresponds to an edge in the bipartite graph.

Kelsen’s algorithm determined a partner and a successor foreach edge. For example, edge

(a,u)’s partner and successor will be(a,v) and(u,c) respectively. Our algorithm’s bus creation

mechanism automatically captures these partner and successor relationships. Edges of the bipar-

tite graph denoted by two successive active PEs connected bya row (resp., column) bus are each

other’s partner (resp., successor).

Kelsen’s algorithm created a graphG∗ corresponding to the Euler partition ofGi j . A vertex in

G∗ corresponds to an edge inGi j and an edge inG∗ is based on successor relationships inGi j . In

our case, active PEs in the same row or column indicate edges in Gi j incident on the same vertex.

Additionally, active PEs directly connected by a row/column bus indicate partner/successor. Since

we are using a mesh structure, pairing neighboring active PEs on row and column directly produces

an Euler partition. To achieve this pairing, Step 1 computesprefix sums for each active PE, and Step

4 creates internal connections pairing an odd PE with the next even one in each row and column by

establishing a bus through each active PE spanning both its row and column neighbors. This bus

corresponds to an Euler partition. In Kelsen’s algorithm, edges(a,u) and(u,c) of Figure 3.7(a)

52

a

b

c

d

u

v

w

x
(a) Input graph.

d

c

b

a
u v w x

(b) Beforehalve.

a
u v w x

b

c

d

(c) After halve.

a

b

c

d

u

v

w

x
(d) Output graph.

FIGURE 3.7. Procedurehalve.

would have been nodes inG∗ with an edge from(a,u) to (u,c). The bus directly connecting them

in Figure 3.7(b) denotes the same.

For example, if we consider Figures 3.7(a) and 3.7(b), each PE in Figure 3.7(b) corresponding

to an edge in Figure 3.7(a) is active. If we consider the edge(b, v), then the corresponding PE,

PE(b, v) will have odd row and even column prefix sums. This signifies its row neighbor is to its

right and column neighbor is above it. Accordingly, PE(b, v) connects its north and east ports to

make a bus spanning its row and column neighbors.

Once these buses corresponding to an Euler partition are created, we want to choose alternate

active PEs on each bus to include in the matching. We achieve this by first picking a leader in each

bus. The leader then picks one of the two oppositely directedbut parallel buses and informs all

53

the others. Note that in the direction of the bus, active PEs alternate with bus entering on the row,

leaving on the column and bus entering on the column, leavingon the row. We use this as the basis

of two-coloring. In contrast, Kelsen used parallel list ranking to two-color the paths in his Euler

partition.

Figure 3.7(c) shows the R-Mesh after the execution ofhalve. Note that half of the active PEs in

each row and column have now become inactive. Figure 3.7(d) shows the resultant bipartite graph

with the degree of each vertex halved.

We now present our procedureelect-leader. That procedure selects the topmost-leftmost active

PE in each bus as the leader (the topmost-leftmost active PE will always havetag= 3).

Procedureelect-leader

Input: An n×n R-Mesh with one or more buses connecting active PEs. Each active PE has atag

in [0, 3] associated with it.

Output:The topmost-leftmost PE in each bus flagged as the leader.

Algorithm:

1. Each active PE withtag= 3 and no internal connections repeats the following three steps

until it receives either its own indices or no value:

(a) Each active PE(i, j) with tag= 3 writes the valuesi and j to its Eo andSo port.

(b) Each active PE(i, j) with tag = 3 reads from itsEi (resp.,Si) port, and if there is a

value, stores it in variablesk1 andℓ1 (resp.,k2 andℓ2).

(c) i. If PE(i, j) read a value at itsEi port in Step 1(b) and ifℓ1 < j or (ℓ1 = j andk1 < i),

then make the internal connections corresponding totag= 3 from Table 3.2.

ii. If PE(i, j) read a value at itsSi port in Step 1(b) and ifℓ2 < j or (ℓ2 = j andk2 < i),

then make the internal connections corresponding totag= 3 from Table 3.2.

2. Each active PE(i, j) with tag = 3 and no internal connections additionally flags itself as

leader.

54

The goal ofelect-leaderis to designate a single PE on each bus as leader. Our design ofelect-

leaderensures that the leftmost-topmost PE becomes the leader. The leftmost-topmost PE on each

bus will always havetag= 3. However, each bus can have multiple PEs withtag= 3. For example,

the longer bus in Figure 3.7(b) spanning eight active PEs hastwo PEs withtag= 3. The main idea

in elect-leaderis that in each iteration, each PE(i, j) with tag= 3 communicates with the next PE

with tag= 3 along the bus in both the directions, and based on the information it receives from

othertag= 3 PEs, PE(i, j) either drop out of contention from the leader election or participate in

the next iteration.

Lemma 3.4.1.The topmost-leftmost PE of any bus will have tag= 3.

Proof. We prove this by contradiction. Let us assume that the topmost-leftmost PE of a bus has

tag= 0. This means itspsrow calculated in Step 1 ofhalveis even, that is, the row contains an even

number of active PEs including the leftmost in its row between column 0 and its column. This

implies this PE will be connected to another PE to its left by arow bus-segment which contradicts

our assumption. Similar arguments are valid for the othertags thus proving the lemma.

Lemma 3.4.2.Procedure elect-leader elects a leader in O(logn) time.

Proof. Let PE(i1, j1) and PE(i2, j2) be twotag 3 PEs directly connected by a bus. Since these are

two distinct PEs, at least one of the relationsi1 6= i2 and j1 6= j2 always holds. This means at least

one of the four conditions of Steps 1(c)(i) and 1(c)(ii) is satisfied for one of these PEs. Hence, that

PE drops-out of contention for being the leader. Since, the algorithm removes at least one out of

two consecutivetag 3 PEs from contention in any iteration, in at most logn iterations all but one

PE will be removed from contention.

3.5 Time Complexity

An R-Mesh can calculate the prefix sums inhalve in O(logn) time [18]. Procedureelect-leader

will also takeO(logn) time on an R-Mesh as each iteration of the loop eliminates at least half

of the PEs on a bus withtag = 3 from the leader election. Hence,halve takesO(logn) time to

complete.

55

Procedurematchinvokeshalveuntil each vertex in the bipartite graph has a single neighbor.

Since each iteration halves the degree of a vertex,O(logn) iterations ofhalve will reduce the

degree of each vertex to at most 1. So,matchcompletes inO(log2n) time.

As noted earlier,O(logn) iterations ofmatchproduce the maximal matching. Hence, the total

time needed to generate the maximal matching on an R-Mesh isO(log3n).

In Lemma 3.3.3 we showed that ann×n mesh-of-trees can simulate a step of ann×n R-Mesh

in O(log3n) time. Hence, our algorithm will run on a mesh-of-trees inO(log6n) time.

Theorem 3.5.1.A maximal-size bipartite matching on a graph with n vertices in each partition

can be generated in O(log6n) time on an n×n mesh-of-trees. 2

This complexity of the bipartite matching determines the time complexity of the Fair Frame

algorithm. Hence, our matching algorithm in the Fair Frame scheduling method will complete a

schedule inO(log6n) time.

Corollary 3.5.2. Scheduling packets on an n×n switch can be completed in O(log6n) time on an

n×n mesh-of-trees. 2

The above time complexity is the worst case. The best (and probably the average) case can be

significantly faster. As noted in the remarks after Lemma 3.3.2, for all practical purposes the simu-

lation of the segmentable bus runs in a few clock cycles. Thusin a way one, could say that the time

complexity of the scheduling algorithm isO(log5n). Additionally, the simulation of Matsumae

and Tokura [53] represents the worst case where arbitrary R-Mesh buses are possible. Our case

involves only linear buses for which a better simulation maybe possible. TheO(logn) calls to

halveassume nodes to haveO(n) degree. For a limited degree graph (such as, for example, when

the frame hasΘ(logn) slots),halvewill only needΘ(log logn) iterations.

3.5.1 Other Considerations

In Section 3.4, for simplicity we assumed that the number of roundsr(i, j) needed to transmit

all the packets in a queuequeue(i, j) was available at PE(i, j). Even if we do not make that

assumption, we can modify the algorithm to ensure no loss in efficiency. Since the frame size is

56

O(logn), at mostO(logn) packets can arrive during a frame at an inputi. So, we can interleave

the queue-status update for the next frame with computationof the current frame. For example, if

we assume inputi receives a packet for outputj and is connected to outputk in the current frame,

theni can broadcast a message on its row bus to indicate to PE(i, j) a new arrival. At the start of

the next frame, each PE(i, j) would hold a current status ofqueue(i, j).

3.6 Summary

In this chapter we designed a maximal-size bipartite matching algorithm that runs in polylog time

on a mesh-of-trees. This is a significant improvement over existing sequential algorithms that run

in linear time and distributed algorithms that are experimentally shown to run in logarithmic time,

but can take linear time in the worst case.

Open problems include improving the algorithm by using the regularity of the bus structure in

finding the leader. If we are successful, then this will speed-up the algorithm by a factor of logn.

57

Chapter 4
Scheduling and Configuration of the
Circuit-Switched Tree

In this chapter we present efficient scheduling and configuration algorithms for thecircuit-switched

tree (CST). The CST is an important interconnect used to implement dynamically reconfigurable

architectures. A CST has a binary tree structure with sourcesand destinations as leaves and switches

as internal nodes. These leaves communicate among themselves using the links of the tree. In a

parallel processing environment these sources and destinations for a communication are processing

elements (PEs). Key components for successful communication on a CST are scheduling individual

communications and configuring the CST switches to establishdata paths. Patterns and conflicts

created by the positions of source and destination leaves generate various CST-switch scheduling

and configuration problems. Here, we present algorithms to solve several such problems. The al-

gorithms are distributed and require only local information, yet they capture the global picture to

ensure proper communication. In the next section we presentbackground information about the

CST. The section includes applications of the CST, its structure, and a description of various com-

munication sets created by relative positions of sources and destinations of communications on a

CST. Sections 4.2 – 4.4 present the algorithms for CST-switch scheduling and configuration.

4.1 CST Background

Dynamic reconfiguration is a versatile computing technique. Various dynamically reconfigurable

architectures like the reconfigurable mesh (R-Mesh) offer extremely fast solutions to many prob-

lems [77]. Though these theoretical models are very powerful, their assumption of constant delay

for buses of arbitrary size and shape makes their implementation difficult.

Field-programmable gate arrays (FPGAs), on the other hand,provide a practical reconfigurable

platform [8, 15, 62]. FPGAs typically depend on off-chip data for configuration. Thus they need

large reconfiguration times making them unsuitable to implement extremely fast, R-Mesh-type,

dynamically reconfigurable models. Though advances like partial reconfiguration [80], context-

58

switching [7, 45, 75], and configuration bitstream compression [62] have reduced reconfiguration

times, they are yet to reach the speed and flexibility required by models like the R-Mesh.

The Self-Reconfigurable Gate Array (SRGA) architecture [73, 74] is an FPGA-like structure

that can reconfigure using on-chip data at run time (see Figure 4.1). Hence, reconfiguration is

very quick, possibly within a few clock cycles. Individual processing elements (PEs) use local

information to reconfigure the SRGA at run time. This feature,that individual PEs act on local

information to reconfigure at run time, makes the SRGA similarto the R-Mesh.

FIGURE 4.1. The Self-Reconfigurable Gate Array.

The CST [21] is a key component of the SRGA architecture acting as the building block for

its interconnection fabric. The CST can implement other dynamically reconfigurable architectures

with R-Mesh-like structures [23, 25]. The CST supports several communication patterns with im-

portant applications [24]. It may also serve as an interconnect in Infiniband-type networks [51] and

networks-on-chip (NoCs) [3, 9, 10].

One of the most important aspects of using the CST to facilitate dynamic reconfiguration is the

algorithm that configures the switches to establish dedicated data paths among PEs. The other,

equally important, issue with using a CST for communicationsis, given a set of communications,

how to schedule them in an efficient order. We define this scheduling of communications on the

CST later.

A communicationrefers to the transfer of data from a source PE to a destination PE; that is, it

is a point-to-point communication. Because the CST is a tree, each communication corresponds

59

to a unique path from the source leaf to the destination leaf.A communication setis simply a set

of communications. Figure 4.2 depicts a communication set comprising three communications,

(0,1), (2,7), and(4,6) (each pair of numbers refers to source of the communication and the cor-

responding destination).

70 1 2 3 4 5 6

a

e

PE

switch

FIGURE 4.2. Communications on a CST; a dark (resp., shaded) leaf represents a source (resp., destination).

A CST can simultaneously perform multiple communications iftheir paths share no edge in the

same direction. Define thewidth of a communication set as the maximum number of communica-

tions (paths) that share an edge in the same direction [21, 24]. The communication set of Figure 4.2

has a width of 2, as communications(2,7) and(4,6) use edgee in the same direction. On the other

hand, the absence of either(2,7) or (4,6) would make the width of the communication set 1. The

significance of the width is that a width-w communication set requires at leastw rounds to com-

plete. In the current example, the width-2 communication set requires two rounds to complete as

(2,7) and(4,6) cannot be performed simultaneously (they share edgee).

In each round of performing communications, the CST configuration algorithm must select a

subset of communications that are compatible, then configure switches accordingly. We define this

partitioning of the communication set into blocks of compatible communications asscheduling.

Note that a width-1 communication set has a trivial schedulesince there are no conflicting com-

munications.

4.1.1 Structure of the CST

The CST (Figure 4.2) is a balanced binary tree in which each leaf is a PE (or, in general, a source

and/or destination of a communication) and each internal node is a switch. The edges of the CST

60

are full duplex links capable of carrying data in both directions simultaneously. Thus, each switch

of the CST has three data inputs and three data outputs: an input-output pair to each of its two

children and its parent (if any). Configuring a switch amountsto establishing connections from its

inputs to its outputs. Several configurations are possible for any switch (Figure 4.3 shows some).

FIGURE 4.3. Some arbitrary configurations of a CST switch.

Configuring the switches of the CST establishes direct data paths among PEs. For example, in

Figure 4.2, configuring switcha as shown plays a role in establishing a data path from PE 0 to

PE 1. Hence, configuring the CST for a given set of communications amounts to configuring the

switches to establish the required data paths. It should be pointed out that an input from a neighbor

of a switch (child or parent) cannot be directed to the same neighbor. This restriction limits every

path between leaves of ann-leaf CST to traverse at most 2 logn−1 switches. This upper bound

on the path delay motivates the argument [7] that a signal cantraverse up or down the tree very

quickly (potentially in one clock cycle). The algorithms that we present here use a small constant

number of traversals of the CST (upto 8 per round for the algorithm of Section 4.4).

4.1.2 Communications on a CST

In a width-w communication set (w > 1), two communications areincompatibleif they share a

common edge in the same direction. Communications aresource incompatible(resp.,destination

incompatible) if they share an edge in the upward (resp., downward) direction. For example, com-

munications(2,7) and(4,6) in Figure 4.2 are destination incompatible. Two incompatible com-

munications cannot be simultaneously routed on a CST; they require two separate steps. Hence, a

width-w communication set requires at leastw steps to route in a CST. If a CST can perform these

communications in exactlyw steps, then call the communication set aswidth partitionable[21].

61

There exist communication sets that are not width partitionable. If a configuration algorithm opti-

mally schedules and configures a width-partitionable, width-w communication set, then in each of

w rounds, the width of the set of communications that is not yetscheduled decreases by one.

A multicast(s,D) consists of a source PEs and a setD of destination PEs; in a multicast,s

sends a piece of information to all PEs inD. If D = {d} is a single element set, then(s,{d})

or simply(s,d) is apoint-to-point communication. We use the termcommunicationloosely in this

chapter to mean a point-to-point communication, and the term multicastdenotes a set of multicasts.

Figure 4.2 shows point-to-point communications(0,1), (2,7), and(4,6). Figure 4.4 shows a set of

two multicastsM1 = (0,{1,2}) andM2 = (3,{4,5,6}).

a

b

6542 310 7

2M1M

PE

switch

FIGURE 4.4. A multicast set.

A communication set isright orientedif, for every communication in that set, each destination

is to the right of the corresponding source; similarly, it isleft orientedif, for every communica-

tion in that set, each destination is to the left of the corresponding source. The communication set

in Figure 4.2 is right oriented as each destination is to the right of its corresponding source. The

algorithms presented here are for right-oriented communication sets; clearly they have trivial adap-

tations to left-oriented sets. Note that one can partition acommunication set into a right-oriented

set and a left-oriented set.

One can also classify communication sets according to the patterns the constituent communi-

cations form. Awell-nestedcommunication set is one in which the communications correspond

to a balanced, well-nested parenthesis expression. Figures 4.2 and 4.5 show well-nested commu-

62

nication sets. Oriented, well-nested sets are width partitionable [21]. The well-nested property of

a communication set also apply to multicasts. More formally, a well-nested multicast is one in

which the source and any one destination of each multicast correspond to a balanced, well-nested

parenthesis expression.

(() () ()()) ()
������
��
��
��

�����
�
�
�

������

FIGURE 4.5. A well-nested communication set; a source (resp., destination) corresponds to a left (resp.,
right) parenthesis.

The SRGA architecture uses a CST for communication over each row/column. Sidhuet al.

[73, 74] presented a CST routing algorithm that handles only one communication on a CST at a

time. This limit is substantially short of the full communication and computation capacity of the

architecture. The CST configuration algorithm of El-Boghdadi[21] allows multiple communica-

tions on a CST, but it restricts the communications to be edge-disjoint, i.e., no two communications

can use any edge of the CST even in opposite directions.

4.1.3 CST Configuration

A CST configuration algorithm is key to communicating over a CST. The algorithm presented here

configures CST switches to establish requisite data paths fora communication set.

Figure 4.6 shows the basic internal structure of a CST switch [21]. The switch contains two parts:

the control unit and the data unit. The control unit receivesinformation about communications that

need to use that switch from the left and right children of theswitch and uses them to generate

information to send to the switch’s parent. Subsequently, the control unit receives information from

the parent switch instructing it to configure itself in some way to establish the required paths. The

control unit uses this information to instruct the data unitto establish data paths. Furthermore, the

control unit passes down appropriate control information for the configuration of its child switches.

63

SL, DL

S, D

SR, DR

L, La b

ba,

R, Ra b

S, D
SR, DRSL, DL, : Set of IDs received in Phase 2

R , Ra b
ba,

L, La b

DU
CU Control Unit

Data Unit

: Set of IDs sent in Phase 2

,
: IDs received in Phase 3

: IDs sent in Phase 3

CU

DU

FIGURE 4.6. The internal structure of a CST switch.

We say that the source of a communicationmatchesits corresponding destination at a switchu

if the control information emanating from the source and thecontrol information emanating from

the destination meet atu. For this,u has to be the lowest common ancestor of the source and the

destination. Further, the assumption that the communication set is right oriented means that for a

source-destination pair to match,u must receive the source information from the left subtree and

the destination information from the right subtree.

4.2 The Configuration Algorithm for Width- w
Communication Sets

The algorithm we present has five phases, which correspond toone round of scheduling and

switch configuration for a width-w communication set. Subsequent rounds repeat the same proce-

dure, with the completed communications removed. For example, our algorithm will schedule the

communications(0,1) and(2,7) of the communication set of Figure 4.2 in the first round followed

by (4,6) in the second round.

The five synchronous phases of the algorithm are as follows.

The General CST Configuration Algorithm

Phase1: Assign an ID to each communication in the communication set to uniquely identify it.

Phase2: Each PE that is a source or destination of a communication sends its ID to its parent.

These IDs flow up the tree towards the root until meeting a match, with each switch recording the

IDs that reach it.

64

Phase3: Starting from the root, switches send control information down to the leaves. Based on

this information, switches configure themselves. The sources and destinations of the communica-

tions for which the algorithm establishes a path receive back their own IDs, while the other sources

and destinations receive anull symbol.

Phase4: Source PEs for which Phase 3 configured their communication paths now write their data;

corresponding destinations read.

Phase5: Determine whether all communications have been completed.If any communication re-

mains to be scheduled, then go to Phase 1. Otherwise, the algorithm terminates.

As pointed out earlier, these five phases will iterate at least w times for a width-w communication

set.

Phase 1 assigns a common ID to the source and destination of each communication. In general,

the IDs may need to be supplied to the algorithm as input. For certain communication classes, the

algorithm itself can calculate IDs for the communications (as our algorithm for the well-nested

class will do). Note that the IDs themselves need not necessarily be unique to uniquely identify

each communication. As we will see later, for the well-nested class, non-unique IDs suffice.

In Phase 2, each switch receives a set of source IDs and a set ofdestination IDs from each of its

children (these sets could be empty). If a switchu receives a source IDα from its left child and the

same destination IDα from its right child, then that source-destination pair matches atu. In that

case,u does not send IDα to its parent and instead sends to its parent only those IDs that do not

match atu.

Formally, in Phase 2 (see Figure 4.6), each switch receives aset of source IDsSL (resp.,SR) and

destination IDsDL (resp.,DR) from its left (resp., right) child. Each switch sends the sets of source

IDs Sand destination IDsD to its parent whereS= (SL−DR)∪SR andD = DL∪ (DR−SL). The

setSL∩DR at any switch gives the IDs of the communications that match at that switch. Because

the communications are right oriented, IDs inDL andSR do not find matches at the switch. We

65

note that for particular communication classes (Section 4.4), the algorithm could send a small set

of identifiers without having to send the entire set.

In Phase 3, each switch configures itself based on the controlinformation that it receives from

its parent and the information received in Phase 2 from its children. It then generates control infor-

mation for its children. At the end of this phase, schedulingis complete for some communications.

As shown in Figure 4.6, each switch receives two symbolsa andb from its parent in Phase 3.

Symbola (resp.,b) is the ID of a source (resp., destination) or isnull. A switch receiving such an

ID configures itself to establish data paths corresponding to that source or destination. The exact

configuration depends upon the values ofa andb as well as contents of the setsSL, DL, SR, andDR.

After configuring, each switch generates control information (IDs) for its children and sends this

down asaL, bL, aR, andbR as shown in Figure 4.6. We assume that the root receivesa = b = null.

As shown in Figure 4.7, we label the data ports of a switch asℓi, ℓo, r i, ro, pi, andpo. Portℓi (resp.,

ℓo) is the input (resp., output) port betweenu and its left child. Other ports are defined similarly.

To configure a data path,u connects an input port to an output port.

i
p po

li ro

lo ri

(a)

i
p po

li ro

lo ri

(b)

i
p po

li ro

lo ri

(c)

i
p po

li ro

lo ri

(d)

i
p po

li ro

lo ri

(e)

FIGURE 4.7. Some switch configurations.

In Phase 3,u will configure the data path as instructed by its parent. Additionally, u will route a

communication (if any) that matches atu and is compatible with the communication(s) whose data

path(s)u previously configured. In our algorithm, if botha andb arenull for a switchu, then the

parent ofu is instructingu to not configure any data paths throughu to or from its parent. Next,u

will route a communication (if any) that matches atu configuring itself as shown in Figure 4.7(a).

If u receives one or two IDs from its parent, then the parent is instructingu to configure data paths

corresponding to the identified communication(s). Figure 4.7 shows various switch configurations.

Note that a switch can connect its ports to simultaneously establish more than one of the five

66

configurations shown in Figure 4.7. One such configuration could be the superposition of those in

Figures 4.7(a), 4.7(b), and 4.7(e).

The control information received by a PE at the end of Phase 3 informs it whether the CST

contains the path for its communication. Those PEs whose paths have indeed been configured

communicate, while the remainder again participate in the next round.

Figure 4.8 presents Phase 3 of the algorithm in pseudocode. Note that some cases, such asa∈SR

andb ∈ DL, can occur simultaneously, so the switch makes both port connections and sends out

both symbols.

In Phase 5, after the completion of data transmission between the source and destination PEs of

the configured communication(s), the algorithm determinesthe presence of any communication(s)

not yet configured. Any source or destination PE that received anull symbol in Phase 3 sends a 1

to its parent. All the switches forward the OR of the symbols that it received from its children. If

the result at the root is 1, then the root broadcasts a controlsignal instructing the PEs to initiate a

new round.

Figure 4.9 shows an example of the execution of one round of the general CST configuration al-

gorithm. Figure 4.9(a) shows three communications with IDs1, 2, and 3. As shown in Figure 4.9(a)

during phase 2 of the algorithm, each source/destination PEsends its ID to its parent, and these IDs

flow up the tree until meeting their matches. For example, IDscorresponding to communication 2

match at the switchp. Hence, they are not propagated up the tree beyondp.

Figure 4.9(b) depicts Phase 3. In Phase 3, starting from the root, switches send control infor-

mation (shown by numbers with boxes around them) down the tree, and based on this information

each switch configures itself before sending the control information down. For example, the root

picks the matching communication 1 and configures itself appropriately and sends down the con-

trol information corresponding to communication 1 as shownin the figure. Each switch configures

itself based on the control information and the IDs that it received in Phase 2. If a switch does not

67

input : Indicesa,b from parent (if any), setsSL,DL,SR,DR from Phase 2.
output : Internal switch configuration; indicesaL,bL (for left child) and

aR,bR (for right child).

Initialize aL,bL,aR,bR← null
disconnect all ports ofu
if a = b = null then /* u receives null symbols from its parent */

if SL∩DR 6= /0 then
e← any one element ofSL∩DR

connectl i to ro /* Configuration */
aL← e /* Symbols for children */
bR← e

endif
else /* u receives an ID from its parent*/

if a∈ SR then
connectr i to po /* Configuration */
aR← a /* Symbol */

endif
if b∈ DL then

connectpi to lo /* Configuration */
bL← b /* Symbol */

endif
if a∈ SL−DR then

connectl i to po /* Configuration */
aL← a /* Symbol */

endif
if b∈ DR−SL then

connectpi to ro /* Configuration */
bR← b /* Symbol */

endif
if aL = bR = null andSL∩DR 6= /0 then

e← any one element ofSL∩DR

connectl i to ro /* Configuration */
aL← e /* Symbols */
bR← e

endif
endif

FIGURE 4.8. Pseudocode for Phase 3 of the algorithm.

receive any control information from its parent (switchq), it is free to establish paths from any

matching communication and send appropriate control information down the tree1.

1A switch u is at liberty to establish connections for a communication matching at it even whenu receives some control information (unlikeb),
as long as the matched communication is compatible with the communication indicated by the control information from the parent.

68

70 1 2 3 4 5 6

1
2 3

1

1

1 1

1

13322

2 2p

PE

switch

(a) Phase 2.

70 1 2 3 4 5 6

1
2 3

1

1

1 1

1

13322

2 2

11

1

1 1

1

3 3
q

PE

switch

(b) Phase 3.

FIGURE 4.9. An example of the general CST configuration algorithm.

We now prove the correctness of the algorithm. For the proof we assume that the IDs assigned

in Phase 1 are unique.

Lemma 4.2.1.The general CST configuration algorithm establishes connections between match-

ing source and destination pairs.

Proof. Let c be any communication that matches at a switchu. Further, letz be the ID assigned to

c in Phase 1. As IDs are unique, no other communication will be assigned the IDz. This ensures

that the corresponding source and destination pairs ofc will match at switchu and with no other

destination or source.

In Phase 2, each of the source and the destination ofc will sendz to its parent. Switches forward

z up the tree until reachingu. Switch u will receive z from both children simultaneously and,

according to the algorithm, will not forward IDz to its parent. So, in Phase 2, each switch in the

path from source or destination ofc receives information aboutc.

69

In Phase 3 of some round,u will schedulec (see Figure 4.8). (This will happen when eitheru

does not receive any ID from its parent oru receives ID(s) from its parent to configure a source

(resp., destination) in its right (resp., left) subtree.) According to the algorithm,u connectsℓi to

ro and sendsz to both children. The children of switchu will configure themselves, and each will

sendz down to the child from which it receivedz in Phase 2. In effect,z will retrace back the path

it traversed in Phase 2, thereby establishing a simple path from the source ofc to u then to the

destination ofc.

Theorem 4.2.2.The general CST configuration algorithm correctly schedulesall communications

in any finite communication set.

Proof. Lemma 4.2.1 proves that for any communication, the algorithm will establish correct con-

nections in some round. Hence, over all the rounds (a finite number), the algorithm will correctly

connect each matching source-destination pair.

There are, however, communication classes for which the algorithm completes the configuration

and scheduling in more than the optimal number of rounds. Theorem 4.2.3 sets an upper bound on

the number of rounds that the algorithm spends to schedule a width-w communication set.

Theorem 4.2.3.The general CST configuration algorithm establishes connections for all commu-

nications of a width-w communication set in2w−1 rounds.

Proof. Let c1 be any arbitrary communication of a width-w communication set, matching at an

arbitrary switchu. Hence,u will connect its left and right child to establish a connection corre-

sponding toc1 in some round.

By definition of a width-w communication set, at mostw−1 communications are source incom-

patible withc1 and at mostw−1 communications are destination incompatible withc1. So, at most

2w−2 rounds include a scheduled communication incompatible with c1. Since during any round,

if no scheduled communication is incompatible withc1, thenu will necessarily schedulec1 (by

Phase 3 of the general CST configuration algorithm), hence thealgorithm will schedulec1 during

any round on or before round 2w−1, which proves the theorem.

70

Remark: Erlebachet al. [26] in their research related to wavelength routing on directed fiber trees

proved that any greedy algorithm needs at least 5/3w wavelenghts to route a set of communication

request of load2 w. Wavelength routing problem is similar to CST scheduling. Hence, we expect

(suitable modified versions) of our algorithm to apply to wavelength routing as well.

4.3 Width-1 Communication Sets

The algorithm presented in Section 4.2 works correctly for any oriented, width-w communication

set. The case where the width of the communication set is one merits special attention. In a width-1

communication set, no two communications share any edge of the CST in the same direction. We

now show that this algorithm is optimal for any width-1 communication set. As earlier, we consider

right-oriented sets.

Theorem 4.3.1.The algorithm optimally schedules all the communications of an oriented, width-1

communication set in one round.

Proof. Let C be any right-oriented width-1 communication set, and supposec ∈C is a commu-

nication that is not scheduled in the first round by the algorithm. Letu be the switch at whichc

matches.

As C is of width 1, no other source (resp., destination) in the left (resp., right) subtree ofu

matches atu or at any switch aboveu. If u receivesa = b = null in Phase 3 of round 1, then

according to the algorithmu will schedulec. Sincec was not scheduled in round 1,u must receive

an ID in that round. If atu, a 6= null (resp.,b 6= null), then a (resp.,b) must be the ID of a

source (resp., destination) inu’s right (resp., left) subtree. The algorithm will configureu for c,

contradicting thatc is not routed in round 1.

The general algorithm can also be simplified for a width-1 communication set as shown in the

following lemma.

Lemma 4.3.2.A modified algorithm with Phase 5 removed and Phases 2 and 3 merged is sufficient

to route all the communications of a width-1 communication set.

2Load in [26] is analogous to our width

71

Proof. By Theorem 4.3.1, the algorithm routes communications of a width-1 communication set

in a single round. This makes Phase 5 redundant.

Because exactly one path connects each source-destination pair in a CST and because, in a

width-1 communication set, no source-destination pair conflicts with any other, then each switch in

Phase 2 can configure itself according to the source and destination IDs that it receives. If it receives

a matching pair, then it connects the corresponding ports. If it receives an unmatched source, then it

connects that incoming port to the outgoing parent port, andsimilarly for an unmatched destination.

Because of the absence of conflict, it is not necessary to wait for control information from Phase 3.

Consequently, Phases 2 and 3 can be merged into a single phase (see, for example, the algorithm in

Section 4.3.1) making one pass from the leaves to the root, where switches configure themselves

as soon as they receive information from their children.

4.3.1 Modified CST Configuration Algorithms for Width- 1 Sets

In this section we detail two algorithms for configuring the CST for oriented, width-1 communi-

cation sets, the first for well-nested point-to-point sets and the second for multicast sets. As before

we assume that each PE holds only local information. Specifically, each PE holds whether it is a

source, a destination, or neither. That is, a source is not aware of the identity of its destination and

vice versa.

Structure of the Algorithms:

1. Each leaf (PE) generates an initial symbol that reflects its status in the communication in

question; for example, a PE may indicate that it is a source ordestination or neither.

2. Symbols propagate up the tree from the leaves to the root configuring switches on their way.

Specifically, each switch receives two input symbols,α andβ, from its children and produces

an output symbolfs(α,β) for its parent. (The root also generates this output symbol and then

ignores it.) The switch also produces a second outputfc(α,β) to configure the data path(s)

of the switch.

72

3. The algorithm completes when the root configures itself.

We will call an algorithm with the above structure aone-passalgorithm, as one traversal of the

tree from leaves to the root suffices for the configuration. The algorithms in this paper use functions

fs and fc that can be implemented with simple combinational logic. This allows for speedy con-

figuration and data transmission, possibly within a few clock cycles [21, 74]. The main task of the

configuration algorithm is to translate local information at the PEs to global information about the

entire communication set. Specifically, each PE may be awareonly of its status as a source, desti-

nation, or neither. This in itself is not sufficient to configure the switches. For example, although

PEs 0 and 2 of Figure 4.2 are both sources, the switches at their parents assume different configu-

rations (because of the information in PEs 1 and 3). Similarly, PEs 1 and 7 are both destinations,

but their parents assume different configurations. In general, it is possible for the configuration of

a switch quite far from PEs to be affected by the information at the PEs of its subtree.

One could view the configuration algorithm as a distributed algorithm initiated at the leaves

and triggered by input symbols at the switches. Not all communication sets are amenable to this

manner of handling.

Specifying the Algorithms:

Defining the following will specify a configuration algorithm of the form described as above.

• SetC of configurations of a switch. This is the same as that described by El-Boghdadiet al.

[24]. Tables 4.2 and 4.4 show the configurations used in this work.

• Symbol setS .

• Initial symbol assignment for PEs.

• Symbol functionfs : S ×S −→ S .

• Configuration functionfc : S ×S −→ C .

73

4.3.2 Oriented, Well-nested, Width-1 Point-to-Point Communication Sets
CST Configuration Algorithm

Now we present the CST configuration algorithm for oriented, well-nested, width-1, point-to-

point communication sets.

Well-Nested, Width-1 CST Configuration Algorithm

• S = {s,d,b,n}, wheres denotes a source,d denotes a destination,b denotes a situation

where both a source and a destination exist in a subtree, andn denotes neither a source nor

a destination. (Elements ofS are in a different font compared tos andd used to denote a

source or a destination PE.)

• Initial symbol assignment: A leaf sends symbols (resp.,d or n) to its parent iff it is a source

(resp., destination or neither).

• Symbol function: See Table 4.1. Blank cells in Tables 4.1 and 4.2 correspond to impossible

situations.

• Configuration function: See Table 4.2.

TABLE 4.1. The functionfs for well-nested, width-1 CST configuration algorithm.

fs s d n b

s n s s
d b d
n s d n b
b d b b

We now address the correctness of the well-nested, width-1 CST configuration algorithm. For a

2p PE CST, arrange the nodes inp+1 levels, 0, · · · , p, with PEs at level 0 and the root at levelp.

Let Tu denote the subtree rooted at any nodeu. SubtreeTu contains amatchedsource iff the source

and its corresponding destination are both leaves ofTu. SubtreeTu contains anunmatchedsource

if the source is inTu but the corresponding destination is not. Define matched andunmatched

destinations similarly.

74

TABLE 4.2. The functionfc for well-nested, width-1 CST configuration algorithm.

fc s d n b

s

d

n

b

Lemma 4.3.3.Let u be any node at levelℓ, where0≤ ℓ ≤ p, of the CST. Under the well-nested,

width-1 CST configuration algorithm, let u generate symbolσ ∈ S to send to its parent, if any. The

following assertions hold.

1. If σ = s, thenTu has an unmatched source s and the algorithm establishes a path from s to

the parent of u.

2. If σ = d, thenTu has an unmatched destination d and the algorithm establishes a path from

the parent of u to d.

3. If σ = b, thenTu has an unmatched source s and an unmatched destination d. Moreover, the

algorithm establishes paths from the parent of u to d, and from s to the parent of u.

4. If σ = n, thenTu has no unmatched source or destination.

5. The algorithm establishes paths between all(matched) source-destination pairs ofTu.

6. All unspecified entries of Tables4.1 and4.2 represent impossible situations.

75

Proof. We prove the correctness of Assertion 1 by induction on the level of switches. As a base

case, ifu is at levelℓ = 0, thenu will generateσ = s iff u is a source of a communication. Hence,

Tu indeed has an unmatched sources corresponding tos and a path exists froms to u’s parent.

Assume the assertion holds for all tree levels up to levelk, and consider node (switch)u at level

k+1. According to the symbol function (Table 4.1),u generatesσ = s only if it receives either a)s

from the left child andn from the right child, or b)n from the left child ands from the right child,

or c) s from the left child andb from the right child. For all these three cases, sinceu receives an

s from one of its children, and since Assertion 1 is valid foru’s children, there is an unmatched

source in the subtree rooted at one ofu’s children and a path exists from that unmatched source to

u.

For cases a) and b), the unmatched sources corresponding tos is not matched atu. Addition-

ally, u establishes a path from its left child in case a) and right child in case b) to its parent (see

Tables 4.2). For case c), the subtree rooted atu’s left child has an unmatched source and the sub-

tree rooted atu’s right child has an unmatched source and an unmatched destination. Since, we

are considering a right-oriented, well-nested, width-1 communication set, the unmatched source in

the subtree rooted atu’s left child must match the unmatched destination in the subtree rooted at

u’s right child. This leaves an unmatched source in the subtree rooted atu’s right child. As shown

in Table 4.2, u establishes a path connecting its right child to its parent.So in each of these three

cases, there is an unmatched source inTu, andu establishes a path connecting the corresponding

child to its parent, thereby establishing a path from the unmatched source tou’s parent. This proves

Assertion 1.

Similar arguments are valid for Assertions 2, 3, and 4 as well, thereby proving them.

We also prove the correctness of Assertion 5 by induction on the level of switches. For the base

case, ifu is at levelℓ = 0, there cannot be any matched source-destination pair, which proves the

assertion.

Assume the assertion holds for all tree levels up to levelk, and consider node (switch)u at level

k+1. Since the assertion holds for all nodes up to levelk, the algorithm correctly creates all paths

76

corresponding to all matched source-destination pairs in subtrees rooted at each ofu’s children.

This leaves us to prove that the paths corresponding to all the source-destination pairs that match

atu are correctly created.

The correctness of Assertions 1−4 proves that the algorithm correctly creates a path tou from

the source and the destination nodes of a source-destination pair that matches atu. Switchu re-

ceives ans or ab from its left child and ad or ab from its right child corresponding to the matched

source-destination pair. As shown in Table 4.2, in all of these casesu establishes a path connecting

its left child to its right child. This means switchu indeed creates a path for any source-destination

pair that matches atu, thus proving the assertion.

Each of the four unspecified entries of Tables 4.1 will lead to a width-2 communication set.

Hence, they represent impossible situations, thus provingAssertion 6.

The proof of Assertion 5 of Lemma 4.3.3 establishes the following result.

Theorem 4.3.4.The CST can be configured in one pass to perform all communications of any

oriented, well-nested, width-1 communication set. 2

4.3.3 Width-1 Multicast Sets

In this section we address the more general situation of width-1, oriented, well-nested, multi-

cast sets. Given only the flags indicating source, destination, or neither, a destination may not

uniquely match a source and vice versa. For example, Figures4.10(a) and 4.10(b) show two dif-

ferent width-1 multicast sets, each with two multicasts shown in red and blue, that have the same

source-destination pattern. Hence, flags indicating only source, destination or neither are not suffi-

cient for matching. Therefore, we assume that each multicast (s,D) has a unique ID associated with

it that is known tos and all members ofD. We do not assume that an ID encodes the destination

set or the identity of the rightmost destination.

Even the assumption of known unique IDs is not sufficient, however, to configure the CST with

a one-pass algorithm.

77

70 1 2 3 4 5 6

b
PE

switch

(a) Multicast set 1.

70 1 2 3 4 5 6

b
PE

switch

(b) Multicast set 2.

FIGURE 4.10. Two different multicast sets with same source-destination pattern.

Lemma 4.3.5.No one-pass algorithm exists to configure a CST for width-1 multicast sets in which

PEs hold communication IDs and are flagged only as source, destination, or neither.

Proof. Again consider the example of Figures 4.10(a) and 4.10(b). Switch b receives symbols

containing a source ID from PE 2 and a destination ID from PE 3 originating from members of

the multicast shown in red in both the figures. In Figure 4.10(a) all connections of the multicast

shown in red have been established andb does not need to forward any information about that

multicast to the root. In Figure 4.10(b),b receives the same information, however, this time it

needs to propagate information about the multicast shown inred to the root. Sinceb receives the

same information in both the cases, it cannot distinguish the two situations under any one-pass

algorithm with the given information.

The situation changes, however, if the CST can identify for each multicast when all its destina-

tions have been matched. For a right-oriented multicast, flagging the rightmost destination suffices.

For simplicity, we assume the multicast set to be right oriented. The end of this section handles the

general case. Now we present the CST configuration algorithm for right-oriented, width-1, mul-

ticast communication sets. For brevity, henceforth we callthis algorithm width-1 multicast CST

configuration algorithm.

Width- 1 Multicast CST Configuration Algorithm

• Symbol set: LetU = {s,d,r,−} wheres , d, andr denote source, non-rightmost destination,

and rightmost destination. The character− denotes a don’t care entry. LetI be the set of all

possible IDs of a multicast. DefineJ = I ∪{−}.

78

TABLE 4.3. The functionfs for width-1 multicast CST configuration algorithm.

fs s, m3, −, − −, −,d, m4 −, −, −, − −, −,r, m4 s, m3,d, m4 s, m3,r, m4

s, m1, −, − if m1=m4

s, m1, −, −
else
s, m1,d, m4

s, m1, −, − if m1=m4

−, −, −, −
else
s, m1,r, m4

s, m3, −, −

−, −,d, m2 s, m3,d, m2 −, −,d, m4 −, −,d, m2 −, −,r, m4 s, m3,d, m4 s, m3,r, m4

−, −, −, − s, m3, −, − −, −,d, m4 −, −, −, − −, −,r, m4 s, m3,d, m4 s, m3,d, m4

−, −,r, m2 s, m3,r, m2 −, −,r, m2

s, m1,d, m2 if m1=m4

s, m1,d, m2

else
s, m1,d, m4

s, m1,d, m2 if m1=m4

−, −,d, m2

else
s, m1,r, m4

s, m3,d, m2

s, m1,r, m2 s, m1,r, m2 s, m1,r, m2 −, −,r, m2 s, m3,r, m2

The symbol set isS = U×J×U×J. A typical member ofS has the form(α,β,γ,δ), where

α,γ∈U andβ,δ∈ J. The intuition behind this symbol set is as follows. Each node may have

to send information about (at most) two multicasts; one withsource inTu and the other with

destination(s) inTu. (Recall thatTu is the subtree rooted at nodeu of the CST.) The informa-

tion of each multicast consists of ans , d, or r and its ID. Therefore,(α,β) and(γ,δ) represent

the two multicasts. The don’t-care symbol accounts for cases with fewer than two multicasts.

• Initial symbol assignment: A leaf sends symbols (resp.,d or r) to its parent iff it is a source

(resp., non-rightmost destination or rightmost destination) along with its multicast ID.

• Symbol function: Table 4.3 givesfs.

• Configuration function: Table 4.4 givesfc.

We now address the correctness of the multicast algorithm. Consider any multicast(s,D). Let

r ∈D be the rightmost destination. A subtreeTu has amatchedsources iff s, r ∈ Tu. SubtreeTu has

a matched destinationd ∈D iff d ∈ Tu and eithers∈ Tu or Tu has a destinationd′ ∈D such thatd′

is to the right ofd. A multicast(s,D) is completedin subtreeTu if s and eachd ∈ D are leaves of

Tu.

79

TABLE 4.4. The functionfc for width-1 multicast CST configuration algorithm.

fc s,m3,−,− −,−,d,m4 −,−,−,− −,−,r,m4 s,m3,d,m4 s,m3,r,m4

s,m1,−,−

−,−,d,m2

−,−,−,−

−,−,r,m2

s,m1,d,m2

s,m1,r,m2

Notice that we have defined matched source and destinations in terms of the setD. The actual

algorithm uses multicast IDs to ascertain a match and does not require determination ofD. Ar-

guments similar to the ones presented in proof of Lemma 4.3.3hold for the following lemma as

well.

Lemma 4.3.6. Let u be any node at levelℓ, where0 ≤ ℓ ≤ p, of the CST. Under the width-1

multicast CST configuration algorithm, let u generate symbol(α,β,γ,δ) ∈ S to send to its parent,

if any. The following assertions hold.

80

1. If α = s, thenTu has an unmatched source s of multicast(s,D). The algorithm establishes

paths from s to the parent of u and all(matched) destinations of D that are inTu.

2. If γ = d or r, thenTu contains an unmatched destination of multicast(s,D) and the algorithm

establishes a path from the parent of u to this destination.

3. If α =−, thenTu contains no unmatched source.

4. If γ =−, thenTu contains no unmatched destination.

5. For a multicast(s,D) that is completed withinTu, the algorithm establishes a path withinTu

from s to all elements of D.

6. All unspecified entries of Tables4.3 and4.4 represent impossible situations. 2

So far, we have assumed a right-oriented multicast set. Clearly, this approach also works for a

left-oriented set. If we drop the assumption of orientedness, then both the leftmost and rightmost

(extreme) destinations need to be flagged. The width-1 multicast CST configuration algorithm will

still work with minor modifications to Tables 4.3 and 4.4 and the definition of a match.

Theorem 4.3.7.The CST can be configured in one pass to perform all communications of any

width-1 multicast set. 2

4.4 Well-Nested, Width-w Communication Sets

In this section we apply the general CST configuration algorithm of Section 4.2 to configuring the

CST for a well-nested, right-oriented, width-w communication set. Well-nested communication

sets are width partitionable [21], so an optimal algorithm will take exactlyw rounds to route all

communications in the communication set.

Before providing the details, we define thenesting depthof a communication belonging to

a well-nested communication set. A right-oriented communication (a,b) coverscommunication

(a′,b′) iff the PE indices satisfya < a′ < b′ < b; for example, communication(2,7) covers com-

munication(4,6) in Figure 4.2. The nesting depth of a communicationc is the number of commu-

nications that coverc. For example, the nesting depth of communication(4,6) in Figure 4.2 is 1.

81

For a source at depthd, the next element to its right at depthd is its matching destination. It is easy

to verify that nesting depths of well-nested communications possess the following properties.

1. No two communications with the same depth share a common CSTedge in the same direc-

tion.

2. If a communicationc1 covers another communicationc2 and no other communicationc3

coversc2 but notc1, then the depth ofc1 is one less than the depth ofc2.

4.4.1 Algorithm Adaptation

We now provide details of the general CST configuration algorithm adopted to a well-nested com-

munication set. Sections 4.4.2 and 4.4.3 prove this adaptation to be correct and optimal, respec-

tively.

Phase 1:The PEs calculate the nesting depth of their corresponding communications and assign

this value as the ID of each communication. To calculate the nesting depth of a communication,

corresponding PEs compute prefix sums where each source contributes a 1 and each destination

contributes a−1. Each source PE then subtracts 1 from its prefix sum. Figure 4.11 shows the

computation of IDs for an example well-nested communication set. Dharmasena and Vaidyanathan

[18] gave a prefix sums algorithm that traverses the CST from the leaves to the root and then back

to the leaves.

Prefix Sums :

Nesting Depth :

Initial Value : 1 −1 1 1 1 −1 1 1 −1 −1 −1 −1

1 0 1 2 3 2 3 4 3 2 1 0

0 0 0 1 2 2 2 3 3 2 1 0

FIGURE 4.11. Computation of IDs for a well-nested communication set.

Phase 2:This phase is similar to that given in Section 4.2. The only difference is that instead of

switchu sending a setSof sources (setD of destinations) to its parent,u sends the indices of the

lowest valued and the highest valued source (destination).

82

Phases 3, 4, and 5:Same as the general CST configuration algorithm.

Each of Phases 1, 2, 3, and 5 requires at most two passes of the CST (leaves to root or root to

leaves) and runs inO(logn) time. Each switch spends a constant amount of time for computing in

each phase, so theO(logn) time complexity arises due to the logn height of ann-processor CST.

Phase 4 takesO(1) time and we show that there arew rounds involving all phases. Consequently,

the algorithm to schedule and route a width-w, well-nested communication set runs inO(wlogn)

time.

4.4.2 Correctness of Phases 1 and 2

Lemma 4.4.1. For each communication, the ID computed during Phase 1 corresponds to the

nesting depth of that communication.

Proof. A right-oriented, well-nested communication set corresponds to a balanced parenthetical

expression where each source (resp., destination) maps to aleft (resp., right) parenthesis.

The prefix sum for each source indicates the number of sourcesbefore it (including itself) whose

destinations have not been encountered. This sum is one morethan the source’s depth as the com-

munications with unmatched sources cover this communication. The prefix sum for each desti-

nation indicates the number of sources before it whose destinations have not been encountered.

Consequently, the prefix sum at a source is one greater that theprefix sum at its matching destina-

tion. Subtracting one from each source prefix sum ensures that matching source-destination pairs

have the same ID which will also correspond to the nesting depth.

Lemma 4.4.2 establishes that the IDs of two communications can be the same, yet all the com-

munications can be uniquely identified, as unmatched IDs areunique in any switch’s subtree.

Moreover the IDs satisfy Properties 1 and 2 for the nesting depths of a well-nested communication

set.

Lemma 4.4.2. In the subtree of any switch, no two unmatched sources can have the same ID and

no two unmatched destinations can have the same ID.

83

Proof. Let us assume that there are two unmatched sources with the same IDm in the subtree of a

switchc. Let us call the left (resp., right) one of themsL (resp.,sR). Clearly,c receives information

from both of them and the corresponding matching destinations are outside the subtree rooted atc.

Since the communication set is well-nested, the destination corresponding tosL will be some-

where to the right of the destination corresponding tosR. Hence, the communication with source

sR is completely nested within the communication with sourcesL. So (by Property 2) the ID ofsL

computed during Phase 1 will be less than the ID ofsR contradicting our assumption thatsL andsR

have the same ID.

With similar arguments, one can also show that no two unmatched destinations in any switch’s

subtree can have the same ID.

In Phase 2 of the algorithm, instead of switchu sending a setS(resp.,D) of sources (resp., desti-

nations) to its parent,u sends only the smallest and the largest values ofS(resp.,D). Lemma 4.4.3

proves that the elements ofS(resp.,D) will consist of contiguous IDs, so the closed interval formed

by the smallest and the largest values identifiesS(resp.,D).

Lemma 4.4.3. In Phase 2 of the algorithm, if a switch c sends S= [p,q] (resp., D= [p,q]) to its

parent, then there are q− p+ 1 unmatched sources (resp., destinations) with IDs p, p+ 1, · · · ,q

that form a continuous interval in the subtree rooted at c.

Proof. We prove the correctness of the lemma by induction on the level of switches (with PEs at

level 0 and the root at level logn for ann-leaf CST). We present the argument for the sources; the

argument for the destinations is analogous.

As a base case, at level 0 (PEs), if a PE holds a sourcep, then it sendsS= [p, p] to its parent,

identifying this unmatched source. If a processor holds no source, then it sendsS= null to its

parent indicating no unmatched sources.

Assume the lemma holds for all tree levels up to levelk, and consider switchc at levelk+ 1.

In Phase 2, suppose thatc receivedSL = [l1, l2] andSR = [r1, r2] from its left and right children,

respectively, and sentS= [p,q] to its parent. For a right-oriented communication set, any pair

84

matching atc must have its source in the left subtree and destination in the right subtree. For a well-

nested communication set, the matching pairs must be the innermost on the nesting, with largest

IDs (Property 2), and by the inductive hypothesis, the sequence of their IDs must be contiguous.

Let [m, l2] denote the interval of matching source IDs in the left subtree. Unmatched intervals are

SL−DR = [l1,m−1] andSR = [r1, r2].

All sources between sourcem−1 and sourcer1 match, contributing 0 to the prefix sum. Since

IDs follow from prefix sums,r1 = (m−1)+1= m. Thus,S= (SL−DR)∪SR= [l1,m−1]∪ [m, r2] =

[l1, r2] is itself a continuous interval, proving the lemma.

The fact that an interval tersely represents the setsSandD makes the algorithm very efficient.

Moreover the operations needed to compute setsSandD in Phase 2 reduce to performing a small

number of comparisons ofO(logn) bit IDs.

4.4.3 Proof of Optimality

In this section we show that our algorithm is indeed optimal;that is, it routes all communications of

a well-nested, width-w communication set inw rounds. A width-w communication set must have

a subset ofw sources (orw destinations) that use a common directed edge of the tree. Such a set is

called amaximum incompatible. To prove a schedule optimal, it suffices to show that it routes one

communication in each round from each maximum incompatible[21].

Consider any maximum incompatibleI (Figure 4.12). Let the edge(s) used by allw commu-

nications be upward, soI contains source PEs. (An analogous argument holds for a destination

incompatible.) Let switchu be the lowest common ancestor of the sources inI . Let v be the lowest

level switch where at least one among thesewsources matches. For right-oriented communications,

thew sources must belong to the left subtree ofv. Since the source incompatible is maximum, no

other source can join these sources at any switch betweenu andv.

In Phase 3 of the algorithm,v will receive symbolsa andb from its parent, wherea is a source

ID or is null andb is a destination ID or isnull. If both a andb arenull, thenv will configure a

85

...

...

w sources

u

v

... ...
b sourcesw − b sources

I

FIGURE 4.12. Part of a CST showing a maximum source incompatible for a width-w communication set.

communication that matches atv. By definition ofv, at least one such communication exists and

all matching communications have their sources inI .

If v receives an ID in Phase 3, then the following three cases exist. Assume that, in Phase 2,v

received source and destination setsSL, DL from its left child andSR, DR from its right child.

1. If a∈ SL, thena∈ I . Hence, one source from the maximum source incompatible is routed.

2. The caseb∈ DR is not possible in a width-w, oriented, well-nested set.

3. If a /∈SL and(b∈DL or a∈SR), then the communications corresponding toa andb cannot be

incompatible with communications matching atv. By the lastif statement in the pseudocode

of Figure 4.8,v will configure a communication that matches atv and whose source is from

I .

Hence, Phase 3 will route one source of each maximum source incompatible and subsequently

the width will reduce by 1. This proves the algorithm to be optimal.

86

Theorem 4.4.4.Every oriented, well-nested communication set can be routedoptimally on the

CST. Moreover, each switch step uses a constant-time computation and communicates a constant

number of words with its neighbors. 2

Section 4.3 presented a simplified algorithm that suffices for a general width-1 communication

set. For a well-nested, width-1 communication set, an even more simplified algorithm with Phase

1 removed suffices.

Phase 1 of the algorithm assigns IDs to each communication touniquely identify them. In the

width-1 case, the path between the source (resp., destination) of any communication and the switch

where the communication matches is not shared by any other source (resp., destination). This

implicit property of the width-1 case is sufficient to identify any source (resp., destination) within

the subtree rooted at the switch where the communication corresponding to that source (resp.,

destination) matches. Hence, Phase 1 becomes redundant.

4.5 Summary

In this chapter we described our research in scheduling and configuration of communications on

a CST. We presented various properties of communication setslike width and oriented-ness, and

looked at both point-to-point and multicast communicationsets.

We presented a CST configuration algorithm for a width-w communication set. We also pre-

sented special adaptations of that algorithm for width-1 point-to-point and multicast communica-

tion sets. Lastly, we also presented algorithm adaptationsfor width-w well-nested communication

sets for which the algorithm is provably optimal.

87

Chapter 5
Routing Algorithm for an R-Mesh Based Fat-Tree
Switch

5.1 Introduction

We presented a brief introduction to fat-trees [46, 47] in Chapter 1. A fat-tree is an extension of

the simple tree topology where the bandwidth between successive levels increases exponentially

as shown in Figure 5.1. Many of today’s high-performance clusters, especially ones using the In-

finiband, Myrinet, or Quadrics interconnection families employ a fat-tree structure [32, 33]. These

three interconnection families taken together account forroughly one third of the current top 500

supercomputers [37]. Research related to interconnectionsin NoCs also widely use fat-tree or fat-

tree type structures like the H-tree [9, 10, 54]. Fat-trees also have application in interconnection

networks for high-performance disk storage architectures[78, 79].

Switches

End Nodes

level 3

level 2

level 1

level 0

FIGURE 5.1. An 8-leaf fat-tree; multiple edges between two switches denote higher bandwidth.

In a tree a unique path exists between a source-destination pair. In a fat-tree, on the other hand,

there are multiple edges between any two switches. Hence, there is a scope for deriving benefit

by properly choosing (for a communication) one of the multiple links that connect two switches.

The precise choice of the link depends on the link loads, switch bisection bandwidth and other

communications attempting to use the switch at the same time. A general level−(k+ 1) fat-tree

switch (see Figure 5.1) has 2k+1 bidirectional ports connecting it to its parent. Additionally, it has

2k ports to each child. More precisely, consider the levelk+1 switch shown in Figure 5.2, where

0≤ k≤ n, with the root at leveln. In routing from a source to a destination, the global (high-level)

path is fixed. For example, we may already know that the path isfrom (say) left child to the parent

88

of the switch in Figure 5.2. However, the communication may use any of the 2ℓ−1 input links from

the left child and exit to any of the 2ℓ output links to the parent.

level k+1 switch

to left child to right child

to parent

2 2

2

k k

k+1

FIGURE 5.2. A levelk+1 switch.

Routing, performance analysis, and implementation of fat-tree-based interconnection networks

are well studied problems [34, 61, 72]. Linet al. [51] used thek-ary n-tree structure to implement

a fat-tree using fixed-size switches in InfiniBand networks. They also proposed a routing scheme

based on assigning multiple LIDs (local identifiers, which are identifiers used to address all the

end systems in an InfiniBand network) to all the end nodes to utilize multiple paths that exist

between any source-destination pair in a fat-tree. Gomezet al.[32] designed a deterministic routing

algorithm for a fat-tree (implemented as ak-ary n-tree). They used the idea of using a pre-defined

path for the ascending part of a route for each source-destination pair to achieve the deterministic

routing. Their algorithm balanced the overall network load. They also presented simulation results

to show that the performance of the deterministic algorithmis comparable to or better than adaptive

algorithms for similar network traffic. Gomezet al. [33] used their earlier algorithm developed in

[32] to design a simplified switch architecture for a fat-tree which effectively almost halved the

switch hardware complexity. Dinget al. [19] proposed a level-wise scheduling algorithm for a

fat-tree interconnection network. This algorithm used global information to select upward routing

paths instead of using just local information available at each switch. This reduced the number of

conflicts between communications and hence improved the schedulability ratio.

89

With fat-tree based interconnects gaining popularity, researchers are also investigating various

related research problems. Sem-Jacobsenet al. [70, 71] looked at dynamic fault tolerance and its

effect on quality of service on fat-trees. Alonsoet al. [1, 2] researched power related issues in

fat-trees.

Usually, fat-tree switch routing algorithms (especially in the fat-tree switches of supercomputer

interconnects), employ a table lookup. A table lookup is a centralized approach, and hence it suf-

fers from the disadvantages that a centralized approach usually has in terms of scalability and

performance. Hence, a distributed approach to connect ports within a switch merits investigation.

In our research related to a fat-tree switch, we design an R-Mesh1 based algorithm to generate

the intra-switch connections while achieving a certain degree of load balancing in a greedy man-

ner. This algorithm is a work in progress and needs additional results (modeling and simulations)

to evaluate its performance. In Chapter 3, we used the R-Mesh asthe control plane to generate

schedules for the crossbar. The crossbar established the corresponding paths by setting appropriate

crosspoints. Here too we are using the R-Mesh as the control plane for a fat-tree switch. The data

plane is assumed to be any mesh structure that accommodates the paths created by the R-Mesh’s

buses.

The R-Mesh itself creates the data paths by creating buses through it. Our research in this area

is still preliminary, hence we present only the basic idea and the algorithm in the next section.

5.2 Routing Algorithm for a Fat-Tree Switch Implemented as
an R-Mesh

In this section we outline the algorithm that we have designed to create configurations of an

R-Mesh, each of which will establish a set of buses connectingsource and destination ports of

a fat-tree switch. Note that our main motivation for this algorithm is that we want to embed an

R-Mesh inside a fat-tree switch and then use the reconfigurability of the R-Mesh to dynamically

create paths from source ports to destination ports inside the switch.

1For detailed background on R-Mesh refer to Section 3.3.

90

We assume that the switch has 2k ports connected to each of the left and right children and 2k+1

ports connected to its parent. We further assume that the R-Mesh embedded inside the switch has

a size ofℓ×2k+1 where each PE in the 0th (top) row (or parent side) is connected to a port that is

connected to the parent and each PE in the(ℓ−1)th row (child side) is connected to a port that is

connected to a left or a right child. We do not impose any restriction on the value ofℓ, and assume

1≤ ℓ≤ n.

The algorithm that we present here creates buses for communications that are going from the left

or right child of the switch to the parent; the other cases (from parent to child and between children)

are analogous. In this context, the parent (resp., child) side of the R-Mesh can also be called the

input (resp., output) side. Note that a bus corresponding toa child-to-parent communication can

connect a specified input port to any output port on the parentside. Simple variations of the same

idea can take care of the four other possible source-destination pairings.

We flag input ports asnon-emptyor empty(depending on whether they have any packets waiting

to be sent at the input buffers). We flag output ports asfull or ready(depending on whether they

have room to accept a packet). The state of an output portα may be determined by an underlying

flow-control mechanism that reflects possibly the state of the buffers at the input port of the neigh-

boring switch to which the output portα is directly connected. We do not discuss this flow control.

We also assume that whenever an input or output port dispatches a packet to an output port (within

the switch) or an input port (in the neighboring switch) respectively, the corresponding states of the

ports are automatically adjusted. Our algorithm runs continuously in rounds (as in the scheduling

algorithm of Section 2.2). In each round it creates paths (asmany as possible) from non-empty

input ports to ready output ports. If it is not possible to connect some non-empty input port to an

output port in the current round, then it is considered in a subsequent round. The algorithm has

three stages:

(i) Construct straight buses.

(ii) Construct buses to the right.

91

(iii) Construct buses to the left.

The last two stages are analogous and so we only describe Stages(i) and(ii).

Consider the levelk+1 switch in Figure 5.2 that uses aℓ×2k+1 R-Mesh for some 1≤ ℓ≤ 2k+1.

Figure 5.3 shows the internal structure of such a switch. Theoutput ports (only those to the parents

Rowrow 0

1

x

l−1

Input

Output
Row

j j j j j

i i i i i

0 1 2 y 2
k+1

− 1

0 1 2 y 2k+1− 1

FIGURE 5.3. The R-Mesh inside the fat-tree switch.

are shown) are labeledjy (0≤ y < 2k+1). The input ports (only those from the children are shown)

are labelediy (0≤ y < 2k+1). At this point we do not specify which input ports connect toa left

child or right child. However, the setI = {iy : 0≤ y≤ 2k+1} is partitioned into 2k-element setsIR

andIL that connect to the switches at the right and left children respectively. Denote the PE in row

x and columny by PE(x,y) where 0≤ x≤ ℓ and 0≤ y≤ 2k+1. Clearly, PE(0,y) and PE(ℓ−1,y)

access output and input portsjy andiy respectively.

We now describe the algorithm; examples in Section 5.2.1 illustrates how it works.

Initially, the algorithm marks all non-empty input ports asS(or source) ports and all ready output

ports asD (or destination) ports.

Stage(i)− Constructing straight buses:

For each columny whose portsiy and jy areSandD ports, respectively, a vertical bus through the

column suffices to connect these ports. All PEs in such columns are configured to connect their

south port to their north port.

92

Beyond this point these ports are no longer considered in Stages(ii) and(iii).

Stage(ii)− Constructing buses to the right:

In this stage we connect input ports to output ports in columns to the right. This stage has three

steps described below.

Step1 − Compute Prefix Sums:

For each source portiy, set a source weightWs(y) to 1. For all other non-source portsiy′ , set

Ws(y′) to 0. Similarly useWd(y) to flag all destination portjy.

Compute the “source prefix sums”Ps(y) of the source weights. That is, for each 0≤ y≤

2k+1,

Ps(y) =
y

∑
u=0

Ws(u).

Similarly, compute the destination prefix sums

Pd(y) =
y

∑
u=0

Wd(u).

Step2 − For each columny with a destination portjy, determine the rowr(y) through which

some source port could connect tojy.

r(y) = (Pd(y)−Ps(y)−1)(modℓ) = (ℓ+Pd(y)−Ps(y)−1)(modℓ)

Recall that we are using anℓ×2k+1 R-Mesh.

Step3 − Set up buses to the right:

This step establishes the connections between an input portand an output port to its right,

whenever possible.

Each PE of the R-Mesh configures its ports as described in Table5.1.

Stage(iii)− Constructing buses to the left:

All source-destination pairs connected in Stages(i) and(ii) are removed from consideration at this

stage. However, their connections remain.

93

TABLE 5.1. PE configurations for creating buses to the right.

PE Configurations

PE(x,y) is in source columny

PE(x,y) is in destination columny

All other PEs

Stage(iii) works just as Stage(ii), except in the opposite direction (right to left). If this stage

calls upon a PE to configure itself in a manner that conflicts with its configuration created in an

earlier stage, then the algorithm defers to the earlier configuration. Figure 5.4 shows example of

allowed and conflicting configurations.

allowedconflict

conflictallowed

FIGURE 5.4. Examples of allowed and conflicting configurations.

5.2.1 Examples Illustrating the Algorithm

We illustrate the algorithm with two examples each on a 3×10 R-Mesh. We use 10 columns only

for the purpose of illustrations. The fat-tree switch has 2k+1 columns for somek≥ 0.

Example 5.2.1:Suppose we have the source and destination ports shown in as Table 5.2. Stage

94

TABLE 5.2. Position of sources and destinations on the R-Mesh.

Columny 0 1 2 3 4 5 6 7 8 9
Source/Destination S S S D D D D,S D S S

(i) connects the portsi6 and j6. After Stage(i), these ports are no longer considered in subsequent

stages. Figure 5.5 illustrates Stage(ii). For clarity, only those connections between PEs that are part

of buses are shown.

Source/
Destination

0 1 2 3 4 5 6 7 8 9

0

1

2

y

S S D D D D S SS

(y)Ws 1 1 1 00 0 0 0 1 1

W (y)d 00101110 0 0

P

P

s

d

(y) 541 2 3 3 3 3 3 3

0 0 0 1 2 3 43 4 4(y)

(y) 00 1 2r

FIGURE 5.5. Example illustrating Stage(ii).

Observe that even though column 7 has a ready destination port, the sources in column 8 and 9

do not find it as they are looking to the right. In Stage(iii) they will seek to create buses to the left

shown in Figure 5.6.

Figure 5.7 shows the final bus configuration of the R-Mesh. Thisresults in the following pair-

ings:(i0, j3), (i1, j4), (i2, j5), (i6, j6), and(i9, j7). Notice that while there is a bus emanating from

i8, it does not head to any output port. PEs at output ports writea symbol on their buses and PEs at

input ports try to read this symbol. Those that do not read thesymbol (input porti8 in this example)

are reconsidered in the next round.

95

P

P

s

d

(y)

(y)

(y)r

0 1 2 3 4 5 6 7 8 9

0

1

2

y

2 2 2 2 2 2 222 1

1 1 1 1 1 1 1 1

1

00

FIGURE 5.6. Example illustrating Stage(iii).

0 1 2 3 4 5 6 7 8 9

0

1

2

y

FIGURE 5.7. Final bus configurations.

Source/
Destination

P (y)

0 1 2 3 4 5 6 7 8 9

0

1

2

y

s

d
r

P (y)

(y)

551 2 3 4 4 4 4 4

4 4 50 0 0 0 1 2 3

2 0 1 2 2

S DS S S SD D D D

FIGURE 5.8. Bus configurations of example 2.

Example 5.2.2:Here we omit columns which has a non-empty source and a ready destination port.

Thus we omit Stage(i) from the following illustration. Figure 5.8 shows Stage(ii). Although i0

has a bus emanating from it, it does not lead to a destination port. It leads toj3 which is full in our

96

illustration. Also,i0 cannot make any connections in Stage(iii). Thus,i0 will have to wait till the

next round.

5.3 Summary

In this chapter we introduced the fat-tree switch. We discussed some of the related research in

this field that motivated us to look at embedding an R-Mesh in a fat-tree switch for generating

connections. We presented the broad algorithm that createsbuses connecting source-destination

pair while taking into account associated loads in a coarse fashion.

97

Chapter 6
Summary of Results and Open Problems

In this dissertation we presented our research on interconnection-network switch scheduling and

configuration. We studied the following interconnection-network switches:

1. Crossbar-based input-queued switches used in many of today’s high-performance routers;

2. The circuit-switched tree (CST), a tree interconnect withapplications in reconfigurable struc-

tures and NoCs; and

3. Fat-tree switches used extensively in high-performancecomputing clusters.

In this chapter we summarize our main results and identify directions for future research.

6.1 Crossbar-Based Input-Queued Switches

A crossbar-based input-queued switch with VOQs is one of themost popular switch architectures.

Such switches have very high throughput, do not suffer from the head-of-line blocking problem, are

non-blocking, and have a simple internal data-fabric structure. These advantages resulted in many

switch and router manufacturers adopting this switch architecture in their production models. A

recent result [59] showed thatO(logn) packet delay is possible on ann×n input-queued crossbar

with the use of a slotted, frame-based scheduling algorithm. This algorithm defines a slot as the

time to send a packet and a frame as a collection of slots that uses a fixed (unupdated) traffic

matrix for scheduling1. During each slot, the algorithm generates a schedule and transmits a packet

between each scheduled input-output pair.

One of the assumptions made in the above algorithm is that thetime to generate a schedule

(round time) is no more than the time to transmit a packet. In practical systems this assumption

does not hold as the time needed to send a packet is typically much smaller than the time needed

1The algorithm updates the traffic matrix at the beginning of each frame and accounts for packets arriving during a frame at thebeginning of the
next frame.

98

to generate a schedule. In Chapter 2, we proved that if the difference in packet transmission time

and schedule generation time forces a crossbar scheduling algorithm to transmit multiple packets

per schedule, then the delay isΩ(n). This proof also showed that transmitting a single packet per

schedule is the only case that achieves a logarithmic delay.We also performed extensive simula-

tions for uniform as well as bursty traffic to support our theoretical result in practical environments.

We further underscored the importance of a fast scheduling algorithm by showing that large

schedule times result in the need for large buffers. This additional buffer requirement can negate

any saving in computing hardware and power consumption thatcan be obtained from slowing

down the scheduling algorithm.

Open Problems:Our work decoupled the schedule time and the packet transmission time of the

crossbar-based scheduling algorithm of Neelyet al. [59] and studied the effect of this on packet

delay and VOQ requirements. Other results in this area use similar slotted scheduling scheme

without treating schedule time (round) and transmission time (slot) differently [50, 66]. It is worth

investigating whether our approach of decoupling round andslot times will add new insights to

these results.

The simulation framework of Section 2.5 can facilitate studying other relationships such as

frame-sizes (minimum number of rounds needed to schedule “most” packet arrivals from the pre-

vious frame) needed for a givenpps. Although we know that this frame size will be linear forpps

≥ 2, our results clearly show that the constants for the lineargrowth depend on the value ofpps.

We have presented simulation results that show trade-offs among delay, packet loss, VOQ re-

quirement, andpps. Developing analytical relationships among these quantities is another open

problem.

6.2 Fast Scheduling Algorithm on Mesh-of-Trees

The main result of Chapter 2 pointed to the fact that in order toachieve logarithmic delay in an

input-queued crossbar, the schedule generation must be extremely fast and should be comparable to

the time needed to transmit a packet. We designed a fast mesh-of-trees based scheduling algorithm

in Chapter 3. This algorithm runs in polylog time (O(log4nlog logn) for an n× n crossbar). In

99

designing this algorithm, we also constructed a polylog time maximal matching algorithm for an

R-Mesh.

Open Problems:A sub-procedure of our R-Mesh-based maximal-size bipartitematching algo-

rithm is a leader-election algorithm that executes inO(logn) time. In the main algorithm, we

generate several very regular-shaped buses on which the leader election commences. An open

problem is to investigate whether it is possible to utilize this regularity of the bus structure to con-

struct a faster leader-election algorithm. This would significantly increase the speed of the entire

scheduling algorithm. If leader election takesO(t) time, then the scheduling algorithm runs in

O(t log3nlog logn) time. A constant time leader election would cut the time by aΘ(logn) factor.

Fairness of a scheduling algorithm is an important issue in any switch. Our R-Mesh based match-

ing algorithm does not explicitly address fairness. However, we expect simple modifications to

suffice, such as running the same algorithm on an R-Mesh with a suitable permutation of row

and column indices, to work well for this purpose. For this a reconfigurable-torus (which is not

significantly different from the R-Mesh) can be used. One could permute the PE indices (without

permuting port indices) by simply “declaring” different processors in the torus to be node(0, 0) –

the origin. Since a torus is vertex and edge symmetric, thereexists an R-Mesh (subgraph of torus)

consistent with these new origin.

Our algorithm includes efficient solutions to several graphproblems like degree-halving, two-

coloring, and leader election on a mesh-based structure in order to achieve maximal bipartite

matching. All these methods could have other computationalapplications. For example, bipar-

tite matching is used in protein structure matching, 3-D object recognition, and multi-objective

optimization. It would be useful to extend our R-Mesh algorithm to other applications such as

those identified above.

Current GPGPUs [60] have a large number of small processing units with a rich interconnect

between them. Is it possible to port R-Mesh algorithms to exploit the parallelism inherent in GPG-

PUs?

100

The R-Mesh is very well suited to handle faults (by dynamically constructing buses to bypass

faulty PEs and links)2. Can our algorithm exploit this ability of the R-Mesh to impartfault toler-

ance to the control and data plane of the switch. Addressing soft faults algorithmically is another

possible direction.

The algorithm for ann×n switch runs on ann×n R-Mesh. In general, the R-Mesh may not

scale well to run larger sized problems than the available hardware [77]. That is, if ap× p R-Mesh

is used for ann×n switch (wherep < n), then how efficient will our algorithm be?

6.3 Circuit-Switched Tree Switches

The CST is an important interconnect used to implement dynamically reconfigurable architectures.

A CST-type structure can have applications in other devices like NoCs that employ a tree intercon-

nect. In Chapter 4 we presented our research related to CST scheduling and configuration. The

main problem in a CST is twofold: scheduling – given a set of incompatible communications,

partition them into compatible subsets in a distributed manner; and configuration – given a set of

compatible communications, create the corresponding paths on the CST in a distributed fashion

using only local information available at the leaves. We designed an efficient algorithm to achieve

these goals. Our algorithm performed the scheduling and theconfiguration concurrently in an iter-

ative way. In each iteration the algorithm generated a schedule and configured the CST based on

that schedule. We also presented modified versions of the algorithm for special cases like width-1

communication sets and multicasts. Finally, we presented efficient adaptations of our algorithm for

an important communication class called well-nested, for which our algorithm is optimal.

Open Problems:While our algorithm has an approximation ratio of 2 for any communication set,

there exists another algorithm (developed for optical networks) with an approximation ratio of53

that is provably optimal [26]. However, our algorithm is considerably simpler and requires min-

imal computational capability at each node. It is worthwhile to simulate practical optical routing

2Refer to Fernandez-Zepedaet al. [28] for research related to finding a fault-free sub-R-Meshin a faulty R-Mesh.

101

examples to ascertain whether the simplicity of our algorithm is a good trade-off considering its

slightly higher approximation ratio.

We proved that our algorithm is optimal for the important communication class of well-nested

communication sets. In related research, El-Boghdadi [22] developed power-aware, optimal rout-

ing algorithms for well-nested communications and showed that his algorithm is more efficient in

terms of power-awareness compared to ours. In the future, one can to explore the possibility of

extending our algorithm as well as power-aware CST configuration and scheduling algorithms to

other important classes other than well-nested communications.

6.4 Fat-Tree Switch

A fat-tree is an important interconnection structure that is used extensively in many of today’s

high-performance clusters as well as other areas like high-capacity disk-storage interconnections.

In Chapter 5 we presented our preliminary research related toR-Mesh-based routing in fat-tree

switches. We presented an algorithm to generate configurations of an R-Mesh to match the input

port requests with available output ports of a fat-tree switch. For reference below, call this thebasic

algorithm.

Open Problems:The general idea is to iteratively apply the basic algorithmto schedule and route

as many connection requests as possible. The following paragraphs outline an approach to build

on the basic algorithm.

Incremental Algorithm: The current approach is to apply the basic algorithm (starting with an

R-Mesh with no connections) at each round. That is, a given subset of connection requests is

scheduled, routed, then removed from the traffic matrix. Next the current connections are torn

down and remaining requests are routed all over again. Theremay be significant advantages

to reusing connections made in previous rounds. In cases where a particular connection can

be employed for several packets, the connection can be used across multiple rounds. All

these point to the need for an incremental algorithm that builds on a previous configuration,

rather than start all over again each time.

102

Adding Weights: It is well known that good load balancing achieves good throughput. Weights

can be associated with input and output ports of the R-Mesh (fat-tree switch) to reflect their

loads; for example, a full input port has large weight as it should be addressed as soon as

possible. A weight-aware schedule that prioritizes connections by weights could balance

loads across the switch and, hence, across the network.

Simulation: Most of the work described above requires simulations both for the evaluation of the

methods and for determining parameter values. For example,the simulation can determine

the granularity of weights for the ports. Currently, we have atwo-level (Boolean) weighting

system for the ports. Is much to be gained by changing this tob-bit weights? As another

example, the number of rounds needed to schedule a set of communications is a good mea-

sure of the algorithm’s effectiveness. This can be ascertained by simulations. Finally, overall

network performance can also be evaluated in the context of the proposed methods.

6.5 Other Directions

Here we identify research directions other than those tied to specific chapters.

The ideas of CSTs and fat-trees can be generalized to a tree in which switches are connected by

links of arbitrary bandwidth. For example, a levelk fat-tree switch has 2k links to the parent and

2k−1 links to each child. These quantities are all 1 for the CST. In general a switch can havefp(k),

fl (k), and fr(k) links to its neighbors. Particular cases of this abstraction can be of importance in

current and future technological settings. For instance, if fp(k), fl (k), and fr(k) are 1 in a fat-tree

up to a certain level,k0, and a different constant value for higher levels, then we have a two-tier

tree that is possibly much leaner at the top than a fat-tree. This could be used in settings such as

stacked-die interconnects with a relatively lower interconnect density between dies than within a

die. The same abstraction works for pin-limited settings that restrict the number of connections

between chips and boards.

•••

103

On the whole, in this dissertation we have studied scheduling and configuration of three broad

categories of network switches that are currently used in settings ranging from local and wide

area networks to high-performance clusters and networks-on-a-chip. History has taught us that

these environment boundaries are not rigid. For example, concepts that were used a decade ago

only is long-haul networks are now used within a chip. Our work is at a sufficiently high level of

abstraction to allow porting of results from this dissertation across application boundaries and hold

relevance beyond the present state-of-the-art.

104

References

[1] M. Alonso, S. Coll, J. M. Martinez, V. Santonja, P. Lopez, and J. Duato. “Dynamic Power
Saving in Fat-Tree Interconnection Networks Using On/Off Links,” 20th Intl. Parallel and
Distributed Processing Symposium, pp. 8, Apr. 2006.

[2] M. Alonso, S. Coll, V. Santonja, J. M. Martinez, P. Lopez, and J. Duato, ”Power-Aware
Fat-Tree Networks Using On/Off Links,”Lecture Notes in Computer Science - Third In-
ternational Conference on High Performance Computing and Communications, vol. 4782,
pp. 472–483, 2007.

[3] L. Benini and G. De Micheli, “Networks on Chips: A New SoC Paradigm,” IEEE Computer,
pp. 70–78, Jan. 2002.

[4] A. Bermudez, R. Casado, F. J. Quiles, and J. Duato, “HandlingTopology Changes in Infini-
Band,” IEEE Tran. on Parallel and Distributed Systems, February 2007, (Vol. 18, No. 2),
pp. 172–185.

[5] K. Bolding, S-C. Cheung, S-E. Choi, C. Ebeling, S. Hassoun, T. A. Ngo, and R. Wille, “The
Chaos Router Chip: Design and Implementation of an Adaptive Router,” IFIP Transactions
A, vol. A-42, pp. 311–320, 1994.

[6] K. Bolding, S-C. Cheung, S-E. Choi, C. Ebeling, S. Hassoun, T. A. Ngo, and R. Wille, “The
Chaos Router Chip: Design and Implementation of an Adaptive Router,” in Proc. Interna-
tional Conference on VLSI, pp. 311–320, 1993.

[7] K. Bondalapati and V. K. Prasanna, “Hardware Object Selection for Mapping Loops onto
Reconfigurable Architectures,”Proc. Int. Conf. Par. and Distr. Proc. Techniques and Appl.,
pp. 1104–1110, 1999.

[8] K. Bondalapati and V. K. Prasanna, “Reconfigurable Computing Systems,”Proc. IEEE, 2002,
vol. 90, no. 7, pp. 1201–1217.

[9] A. Bouhraoua and M. E. Elrabaa, “An Efficient Network-on-Chip Architecture Based on the
Fat-Tree (FT) Topology,”in Proc. International Conference on Microelectronics, pp. 28–31,
2006.

[10] A. Bouhraoua and M. E. Elrabaa, “Addressing Heterogeneous Bandwidth Requirements in
Modified Fat-Tree Networks-on-Chips,”in Proc. 4th IEEE International Symposium on Elec-
tronic Design, Test and Applications, pp. 486–490, 2008.

[11] J. Carbonaro, and F. Verhoorn, “Cavallino: The Teraflop Router and NIC,”in Proc. Hot In-
terconnects Symposium IV, pp. 157–160, 1996.

[12] H. J. Chao and B. Liu,High Performance Switches and Routers, Wiley-IEEE Press, 2007.

[13] S-T. Chuang, A. Goel, N. McKeown, and B. Prabhakar, “Matching Output Queueing with a
Combined Input Output Queued Switch,”IEEE Journal on Selected Areas in Communica-
tions, vol. 17, no. 6, pp. 1030–1039, 1999.

105

[14] S-T. Chuang, S. Iyer, and N. McKeown “Practical Algorithms for Performance Guarantees in
Buffered Crossbars,”in Proceedings of IEEE INFOCOM, pp. 981–991, 2005.

[15] K. Compton and S. Hauck, “Reconfigurable Computing: A Survey of Systems and Software,”
ACM Computing Surveys, 2002, vol. 34, no. 2, pp. 171–210.

[16] W. J. Dally and B. Towles,Principle and Practices of Interconnection Networks, Morgan
Kaufmann, 2005.

[17] W. J. Dally, L. R. Dennison, D. Harris, K. Kinhong, and T. Xanthopoulos, “Architecture and
Implementation of the Reliable Router,”Proc. Hot Interconnects Symposium II, pp. 197–208,
1994.

[18] H. P. Dharmasena and R. Vaidyanathan, “The Mesh with Binary Tree Networks: An En-
hanced Mesh with Low Bus-Loading,”The Journal of Interconnection Networks, vol. 5, no. 2,
June 2004, pp.131–150.

[19] Z. Ding, R. R. Hoare, and A. K. Jones, “Level-wise Scheduling Algorithm for Fat Tree Inter-
connection Networks,”in Proc. Super Computing 06, pp. 9–9, Tampa, Florida, 2006.

[20] J. Duato, S. Yalamanchilli, and L. Ni,Interconnection Networks an Engineering Approach,
Morgan Kaufmann, 2003.

[21] H. M. El-Boghdadi, “On Implementing Dynamically Reconfigurable Architectures,” Ph.D.
Thesis, Dept. Electrical and Computer Engg., Louisiana State University, 2003.

[22] H. M. El-Boghdadi, “Power-Aware Routing for Well-NestedCommunications on the Circuit
Switched Tree,”Journal of Parallel and Distributed Computing, vol. 69, no. 2, pp. 135–142,
2009.

[23] H. M. El-Boghdadi, R. Vaidyanathan, J. L. Trahan, and S. Rai“Implementing Prefix Sums
and Multiple Addition Algorithms for the Reconfigurable Meshon the Reconfigurable Tree
Architecture,”Proc. Int. Conf. Parallel and Distrib. Proc. Techniques and Appl., 2002, vol. 3,
pp. 1068–1074.

[24] H. M. El-Boghdadi, R. Vaidyanathan, J. L. Trahan, and S. Rai, “On the Communication Capa-
bility of the Self-Reconfigurable Gate Array Architecture,”9th Reconfigurable Architectures
Workshopin Proc. Int. Parallel and Distrib. Proc. Symp, (2002).

[25] H. M. El-Boghdadi, R. Vaidyanathan, J. L. Trahan, and S. Rai, “On Designing Implementable
Algorithms for the Linear Reconfigurable Mesh,”Proc. Int. Conf. on Parallel and Distrib.
Proc. Tech. and App, (2002), pp. 241–246.

[26] T. Erlebach, K. Jansen, C. Kaklamanis, M. Mihail, and P. Persiano, “Optimal Wavelength
Routing on Directed Fiber Trees,”Theor. Comput. Sci., 221(1-2), pp. 119–137, 1999.

[27] M. Fayyazi, D. Kaeli, and W. Meleis, “Parallel Maximum Weight Bipartite Matching Algo-
rithms for Scheduling in Input-Queued Switches,”Proc. 18th. Intl. Parallel and Distributed
Processing Symposium, pp. 4b, 2006.

106

[28] J. A. Fernandez-Zepeda, A. Estrella-Balderrama, and A.G. Bourgeois, “Designing Fault Tol-
erant Algorithms for Reconfigurable Meshes”Intl. J. Foundations of Computer Sci., vol. 16,
no. 1, pp. 71–88, 2005.

[29] C. Fraleigh, S. Moon, B. Lyles, C. Cotton, M. Khan, D. Moll, R. Rockell, T. Seely, and S. C.
Diot, “Packet-Level Traffic Measurements from the Sprint IPBackbone,”Network, IEEE,
vol. 17, no. 6, pp. 6–16, December 2003.

[30] M. Galles, “Scalable Pipelined Interconnect for Distributed Endpoint Routing: The SPIDER
Chip,” in Proc. Hot Interconnects Symposium, pp. 7–22, 1996.

[31] P. Giaccone, B. Prabhakar, and D. Shah, “Randomized Scheduling Algorithms for High-
Aggregate Bandwidth Switches,”IEEE J. Select. Areas Commun., vol. 21, pp. 546–559, 2003.

[32] C. Gomez, F. Gilabert, M.E. Gomez, P. Lopez, and J. Duato,“Deterministic versus Adaptive
Routing in Fat-Trees,”in Proc. Parallel and Distributed Processing Symposium, pp. 1–8,
2007.

[33] C. Gomez, F. Gilabert, M. E. Gomez, P. Lopez, and J. Duato,“RUFT: Simplifying the Fat-
Tree Topology,”in Proc. International Conference on Parallel and Distributed Systems (IC-
PADS), pp. 153–160, 2008.

[34] R. I. Greenberg and L. Guan, “An Improved Analytical Model for Wormhole Routed Net-
works with Application to Butterfly Fat-Trees,”Proc. ICPP 97, pp. 44-48.

[35] M. Hanckowiak, M. Karonski, and A. Panconesi, “On the Distributed Complexity of Com-
puting Maximal Matchings,”SIAM J. Discrete Math., vol. 15, no. 1, pp. 41–57, 2001.

[36] T. Hoefler, T. Schneider, and A. Lumsdaine, “MultistageSwitches are Not Crossbars: Effects
of Static Routing in High-Performance Networks,”Proc. IEEE International Conference on
Cluster Computing, 2008, pp. 116–125.

[37] http://www.top500.org/

[38] http://www.cray.com/Assets/PDF/products/xt/CrayXT5m Brochure.pdf

[39] http://www.cisco.com/en/US/products/ps5763/

[40] http://www.huawei.com/products/datacomm/detailitem/ view.do?id=960&rid=69

[41] http://www.huawei.com/products/datacomm/detailitem/ view.do?id=958&rid=70

[42] http://www.omnetpp.org/

[43] S. Iyer and N. McKeown, “Maximum Size Matchings and Input Queued Switches,” in40th
Annual Allerton Conf. on Communication, Control, and Computing, 2002.

[44] P. Kelsen, “Optimal Parallel Algorithm for Maximal Matching,” Information Processing Let-
ters, vol. 52, no. 4, pp, 223–228, 1994.

107

[45] D. I. Lehn, K. Puttegowda, J. H. Park, P. Athanas, and M. Jones, “Evaluation of Rapid Context
Switching on a CSRC Device,”Proc. Intl. Conf. on Engineering of Reconfigurable Systems
and Algorithms (ERSA02), 2002, pp. 154–160.

[46] F. T. Leighton,Introduction to Parallel Algorithms and Architectures: Arrays· Trees· Hyper-
cubes, Morgan Kaufmann, 1992.

[47] C. E. Leiserson, “Fat Trees: Universal Networks for Hardware Efficient Supercomputing,”
IEEE Trans. on Computers,vol. 34, no. 10, pp. 892-901, 1985.

[48] E. Leonardi, M. Mellia, F. Neri, and M. A. Marsan, “Boundson Average Delays and Queue
Size Averages and Variances in Input-Queued Cell-Based Switches,” in IEEE INFOCOM,
pp. 1095–1103, 2001.

[49] X. Li and I. Elhanany, “Stability of Frame-Based MaximalWeight Matching Algorithms with
Reconfiguration Delay,”Workshop on High Performance Switching and Routing, pp. 942–
944, May, 2005.

[50] Y. Li, S. Panwar and H. J. Chao, “Frame-Based Matching Algorithms for Optical Switches”,
Proc. Workshop on High Performance Switching and Routing, pp. 97–102, Jun 2003.

[51] X.-Y. Lin, Y.-C. Chung, and T.-Y. Huang, “A Multiple LID Routing Scheme for Fat-Tree
Based Infiniband Networks,”Proc. Int. Parallel and Distrib. Proc. Symp, pp. 11, 2004.

[52] J. Lou and X. Shen, “Frame-Based Packet-Mode Schedulingfor Input-Queued Switches,”to
appear in IEEE Transactions on Computers, July, 2009.

[53] S. Matsumae and N. Tokura, “Simulation Algorithms among Enhanced Mesh Models,”IE-
ICE Transactions on Information and Systems, vol. E82-D, no. 10, pp. 1324–1137, 1999.

[54] H. Matsutani, M. Koibuchi, and H. Amano, “Performance,Cost, and Energy Evaluation of
Fat H-Tree: A Cost-Efficient Tree-Based On-Chip Network,”in Proc. IEEE International
Parallel and Distributed Processing Symposium, 2007.

[55] N. McKeown, “The iSLIP Scheduling Algorithm for Input-Queued Switches,”IEEE/ACM
Transactions on Networking, vol. 7, no. 2, pp. 188–201, 1999.

[56] N. McKeown, A. Mekkittikul, V. Anantharam, and J. Walrand, “Achieving 100% Throughput
in an Input-Queued Switch,”IEEE Transactions on Communications, vol. 47, no. 8, August
1999.

[57] L. Mhamdi, “A Partially Buffered Crossbar Packet Switching Architecture and its Schedul-
ing,” Proc. IEEE Symposium on Computers and Communications, pp. 942–948, July 2008.

[58] M. Mitzenmacher and E. Upfal,Probability and Computing: Randomized Algorithms and
Probabilistic Analysis, Cambridge University Press, 2005.

[59] M. J. Neely, E. Modiano, and Y. S. Cheng, “Logarithmic Delay for n× n Packet Switches
Under the Crossbar Constraint,”IEEE/ACM Transactions on Networking, vol. 15, no. 3, pp.
3–9, June 2007.

108

[60] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable Parallel Programming with
CUDA,” Queue, vol. 6 , no. 2, pp. 40–53, 2008.

[61] S. R. Ohring, M. Ibel, S. K. Das, and M. J. Kumar, “On Generalized Fat Trees,”Proc. 9th
International Parallel Processing Symposium, pp 37–44, April 1995.

[62] J. H. Pan, T. Mitra, and W-F. Wong, “Configuration Bitstream Compression for Dynamically
Reconfigurable FPGAs,”in Proc. IEEE/ACM International Conference on Computer Aided
Design, pp. 766–773, 2004.

[63] D. Pang and Y. Yang, “Localized Independent Packet Scheduling for Buffered Crossbar
Switches,”IEEE Transactions on Computers, vol. 58, no. 2, pp. 260–274, February 2009.

[64] G. Papadopoulos, G. A. Boughton, R. Greiner, and M. J. Beckerle, “*T: Integrating Building
Blocks for Parallel Computing,”in Proc. Supercomputing, pp. 624–635, 1993.

[65] H. Qiu, Y. Li, P. Yi, and JiangXing Wu, “PIFO Output Queued Switch Emulation by a One-
cell-Crosspoint Buffered Crossbar Switch,”Proc. Internation Conference on Communica-
tions, Circuits and Systems, June 2006, pp. 1767–1771.

[66] R. Rojas-Cessa and C. Lin, “Captured-Frame Eligibility and Round-Robin Matching for
Input-Queued Packet Switches,”IEEE Communications Letters, vol. 8, no. 9, Sept. 2004,
pp. 585–587.

[67] S. Ross,Probability Models for Computer Science, Harcourt/Academic Press, 2002.

[68] S. L. Scott, “Synchronization and Communication in T3E Multiprocessor,”in Proc. 7th In-
ternational Conference on Architectural Support for Programming Languages and Operating
Systems, pp. 26–36, 1996.

[69] S. L. Scott and G. Thorson, “The Cray T3E Network, Adaptive Routing in a High Perfor-
mance 3D Torus,”in Proc. Hot Interconnects Symposium IV, 1996.

[70] F. O. Sem-Jacobsen and T. Skeie, “Maintaining Quality of Service with Dynamic Fault Toler-
ance in Fat-Trees,”Lecture Notes in Computer Science - 15th International Conference High
Performance Computing, vol. 5374, pp. 451–464, 2008.

[71] F. O. Sem-Jacobsen, T. Skeie, O. Lysne, and J. Duato, “Dynamic Fault Tolerance with Mis-
routing in Fat Trees,”in Proc. International Conference on Parallel Processing, pp. 33–42,
2006.

[72] H. Sethu, C. B. Stunkel, and R. F. Stucke, “IBM RS/6000 SP Interconnection Network
Topologies for Large Systems,”Proc. International Conference on Parallel Processing, 1998,
pp. 620–627.

[73] R. Sidhu and V. K. Prasanna, “Efficient Metacomputation Using Self-Reconfiguration,”Proc.
12th. Int. Workshop on Field Prog. Logic and App., 2002, Springer Verlag Lecture Notes in
Computer Sc., vol. 2438, pp. 698–709.

109

[74] R. Sidhu, S. Wadhwa, A. Mei, and V. K. Prasanna, “A Self-Reconfigurable Gate Array Ar-
chitecture,”Int. Conf. on Field Programmable Logic and Applications, 2000, Springer Verlag
Lecture Notes in Computer Sc., vol. 1896, pp. 106–120.

[75] H. Singh, M.-H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh,and E. M. Chaves Filho, “Mor-
phoSys: An Integraged Reconfigurable System for Data-Parallel and Computation-Intensive
Applications,”IEEE Trans. Comput., 2000, vol. 49, no. 5, pp. 465–481.

[76] L. Tassiulas and A. Ephremides, “Stability Propertiesof Constrained Queueing Systems and
Scheduling Policies for Maximum Throughput in Multihop Radio Networks,”IEEE Trans-
actions on Automatic Control, vol. 37, no. 12, pp. 1936–1949, Dec, 1992.

[77] R. Vaidyanathan and J. L. Trahan,Dynamic Reconfiguration: Architectures and Algorithms,
Kluwer Academic/Plenum Publishers, 2004.

[78] Z. Wang, K. Zhou, D. Feng, and J. Liu, “Disk Tree: A Fat-Tree Based Heterogeneous Multi-
Tier Storage Architecture,”in Proc. 4th International Workshop on Storage Network Archi-
tecture and Parallel I/Os, pp. 47–54, 2007.

[79] Z. Wang, K. Zhou, D. Feng, L. Zeng, and J. Liu, “FTRAID: A Fat-Tree Based Parallel Storage
Architecture for Very Large Disk Array,”in Proc. International Conference on Networking,
Architecture, and Storage, pp. 185–192, 2007.

[80] Xilinx, “Virtex Series Configuration Architecture UserGuide,” Xilinx application note XAPP
151, 2000.

[81] Y. Zheng and W. Gao, “Randomized Parallel Scheduling Algorithm for Input Queued Cross-
bar Switches,”Proceedings of the Fifth International Conference on Computer and Informa-
tion Technology, pp. 424–428, 2005.

[82] J. Zhou, X. Lin, C. Wu, and Y. Chung, “Multicast in Fat-Tree-Based InfiniBand Networks,”
Proceedings of the 2005 Fourth IEEE International Symposium on Network Computing and
Applications (NCA05), pp. 239–242, 2005.

[83] www.zurich.ibm.com/ ˜ fab/Osmosis/

110

Vita

Krishnendu Roy received his bachelor of science with honors in computer science in 2000, and

bachelor of technology in information technology in 2003, both from University of Calcutta, Cal-

cutta, India. He joined the Department of Electrical and Computer Engineering at Louisiana State

University in August 2003. Krishnendu obtained his master of science in electrical engineering -

computers area in December 2005, and is expected to completehis doctor of philosophy in elec-

trical engineering - computers area in August 2009. Krishnendu will join the Mathematics and

Computer Science Department at Valdosta State University, Valdosta, Georgia, U.S.A in August

2009.

111

	Louisiana State University
	LSU Digital Commons
	2009

	Scheduling and reconfiguration of interconnection network switches
	Krishnendu Roy
	Recommended Citation

	Bursty_6_Diff_Frame_Size_100.eps

