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Abstract

This dissertation gives complete, analytic, and optimal solutions to several robust fault

detection problems for both continuous and discrete linear systems that have been considered

in the research community in the last twenty years. It is shown that several well-recognized

robust fault detection problems, such as H−/H∞, H2/H∞ and H∞/H∞ problems, have

a very simple optimal solution in an observer form by solving a standard algebraic Riccati

equation. The optimal solutions to some other robust fault detection problems, such as

H−/H2 and H2/H2 problems are also given. In addition, it is shown that some well-

studied and seeming sensible optimization criteria for fault detection filter design could lead

to (optimal but) useless fault detection filter designs.
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Chapter 1

Introduction

This chapter gives a brief introduction to robust fault detection problems and the motiva-

tion for studying them. Some basic concepts and important terminologies in this area are

provided. Previous works in the literature are reviewed and an overview of this dissertation

is given.

1.1 Fault Detection for Modern Dynamic Systems

During the past several decades, modern dynamic systems have become very complex with

large numbers of components and functional units. It is not realistic to assume that all

these components and units can always work perfectly well, under all kinds of environmental

changes and conditions. The malfunctions of these components and units, for example, can

be measurement error of sensors or loss of efficiency of actuators. In this dissertation, we

use the terminology fault (or failure) to represent this kind of malfunctions.

Faults in modern complex systems, such as aircrafts and petrochemical plants, can lead

to very serious consequences if appropriate measure is not taken in time. These consequences

may include significant performance degradation, serious damage of the system, catastrophic

1



disaster and loss of human lives. Therefore, it is critically important to design our control

system that can deal with possible faults and failures. The control system with this ability

is called fault tolerant control system. There are two main approaches for fault tolerant

control system design: passive approach and active approach. Passive fault tolerant control

system uses one fixed design to accommodate all possible faults and failures. Since there

may be many different faults in a system, the design of passive fault tolerant control system

is rather difficult or even impossible in some cases. On the contrary, active fault tolerant

control system takes different measures corresponding to different faults and is a better way

for fault tolerant design. However, active fault tolerant control requires fast diagnosis and

judgement after fault occurs. This fault diagnosis and judgement process, defined as fault

detection, is thus a crucial issue and the main topic to be addressed in this dissertation.

1.2 Model-based Fault Detection

Most fault detection techniques and approaches can be fitted in two categories: model-free

fault detection and model-based fault detection. Model-free approach detects fault without

knowing system model information. In general, this approach employs data driven tech-

niques such as Artificial Neural Network and Data Mining, and uses large amount of system

measurements as training data to develop fault detection logic. Model-free fault detection

can be effective in many cases, especially when model information is not available, but has

relatively high computational complexity and is not suitable for online fault detection. On

the other hand, model-based approach makes use of priori information of mathematic system

model to detect fault. When system model information is available, model-based approaches

2



are generally faster and more accurate than model-free ones. In the last twenty some years,

fault diagnosis of dynamic systems has received much attention and significant progress

has been made in searching for both data-driven and model-based diagnosis techniques,

see [4, 7, 29, 30,37,38] and the references therein.

1.3 Robust Fault Detection Problem

The objective of model-based fault detection is to design a detection mechanism that gener-

ates fault indicating signals. These signals, called residual signals, are compared with given

thresholds to judge whether a fault occurs or not. For this purpose, many model-based fault

detection techniques have been studied in the last two decades [4]. One of the particular

interesting techniques among all the model-based techniques is observer-based fault detec-

tion filter design [7]. Observer-based fault detection filter is not only easy to implement

in practical systems, but also has been shown in many theoretical studies and applications

that suitably designed observer-based fault detection filters can be very effective in detecting

sensors, actuators, and system components faults.

Since known/unknown disturbances, noise, and model uncertainties are unavoidable for

any practical systems, it is essential in the design of any fault detection filter to take these

effects into consideration so that fault detection can be done reliably and robustly. Nev-

ertheless, finding systematic design methods for systems subject to unknown disturbances

and model uncertainties have proven to be difficult. Many robust filter design techniques,

such as H∞ optimization, LMI, and µ design techniques, have been applied to fault detec-

tion filter design with limited success [6, 18, 32, 33, 46]. The reason is that a fault detection

3



filter design is really a multi-objective design task. It needs not only rejecting disturbance,

noise and being insensitive to model uncertainties, but also being as sensitive as possible to

potential faults so that early detection of faults is possible. Unfortunately, these two design

objectives are almost always conflicting with each other. Hence a design tradeoff between

these two objectives is unavoidable and needs to be addressed explicitly in the design pro-

cess. To do that, some suitable design criteria for both objectives have to be defined. It

has been widely accepted in the field that H2 norm and H∞ norm of the transfer matrix

from disturbances to fault detection residuals are good candidates for measuring up the

disturbance rejection capability of a fault detection system. In some cases, H2 norm of

the transfer matrix from faults to fault detection residual signals is also suitable for eval-

uating the fault detection system’s sensitivity to faults. It has also been recognized that

the H− index (which is used to be called H− norm too), first introduced by Hou and Pat-

ten [12] and further extended by Liu et al [22], seems to be a very appropriate measure

of the fault detection sensitivity [4, 7, 30]. With such defined performance objectives, sev-

eral fault detection design problems have been formulated as multi-objective optimization

problems by minimizing the effects of disturbances and maximizing the fault sensitivity, for

example, H−/H∞ problem, H∞/H∞ problem, H2/H∞ problem, H−/H2 problem, and

H2/H2 problem. In particular, the H−/H∞ problem has attracted a great deal of attention

recently, [9, 10, 15, 22, 31, 34–36, 41]. However, most of the results obtained in the existing

literature are either conservative or complicate to apply. Furthermore, they are usually not

guaranteed to be optimal. A notable exception is the result by Ding et al [5], where optimal

solutions to some formations of H−/H∞ and H∞/H∞ problems are given.

4



Since most (continuous) dynamical systems are nowadays controlled by digital devices, it

is also important to understand those theoretical development in the digital (sampled-data)

setting. Furthermore, it has been shown in [13] that sample-data fault detection problem

can be converted to equivalent discrete time detection problem using certain discretization

method and thus discrete time fault detection is of great importance and most nature for

modern digital implementation. There are significant amount of works addressing discrete

time fault detection problem using Kalman filter related techniques [2, 16, 39]. Similar to

continuous time fault detection, robustness in discrete time fault detection is also a very

important issue but difficult to handle. Many robust filter design techniques, such as H∞ op-

timization, LMI, parity space, and eigen-structure assignment, have been applied to discrete

time fault detection filter design with limited success since we have similar multi-objective

design problem like in continuous case [21, 28, 41, 45]. With H2 norm, H∞ norm and H−

index similarly defined for discrete time systems, several discrete time fault detection design

problems can be formulated as multiple objective optimization problems by minimizing the

effects of disturbances and maximizing the fault sensitivity, for example, H−/H∞ problem,

H∞/H∞ problem, H2/H∞ problem, H−/H2 problem, and H2/H2 problem. These prob-

lems have been studied intensively, [13–15,17,34,42,43]. Like the continuous problems, most

of the results obtained in the existing literature are conservative to some extend and they are

usually not optimal. However, an optimal solution to H∞/H∞ problem for linear discrete

time periodic systems is given recently by Zhang et al [44].
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1.4 Dissertation Overview

In this dissertation we propose a new technique to solve the above mentioned problems.

In fact, we shall give complete solutions to all robust fault detection problems mentioned

above, in both the continuous time and discrete time cases. For those problems that optimal

solutions exist, we provide analytic and optimal solutions to them. It turns out that our

solutions are surprising simple once the problems are suitably formulated. For those problems

that have no analytic optimal solutions, we also derived effective algorithms to get good

approximate solutions.

This dissertation is organized as follows: Chapter 2 introduces the notations and sum-

marizes some key facts that will be used in the later parts. Chapter 3 gives the solutions

to continuous time fault detection problems. Analytic and optimal solutions to H−/H∞

problem, H2/H∞ problem and H∞/H∞ problem are given in this chapter. It is also shown

that no rational optimal solutions to H−/H2 problem and H2/H2 problem exists and ef-

fective approaches of finding good approximate solutions are provided. Chapter 4 gives the

solutions to discrete time fault detection problems. We give analytic and optimal solutions

to discrete H−/H∞ problem, H2/H∞ problem and H∞/H∞ problem. Surprisingly, we are

able to give an optimal analytic solution to one case of discrete H−/H2 problem, while the

analytic solution for corresponding continuous problem doesn’t exist. Effective approaches

for finding good approximate solutions to discrete H2/H2 problem and the other cases of

discrete H−/H2 problem are also given in this chapter. Some numerical examples of our

fault detection designs and comparison with existing results are shown in Chapter 5. Finally,

some conclusions are given in Chapter 6.

6



Chapter 2

Preliminary Results

In this chapter some important notations and preliminary results are given. We first intro-

duce the notations used in this dissertation in section 2.1. After that, important definitions

such as transfer matrix and norms are defined in section 2.2 and 2.3. Some useful facts about

singular value inequality, Riccati equation and transfer matrix factorization are presented in

section 2.4. Since these preliminary results are well-known and contained in standard robust

control theory, we state the results directly without giving proofs.

2.1 Matrix Notations

The set of m by n real (complex) matrices is denoted as Rm×n (C m×n). For a matrix A ∈

C m×n we use A′ to denote its transpose and A∗ for its complex conjugate transpose. In the

case of m = n this matrix is called a square matrix. For a Hermitian matrix A = A′ ∈ C n×n,

λ̄(A) represents the largest eigenvalue of A and λ(A) represents the smallest eigenvalue of A.

For any A ∈ C m×n, σ̄(A) =

√
λ̄(AA′) =

√
λ̄(A′A) denotes the largest singular value of A

and σ(A) =
√

λ(AA′) (
√

λ(A′A)) denotes the smallest singular value of A if m ≤ n (m ≥ n).

A Hermitian matrix A is said to be positive semi-definite, i.e., A ≥ 0, if Re[x′Ax] ≥ 0 for

7



any vector x. For A ≥ 0, A
1
2 is a matrix such that A

1
2 ×A

1
2 = A. The n× n identity matrix

is denoted as In and the m× n zero matrix is denoted as 0m,n, with the subscripts dropped

if they can be inferred from context.

2.2 Transfer Matrix

2.2.1 Continuous Time Case

We use RL m×n
∞ to denote the set of all m×n real rational proper transfer matrices with no

poles on the imaginary axis. The superscripts for dimensions will usually be dropped when

they are either not important or clear from context. RH∞ is a subset of RL∞ with all stable

transfer matrices. Similarly RH2 is the set of all real rational strictly proper stable transfer

matrices. Transfer functions and Laplace transforms of signals are represented using bold

characters and sometimes in dependence of the Laplace variable s. A state space realization

of a transfer matrix G(s) is denoted as

G(s) =


 A B

C D




such that G(s) = D+C(sI−A)−1B. Let G∼(s) := G(−s)T be the para-Hermitian complex

conjugate transpose of G and G−1(s) be the inverse of G if G(s) is square and invertible.

Now suppose G(s) =


 A B

C D


 is square and D is nonsingular, then we have from [47]

G−1 =


 A−BD−1C −BD−1

D−1C D−1


 .

8



2.2.2 Discrete Time Case

In discrete time case, RL m×n
2 is used to denote the set of m×n real rational proper transfer

matrices with no poles on the unit circle. The superscripts for dimensions will usually be

dropped when they are either not important or clear from context. It turns out in discrete

time, RH∞ is the same as RL2, which consists of all stable proper transfer matrices.

Discrete transfer matrices and Z-transforms of signals are represented using bold char-

acters and sometimes in dependence of the variable z. A state space realization of a transfer

matrix G(z) is denoted as

G(z) =


 A B

C D




such that G(z) = D + C(zI − A)−1B.

We define G∼(z) := GT (z−1) and denote G−1(z) as the inverse of G if G(z) is square

and invertible. Now suppose G(z) =


 A B

C D


 is square and D is nonsingular, then we

have from [47]

G−1 =


 A−BD−1C −BD−1

D−1C D−1


 .

2.3 Definitions of Norms

2.3.1 Continuous Time Case

For G ∈ RH2 we define the H2 norm of G as

‖G‖2 =

√
1

2π

∫ ∞

−∞
Trace{G∼(jω)G(jω)}dω.

For G ∈ RH∞ we define the H∞ norm of G as

‖G‖∞ = sup
ω∈R

σ̄(G(jω)).

9



Similarly the H− index of G over all frequency is defined as [31]

‖G‖[∞]
− = inf

ω∈R
σ(G(jω)).

The H− index of G over a finite frequency range [ω1, ω2] is defined as [22]

‖G‖[ω1,ω2]
− = inf

ω∈[ω1,ω2]
σ(G(jω)).

In particular the H− index defined at zero frequency [12] is

‖G‖[0]
− = σ(G(0)).

If no superscript is added to the H− symbol, such as ‖G‖−, then it represents all possible

H− definitions.

It should be noted that H− index is sometimes called H− norm in the literature although

it does not satisfy the property of a norm.

2.3.2 Discrete Time Case

For G(z) ∈ RH2 we define the H2 norm of G as

‖G‖2 =

√
1

2π

∫ 2π

0

Trace[G∼(ejθ)G(ejθ)]dθ.

For G ∈ RH∞ we define the H∞ norm of G as

‖G‖∞ = sup
θ∈[0,2π]

σ̄[G(ejθ)].

Similar to the H− definitions of continuous time system, we define the H− index of a discrete

transfer matrix G on the whole unit circle as

‖G‖[0,2π]
− = inf

θ∈[0,2π]
σ(G(ejθ)).

10



The H− index of G over a finite frequency range [θ1, θ2] is defined as

‖G‖[θ1,θ2]
− = inf

θ∈[θ1,θ2]
σ(G(ejθ)).

In particular the H− index defined at θ = 0 is

‖G‖[0]
− = σ(G(1)).

If no superscript is added to the H− symbol, such as ‖G‖−, then it represents all possible

H− definitions.

2.4 Preliminary Results

It is easy to show that we have the following result by the definition of matrix singular

value [11].

Lemma 1 Let A ∈ C m×n and B ∈ C n×p be two matrices with appropriate dimensions, then

σ(AB) ≤ σ̄(A)σ(B).

The following equations are important in this dissertation and can be found in [48].

Let A, Q, and R be real n× n matrices with Q and R symmetric. Then a (continuous)

algebraic Riccati equation is the following matrix equation:

A′X + XA + XRX + Q = 0.

A square matrix X = X ′ satisfying the algebraic Riccati equation is said to be a stabilization

solution if A + RX is stable.
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Let A, Q, and G be real n × n matrices with Q and G symmetric. Then a discrete

algebraic Riccati Equation is the following matrix equation:

A′(I + XG)−1XA−X + Q = 0.

A square matrix X = X ′ satisfying the discrete algebraic Riccati equation is said to be a

stabilization solution if (I + XG)−1A is stable.

The following transfer matrix factorizations will be frequently used in this dissertation

and can be found in [48].

Lemma 2 (Left Coprime Factorization) Let P(s) or P(z) be a proper real rational transfer

matrix. A left coprime factorization (LCF) of P is a factorization

P = M−1N

where N and M are left-coprime over RH∞. Let

P =


 A B

C D




be a detectable state-space realization of P and L be a matrix with appropriate dimensions

such that A + LC is stable, then a left coprime factorization of P is given by

[
M N

]
=


 A + LC L B + LD

C I D


 .

Lemma 3 (Spectral Factorization: Continuous Case) Let G(s) be a proper real rational

transfer matrix and

G =


 A B

C D
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be a detectable realization of G. Suppose D has full row rank and


 A− jωI B

C D


 has full

row rank for all ω ∈ R. Let R := DD′ > 0 and let Y ≥ 0 be the stabilizing solution to the

following algebraic Riccati equation

(A−BD′R−1C)X + X(A−BD′R−1C)′ −XC ′R−1CX + B(I −D′R−1D)B′ = 0

such that A−BD′R−1C−XC ′R−1C is stable. Then the following spectral factorization holds

WW∼ = GG∼

where W−1 ∈ RH∞ and

W =


 A (BD′ + XC ′)R−1/2

C R1/2


 .

Lemma 4 (Spectral Factorization: Discrete Case) Let G(z) be a proper real rational transfer

matrix and

G =


 A B

C D




be a detectable realization of G. Suppose D has full row rank and


 A− ejθI B

C D


 has full

row rank for all θ ∈ [0, 2π]. Let P ≥ 0 be the stabilizing solution to the following algebraic

Riccati equation

APA′ − P − (APC ′ + BD′)(DD′ + CPC ′)−1(DB′ + CPA′) + BB′ = 0

such that A− (APC ′ + BD′)(DD′ + CPC ′)−1C is stable and let R := DD′ + CPC ′. Then

the following spectral factorization holds

WW∼ = GG∼
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where W−1 ∈ RH∞ and

W =


 A (APC ′ + BD′)R−1/2

C R1/2


 .
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Chapter 3

Solutions to Continuous Robust Fault
Detection Problems

In this chapter we derive complete solutions to robust fault detection problems in continuous

time [23, 24]. In section 3.1, We first formulate the robust fault detection problems to

be addressed in this chapter and a key technique that converts these problems to simple

equivalent problems is presented. The analytic and optimal solutions to H−/H∞ problem,

H2/H∞ problem and H∞/H∞ problem are provided in sections 3.2-3.3. An effective bi-

section algorithm for computing H− index and the solutions to H−/H2 problem are given

in section 3.4. Finally, the solution to H2/H2 problem is presented in section 3.5.

3.1 Problem Formulation

Consider a linear continuous time invariant system (LTI) with disturbance and possible faults

as:

ẋ(t) = Ax(t) + Bu(t) + Bdd(t) + Bff(t) (3.1)

y(t) = Cx(t) + Du(t) + Ddd(t) + Dff(t) (3.2)
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where x(t) ∈ Rn is the state vector, y(t) ∈ Rny is the output measurement, d(t) ∈ Rnd

represents the unknown/uncertain disturbance and measurement noise, and f(t) ∈ Rnf

denotes the process, sensor or actuator fault vector. f(t) and d(t) can be modeled as different

types of signals, depending on specific situations under consideration. See Chapter 4 of [48]

for some detailed discussions. Two frequently used assumptions on d(t) and f(t) are:

(i) unknown signal with bounded energy or bounded power;

(ii) white noise.

Different assumptions on d(t) and f(t) will lead to different fault detection problem

formulations and the solutions to all these problems will be discussed in this dissertation.

Remark 1 It is important to note that we assume that all knowledge about the disturbances

and faults have been built into the system model. Hence there will be no further modeling (or

weighting functions) on the disturbance vector d and faulty vector f .

All coefficient matrices in equations (3.1) and (3.2) are assumed to be known constant

matrices. Furthermore, the following assumptions are made:

Assumption 1 (A,C) is detectable.

This is a standard assumption for all fault detection problems.

Assumption 2 Dd has full row rank.

This means that ny ≤ nd and every measurement of the output signals is either affected by

some disturbance or corrupted with some measurement noise. We argue that this assumption
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in some sense can be made without loss of any generality in many applications since it

is impossible to take perfect measurement in any practical system and furthermore it is

reasonable to assume that the measurement noises are independent of each other. So it is

reasonable to assume that Dd has full row rank. In the case of some simplified model where

Dd does not have full row rank, we can simply add some columns to make it full row rank.

For example, suppose Dd is not full row rank, then let

d̃ =


 d

dε


 , B̃d =

[
Bd 0n×ny

]
, D̃d =

[
Dd εIny

]

for a small ε > 0. Then D̃d has full row rank.

Of course, this assumption may be restrictive in some applications where the external

disturbances and measurement noises are significantly different classes of signals. Hence the

disturbance and measurement noise effects cannot be measured in the same metric. Further

research to extend our results in this dissertation to those cases in highly desirable and

important to this field.

Assumption 3


 A− jωI Bd

C Dd


 has full row rank for all ω ∈ R. Or, equivalently, the

transfer function matrix Gd :=


 A Bd

C Dd


 has no transmission zero on the imaginary axis.

This assumption can be removed and the detailed procedure is given in Appendix A.

Assumption 4 ny ≥ nf .

Remark 2 This assumption will not be used explicitly in the following development. All

filter design methods in this dissertation still hold if this assumption is not true. However, if
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this assumption is not true, it is possible that some combinations of faults may fall into the

null space of the transfer function from fault to the measurement and may not be detectable

by any filter including ours.

Remark 3 We want to point out that in several recent works on fault detection problems

[15,22, 34, 35], it is assumed that Df has full column rank. We believe that this assumption

is extremely restrictive. The assumption implies that measurement y contains directly the

information on the fault f . In particular, this implies that Df cannot be zero which is

usually not the case when there is only actuator/system component fault and no sensor fault.

Furthermore, we believe that the fault detection for sensor fault is relatively easier than that

for actuator/system fault.

By taking Laplace transform of equations (3.1) and (3.2) we have the system input/output

equation

y = Guu + Gdd + Gff (3.3)

where Gu, Gd, and Gf are ny × nu, ny × nd and ny × nf transfer matrices respectively and

their state-space realizations are

[
Gu Gd Gf

]
=


 A B Bd Bf

C D Dd Df


 . (3.4)

Since the state-space realization of Gu, Gd and Gf share the same A and C matrices,

applying Lemma 2 we can find a LCF for the system (3.4)

[
Gu Gd Gf

]
= M −1

[
N u N d N f

]
(3.5)
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where

[
M N u N d N f

]
=


 A + LC L B + LD Bd + LDd Bf + LDf

C I D Dd Df


 (3.6)

and L is a matrix such that A + LC is stable.

It has been shown in [7] that, without loss of generality, the fault detection filter can take

the following general form

r = Q(My −N uu) = Q
[

M −N u

]

 y

u


 (3.7)

where r is the residual vector for detection, Q ∈ RH
ny×ny∞ is a free stable transfer matrix

to be designed. The filter structure is shown in Figure 3.1.

d

MuN − +

Q

uG
u

r

f

dG

fG

y

Figure 3.1: General fault detection filter structure

Remark 4 In general Q can be any system in RH
p×ny∞ for any p > 0. However, it is

not hard to see that there is no advantage for taking p > ny and there may be significant
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restrictions on the filter for p < nf . Furthermore, p = ny case includes all cases of ny > p

as special cases by filling the last ny − p rows of Q with zeros. Hence there is no loss of

generality in assuming p = ny.

Replacing y in (3.7) by right-hand sides of (3.3) and (3.5) we have

r = Q(My −N uu) = Q [M (Guu + Gdd + Gff )−N uu ]

= Q [(N uu + N dd + N ff )−N uu ] = QN dd + QN ff .

Thus

r = Q [ N d N f ]


 d

f


 = QN dd + QN ff . (3.8)

Denote the transfer matrices from d and f to r by Grd and Grf , respectively, then

Grd = QN d, Grf = QN f . (3.9)

As we have discussed in Chapter 1, a good fault detection filter needs to make a trade-

off between two conflicting performance objectives: robustness to disturbance rejection and

sensitivity to faults. To achieve good robustness to disturbance, the influence of disturbance

must be minimized at the output of the residual signals. On the other hand, the residual

signal should be as sensitive as possible to the faults. Since an H− index is a good measure-

ment for a transfer function’s smallest gain, ‖Grf‖− is a reasonable performance criterion for

measuring fault detection sensitivity if f(t) is modeled as unknown energy or power bounded

signals. If d(t) is modeled as unknown energy or power bounded signals, then the H∞ norm

of the corresponding transfer function is a widely accepted worst case measure and ‖Grd‖∞
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is a good indicator of disturbance rejection performance. On the other hand, if d(t) and/or

f(t) are white noise, the H2 norms of Grd and/or Grf seem to be more suitable criteria.

See [4, 48] for more detailed discussions and motivations on various performance measures.

We shall now formulate several fault detection filter design problems.

Problem 1 (H−/H∞ Problem) Let an uncertain system be described by equations (3.1)-

(3.4) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ in (3.7)-(3.9) such that ‖Grd‖∞ ≤ γ and ‖Grf‖−is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖− : ‖QNd‖∞ ≤ γ}

Problem 2 (H2/H∞ Problem) Let an uncertain system be described by equations (3.1)-

(3.4) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ in (3.7)-(3.9) such that ‖Grd‖∞ ≤ γ and ‖Grf‖2 is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖∞ ≤ γ}

Problem 3 (H−/H2 Problem) Let an uncertain system be described by equations (3.1)-

(3.4) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ in (3.7)-(3.9) such that ‖Grd‖2 ≤ γ and ‖Grf‖− is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖− : ‖QNd‖2 ≤ γ}
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Problem 4 (H2/H2 Problem) Let an uncertain system be described by equations (3.1)-

(3.4) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ in (3.7)-(3.9) such that ‖Grd‖2 ≤ γ and ‖Grf‖2 is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖2 ≤ γ}

Remark 5 Some more conventional formulations of the above problems are to optimize the

following

max
Q∈RH

ny×ny
∞

‖QNf‖X

‖QNd‖Y

where X and Y can be 2, ∞, or −. The problem of X = Y = 2 is a classical one and the

optimal solution is available [7]. The case for X = −,∞ and Y = ∞ has been solved in [5].

We include Problem 1 and Problem 4 here to demonstrate our unified solution framework.

It is appropriate to point out here that the so-called H∞/H∞ problem

max
Q∈RH

ny×ny
∞

{‖QNf‖∞ : ‖QNd‖∞ ≤ γ}

and any variations of the problem with X = ∞ (and any Y) are not very useful in practical

fault detection. This is because large ‖QNf‖∞ does not in general imply good sensitivity to

faults. It is merely sensitive to some combinations (or directions) of faults (i.e., when faults

are aligned in the direction of the largest singular vector of QNf) and can be extremely

insensitive to other combinations (or directions) of faults (i.e., when faults are aligned in the

direction of the smallest singular vector of QNf). Hence we shall not consider specifically

the H∞/H∞ problem in this dissertation although our solutions to other cases also provide

an optimal solution to this problem as will be pointed later.
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Before we proceed to the solutions to the above problems, we shall first establish some

preliminary results.

Lemma 5 Suppose Assumption 3 is satisfied and let Gd = M−1Nd be any left coprime

factorization over RH ∞. Then Nd has no transmission zero on imaginary axis. Or, equiv-

alently, for any appropriately dimensioned matrix L,

 A + LC − jωI Bd + LDd

C Dd




has full row rank for all ω ∈ R.

Proof The result follows by noting that

 A + LC − jωI Bd + LDd

C Dd


 =


 I L

0 I





 A− jωI Bd

C Dd




and the fact that all coprime factors have the same unstable transmission zeros [48]. ¤

An immediate consequence of the above result is the following spectral factorization

formula.

Lemma 6 Suppose Assumptions 1-3 are satisfied and let Gd = M−1Nd be any left coprime

factorization over RH ∞. Then there is a square transfer matrix V ∈ RH∞
ny×ny such that

V−1 ∈ RH∞
ny×ny and

VV∼ = NdN
∼
d . (3.10)

In particular, if a state space representation of Nd is given as in equation (3.6), then a state

space representation of V is given by

V =


 A + LC (L− L0)R

1/2
d

C R
1/2
d


 (3.11)
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with

V−1 =


 A + L0C L0 − L

R
−1/2
d C R

−1/2
d


 (3.12)

where Rd := DdD
′
d > 0 and Y ≥ 0 is the stabilizing solution to the Riccati equation

(A−BdD
′
dR

−1
d C)Y +Y (A−BdD

′
dR

−1
d C)′−Y C ′R−1

d CY +Bd(I −D′
dR

−1
d Dd)B

′
d = 0 (3.13)

such that A−BdD
′
dR

−1
d C − Y C ′R−1

d C is stable and

L0 := −(BdD
′
d + Y C ′)R−1

d . (3.14)

Proof Since Assumptions 1-3 are satisfied, Lemma 3 and Lemma 5 can be applied to N d

to get VV ∼ = N dN
∼
d where Y ≥ 0 satisfies the following Riccati equation

ALDY + Y A′
LD − Y C ′R−1

d CY + (Bd + LDd)(I −D′
dR

−1
d Dd)(B + LDd)

′ = 0

and

ALD := A + LC − (Bd + LDd)D
′
dR

−1
d C.

Since

ALDY + Y A′
LD = [A + LC − (Bd + LDd)D

′
dR

−1
d C]Y + Y [A + LC − (Bd + LDd)D

′
dR

−1
d C]′

= (A−BdD
′
dR

−1
d C)Y + LCY − LCY + Y (A−BdD

′
dR

−1
d C)′ + Y (LC)′ − Y (LC)′

= (A−BdD
′
dR

−1
d C)Y + Y (A−BdD

′
dR

−1
d C)′

and

(Bd + LDd)(I −D′
dR

−1
d Dd)(B + LDd)

′

= Bd(I −D′
dR

−1
d Dd)B

′
d + LDd(I −D′

dR
−1
d Dd)(Bd + LDd)

′ + Bd(I −D′
dR

−1
d Dd)(LDd)

′
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= Bd(I −D′
dR

−1
d Dd)B

′
d + LDdB

′
d − LDdB

′
d + LDdD

′
dL

′ − LDdD
′
dL

′ + BdD
′
dL

′ −BdD
′
dL

= Bd(I −D′
dR

−1
d Dd)B

′
d,

the algebraic Riccati equation

ALDY + Y A′
LD − Y C ′R−1

d CY + (Bd + LDd)(I −D′
dR

−1
d Dd)(B + LDd)

′ = 0

can be simplified to equation (3.13). If N d has the state space representation given in

equation (3.6), then V has the form given in equation (3.11) by Lemma 3. Therefore

V −1 =


 A + LC − (L− L0)R

1/2
d R

−1/2
d C −(L− L0)R

1/2
d R

−1/2
d

R
−1/2
d C R

−1/2
d




=


 A + L0C L0 − L

R
−1/2
d C R

−1/2
d


 .

¤

The following Lemma is the key to the solutions of all the above problems.

Lemma 7 Suppose Assumptions 1-3 are satisfied. Let V,V−1 ∈ RH∞ be defined as in

equation (3.10). Let

Q = ΨV−1

for Ψ ∈ RH∞ and denote Ñf = V−1Nf ∈ RH∞. Then the fault detection Problems 1-4

are equivalent to Problems 1e-4e below, respectively:

Problem 1e

max
Ψ∈RH

ny×ny
∞

{
∥∥∥ΨÑf

∥∥∥
−

: ‖Ψ‖∞ ≤ γ}
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Problem 2e

max
Ψ∈RH

ny×ny
∞

{
∥∥∥ΨÑf

∥∥∥
2

: ‖Ψ‖∞ ≤ γ}

Problem 3e

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑf

∥∥∥
−

: ‖Ψ‖2 ≤ γ}

Problem 4e

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑf

∥∥∥
2

: ‖Ψ‖2 ≤ γ}

Proof We shall first show that Problem 1 and Problem 2 are equivalent to Problem 1e and

Problem 2e, respectively.

Note that by Lemma 6 there exists V ∈ RH∞ such that VV ∼ = N dN
∼
d and V −1 ∈

RH∞.

Therefore

‖QN d‖2
∞ = sup

ω
λ̄(Q(jω)N d(jω)N ∼

d (jω)Q∼(jω))

= sup
ω

λ̄(Q(jω)V (jω)V ∼(jω)Q∼(jω)) = ‖QV ‖2
∞

i.e.,

‖QN d‖∞ = ‖QV ‖∞ .

We can, therefore without loss of generality, take Q in the form of Q = ΨV −1 for some

Ψ ∈ RH∞. Hence ‖QN d‖∞ = ‖QV ‖∞ = ‖Ψ‖∞ so that ‖QN d‖∞ ≤ γ is equivalent to

‖Ψ‖∞ ≤ γ. Moreover, QN f = ΨV −1N f = ΨÑ f , hence Problem 1 is equivalent to Problem

1e and Problem 2 is equivalent to Problem 2e.
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Next we show that Problem 3 and Problem 4 are equivalent to Problem 3e and Problem

4e, respectively. Note that in Problem 3 and Problem 4, we have QN d ∈ RH2. Hence

‖QN d‖2
2 =

1

2π

∫ ∞

−∞
Trace{Q(jω)N d(jω)N ∼

d (jω)Q∼(jω)}dω

=
1

2π

∫ ∞

−∞
Trace{Q(jω)V (jω)V ∼(jω)Q∼(jω)}dω = ‖QV ‖2

2

such that ‖QN d‖2 = ‖QV ‖2 . Since QV ∈ RH2 and V ,V −1 ∈ RH∞, we can let Q =

ΨV −1 for some Ψ ∈ RH2. Therefore ‖QN d‖2 = ‖QV ‖2 = ‖Ψ‖2 so that ‖QN d‖2 ≤ γ is

equivalent to ‖Ψ‖2 ≤ γ. Moreover, QN f = ΨV −1N f = ΨÑ f , so Problem 3 is equivalent

to Problem 3e and Problem 4 is equivalent to Problem 4e. ¤

We shall provide analytic and optimal solutions for each of the above problems in the

following sections.

3.2 H−/H∞ Fault Detection Filter Design

In this section we give a complete solution to H−/H∞ fault detection filter design problem,

i.e., Problem 1 or Problem 1e.

Theorem 1 Suppose Assumptions 1-3 are satisfied. Let

[
Gu Gd Gf

]
= M−1

[
Nu Nd Nf

]

be any left coprime factorization over RH∞ and let V ∈ RH∞ be a square transfer matrix

such that V−1 ∈ RH∞ and VV∼ = NdN
∼
d . Then

max
Q∈RH

ny×ny
∞

{‖QNf‖− : ‖QNd‖∞ ≤ γ} = γ
∥∥V−1Nf

∥∥
−
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and an optimal fault detection filter for Problem 1 is given by

r = Qopt

[
M −Nu

]

 y

u




where

Qopt = γV−1.

Proof Note that by Lemma 7, we only need to solve Problem 1e:

max
Ψ∈RH

ny×ny
∞

{
∥∥∥ΨÑ f

∥∥∥
−

: ‖Ψ‖∞ ≤ γ}.

From Lemma 1 we know that for every frequency ω ∈ R,

σ(Ψ(jω)Ñ f (jω)) ≤ σ̄(Ψ(jω))σ(Ñ f (jω))

so that

∥∥∥ΨÑ f

∥∥∥
−
≤ ‖Ψ‖∞

∥∥∥Ñ f

∥∥∥
−
≤ γ

∥∥∥Ñ f

∥∥∥
−

.

By letting Ψ = γI, we have ‖Ψ‖∞ = γ and
∥∥∥ΨÑ f

∥∥∥
−

= γ
∥∥∥Ñ f

∥∥∥
−
, which means that Ψ = γI

is an optimal solution achieving the maximum. ¤

Remark 6 The optimal fault detection filter given in Theorem 1 does not depend on Bf

and Df matrices. But this does not imply that the filter does not depend on Gf (i.e., the

fault in the system) since A and C matrices already include parts of Gf . On the other hand,

‖QNf‖[∞]
− depends critically on the rank of Df . For example, if Df is not full column rank,

then ‖QNf‖[∞]
− = 0 for any Q. Hence in this case, the optimization does not make any sense

while other H− indices still make sense. In general, we believe ‖QNf‖[∞]
− is not a suitable

design criterion for fault detection.
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Remark 7 It is also noted that if Nf (jω0) loses column rank at any frequency ω0 ∈ [ω1, ω2],

then
∥∥V−1Nf

∥∥[ω1,ω2]

− = 0. This would imply that the optimization of Problem 1 is meaning-

less. However, this does not imply that our filter is useless. In fact, our filter is still the best

possible filter in the sense of maximizing σ(Q(jω)Nf (jω)) for all other frequencies. It just

implies that no filter can detect the faulty signal at that frequency ω0.

Remark 8 Notice that the solution given in the above theorem does not depend on the

specific definition of H− index. Hence the solution provided here is an optimal solution

for all H− indices. However, it should be pointed out that this optimal filter is not the

only optimal solution for some H− index criterion. For example, let Q = γL(s)V−1 where

L ∈ RH∞ is a low pass filter so that ‖L(s)‖∞ = 1 and L(0) = I. Then this Q is also an

optimal solution for

max
Q∈RH

ny×ny
∞

{‖QNf‖[0]
− : ‖QNd‖∞ ≤ γ}

even though this is obviously a bad fault detection filter because the low pass filter L(s) would

make the residuals much less sensitive to faults.

Note also that the solution given in the above theorem is completely general and is not

dependent on specific state space representation of those coprime factorizations and spectral

factorizations, which may be necessary in some fault tolerant control application [27, 49].

This point can be shown by a simple example.

Consider a system model

ẋ(t) = −x(t) + u(t) + d(t) + f(t) (3.15)

y(t) = x(t) + d(t).
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Then

Gu =
1

s + 1
,Gd =

s + 2

s + 1
,Gf =

1

s + 1
.

One left coprime factorization for these transfer functions is given by

[
Gu Gd Gf

]
= M −1

[
N u N d N f

]
=

s + 3

s + 1

[
1

s+3
s+2
s+3

1
s+3

]
.

Pick V = N d, from Theorem 1 we have

max
Q∈RH

ny×ny
∞

{‖QN f‖− : ‖QN d‖∞ ≤ γ}

= γ
∥∥V −1N f

∥∥
− = γ

∥∥∥∥
s + 3

s + 2

1

s + 3

∥∥∥∥
−

= γ

∥∥∥∥
1

s + 2

∥∥∥∥
−

.

If we choose another left coprime factorization

[
Gu Gd Gf

]
= M −1

[
N u N d N f

]
=

s + 4

s + 1

[
1

s+4
s+2
s+4

1
s+4

]
,

from Theorem 1 we also have

max
Q∈RH

ny×ny
∞

{‖QN f‖− : ‖QN d‖∞ ≤ γ}

= γ
∥∥V −1N f

∥∥
− = γ

∥∥∥∥
s + 4

s + 2

1

s + 4

∥∥∥∥
−

= γ

∥∥∥∥
1

s + 2

∥∥∥∥
−

.

The solutions we obtained using different factorizations are exactly the same.

On the other hand, if those specific state space coprime and spectral factorizations in the

previous sections are used, the optimal filter can be written in a very simple form.

Theorem 2 Suppose Assumptions 1-3 are satisfied. Let Rd := DdD
′
d > 0 and let Y ≥ 0 be

the stabilizing solution to the Riccati equation

(A−BdD
′
dR

−1
d C)Y +Y (A−BdD

′
dR

−1
d C)′−Y C ′R−1

d CY +Bd(I −D′
dR

−1
d Dd)B

′
d = 0 (3.16)
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such that A−BdD
′
dR

−1
d C − Y C ′R−1

d C is stable. Define

L0 = −(BdD
′
d + Y C ′)R−1

d .

Then

max
Q∈RH

ny×ny
∞

{‖QNf‖− : ‖QNd‖∞ ≤ γ} = γ
∥∥V−1Nf

∥∥
−

and an optimal H−/H∞ fault detection filter has the following state space representation

r = Qopt

[
M −Nu

]

 y

u




where

Qopt

[
M −Nu

]
= γ


 A + L0C −L0 B + L0D

−R
−1/2
d C R

−1/2
d −R

−1/2
d D




and

V−1Nf =


 A + L0C Bf + L0Df

R
−1/2
d C R

−1/2
d Df


 .

In other words, the optimal H−/H∞ fault detection filter is the following observer:

˙̂x(t) = (A + L0C)x̂(t)− L0y(t) + (B + L0D)u(t)

r(t) = γR
−1/2
d (y(t)− Cx̂−Du(t)) .

Proof Note that

[
M N u

]
=


 A + LC L B + LD

C I D




where L is a matrix with appropriate dimensions such that A+LC is stable. Note also from

Theorem 1 that

Qopt = γV −1 = γ


 A + L0C L0 − L

R
−1/2
d C R

−1/2
d


 .
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Then

Qopt

[
M −N u

]
= γ


 A + L0C L0 − L

R
−1/2
d C R

−1/2
d





 A + LC L −(B + LD)

C I −D




= γ




A + L0C L0C − LC L0 − L −(L0 − L)D

0 A + LC L −(B + LD)

R
−1/2
d C R

−1/2
d C R

−1/2
d −R

−1/2
d D




= γ




A + L0C 0 L0 −(B + L0D)

0 A + LC L −(B + LD)

R−1/2C 0 R
−1/2
d −R

−1/2
d D




= γ


 A + L0C L0 −(B + L0D)

R
−1/2
d C R

−1/2
d −R

−1/2
d D


 = γ


 A + L0C −L0 B + L0D

−R
−1/2
d C R

−1/2
d −R

−1/2
d D


 .

Similarly, we have

V −1N f =


 A + L0C L0 − L

R
−1/2
d C R

−1/2
d





 A + LC Bf + LDf

C Df




=




A + L0C (L0 − L)C (L0 − L)Df

0 A + LC Bf + LDf

R
−1/2
d C R

−1/2
d C R

−1/2
d Df




=




A + L0C 0 Bf + L0Df

0 A + LC Bf + LDf

R
−1/2
d C 0 R

−1/2
d Df


 =


 A + L0C Bf + L0Df

R
−1/2
d C R

−1/2
d Df


 .

¤

Remark 9 The optimal solution in Theorem 2 is a particular example of the solution set

given in Theorem 1 and is independent of the choice of L matrix. It turns out this solution
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is exactly the same as the one given by Ding et al in [5] under the following optimization

criterion:

max
Q

‖QNf‖−
‖QNd‖∞

.

Remark 10 It is easy to see that our optimal filter given in Theorem 1 and Theorem 2 is

also optimal for the so-called H∞/H∞ problem:

max
Q∈RH

ny×ny
∞

{‖QNf‖∞ : ‖QNd‖∞ ≤ γ}.

3.3 H2/H∞ Fault Detection Filter Design

In this section we give an optimal solution to H2/H∞ problem stated in section 3.1 as

Problem 2. Similar to the solution to H−/H∞ problem given in Theorem 1 and Theorem

2, we have the following parallel results for H2/H∞ problem.

Theorem 3 Suppose Assumptions 1-3 are satisfied. Let

[
Gu Gd Gf

]
= M−1

[
Nu Nd Nf

]

be any left coprime factorization over RH∞ and let V ∈ RH∞ be a square transfer matrix

such that V−1 ∈ RH∞ and VV∼ = NdN
∼
d . Then

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖∞ ≤ γ} = γ
∥∥V−1Nf

∥∥
2

and the optimal fault detection filters for Problem 1 given in Theorem 1 and Theorem 2 are

also the optimal filters for this problem.
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Proof Note that by Lemma 7, we only need to solve Problem 2e:

max
Ψ∈RH

ny×ny
∞

{
∥∥∥ΨÑ f

∥∥∥
2

: ‖Ψ‖∞ ≤ γ}.

Note that

∥∥∥ΨÑ f

∥∥∥
2
≤ ‖Ψ‖∞

∥∥∥Ñ f

∥∥∥
2
≤ γ

∥∥∥Ñ f

∥∥∥
2
.

By letting Ψ = γI, we have ‖Ψ‖∞ = γ and
∥∥∥ΨÑ f

∥∥∥
2

= γ
∥∥∥Ñ f

∥∥∥
2
, which means that Ψ = γI

is an optimal solution achieving the maximum. ¤

Remark 11 Note that if Df 6= 0, then

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖∞ ≤ γ} = γ
∥∥V−1Nf

∥∥
2

= ∞.

This means that this optimal filter (as well as almost any other filter) is very sensitive to

sensor faults.

3.4 H−/H2 Fault Detection Filter Design

From Lemma 7 we know that the H−/H2 problem is equivalent to Problem 3e, i.e.

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑ f

∥∥∥
−

: ‖Ψ‖2 ≤ γ}.

Unlike H−/H∞ problem and H2/H∞ problem we studied in section 3.2 and section 3.3, we

have different solutions for H−/H2 problem if different H− definitions are considered. In

this section we shall illustrate this point and give solutions for all cases.

Theorem 4 Suppose Assumptions 1-3 are satisfied. Then

max
Q∈RH

ny×ny
∞

{‖QNf‖[∞]
− : ‖QNd‖2 ≤ γ} = 0.
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Proof Note that the equivalent Problem 3e in this case is

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑ f

∥∥∥
[∞]

−
: ‖Ψ‖2 ≤ γ}.

Since Ψ ∈ RH2,

lim
ω→∞

Ψ(jω) = 0.

Hence

lim
ω→∞

Ψ(jω)Ñ f (jω) = 0.

As a result,
∥∥∥ΨÑ

∥∥∥
[∞]

−
is always zero. ¤

Hence it is concluded that this design criterion is not suitable for fault detection design.

Theorem 5 Suppose Assumptions 1-3 are satisfied. Then

sup
Q∈RH

ny×ny
∞

{‖QNf‖[0]
− : ‖QNd‖2 ≤ γ} = ∞.

Furthermore, for any given α > 0, let ε > 0 and

Qsub =
γ
√

2ε

s + ε
V−1.

Then

{‖QsubNf‖[0]
− > α and ‖QsubNd‖2 ≤ γ}

is satisfied for a sufficiently small ε > 0.

Proof Again note that the equivalent Problem 3e in this case is

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑ f

∥∥∥
[0]

−
: ‖Ψ‖2 ≤ γ}.
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Take Ψ = γ
√

2ε
s+ε

I such that ε > 0. Then Ψ(0) = γ
√

2
ε
I and ‖Ψ‖2 = γ. Let ε → 0, then

Ψ(0) →∞, so that

∥∥∥ΨÑ f

∥∥∥
[0]

−
= σ(Ψ(0)Ñ f (0)) = γ

√
2

ε
σ(Ñ f (0)) →∞.

¤

Remark 12 We should point out that an optimal filter designed using Theorem 5 is not

necessarily good for fault detection since this optimal filter can be extremely narrow-banded

near 0 frequency so that any higher frequency component of fault may not be detected.

When Problem 3 is considered with the H− index defined over a finite frequency range

[ω1, ω2], the solution becomes much more complicated. We shall now state this as a separate

problem as below.

Problem 5 (Interval H−/H2 Problem) Let an uncertain system be described by equations

(3.1)-(3.4) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ in (3.7)-(3.9) such that ‖Grd‖2 ≤ γ and ‖Grf‖[ω1,ω2]

− is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖[ω1,ω2]
− : ‖QNd‖2 ≤ γ}

Or, equivalently, let Q = γΨV−1 and solve

max
Ψ∈RH

ny×ny
2

{∥∥∥ΨÑf

∥∥∥
[ω1,ω2]

−
: ‖Ψ‖2 ≤ γ

}
.

Remark 13 It is not hard to see that there is no rational function solution to the above

problem. This is because an optimal Ψ must satisfy Ψ(jω) = 0 almost everywhere for any
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ω 6∈ [ω1, ω2]. Hence an analytic optimal solution seems to be impossible. Nevertheless, it is

intuitively feasible to find some rational approximations so that a rational Ψ has the form of

a bandpass filter with the pass-band close to [ω1, ω2] and ‖Ψ‖2 = γ.

In the following, we shall describe an optimization approach to find a good rational

approximation. To do that, we shall need a state space parametrization of a stable rational

function with a given H2 norm [3].

Lemma 8 Let Ψ =


 Aψ Bψ

Cψ 0


 ∈ RH

ny×ny

2 be an nψ-th order strictly proper stable

transfer matrix. Then the state space parameters of Ψ can be expressed as Aψ = Aψs + Aψk

for some

Aψk = −A′
ψk =




0 a12 a13 · · · a1nψ

−a12 0 a23 · · · a2nψ

−a13 −a23 0 · · · a3nψ

...
...

...
. . .

...

−a1nψ
−a2nψ

−a3nψ
. . . 0




and Aψs = −1
2
C ′

ψCψ. Furthermore, ‖Ψ‖2
2 =Trace(B′

ψBψ).

It is obvious that Aψ may not be stable for some given Aψk. From [3] (Cψ, Aψ) satisfies

the Lyapunov equation Aψ + A′
ψ + CψC ′

ψ = 0. Denote the eigenvalue of Aψ as λ, then for

nontrivial vector x,

x′Aψx + x′A′
ψx + x′CψC ′

ψx = x′(λ + λ∗)x + ‖Cψx‖2 = 0.

Since ‖Cψx‖2 ≥ 0, x′(λ + λ∗)x ≤ 0, i.e. Aψ has all eigenvalues in closed left half plane. Let

λ0 be an eigenvalue of Aψ on the jω axis, then x′(λ0 + λ∗0)x = 0 so that Cψx = 0. Therefore

we have λ0x = Aψx and Cψx = 0, by PBH test [47] λ0 is an unobservable eigenvalue of
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(Cψ, Aψ). That is, any eigenvalue of Aψ on the jω axis is an unobservable eigenvalue of

(Cψ, Aψ), so Ψ can always be made to be stable after eliminating unobservable eigenvalues.

If we use directly the elements of Aψ, Bψ and Cψ as optimization variables the total

number of variables is n2
ψ + 2nynψ. However, from Lemma 8 Aψs can be computed from Cψ

so the elements of Aψk, Bψ and Cψ are all the optimization variables. Using this technique

the total number of optimization variables is nψ(nψ − 1)/2 + 2nynψ and the reduction is

nψ(nψ + 1)/2.

In order to carry out the subsequent optimization effectively, we need an effective method

of computing H− index fast and exactly. Computing ‖G‖[0]
− is easy, we need only check the

singular value of G(0). But computing the other two H− indices are much harder. Enlighten

by the bi-section method of computing H∞ norm of a transfer matrix [1], we now present a

bi-section algorithm to compute the H− index defined over all frequencies or over a frequency

range. In the following H−/H2 optimization we shall use this algorithm to compute the H−

index defined over a frequency range. The following result shows the main idea used in our

algorithm.

Lemma 9 Suppose G(s) =


 A B

C D


 ∈ RL∞ and Ω ⊆ R ∪ {∞}, then

min
ω∈Ω

σ(G(jω)) > β

if and only if σ(D) > β and

H =


 A + BR−1D′C BR−1B′

−C(I + DR−1D′)C ′ −(A + BR−1D′C)




has no eigenvalues in jΩ where R = β2I −D′D.
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In Lemma 9, if H− index over a frequency range [ω1, ω2] is being computed, then

Ω = [ω1, ω2]; if the H− index over all frequency is being computed, then Ω = R ∪ {∞}.

The detailed procedure of our algorithm for computing H− index is summarized below.

Algorithm for Computing H− Index

1. Give an initial guess on lower bound and upper bound such that

0 ≤ β1 ≤ minω∈Ω σ(G(jω)) ≤ β2 and give a tolerance ε > 0.

2. Let β = 1
2
(β1 + β2). Compute the eigenvalues of

H =


 A + BR−1D′C BR−1B′

−C(I + DR−1D′)C ′ −(A + BR−1D′C)


 .

3. If H has no eigenvalue on jΩ, which means minω∈Ω σ(G(jω)) > β is true, then let

β1 = β; else if H has any eigenvalue on jΩ, which means minω∈Ω σ(G(jω)) ≤ β is

true, then let β2 = β.

4. Repeat steps 2 and 3 until β2 − β1 < ε is satisfied. And the approximate value of

minω∈Ω σ(G(jω)) is given as 1
2
(β1 + β2), with tolerance ε.

The Matlab implementation for this algorithm is included in Appendix B.

With the state space parametrization of Ψ on RH2 space and our bi-section algorithm

for computing H− index, the optimization process for solving Problem 3

max
‖Ψ‖2≤γ

∥∥∥ΨÑ f

∥∥∥
[ω1,ω2]

−

can be performed as:

max
Aψk,Bψ ,Cψ ,Trace(B′ψBψ)≤γ2

∥∥∥∥∥∥


 Aψk − 1

2
C ′

ψCψ Bψ

Cψ 0


 Ñ f

∥∥∥∥∥∥

[ω1,ω2]

−
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Furthermore, we introduce a penalty function Θ(Bψ) to ensure Trace(B′ψBψ) < γ2. Θ is

defined as

Θ(Bψ) =

{
C, if Trace(B′ψBψ) > γ2;

0, if Trace(B′ψBψ) ≤ γ2.

where C is a large positive number. Therefore, the new optimization scheme is:

max
Aψk,Bψ ,Cψ

∥∥∥∥∥∥


 Aψk − 1

2
C ′

ψCψ Bψ

Cψ 0


 Ñ f

∥∥∥∥∥∥

[ω1,ω2]

−

−Θ(Bψ)

For this optimization scheme we have developed a two-stage optimization algorithm [21]

which is a combination of genetic algorithm [8] and Nelder-Mead simplex method [19]. Ge-

netic algorithm is good at searching for the right direction for global optimum but has slow

convergence, while Nelder-Mead simplex method is good at searching for small neighbor-

hood. So the result obtained by genetic algorithm is used as the starting point for the

second step optimization by Nelder-Mead simplex method, the latter gives the final results

of the optimization process.

Theoretically, Ψ can be a transfer matrix of any order. However, in practice we try to

find a Ψ with low degree. Thus we run the optimization process as follows: first set Ψ with

a given starting order, searching for the optimal value; then increase the order of Ψ, run the

searching algorithm again and compare the results with the former one; if higher degree Ψ

gives a better performance and the Ψ’s degree doesn’t exceed the pre-defined limit then keep

increasing the degree of Ψ and re-do the searching process; else the optimization process

ends. An example is given in Chapter 5 to show the effectiveness of this algorithm and the

illustrating Matlab code is shown in Appendix B.
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3.5 H2/H2 Fault Detection Filter Design

H2/H2 problem has been extensively studied in the literature, see [7] and references therein.

For completeness and comparison, an explicit solution to this problem under current problem

formulation is given in this section.

Theorem 6 Suppose Assumptions 1-3 are satisfied. Then

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖2 ≤ γ} = γ
∥∥V−1Nf

∥∥
∞ .

Proof Note that by Lemma 7 we only need to solve Problem 4e:

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑ f

∥∥∥
2

: ‖Ψ‖2 ≤ γ}.

Now suppose
∥∥∥Ñ f

∥∥∥
∞

= σ̄(Ñ f (jω0)) for some ω0 ∈ R∪{∞}. We shall first consider the case

where 0 ≤ ω0 < ∞. Let the singular value decomposition of Ñ f (jω0) be U(jω0)Σ(jω0)V
′(jω0).

Let u1(jω0) ∈ C ny be the left singular vector corresponding to the largest singular value

σ̄(Ñ f (jω0)), i.e., u1(jω0) is the first column of U(jω0).

Write u′1(jω0) as

u′1(jω0) =
[

α1e
jθ1 α2e

jθ2 · · · αnye
jθny

]

such that αi ∈ R and θi ∈ (−π, 0]. Let βi > 0 be such that

θi = ∠
(

βi − jω0

βi + jω0

)

(take βi = ∞ if θi = 0) and define

û(s) :=
[

α1
β1−s
β1+s

α2
β2−s
β2+s

· · · αny

βny−s

βny +s

]
.
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Then

û(jω0) = u′1(jω0).

Next let φ(s) ∈ RH 2 be such that

|φ(jω)| =
{

γ
√

π
ε
, ω ∈ [ω0 − ε, ω0 + ε]

0, ω 6∈ [ω0 − ε, ω0 + ε]

and ε is a small positive number.

Finally, let

Ψ(s) = φ(s)e1û(s)

where

e1 =




1

0
...

0



∈ Rny .

Then

∥∥∥ΨÑ f

∥∥∥
2

=

√
1

2π

∫ ∞

−∞
Trace{Ψ(jω)Ñ f(jω)Ñ

∼
f (jω)Ψ∼(jω)}dω

=

√
2

2π

∫ ω0+ε

ω0−ε

|φ(jω)|2û(jω)Ñ f (jω)Ñ
∼
f (jω)û∼(jω)dω

≈
√

û(jω0)Ñ f (jω0)Ñ
∼
f (jω0)û

∼(jω0)
2

2π

∫ ω0+ε

ω0−ε

|φ(jω)|2dω

= σ̄(Ñ f (jω0))

√
2

2π

∫ ω0+ε

ω0−ε

|φ(jω)|2dω = σ̄(Ñ f (jω0)) ‖φ(s)‖2 = γ
∥∥∥Ñ f

∥∥∥
∞

as ε → 0.

If ω0 = ∞, then the above procedure can be used to construct a sequence of solutions as

ω0 →∞. ¤
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In practical the ideal narrow bandpass filter φ(s) does not exist and we need to ap-

proximate it with a bandpass filter. The procedure of obtaining an approximate design is

summarized below.

H2/H2 Fault Detection Filter Design Procedure:

• Find ω0 such that
∥∥∥Ñ f

∥∥∥
∞

= σ̄(Ñ f (jω0)).

• Compute u1(jω0) from the singular value decomposition of

Ñ f (jω0) = U(jω0)Σ(jω0)V
′(jω0).

• Write u′1(jω0) as

u′1(jω0) =
[

α1e
jθ1 α2e

jθ2 · · · αnye
jθny

]

such that αi ∈ R and θi ∈ (−π, 0]. Let βi > 0 be such that

θi = ∠
(

βi − jω0

βi + jω0

)

(take βi = ∞ if θi = 0) and define

û(s) :=
[

α1
β1−s
β1+s

α2
β2−s
β2+s

· · · αny

βny−s

βny +s

]
.

• Design a strictly proper bandpass filter F (s) ∈ RH 2 which has pass-band around ω0;

• Let φ(s) = γF (s)
‖F (s)‖2 ;

• Let Ψ(s) = φ(s)e1û(s) and Q = ΨV −1.

Remark 14 It is easy to see that the optimal filter constructed above will be only sensitive

to a fault signal near ω0 frequency. Hence it is clear that such filter is not very useful for

fault detection. This will be illustrated in Chapter 5.
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Chapter 4

Solutions to Discrete Robust Fault
Detection Problems

In Chapter 3, complete solutions to continuous robust fault detection problems have been

developed. In this chapter, we will carry out the parallel development for the discrete time

problems [25, 26]. Although there are considerable similarities between the continuous time

and discrete time solutions, there are also significant differences in some cases. For example,

we can give analytic and optimal solution to some discrete time problem, but it cannot be

done for continuous time case. In addition, explicit discrete time solutions have their own

merits in applications.

This chapter is organized as below: we first formulate the discrete robust fault detection

problems to be addressed in this chapter in section 4.1. The analytic and optimal solutions

to the H−/H∞ problem, H2/H∞ problem and H∞/H∞ problem are provided in sections

4.2-4.3. The solutions to three different cases of H−/H2 problem are given in sections 4.4-

4.6. Finally, the solution to H2/H2 problem is presented in section 4.7. 1

1The main results in this chapter were published as [25]. See Appendix C for authorization letter.
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4.1 Problem Formulation

Consider a discrete time invariant system with disturbance and possible faults as:

x(k + 1) = Ax(k) + Bu(k) + Bdd(k) + Bff(k) (4.1)

y(k) = Cx(k) + Du(k) + Ddd(k) + Dff(k) (4.2)

where x(k) ∈ Rn is the state vector, y(k) ∈ Rny is the output measurement, d(k) ∈ Rnd

represents the unknown/uncertain disturbance and measurement noise, and f(k) ∈ Rnf

denotes the process, sensor or actuator fault vector. f(k) and d(k) can be modeled as

different type of signals, depending on specific situations under consideration. See Chapters

4 and 8 of [48] for some detailed discussions. Two frequently used assumptions on d(k) and

f(k) are:

(i) unknown signal with bounded energy or bounded power;

(ii) white noise.

Different assumptions on d(k) and f(k) will lead to different fault detection problem formu-

lations and the solutions for all these problems will be discussed in this Chapter.

All coefficient matrices in equations (4.1) and (4.2) are assumed to be known constant

matrices. Furthermore, the following assumptions are made:

Assumption 5 (A,C) is detectable.

This is a standard assumption for all fault detection problems.

Assumption 6 Dd has full row rank.
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This assumption is similar to Assumption 2 of the continuous case and it is for the similar

consideration. See section 3.1 for related discussion.

Assumption 7


 A− ejθI Bd

C Dd


 has full row rank for all θ ∈ [0, 2π]. Or, equivalently,

the transfer function matrix Gd :=


 A Bd

C Dd


 has no transmission zero on the unit circle.

This assumption can be relaxed in the same way as in the continuous time case [23,24].

By taking Z -transform of equations (4.1) and (4.2) we have the system input/output

equation

y = Guu + Gdd + Gff (4.3)

where Gu, Gd, and Gf are ny × nu, ny × nd and ny × nf transfer matrices respectively and

their state-space realizations are

[
Gu Gd Gf

]
=


 A B Bd Bf

C D Dd Df


 (4.4)

Since the state-space realizations of Gu, Gd and Gf share the same A and C matrices, by

applying Lemma 2 a LCF for the system can be found as (4.4)

[
Gu Gd Gf

]
= M −1

[
N u N d N f

]
(4.5)

where

[
M N u N d N f

]
=


 A + LC L B + LD Bd + LDd Bf + LDf

C I D Dd Df


 (4.6)

and L is a matrix such that A + LC is stable.
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It has been shown in [7] that, without loss of generality, the fault detection filter can take

the following general form

r = Q(My −N uu) = Q
[

M −N u

]

 y

u


 (4.7)

where r is the residual vector for detection, Q ∈ RH
ny×ny∞ is a free stable transfer matrix

to be designed. The filter structure, which is the same as that of the continuous case, is

shown in Figure 3.1. Replacing y in (4.7) by right-hand sides of (4.3) and (4.5) we have

r = Q [ N d N f ]


 d

f


 = QN dd + QN ff , (4.8)

which is also the same as the equation in continuous case. Denote the transfer matrices from

d and f to r by Grd and Grf , respectively, then

Grd = QN d, Grf = QN f . (4.9)

For discrete fault detection filter design we also need to make tradeoff between robust-

ness to disturbance and fault detection sensitivity, and choose certain performance criteria

for both objectives. Similar to the continuous case, we use H∞, H−(see Chapter 2 for def-

initions) for disturbance rejection and H2, H∞ for fault detection sensitivity. Thus several

fault detection filter design problems are formulated in discrete time.

Problem 6 (Discrete H−/H∞ Problem) Let an uncertain system be described by equations

(4.1)-(4.4) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ in (4.7)-(4.9) such that ‖Grd‖∞ ≤ γ and ‖Grf‖− is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖− : ‖QNd‖∞ ≤ γ}
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Problem 7 (Discrete H2/H∞ Problem) Let an uncertain system be described by equations

(4.1)-(4.4) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ in (4.7)-(4.9) such that ‖Grd‖∞ ≤ γ and ‖Grf‖2 is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖∞ ≤ γ}

Problem 8 (Discrete H−/H2 Problem) Let an uncertain system be described by equations

(4.1)-(4.4) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ in (4.7)-(4.9) such that ‖Grd‖2 ≤ γ and ‖Grf‖− is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖− : ‖QNd‖2 ≤ γ}

Problem 9 (Discrete H2/H2 Problem) Let an uncertain system be described by equations

(4.1)-(4.4) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ in (4.7)-(4.9) such that ‖Grd‖2 ≤ γ and ‖Grf‖2 is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖2 ≤ γ}

Before we proceed to the solutions to the above problems, we shall first establish some

preliminary results.

Lemma 10 Suppose Assumption 7 is satisfied and let Gd = M−1Nd be any left coprime

factorization over RH∞. Then Nd has no transmission zero on the unit circle. Or, equiva-

lently, for any appropriately dimensioned matrix L,

 A + LC − ejθI Bd + LDd

C Dd




has full row rank for all θ ∈ [0, 2π].
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Proof The result follows by noting that


 A + LC − ejθI Bd + LDd

C Dd


 =


 I L

0 I





 A− ejθI Bd

C Dd




and the fact that all coprime factors have the same unstable transmission zeros [48]. ¤

An immediate consequence of the above result is the following spectral factorization

formula.

Lemma 11 Suppose Assumptions 5-7 are satisfied and let Gd = M−1Nd be any left coprime

factorization over RH∞. Then there is a square transfer matrix V ∈ RH
ny×ny∞ such that

V−1 ∈ RH
ny×ny∞ and

VV∼ = NdN
∼
d . (4.10)

In particular, if a state space representation of Nd is given as in equation (4.6), then a state

space representation of V is given by

V =


 A + LC [(A + LC)PC ′ + (Bd + LDd)D

′
d]R

−1/2
d

C R
1/2
d


 (4.11)

with

V−1 =


 A− (APC ′ + BdD

′
d)R

−1
d C −(APC ′ + BdD

′
d)R

−1
d − L

R
−1/2
d C R

−1/2
d


 (4.12)

where P ≥ 0 is the stabilizing solution to the Riccati equation

APA′ − P − (APC ′ + BdD
′
d)(DdD

′
d + CPC ′)−1(DdB

′
d + CPA′) + BdB

′
d = 0 (4.13)

such that A− (APC ′ + BdD
′
d)(DdD

′
d + CPC ′)−1C is stable and Rd := DdD

′
d + CPC ′.
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Proof Since Assumptions 5-7 are satisfied, Lemma 4 and Lemma 10 can be applied to N d

to get VV ∼ = N dN
∼
d where P ≥ 0 satisfies the following Riccati equation

ALCPA′
LC − P − (ALCPC ′ + BLDD′

d)R
−1
d (DdB

′
LD + CPA′

LC) + BLDB′
LD = 0

and

ALC := A + LC, BLD := B + LD

It is easy to show that the above algebraic Riccati equation can be simplified to equa-

tion (4.13). The rest of the proof follows the same algebraic manipulations as shown in

Lemma 6. ¤

The following Lemma is the key to the solutions of all the above problems.

Lemma 12 Suppose Assumptions 5-7 are satisfied. Let V,V−1 ∈ RH∞ be defined as in

equation (4.10). Let

Q = ΨV−1

for Ψ ∈ RH∞ and denote Ñf = V−1Nf ∈ RH∞. Then the fault detection Problems 6-9

are equivalent to Problems 6e-9e below, respectively:

Problem 6e

max
Ψ∈RH

ny×ny
∞

{
∥∥∥ΨÑf

∥∥∥
−

: ‖Ψ‖∞ ≤ γ}

Problem 7e

max
Ψ∈RH

ny×ny
∞

{
∥∥∥ΨÑf

∥∥∥
2

: ‖Ψ‖∞ ≤ γ}
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Problem 8e

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑf

∥∥∥
−

: ‖Ψ‖2 ≤ γ}

Problem 9e

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑf

∥∥∥
2

: ‖Ψ‖2 ≤ γ}

Proof We shall first show that Problem 6 and Problem 7 are equivalent to Problem 6e and

Problem 7e, respectively.

Note that by Lemma 11 there exists V ∈ RH∞ such that VV ∼ = N dN
∼
d and V −1 ∈

RH∞. Therefore

‖QN d‖2
∞ = sup

θ∈[0,2π]

σ̄(Q(ejθ)N d(e
jθ)N ∼

d (ejθ)Q∼(ejθ))

= sup
θ∈[0,2π]

σ̄(Q(ejθ)V (ejθ)V ∼(ejθ)Q∼(ejθ)) = ‖QV ‖2
∞

i.e., ‖QN d‖∞ = ‖QV ‖∞ . We can, therefore without loss of generality, take Q in the

form of Q = ΨV −1 for some Ψ ∈ RH∞. Hence ‖QN d‖∞ = ‖QV ‖∞ = ‖Ψ‖∞ so that

‖QN d‖∞ ≤ γ is equivalent to ‖Ψ‖∞ ≤ γ. Moreover, QN f = ΨV −1N f = ΨÑ f , hence

Problem 6 is equivalent to Problem 6e and Problem 7 is equivalent to Problem 7e.

Next we show that Problem 8 and Problem 9 are equivalent to Problem 8e and Prob-

lem 9e, respectively. Note that in Problem 8 and Problem 9, we have QN d ∈ RH2. Hence

‖QN d‖2
2 =

1

2π

∫ 2π

0

Trace{Q(ejθ)N d(e
jθ)N ∼

d (ejθ)Q∼(ejθ)}dθ

=
1

2π

∫ 2π

0

Trace{Q(ejθ)V (ejθ)V ∼(ejθ)Q∼(ejθ)}dθ = ‖QV ‖2
2

such that ‖QN d‖2 = ‖QV ‖2 . Since QV ∈ RH2 and V ,V −1 ∈ RH∞, we can let Q =

ΨV −1 for some Ψ ∈ RH2. Therefore ‖QN d‖2 = ‖QV ‖2 = ‖Ψ‖2 so that ‖QN d‖2 ≤ γ
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is equivalent to ‖Ψ‖2 ≤ γ. Moreover, QN f = ΨV −1N f = ΨÑ f , hence Problem 8 is

equivalent to Problem 8e and Problem 9 is equivalent to Problem 9e. ¤

We shall provide optimal solutions to each of the above problems in the following sections.

4.2 H−/H∞ Fault Detection Filter Design

In this section we give a complete solution for H−/H∞ fault detection filter design problem,

i.e., Problem 6 or Problem 6e.

Theorem 7 Suppose Assumptions 5-7 are satisfied. Let

[
Gu Gd Gf

]
= M−1

[
Nu Nd Nf

]

be any left coprime factorization over RH∞ and let V ∈ RH∞ be a square transfer matrix

such that V−1 ∈ RH∞ and VV∼ = NdN
∼
d . Then

max
Q∈RH

ny×ny
∞

{‖QNf‖− : ‖QNd‖∞ ≤ γ} = γ
∥∥V−1Nf

∥∥
−

and an optimal fault detection filter for Problem 6 is given by

r = Qopt

[
M −Nu

]

 y

u




where

Qopt = γV−1.

Proof Note that by Lemma 12, we only need to solve Problem 6e:

max
Ψ∈RH

ny×ny
∞

{
∥∥∥ΨÑ f

∥∥∥
−

: ‖Ψ‖∞ ≤ γ}.
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From Lemma 1 we know that for every frequency θ ∈ [0, 2π],

σ(Ψ(ejθ)Ñ f (e
jθ)) ≤ σ̄(Ψ(ejθ))σ(Ñ f (e

jθ))

so that

∥∥∥ΨÑ f

∥∥∥
−
≤ ‖Ψ‖∞

∥∥∥Ñ f

∥∥∥
−
≤ γ

∥∥∥Ñ f

∥∥∥
−

.

By letting Ψ = γI, we have ‖Ψ‖∞ = γ and
∥∥∥ΨÑ f

∥∥∥
−

= γ
∥∥∥Ñ f

∥∥∥
−
, which means that Ψ = γI

is an optimal solution achieving the maximum. ¤

Remark 15 Note that the remarks for continuous H−/H∞ problem in section 3.2 also apply

to this problem.

Note also that the solution given in the above theorem is completely general and it is not

dependent on specific state space representation of those coprime factorization and spectral

factorization. However, if specific state space coprime and spectral factorizations are used,

the optimal filter can be written in a very simple form.

Theorem 8 Suppose Assumptions 5-7 are satisfied. Let P ≥ 0 be the stabilizing solution to

the Riccati equation

APA′ − P − (APC ′ + BdD
′
d)(DdD

′
d + CPC ′)−1(DdB

′
d + CPA′) + BdB

′
d = 0 (4.14)

such that A − (APC ′ + BdD
′
d)(DdD

′
d + CPC ′)−1C is stable and let Rd = DdD

′
d + CPC ′.

Define

L0 = −(APC ′ + BdD
′
d)R

−1
d .
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Then

max
Q∈RH

ny×ny
∞

{‖QNf‖− : ‖QNd‖∞ ≤ γ} = γ
∥∥V−1Nf

∥∥
−

and an optimal H−/H∞ fault detection filter has the following state space representation

r = Qopt

[
M −Nu

]

 y

u




where

Qopt

[
M −Nu

]
= γ


 A + L0C −L0 B + L0D

−R
−1/2
d C R

−1/2
d −R

−1/2
d D




and

V−1Nf =


 A + L0C Bf + L0Df

R
−1/2
d C R

−1/2
d Df


 .

In other words, the optimal H−/H∞ fault detection filter is the following observer:

x̂(k + 1) = (A + L0C)x̂(k)− L0y(t) + (B + L0D)u(k) (4.15)

r(k) = γR
−1/2
d (y(k)− Cx̂(k)−Du(k)) . (4.16)

Proof Note that

[
M N u

]
=


 A + LC L B + LD

C I D




where L is a matrix with appropriate dimensions such that A + LC is stable. Note from

Theorem 7 and Lemma 11 that

Qopt = γV −1 = γ


 A + L0C L0 − L

R
−1/2
d C R

−1/2
d


 .

Then

Qopt

[
M −N u

]
= γ


 A + L0C L0 − L

R
−1/2
d C R

−1/2
d





 A + LC L −(B + LD)

C I −D
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= γ




A + L0C L0C − LC L0 − L −(L0 − L)D

0 A + LC L −(B + LD)

R
−1/2
d C R

−1/2
d C R

−1/2
d −R

−1/2
d D




= γ




A + L0C 0 L0 −(B + L0D)

0 A + LC L −(B + LD)

R−1/2C 0 R
−1/2
d −R

−1/2
d D




= γ


 A + L0C L0 −(B + L0D)

R
−1/2
d C R

−1/2
d −R

−1/2
d D


 = γ


 A + L0C −L0 B + L0D

−R
−1/2
d C R

−1/2
d −R

−1/2
d D


 .

Similarly, we have

V −1N f =


 A + L0C L0 − L

R
−1/2
d C R

−1/2
d





 A + LC Bf + LDf

C Df




=




A + L0C (L0 − L)C (L0 − L)Df

0 A + LC Bf + LDf

R
−1/2
d C R

−1/2
d C R

−1/2
d Df




=




A + L0C 0 Bf + L0Df

0 A + LC Bf + LDf

R
−1/2
d C 0 R

−1/2
d Df


 =


 A + L0C Bf + L0Df

R
−1/2
d C R

−1/2
d Df


 .

¤

Remark 16 It is easy to see that our optimal filters given in Theorem 7 and Theorem 8 are

also optimal for the so-called discrete H∞/H∞ problem:

max
Q∈RH

ny×ny
∞

{‖QNf‖∞ : ‖QNd‖∞ ≤ γ}
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4.3 H2/H∞ Fault Detection Filter Design

In this section we give an optimal solution for the discrete H2/H∞ problem stated in Section

4.1 as Problem 7. Similar to the solution for the H−/H∞ problem given in Theorem 7 and

Theorem 8, we have the following parallel results for H2/H∞ problem.

Theorem 9 Suppose Assumptions 5-7 are satisfied. Let

[
Gu Gd Gf

]
= M−1

[
Nu Nd Nf

]

be any left coprime factorization over RH∞ and let V ∈ RH∞ be a square transfer matrix

such that V−1 ∈ RH∞ and VV∼ = NdN
∼
d . Then

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖∞ ≤ γ} = γ
∥∥V−1Nf

∥∥
2

and the optimal fault detection filters for Problem 6 given in Theorem 7 and Theorem 8 are

also the optimal filters for this problem.

Proof Note that by Lemma 12, we only need to solve Problem 7e:

max
Ψ∈RH

ny×ny
∞

{
∥∥∥ΨÑ f

∥∥∥
2

: ‖Ψ‖∞ ≤ γ}.

Note that

∥∥∥ΨÑ f

∥∥∥
2
≤ ‖Ψ‖∞

∥∥∥Ñ f

∥∥∥
2
≤ γ

∥∥∥Ñ f

∥∥∥
2
.

By letting Ψ = γI, we have ‖Ψ‖∞ = γ and
∥∥∥ΨÑ f

∥∥∥
2

= γ
∥∥∥Ñ f

∥∥∥
2
, which means that Ψ = γI

is an optimal solution achieving the maximum. ¤

Remark 17 Note that the remarks for continuous H2/H∞ problem in section 3.3 also apply

to this problem.
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4.4 H−/H2 Fault Detection Filter Design: Case 1

By Lemma 12 the discrete H−/H2 problem is equivalent to Problem 8e, i.e.

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑ f

∥∥∥
−

: ‖Ψ‖2 ≤ γ}.

Unlike the H−/H∞ problem studied in section 4.2, we have different solutions for the H−/H2

problem if different H− definitions are considered. In this section and the next two sections

we shall illustrate this point and give solutions for all cases.

Theorem 10 Suppose Assumptions 5-7 are satisfied. Then

sup
Q∈RH

ny×ny
∞

{‖QNf‖[0]
− : ‖QNd‖2 ≤ γ} = ∞.

Furthermore, for any given α > 0, let 2 > ε > 0 and

Qsub =
γ
√

ε(2− ε)

z − 1 + ε
V−1.

Then {‖QsubNf‖[0]
− > α and ‖QsubNd‖2 ≤ γ} is satisfied for a sufficiently small ε > 0.

Proof Again note that the equivalent Problem 8e in this case is

sup
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑ f

∥∥∥
[0]

−
: ‖Ψ‖2 ≤ γ}.

Take Ψ(z) =
γ
√

ε(2−ε)

z−1+ε
I such that 2 > ε > 0. Then Ψ(1) = γ

√
2−ε

ε
I and ‖Ψ‖2 = γ. Let

ε → 0, then Ψ(1) →∞, so that

∥∥∥ΨÑ f

∥∥∥
[0]

−
= σ(Ψ(1)Ñ f (1)) = γ

√
2− ε

ε
σ(Ñ f (1)) →∞.

¤
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Remark 18 We should point out that an optimal filter designed using Theorem 10 is not

necessarily good for fault detection since this optimal filter can be extremely narrow-banded

near 0 frequency so that any higher frequency component of fault may not be detected.

4.5 H−/H2 Fault Detection Filter Design: Case 2

In this section, we shall consider another special case where the H− index is defined for

all frequency but with Df full column rank. As we have mentioned before, this is a very

restrictive case. We are interested in this case because an analytic solution is possible. Notice

that the corresponding continuous time problem has no analytic solution in this case.

Lemma 13 Suppose Df has full column rank. Then an optimal solution Ψopt to the Prob-

lem 8e

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑf

∥∥∥
[0,2π]

−
: ‖Ψ‖2 ≤ γ}

has the form Ψopt = UΨo and

ΨoÑf =


 αInf

0(ny−nf )×nf




where α is a positive scalar and U is a ny × ny all-pass stable transfer matrix.

Proof We shall first show

σ(Ψopt(e
jθ)Ñ f (e

jθ)) = C for every θ ∈ [0, 2π], where C is a positive scalar.

Suppose there exists a Ψopt such that σ(Ψopt(e
jθ)Ñ f (e

jθ)) = C doesn’t hold. Let Θ1 denotes

the set of all θ values such that σ(Ψopt(e
jθ)Ñ f (e

jθ)) =
∥∥∥ΨoptÑ f

∥∥∥
[0,2π]

−
is achieved. Let
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Θ2 := [0, 2π]−Θ1 such that

σ(Ψopt(e
jθ)Ñ f (e

jθ))θ∈Θ1 < σ(Ψopt(e
jθ)Ñ f (e

jθ))θ∈Θ2 .

Then there exists a weighting function W ∈ RH
ny×ny∞ such that

‖W Ψopt‖2 = ‖Ψopt‖2

and

σ(Ψopt(e
jθ)N f (e

jθ))θ∈Θ1 < σ(W (ejθ)Ψopt(e
jθ)Ñ f (e

jθ))θ∈Θ1

≤ σ(W (ejθ)Ψopt(e
jθ)N f (e

jθ))θ∈Θ2

Therefore
∥∥∥W ΨoptÑ f

∥∥∥
[0,2π]

−
>

∥∥∥ΨoptÑ f

∥∥∥
[0,2π]

−
and Ψopt is not an optimal solution. Hence it

is true that σ(Ψopt(e
jθ)Ñ f (e

jθ)) = C for every θ ∈ [0, 2π].

Next we show that

σ̄(Ψopt(e
jθ)Ñ f (e

jθ)) = σ(Ψopt(e
jθ)Ñ f (e

jθ)) for every θ ∈ [0, 2π].

Suppose there exists a Ψopt such that σ̄(Ψopt(e
jθ1)Ñ f (e

jθ1)) 6= σ(Ψopt(e
jθ1)Ñ f (e

jθ1)) for some

θ1, i.e.

σ̄(Ψopt(e
jθ1)Ñ f (e

jθ1)) > σ(Ψopt(e
jθ1)Ñ f (e

jθ1)) =
∥∥∥ΨoptÑ f

∥∥∥
[0,2π]

−
.

Then a Ψ1 can be selected such that

σ(Ψ1(e
jθ)Ñ f (e

jθ)) = σ(Ψopt(e
jθ)Ñ f (e

jθ)), for all θ ∈ [0, 2π]

σ̄(Ψ1(e
jθ1)Ñ f (e

jθ1)) < σ̄(Ψopt(e
jθ1)Ñ f (e

jθ1))

and

‖Ψ1‖2 < ‖Ψopt‖2 .
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Since σ(Ψopt(e
jθ)Ñ f (e

jθ)) = C for every θ ∈ [0, 2π],
∥∥∥Ψ1Ñ f

∥∥∥
[0,2π]

−
=

∥∥∥ΨoptÑ f

∥∥∥
[0,2π]

−
. Let

Ψ2 =
‖Ψopt‖2
‖Ψ1‖2 Ψ1 then ‖Ψ2‖2 = ‖Ψopt‖2 and

∥∥∥Ψ2Ñ f

∥∥∥
[0,2π]

−
=
‖Ψopt‖2

‖Ψ1‖2

∥∥∥Ψ1Ñ f

∥∥∥
[0,2π]

−
=
‖Ψopt‖2

‖Ψ1‖2

∥∥∥ΨoptÑ f

∥∥∥
[0,2π]

−
>

∥∥∥ΨoptÑ f

∥∥∥
[0,2π]

−
.

Therefore Ψopt is not optimal and by contradiction the assumption is false. So

σ̄(Ψopt(e
jθ)Ñ f (e

jθ)) = σ(Ψopt(e
jθ)Ñ f (e

jθ))

holds for every θ ∈ [0, 2π].

Since σ̄(Ψopt(e
jθ)Ñ f (e

jθ)) = σ(Ψopt(e
jθ)Ñ f (e

jθ)) = C for every θ ∈ [0, 2π], and that Df

has full column rank implies ny ≥ nf , ΨoptÑ f has the form

ΨoptÑ f = U


 αInf

0(ny−nf )×nf


 ,

where U is an all-pass stable transfer matrix and α is a positive scalar. Let Ψopt = UΨo then

ΨoÑ f =


 αInf

0(ny−nf )×nf


 .

¤

Lemma 14 Suppose Df has full column rank. Then Problem 8e

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑf

∥∥∥
[0,2π]

−
: ‖Ψ‖2 ≤ γ}

is equivalent to

Problem 8a

min
Ñ

+
f ∈RH

nf×ny
2

{
∥∥∥Ñ+

f

∥∥∥
2

: Ñ
+

f Ñf = I}.
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Proof From Lemma 13 we know that the optimal solution to Problem 8e has the form

Ψopt = UΨo and

ΨoÑ f =


 αInf

0(ny−nf )×nf


 .

Let Ψo =


 Ψ1

Ψ2


, where Ψ1 is nf ×ny and Ψ2 is (ny−nf )×ny. Then


 Ψ1Ñ f

Ψ2Ñ f


 =


 αI

0




so Ψ2 = 0 and ‖Ψo‖2 = ‖Ψ1‖2. Since Problem 8e needs to maximize
∥∥∥ΨÑ f

∥∥∥
−

with the

constraint ‖Ψ‖2 ≤ γ, it is equivalent to find a Ψ1 with smallest H2 norm such that Ψ1Ñ f = I.

Denote Ψ1 = Ñ
+

f , then Problem 8e is equivalent to Problem 8a. ¤

In [20] the solution to a dual problem of Problem 8a is given. Similarly we have the

solution to Problem 8a given by the following lemma.

Lemma 15 Assume H(z) =


 A B

C D


 is strictly minimum phase and D has full column

rank. Let D+ = D(D′D)−1, D⊥ is chosen such that D′
⊥D⊥ = I − D(D′D)−1D′ and A0 =

A−B(D+)′C, then the optimal solution to problem

min
H+(z)∈RH

nf×ny
2

{
∥∥H+(z)

∥∥
2

: H+(z)H(z) = I}

is given by

H+(z)opt =


 A + KC K

RC R


 ,

where Q ≥ 0 is the solution to the algebraic Riccati equation

Q = A′
0QA0 − A′

0QC ′D′
⊥(I + D⊥CQC ′D′

⊥)−1D⊥CQA0 + B(D′D)−1B′,

K = −B(D+)′ − A0QC ′D′
⊥(I + D⊥CQC ′D′

⊥)−1D⊥

and

R = (D+)′(I + CQC ′D′
⊥D⊥)−1.
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Proof The equation H +(z)H (z) = I is equivalent to H T (z)(H +(z))T = I, so Problem 8a

is equivalent to finding a H (rinv)(z) with smallest H2 norm such that H T (z)H (rinv)(z) = I.

Hence the conclusion in [20] can be applied to H T (z) to get the optimal H (rinv)(z)opt.

H +(z)opt is then obtained by taking transpose of H (rinv)(z)opt. ¤

Theorem 11 Suppose Assumptions 5-7 are satisfied. Let Gf have all zeros inside the unit

circle and Df have full column rank. Let

[
Gu Gd Gf

]
= M−1

[
Nu Nd Nf

]

be any left coprime factorization over RH∞ and let V ∈ RH∞ be a square transfer matrix

such that V−1 ∈ RH∞ and VV∼ = NdN
∼
d . Let (Ñ

+

f )opt = (V−1Nf )
+
opt be the optimal

solution to Problem 8a. Then

max
Q∈RH

ny×ny
2

{‖QNf‖[0,2π]
− : ‖QNd‖2 ≤ γ} =

γ∥∥(V−1Nf )
+
opt

∥∥
2

and an optimal fault detection filter is given by

r = Qopt

[
M −Nu

]

 y

u




where

Qopt =
γ∥∥(V−1Nf )

+
opt

∥∥
2


 (V−1Nf )

+
optV

−1

0


 .

Proof Note that by Lemma 12, we only need to solve Problem 8e:

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑ f

∥∥∥
[0,2π]

−
: ‖Ψ‖2 ≤ γ}.
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Since Gf has all zeros inside the unit circle and V −1 ∈ RH∞, Ñ f is strictly minimum

phase. From Lemma 13-15 we know that the optimal solution to Problem 8e is given by

Ψopt = U
γ∥∥∥(Ñ
+

f )opt

∥∥∥
2


 (Ñ

+

f )opt

0




where (Ñ
+

f )opt = (V −1N f )
+
opt is the optimal solution to Problem 8a and U is a unitary

matrix. Take U = I then an optimal solution is given by

Qopt =
γ∥∥∥(Ñ
+

f )opt

∥∥∥
2


 (Ñ

+

f )optV
−1

0


 =

γ∥∥(V −1N f )
+
opt

∥∥
2


 (V −1N f )

+
optV

−1

0


 .

¤

Again the solution given in the above theorem is general and it does not dependent on

specific state space representation of those coprime factorization and spectral factorization.

If specific state space coprime and spectral factorization in the previous section are used, the

optimal filter can be written in an explicit form.

Theorem 12 Suppose Assumptions 5-7 are satisfied. Let Gf have all zeros inside the unit

circle and Df have full column rank. Let P ≥ 0 be the stabilizing solution to the Riccati

equation

APA′ − P − (APC ′ + BdD
′
d)(DdD

′
d + CPC ′)−1(DdB

′
d + CPA′) + BdB

′
d = 0 (4.17)

such that A− (APC ′+BD′)(DD′+CPC ′)−1C is stable. Let Rd = DdD
′
d +CPC ′ and define

L0 = −(APC ′ + BdD
′
d)R

−1
d .

Let D+ = R
−1/2
d Df (D

′
fR

−1
d Df )

−1, D⊥ is chosen such that

D′
⊥D⊥ = I −R

−1/2
d Df (D

′
fR

−1
d Df )

−1D′
fR

−1/2
d ,
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and A0 = A + L0C − (Bf + L0Df )(D
+)′R−1/2

d C. Let Q ≥ 0 be the solution to the algebraic

Riccati equation

Q = A′
0QA′

0 − A′
0QC ′D′

⊥(I + D⊥CQC ′D′
⊥)−1D⊥CQA0

+(Bf + L0Df )(D
′
fR

−1
d Df )

−1(Bf + L0Df )
′

and define

K0 = −(Bf + L0Df )(D
+)′ − A0QC ′R−1/2

d D′
⊥(I + D⊥R

−1/2
d CQC ′R−1/2

d D′
⊥)−1D⊥,

R0 = (D+)′(I + R
−1/2
d CQC ′R−1/2

d D′
⊥D⊥)−1.

Then

max
Q∈RH

ny×ny
2

{‖QNf‖[0,2π]
− : ‖QNd‖2 ≤ γ} =

γ∥∥(V−1Nf )
+
opt

∥∥
2

where

(V−1Nf )
+
opt =


 A + K0C K0 − L0

R0C R0




and an optimal H−/H2 fault detection filter has the following state space representation

r = Qopt

[
M −Nu

]

 y

u




where

Qopt =
γ∥∥(V−1Nf )

+
opt

∥∥
2


 (V−1Nf )

+
optV

−1

0




and

Qopt

[
M −Nu

]

=
γ∥∥(V−1Nf )

+
opt

∥∥
2







A + L0C 0 −L0 B + L0D

−(K0 − L0)R
−1/2
d C A + K0C (K0 − L0)R

−1/2
d −(K0 − L0)R

−1/2
d D

−R0R
−1/2
d C R0C R0R

−1/2
d −R0R

−1/2
d D




0




.
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Proof Note that

[
M N u

]
=


 A + LC L B + LD

C I D




where L is a matrix with appropriate dimensions such that A+LC is stable. From Theorem

7

V −1 =


 A + L0C L0 − L

R
−1/2
d C R

−1/2
d


 .

From Theorem 8

V −1N f =


 A + L0C Bf + L0Df

R
−1/2
d C R

−1/2
d




and

V −1
[

M −N u

]
=


 A + L0C −L0 B + L0D

−R
−1/2
d C R

−1/2
d −R

−1/2
d D


 .

From Lemma 15

(V −1N f )
+
opt =


 A + K0C K0 − L0

R0C R0


 .

Therefore

Qopt

[
M −N u

]
=

γ∥∥(V −1N f )
+
opt

∥∥
2


 (V −1N f )

+
opt

0


V −1

[
M −N u

]

=
γ∥∥(V −1N f )

+
opt

∥∥
2





 A + K0C K0 − L0

R0C R0




0





 A + L0C −L0 B + L0D

−R
−1/2
d C R

−1/2
d −R

−1/2
d D




=
γ∥∥(V −1N f )

+
opt

∥∥
2







A + L0C 0 −L0 B + L0D

−(K0 − L0)R
−1/2
d C A + K0C (K0 − L0)R

−1/2
d −(K0 − L0)R

−1/2
d D

−R0R
−1/2
d C R0C R0R

−1/2
d −R0R

−1/2
d D




0




.

¤
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Remark 19 Note that the optimal fault detection filter Qopt

[
M −Nu

]
is independent of

the choice of L matrix.

Remark 20 Note that the strictly minimum phase assumption for Gf (or Ñf) is not needed.

In general, if Ñf does not have any zeros on the unit circle, one can always factorize Ñf =

Ñf
min

Ñf
a

so that Ñf
min

is strictly minimum phase and Ñf
a

is a stable all-pass matrix.

Then the solution can be computed by using Ñf
min

in place of Ñf . In the case when Ñf

has zeros on the unit circle, approximation factorization can also be carried out to obtain an

approximation solution.

4.6 H−/H2 Fault Detection Filter Design: Case 3

When Problem 8 is considered with the H− index defined over a finite frequency range

[θ1, θ2], the solution becomes much more complicated. We shall now state this as a separate

problem as below.

Problem 10 (Discrete Interval H−/H2 Problem) Let an uncertain system be described by

equations (4.1)-(4.4) and let γ > 0 be a given disturbance rejection level. Find a stable

transfer matrix Q ∈ RH
ny×ny∞ in (4.7)-(4.9) such that ‖Grd‖2 ≤ γ and ‖Grf‖[θ1,θ2]

− is

maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖[θ1,θ2]
− : ‖QNd‖2 ≤ γ}

Or, equivalently, let Q = ΨV−1 and solve

max
Ψ∈RH

ny×ny
2

{∥∥∥ΨÑf

∥∥∥
[θ1,θ2]

−
: ‖Ψ‖2 ≤ γ

}
.
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Remark 21 It is not hard to see that there is no rational function solution to the above

problem. This is because an optimal Ψ must satisfy Ψ(ejθ) = 0 almost every where for any

θ 6∈ [θ1, θ2]. Hence an analytic optimal solution seems to be impossible. Nevertheless, it is

intuitively feasible to find some rational approximations so that a rational Ψ has the form of

a bandpass filter with the pass-band close to [θ1, θ2] and ‖Ψ‖2 = γ.

Remark 22 When the condition that Df has full column rank is not satisfied, the rational

optimal solution to the problem

max
Q∈RH

ny×ny
∞

{‖QNf‖[0,2π]
− : ‖QNd‖2 ≤ γ}

may not exist. In this case we also need to find some rational approximate solutions. More-

over, this problem is a special case of Problem 10 by letting θ1 = 0 and θ2 = 2π, we shall

only consider the solution to Problem 10.

In the following, we shall describe an optimization approach to find a good rational ap-

proximation for the two cases above. To do that, we shall need a state space parametrization

of a stable rational function with a given H2 norm.

Lemma 16 Let Ψ =


 Aψ Bψ

Cψ Dψ


 ∈ RH

ny×ny

2 be an nψ-th order proper stable transfer

matrix. Then the state space parameters of Ψ can be expressed as Aψ = (I + Aψk)(I −

Aψk)
−1(I − C ′

ψCψ)1/2 for some

Aψk = −A′
ψk =




0 a12 a13 · · · a1nψ

−a12 0 a23 · · · a2nψ

−a13 −a23 0 · · · a3nψ

...
...

...
. . .

...

−a1nψ
−a2nψ

−a3nψ
. . . 0
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and some Cψ satisfies ‖Cψ‖ ≤ 1. Furthermore, ‖Ψ‖2
2 = Trace(D′

ψDψ + B′
ψBψ).

Proof Assume that Ψ =


 Âψ B̂ψ

Ĉψ D̂ψ


 ∈ RH2 is a nψth order observable realization, then

the observability Gramian Lo satisfies

Â′
ψLoÂψ − Lo + Ĉ ′

ψĈψ = 0.

Since Lo > 0, there exists a Cholesky factorization of Lo = T ′T where T is invertible.

Perform a similarity transformation on Ψ such that

Ψ =


 TÂψT−1 TB̂ψ

ĈψT−1 D̂ψ


 =


 Aψ Bψ

Cψ Dψ


 .

Thus A′
ψAψ − I + C ′

ψCψ = 0 so that Aψ = O(I −C ′
ψCψ)1/2 where O is an orthogonal matrix

and I−C ′
ψCψ is nonnegative definite. Since an orthogonal matrix O with no eigenvalue equals

−1 can be represented as A = (I +Aψk)(I−Aψk)
−1, where Aψk = −A′

ψk is a skew-symmetric

matrix, we have

Aψ = (I + Aψk)(I − Aψk)
−1(I − C ′

ψCψ)1/2

and ‖Cψ‖ ≤ 1. Consequently ‖Ψ‖2
2 = Trace(D′

ψDψ + B′
ψBψ). ¤

If we use directly the elements of Aψ, Bψ, Cψ and Dψ as optimization variables the total

number of variables is n2
ψ +2nynψ +n2

y. However, from Lemma 16 Aψ can be computed from

Cψ and Aψk so the elements Aψk, Bψ, Cψ and Dψ are all the optimization variables. Using

this technique the total number of optimization variables is nψ(nψ − 1)/2 + 2nynψ + n2
y and

the reduction is nψ(nψ + 1)/2.

In order to carry out the subsequent optimization, we need an effective method of com-

puting H− index fast and exactly. Following the similar idea of computing H− index for
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continuous system, we now present a bi-section algorithm to compute the H− index defined

over [θ1, θ2].

The following result shows the main idea used in our algorithm.

Lemma 17 Suppose G(z) =


 A B

C D


 ∈ RH∞ and θ ∈ [θ1, θ2], then

min
θ

σ[G(ejθ)] > β

if and only if

σ[D + C(I − A)−1] > β,

R := β2I −D′D, and S :=

 A + BR−1D′C −BR−1B′(A′ + C ′DR−1B′)−1C ′β2R−1C BR−1B′(A′ + C ′DR−1B′)−1

−(A′ + C ′DR−1B′)−1C ′β2R−1C (A′ + C ′DR−1B′)−1




has no eigenvalues on the segment of unit circle between θ = θ1 and θ = θ2.

The detailed procedure of our algorithm for computing H− index is summarized in below.

Algorithm for Computing H− index: Discrete Time

1. Give an initial guess on lower bound and upper bound such that

0 ≤ β1 ≤ min
θ∈[θ1,θ2]

σ(G(ejθ)) ≤ β2

and give a tolerance ε > 0.

2. Let β = 1
2
(β1 + β2). Compute the eigenvalues of S.

3. If S has no eigenvalue on the segment of unit circle between θ = θ1 and θ = θ2, which

means

min
θ∈[θ1,θ2]

σ(G(ejθ)) > β
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is true, then let β1 = β; else let β2 = β.

4. Repeat steps 2 and 3 until β2 − β1 < ε is satisfied. The approximate value of

min
θ∈[θ1,θ2]

σ(G(ejθ))

is given by 1
2
(β1 + β2) with tolerance ε.

With the state space parametrization of Ψ on RH2 space and our bisection algorithm

for computing H− index, the optimization process for solving Problem 10:

max
‖Ψ‖2≤γ

∥∥∥ΨÑ f

∥∥∥
[θ1,θ2]

−

can be performed as:

max
Aψk, Bψ, Cψ, Dψ, ‖Cψ‖ ≤ 1,

Trace(D′ψDψ + B′ψBψ) ≤ γ2

∥∥∥∥∥∥


 (I + Aψk)(I − Aψk)

−1(I − C ′
ψCψ)1/2 Bψ

Cψ Dψ


 Ñ f

∥∥∥∥∥∥

[θ1,θ2]

−

Furthermore, we introduce a penalty function Θ(Bψ, Cψ, Dψ) to ensure the conditions

Trace(D′
ψDψ + B′ψBψ) < γ2 and ‖Cψ‖ ≤ 1. Θ is defined as

Θ(Bψ, Cψ, Dψ) =

{
C, if Trace(B′ψBψ + D′

ψDψ) > γ2 or ‖Cψ‖ > 1;

0, else

where C is a large positive number. Therefore, the new optimization scheme is:

max
Aψk,Bψ ,Cψ ,Dψ

∥∥∥∥∥∥


 (I + Aψk)(I −Aψk)−1(I − C ′

ψCψ)1/2 Bψ

Cψ Dψ


 Ñ f

∥∥∥∥∥∥

[θ1,θ2]

−

−Θ(Bψ, Cψ, Dψ)

Similar to the continuous case in section 3.4, we developed a two-stage optimization

algorithm which is a combination of genetic algorithm and Nelder-Mead simplex method.

Example in Chapter 5 will demonstrate the effectiveness of this optimization method.
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4.7 H2/H2 Fault Detection Filter Design

The discrete H2/H2 problem has been extensively studied in the literature, see [7] and

references therein. For completeness and comparison, we shall give an explicit solution to

this problem under current problem formulation in this section.

Theorem 13 Suppose Assumptions 5-7 are satisfied. Then

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖2 ≤ γ} = γ
∥∥V−1Nf

∥∥
∞ .

Proof Note that by Lemma 12 we only need to solve Problem 9e:

max
Ψ∈RH

ny×ny
2

{
∥∥∥ΨÑ f

∥∥∥
2

: ‖Ψ‖2 ≤ γ}.

Now suppose
∥∥∥Ñ f

∥∥∥
∞

= σ̄[Ñ f (e
jθ0)] for some θ0 ∈ [0, 2π]. We shall first consider the

case θ0 6= 2π. Let the singular value decomposition of Ñ f (e
jθ0) be U(ejθ0)Σ(ejθ0)V ′(ejθ0).

Let u1(e
jθ0) ∈ C ny be the left singular vector corresponding to the largest singular value

σ̄[Ñ f (e
jθ0)], i.e., u1(e

jθ0) is the first column of U(ejθ0).

Write u′1(e
jθ0) as

u′1(e
jθ0) =

[
α1e

jθ1 α2e
jθ2 · · · αnye

jθny

]

such that αi ∈ R and θi ∈ (−π, 0]. Let 0 ≤ βi < 1 be such that

θi = ∠
(

1− ejθ0βi

ejθ0 − βi

)

and define

û(z) :=
[

α1
1−zβ1

z−β1
α2

1−zβ2

z−β2
· · · αny

1−zβny

z−βny

]
.
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Then

û(ejθ0) = u′1(e
jθ0).

Next let φ(z) ∈ RH2 be such that

|φ(ejθ)| =
{

γ
√

2π
ε
, θ ∈ [θ0, θ0 + ε]

0, θ 6∈ [θ0, θ0 + ε]

and ε is a small positive number.

Finally, let

Ψ(z) = φ(z)e1û(z)

where

e1 =




1

0
...

0



∈ Rny .

Then

∥∥∥ΨÑ f

∥∥∥
2

=

√
1

2π

∫ 2π

0

Trace{Ψ(ejθ)Ñ f(e
jθ)Ñ

∼
f (ejθ)Ψ∼(ejθ)}dθ

=

√
2

2π

∫ θ0+ε

θ0

|φ(ejθ)|2û(ejθ)Ñ f (e
jθ)Ñ

∼
f (ejθ)û∼(ejθ)dθ

≈
√

û(ejθ0)Ñ f (e
jθ0)Ñ

∼
f (ejθ0)û∼(ejθ0)

2

2π

∫ θ0+ε

θ0

|φ(ejθ0)|2dθ

= σ̄(Ñ f (e
jθ0))

√
2

2π

∫ θ0+ε

θ0

|φ(ejθ0)|2dθ = σ̄(Ñ f (e
jθ0)) ‖φ(z)‖2 = γ

∥∥∥Ñ f

∥∥∥
∞

as ε → 0.

In the case θ0 = 2π, let

|φ(ejθ)| =
{

γ
√

2π
ε
, θ ∈ [θ0 − ε, θ0]

0, θ 6∈ [θ0 − ε, θ0]
.
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and the above procedure can be performed. ¤

In practice the ideal narrow bandpass filter φ(z) does not exist and we need to ap-

proximate it with a bandpass filter. The procedure of obtaining an approximate design is

summarized below.

Discrete H2/H2 Fault Detection Filter Design Procedure:

• Find θ0 such that
∥∥∥Ñ f

∥∥∥
∞

= σ̄(Ñ f (e
jθ)).

• Compute u1(e
jθ) from the singular value decomposition of

Ñ f (e
jθ0) = U(ejθ0)Σ(ejθ0)V ′(ejθ0).

• Write u′1(e
jθ0) as

u′1(e
jθ0) =

[
α1e

jθ1 α2e
jθ2 · · · αnye

jθny

]

such that αi ∈ R and θi ∈ (−π, 0]. Let 0 ≤ βi < 1 be such that

θi = ∠
(

1− ejθ0βi

ejθ0 − βi

)

and define

û(z) :=
[

α1
1−zβ1

z−β1
α2

1−zβ2

z−β2
· · · αny

1−zβny

z−βny

]
.

• Design a proper bandpass filter F (z) ∈ RH 2 which has pass-band around θ0;

• Let φ(z) = γF (z)
‖F (z)‖2 ;

• Let Ψ(z) = φ(z)e1û(z) and Q = ΨV −1.

Remark 23 Note that the remarks for continuous H2/H2 problem in section 3.5 also apply

to this problem.
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Chapter 5

Numerical Examples

In this Chapter we give some numerical examples to show the effectiveness of our approaches

for solving the fault detection problems. Comparison with existing results are also made.

Section 5.1 includes the examples for continuous problems, and examples for discrete prob-

lems are shown in section 5.2.

5.1 Numerical Examples for Continuous Fault Detec-

tion Problems

5.1.1 Examples for H−/H∞ Problem

In this section we demonstrate and compare three examples from the existing literature for

Problem 1.

Example 1 We consider Problem 1 with the example from [34]. A fourth order system is

given as:

A =




−10 0 5 0

0 −5 0 2.5

0 0 −2.5 0

0 5 0 −3.75




, Bd =




0.8 0.04

−2.4 0.08

1.6 0.08

0.8 0.08




, Bf =




4

4

8

−8




,
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C =


 1 0 0 1

1 0 1 1


 , Dd =


 0.2 0.04

0.4 0.06


 , Df =


 2

−1




For easy comparison we let the pair (γ, β) represent the performance of an H−/H∞ fault

detection filter such that ‖Grd‖∞ ≤ γ and ‖Grf‖[∞]
− ≥ β. The best result by Tao and

Zhao [34] using LMI approach is: γ = 0.5435, β = 2.2361 and β
γ

= 4.1143. Using our

approach an optimal fault detection filter has the form in Theorem 2 with

L0 =




8 −6

−44 28

16 −12

4 −4




so that for γ = 0.5435 we have β = γ
∥∥∥Ñf

∥∥∥
[∞]

−
= 2.2721 and β

γ
= 4.1805. In contrast to

Tao and Zhao’s approach where each filter has to be designed for a fixed (γ, β) value, our

filter is optimal for all γ value and given any γ > 0 the optimal fault detection filter can be

computed by simply multiplying a scalar. The singular value plots of Grd and Grf are shown

in Figure 5.1 and Figure 5.2, respectively.

Example 2 We consider Problem 1 with an fourth order system from [35] which is given

by

A =




−5.2 0.65 6.5 1.3

−1.56 −2.6 0 2.6

−1.3 0 −1.3 0

−0.26 0 3.9 −1.95




, Bd =




0.5 0.03

−1.5 0.02

1.0 −0.04

0.5 0.01




, Bf =




2

2

4

−4




,

C =


 −0.3 0.3 0 0.3

0.3 0 0.3 0


 , Dd =


 0.15 0.012

0.3 0.015


 , Df =


 1.6

−0.8


 .
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Figure 5.1: Example 1, singular value plot of Grd, ‖Grd‖∞ = 0.5435
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Figure 5.2: Example 1, singular value plot of Grf , ‖Grf‖− = 2.2721
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The results reported in [35] are ‖Grd‖∞ = 0.34 and ‖Grf‖∞ = 1.785. Since ‖Grf‖− <

‖Grf‖∞, it is concluded that γ = 0.34, β < 1.785 and β
γ

< 5.2493. For comparison, we

also let γ = 0.34, then our approach gives the optimal fault detection filter in the form of

Theorem 2 with

L0 =




−1.1111 −1.1111

−21.1111 15.5556

20 −13.3333

3.3333 −3.3333




.

We can further compute that this optimal filter design has γ = 0.34 and β = 27.0364 such

that β
γ

= 79.5188. The singular value plots of Grd and Grf are shown in Figure 5.3 and

Figure 5.4.

Furthermore, these two detection designs are simulated by taking

d(t) =
[

sin(2t) cos(2t)
]′

and

f1(t) =

{
0.5, 5s ≤ t < 10s

0, elsewhere.

The time responses of the residual signals are plotted in Figure 5.5, which shows that our

residuals have a much larger amplitude than the reference signal so that they are much more

sensitive to fault. With the same d(t) we redo the simulations for a different

f2(t) =





0.2(t− 5), 5s ≤ t < 7.5s

0.2(10− t), 7.5s ≤ t < 10s

0, elsewhere

and the results are shown in Figure 5.6.
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Figure 5.3: Example 2, singular value plot of Grd, ‖Grd‖∞ = 0.3400
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Figure 5.4: Example 2, singular value plot of Grf , ‖Grf‖− = 27.0364
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Figure 5.5: Example 2, residual responses with f(t) = f1(t)
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Figure 5.6: Example 2, residual responses with f(t) = f2(t)
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Example 3 We consider Problem 1 for a modified F16XL system which is given in [15]

A =




−0.0674 0.0430 −0.8886 −0.5587

0.0205 −1.4666 16.5800 −0.0299

0.1377 −1.6788 −0.6819 0

0 0 1.0000 0;




, Bd =




0.0430 −0.1672

−1.4666 −1.5179

−1.6788 −9.7842

0 0




,

Bf =




0 0

0 0

0 0

0 0




, C =




1 0 0 0

0 1 0 0

0 0 1 0


 , Dd =




0 0

0 0

0 1


 , Df =




1 0

0 1

0 0


 .

The Dd matrix in this system does not have full row rank so we need to augment additional

columns to Dd and Bd such that B̃d =
[

Bd 0
]

and D̃d =
[

Dd εI
]

has full row rank for

a small ε > 0. Following our approach we have the optimal fault detection filter in the form

of Theorem 2 with

L0 =




−430 0 0.1672

14666 0 1.5179

16788 0 9.7842

0 0 0




.

Furthermore, let γ = 1, the optimal filter has β = 0.8498 so that β
γ

= 0.8498. This result is

the same as the result in [15] but our approach is much simpler. The singular value plots of

Grd and Grf are shown in Figure 5.7 and Figure 5.8.

Table 5.1: Result comparison for H−/H∞ problem

Previous optimal β
γ

Our optimal β
γ

Example 1 (Tao and Zhao) 4.1143 4.1805

Example 2 (Wang et al) <5.2493 79.5188

Example 3 (Jaimoukha et al) 0.8498 0.8498
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Figure 5.7: Example 3, singular value plot of Grd, ‖Grd‖∞ = 1
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Figure 5.8: Example 3, singular value plot of Grf , ‖Grf‖− = 0.8498
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The comparison between our results and the existing results on H−/H∞ problem are

summarized in Table 5.1.

5.1.2 Example for H2/H∞ Problem

In this section we will show how to solve the H2/H∞ problem using our approach through

an example.

Example 4 We consider Problem 2 with the system data given in Example 1 but

Df =


 0

0


 .

Since Df = 0, Nf is strict proper. From the conclusion in Chapter 3, we have the optimal

fault detection filter for this problem in the form of Theorem 2 with

L0 =




8 −6

−44 28

16 −12

4 −4




.

If we let γ = 1 then the maximum of H2/H∞ problem for this example is
∥∥∥Ñf

∥∥∥
2

= 142.7382.

The singular value plots of Grd and Grf are shown in Figure 5.9 and Figure 5.10.

5.1.3 Example for H−/H2 Problem

In this section we will show how to solve the interval H−/H2 problem using our approach

through an example.

Example 5 We consider Problem 5 for the same system given in Example 1 where ω1 = 0

and ω2 = 10.
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Figure 5.9: Example 4, singular value plot of Grd, ‖Grd‖∞ = 1
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Figure 5.10: Example 4, singular value plot of Grf , ‖Grf‖2 = 142.7382
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As discussed in Chapter 3 we use optimization method to search for a good solution.

Let’s denote the maximum of ‖Grf‖[ω1,ω2]
− as β. In Table 5.2 the results obtained using our

optimization algorithm with different pre-defined Ψ orders are given. It is clear that the

results improve with the increasing order of Ψ.

Table 5.2: Results for different Ψ’s order

Ψ’s order First Second Third Fourth

β 8.3275 9.0071 9.0351 9.1544

In particular, a fourth order Ψ design achieving β = 9.1544 is given by

Ψ =




−0.5674 0.6757 −0.0199 0.8283 0.5688 −0.2844

0.3763 −0.4959 2.2232 1.2855 −0.4489 0.2392

−1.4427 −0.9850 −1.3597 −1.2312 −0.5036 0.2389

1.5196 −3.6904 2.6378 −4.0005 0.1608 −0.0186

0.8188 −0.6766 1.6396 −0.5598 0 0

0.6815 −0.7307 0.1763 −2.7727 0 0




.

The singular value plots of Grd and Grf are shown in Figure 5.11 and Figure 5.12 for a

fourth order Ψ.

Figure 5.13 demonstrates how the smallest singular value of Grf changes in the frequency

range of [0, 10] with the order of Ψ. It is seen that the improvement on the performance with

any Ψ of higher order than 4 is insignificant.

It is interesting to note that the Ψ is trying to invert Ñf in the frequency interval [0, 10].

5.1.4 Example for H2/H2 Problem

In this section we will show how to solve the H2/H2 problem using our approach through

an example.
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Figure 5.11: Example 5, singular value plot of Grd with a fourth order Ψ, ‖Grd‖2 = 1
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Figure 5.12: Example 5, singular value plot of Grf with a fourth order Ψ, ‖Grf‖[0,10]
− = 9.1544
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Figure 5.13: Example 5, singular value plot of Grf for different order of Ψ: first order
(dash-doted line), second order (dashed line), and fourth order (solid line)

Example 6 We study Problem 4 for the system given in Example 1.

Let ‖Grd‖2 = γ and ‖Grf‖2 = β. The result given in [35] for this example is γ = 0.8,

β = 2.2 and β
γ

= 2.75. So for comparison, we also let γ = 0.8. Since

∥∥∥Ñf

∥∥∥
∞

= max
ω
{σ̄(Ñf (jω))} = 298.1507

and the maximum is achieved at ω0 = 15.1938, the maximum for Problem 4 is 298.1507γ =

238.5206. Following the design procedure after Theorem 6, first we compute

u1(jω0) =


 −0.7650− j0.4854

0.3455 + j0.2445




so that

u′1(jω0) = [−0.9060e−j0.5654 0.4233e−j0.6159].

Then

û(s) =

[
−0.9060

52.3059− s

52.3059 + s
0.4233

47.7689− s

47.7689 + s

]
.
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A second order Butterworth filter is designed as

F(s) =
0.3s

s2 + 0.3s + 229.5

which is strictly proper and has a pass band around w0. Therefore

φ(s) =
γF(s)

‖F(s)‖2

=
0.6197s

s2 + 0.3s + 229.5

and

Ψ(s) = φ(s)e1û(s) =




−33.238 −0.611 −3.452 −14.846 0.346 0.081

140.281 −48.689 −8.285 −109.065 −1.450 0.666

−20.148 22.327 −1.026 12.879 0.195 −0.088

−39.014 0.140 2.066 −17.422 0.403 0.094

−0.013 −0.226 1.246 −0.013 0 0

0 0 0 0 0 0




.

Further computation shows that this design has γ = 0.8 and β = 237.848, which is close

to the maximum. The singular value plots of Grd and Grf are shown in Figure 5.14 and

Figure 5.15.

5.2 Numerical Examples for Discrete Fault Detection

Problems

In this section we give some numerical examples to show the effectiveness of our approaches

for solving discrete fault detection problems.

5.2.1 Example for Discrete H−/H∞ Problem

Example 7 We consider Problem 6 for a third order system:

A =




−0.1964 −0.3962 −0.5884

1 2 3

−0.5428 −1.0879 −1.6291


 , Bd =




0.01 0

0 0.01

0 0


 , Bf =




1 −3

−0.5 1

0.5 0


 ,
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Figure 5.14: Example 6, singular value plot of Grd, ‖Grd‖2 = 0.8
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Figure 5.15: Example 6, singular value plot of Grf , ‖Grf‖2 = 237.848
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C =


 −0.1964 −0.3962 −0.5884

−0.3650 −2.1320 −3.0951


 , Dd =


 0.02 0

0 0.02


 , Df =


 0 0.7

0 1




Let the pair (γ, β) represent the performance of an H−/H∞ fault detection filter such

that ‖Grd‖∞ ≤ γ and ‖Grf‖[0,2π]
− ≥ β. Using our approach an optimal fault detection filter

has the form in Theorem 8 with

L0 =




−0.05 0

0 −0.05

0 0




Let γ = 1 we have the optimal β = γ
∥∥∥Ñf

∥∥∥
[0,2π]

−
= 0.7632. The singular value plots of Grd

and Grf are shown in Figure 5.16 and Figure 5.17, respectively.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Normalized Frequency

S
in

gu
la

r 
V

al
ue

s 
of

 G
dr

Figure 5.16: Example 7, singular value plot of Grd, ‖Grd‖∞ = 1

5.2.2 Example for Discrete H2/H∞ Problem

Example 8 We consider Problem 7 for the same system in Example 7.

Let the pair (γ, β) represent the performance of an H2/H∞ fault detection filter such that
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Figure 5.17: Example 7, singular value plot of Grf , ‖Grf‖[0,2π]
− = 0.75

‖Grd‖∞ ≤ γ and ‖Grf‖[0,2π]
2 ≥ β. From Theorem 9 the optimal fault detection filter in

Example 7 is also optimal for this example. Let γ = 1, the optimal β = γ
∥∥∥Ñf

∥∥∥
2

= 9.7591.

Note that if the so-called H∞/H∞ problem is considered for this system, the above fault

detection filter is also the optimal H∞/H∞ filter. Let ‖Grd‖∞ ≤ 1, then the optimal ‖Grf‖∞
is 11.4598.

5.2.3 Examples for Discrete H−/H2 Problem

Example 9 We consider Problem 8 for the system:

A =




−0.1964 −0.3962 −0.5884

1 2 3

−0.5428 −1.0879 −1.6291


 , Bd =




0.01 0

0 0.01

0 0


 , Bf =




1 0

1 1

0.5 0


 ,

C =


 −0.1964 −0.3962 −0.5884

−0.3650 −2.1320 −3.0951


 , Dd =


 0.02 0

0 0.02


 , Df =


 1 0.7

0 1
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We let the pair (γ, β) represent the performance of an H−/H2 fault detection filter such that

‖Grd‖2 ≤ γ and ‖Grf‖[0,2π]
− ≥ β. Since this Gf has all zeros inside the unit circle and Df

has full column rank, we get from Theorem 12

(V−1Nf )
+
opt =




−0.2555 −1.4924 −2.1666 0.1900 −0.1400

1.3059 3.0358 4.5169 0.2000 0.0500

−0.5723 −1.6360 −2.4182 0.1000 −0.0700

−0.0591 −1.0962 −1.5782 0.2000 −0.1400

0.3650 2.1320 3.0951 0 0.2000




and the optimal filter

Qopt =
γ∥∥(V−1Nf )

+
opt

∥∥
2

(V−1Nf )
+
optV

−1

=




−0.0740 0.3126 −0.8467 −1.2003 0.3892

−2.8761 1.3720 −5.9237 5.7439 −0.2946

−0.4110 0.2304 −0.9359 0.8321 −0.0352

0.7188 −0.7509 2.5122 0.7430 −0.5201

−1.7340 1.3456 −4.8682 0 0.7430




.

Let γ = 1 the optimal

β =
γ∥∥(V−1Nf )

+
opt

∥∥
2

= 0.7430.

The singular value plots of Grd and Grf are shown in Figure 5.18 and Figure 5.19, respec-

tively.

Example 10 We consider Problem 10 for a system:

A =




−0.1964 −0.3962 −0.5884

1.0000 2.0000 3.0000

−0.5428 −1.0879 −1.6291


 , Bd =




0.01

0.01

0


 , Bf =




1.0

−0.5

0.5




C =
[
−0.1964 −0.3962 −0.5884

]
, Dd = 0.02, Df = 0.
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Figure 5.18: Example 9, singular value plot of Grd, ‖Grd‖2 = 1
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Figure 5.19: Example 9, singular value plot of Grf , ‖Grf‖− = 0.7430
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where θ1 = 0 and θ2 = π/2.

As discussed in Chapter 4 we use optimization method to search for a good solution. Let’s

denote the maximum of ‖Grf‖[θ1,θ2]
− as β when ‖Grd‖2 ≤ 1. In Table 5.3 the results obtained

using our optimization algorithm with different pre-defined Ψ orders are given. It is clear

that the results improve with the increasing order of Ψ.

Table 5.3: Example 10, results for different Ψ’s order

Ψ’s order First Second Third

β 14.2661 22.5345 22.8182

In particular, a third order Ψ design achieving β = 22.8182 is given by

Ψ =




0.1187 −0.0019 0.4270 −0.1424

−0.8445 0.4220 0.3270 0.2363

−0.3536 −0.9012 0.2408 0.8865

0.3844 0.0988 0.8079 0.3714




.

The singular value plots of Grd and Grf are shown in Figure 5.20 and Figure 5.21 for this

third order Ψ.

Figure 5.22 demonstrates how the smallest singular value of Grf changes in the frequency

range of [0, π/2] with the order of Ψ. It is seen that the improvement on the performance

with any Ψ of higher order than 3 is insignificant.

It is interesting to note that the Ψ is trying to invert Ñf in the frequency interval [0, π/2].
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Figure 5.20: Example 10, singular value plot of Grd with a third order Ψ, ‖Grd‖2 = 1
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Figure 5.21: Example 10, singular value plot of Grf with a third order Ψ, ‖Grf‖[0,π/2]
− =

22.8182
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Figure 5.22: Example 10, singular value plot of Grf for different order of Ψ: first order (solid
line), second order (dotted line), and third order (dashed line)

5.2.4 Example for Discrete H2/H2 Problem

Example 11 We study Problem 9 for the same system in Example 7.

Let ‖Grd‖2 = γ and ‖Grf‖2 = β. Let γ = 1,

∥∥∥Ñf

∥∥∥
∞

= max
θ∈[0,2π]

{σ̄(Ñf (e
jθ))} = 11.4598

and the maximum is achieved at θ0 = π, so the maximum for discrete H2/H2 problem is

11.4598γ = 11.4598. Following the design procedure after Theorem 13, first we compute

u1(e
jθ0) =


 0.2328 + j0

0.9725 + j0




so that

u′1(e
jθ0) = [0.2328ej0 0.9725ej0].

Then

û(z) =
[

0.2328 0.9725
]
.
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A second order Butterworth filter is designed as

F(z) =
0.015466(z − 1)(z + 1)

z2 + 1.967z + 0.9691

which has a pass band around θ0. Therefore

φ(z) =
γF(z)

‖F(z)‖2

=
0.1244(z − 1)(z + 1)

z2 + 1.967z + 0.9691

and

Ψ(z) = φ(z)e1û(z) =




0.02895(z−1)(z+1)
z2+1.967z+0.9691

0.12094(z−1)(z+1)
z2+1.967z+0.9691

0 0


 .

Further computation shows that this design has β = 11.3994, which is close to the maximum.

The singular value plots of Grd and Grf are shown in Figure 5.23 and Figure 5.24.

It is clear from the frequency response plot (Figure 5.24) that this fault detection filter

can only detect faulty signals near the frequency π. Hence it may not have much value in

practical applications.
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Figure 5.23: Example 11, singular value plot of Grd, ‖Grd‖2 = 1
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Figure 5.24: Example 11, singular value plot of Grf , ‖Grf‖2 = 11.3994
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Chapter 6

Conclusion

In this dissertation, we have derived analytic and optimal solutions to various robust fault

detection problems for both continuous time and discrete time cases.

For continuous fault detection problems, we have shown that an optimal filter for both

H−/H∞ and H2/H∞ can be obtained by solving one Riccati equation. We also presented

solutions to different cases of H−/H2 problem and H2/H2 problem.

In parallel with our continuous time results, we have presented analytic and optimal

solutions to various robust fault detection problems for linear discrete time systems. We

have shown that an optimal filter for both discrete H−/H∞ and H2/H∞ problems can be

obtained by solving one discrete Riccati equation. It is also interesting to note that we are

able to give analytic solution to a discrete H−/H2 problem defined on the entire frequency

range [0, 2π] when Df has full column rank. In contrast, the corresponding continuous time

problem does not make any sense [23]. The critical reason for this difference is because the

entire frequency range in discrete time is finite (≤ 2π) while the entire frequency range in

continuous time is infinite.

For both continuous and discrete cases, we have also shown that many design criteria
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considered in the literature do not give desirable fault detection designs. This result presented

an in-depth understanding towards the essence of fault detection problems and provided a

guideline for choosing appropriate design criteria.

Based on the results above, we believe several possible directions for future research in

this area could be:

• The study of robust fault detection problems for linear time-varying systems.

• The removal of Assumption 2, i.e., to consider the case that Dd does not have full row

rank.

• The study of robust fault detection problems when model uncertainties are considered.

• The study of finding the complete solution set for robust fault detection problems.
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Appendix A: The Removal of
Assumption 3

It is noted that all results presented in this dissertation are derived based on three assump-

tions, Assumptions 1-3. While Assumptions 1 and 2 are standard, Assumption 3 may pose

certain limitations. We shall now present a technique to remove Assumption 3.

We shall start with a m×m square system

G =


 A B

C D


 .

Lemma 18 Let G =


 A B

C D


 be a m×m square transfer matrix and assume that it has

full normal rank, i.e., detG(s) 6= 0 for some s ∈ C . Suppose jω0 is a transmission zero of

G(s), i.e., there exist ξ ∈ C n and 0 6= η ∈ C m such that


 A− jω0I B

C D





 ξ

η


 = 0.

Let η be normalized such that η′η = 1. Define

Bε = B − εξη′, Ga(s) = I − ε

s + ε− jω0

ηη′, Gm =


 A Bε

C D


 .

Then

G(s) = Gm(s)Ga(s)

and

‖Ga(s)‖∞ = 1.
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Proof

Gm(s)Ga(s) =


 A Bε

C D





 −ε + jω0 −εη′

η I


 =




A Bεη Bε

0 −ε + jω0 −εη′

C Dη D




=




A (A− jω0I)ξ + Bη Bε + εξη′

0 −ε + jω0 −εη′

C Cξ + Dη D


 =




A 0 B

0 −ε + jω0 −εη′

C 0 D




=


 A B

C D


 = G(s).

It is easy to see ‖Ga‖∞ = 1. ¤

Note that the above factorization can be applied recursively to factorize out all imagi-

nary axis transmission zeros so that the remaining part of the system does not contain any

imaginary axis transmission zeros. It is easy to illustrate this process for a scalar transfer

function. For example, suppose a transfer function has a pair of imaginary axis zeros at jω0

and −jω0. Then it can be written as

G =
n1(s)(s

2 + ω2
0)

d(s)

where n1(s) and d(s) are polynomials with no imaginary axis roots. Then for any ε > 0, we

can factorize G(s) as

G(s) =
n1(s)((s + ε)2 + ω2

0)

d(s)

s2 + ω2
0

(s + ε)2 + ω2
0

and

s2 + ω2
0

(s + ε)2 + ω2
0

≈ 1

105



for a sufficiently small ε > 0. Since the transfer matrix Gd in this paper is not square, we

need first augment it to a square transfer matrix. Let D̃ ∈ R(nd−ny)×nd be such that

 Dd

D̃




is nonsingular. Let

Gdaug =


 Gd

D̃


 =




A Bd

C Dd

0 D̃




and apply Lemma 18 to Gdaug to get

Gdaug =


 Gm

D̃


Ga.

Hence we can always factorize G as

Gd = GmGa

so that Gm has no zero on the imaginary axis. Note that

σi (Ga(jω)) = 1, i = 1, 2, . . . , nd − 1

and

σnd
(Ga(jω)) =

∣∣∣∣
jω − jω0

jω + ε− jω0

∣∣∣∣

for any frequency ω. If ε > 0 is sufficiently small, then we have for every singular value

σi (Ga(jω)) ≈ 1

for every frequency ω. Hence Assumption 3 can be removed without sacrificing much of the

performance since

‖QGd‖∞ ≈ ‖QGm‖∞ , ‖QGd‖2 ≈ ‖QGm‖2

for a sufficiently small ε > 0.
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Appendix B: Matlab Code

Matlab Code for Computing H− Index

This is a Matlab function programmed by the author. The function calculates the H−
index of a given system matrix.

hminnorm.m

% out = hminnorm(sys,tol)

% Compute the H minus index of a given SYSTEM matrix.

% This function takes two inputs: the system matrix and the tolerance.

% The default value for the tolerance is 0.0001.

% The output of this function is the H minus norm.

% Max iteration

function out = hminnorm(sys,tol)

if nargin == 0

disp(’usage: out = hminnorm(sys,ttol)’)

return

end

if nargin == 1

tol = 0.0001;

end

zerodef = 1e-09;

[type,rows,cols,num] = minfo(sys);

if type == ’vary’

disp(’A VARYING matrix has not H minus definition’)

elseif type == ’cons’

if nargout == 1

out = norm(sys);

else

disp([’System is a CONSTANT matrix and

the H minus norm is ’ num2str(norm(sys))])

end
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elseif type == ’syst’

[A,B,C,D] = unpck(sys);

if max(real(eig(A))) >= 0

disp(’System is not stable’)

if nargout == 1

out = nan;

end

return

end

lbound = 0;

temp = frsp(sys, 1e3);

ubound = abs(temp(1,1)); %initial guess of upper bound

if (ubound-lbound <= tol) %if the initial guess is good enough

if nargout == 1

out = (ubound-lbound)/2;

else

disp(num2str((ubound-lbound)/2));

end

return

end

maxiter = 100;

i = 1;

while (ubound-lbound > tol)&&(i <= maxiter) %bisection

mid = (ubound+lbound)/2;

R = mid*mid*eye(cols)-D’*D;

S = inv(R);

[m n] = size(D*S*D’);

%Computation of Hamitonian matrix

H = [ A+B*S*D’*C B*S*B’

-C’*(eye(m)+D*S*D’)*C -(A+B*S*D’*C)’];

try

E = eig(H,’nobalance’);

catch

disp(’The Hamitonian matrix is ill-conditioned’)

rethrow(lasterror);

end

m = length(E);

NoImagEig = 1;

for i = 1:m

eig_real = abs(real(E(i)));
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eig_imag = abs(imag(E(i)));

if (eig_real <= zerodef) %altercating form of bounded real lemma

NoImagEig = 0;

end

end

if NoImagEig == 1

lbound=mid;

else

ubound = mid;

end %end if

i = i+1;

end %end while

if i <= 100 %Iterations less than maxiter

if nargout == 1

out = mid;

else

disp(num2str(mid))

end

else %iteration more than maxiter

disp(’Max iterations limit reached, algorithm fails to converge.’)

disp([’Current lower bound: ’ num2str(lbound)])

disp([’Current upper bound: ’ num2str(ubound)])

end

else

disp(’A SYSTEM matrix input is required’)

end

}

Matlab Code for Two Stage Optimization

This is the example code for two stage optimization for Problem 5 (Example 5). The
objective function was set for fourth order Ψ.

hmintwo.m (The main routine)

global r1 r2 Nf1 Q Gfr

A=[-10 0 5 0

0 -5 0 2.5

0 0 -2.5 0

0 5 0 -3.75];

Bd=[0.8 0.04

-2.4 0.08

1.6 0.08

109



0.8 0.08];

C=[1 0 0 1

1 0 1 1];

Dd=[0.2 0.04

0.4 0.06];

Bf=[4 4 8 -8]’;

Df=[2 -1]’;

%E=alpha*[-1 -2 -3 -4];

%L=place(A’,-C’,E);

L=-lqr(A’,C’,eye(4),eye(2));

L=L’;

M=ss(A+L*C,L,C,eye(2));

Nf=ss(A+L*C,Bf+L*Df,C,Df);

Nd=ss(A+L*C,Bd+L*Dd,C,Dd);

%Nf=ssbal(Nf);

%Nd=ssbal(Nd);

[A1,B1,C1,D1]=ssdata(Nd);

R1=D1*D1’;

Y=are(A1-B1*D1’*inv(R1)*C1, C1’*inv(R1)*C1, B1*(eye(2)-D1’*inv(R1)*D1)*B1’);

V=ss(A1,(B1*D1’+Y*C1’)*R1^(-0.5),C1,R1^0.5);

%V=ssbal(V);

V1=inv(V);

%V1=ssbal(V1);

Nf1=V1*Nf;

%Gfr=0.5435*V1*Nf;

%Gdr=minrealm(Gdr);

Nf1=minreal(Nf1);

options=gaoptimset(’PopInitRange’,[-1;1],’PopulationSize’,1000,

’Generation’,1000,’StallTimeLimit’,500,’Display’,’iter’);

[x0,fval,reason,output,population,scores]=ga(@fun_mintwo4,22,options);

options=optimset(’LargeScale’,’off’,’Display’,’final’);

[x,fval,exitflag,output]=fminsearch(@fun_mintwo4,x0,options);

w=logspace(log10(0.001),log10(1000),10000);

Gs=pck(Gfr.a,Gfr.b,Gfr.c,Gfr.d);

Gf=frsp(Gs,w);

[u,s,d]=vsvd(Gf);

vplot(’liv,lm’,s), grid;

%title(’Gfr’);

%[r1,w0]=norm(Gdr,inf,0.00001);

%r2=v;

r1
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r2

Q

fun_mintwo4.m (The optimization objective function)

function f=fun_mintwo4(x)

global Nf1 Q r1 r2 Gfr

gamma=1;

Bq=[x(1) x(2); x(3) x(4); x(5) x(6);x(7) x(8)];

Cq=[x(9) x(10) x(11) x(12) ; x(13) x(14) x(15) x(16)];

Dq=zeros(2,2);

Aqk=[0 x(17) x(18) x(19); -x(17) 0 x(20) x(21); -x(18) -x(20) 0 x(22);

-x(19) -x(21) -x(22) 0];

if trace(Bq’*Bq)>gamma

Pe=1000;

f=Pe;

else

Pe=20;

Aqs=-0.5*Cq’*Cq;

Aq=Aqk+Aqs;

Q=ss(Aq,Bq,Cq,Dq);

norm1=norm(Q,2);

%disp([’The H_inf norm of Q is ’,num2str(norm(1))]);

Gfr=Q*Nf1;

Gfr=minrealm(Gfr);

A2=Gfr.a;

B2=Gfr.b;

C2=Gfr.c;

D2=Gfr.d;

G=ss(A2,B2,C2,D2);

w1=0;

w2=10;

v1=0;

Gf=bode(G,w2);

v2=min(svd(Gf));

%v2=1000;

while((v2-v1)>0.00001)

v=(v1+v2)/2;

R2=v*v*eye(1)-D2’*D2;

S2=inv(R2);

H=[ A2+B2*S2*D2’*C2 B2*S2*B2’

-C2’*(eye(2)+D2*S2*D2’)*C2 -(A2+B2*S2*D2’*C2)’];

111



E=eig(H,’nobalance’);

m=length(E);

NoImagEig=1;

for i=1:m

eig_real=abs(real(E(i)));

eig_imag=abs(imag(E(i)));

if (eig_real<=0.00001)&&(eig_imag>=w1)&&(eig_imag<=w2)

NoImagEig=0;

end

end

if NoImagEig==1

v1=v;

else

v2=v;

end %end if

end %end while

r1=norm1(1);

r2=v;

if (r1>gamma)

Pe=1000;

end

f=Pe-r2;

end
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