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Abstract

This dissertation considers residual generation for robust fault detection of linear systems

with control inputs, unknown disturbances and possible faults.

First, multi-objective fault detection problems such as H−/H∞, H2/H∞ and H∞/H∞

have been formulated for linear continuous time-varying systems (LCTVS) in time domain for

finite horizon and infinite horizon case, respectively. It is shown that under mild assumptions,

the optimal solution is an observer determined by solving a standard differential Riccati

equation (DRE). The solution is also extended to the case when the initial state for the

system is unknown.

Second, the parallel problems are also solved for linear discrete time-varying systems

in time domain. The solution is again an observer whose gain is determined by solving a

standard recursive difference Riccati equation (DDRE). The solution is also extended to the

case when the initial state for the system is unknown.

Third, for the general case in which Gd (the transfer matrix from disturbance to output)

may be a tall or square transfer matrix, and Dd may not have full column rank for linear

discrete time invariant systems (LDTIS), the common H−/H∞, H2/H∞ and H∞/H∞

frameworks are not applicable. Based on several novel definitions of norms over a certain

subspace, we propose a new problem formulation with both disturbance decoupling and

fault sensitivity optimization. It is shown that the solution is an observer determined by a

generalized Riccati equation (or Riccati system, alternatively). To be more specific, with this

xi



filter, some faults in certain subspace can be completely decoupled from the residual signal,

while the others are optimized in terms of fault sensitivity. Furthermore, the completely

non-decoupling and decoupling conditions are given. Disturbance rejection based on the

solution is discussed. A direct procedure for deriving the fault detection filter in transfer

matrix form is also proposed.

Finally, some potential further research problems are outlined.
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Chapter 1

Introduction

1.1 Overview of Fault Detection

Fault diagnosis has received much attention for complex modern automatic systems such as

car, aircraft, rockets, etc. since 1970s [8,23,58,63]. The high complexities of modern systems

are vulnerable to almost unavoidable faults such as sudden breakdown or malfunction of

a sensor or an actuator. Such unpredictable non-safety can cause significant performance

deteriorations of control systems, and possibly damages or destructions of the whole systems.

Therefore, in order to improve the system reliability and operational safety, reducing the

possibility of those failures or predicting its happening before its occurrence is imperative.

One direct way is to employ backup sensors or actuators for some important parts, such that

the system is able to automatically replace the faulty parts once certain faults are identified.

However, such a strategy may not always be feasible physically or economically, which is

particularly true for some practical lower-cost systems. An alternative way, which was first

introduced by R.V Beard and H.L.Jones [2, 45], is to use the analytical redundancy implied

in the systems to detect and identify the faults. Thus the system is able to shut down itself

or employ some procedures to tolerate the faults. The later one is the motivation of fault

diagnosis [21].

There is no standard and formal definition on fault diagnosis in the current literature.
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The widely accepted concept is that a fault is an unexpected change of system function

although it may not represent physical failure or breakdown [8]. A monitor system which is

used to detect faults and diagnosis their location and significance in a system is called a fault

diagnosis system. Generally speaking, fault diagnosis is normally in charge of the following

tasks [8]:

• Fault detection (FD): to make a decision whether there is something wrong or not.

• Fault isolation: to locate the fault, e.g., which sensor, actuator or system components

has become faulty.

• Fault identification: to identify the size and type or nature of the fault.

As the first task of fault diagnosis, fault detection is the basis of the last two tasks and

it is an absolute must in fault diagnosis. This dissertation will focus on fault detection. The

reader interested in fault isolation and fault identification is referred to [8] and references

therein.

The task of constructing a fault detection system [8,23] is normally as follows:

• to design a residual generator that eliminates the effects of process input signals and

if possible, also the effects of disturbances and model uncertainties on the residual;

• to design a residual evaluator by selecting a suitable evaluation function ‖ · ‖e and

determining the threshold Jth.

• if a full elimination of the effects of disturbances and model uncertainties on the resid-

ual is not possible, to optimize the residual generator and evaluator to achieve the

maximum set of detectable faults.

2



It can be seen that residual generation as the first step in fault detection is very critical

in the fault detection design, since it plays the role of detecting the fault signal or fault

information, and the poor performance in the residual generation will directly affect the

next two steps significantly. Therefore, residual generation has received much attention

among researchers recently [8].

Depending on the priori knowledge available to engineers, fault detection methods can

be classified into two categories [77–79]: model-based fault detection and data-driven fault

detection. Model-based fault detection must have a mathematical system model for the plant

such as ARMA model, state-space model, or transfer function, which are often constructed

from the physics of process. Data-driven fault detection is based on a great amount of

historical data available, and it is suitable to be applied to large-scale industrial systems. In

this dissertation, we will focus on model-based fault detection, where the model is of state-

space form. Furthermore, if the model is linear time invariant, we also take it in a transfer

matrix form. Reader interested in data-driven method is referred to [7] and references therein.

There are also other classifications for the fault detection. For instance, according to the

system it monitors, the fault detection approaches can be classified as follows [8]: sampled-

data systems FDI [41, 49, 87, 89], stochastic systems FD [10], nonlinear system FD [63], etc.

Recently, active fault detection has also received great interest from researchers, in which

input signal is designed for stimulating the system characteristics so that fault detection

becomes easier. The fundamental issue in this direction concentrates on how to design

appropriate input signal such that the system characteristics is well stimulated [4,5]. On the

contrary, the other design methods are called passive fault detection [60,61]. This dissertation

will focus on passive fault detection.

As the most important part of fault detection, the common residual generation tech-
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niques include [23]: eigenstructure approach [11,57,62,83], observer-based approach includ-

ing Leunberger observer in a deterministic framework [2] and Kalman filter in a stochastic

framework [99], parity space based approach [25, 64], parameter estimation approach [38]

and factorization approach [80]. This dissertation will discuss factorization approach, since

all other methods can be regarded as special cases.

1.2 Model-Based Fault Detection

The first step in the model-based approach is to build a mathematical model for the moni-

tored system as mentioned before. State space model is most widely used to represent MIMO

systems. In addition, most complicated systems with possible faults can be described easily

in state space form. In this dissertation the state space model of the following linear form is

taken,

ẋ(t) = A(t)x(t) + B(t)uR(t)

yR(t) = C(t)x(t) + D(t)uR(t).

Furthermore, if system parameters depend on time, this system will be called linear time-

varying system (LTVS). Otherwise, it will be called linear time-invariant system (LTIS).

With the above model, the next stage is to characterize the fault. Generally, there are

three fault sources: component fault, sensor fault and actuator fault, which can be modelled

in a general framework in fault detection. Specifically, the following general form is widely

accepted in fault detection community to describe plants with possible faults:

ẋ(t) = Ax(t) + Bu(t) + Bff(t)

y(t) = Cx(t) + Du(t) + Dff(t)

where Bf and Df describe how the fault f occurred in the systems. Since the system is

4



linear time-invariant (LTI), it can also be written as the following operator form:

y = Guu + Gff

where Gu represents the system from input u(t) to output y(t) and Gf represents the sys-

tem from fault f(t) to output y(t). Here, the model uncertainty and disturbance are not

considered in this model.

Figure 1.1 shows the general framework for residual generation, where G is the plant, F

is the residual generator and r(t) is the residual signal. Since the faults cannot be measured

directly, f(t) cannot be taken as the input of F . With the control input u(t) and the output

y(t), the residual generator must be able to produce a residual signal r(t) such that it can

show or predict the existence of faults f(t), i.e.





r(t) = 0, when f(t) = 0;

r(t) 6= 0, when f(t) 6= 0.

Obviously, the residual generator can be taken as a filter with the following form:

r =
[

Hu Hy

]

 u

y


 = [Hu + HyGu]u + HyGff.

In order to exclude the effect of u(t) on the residual r(t), the following fault detection

decoupling condition must be satisfied:





Hu + HyGu = 0

HyGf 6= 0.

We will see later that the factorization method [80] is able to completely decouple the

control input u(t) from the residual signal.

Apparently, model uncertainties and disturbances will cause unexpected effects on the

residual signal r(t). To ensure reliable fault detection, the next stage that follows residual

generation is decision-making [63]. That is, a decision rule that consists of a threshold is

5



Figure 1.1: Fault Detection Filter Structure without Disturbance

applied to determine if any fault is present. Mathematically, it is to construct a residual

evaluation function H(r(t)) and a threshold T (t) so that





H(r(t)) ≤ T (t), when f(t) = 0;

H(r(t)) > T (t), when f(t) 6= 0

where whether the function H(r(t)) is larger than the threshold T (t) corresponds to the

existence of faults. The appropriate choice of an evaluation function and a threshold is

strongly related to the extend to which the system is able to detect the real faults. In the

literature, there is a large amount of research on choosing appropriate residual threshold [20,

23], such as adaptive threshold [66], dynamic threshold [44] and optimal threshold selection

[73].

1.3 Optimization and Robustness in Model-Based Fault

Detection

The last section gives a fault detection condition characterizing how to decouple the input

effect from the residual. However, there remains a question: how can we judge that one

fault detection filter is better than the others? To my knowledge, a fault detection that is

regarded as ’good’ must have the following properties in some sense,
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• fast response to faults. Or even predict faults before they occur.

• high sensitivity to faults, even under strong disturbance or/and model uncertainty.

• fewer chances of both missing alarm and false alarm: i.e. less possibility of taking

disturbance as fault and vise versa.

This dissertation will only discuss the second property– fault sensitivity. The reader inter-

ested in property 1 and property 3 is referred to [8]. In order to quantify fault sensitivity,

an appropriate mathematical criterion is necessary, and thus the fault detection filter design

for improving the fault sensitivity turns out to be an optimization problem. In the current

literature, several different criteria are available from various directions, i.e. in form of norms

such as H∞ and H2 [39, 40, 46, 47, 70]. Specifically, H− index that describes the smallest

detectability of a system has received great attention from researchers since it was first intro-

duced by [15]. Several results related to H− index have been obtained in [15–17,22,49,53,67]

and references therein.

Due to the inevitability of modelling error, disturbance and noise in practice, robustness

issue should definitely be considered in fault detection filter design, as it was in controller

design [63, 97, 98]. Unfortunately, the involvements of both disturbance and model uncer-

tainty impose significant difficulty on the fault detection filter design, since it is very difficult

to distinguish the effects of disturbance and model uncertainties from faults. Specifically, if

a system takes disturbance as faults, there is a false alarm. On the other hand, if the fault

detection system takes the faults as disturbance, there is a missing alarm. Therefore, novel

techniques for dealing with both fault detection and robustness issue are imperative.

Specifically, for illustrating our problem, consider the following plant,

ẋ(t) = A(t)x(t) + B(t)u(t) + Bd(t)d(t) + Bf (t)f(t)

7



y(t) = C(t)x(t) + D(t)u(t) + Dd(t)d(t) + Df (t)f(t).

The fault detection filter F generally can be designed as shown in Figure 1.2, in which the

residual r(t) should not be sensitive to control u(t) (it can be guaranteed by factorization

technique), less sensitive to the disturbance d(t) and very sensitive to the fault f(t).

Figure 1.2: Fault Detection Filter Structure with Disturbance

The early work on this issue concentrated on how to completely decouple the disturbance

from the residual, and the decoupling condition has been obtained in terms of rank condition

and system zeros ( [9,21,22,64]). In [9], Chen et al. proposed a necessary and sufficient con-

dition for an unknown input observer that can decouple the disturbance from the residual.

In [64], Patton and Chen presented the robust fault detection filter based on the eigenstruc-

ture assignment in the discrete-time domain for decoupling the disturbance from the residual

signal. When the full decoupling cannot be realized, some research went to minimize the

disturbance sensitivity, but ignored the fault sensitivity. For instance, in [47], Khosrowjerdi

et al. designed a fault detection filter by minimizing disturbance for H2 and H∞ norm.

In [12] Chung and Speyer minimized the disturbance effects via differential dynamic game.

Later on, researchers realized that when the full decoupling cannot be realized completely,

fault sensitivity should also be considered in the problem in terms of fault detectability, be-
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sides disturbance sensitivity minimization problem. The reason is that the mere disturbance

minimization could minimize the fault sensitivity simultaneously, thus reducing the fault de-

tectability of the whole system. Now the problem becomes a multiple-objective optimization

(MOO) problem: the residual generator should produce a residual signal that is sensitive to

the fault and insensitive to the disturbance. In order to make this tradeoff in robust fault

detection, several different optimization criteria have been proposed in the literature. In [18],

Ding et al. presented a framework that maximizes the criterion: ‖ · ‖−/‖ · ‖∞, where the

solution is obtained by solving one Riccati equation. The parallel results for linear discrete

time periodic and sampled-data systems were given in [86]. Furthermore, the matrix in-

equality condition is given in [82] for the multiple optimization fault detection problem that

minimizes γ2 − β2 with the constraints that disturbance sensitivity is less than γ and fault

sensitivity is greater than β. In [49], Li et al. presented a multiple-objective optimization

(MOO) problem in which the fault detection filter minimizes the sensitivity of the residual

signal to disturbances while maintaining a minimum level of sensitivity to faults. However,

one assumption in [49] is that the fault sensitivity matrix has full column rank at all frequen-

cies, which is almost impossible in practice. In [74] Tao and Zhao dealt with the objective

that minimizes the ratio of disturbance sensitivity and fault sensitivity by employing the

system inverse, but it is not applicable when the inverse of the system fails to exist. Varga

in [76] formulated fault detection filter design as a model matching problem and solved it by

using an H2 or H∞-norm optimization approach, but this method is difficult to be extended

to solve H− index problem. In [24] a reference model was assigned for the residual signal

and thus the fault detection problem is transformed to minimizing the error between the

reference model and the generation system. In [6] a robust deconvolution scheme for fault

detection was discussed with a reference model for the residual.
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Recently, the novel frameworks called H2/H∞, H∞/H∞ and H−/H∞ problems were

proposed by Liu and Zhou in [55, 56] in which the residual generator maximizes the fault

sensitivity with a bound on the disturbance sensitivity. One important fact in this research

is that no assumption is made on the rank condition of the transfer matrix from fault to

output. Thus, it is applicable to more general systems.

1.4 Contribution of the Dissertation

The H2/H∞, H∞/H∞ and H−/H∞ frameworks for linear time-invariant systems have

been extensively discussed in [55, 56] under mild assumptions. The optimal filter in [55, 56]

is exactly an observer for both continuous time invariant case and discrete time-invariant

case. The gain of this filter is determined by solving a standard algebraic Riccati equation.

Time-varying systems describe a much more general class of systems than time invariant

system in practice. In addition, most real plants in the industries can be represented or well

approximated by time-varying systems [35]. However, the formulations, solutions and most

concepts in the current literature are given in the frequency domain and it is hard to extend

them to time domain, especially H− index. In fact, to my knowledge, there are few available

results on fault detection of linear time-varying systems in the literature. Authors in [59]

employed dynamic game to attenuate the effect of disturbance on the residual, but the fault

sensitivity was ignored. In [3], Brinsmead et al. discussed fault detection by minimizing the

response to noises whilst keeping the fault response consistence via a quadratic optimization

approach, but the model is too special. The first part of the dissertation will discuss fault

detection of linear time-varying systems in a novel way and analytic results are obtained for

linear continuous time-varying systems and linear discrete time-varying systems, respectively.

Real time algorithm is an obvious requirement of fault detection, while it has not re-
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ceived enough consideration from the current available methods which concentrate on the

frequency domain. In [85], Zhang and Ding discussed the model-free fault detection approach

from time domain data, but the method they used was based on frequency domain. In [99],

Zolghadri presented an algorithm of real-time failure detection based on Kalman filter, but

the disturbance is constrained to be white noise. In this dissertation, based on novel defi-

nitions in the time domain, the finite-horizon filter and infinite-horizon filter are given for

H2/H∞, H∞/H∞ and H−/H∞ frameworks, where the finite-horizon filter compensates for

this drawback in the form that it can be executed recursively, similar to a Kalman filter.

The effect of initial condition on the fault detection, cannot be taken care of by the

frequency domain methods [55,56], thus possibly causing certain performance deterioration

of residual generation. In this dissertation, the effect of initial condition is appropriately

considered in a new time-domain framework with a little modification of the previous frame-

work.

Lastly, we find that the common H2/H∞, H∞/H∞ and H−/H∞ frameworks are not

applicable to the general case in which Gd (the transfer matrix from disturbance to output)

is tall and of full column rank. By the introduction of H∞ norm, H2 norm and H− index

over a certain subspace, we reformulate this framework appropriately by considering both

optimization and decoupling. It is shown that the optimal filter still exists in such a way

that the filter not only decouples some faults from disturbances (the fault sensitivity for

those faults are arbitrarily sensitive), but also maximizes the fault sensitivity in its comple-

mental subspace. The filter is still an observer whose gain is determined by a generalized

Riccati equation (or Riccati system, alternatively). In addition, we give the completely

non-decoupling and decoupling conditions. Furthermore, disturbance rejection is also dis-
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cussed. Finally, a procedure for fault detection filter design using polynomial matrix method

is proposed.

1.5 Overview of the Dissertation

The purpose of this dissertation is to provide a systematic, self-contained and rigorous pre-

sentation for the fault detection problem of linear systems.

The dissertation is organized as follows: after the introduction part in Chapter 1, Chapter

2 provides some notations and preliminary lemmas that will be frequently used in the later

chapters, followed by some current available results on fault detection design for linear time-

invariant case. Chapter 3 discusses the fault detection design of continuous linear time-

varying systems. Similarly, Chapter 4 discusses the fault detection design of discrete linear

time-varying systems. In order to relax the constraint in the LTI case, Chapter 5 discusses

the general case of fault detection design of discrete linear time-invariant systems. It is

shown that the fault detection filter not only optimizes some faults in certain space, but

also decouples some faults in the complement space. A novel design procedure for deriving

the fault detection filter in transfer matrix form is proposed in Chapter 6. The future work

based on this work is discussed in Chapter 7, followed by the conclusion in Chapter 8.
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Chapter 2

Notations and Preliminary Results

In this chapter some important notations and preliminary results are given. After some

notations for matrices in Section 2.1, some notations for linear time-invariant systems are

given in Section 2.2. After some important notations and definitions for linear continuous

time-varying systems in Section 2.3, the corresponding notations and definitions for linear

discrete time-varying systems are discussed in Section 2.4. Section 2.5 gives a few important

lemmas that will be frequently used in the subsequent chapters. For the completeness of the

dissertation, several preliminary results on LTI case of fault detection design are given in

Section 2.6.

2.1 Notations for Matrices

The set of m by n real (complex) matrices is denoted as Rm×n (C m×n). For a matrix

A ∈ C m×n we use A+ to denote its pseudo inverse, and A′ for its complex conjugate transpose.

For a Hermitian matrix A = A′ ∈ C n×n, λ̄(A) represents the largest eigenvalue of A and λ(A)

represents the smallest eigenvalue of A. For any A ∈ C m×n, σ̄(A) =

√
λ̄(AA′) =

√
λ̄(A′A)

denotes the largest singular value of A and σ(A) =
√

λ(A′A) denotes the smallest singular

value of A if m ≥ n. For a matrix A ∈ C m×m, Tr{A} is the trace of A and A−1 is the inverse

of A if it exists. A Hermitian matrix A is said to be positive semi-definite, i.e., A ≥ 0. For
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A ≥ 0, A
1
2 is a matrix such that A

1
2 × A

1
2 = A. [A]i denotes the ith row of matrix A. The

n× n identity matrix is denoted as In and the m× n zero matrix is denoted as 0m×n, with

the subscripts dropped if they can be inferred from context.

2.2 Time-Invariant Case

2.2.1 Continuous Time-Invariant Case

We use RL m×n
∞ to denote the set of all m×n real rational proper transfer matrices with no

poles on the imaginary axis. The superscripts for dimensions will usually be dropped when

they are either not important or clear from context. RH∞ is a subset of RL∞ with all

stable transfer matrices. Similarly RH2 is the set of all real rational strictly proper stable

transfer matrices. A state space realization of a transfer matrix G(s) is denoted as

G(s) =


 A B

C D




such that G(s) = D + C(sI −A)−1B. Let G∼(s) := G(−s)T be the para-Hermitian complex

conjugate transpose of G and G−1(s) be the inverse of G if G(s) is square and invertible.

Now suppose G(s) is square and D is nonsingular, then we have from [98]

G−1 =


 A−BD−1C −BD−1

D−1C D−1


 .

For G ∈ RH2 we define the H2 norm of G as ( [98])

‖G‖2 =

√
1

2π

∫ ∞

−∞
Trace{G∼(jω)G(jω)}dω.

For G ∈ RH∞ we define the H∞ norm of G as ( [98])

‖G‖∞ = sup
ω∈R

σ̄(G(jω)).

Similarly, the H− index of G over all frequencies is defined as ( [68])

‖G‖− = inf
ω∈R

σ(G(jω)).
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It should be noted that H− index is sometimes called H− norm in the literature although

it does not satisfy the property of a norm. H− index can be thought as a measurement of a

system’s ability of enlarging an input signal at all frequencies.

2.2.2 Discrete Time-Invariant Case

We use RL m×n
2 to denote the set of all m×n proper real rational transfer function matrices

with no poles on the unit circle. RH m×n
∞ (= RH m×n

2 ) is the set of all m× n stable proper

real rational transfer function matrices. L m
2 is the set of all real square summable sequences

with m dimensions. For a sequence x = (x0, x1, · · · ) in L m
2 , ‖x‖2 :=

√∑∞
i=0

∑m
j=1 |xij|2 is

its 2-norm, where xij is the jth element of xi. The superscripts for dimensions will usually

be dropped when they are either unimportant or clear from context. Let G∼(z) := GT (1/z)

be the para-Hermitian complex conjugate transpose of G. A wide transfer matrix G is called

co-inner if it is stable and G(z)G∼(z) = I. A tall transfer matrix G is called inner if it is

stable and G∼(z)G(z) = I. A tall transfer matrix is called co-outer if it is both stable and

minimum phase. We write G(z) as G, when it is clear from context. For G ∈ RL m×n
∞ ,

ker{G} := {u : Gu = 0, u ∈ L n
2 } and image{G} := {y ∈ L m

2 : y = Gu, u ∈ L n
2 }.

A state space realization of transfer matrix G is denoted as

G = C(zI − A)−1B + D =:


 A B

C D


 .

We denote G−1 as the inverse of G if G is square and D is nonsingular. Specifically, from [98]

we have

G−1 =


 A−BD−1C −BD−1

D−1C D−1


 .

The following definitions for H2 norm, H∞ norm and H− index, respectively, are from [56].
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For G ∈ RH 2, its H2 norm is defined as

‖G‖2 :=

√
1

2π

∫ π

−π

Tr{G∼(ejθ)G(ejθ)}dθ.

For G ∈ RH ∞, its H∞ norm is defined as

‖G‖∞ := sup
θ∈[0,2π]

σ̄(G(ejθ)).

For G ∈ RH ∞, its H− index is defined as

‖G‖− := inf
θ∈[0,2π]

σ(G(ejθ)).

In this dissertation, we use ‖G‖ to represent any one of them if no confusion exists.

In order to describe system gain when input signal is in a subspace, we introduce the

following definitions.

Definition 1 For a system G ∈ RH m×p
∞ , its H− index over a subspace S is defined as

‖G‖S
− := inf

{‖Gu‖2

‖u‖2

: u 6= 0, u ∈ S ⊆ L p
2

}
.

Definition 2 Let a subspace S ⊆ L p
2 be the set of all outputs generated by an inner W (i.e.,

S = image{W}). For a system G ∈ RH m×p
2 with input u and output y, its H2 index over

S is defined as

‖G‖S
2 :=

√
1

2π

∫ π

−π

Tr{W∼(ejθ)G∼(ejθ)G(ejθ)W (ejθ)}dθ.

Definition 3 For a system G ∈ RH m×p
∞ , its H∞ index over a subspace S is defined as

‖G‖S
∞ := sup

{‖Gu‖2

‖u‖2

: u 6= 0, u ∈ S ⊆ L p
2

}
.

In this paper, we use ‖G‖S to represent any one of them if no confusion exists.
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Remark 1 Those definitions above are more general than the definition over Rp. It will be

frequently used in Chapter 5 to emphasize the fault sensitivity for the faults that cannot be

decoupled from residual.

Since H− index is not a norm, it is difficult to compute it in both frequency domain and

state space. The natural way to do it is to sample the system at frequencies among the real

axis and compute the singular value for the system at each frequency separately. Therefore,

the smallest one can be taken as the H− index of the system. However, this method is time

consuming and small sampling rate on the frequency will result in a significant error.

2.3 Continuous Time-Varying Case

For any T ∈ R+, let L2[0, T ] denote the usual Hilbert space of square integrable functions

endowed with usual inner product and norm (denoted < ·, · >2,[0,T ] and ‖ · ‖2,[0,T ], respec-

tively). Throughout this chapter, we compress the notation and write L2[0,∞) or L2[0, T ]

as L2 and ‖ · ‖2,[0,T ] as ‖ · ‖2 whenever there is no possibility of confusion.

We use G : S1 7→ S2 to denote a system from input space S1 to output space S2. If

we use w and y to represent input signal and output signal, respectively, the system can be

denoted as G : w 7→ y = Gw.

We also use I to denote identity system in which inputs are equivalent to outputs, and

Gm×p to denote the linear system with p inputs and m outputs.

The state space representation of a linear system Gm×p : w 7→ y = Gw can be written as

ẋ(t) = A(t)x(t) + B(t)w(t), (2.1)

y(t) = C(t)x(t) + D(t)w(t) (2.2)

where x(t) ∈ Rn is state vector, w(t) ∈ Rp is input vector and y(t) ∈ Rm is output
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vector. Here, A(t), B(t), C(t) and D(t) are piecewise continuous bounded functions of t

with compatible dimensions. If the initial state x(0) is known in advance, it is assumed

that the initial state x(0) = 0 without loss of generality. Specifically, if x(0) 6= 0 but

is known in advance, we can subtract its contribution from the initial condition, then it

becomes a problem with zero initial state by constructing a new output vector y(t) = y(t)−

C(t)Φ(t, 0)x(0), where Φ(·, ·) is the state transition matrix associated with A(t).

Definition 4 A system G is exponentially stable if there exist c1, c2 > 0 such that ‖ΦG(t, τ)‖ ≤

c1e
−c2(t−τ), ∀t ≥ τ , where τ is a positive number and ΦG is the state transition matrix of the

homogeneous part of state space realization.

Definition 5 For a system G, if there exists a system P with compatible dimension such

that

< PGw, y >=< w, y >

for all w, y, that is, PG = I, P is called a left inverse of system G. In this chapter, we use

G−1 to denote the left inverse of system G. The existence condition for left inverse is that

the D term of state-space realization of system G always has full column rank for all t ≥ 0.

Obviously, for the system G with state space realization given by (2.3) and (2.4) (here,

D(t) has full column rank for all t ≥ 0), a state space realization of a left inverse system

G−1 is:

ṗ(t) =
[
A(t)−B(t)D+(t)C(t)

]
p(t)−B(t)D+(t)y(t)

r(t) = D+(t)C(t)p(t) + D+(t)y(t).

We have (GH)−1 = H−1G−1 and (G−1)−1 = G, for any systems G and H with compatible

dimensions.
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Definition 6 We use G∼ to denote the adjoint of system G. Suppose G : S1 7→ S2 is a

linear system and S1 and S2 are Hilbert spaces such as L2[0, T ] or L2[0,∞). The adjoint

system is the linear system G∼ : S2 7→ S1 that has the property < Gw, y >=< w, G∼y > for

all w ∈ S1 and all y ∈ S2.

For system G with state space realization given by (2.3) and (2.4), one realization of the

adjoint system G∼ is:

ṗ(t) = −A′(t)p(t)− C ′(t)y(t)

u(t) = B′(t)p(t) + D′(t)y(t),

where p(T ) = 0 for finite-horizon case, and p(∞) = 0 for infinite-horizon case. Obviously,

(GH)∼ = H∼G∼, and (G∼)∼ = G for any linear systems G and H with compatible dimen-

sions.

Definition 7 [26] (C(t), A(t)) is observable if the pair (y(t), w(t)), t ∈ [0, T ], uniquely

determines x(0). This is equivalent to X(t) > 0, in which X(t) is the observability gramian

satisfying

−Ẋ(t) = X(t)A(t) + A′(t)X(t) + C ′(t)C(t), X(T ) = 0.

(A(t), B(t)) is controllable if and only if, for any x(0) ∈ Rn, there exists a w(t), t ∈ [0, T ],

such that x(T ) = xT . This is equivalent to Y (t) > 0, in which Y (t) is the controllability

gramian satisfying

Ẏ (t) = Y (t)A′(t) + A(t)Y (t) + B(t)B′(t), Y (0) = 0.

It can be shown that (A(t), B(t)) is controllable if and only if (B′(t), A′(t)) is observable.

Hence, the controllability of system G is equivalent to the observability of its adjoint

system G∼.
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Definition 8 [59] The system G given by (2.3) and (2.4) is said to be stabilizable (respec-

tively, detectable) if there exists a bounded matrix function K(t) (respectively, L(t)) such

that the system ẋ(t) = [A(t)−B(t)K(t)] x(t) (respectively, ẋ(t) = [A(t)− L(t)C(t)] x(t)) is

exponentially stable.

Definition 9 For a linear system G : w 7→ y, its H∞ norm is defined as

‖G‖∞ = sup
w∈L2

‖y‖2

‖w‖2

= sup
w∈L2

‖Gw‖2

‖w‖2

For finite-horizon case, H∞ norm of system G is defined as

‖G‖∞,[0,T ] = sup
w∈L2[0,T ]

‖Gw‖2,[0,T ]

‖w‖2,[0,T ]

Definition 10 [26] Suppose S1 and S2 are normed signal spaces such as L2[0, T ] or L2[0,∞),

then G is co-isometric if

‖G∼w‖S2 = ‖w‖S1

for all w ∈ S1. Here, ‖ · ‖S means the 2-norm of signal defined in the space S.

Consequently, G is a co-isometric system between two Hilbert spaces if and only if GG∼ =

I.

Definition 11 For a linear system G : w 7→ y, its H2 norm is the expected root-mean square

value of the output when the input is a realization of a unit variance white noise process.

That is, w(t) is a unit variance white noise process when t ∈ [0, T ], otherwise, w(t) = 0, and

y = Gw, the finite-horizon 2-norm of G is defined by

‖G‖2,[0,T ] =

√
E { 1

T

∫ T

0

y′(t)y(t)dt},

in which E is the expectation operator. When T →∞, we obtain the infinite-horizon 2-norm

of G

‖G‖2 = lim
T→∞

√
E { 1

T

∫ T

0

y′(t)y(t)dt}.
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Similar to H∞ norm, we can extend H− index into time domain, avoiding the involvement

of some concepts of frequency domain.

Definition 12 For a linear system G : w 7→ y, its H− index is defined as

‖G‖− = inf
w∈L2

‖Gw‖2

‖w‖2

.

For finite-horizon case,

‖G‖−,[0,T ] = inf
w∈L2[0,T ]

‖Gw‖2,[0,T ]

‖w‖2,[0,T ]

.

We also define coprime factorization for linear time-varying system, which is similar to

linear time-invariant system.

Definition 13 [69] Let G be a finite dimensional linear time-varying system. We say that

G admits an exponentially stable proper left-coprime factorization if there exist exponentially

stable finite dimensional linear time-varying systems M , N , X and Y such that G = M−1N

and XN + Y M = I. Here, (N,M) is called the coprime pair of system G.

Similar to spectral factorizations for the linear time invariant systems in frequency do-

main, we present the corresponding ones for time varying systems in time domain.

Definition 14 For a linear system Gm×p with m ≤ p, if there exists a linear system Wm×m

such that

WW∼ = GG∼

that is,

< W∼u,W∼y >=< G∼u,G∼y >

and W−1 exists for all u and y, we say W is one of spectral factorization of system G.

Here, W must be exponentially stable for infinite-horizon case. Since W−1 exists, W−1G is

a co-isometric system.
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2.4 Discrete Time-Varying Case

For any T ∈ R+, let l2[0, T ] denote the usual Hilbert space of square summable sequences

endowed with usual inner product and norm (denoted < ·, · >2,[0,T ] and ‖ · ‖2,[0,T ], respec-

tively). Throughout the dissertation, we compress the notation and write l2[0,∞) or l2[0, T ]

as l2 and ‖ · ‖2,[0,T ] as ‖ · ‖2 whenever there is no possibility of confusion.

We use G : S1 7→ S2 to denote a system from input space S1 to output space S2. If we

use w and y to represent input signal and output signal, respectively, the system is denoted

as G : w 7→ y = Gw.

We also use I to denote identity system that inputs are equivalent to outputs, and Gm×p

to denote the linear system with p inputs and m outputs.

A state space representation of linear discrete time system Gm×p : w 7→ y = Gw can be

written as

x(t+1) = A(t)x(t) + B(t)w(t) (2.3)

y(t) = C(t)x(t) + D(t)w(t) (2.4)

where x(t) ∈ Rn is state vector, w(t) ∈ Rp is input vector and y(t) ∈ Rm is output vector.

A(t), B(t), C(t) and D(t) are bounded matrices of t with compatible dimensions. Here,

we assume the initial state x(0) = 0. We argue that it is without losing of generality to

make this assumption, if the initial state x(0) is known in advance. Specifically, if x(0) 6= 0

but is known in advance, we can subtract its contribution from the output vector y(t),

then it becomes a problem with zero initial state by constructing a new output vector

y(t) = y(t) − C(t)Φ(t, 0)x(0), where Φ(·, ·) is the state transition matrix associated with

A(t).
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For system G, if there exists a system P with compatible dimensions such that

< PGw, y >=< w, y >

for all w, y, that is, PG = I, P is called a left inverse of system G. In this chapter, we use

G−1 to denote the left inverse of system G. The existence condition for the left inverse is

that the D term of state-space realization of the system G always has full column rank for

all t ≥ 0.

One state space realization of G−1 is

x(t+1) = [A(t)−B(t)D−1(t)C(t)]x(t)−B(t)D−1(t)y(t)

w(t) = D−1(t)C(t)x(t) + D−1(t)y(t).

We have (GH)−1 = H−1G−1 and (G−1)−1 = G, for any systems G and H with compatible

dimensions.

We use G∼ to denote the adjoint of the system G. Suppose G : S1 7→ S2 is a linear system

and S1 and S2 are Hilbert spaces such as l2[0, T ] or l2[0,∞). The adjoint system is the linear

system G∼ : S2 7→ S1 that has the property < Gw, y >=< w,G∼y > for all w ∈ S1 and all

y ∈ S2. Its state space realization is as follows

p(t−1) = A′(t)p(t) + C ′(t)y(t)

w(t) = B′(t)p(t) + D′(t)y(t), p(T ) = 0.

Note that p(∞) = 0 for the infinite-horizon case.

Obviously, (GH)∼ = H∼G∼, and (G∼)∼ = G for any linear systems G and H with

compatible dimensions.

Definition 15 Suppose S1 and S2 are normed signal spaces such as l2[0, T ] or l2[0,∞), then
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G is co-isometric if

‖G∼w‖S2 = ‖w‖S1

for all w ∈ S1. Here, ‖ · ‖S means the 2-norm of signal defined in the space S. Obviously,

GG∼ = I.

Definition 16 A system is said to be observable on [t0, tf ] if any initial state x(t0) is uniquely

determined by the corresponding zero-input output y(t) for t = t0, · · · , tf−1.

Definition 17 A system is said to be controllable (it is called reachable in some literature)

on [t0, tf ] if for any initial time t0 and any initial state x(t0), there exists a time l and a

corresponding input u(t) such that the system state goes to zero under this input.

It can be shown that a system is controllable if and only if its adjoint system is observable.

Definition 18 [35] A system is said to be exponentially stable on [t0,∞) if

|Φ(t, s)| ≤ cαt−s, ∀t0 ≤ s ≤ t < ∞

for some constants c > 0 and 0 < α < 1 independent of s and t. Φ(t, s) is the state transition

matrix of A(t).

Definition 19 The pair (A(t), B(t)) is said to be stabilizable on [t0,∞) if there exists a

bounded matrix K(t) such that A(t) + B(t)K(t) is exponentially stable on [t0,∞). The pair

(C(t), A(t)) is said to be detectable on [t0,∞) if there exists a bounded matrix L(t) such that

A(t) + L(t)C(t) is exponentially stable on [t0,∞).

Definition 20 Let G be a finite dimensional linear time-varying system. We say that G

admits an exponentially stable proper left-coprime factorization if there exist exponentially

stable finite dimensional linear time-varying systems M , N , X and Y such that G = M−1N

and XN + Y M = I. Here, (N,M) is called the coprime pair of system G.
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Definition 21 For a linear operator Gm×p with m ≤ p, if there exists a linear operator

Wm×m such that

WW∼ = GG∼.

that is,

< W∼u,W∼y >=< G∼u,G∼y >

and W−1 exists for all u and y, we say W is a spectral factorization of operator G. Here,

W must be exponentially stable for the infinite-horizon case.

2.5 Preliminary Lemmas

2.5.1 Two Important Matrix Inequalities

It is easy to show that we have the following results by the definition of matrix singular

value [32].

Lemma 1 Let A ∈ C m×n and B ∈ C n×p be two matrices with appropriate dimensions, then

σ(AB) ≤ σ̄(A)σ(B).

Lemma 2 ( [98]) For A ∈ C m×n and B ∈ C l×n with l ≥ n, the following inequality holds

σ





 A

B





 ≥ σ(B)

2.5.2 Linear Time-Invariant Case

Lemma 3 (Left Coprime Factorization) Let P (s) or P (z) be a proper real rational transfer

matrix. A left coprime factorization (LCF) of P is a factorization

P = M−1N

where N and M are left-coprime over RH∞. Let

P =


 A B

C D



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be a detectable state-space realization of P and L be a matrix with appropriate dimensions

such that A + LC is stable, then a left coprime factorization of P is given by

[
M N

]
=


 A + LC L B + LD

C I D


 .

Lemma 4 (Spectral Factorization: Continuous Time Case) Let G(s) be a proper real ratio-

nal transfer matrix and

G =


 A B

C D




be a detectable realization of G. Suppose D has full row rank and


 A− jωI B

C D


 has full

row rank for all ω ∈ R. Let R := DD′ > 0 and let Y ≥ 0 be the stabilizing solution to the

following algebraic Riccati equation

(A−BD′R−1C)X + X(A−BD′R−1C)′ −XC ′R−1CX + B(I −D′R−1D)B′ = 0

such that A−BD′R−1C−XC ′R−1C is stable. Then the following spectral factorization holds

WW∼ = GG∼

where W−1 ∈ RH∞ and

W =


 A (BD′ + XC ′)R−1/2

C R1/2


 .

Lemma 5 (Spectral Factorization: Discrete Time Case) Let G(z) be a proper real rational

transfer matrix and

G =


 A B

C D



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be a detectable realization of G. Suppose D has full row rank and


 A− ejθI B

C D


 has full

row rank for all θ ∈ [0, 2π]. Let P ≥ 0 be the stabilizing solution to the following algebraic

Riccati equation

APA′ − P − (APC ′ + BD′)(DD′ + CPC ′)−1(DB′ + CPA′) + BB′ = 0

such that A− (APC ′ + BD′)(DD′ + CPC ′)−1C is stable and let R := DD′ + CPC ′. Then

the following spectral factorization holds

WW∼ = GG∼

where W−1 ∈ RH∞ and

W =


 A (APC ′ + BD′)R−1/2

C R1/2


 .

We also give a co-inner-outer factorization factorization for tall transfer matrices, where

co-inner is square and co-outer is a tall matrix.

Lemma 6 (Co-Inner-Outer and Spectral Factorization: Discrete Time Case [28] ) Let a

transfer matrix H(z) ∈ RH p×m
∞ (p ≥ m) be

H(z) = C(zI − A)−1B + D =:


 A B

C D




where A ∈ Rn×n , B ∈ Rn×m, C ∈ Rp×n and D ∈ Rp×m.

Assume that (A,C) is detectable, D 6= 0 and

rank

{ 
 A− ejθI B

C D




}
= n + m ∀θ ∈ [0, 2π].

Then we have the following conclusions,
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1. Among all positive-semidefinite solutions (Y = Y ′ ≥ 0) of the following algebraic

Riccati equation (ARE)

Y = AY A′ − SY (DD′ + CY C ′)+S ′Y + BB′

= (A + LC)Y (A + LC)′ + (B + LD)(B + LD)′

where L = −(AY C ′ + BD′)(DD′ + CY C ′)+ and SY = AY C ′ + BD′, there exists Ymax

such that

Ymax ≥ Y ≥ 0

and (A+LmaxC) is a stability matrix with Lmax = −(AYmaxC
′+BD′)(DD′+CYmaxC

′)+.

2. Π = DD′ + CY C ′ has rank m.

3. If A is stable, there holds the co-inner-outer factorization H(z) = H0(z)Hi(z) with

Hi(z) = Ω+
m


 A + LmaxC B + LmaxD

C D




H0(z) =


 A −Lmax

C I


 Ωm.

where Ωm is of full column rank and ΩmΩ′
m = DD′ + CYmaxC

′.

The algorithm for obtaining Ymax is as follows

1. Let Y0 be the solution of the Lyapunov equation Y0 = AY0A
′ + BB′.

2. Do the following procedures iteratively until ‖YN−YN+1‖ is smaller than some tolerance

bound.

Lk = −(AYkC
′ + BD′)(DD′ + CYkC

′)+

Yk+1 = (A + LkC)Yk(A + LkC)′ + (B + LkD)(B + LkD)′
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3. Let Ymax = YN+1.

Alternatively, the Lmax and Ymax can be obtained by solving the following Riccati system [36]:

[
In×n Lmax

]

 AYmaxA

′ − Ymax + BB′ AYmaxC
′ + BD′

(AYmaxC
′ + BD′)′ DD′ + CYmaxC

′


 = 0.

2.5.3 Continuous Time-Varying Case

The following lemma aims to compute H∞ norm.

Lemma 7 [26] For the system G given by (2.3) and (2.4) with D = 0, ‖G‖∞,[0,T ] < β if

and only if the differential Riccati equation

−Ṗ (t) = P (t)A(t) + A′(t)P (t) + β−2P (t)B(t)B′(t)P (t) + C ′(t)C(t), P (T ) = 0

has a solution P (t) ≥ 0 on [0, T ].

For infinite-horizon case, ‖G‖∞ < β if and only if there exists a bounded symmetric

matrix function P (t) ≥ 0 for t ∈ [0,∞) that is absolutely continuous and differentiable and

satisfies the differential Riccati equation

−Ṗ (t) = P (t)A(t) + A′(t)P (t) + β−2P (t)B(t)B′(t)P (t) + C ′(t)C(t), P (∞) = 0

and A(t) + β−2B(t)B′(t)P (t) is such that the following linear time-varying system

ṗ(t) =
[
A(t) + β−2B(t)B′(t)P (t)

]
p(t)

is exponentially stable.

Remark 2 If the coefficients of linear time-varying system are restricted to constants, that

is, system is time invariant, the definitions above are reduced to their corresponding ones in

frequency domain.
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Lemma 8 Let A,B : S1 7→ S2 are two systems with appropriate dimensions, where S1, S2 =

L2[0,∞), then

‖AB‖∞ ≤ ‖A‖∞‖B‖∞ (2.5)

‖AB‖2 ≤ ‖A‖∞‖B‖2 (2.6)

‖AB‖− ≤ ‖A‖∞‖B‖− (2.7)

If S1, S2 = L2[0, T ], then

‖AB‖∞,[0,T ] ≤ ‖A‖∞,[0,T ]‖B‖∞,[0,T ] (2.8)

‖AB‖2,[0,T ] ≤ ‖A‖∞,[0,T ]‖B‖2,[0,T ] (2.9)

‖AB‖−,[0,T ] ≤ ‖A‖∞,[0,T ]‖B‖−,[0,T ] (2.10)

Proof Inequality (2.5) and inequality (2.8) are obvious since the submultiplicative property

of norm.

For inequality (2.6), let y = Bw, we have

‖AB‖2
2 = lim

T→∞
E

{
1

T

∫ T

0

z′zdt

}

= lim
T→∞

E

{
1

T

∫ T

0

(Ay)′(Ay)dt

}

= lim
T→∞

E

{
1

T

∫ T

0

y′A′Aydt

}

≤ ‖A‖2
∞ lim

T→∞
E

{
1

T

∫ T

0

y′ydt

}

= ‖A‖2
∞ lim

T→∞
E

{
1

T

∫ T

0

(Bw)′(Bw)dt

}

= ‖A‖2
∞‖B‖2

2.

For inequality (2.7), let y = Bw, we have

‖AB‖− = inf
w∈L2

‖ABw‖2

‖w‖2
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= inf
w∈L2

{‖ABw‖2

‖Bw‖2

· ‖Bw‖2

‖w‖2

}

≤ sup
y∈L2

‖Ay‖2

‖y‖2

· inf
w∈L2

‖Bw‖2
2

‖w‖2

= ‖A‖∞‖B‖−.

The proofs for inequalities (2.9) and (2.10) are similar to those of inequalities (2.6) and

(2.7), respectively. ¤

Lemma 9 Let G be a linear time-varying system with a realization given by (2.3) and (2.4),

and assume that (C(t), A(t)) is detectable (for infinite-horizon t ∈ [0,∞)). If L(t) is a

matrix function with appropriate dimensions such that system ẋ(t) = [A(t) + L(t)C(t)] x(t) is

exponentially stable, then G admits a left coprime factorization pair (N,M) with a realization

for system N

ẋ(t) = [A(t) + L(t)C(t)] x(t) + [B(t) + L(t)D(t)] w(t)

y(t) = C(t)x(t) + D(t)w(t)

and a realization for system M

ẋ(t) = [A(t) + L(t)C(t)] x(t) + L(t)w(t)

y(t) = C(t)x(t) + w(t)

Proof The result can be easily verified by the multiplication of systems. ¤

Remark 3 For finite-horizon case, since M and N are not necessarily exponentially stable,

L(t) can be any bounded and piecewise continuous matrix function with appropriate dimen-

sion.
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Lemma 10 [69] Assume that (A(t), B(t)) is stabilizable and (C(t), A(t)) is detectable, then

there exists a unique, bounded solution Q(t) ≥ 0 to the filter Riccati equation

Q̇(t) = A(t)Q(t) + Q(t)A′(t)−Q(t)C ′(t)C(t)Q(t) + B(t)B′(t), Q(0) ≥ 0.

furthermore, the system ẋ(t) = [A(t)−Q(t)C ′(t)C(t)] x(t) is exponentially stable.

2.5.4 Discrete Time-Varying Case

Lemma 11 Let A : y 7→ z and B : w 7→ y be two systems with appropriate dimensions,

where x, y and z are signals in l2[0,∞), then

‖AB‖∞ ≤ ‖A‖∞‖B‖∞ (2.11)

‖AB‖2 ≤ ‖A‖∞‖B‖2 (2.12)

‖AB‖− ≤ ‖A‖∞‖B‖− (2.13)

If S1, S2 = l2[0, T ],then

‖AB‖∞,[0,T ] ≤ ‖A‖∞,[0,T ]‖B‖∞,[0,T ] (2.14)

‖AB‖2,[0,T ] ≤ ‖A‖∞,[0,T ]‖B‖2,[0,T ] (2.15)

‖AB‖−,[0,T ] ≤ ‖A‖∞,[0,T ]‖B‖−,[0,T ] (2.16)

Proof Inequality (2.11) and inequality (2.14) are obvious since the submultiplicative prop-

erty of norm.

For inequality (2.12), we have

‖AB‖2
2 = lim

T→∞
E

{
1

T

T∑
t=0

z′z

}

= lim
T→∞

E

{
1

T

T∑
t=0

(Ay)′(Ay)

}
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= lim
T→∞

E

{
1

T

T∑
t=0

y′A′Ay

}

≤ ‖A‖2
∞ lim

T→∞
E

{
1

T

T∑
t=0

y′y

}

= ‖A‖2
∞ lim

T→∞
E

{
1

T

T∑
t=0

(Bw)′(Bw)

}

= ‖A‖2
∞‖B‖2

2.

For inequality (2.13), we have

‖AB‖− = inf
w∈l2

‖ABw‖2

‖w‖2

= inf
w∈l2

{‖ABw‖2

‖Bw‖2

· ‖Bw‖2

‖w‖2

}

≤ sup
y∈l2

‖Ay‖2

‖y‖2

· inf
w∈l2

‖Bw‖2

‖w‖2

= ‖A‖∞‖B‖−.

The proofs for inequalities (2.15) and (2.16) are similar to those of inequalities (2.12) and

(2.13), respectively. ¤

Lemma 12 [35] Suppose that (C(t), A(t)) is detectable. The system G given by (2.3) and

(2.4) is exponentially stable if and only if there exists a bounded nonnegative solution to

A′(t)X(t+1)A(t) + C ′(t)C(t) = X(t).

Suppose that (A(t), B(t)) is stabilizable on [t0,∞). The system G is exponentially stable

on [t0,∞) if and only if there exists a bounded nonnegative solution to

A(t)Y (t)A′(t) + B(t)B′(t) = Y (t+1), Y (t0) = 0.

Lemma 13 Suppose G is a system given by equations (2.3) and (2.4) with x(0) = 0. If
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there exists a bounded and symmetric matrix X(t) satisfying

A(t)X(t)A′(t) + B(t)B′(t) = X(t+1) (2.17)

B(t)D′(t) + A(t)X(t)C ′(t) = 0 (2.18)

D(t)D′(t) + C(t)X(t)C ′(t) = I (2.19)

with X(0) = 0 for all t ∈ [0, T ], then G is co-isometric on l2[0, T ]. If the system G is

observable, these conditions are also necessary.

The result is also true for infinite-horizon case ( T →∞).

Proof Controllability gramian for system G is X(t) such that

A(t)X(t)A′(t) + B(t)B′(t) = X(t+1)

with the initial condition X(0) = 0.

Its adjoint system is

p(t−1) = A′(t)p(t) + C ′(t)y(t)

w(t) = B′(t)p(t) + D′(t)y(t), p(T ) = 0.

When X(0) = 0,

‖w(t)‖2
2,[0,T ] =

T∑
t=0

w′(t)w(t)

=
T∑

t=0

{B′(t)p(t) + D′(t)y(t)}′{B′(t)p(t) + D′(t)y(t)}

=
T∑

t=0

{p′(t)B(t)B′(t)p(t) + 2p′(t)B(t)D′(t)y(t) + y′(t)D(t)D′(t)y(t)}

=
T∑

t=0

{p′(t)B(t)B′(t)p(t) + 2p′(t)B(t)D′(t)y(t) + y′(t)D(t)D′(t)y(t)}

−
T∑

t=0

{p′(t)X(t+1)p(t)− p′(t−1)X(t)p(t−1)}
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=
T∑

t=0

{p′(t)B(t)B′(t)p(t) + 2p′(t)B(t)D′(t)y(t) + y′(t)D(t)D′(t)y(t)}

−
T∑

t=0

{p′(t)X(t+1)p(t)− [A′(t)p(t) + C ′(t)y(t)]′X(t)[A′(t)p(t) + C ′(t)y(t)]}

=
T∑

t=0

{p′(t)[B(t)B′(t) + A(t)X(t)A′(t)−X(t+1)]p(t)

+2p′(t)[B(t)D′(t) + A(t)X(t)C ′(t)]y(t) + y′(t)[D(t)D′(t) + C(t)X(t)C ′(t)]y(t)}

When B(t)B′(t) + A(t)X(t)A(t) − X(t+1) = 0, B(t)D′(t) + A(t)X(t)C ′(t) = 0 and

D(t)D′(t) + C(t)X(t)C ′(t) = I, we have

‖y(t)‖2
2,[0,T ] = ‖w(t)‖2

2,[0,T ].

Conversely, let X(t) be the controllability gramian, we have

‖w(t)‖2
2,[0,T ] − ‖y(t)‖2

2,[0,T ]

= ‖G∼y(t)‖2
2,[0,T ] − ‖y(t)‖2

2,[0,T ]

=
T∑

t=0

{p′(t)[B(t)B′(t) + A(t)X(t)A′(t)−X(t+1)]p(t)

+2p′(t)[B(t)D′(t) + A(t)X(t)C ′(t)]y(t) + y′(t)[D(t)D′(t) + C(t)X(t)C ′(t)− I]y(t)}

= 0.

When the system is observable, the adjoint system is controllable. Consider yt(t) =

PT y(t), where PT is the truncation operator. Since controllability ensures that p(t) spans

Rn as y ranges over l2[0, T ], we have B(t)D′(t) + A(t)X(t)C ′(t) = 0 and D(t)D′(t) +

C(t)X(t)C ′(t)− I = 0.

The proof for the infinite-horizon case is similar. ¤

Lemma 14 Let G be a linear time varying system with a realization given by (2.3) and (2.4),

and assume that (C(t), A(t)) is detectable (for the infinite-horizon case t ∈ [0,∞)). If L(t)
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is a matrix function with appropriate dimension such that (A(t)+L(t)C(t)) is exponentially

stable, then G admits a left coprime factorization pair (N,M) with the realization for system

M

x(t+1) = [A(t) + L(t)C(t)]x(t) + L(t)u(t)

y(t) = C(t)x(t) + u(t)

and system N

x(t+1) = [A(t) + L(t)C(t)]x(t) + [B(t) + L(t)D(t)]u(t)

y(t) = C(t)x(t) + D(t)u(t).

Lemma 15 For the system G given by equations (2.3) and (2.4), one of its spectral factor-

ization is a system W with the following realization:

x(t+1) = A(t)x(t)− L0(t)R
1/2(t)u(t)

y(t) = C(t)x(t) + R1/2(t)u(t)

where R(t) = D(t)D′(t) + C(t)P (t)C ′(t), L0(t) = −[A(t)P (t)C ′(t) + B(t)D′(t)]R−1(t) and

P (t) is the solution of the following difference Riccati equation

A(t)P (t)A′(t)− L0(t)R(t)L′0(t) + B(t)B′(t) = P (t+1)

with P (0) = 0.

Proof Since one state space realization of the system W−1 is

x(t+1) = [A(t) + L0(t)C(t)]x(t) + L0(t)u(t)

y(t) = R−1/2(t)C(t)x(t) + R−1/2(t)u(t),
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the system W−1G can be realized as:

x(t+1) = [A(t) + L0(t)C(t)]x(t) + [B(t) + L0(t)D(t)]u(t)

y(t) = R−1/2(t)C(t)x(t) + R−1/2(t)D(t)u(t).

To show that W−1G to be co-isometric, it is necessary to check three conditions:

[A(t) + L0(t)C(t)]P (t)[A(t) + L0(t)C(t)]′ + [B(t) + L0(t)D(t)][B(t) + L0(t)D(t)]′ = P (t+1)

[B(t) + L0(t)D(t)] (R−1/2(t)D(t))′ + [A(t) + L0(t)C(t)]P (t)[R−1/2(t)C(t)]′ = 0

[
R−1/2(t)D(t)

]
[R−1/2(t)D(t)]′ + [R−1/2(t)(t)C(t)]P (t)[R−1/2C(t)]′ = I.

The first equation can be simplified as the difference Riccati equation (2.20) with initial

condition P (0) = 0. The second one is satisfied naturally and the third one turns out to be

R(t) = C(t)P (t)C ′(t) + D(t)D′(t). ¤

In order to prove the exponential stability in the next section, we give a lemma about

difference Riccati equation with a small change of [35].

Lemma 16 Suppose that D(t)D′(t) > 0, (A(t), B(t)) is stabilizable and (C(t), A(t)) is de-

tectable. There exists a nonnegative bounded solution to the following difference Riccati

equation

A(t)Y (t)A′(t) + B(t)B′(t)− [A(t)Y (t)C ′(t)]R−1(t)[A(t)Y (t)C ′(t)]′ = Y (t+1)

with Y (0) = 0 such that A(t)−A(t)Y (t)C ′(t)R−1(t)C(t) is exponentially stable, where R(t) =

D(t)D′(t) + C(t)Y (t)C ′(t).

Proof The difference Riccati equation can be returned to the Lemma in [35] by defining

C̃(t) := (D(t)D′(t))1/2C(t).
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Since D(t)D′(t) is of full rank, that ((D(t)D′(t))1/2C(t), A(t)) is detectable is equivalent

to that (C(t), A(t)) is detectable. Furthermore, we have that A(t)−A(t)Y (t)C ′(t)R−1(t)C(t)

is exponentially stable. ¤

2.6 Fault Detection of Linear Time-Invariant Systems

For the completeness of the dissertation, we summarize the fault detection result of linear

time-invariant systems [55, 56], which can be thought as a special case of the results in

Chapter 5.

2.6.1 Continuous Time-Invariant Case

Consider a linear continuous time invariant system (LTI) with disturbance and possible faults

as:

ẋ(t) = Ax(t) + Bu(t) + Bdd(t) + Bff(t) (2.20)

y(t) = Cx(t) + Du(t) + Ddd(t) + Dff(t) (2.21)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rny is the output measurement, d(t) ∈ Rnd

represents the unknown/uncertain disturbance and measurement noise, and f(t) ∈ Rnf

denotes the process, sensor or actuator fault vector. f(t) and d(t) can be modeled as different

types of signals, depending on specific situations under consideration.

Assumption 1 (C, A) is detectable.

This is a standard assumption for all fault detection problems.

Assumption 2 Dd has full row rank.
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Assumption 3


 A− jωI Bd

C Dd


 has full row rank for all ω ∈ R. Or, equivalently, the

transfer function matrix Gd :=


 A Bd

C Dd


 has no transmission zero on the imaginary axis.

Assumption 4 ny ≥ nf .

By taking Laplace transform of equations (2.20) and (2.21) we have the system in-

put/output equation

y = Guu + Gdd + Gff (2.22)

where Gu, Gd, and Gf are ny × nu, ny × nd and ny × nf transfer matrices respectively and

their state-space realizations are

[
Gu Gd Gf

]
=


 A B Bd Bf

C D Dd Df


 . (2.23)

Since the state-space realization of Gu, Gd and Gf share the same A and C matrices, applying

Lemma 3 we can find a LCF for the system (2.23)

[
Gu Gd Gf

]
= M−1

[
Nu Nd Nf

]
(2.24)

where

[
M Nu Nd Nf

]
=


 A + LC L B + LD Bd + LDd Bf + LDf

C I D Dd Df


 (2.25)

and L is a matrix such that A + LC is stable.

It has been shown in [23] that, without loss of generality, the fault detection filter can

take the following general form

r = Q(My −Nuu) = Q
[

M −Nu

]

 y

u


 (2.26)

where r is the residual vector for detection, Q ∈ RH
ny×ny∞ is a free stable transfer matrix

to be designed. The filter structure is shown in Figure 2.1.
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Figure 2.1: Fault Detection Filter Structure–LTI Case

Problem 1 (H−/H∞ Problem) Let an uncertain system be described by equations (2.20)-

(2.23) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ such that ‖Grd‖∞ ≤ γ and ‖Grf‖−is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖− : ‖QNd‖∞ ≤ γ}

Problem 2 (H2/H∞ Problem) Let an uncertain system be described by equations (2.20)-

(2.23) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ such that ‖Grd‖∞ ≤ γ and ‖Grf‖2 is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖2 : ‖QNd‖∞ ≤ γ}

Problem 3 (H∞/H∞ Problem) Let an uncertain system be described by equations (2.20)-

(2.23) and let γ > 0 be a given disturbance rejection level. Find a stable transfer matrix

Q ∈ RH
ny×ny∞ such that ‖Grd‖∞ ≤ γ and ‖Grf‖∞ is maximized, i.e.

max
Q∈RH

ny×ny
∞

{‖QNf‖∞ : ‖QNd‖∞ ≤ γ}
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Theorem 1 Suppose Assumptions 1-3 are satisfied. Let Rd := DdD
′
d > 0 and let Y ≥ 0 be

the stabilizing solution to the Riccati equation

(A−BdD
′
dR

−1
d C)Y + Y (A−BdD

′
dR

−1
d C)′ − Y C ′R−1

d CY + Bd(I −D′
dR

−1
d Dd)B

′
d = 0

such that A−BdD
′
dR

−1
d C − Y C ′R−1

d C is stable. Define

L0 = −(BdD
′
d + Y C ′)R−1

d .

Then an optimal fault detection filter for the three problems above has the following form

r = Qopt

[
M −Nu

]

 y

u




where

Qopt

[
M −Nu

]
= γ


 A + L0C −L0 B + L0D

−R
−1/2
d C R

−1/2
d −R

−1/2
d D




In other words, the optimal fault detection filter is the following observer:

˙̂x(t) = (A + L0C)x̂(t)− L0y(t) + (B + L0D)u(t)

r(t) = γR
−1/2
d (y(t)− Cx̂(t)−Du(t)) .

2.6.2 Discrete Time-Invariant Case

Consider a discrete time invariant system with disturbance and possible faults as:

x(t + 1) = Ax(t) + Bu(t) + Bdd(t) + Bff(t) (2.27)

y(t) = Cx(t) + Du(t) + Ddd(t) + Dff(t) (2.28)

where x(t) ∈ Rn is the state vector, y(t) ∈ Rny is the output measurement, d(t) ∈ Rnd

represents the unknown/uncertain disturbance and measurement noise, and f(t) ∈ Rnf

denotes the process, sensor or actuator fault vector. f(t) and d(t) can be modelled as

different type of signals, depending on specific situations under consideration.
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Assumption 5 (C, A) is detectable.

Assumption 6 Dd has full row rank.

Assumption 7


 A− ejθI Bd

C Dd


 has full row rank for all θ ∈ [0, 2π]. Or, equivalently,

the transfer function matrix Gd :=


 A Bd

C Dd


 has no transmission zero on the unit circle.

Similarly, we can formulate the three optimization problems as before.

Theorem 2 Suppose Assumptions 5-7 are satisfied. Let P ≥ 0 be the stabilizing solution to

the Riccati equation

APA′ − P − (APC ′ + BdD
′
d)(DdD

′
d + CPC ′)−1(DdB

′
d + CPA′) + BdB

′
d = 0 (2.29)

such that A − (APC ′ + BdD
′
d)(DdD

′
d + CPC ′)−1C is stable and let Rd = DdD

′
d + CPC ′.

Define

L0 = −(APC ′ + BdD
′
d)R

−1
d .

Then an optimal fault detection filter for the three problems has the following state space

representation

r = Qopt

[
M −Nu

]

 y

u




where

Qopt

[
M −Nu

]
= γ


 A + L0C −L0 B + L0D

−R
−1/2
d C R

−1/2
d −R

−1/2
d D




In other words, the optimal fault detection filter is the following observer:

x̂(k + 1) = (A + L0C)x̂(k)− L0y(t) + (B + L0D)u(k) (2.30)

r(k) = γR
−1/2
d (y(k)− Cx̂(k)−Du(k)) . (2.31)

42



Chapter 3

Fault Detection Filter Design for
Continuous Time-Varying Systems∗

This chapter is dedicated to fault detection for linear continuous time-varying systems

(LCTVS). Problem formulation is given in Section 3.1. Our fault detection design is pre-

sented in Section 3.2. Section 3.3 extends the result to the plant with non-zero initial states.

One example is shown in Section 3.4.

3.1 Problem Formulation

Consider a linear time-varying system G with disturbance and possible faults of the following

state-space realization

ẋ(t) = A(t)x(t) + B(t)u(t) + Bd(t)d(t) + Bf (t)f(t) (3.1)

y(t) = C(t)x(t) + D(t)u(t) + Dd(t)d(t) + Df (t)f(t) (3.2)

where t ∈ [0, T ] (t ∈ [0,∞) for the infinite-horizon case). T is a positive scalar. x(t) ∈

Rn is the state vector, y(t) ∈ Rny is the output measurement, d(t) ∈ Rnd represents

the unknown/uncertain disturbance and measurement noise, and f(t) ∈ Rnf denotes the

process, sensor or actuator fault vector. A(t), B(t), C(t), D(t), Bd(t), Dd(t), Bf (t) and

Df (t) are piecewise continuous bounded functions of t with compatible dimensions. f(t)

∗Reprinted by permission of Elsevier Science
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and d(t) can be modeled as different type of signals, depending on specific situations under

consideration. Different assumptions on d(t) and f(t) will lead to different fault detection

problem formulations and the solutions for all these problems will be discussed in this chapter.

For all coefficient matrices in equations (3.1) and (3.2) the following three assumptions

are made.

Assumption 8 (C(t), A(t)) is detectable;

Assumption 9 Dd(t) has full row rank for all t ≥ 0, that is, Rd(t) = Dd(t)D
′
d(t) > 0;

Define

AR(t) := A(t)−Bd(t)D
′
d(t)R

−1
d (t)C(t)

BR(t) := Bd(t)
[
I −D′

d(t)R
−1
d (t)Dd(t)

]
.

Assumption 10 (AR(t), BR(t)) is stabilizable.

Remark 4 Assumption 1 is a standard assumption for all fault detection problems for

infinite-horizon case. This assumption guarantees the existence of a L(t) such that

ẋ(t) = [A(t) + L(t)C(t)] x(t)

is exponentially stable.

Remark 5 Assumption 2 means that ny ≤ nd and every measurement of the output signals

is either affected by some disturbance or corrupted with some measurement noise. We argue

that this assumption can be made without loss of any generality since it is impossible to take

perfect measurement in any practical system and furthermore it is reasonable to assume that

the measurement noise is independent of each other. So it is reasonable to assume that the
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measurement noise is independent of each other and that Dd(t) has full row rank for all t ≥ 0

(see [55] for detailed description).

In the case of some simplified model where Dd(t) does not have full row rank, we can

simply add some columns to make it full row rank. For example, suppose Dd(t) is not full

row rank, then let

d̃ =


 d

dε


 , B̃d =

[
Bd 0n×ny

]
, D̃d =

[
Dd εIny

]

for a small ε > 0. Then D̃d(t) has full row rank for all t ≥ 0. Because ε can be made as small

as possible, we argue that the performance degradation caused by the fictitious disturbances

should not be large.

This assumption might be restrictive in some applications when the external disturbances

and measurement noise are different class of signals so that it is impossible to combine

them together in our framework. Actually, when Dd is not wide or square, in other words,

the number of outputs is greater than the number of disturbances, the decoupling of some

disturbances from residual without sacrificing the fault detection ability is possible. Therefore,

our optimization framework is still useful when it is possible to remove some disturbances

that can be decoupled from the residual( [18]). This will be discussed in detail in Chapter 5.

Remark 6 Assumption 3 is an additional assumption for guaranteeing the existence of an

unique and exponentially stable filter for infinite-horizon case. In particular, when the plant

and measurement noise are independent (i.e. Bd(t)D
′
d(t) = 0), the Assumption 3 can be

simplified as (A(t), Bd(t)) is stabilizable. This assumption can be significantly relaxed in the

linear time-invariant case (see [55]).
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The system realization given by (3.1) and (3.2) can be written as:

y =
[

Gu Gd Gf

]



u

d

f




where Gu, Gd, Gf are ny × nu, ny × nd and ny × nf systems with the following state space

realizations:

Figure 3.1: Fault Detection Filter Structure–LCTV Case

System Gu:

ẋ(t) = A(t)x(t) + B(t)u(t)

yu(t) = C(t)x(t) + D(t)u(t)

System Gd:

ẋ(t) = A(t)x(t) + Bd(t)d(t)

yd(t) = C(t)x(t) + Dd(t)d(t)

System Gf :

ẋ(t) = A(t)x(t) + Bf (t)f(t)

yf (t) = C(t)x(t) + Df (t)f(t)
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The filter F to be designed next is an linear bounded system from u(t) and y(t) to residual

signal r(t). Figure 3.1 shows the general form of fault detection system.

Since (C(t), A(t)) is detectable, according to Lemma 9, system G admits the following

left coprime factorization

G = M−1N = M−1[Nu Nd Nf ]. (3.3)

To decouple the residual signal from input signal completely, the fault detection filter

can take the following form:

r = Q(My −Nuu) = Q
[

M −Nu

]

 y

u


 (3.4)

which is shown in Figure 3.2, where Nu and M are linear systems with appropriate dimensions

given in the coprime factorization (3.3) and Q is a linear bounded system to be designed.

Specifically, the systems have the following state-space realizations, respectively.

System Nu:

ẋ1(t) = [A(t) + L(t)C(t)] x1(t) + [B(t) + L(t)D(t)] u(t)

y1(t) = C(t)x1(t) + D(t)u(t)

System M :

ẋ2(t) = [A(t) + L(t)C(t)] x2(t) + L(t)y(t)

y2(t) = C(t)x2(t) + y(t)

System Nd:

ẋ3(t) = [A(t) + L(t)C(t)] x3(t) + [Bd(t) + L(t)Dd(t)] d(t)

y3(t) = C(t)x3(t) + Dd(t)d(t)
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System Nf :

ẋ4(t) = [A(t) + L(t)C(t)] x4(t) + [Bf (t) + L(t)Df (t)] f(t)

y4(t) = C(t)x4(t) + Df (t)f(t)

Figure 3.2: Filter Structure Decoupling Control Input–LCTV Case

By simple computation it is verified that signal e(t) = y2(t)− y1(t) is decoupled from the

input signal u(t). In addition, the system from d(t) to r(t) is QNd, and system from f(t) to

r(t) is QNf . Specifically, we have

r = QNdd + QNff.

In general, a good fault detection filter must make a tradeoff between two conflicting per-

formance objectives: robustness to disturbance rejection and sensitivity to faults. Therefore,

the next step is how to design a system Q(t) such that the residual signal r(t) is sensitive to

fault f(t), but insensitive to the disturbance d(t).

To achieve good robustness to disturbance, the influence of disturbance must be mini-

mized at the output of the residual signals. On the other hand, the residual signal should be
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as sensitive as possible to the faults. Therefore, we need to choose certain performance cri-

teria for measuring these two aspects so that the fault detection filter design has satisfactory

fault detection sensitivity and guaranteed disturbance rejection effect.

Assume that Grf is the system from fault signal to residual, and Grd is the system from

disturbance signal to residual. ‖Grf‖− is a reasonable performance criterion for measuring

fault detection sensitivity if f(t) is modeled as unknown energy or power bounded signals. If

d(t) is modeled as unknown energy or power bounded signals, then H∞ is a widely accepted

worst case measure and ‖Grd‖∞ is a good indicator of disturbance rejection performance.

On the other hand, if d(t) and/or f(t) are white noise, the H2 norms of Grd and/or Grf

seem to be more suitable criteria (see [55] for details).

Based on the definitions of norms in Chapter 2, we can formulate the following three

fault detection filter design problems.

• (H−/H∞ problem) Let an uncertain system be described by equations (3.1) and (3.2)

and let β > 0 be a given disturbance rejection level. Find a ny × ny linear bounded

system Q such that ‖QNd‖∞ ≤ β and ‖QNf‖− is maximized, i.e.

max
Q
{‖QNf‖− : ‖QNd‖∞ ≤ β},

where Q must be exponentially stable for infinite-horizon case.

• (H2/H∞ problem) Let an uncertain system be described by equations (3.1) and (3.2)

and let β > 0 be a given disturbance rejection level. Find a ny × ny linear bounded

system Q such that ‖QNd‖∞ ≤ β and ‖QNf‖2 is maximized, i.e.

max
Q
{‖QNf‖2 : ‖QNd‖∞ ≤ β},

where Q must be exponentially stable for infinite-horizon case.
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• (H∞/H∞ problem) Let an uncertain system be described by equations (3.1) and (3.2)

and let β > 0 be a given disturbance rejection level. Find a ny × ny linear bounded

system Q such that ‖QNd‖∞ ≤ β and ‖QNf‖∞ is maximized, i.e.

max
Q
{‖QNf‖∞ : ‖QNd‖∞ ≤ β},

where Q must be exponentially stable for infinite-horizon case.

Remark 7 We should point out that the H∞/H∞ problem itself is not interesting. This is

because making ‖QNf‖∞ large does not imply good sensitivity to the faults since the faults

may not occur in the direction where ‖QNf‖∞ is large. We include this problem formulation

here because it has been widely considered in the literature and it also turns out that our

optimal solution to other problems is also an optimal solution to this problem. However,

other optimal solutions for this particular criterion may not be a good candidate of fault

detection filter, since the optimal solution to this problem is generally not unique.

Before the main result is given, two preliminary results are needed.

Lemma 17 Suppose G is a state space system with realization given by equations (2.3) and

(2.4), with x(0) = 0. If there exists a bounded and symmetric matrix X(t) satisfying

X(t)A′(t) + A(t)X(t) + B(t)B′(t) = Ẋ(t)

D(t)B′(t) + C(t)X(t) = 0

D(t)D′(t) = I

with X(0) = 0 for all t ∈ [0, T ], then G is co-isometric on L2[0, T ]. If the system G is

observable, these conditions are also necessary.

The result is also true for infinite-horizon case (T →∞).
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Proof The adjoint system G∼ is:

ṗ(t) = −A′(t)p(t)− C ′(t)y(t)

u(t) = B′(t)p(t) + D′(t)y(t)

with p(T ) = 0. When X(0) = 0,

‖u‖2
2,[0,T ]

= ‖G∼y‖2
2,[0,T ]

=

∫ T

0

(B′p + D′y)′(B′p + D′y)− d

dt
(p′Xp)dt

=

∫ T

0

y′DD′y + 2y′(DB′ + CX)p + p′(−Ẋ + XA′ + AX + BB′)pdt

= ‖y‖2
2,[0,T ]

when DB′ + CX = 0 and DD′ = I and −Ẋ + XA′ + AX + BB′ = 0.

Conversely, let X(t) be the controllability gramian, we have

‖u‖2
2,[0,T ] − ‖y‖2

2,[0,T ]

= ‖G∼y‖2
2,[0,T ] − ‖y‖2

2,[0,T ]

=

∫ T

0

{(B′p + D′y)′(B′x + D′y)− d

dt
(p′Xx)− y′y}dt

=

∫ T

0

y′(DD′ − I)y + 2y′(DB′ + CX)p

+p′(−Ẋ + XA′ + AX + BB′)pdt

=

∫ T

0

y′(DD′ − I)y + 2y′(DB′ + CX)pdt.

When the system is observable, the adjoint system is controllable. Consider yt = PT y, where

PT is the truncation operator. Since controllability ensures that p(t) spans Rn as y ranges

over L2[0, T ]. So DB′ + CX = 0, hence, DD′ = I.

The proof for infinite-horizon case is similar. ¤
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The following lemma aims to find the state space realization of spectral factorization for

NdN
∼
d , where Nd is the system in the left coprime factorization G = M−1N = M−1[Nu Nd Nf ].

Lemma 18 Assume a state space realization of the linear system Nd is:

ẋ3(t) = [A(t) + L(t)C(t)] x3(t) + [Bd(t) + L(t)Dd(t)] d(t)

y3(t) = C(t)x3(t) + Dd(t)d(t).

Let V be an invertible and causal system such that V −1Nd is co-isometric. That is,

(V −1Nd)(V
−1Nd)

∼ = I.

Then, a state space representation of V is given by

ṗ(t) = [A(t) + L(t)C(t)] p(t) + (([Bd(t) + L(t)Dd(t)] D
′
d + Y (t)C ′(t))R−1/2

d (t))u(t)

y(t) = C(t)p(t) + R
1/2
d (t)u(t)

with the state space representation for V −1:

q̇(t) = [A(t) + L0(t)C(t)] q(t) + [L0(t)− L(t)] y(t)

u(t) = R
−1/2
d (t)C(t)q(t) + R

−1/2
d (t)y(t)

where L0(t) = − [Bd(t)D
′
d(t) + Y (t)C ′(t)] R−1

d (t) and Y (t) satisfies the following differential

Riccati equation:

AR(t)Y (t) + Y (t)A′
R(t)− Y (t)C ′(t)R−1

d (t)C(t)Y (t) + BR(t)B′
R(t) = Ẏ (t) (3.5)

with Y (0) = 0.

If (C(t), A(t)) is detectable and (AR(t), BR(t)) is stabilizable, there exists an unique and

bounded solution Y (t) ≥ 0 for the differential Riccati equation (3.5), and the realization V −1

is exponentially stable. Furthermore, L(t) can be chosen so that

ẋ(t) = [A(t) + L(t)C(t)] x(t)
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is exponentially stable.

Proof According to Lemma 17, to show that V −1Nd is a co-isometric system with the

following state space realization:

ẋ(t) = [A(t) + L0(t)C(t)] x(t) + [Bd(t) + L0(t)Dd(t)] d(t)

r(t) = R
−1/2
d (t)C(t)x(t) + R

−1/2
d (t)Dd(t)d(t),

it is sufficient to check the following three conditions:

Y (t) [A(t) + L0(t)C(t)]′ + [A(t) + L0(t)C(t)] Y (t)

+ [Bd(t) + L0(t)Dd(t)] [Bd(t) + L0(t)Dd(t)]
′ = Ẏ (t) (3.6)

R
−1/2
d (t)Dd(t) [Bd(t) + L0(t)Dd(t)]

′ + R
−1/2
d (t)C(t)Y (t) = 0 (3.7)

[
R
−1/2
d (t)Dd(t)

] [
R
−1/2
d (t)Dd(t)

]′
= I. (3.8)

Obviously, equation (3.8) is equivalent to Rd(t) = Dd(t)D
′
d(t) > 0, since Dd(t) has full row

rank for all t ≥ 0. Equation (3.7) is equivalent to L0(t) = − [Bd(t)D
′
d(t) + Y (t)C ′(t)] R−1

d (t).

Replacing L0 by − [Bd(t)D
′
d(t) + Y (t)C ′(t)] R−1

d (t) in equation (3.6), we get the differential

Riccati equation (3.5).

According to Lemma 10, when (C(t), A(t)) is detectable and (AR(t), BR(t)) is stabilizable,

the solution for differential Riccati equation (3.5) Y (t) is unique and bounded and Y (t) ≥ 0,

and system

ẋ(t) =
[
AR(t)− Y (t)C ′(t)R−1

d (t)C(t)
]
x(t)

= [A(t) + L0(t)C(t)] x(t)

is exponentially stable. Therefore, system V −1 is exponentially stable. ¤
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3.2 Main Results

We shall now present the solutions for all H−/H∞, H2/H∞ and H∞/H∞ fault detection

problems.

Theorem 3 For the linear time-varying system G with realization given by equations (3.1)

and (3.2) for both finite-horizon case and infinite-horizon case, an optimal filter for all

H−/H∞, H2/H∞ and H∞/H∞ problems is the following observer:

˙̂x(t) = [A(t) + L0(t)C(t)] x̂(t) + [B(t) + L0(t)D(t)] u(t)− L0(t)y(t)

r(t) = βR
−1/2
d (t)(y(t)− C(t)x̂(t)−D(t)u(t)).

where

Rd(t) = Dd(t)D
′
d(t) > 0,

L0(t) = − [Bd(t)D
′
d(t) + Y (t)C ′(t)] R−1

d (t)

and Y (t) is the solution to the following differential Riccati equation:

AR(t)Y (t) + Y (t)A′
R(t)− Y (t)C ′(t)R−1

d (t)C(t)Y (t) + BR(t)B′
R(t) = Ẏ (t)

with Y (0) = 0.

For an infinite-horizon t ∈ [0,∞), we have Y (t) ≥ 0 is bounded and unique, and the filter

above is also exponentially stable.

Proof Since Nd admits the following spectral factorization

NdN
∼
d = V V ∼,
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we have

(QNd)(QNd)
∼ = QNdN

∼
d Q∼

= QV V ∼Q∼

= (QV )(QV )∼.

Hence

‖QV ‖∞ = ‖QNd‖∞.

Using the above equality with ‖QNd‖∞ ≤ β and Lemma 11, we have

‖QNf‖− = ‖QV V −1Nf‖−

≤ ‖QV ‖∞‖V −1Nf‖−

= ‖QNd‖∞‖V −1Nf‖−

≤ β‖V −1Nf‖−.

Obviously, the inequity is also true for H2 norm and H∞ norm according to Lemma 11.

That is

‖QNf‖2 ≤ β‖V −1Nf‖2,

‖QNf‖∞ ≤ β‖V −1Nf‖∞.

When QV = βI, that is, Q = βV −1, the filter is optimal since the equality can be

obtained.

Thus, according to Lemma 18, one state space realization for Q is

˙̂x(t) = [A(t) + L0(t)C(t)] x̂(t) + [L0(t)− L(t)] e(t)

r(t) = βR
−1/2
d (t)C(t)x̂(t) + βR

−1/2
d (t)e(t).
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In addition, the corresponding state space realization for the filter F in Figure 2 is,

˙̂x(t) = [A(t) + L0(t)C(t)] x̂(t)− L0(t)y(t) + + [B(t) + L0(t)D(t)] u(t)

r(t) = βR
−1/2
d (t)(y(t)− C(t)x̂(t)−D(t)u(t)).

According to Lemma 18, for infinite-horizon case, M , Nu, and V −1 are exponentially stable.

Hence, filter F is exponentially stable. ¤

Remark 8 For infinite-horizon case, when system G is linear time invariant, the filter

converges to a time invariant one that is the same as the one given in [56] (see Section

2.5.2).

Remark 9 The solution is optimal to all H−/H∞, H2/H∞ and H∞/H∞ problems.

Remark 10 The solution is independent of the choice of L(t) matrix function, that is,

independent of coprime factorization.

Remark 11 If Dd(t) is a nonsingular square matrix, the differential Riccati equation can

be simplified as

AR(t)Y (t) + Y (t)A′
R(t)− Y (t)C ′(t)R−1

d (t)C(t)Y (t) = Ẏ (t), (3.9)

since D′
d(t)R

−1
d (t)Dd(t) = I. According to Lemma 10, if (AR(t), 0) is stabilizable and

(D−1
d (t)C(t), AR(t)) is detectable, in other words, ẋ(t) = AR(t)x(t) is exponentially sta-

ble, the solution for the equation (3.9) is unique and bounded, that is Y (t) = 0. Hence,

L0(t) = −Bd(t)D
−1
d (t) and the filter becomes

˙̂x(t) = AR(t)x̂(t) +
[
B(t)−Bd(t)D

−1
d (t)D(t)

]
u(t) + Bd(t)D

−1
d (t)y(t)

r(t) = βD−1
d (t) [y(t)− C(t)x̂(t)−D(t)u(t)] .
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3.3 Extension to Unknown Initial State

In the previous sections, we have assumed that the original system given by (3.1) and (3.2)

has the initial state x(0) = 0. If x(0) 6= 0 but is known in advance, we can subtract its

contribution from the output and transform the original problem into a problem with zero

initial state that we have solved in the previous section.

In this section, we formulate a new optimization problem with extra terms considering

the effect of uncertain initial condition in the fault detection filter design.

The same procedures in the previous sections can be carried out to completely decouple

the residual signal from the input signal u(t) so that

r = QNdd + QNff

where Q is a bounded linear time-varying system to be designed. Here, the system Nd and

Nf are the same as those in the previous sections but with an important difference that Nd

has an unknown initial state x(0) and Nf has a zero initial state.

The standard system we consider is Gm×n:

ẋ(t) = A(t)x(t) + B(t)w(t), (3.10)

y(t) = C(t)x(t) + D(t)w(t), x(0) = x0 unknown (3.11)

It can also be written in a simple way,

G : (x0, w) → y

In order to consider the effect of initial condition, we define the following inner product

for the system given by equations (3.10) and (3.11).

Definition 22 The inner product in Rn ×L2[0, T ] is defined as:

< (x1, w1), (x2, w2) >2,[0,T ]= x′1Rx2+ < w1, w2 >2,[0,T ]
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where R = R′ > 0, x1, x2, w1 and w2 are initial states and input signals, respectively.

The positive matrix R with compatible dimensions can be thought as penalty that reflects the

knowledge we know about the initial state. The more we know the state, the bigger R should

be.

Based on the definition of the inner product, we give a new definition of adjoint system

with initial condition.

Definition 23 ( [59]) Adjoint system in L2,[0,T ] is a map from output signal to initial state

and input signal

G∼ : y → (p(0), w)

It includes two parts: initial condition p(0) and a dynamic system:

G∼ =


 R−1

∫ T

0
Φ′(s, 0)C ′(s)y(s)ds

∫ T

t
B′(t)Φ′(s, t)C ′(s)y(s)ds + D′(t)y(t)




A state space realization of G∼ can be obtained as:

• Initial condition:

x0 = R−1p(0)

• Dynamic model:

ṗ(t) = −A′(t)p(t)− C ′(t)y(t) p(T ) = 0

w(t) = B′(t)p(t) + D′(t)y(t),

Note that it is sufficient to let T →∞ when considering systems in L2.

In this section, we will use this adjoint system to derive our fault detection filter.
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Definition 24 Similar to co-isometric system defined before, the co-isometric system with

uncertain initial state is as follows:

GG∼ = I

More specifically, system defined by equations (3.10) and (3.11) is co-isometric if and only

if

‖w‖2
2 + x′0Rx0 = ‖y‖2

2

where the 2 norms of w and y can be defined in either L2 or L2,[0,T ].

Next, we give a revised version of Lemma 5 that considers the effect of unknown initial

state.

Lemma 19 Suppose that G is a state space system with realization given by equations (3.10)

and (3.11) with unknown x(0). If there exists a bounded and symmetric matrix X(t) satis-

fying

X(t)A′(t) + A(t)X(t) + B(t)B′(t) = Ẋ(t)

D(t)B′(t) + C(t)X(t) = 0

D(t)D′(t) = I

with X(0) = R−1 for all t ∈ [0, T ], then G is co-isometric on L2[0, T ]. If the system G is

observable, these conditions are also necessary.

If T →∞, the result is also true.

Proof The adjoint system G∼ is:

initial condition: x0 = R−1p(0)
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dynamic model:

ṗ(t) = −A′(t)p(t)− C ′(t)y(t)

u(t) = B′(t)p(t) + D′(t)y(t) with p(T ) = 0.

‖u‖2
2,[0,T ] + x′0Rx0

=‖G∼y‖2
2,[0,T ] + p′(0)R−1p(0)

=

∫ T

0

(B′p + D′y)′(B′p + D′y)− d

dt
(p′Xp)dt + p′Xp|T0 + p′(0)R−1p(0)

=

∫ T

0

y′DD′y + 2y′(DB′ + CX)p

+ p′(−Ẋ + XA′ + AX + BB′)pdt + p′(0)(R−1 −X(0))p(0)

=‖y‖2
2,[0,T ]

when DB′ + CX = 0 and DD′ = I and −Ẋ + XA′ + AX + BB′ = 0 and X(0) = R−1.

Conversely, let X(t) be the controllability gramian, we have

‖u‖2
2,[0,T ] + x′0Rx0 − ‖y‖2

2,[0,T ]

=‖G∼y‖2
2,[0,T ] + p′(0)R−1p(0)− ‖y‖2

2,[0,T ]

=

∫ T

0

{
(B′p + D′y)′(B′p + D′y)− d

dt
(p′Xp)− y′y

}
dt

+ p′Xp|T0 + p′(0)R−1p(0) + p′(0)(R−1 −X(0))p(0)

=

∫ T

0

y′(DD′ − I)y + 2y′(DB′ + CX)p

+ p′(−Ẋ + XA′ + AX + BB′)pdt + p′(0)(R−1 −X(0))p(0)

=

∫ T

0

y′(DD′ − I)y + 2y′(DB′ + CX)pdt + p′(0)(R−1 −X(0))p(0).

When the system is observable, the adjoint system is controllable. Consider yt = PT y, where

PT is the truncation operator. Since controllability ensures that p(t) spans Rn as y ranges

over L2[0, T ], we have DB′ + CX = 0 and Y (0) = R−1. Hence, DD′ = I.
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If T →∞, the result is obvious. ¤

Now, the three problems mentioned before can be revised as follows,

Problem 4 (H−/H∞ problem)

max
Q

{
‖QNf‖− : sup

d(t),x0

√
‖r(t)‖2

2

x′0Rx0 + ‖d(t)‖2
2

≤ β

}

Problem 5 (H∞/H∞ problem)

max
Q

{
‖QNf‖∞ : sup

d(t),x0

√
‖r(t)‖2

2

x′0Rx0 + ‖d(t)‖2
2

≤ β

}

Problem 6 (H2/H∞ problem)

max
Q

{
‖QNf‖2 : sup

d(t),x0

√
‖r(t)‖2

2

x′0Rx0 + ‖d(t)‖2
2

≤ β

}

Note that the effects of noise and uncertain initial state are considered together in these

three problems and the initial state for the system QNf is zero. More specifically, the initial

states of system Nd is also x0 that is unknown, while the initial states for the other systems

(i.e. Nu, M and Q) are all zeros. Therefore, the results and definitions in the previous

sections can be used directly except that the initial condition of differential Riccati equation

in Lemma 18 becomes Y (0) = R−1 according to Lemma 22.

Theorem 4 For the system given by equations (3.1) and (3.2) with unknown initial state

x(0) = x0, an optimal fault detection filter for the new problems mentioned above is

˙̂x(t) = [A(t) + L0(t)C(t)] x̂(t) + [B(t) + L0(t)D(t)] u(t)− L0(t)y(t)

r(t) = βR
−1/2
d (t) [y(t)− C(t)x̂(t)−D(t)u(t)] .

where Rd(t) = Dd(t)D
′
d(t) > 0,

L0(t) = − [Bd(t)D
′
d(t) + Y (t)C ′(t)] R−1

d (t)
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and Y (t) is the solution to the differential Riccati equation:

AR(t)Y (t) + Y (t)A′
R(t)− Y (t)C ′(t)R−1

d (t)C(t)Y (t) + BR(t)B′
R(t) = Ẏ (t)

with Y (0) = R−1. For infinite-horizon t ∈ [0,∞), we have Y (t) ≥ 0 is bounded and unique,

and the filter above is also optimal and exponentially stable.

Proof The proof is the same as that in the previous section and thus omitted. ¤

Remark 12 The filter designed is the same as that for the known initial state, except that

the initial condition for the differential Riccati equation becomes Y (0) = R−1.

3.4 Example

We shall illustrate our fault detection filter design with a simple linear continuous time-

varying system.

Example 1. Consider the following linear time-varying system with

A(t) =


 −0.1 10(1− e−t/50)

0 −0.2


 , Bd(t) =


 0.1 0

0.1 0


 ,

B(t) =


 0.1

0.1


 , Bf (t) =


 0

5


 , C(t) =

[
0.1 0.1

]
,

D(t) = 0, Dd(t) =
[

0.1 0.1
]
, Df (t) = 0.

Assume that the input u(t), the disturbance d(t), and the fault f(t) are the following

forms, respectively (see Figure 3.3),

u(t) = 0

d(t) =
[

0.2sin(0.5t) 0.2cos(0.5t)
]′

f(t) =

{
0.1, 20s ≤ t < 30s

0, elsewhere.
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Figure 3.3: Disturbance d(t) and Fault f(t)–LCTV Case

For H−/H∞, H2/H∞ and H∞/H∞ problems mentioned above with β = 1, we now

compare three different filter design methods. The first is the optimal filter given by Theorem

1, where L0(t) is computed by solving the differential Riccati equation (3.5). The second is

the frozen time filter designed by considering time-varying system as time invariant system

at each instant of time, where L0(t) is computed by solving the algebra Riccati equation

AR(t)Y (t) + Y (t)A′
R(t)− Y (t)C ′(t)R−1

d (t)C(t)Y (t) + BR(t)B′
R(t) = 0

at each instant of time t (see [55] and Section 2.6). The third is to replace the time-varying

terms by their steady states and thus design a linear time invariant filter by [55]. In this

example, we let

A =


 −0.1 10

0 −0.2


 .

Figure 3.4 shows different L0(t) for the three filters. Since the time-varying term e−t/50

in the A(t) matrix approaches 0 slowly, the optimal filter gain L0(t) and the L0(t) in the
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Figure 3.4: Fault Detection Filter Gain L0(t)–LCTV Case
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Figure 3.5: Residuals r(t) vs Time t –LCTV Case
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frozen time filter converge to that of the linear time invariant filter. Figure 3.5 shows different

residual signals generated by the three methods. It is clear that the residual signal generated

by the time-varying filter is much more sensitive to faults than those of the other two filters.

Furthermore, it can also be shown that the residual signal generated by linear time-invariant

filter strongly depends on the input signal u(t), since input signal is not decoupled from

residual signal at all time instants.
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Chapter 4

Fault Detection Filter Design for
Discrete Time-Varying Systems

This chapter is dedicated to fault detection for linear discrete time-varying systems (LDTVS).

Problem formulation is given in Section 4.1. Our fault detection design is presented in Section

4.2. Section 4.3 extends the result to the plant with non-zero initial state. One example is

given in Section 4.4 for illustration.

4.1 Problem Formulation

Consider a linear discrete time-varying system G with disturbance and possible faults in the

following state-space realization

x(t+1) = A(t)x(t) + B(t)u(t) + Bd(t)d(t) + Bf (t)f(t) (4.1)

y(t) = C(t)x(t) + D(t)u(t) + Dd(t)d(t) + Df (t)f(t) (4.2)

where t = 0, 1, . . . , T (t = 0, 1, . . . for the infinite-horizon case). T is a positive integer.

x(t) ∈ Rn is the state vector, u(t) ∈ Rnu is the input vector, y(t) ∈ Rny is the output

measurement, d(t) ∈ Rnd represents the unknown/uncertain disturbance and measurement

noise, and f(t) ∈ Rnf denotes the process, sensor or actuator fault vector. A(t), B(t), C(t),

D(t), Bd(t), Dd(t), Bf (t) and Df (t) are bounded sequences of t with compatible dimensions.

f(t) and d(t) can be modelled as different type of signals, depending on specific situations
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under consideration. Different assumptions on d(t) and f(t) will lead to different fault

detection problem formulations and the solutions for three problems will be discussed in this

chapter.

Define

Rt(t) := D′
d(t)(Dd(t)D

′
d(t))

−1.

The following assumptions are made:

Assumption 11 (C(t), A(t)) is detectable;

Assumption 12 Dd(t) has full row rank for all t ≥ 0. In other words, Dd(t)D
′
d(t) > 0;

Assumption 13
(
A(t)−Bd(t)Rt(t)C(t), Bd(t)[I −Rt(t)Dd(t)]

)
is stabilizable.

Remark 13 Assumption 1 is a standard assumption for all fault detection problems for the

infinite-horizon case ( [50] [55] [56]). This assumption guarantees the existence of a L(t)

such that

x(t + 1) = [A(t) + L(t)C(t)] x(t)

is exponentially stable.

Remark 14 Assumption 2 means that ny ≤ nd and every measurement of the output signals

is either affected by some disturbance or corrupted with some measurement noise. We argue

that this assumption can be made without loss of any generality since it is impossible to take

perfect measurement in any practical system and furthermore it is reasonable to assume that

the measurement noise is independent of each other. So it is reasonable to assume that the

measurement noise is independent of each other and that Dd(t) has full row rank for all t ≥ 0

(see [55] for detailed description).
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In the case of some simplified model where Dd(t) does not have full row rank, we can

simply add some columns to make it full row rank. For example, suppose Dd(t) is not full

row rank, then let

d̃ =


 d

dε


 , B̃d =

[
Bd 0n×ny

]
, D̃d =

[
Dd εIny

]

for a small ε > 0. Then D̃d(t) has full row rank for all t ≥ 0. Because ε can be made as small

as possible, we argue that the performance degradation caused by the fictitious disturbances

should not be large.

This assumption might be restrictive in some applications when the external disturbances

and measurement noise are different classes of signals so that it is impossible to combine

them together in our framework. Actually, when Dd is not wide or square, in other words,

the number of outputs is greater that the number of disturbances, the decoupling of some

disturbances from residual without sacrificing the fault detection ability is possible. Therefore,

our optimization framework is still useful when it is possible to remove some disturbances

that can be decoupled from the residual( [18]). This will be discussed in details in Chapter 5.

Remark 15 The assumption 3 is an additional assumption for guaranteeing the existence

of a unique and exponentially stable filter for the infinite-horizon case. In particular, when

the plant and measurement noise are independent (i.e., Bd(t)D
′
d(t) = 0), this assumption is

equivalent to that (A(t), Bd(t)) is stabilizable. This assumption can be significantly relaxed

in the linear time-invariant case [55].

The system realization given by (4.1) and (4.2) can be written as:

y =
[

Gu Gd Gf

]



u

d

f



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where Gu, Gd, Gf are ny × nu, ny × nd and ny × nf systems with the following state space

realizations:

System Gu:

x(t+1) = A(t)x(t) + B(t)u(t)

yu(t) = C(t)x(t) + D(t)u(t).

System Gd:

x(t+1) = A(t)x(t) + Bd(t)d(t)

yd(t) = C(t)x(t) + Dd(t)d(t).

System Gf :

x(t+1) = A(t)x(t) + Bf (t)f(t)

yf (t) = C(t)x(t) + Df (t)f(t).

Since (C(t), A(t)) is detectable, according to Lemma 14, system G admits the following

left coprime factorization

G = M−1N = M−1[Nu Nd Nf ].

In order to decouple the residual signal from the input signal completely, the fault de-

tection can take the following form:

r = Q(My −Nuu) = Q
[

M −Nu

]

 y

u




which is shown in Figure 4.1, where both N and M are linear systems with appropriate

dimensions and Q is a bounded system to be designed. In addition, the systems in the

Figure 4.1 have the following state-space realizations.
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Figure 4.1: Filter Structure Decoupling Control Input–LDTV Case

System Nu:

x1(t+1) = [A(t) + L(t)C(t)]x1(t) + [B(t) + L(t)D(t)]u(t)

y1(t) = C(t)x1(t) + D(t)u(t).

System M :

x2(t+1) = [A(t) + L(t)C(t)]x2(t) + L(t)y(t)

y2(t) = C(t)x2(t) + y(t).

System Nd:

x3(t+1) = [A(t) + L(t)C(t)]x3(t) + [Bd(t) + L(t)Dd(t)]d(t) (4.3)

y3(t) = C(t)x3(t) + Dd(t)d(t). (4.4)

System Nf :

x4(t+1) = [A(t) + L(t)C(t)]x4(t) + [Bf (t) + L(t)Df (t)]f(t)

y4(t) = C(t)x4(t) + Df (t)f(t).
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By simple computation, it is easy to verify that the signal e(t) = y2(t)−y1(t) is decoupled

from the input signal u(t). In addition, the system from d(t) to r(t) is QNd and the system

from f(t) to r(t) is QNf .

Similar to [55], we formulate the following problems:

• (H−/H∞ problem) Let an uncertain system be described by equations (4.1) and (4.2)

and let β > 0 be a given disturbance rejection level. Find a ny × ny linear system Q

such that ‖QNd‖∞ ≤ β and ‖QNf‖− is maximized, i.e.

max
Q
{‖QNf‖− : ‖QNd‖∞ ≤ β},

where Q must be exponentially stable for the infinite-horizon case.

• (H2/H∞ problem) Let an uncertain system be described by equations (4.1) and (4.2)

and let β > 0 be a given disturbance rejection level. Find a ny × ny linear system Q

such that ‖QNd‖∞ ≤ β and ‖QNf‖2 is maximized, i.e.

max
Q
{‖QNf‖2 : ‖QNd‖∞ ≤ β},

where Q must be exponentially stable for the infinite-horizon case.

• (H∞/H∞ problem) Let an uncertain system be described by equations (4.1) and (4.2)

and let β > 0 be a given disturbance rejection level. Find a ny × ny linear system Q

such that ‖QNd‖∞ ≤ β and ‖QNf‖∞ is maximized, i.e.

max
Q
{‖QNf‖∞ : ‖QNd‖∞ ≤ β},

where Q must be exponentially stable for the infinite-horizon case.

Before proving the main result, we introduce the following lemma to provide a spectral

factorization of the system Nd.
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Lemma 20 For the system Nd given by equations (4.3) and (4.4), a spectral factorization

is system V :

x(t+1) = [A(t) + L(t)C(t)]x(t) + [L(t)− L1(t)]R
1/2
d (t)u(t)

y(t) = C(t)x(t) + R
1/2
d (t)u(t)

with V −1:

x(t+1) = [A(t) + L1(t)C(t)]x(t) + [L1(t)− L(t)]u(t)

y(t) = R
−1/2
d (t)C(t)x(t) + R

−1/2
d (t)u(t)

where Rd(t) = Dd(t)D
′
d(t) + C(t)P (t)C ′(t), L1(t) = −[Bd(t)D

′
d(t) + A(t)P (t)C ′(t)]R−1

d (t)

and P (t) is the solution of the following difference Riccati equation

A(t)P (t)A′(t)− L1(t)Rd(t)L
′
1(t) + Bd(t)B

′
d(t) = P (t+1) (4.5)

with P (0) = 0.

Proof Since Assumptions are satisfied, Lemma 15 can be applied to Nd to get V V ∼ =

NdN
∼
d where P (t) satisfies the following difference Riccati equation

ALC(t)P (t)A′
LC(t)− T (t)Rd(t)T

′(t) + BLD(t)B′
LD(t) = P (t+1)

where

ALC(t) = A(t) + L(t)C(t),

BLD(t) = Bd(t) + L(t)Dd(t),

T (t) = [ALC(t)P (t)C ′(t) + BLD(t)D′
d(t)]R

−1
d (t).

It is easy to show that the above difference Riccati equation can be simplified to the

difference Riccati equation (4.5). The rest of the proof follows from some simple algebraic

manipulations. ¤
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The following lemma is to show that under the three assumptions mentioned above,

there is always a bounded solution for the difference Riccati equation and the system V −1

is exponentially stable.

Lemma 21 Suppose
(
A(t)−Bd(t)Rt(t)C(t), Bd(t)[I−Rt(t)Dd(t)]

)
is stabilizable and (C(t), A(t))

is detectable. There exists a nonnegative bounded solution P (t) ≥ 0 to the filter Riccati equa-

tion (4.5), and the system V −1 is exponentially stable.

Proof In order to simplify the problem, let’s consider the special case Bd(t)D
′
d(t) = 0.

Now, the assumptions turn out to be that Dd(t)D
′
d(t) > 0, (A(t), Bd(t)) is stabilizable

and (C(t), A(t)) is detectable.

According to Lemma 16, the following difference Riccati equation

A(t)P (t)A′(t)− [A(t)P (t)C ′(t)]R−1
d (t)[A(t)P (t)C ′(t)]′ + Bd(t)B

′
d(t) = P (t+1)

has a nonnegative bounded solution, and A(t) − A(t)P (t)C ′(t)R−1
d (t)C(t) is exponential

stable.

Now we try to relax the constraint that Bd(t)D
′
d(t) = 0.

Note that the first state equation of the system Nd can be written as

x3(t+1) = [A(t)−Bd(t)Rt(t)C(t) + L(t)C(t)]x3(t) + Bd(t)Rt(t)y3(t)

+[Bd(t)−Bd(t)Rt(t)Dd(t) + L(t)Dd(t)]d(t).

Its state x3(t) can be decomposed as

x3(t) = x̃(t) + x̂(t),

where x̃(t) depends on x(0) and [Bd(t)−Bd(t)Rt(t)Dd(t) + L(t)Dd(t)]d(t), while x̂(t) is the

contribution due to Bd(t)Rt(t)y3(t) term, and it is known exactly. Therefore, we only need
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to consider x̃(t). So the state equations become

x̃(t+1) = [Ã(t) + L(t)C(t)]x̃(t) + [B̃d(t) + L(t)Dd(t)]d(t)

y3(t) = C(t)x̃(t) + Dd(t)d(t)

where Ã(t) = A(t)− Bd(t)Rt(t)C(t) and B̃d(t) = Bd(t)[I − Rt(t)Dd(t)]. Obviously, the new

state equations satisfy B̃d(t)D
′
d(t) = 0.

In other words, the constraint Bd(t)D
′
d(t) = 0 is relaxed with the following new matrices

Ã(t) ← A(t)−Bd(t)D
′
d(t)(Dd(t)D

′
d(t))

−1C(t)

B̃d(t) ← Bd(t)[I −D′
d(t)(Dd(t)D

′
d(t))

−1Dd(t)].

Now, the difference Riccati equation becomes

Ã(t)P (t)Ã′(t)− (Ã(t)P (t)C ′(t))R̃−1
d (t)(Ã(t)P (t)C ′(t))′ + B̃d(t)B̃d

′
(t) = P (t+1)

where L̃1(t) = −(B̃(t)D′
d(t)+A(t)P (t)C ′(t))R̃−1

d (t) and R̃d(t) = Dd(t)D
′
d(t)+C(t)P (t)C ′(t).

It can be simplified as the difference Riccati equation (4.5) by some simple algebraic

manipulations, and furthermore, Ã(t) + Ã(t)P (t)C ′(t)R̃−1
d (t)C(t) is exponentially stable.

That is, A(t) + L1(t)C(t) is exponentially stable. Hence, V −1 is exponentially stable. ¤

4.2 Main Results

We shall now present the solutions for all H−/H∞, H2/H∞ and H∞/H∞ fault detection

problems.

Theorem 5 For the system given by equations (4.1) and (4.2) under three above assump-

tions (Assumption 3 only for infinite-horizon case) for both infinite and finite case, an op-

timal fault detection filter for all H−/H∞, H2/H∞ and H∞/H∞ cases, has the following
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state space representation

x̂(t+1) = [A(t) + L1(t)C(t)]x̂(t)− L1(t)y(t) + [B(t) + L1(t)D(t)]u(t) (4.6)

r(t) = βR
−1/2
d (t)[y(t)− C(t)x̂(t)−D(t)u(t)] (4.7)

where L1(t) = −(A(t)P (t)C ′(t) + Bd(t)D
′
d(t))R

−1
d (t), Rd(t) = Dd(t)D

′
d(t) + C(t)P (t)C ′(t)

and P (t) satisfies the following difference Riccati equation:

A(t)P (t)A′(t)− L1(t)Rd(t)L
′
1(t) + Bd(t)B

′
d(t) = P (t+1)

with initial condition P (0) = 0.

For the infinite-horizon case, this fault detection filter is also exponentially stable.

Proof Since Nd admits the following spectral factorization

NdN
∼
d = V V ∼,

we have

(QNd)(QNd)
∼ = QNdN

∼
d Q∼

= QV V ∼Q∼

= (QV )(QV )∼.

Hence

‖QV ‖∞ = ‖QNd‖∞.

Using the above equality with ‖QNd‖ ≤ β and Lemma 11, we have

‖QNf‖− = ‖QV V −1Nf‖−

≤ ‖QV ‖∞‖V −1Nf‖−

= ‖QNd‖∞‖V −1Nf‖−

≤ β‖V −1Nf‖−.
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Obviously, the inequity is also true for H2 norm and H∞ norm according to Lemma 11.

That is

‖QNf‖2 ≤ β‖V −1Nf‖2,

‖QNf‖∞ ≤ β‖V −1Nf‖∞.

When QV = βI, that is, Q = βV −1, the filter is optimal since the equality can be

obtained.

Thus, according to Lemma 20, one state space realization for the system Q is

x̂(t+1) = [A(t) + L1(t)C(t)]x̂(t) + [L1(t)− L(t)]e(t)

r(t) = βR
−1/2
d (t)C(t)x̂(t) + βR

−1/2
d (t)e(t).

Further, the corresponding state space realization for the filter F is given by equations

(4.6) and (4.7).

According to Lemma 21, for the infinite-horizon case, Nd and V −1 are exponentially

stable. Hence, the filter F is exponentially stable. ¤

Remark 16 Assume that all coefficients of equations (4.1) and (4.2) are θ-periodic, that

is, the system G is periodic. Since periodic system is a special case of time-varying system,

the same filter is derived, while all coefficients of the filter are θ-periodic. This result is the

same as the solution in [90].

4.3 Extension to Unknown Initial State

In the previous sections, we have assumed that the original system given by (4.1) and (4.2)

has initial state x(0) = 0. If x(0) 6= 0 but is known in advance, we can subtract its
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contribution from output and transform the original problem into a problem with zero initial

state that we have solved in the previous section.

In this section, we formulate a new optimization problem with extra terms considering

the effect of uncertain initial condition.

The same procedures in the previous sections can be carried out to completely decouple

the residual signal from the input signal u(t) so that

r = QNdd + QNff

where Q is a bounded linear time-varying system to be designed. Here, the system Nd and

Nf are the same as those in the previous sections but with an important difference that Nd

has an unknown initial state x(0) and Nf has a zero initial state.

The standard system we consider is Gm×n:

x(t+1) = A(t)x(t) + B(t)w(t) (4.8)

y(t) = C(t)x(t) + D(t)w(t), x(0) = x0 unknown. (4.9)

It can also be written in a simple way,

G : (x0, w) → y.

In order to consider the effect of initial condition, we define the following inner product

for the system given by equations (4.8) and (4.9).

Definition 25 The inner product in Rn × l2[0, T ] is defined as:

< (x1, w1), (x2, w2) >2,[0,T ]= x′1Rx2+ < w1, w2 >2,[0,T ]

where R = R′ > 0, x1, x2, w1 and w2 are initial states and input signals, respectively.

The positive matrix R with compatible dimensions can be thought as penalty that reflects the
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knowledge we know about the initial state. The more we know the state, the bigger R should

be.

Based on the definition of the inner product, we give a new definition of the adjoint

system with an initial state.

Definition 26 Adjoint system in l2[0, T ] is a map from output signal to initial state and

input signal

G∼ : y → (x0, w).

It includes two parts: initial condition p(−1) and a dynamic system:

G∼ =


 R−1

∑T
t=0 Φ′(t, 0)C ′(t)y(t)

∑T
s=t[B

′(t)Φ′(s, t)C ′(s)y(s)] + D′(t)y(t)




A state space realization of G∼ can be obtained as:

• Initial condition:

x0 = R−1p(−1);

• Dynamic model:

p(t−1) = A′(t)p(t) + C ′(t)y(t)

w(t) = B′(t)p(t) + D′(t)y(t), p(T ) = 0.

Note that it is sufficient to assume T →∞ when considering systems in l2[0,∞).

In this section, we will use this adjoint system to derive the fault detection filter.

Definition 27 Similar to co-isometric system defined before, the co-isometric system with

uncertain initial state is as follows

GG∼ = I.
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More specifically, the system defined by equations (4.8) and (4.9) is co-isometric if and

only if

‖w‖2 + x′0Rx0 = ‖y‖2.

where the 2 norms of w and y can be defined in either l2[0,∞) or l2[0, T ].

Next, we give a revised version of Lemma 5 that considers the effect of unknown initial

state.

Lemma 22 Suppose G is a state space system with realization given by equations (4.8) and

(4.9) with unknown initial state x(0) = x0. If there exists a bounded and symmetric matrix

X(t) satisfying

A(t)X(t)A′(t) + B(t)B′(t) = X(t+1)

B(t)D′(t) + A(t)X(t)C ′(t) = 0

D(t)D′(t) + C(t)X(t)C ′(t) = I

with X(0) = R−1 for all t ∈ [0, T ], then G is co-isometric on l2[0, T ]. If the system G is

observable, these conditions are also necessary.

If T →∞, the result is also true.

Proof The adjoint system G∼ is:

initial condition: x0 = R−1p(−1)

dynamic model:

p(t−1) = A′(t)p(t) + C ′(t)y(t)

w(t) = B′(t)p(t) + D′(t)y(t), p(T ) = 0.
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‖w(t)‖2
2,[0,T ] + x′0Rx0

=‖G∼y(t)‖2
2,[0,T ] + p′(−1)R−1p(−1)

=
T∑

t=0

[B′(t)p(t) + D′(t)y(t)]′[B′(t)p(t) + D′(t)y(t)]−
T∑

t=0

{p′(t)X(t+1)p(t)− p′(t−1)X(t)p(t−1)}

+ p′(t)X(t + 1)p(t)|Tt=−1 + p′(−1)R−1p(−1)

=
T∑

t=0

{y′(t)[D(t)D′(t) + C(t)X(t)C ′(t)]y(t) + 2p′(t)[B(t)D′(t) + A(t)X(t)C ′(t)]y(t)

+ p′(t)[−X(t+1) + A(t)X(t)A′(t) + B(t)B′(t)]p(t)}

+ p′(−1)[R−1 −X(0)]p(−1)

=‖y(t)‖2
2,[0,T ]

when B(t)D′(t)+A(t)X(t)C ′(t) = 0, −X(t+1)+A(t)X(t)A′(t)+B(t)B′(t) = 0, D(t)D′(t)+

C(t)X(t)C ′(t) = I and X(0) = R−1.

Conversely, let X(t) be the controllability gramian, we have

‖w‖2
2,[0,T ] + x′0Rx0 − ‖y‖2

2,[0,T ]

=‖G∼y(t)‖2
2,[0,T ] + p′(−1)R−1p(−1)− ‖y‖2

2,[0,T ]

=
T∑

t=0

{[B′(t)p(t) + D′(t)y(t)]′[B′(t)p(t) + D′(t)y(t)]− y′(t)y(t)}

−
T∑

t=0

{p′(t)X(t+1)p(t)− p′(t−1)X(t)p(t−1)}

+ p′(t)X(t + 1)p(t)|Tt=−1 + p′(−1)R−1p(−1)

=
T∑

t=0

{y′(t)[D(t)D′(t) + C(t)X(t)C ′(t)− I]y(t) + 2p′(t)[B(t)D′(t) + A(t)X(t)C ′(t)]y(t)

+ p′(t)[−X(t+1) + A(t)X(t)A′(t) + B(t)B′(t)]p(t)}

+ p′(−1)[R−1 −X(0)]p(−1)

=
T∑

t=0

{y′(t)[D(t)D′(t) + C(t)X(t)C ′(t)− I]y(t) + 2p(t)[B(t)D′(t) + A(t)X(t)C ′(t)]y(t)}

+ p′(−1)[R−1 −X(0)]p(−1).
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When the system is observable, the adjoint system is controllable. Consider yt(t) =

PT y(t), where PT is the truncation operator. Since controllability ensures that p(t) spans Rn

as y ranges over l2[0, T ], we have B(t)D′(t) + A(t)X(t)C ′(t) = 0 and X(0) = R−1. Hence,

D(t)D′(t) + C(t)X(t)C ′(t)− I = 0.

If T →∞, the result is obvious. ¤

Now, the three problems mentioned before can be revised as follows,

Problem 7 (H−/H∞ problem)

max
Q

{
‖QNf‖− : sup

d(t),x0

√
‖r(t)‖2

x′0Rx0 + ‖d(t)‖2
≤ β

}

Problem 8 (H∞/H∞ problem)

max
Q

{
‖QNf‖∞ : sup

d(t),x0

√
‖r(t)‖2

x′0Rx0 + ‖d(t)‖2
≤ β

}

Problem 9 (H2/H∞ problem)

max
Q

{
‖QNf‖2 : sup

d(t),x0

√
‖r(t)‖2

x′0Rx0 + ‖d(t)‖2
≤ β

}

Note that the effects of noise and uncertain initial condition are considered together in

these three problems and the initial condition for the system QNf is zero. More specifically,

the initial condition of system Nd is also x0 that is unknown, while the initial conditions for

the other systems (i.e. Nu, M and Q) are all zeros. Therefore, the results and definitions

in the previous sections can be used directly except that the initial condition of difference

Riccati equation in Lemma 13 becomes X(0) = R−1 according to Lemma 22.

Theorem 6 For the system given by equations (4.1) and (4.2) with unknown initial state

x(0) = x0, an optimal fault detection filter for the new problems formulated above is

x̂(t+1) = [A(t) + L1(t)C(t)]x̂(t)− L1(t)y(t) + [B(t) + L1(t)D(t)]u(t)

r(t) = βR
−1/2
d (t)[y(t)− C(t)x̂(t)−D(t)u(t)], with x̂(0) = 0
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where Rd(t) = Dd(t)D
′
d(t)+C(t)P (t)C ′(t) > 0, L1(t) = −(Bd(t)D

′
d(t)+A(t)P (t)C ′(t))R−1

d (t)

and P (t) is the solution to the difference Riccati equation:

A(t)P (t)A′(t)− L1(t)Rd(t)L
′
1(t) + Bd(t)B

′
d(t) = P (t+1)

with P (0) = R−1. For the infinite-horizon case t ∈ [0,∞), P (t) ≥ 0 is bounded, and the

filter is also asymptotically stable.

Proof The derivation of the filter formula and optimal property of the fault detection filter

is the same as that in the previous section and thus omitted.

Regarding to the stability of the fault detection filter for the infinite-horizon case, instead

of proving it directly, we find it can be transformed into a Kalman filter problem. Specifically,

for the system

x(t+1) = A(t)x(t) + Bd(t)w(t),

y(t) = C(t)x(t) + Dd(t)w(t),

with assumption Bd(t)D
′
d(t) = 0, under the standard assumptions for the Kalman filter, its

Kalman filter form is given by

x̂(t+1|t) = [A(t) + L1(t)C(t)]x̂(t|t−1)− L1(t)y(t), x̂(0|−1) = x0

L1(t) = −A(t)P (t)C ′(t)[D(t)D′(t) + C(t)P (t)C ′(t)]−1, P0 = R−1

P (t + 1) = A(t)P (t)A′(t)− A(t)P (t)C ′(t)[D(t)D′(t) + C(t)P (t)C ′(t)]−1C(t)P (t)A′(t).

From [27], we know that, under three assumptions above, the Kalman filter is asymptot-

ically stable, so is the fault detection filter.

The assumption BdD
′
d = 0 can be relaxed by the methods in Lemma 21. ¤
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Remark 17 The filter designed is the same as that for the known initial state, except that

the initial condition for the difference Riccati equation becomes P (0) = R−1.

4.4 Example

Consider a linear discrete time-varying system with the following coefficients

A(t) =


 −0.1 1+10×0.9t

0 −0.2−0.1t


 , Bd(t) =


 0.1 0

0.1 0


 ,

B(t) =


 0.1

0.1


 , Bf (t) =


 0

5


 , C(t) =

[
0.1 0.1

]
,

D(t) = 0, Dd(t) =
[

0.1 0.1
]
, Df (t) = 0.

where t = 0, 1, 2, · · · . Assume that the input u(t), the noise d(t), and the fault f(t) are the

following forms, respectively,

u(t) =

{
0, t < 20s

20, elsewhere;

d(t) =
[

0.2sin(0.5t) 0.2cos(0.5t)
]′

;

f(t) =

{
0.1, 5s ≤ t < 10s

0, elsewhere.

For H−/H∞, H2/H∞ and H∞/H∞ problems mentioned above with β = 1, we now

compare three different filter design methods. The first is the optimal filter given by Theorem

1, where L1(t) is computed by solving the difference Riccati equation (4.5). The second is

the frozen time filter designed by considering time-varying system as time invariant system

at each instant of time, where L1(t) is computed by solving the Algebra Riccati equation

A(t)P (t)A′(t)− L1(t)Rd(t)L
′
1(t) + Bd(t)B

′
d(t) = 0

at each instant of time t (see [56] and Section 2.6). The third is to replace the time-varying

terms by their steady states and thus design a linear time invariant filter by [56]. In this
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Figure 4.2: L1(t) vs Time t–LDTV Case

example, we let

A =


 −0.1 1

0 −0.2


 .

Figure 4.2 shows different L1(t) for the three filters. Since the time-varying term 0.9t

in the A(t) matrix approaches 0 gradually, the optimal filter gain L1(t) and the L1(t) in

the frozen time filter converge to that of the linear time-invariant filter. Figure 4.3 shows

different residual signals generated by the three methods. It is clear that the residual signals

generated by these three filters are sensitive to faults. However, it can also be shown that

the residual signal generated by the linear time-invariant filter strongly depend on the input

signal u(t), since input signal is not decoupled from residual signal at all time instants.

Specially, when t > 20s that is the step instant of the input signal, the residual produces a

strong fluctuation even that no fault exists at this instant.
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Chapter 5

Fault Detection Filter Design with
Partial Disturbance Decoupling and
Optimization

In this chapter, we consider the multiple-objective optimization (MOO) criteria such as

H−/H∞, H2/H∞ and H∞/H∞ in Section 2.6 for fault detection to a more general case

when Gd is a tall transfer matrix and Dd may not have full column rank for linear discrete

time-invariant plants. It is shown that the sensitivity of residual to some faults could be

unbounded because of the free parameter in the filter. Actually, faults in a certain subspace

can have bounded sensitivity, while the others that can be decoupled from the residual

could have unbounded sensitivity. We also find that this subspace is strongly related to

the image spaces of Gd and Gf . Furthermore, we also derive a method to decouple some

disturbances, without changing the fault sensitivity. Section 5.1 is our problem formulation

and motivations. The main result is given in Section 5.2. Section 5.3 discusses the non-

decoupling and decoupling conditions. Section 5.4 discusses disturbance rejection. Several

examples are given in Section 5.5 to illustrate our results.
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5.1 Problem Formulation and Motivations

Consider the following linear discrete time-invariant system with disturbance and possible

faults

x(t + 1) = Ax(t) + Bu(t) + Bdd(t) + Bff(t) (5.1)

y(t) = Cx(t) + Du(t) + Ddd(t) + Dff(t) (5.2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rnu , f(t) ∈ Rnf , d(t) ∈ Rnd and y(t) ∈ Rny

are control input, fault, disturbance and output, respectively. With respect to different

situations, d and f can be modeled as different type of signals, which results in different

problem formulations. All coefficient matrices are assumed to be constant and known.

By taking z-transformations of (5.1) and (5.2), we have the system input-output equation:

y = Guu + Gdd + Gff

where Gu, Gd and Gf are the following transfer matrices, respectively,

G =
[

Gu Gd Gf

]
=


 A B Bd Bf

C D Dd Df


 .

Furthermore, the following assumptions are made:

1. rank






 A− eiθI Bd

C Dd






 = n + nd, ∀θ ∈ [0, 2π].

2. (C, A) is detectable.

3. Dd 6= 0.

4. ny ≥ nf .

5. ny ≥ nd.
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Remark 18 The assumption 1 means that Gd has no transmission zeros on the unit circle.

It can be removed by the method discussed in Chapters 3 and 4.

Remark 19 The assumption 2 is a standard assumption for filter design.

Remark 20 The assumption 3 is made without loss of generality since any causal transfer

matrix Gd can be written as Gd = z−kG̃d such that the constant term of G̃d is nonzero. Thus

we can design a filter F for G̃d, and take F as the filter for Gd.

Remark 21 The assumption 4 is necessary for guaranteeing that every faults can be iden-

tified [63]. The assumption 5 is the case we shall solve in this chapter. The opposite case

that ny ≤ nd has been solved in [56], which is also summarized in Chapter 2.

Since (C, A) is detectable, Lemma 3 guarantees that there exists a left coprime factor-

ization for G

G = M−1N

and

[
M N

]
=

[
M Nu Nd Nf

]
=


 A + LC L B + LD Bd + LDd Bf + LDf

C I D Dd Df


(5.3)

where L is a matrix such that A + LC is stable.

It can be shown in [55] that, without loss of generality, the fault detection filter can take

the following general form

r = Q(My −Nuu) = Q
[

M −Nu

]

 y

u


 =: F


 y

u




where r is the residual vector for detection, Q ∈ RH ny×ny
∞ is a free stable transfer matrix

to be designed. The framework is shown in Figure 5.1. In general, Q can be any system in
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Figure 5.1: Fault Detection Filter Structure–General Case

RH p×ny
∞ with p ≥ ny, while it is without loss of generality to assume Q ∈ RH ny×ny

∞ ( [55]).

Hence, we have

r = Q
[

Nd Nf

]

 d

f


 = QNdd + QNff

where Nf ∈ RH ny×nf∞ and Nd ∈ RH ny×nd∞ . Here, the effect of input u has been completely

decoupled from the residual. QNd measures the extend to which noise/disturbance affects

residual signal and QNf measures the extend to which faults affect the residual.

In general, an ideal fault detection filter must be able to generate residual signal r

such that r is identically zero when no fault shows up, that is, it rejects completely the

noise/disturbance d , while r must be as sensitive as possible for any fault f .

Therefore, the ideal fault detection problem can be formulated as follows,

Problem 10 Design a system Q ∈ RH ny×ny
∞ to generate a residual r such that





r = 0, if f = 0;

r 6= 0, if f 6= 0.

Further, it should be possible to identify the faults.
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In our framework, it is equivalent to the following problem.

Problem 11 Design a system Q ∈ RH ny×ny
∞ such that





QNd = 0,

QNff 6= 0, ∀f 6= 0.

Further, it should be possible to identify the faults.

Remark 22 The condition that QNff 6= 0,∀f 6= 0 is stronger than QNf 6= 0. For instance,

consider a simple case with

QNf =


 0 0

0 z+0.3
z+0.7


 6= 0.

We have QNff = 0 for the fault signal f =
[

f1 0
]T

, where f1 is any nonzero signal.

Similarly, this condition is also stronger than ‖QNf‖∞ 6= 0 and ‖QNf‖2 6= 0.

Remark 23 The filter design method that only looks for a stable transfer matrix Q such that

the noise/disturbance effect is completely rejected (i.e. QNd = 0) is not always reasonable

since it may also simultaneously reject some faults in a certain subspace. For instance,

QNff could be zero for f in certain subspace if QNd = 0, which implies that the fault in

some subspace cannot be detected.

We argue that there may exist no solution to Problem 11 for some faulty systems. It is

possible that for any Q such that QNd = 0, there always exists f such that QNff = 0.

For instance, consider a simple case with

Nd =




z+0.3
z+0.7

0


 , Nf =




2z+0.6
z+0.7

0


 .

For any Q ∈ RH 2×2
∞ such that QNd = 0 (i.e., Q =


 0 Q12

0 Q22


 with Q12 ∈ RH 1×1

∞ and

Q22 ∈ RH 1×1
∞ ), it follows that QNf = 0, which implies that any fault f cannot be detected.
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Therefore, as long as no solution exists for Problem 11, new criteria are required to make

a tradeoff between two objectives: robustness to disturbance rejection and sensitivity to

faults.

In Section 2.6, when Gd is a wide or square matrix, the problem that maximizes the

fault detection sensitivity and simultaneously constrains the disturbance rejection level is

formulated as a multi-objective optimization problem

max
Q∈RH

ny×ny
∞

{‖QNf‖ : ‖QNd‖∞ ≤ γ, γ > 0} (5.4)

where ‖·‖ can be anyone of H∞ norm, H2 norm and H− index. Here the scalar γ represents

the disturbance rejection level, and fault sensitivity is maximized for all possible faults.

However, when Gd is a tall transfer matrix, the situation becomes much more compli-

cated. To start with, since some faults could be decoupled from the disturbances, their fault

sensitivities can be arbitrarily assigned. Fault sensitivity in terms of ‖QNf‖ could be arbi-

trarily large and thus ‖QNf‖ might not be appropriate to characterize the fault sensitivity.

In contrast, some faults could have bounded sensitivity. Therefore, it is appropriate to dif-

ferentiate those faults, that is, to find the subspace of f (denoted as S) in which any fault

can have bounded sensitivity, while the fault out of the subspace S could have unbounded

sensitivity (i.e. decoupled). The fault detection filter should be able to maximize the fault

sensitivities for the faults in the subspace S, that is, max ‖QNf‖S. Furthermore, it may be

possible to decouple some disturbances from the residual, without changing the fault sensi-

tivity. That is, it is desired to find a subspace of d (denoted as E) in which the disturbance

is completely rejected by the filter.

Therefore, we formulate the following problem.
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Problem 12 Let γ ≥ 0 be a scalar that represents the disturbance rejection level. The fault

detection filter design is:

1. Find a proper transfer matrix Q ∈ RH ny×ny
∞ and a subspace S of faults f such that

the following criteria are satisfied




‖QNd‖∞ ≤ γ

max
Q

∈ RH ny×ny
∞ ‖QNf‖S

‖QNf‖S̄ can be arbitrarily assigned

where S̄ := {f : f ∈ L
nf

2 , f /∈ S} and ‖QNf‖S represents any one of ‖QNf‖S
−, ‖QNf‖S

2

and ‖QNf‖S
∞.

2. If possible, find a subspace E ⊆ L nd
2 and a transfer matrix Q̂ ∈ RH ny×ny

∞ such that

Q̂Ndd = 0, ∀d ∈ E ⊆ L nd
2

and the fault sensitivity in Step 1 is unchanged.

Remark 24 The criteria in Problem 12 is more reasonable than the problem stated in (5.4),

since Problem 12 emphasizes on decoupling some disturbances and some faults from the

residual, besides maximizing the fault sensitivity. Actually, Problem 12 is identical to the

problem stated in (5.4) when S = L
nf

2 and E = 0.

Remark 25 When γ = 0, we have QNd = 0 in the sense that disturbance can be completely

decoupled/rejected from residual.

5.2 Fault Detection Filter Design

In this section, we shall derive our fault detection filter for Problem 12 without considering

disturbance rejection (i.e. E = {0}), based on the co-inner-outer factorization in Lemma 6.

Lemma 23 Nd(z) ∈ RH ny×nd∞ with z = ejθ in (5.3) has rank nd for any θ ∈ [0, 2π].
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Proof It can be easily shown by


 A + LC − ejθI Bd + LDd

C Dd


 =


 I L

0 I





 A− ejθI Bd

C Dd


 .

Then the conclusion follows from Assumption 1. ¤

Since Nd(z) with z = ejθ has full column rank for any θ ∈ [0, 2π] by Lemma 23, Lemma

6 can be employed to obtain the following co-inner-outer factorization

Nd = NoNi

where No ∈ RH ny×nd∞ is a co-outer and Ni ∈ RH nd×nd∞ is a co-inner. Specially, by defining

Lm = L + Lmax, we have

No =


 A + LC −Lmax

C I


 Ωm

=


 A + LC L− Lm

C I


 Ωm,

Lm = −(AYmC ′ + BdD
′
d)(DdD

′
d + CYmC ′)+

+L
[
I − (DdD

′
d + CYmC ′)(DdD

′
d + CYmC ′)+

]
,

ΩmΩ′
m = DdD

′
d + CYmC ′

where Ωm ∈ Rny×nd is of full column rank and the positive semi-definite definite matrix

Ym ∈ Rn×n is the maximal solution of the following Riccati equation

Ym = AYmA′ − SY (DdD
′
d + CYmC ′)+S ′Y + BdB

′
d

= (A + LmC)Ym(A + LmC)′ + (Bd + LmDd)(B + LmDd)
′

where SY = (AYmC ′ + BD′).
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Alternatively, Ym and Lm can be thought as the solution of the following Riccati system:

[
In×n Lm

]

 AYmA′ − Ym + BdB

′
d AYmC ′ + BdD

′
d

(AYmC ′ + BdD
′
d)
′ DdD

′
d + CYmC ′


 = 0.

By defining

V :=


 A + LC L− Lm

C I


 ∈ RH ny×ny

∞ ,

Nd can be written as

Nd = NoNi = V ΩmNi. (5.5)

Since Ωm ∈ Rny×nd is a tall matrix with full column rank, the following singular value

decomposition exists

Ωm = Um


 Σ

0


Vm

where Um ∈ Rny×ny and Vm ∈ Rnd×nd are unitary matrices, and Σ ∈ Rnd×nd is a diagonal

matrix.

Hence,

QNd = QV ΩmNi = QV Um


 Σ

0


VmNi

Let Q =
[

Q1Σ
−1 Q2

]
U ′

mV −1 with Q1 ∈ RH ny×nd∞ and Q2 ∈ RH ny×(ny−nd)
∞ . It

follows that

QNd =
[

Q1Σ
−1 Q2

]

 Σ

0


VmNi = Q1VmNi.

Since Vm is a unitary matrix and Ni is a co-inner, we have

‖QNd‖∞ = ‖Q1VmNi‖∞ = ‖Q1‖∞ ≤ γ.

By defining

Ñf = U ′
mV −1Nf =


 Ñ1f

Ñ2f



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where Ñ1f ∈ RH nd×nf∞ and Ñ2f ∈ RH (ny−nd)×nf∞ , QNf can be written as

QNf =
[

Q1Σ
−1 Q2

]
U ′

mV −1Nf

= Q1Σ
−1Ñ1f + Q2Ñ2f

where Q1 ∈ RH ny×nd∞ is bounded by ‖Q1‖ ≤ γ and Q2 ∈ RH ny×(ny−nd)
∞ is totally free.

Now we shall give our fault detection filter from the signal point of view.

Define 



r̃1 := γVmNid + γΣ−1Ñ1ff

r̃2 := αÑ2ff

where r̃1 ∈ L nd
2 and r̃2 ∈ L

ny−nd

2 can be thought as signals representing the information of

fault f . Let

Q1 =


 Q11

Q21


 , Q2 =


 Q12

Q22


 .

The residual r bocomes

r =


 r1

r2


 = QNff + QNdd

=


 Q11 Q12

Q21 Q22





 Σ−1Ñ1f

Ñ2f


 f+


 Q11

Q21


VmNid (5.6)

=


 Q11Σ

−1Ñ1ff + Q12Ñ2ff + Q11VmNid

Q21Σ
−1Ñ1ff + Q22Ñ2ff + Q21VmNid




=




1
γ
Q11r̃1 + 1

α
Q12r̃2

1
γ
Q21r̃1 + 1

α
Q22r̃2


 (5.7)

=




1
γ
Q11

1
α
Q12

1
γ
Q21

1
α
Q22





 r̃1

r̃2


 .

By taking

[
Q1 Q2

]
=


 Q11 Q12

Q21 Q22




=


 γInd×nd

0

0 αI(ny−nd)×(ny−nd)


 (5.8)
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where α is an arbitrary nonzero real number, we have


 r1

r2


 =


 γVmNid + γΣ−1Ñ1ff

αÑ2ff


 =


 r̃1

r̃2


 ,

in the sense that all the fault information included in r̃1 and r̃2 are transferred to the residual

r, while the disturbance effect is constrained by ‖Q11‖ = γ. Furthermore, any filter in the

form of (5.7) with the constraint ‖Q1‖∞ ≤ γ can be produced by our filter (taking Q1 and

Q2 as that in (5.8).

Putting Q1 and Q2 in (5.8) into Q, the residual signal becomes

r =


 r1

r2


 =


 γΣ−1Ñ1f

αÑ2f


 f +


 γVmNi

0


 d.

The fault sensitivity is

‖QNf‖ =

∥∥∥∥∥∥


 γΣ−1Ñ1f

αÑ2f




∥∥∥∥∥∥
.

Specifically, we have

Q =


 γΣ−1 0

0 αI(ny−nd)


U ′

mV −1

=


 γΣ−1 0

0 αI(ny−nd)


U ′

m


 A + LmC Lm − L

C I


 .

QNf =


 γΣ−1 0

0 αI(ny−nd)


U ′

m


 A + LmC Bf + LmDf

C Df


 .

Lm = −(AYmC ′ + BdD
′
d)(DdD

′
d + CYmC ′)+

+L
[
I − (CYmC ′ + DdD

′
d)(CYmC ′ + DdD

′
d)

+
]
.
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L ∈ Rn×n is any matrix such that A + LmC is stable. The fault detection filter is

F = Q
[

M −Nu

]

=


 γΣ−1 0

0 αI(ny−nd)


U ′

mV −1
[

M −Nu

]

=


 γΣ−1 0

0 αI(ny−nd)


U ′

m


 A + LmC −Lm B + LmD

C I −D


 .

In summary, we have the following theorem.

Theorem 7 For the plant given by the equations (5.1) and (5.2), under Assumptions (1-5),

assume Ym is the maximal solution of the following difference Riccati equation

Ym = (A + LmC)Ym(A + LmC)′ + (Bd + LmDd)(B + LmDd)
′

where

Lm = −(AYmC ′ + BdD
′
d)(DdD

′
d + CYmC ′)+

+L
[
I − (CYmC ′ + DdD

′
d)(CYmC ′ + DdD

′
d)

+
]
.

Alternatively, Lm and Ym are also the solutions of the following Riccati system:

[
In×n Lm

]

 AYmA′ − Ym + BdB

′
d AYmC ′ + BdD

′
d

(AYmC ′ + BdD
′
d)
′ DdD

′
d + CYmC ′


 = 0.

Let Ωm ∈ Rny×nd be the Cholesky factorization ΩmΩ′
m = DdD

′
d + CYmC ′ and Ωm has the

following singular value decomposition

Ωm = Um


 Σ

0


Vm.

Then a fault detection filter for Problem 12 is

F =


 γΣ−1 0

0 αI(ny−nd)


U ′

m


 A + LmC −Lm B + LmD

C I −D



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and

‖QNf‖ =

∥∥∥∥∥∥


 γΣ−1Ñ1f

αÑ2f




∥∥∥∥∥∥
.

Here, α is an arbitrary real number.

Remark 26 Theorem 7 shows that the sensitivity ‖QNf‖ is related to a free parameter α

that can be used to increase the sensitivity for faults in space ker{Ñ2f}, while it cannot

provide more fault information, since any other filter in this form can be recovered by our

filter (5.9).

Theorem 8 For fault f ∈ ker{Ñ2f}, we have

QNff =


 γΣ−1Ñ1ff

0




which is independent of the free parameter L. Thus,

‖QNf‖ker(Ñ2f ) =

∥∥∥∥∥∥


 γΣ−1Ñ1f

0




∥∥∥∥∥∥

ker(Ñ2f )

is bounded.

Proof Let

Lm = L0 + Lδ

where

L0 := −(AYmC ′ + BdD
′
d)(DdDd + CYmC ′)+

Lδ := L
[
I − (DD′ + CY C ′)(DD′ + CY C ′)+

]

= LUm


 0 0

0 Iny−nd


U ′

m

where we used the fact that

Ωm = Um


 Σ

0


Vm and ΩmΩ′

m = DD′ + CY C ′.
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By defining

V −1
δ =


 A + LmC Lδ

C I




and

V −1
0 =


 A + L0C L0 − L

C I




it follows that

V −1 = V −1
δ V −1

0

Q =


 γΣ−1 0

0 αIny−nd


U ′

mV −1
δ V −1

0 .

Thus, we have

QNd =


 γVmNi

0




QNf =


 γΣ−1 0

0 αIny−nd


U ′

mV −1
δ


 A + L0C Bf + L0Df

C Df




=


 γΣ−1 0

0 αIny−nd





 A + LmC Lδ

U ′
mC U ′

m





 A + L0C Bf + L0Df

C Df




=


 γΣ−1 0

0 αIny−nd







A + LmC LUm


 0 0

0 Iny−nd




U ′
mC I


U ′

m


 A + L0C Bf + L0Df

C Df




=


 γΣ−1 0

0 αIny−nd


 ˜̃

N f +




A + LmC LUm


 0 0

0 Iny−nd




U ′
mC 0


U ′

m


 A + L0C Bf + L0Df

C Df




=


 γΣ−1 0

0 αIny−nd


 ˜̃

N f +


 A + LmC LUm

U ′
mC 0





 0 0

0 Iny−nd


U ′

m
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
 A + L0C Bf + L0Df

C Df




=


 γΣ−1 ˜̃

N1f

α
˜̃
N2f


 +


 A + LmC LUm

U ′
mC 0





 0 0

0 Iny−nd







˜̃
N1f

˜̃
N2f




=


 γΣ−1 ˜̃

N1f

α
˜̃
N2f


 +


 A + LmC LUm

U ′
mC 0





 0

˜̃
N2f




=


 γΣ−1 ˜̃

N1f

0


 +


 A + LmC LUm

U ′
mC αIny





 0

˜̃
N2f




where

˜̃
N f := U ′

mV −1
0 Nf =




˜̃
N1f

˜̃
N2f




which is independent of L.

Furthermore, we have

QNf =


 γΣ−1Ñ1f

αÑ2f


 .

Therefore, if f ∈ ker{ ˜̃
N2f}, we also have f ∈ ker{Ñ2f}, the nd + 1 to ny outputs of

residual are identically zero, and the first nd outputs of residual is independent of L2. It

follows that the fault sensitivity ‖QNf‖ker{Ñ2f} is bounded. ¤

Theorem 9 ‖QNf‖ achieves the maximum for faults in ker{Ñ2f}. ‖QNf‖ker{Ñ2f} can be

arbitrarily assigned.

Proof Given f ∈ ker{Ñ2f}, we have Ñ2ff = 0, ∀f ∈ L
nf

2 .

‖QNff‖2 =
∥∥QV UmU ′

mV −1Nff
∥∥

2

=

∥∥∥∥∥∥
QV Um


 Ñ1ff

Ñ2ff




∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
QV Um


 Σ/γ 0

0 0


 ·


 γΣ−1Ñ1ff

0




∥∥∥∥∥∥
2
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≤
∥∥∥∥∥∥
QV Um


 Σ/γ

0




∥∥∥∥∥∥
∞

·
∥∥∥∥∥∥


 γΣ−1Ñ1ff

0




∥∥∥∥∥∥
2

.

In addition, we have

‖QNd‖∞ = ‖QNoNi‖∞ =

∥∥∥∥∥∥
QV Um


 Σ

0


VmNi

∥∥∥∥∥∥
∞

=

∥∥∥∥∥∥
QV Um


 Σ

0




∥∥∥∥∥∥
∞

≤ γ.

Therefore,

‖QNf‖2 ≤ γ

∥∥∥∥∥∥


 Σ−1Ñ1ff

0




∥∥∥∥∥∥
2

= γ
∥∥∥Σ−1Ñ1ff

∥∥∥
2

sup
f∈kerÑ2f

‖QNf‖2

‖f‖2

≤ γ sup
f∈kerÑ2f

∥∥∥Σ−1Ñ1ff
∥∥∥

2

‖f‖2

inf
f∈kerÑ2f

‖QNf‖2

‖f‖2

≤ γ inf
f∈kerÑ2f

∥∥∥Σ−1Ñ1ff
∥∥∥

2

‖f‖2

.

It follows that

‖QNf‖kerÑ2f∞ ≤ γ
∥∥∥Σ−1Ñ1f

∥∥∥
kerÑ2f

∞

and

‖QNf‖kerÑ2f

− ≤ γ
∥∥∥Σ−1Ñ1f

∥∥∥
kerÑ2f

−

where the equalities can be achieved when ‖QNd‖∞ = γ. For our filter (5.9), the equalities

hold.

The similar proof can be derived for 2-norm based on Definition 2. ¤

Remark 27 Since γ is a free parameter, we have
∥∥∥∥∥∥


 γΣ−1Ñ1f

αÑ2f




∥∥∥∥∥∥
∞

≥ α‖Ñ2f‖∞
∥∥∥∥∥∥


 γΣ−1Ñ1f

αÑ2f




∥∥∥∥∥∥
2

≥ α‖Ñ2f‖2

Hence, fault sensitivity in terms of H∞ and H2 norm can be arbitrarily assigned.
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Remark 28 If Ñ2f is a tall or square matrix (ny − nd ≥ nf), the following inequality holds

from (2) ∥∥∥∥∥∥


 γΣ−1Ñ1f

αÑ2f




∥∥∥∥∥∥
−

≥ α‖Ñ2f‖−.

Hence, we can arbitrarily assign H− sensitivity for any fault, given ‖Ñ2f‖− 6= 0.

Similarly, if Ñ1f is tall or square matrix (nd ≥ nf), the following inequality holds

∥∥∥∥∥∥


 γΣ−1Ñ1f

αÑ2f




∥∥∥∥∥∥
−

≥ γ‖Σ−1Ñ1f‖−.

Hence, we have guaranteed H− sensitivity for any fault, given ‖Ñ1f‖− 6= 0.

Remark 29 For ny = nd, the filter can be simplified as

F = γΣ−1U ′
m


 A + LmC −Lm B + LmD

C I −D


 .

Since pre-multiplying a unitary matrix on a system does not affect its H∞ norm, VmF is

also an optimal filter for our criteria, which is identical to the solution given in Section 2.6

in which Gd is of full row rank.

5.3 Decoupling Condition

It has been shown in the last section that the faults in the space ker{Ñ2f} could have

bounded sensitivity in term of H− index, while the other faults in the space ker{Ñ2f} can

be arbitrarily sensitive. In this section we shall derive the condition under which the fault

sensitivity for any fault f ∈ L
nf

2 is bounded.

Theorem 10 (completely non-decoupling condition) If rank{[Gd(e
jθ) Gf (e

jθ)]} = rank{Gd(e
jθ)} =

nd,∀θ ∈ [0, 2π] , that is, image{Gf} ⊆ image{Gd}, the fault detection filter has a bounded

sensitivity in H− index.
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Proof Assume

rank
{[

Gd(e
jθ) Gf (e

jθ)
]}

= rank{Gd(e
jθ)} = nd, ∀θ ∈ [0, 2π].

In other words,

rank






 A− ejθI Bd Bf

C Dd Df






 = rank






 A− ejθI Bd

C Dd






 = n + nd, ∀θ ∈ [0, 2π]

that is, image{Gf} ⊆ image{Gd}. Specifically, there exists a stable (possibly improper)

transfer matrix X such that Gf = GdX.

Furthermore, it is easy to show that Nf = NdX is equivalent to Gf = GdX by the

coprime factorization (5.3).

Note that

U ′
mV −1Nd = U ′

mV −1NoNi

= U ′
mV −1V ΩmNi

= U ′
mΩmNi

=


 Σ

0


VmNi

=


 ΣVmNi

0


 .

Ñf = U ′
mV −1Nf =


 Ñ1f

Ñ2f


 =


 ΣVmNiX

0


 .

According to the derivation in Theorem 8, Ñ2f = 0 implies V −1
δ = I and thus V −1 = V −1

0 .

By (5.5), we have

‖QNf‖− = ‖γΣ−1ΣVmNiX‖− = γ‖V −1NdX‖−

= γ‖V −1Nf‖− = γ‖V −1
0 Nf‖−.

In other words, the fault detection filter has a bounded sensitivity in H− index. ¤
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Theorem 11 The completely non-decoupling condition in Theorem 10 is necessary for H−

index if ker
{

Ñ2f

}
= {0}. If ker

{
Ñ2f

}
6= {0}, it is also necessary for H− index over the

space ker{Ñ2f}.

Proof Assume that image{Gf} is not a subset of image{Gd}, that is, rank{[Gd Gf ]} >

rank{Gd} = nd, ∀θ ∈ [0, 2π].

According to the derivation in Section 5.3, our system Q can transform [Nd Nf ] into the

following form:

Q
[

Nd Nf

]
=


 γVmNi γΣ−1Ñ1f

0 αÑ2f




where VmNi is of rank nd. Since rank{[Gd Gf ]} = rank{[Nd Nf ]} > nd, we have Ñ2f 6= 0.

Therefore, the outputs of residual from nd + 1 to ny can be arbitrarily assigned if

ker{Ñ2f} = {0}. Thus, the fault sensitivity is unbounded. If ker{Ñ2f} 6= {0}, the out-

put energy from nd + 1 to ny can be arbitrary for some fault not in ker{Ñ2f}. Therefore,

the fault can have unbounded sensitivity that is inconsistent with the condition. ¤

Remark 30 This condition is also true when Gd is a square or wide matrix (ny ≤ nd).

In [55,56], when Gd is assumed to be full row rank, this condition is satisfied automatically,

which implies the existence of the upper bound.

Remark 31 If there exists a nonzero X ∈ Rnd×nf solving the linear equation

 Bf

Df


 =


 Bd

Dd


X,

then any disturbance d cannot be decoupled from residual signal, since the following equality

holds

[
Gd Gf

]
=

[
C(zI − A)−1 I

]

 Bd Bf

Dd Df


 .
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Remark 32 The completely decoupling condition is rank{[Gd Gf ]} = rank{Gd}+rank{Gf}.

Otherwise, if rank{Gd} < rank{[Gd Gf ]} < rank{Gd} + rank{Gf}, partial decoupling can

be realized. [22] provided the same condition for perfect fault isolation.

5.4 Decoupling Some Disturbances

In the previous sections we showed that some faults in ker(Ñ2f ) can be decoupled so that

their sensitivities can be arbitrarily assigned. In this section we shall discuss how to decouple

(or reject) some disturbances without changing the fault sensitivity. In other words, find a

space E ⊆ L nd
2 and a transfer matrix Q̂ny×ny ∈ RH ny×ny

∞ such that

Q̂Ndd = 0,∀d ∈ E ⊆ L nd
2

and the fault sensitivity in Step 1 is unchanged.

Theorem 12 Rejecting the disturbance in the following space E does not affect the fault

sensitivity.

E =
{

d ∈ L nd
2 : [QNd]

id 6= 0, [QNf ]
if = 0, f ∈ ker{Ñ2f} for some i ∈ {1, · · · , nd}

}

where [A]i represents the ith row of matrix A.

Proof The residual can be written as

r =


 γΣ−1Ñ1f

αÑ2f


 f +


 γVmNi

0


 d.

The residual at channel i is

[r]i =





[
Σ−1Ñ1f

]i

f + γ [VmNi]
i d, 1 ≤ i ≤ nd;

α
[
Ñ2f

]i

f, nd < i ≤ ny.
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Given
[
Ñ1f

]i

f = 0 for any f ∈ ker{Ñ2f}, [r]i is independent of f , and thus it is appropriate

to reject the disturbance at output channel i, i.e.

Q̂ [VmNi]
i = 0.

¤

We use Si to denote the set of all i’s corresponding to E, that is,

Si =
{

i : [QNd]
id 6= 0, d ∈ L nd

2 , [QNf ]
if = 0, f ∈ ker{Ñ2f} for some i ∈ {1, · · · , nd}

}

Therefore, it is appropriate to revise Q to Q̂ such that for any disturbance d ∈ E, we have

[Q̂Nd]
id = 0 and [Q̂Nf ]

if = 0, ∀f ∈ ker{Ñ2f}, ∀i ∈ Si

which can be done by setting Q̂ = ΛQ, where Λ is a diagonal matrix with some zero diagonal

element.

Here we consider a special case:

Ē =
{
d ∈ L nd

2 : [QNd]
id 6= 0, [QNf ]

i = 0, for some i ∈ {1, · · ·nd}
}

.

Apparently, Ē denotes the case that some rows of Ñ1f are zero or even Ñ1f = 0, which is

a subspace of E. In this case, the filter can be improved by modifying (5.9) in the previous

sections.

If Ñ1f = 0, the residual expression (5.7) becomes

r =


 r1

r2


 =


 Q21Ñ2f

Q22Ñ2f


 f +


 Q11VmNi

0


 d.

Using the similar method in the previous section, we can set Q11 = 0 such that the distur-

bance has been completely decoupled from the residual. More specifically,

r =


 r1

r2


 =


 0

αÑ2f


 f.

Thus we have the following remark.
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Remark 33 When Ñ1f = 0, we can revise Q as

Q̂ =


 0nd

0

0 αI(ny−nd)


U ′

mV −1

=


 0nd

0

0 αI(ny−nd)


U ′

m


 A + LmC Lm − L

C I




to completely decouple disturbance from the residual.

Similarly, when some rows of Ñ1f are zero, the disturbance effect on the residual from

the same rows can be made zero, while it does not change the fault effect on the residual.

In other words, some disturbances are decoupled from the residual.

Remark 34 When some rows of Ñ1f are zeros, we can revise Q as Q̂

Q̂ = Λ


 γΣ−1 0

0 αI(ny−nd)


U ′

mV −1

= Λ


 γΣ−1 0

0 αI(ny−nd)


U ′

m


 A + LmC Lm − L

C I




where

Λ =




λ1 0
. . .

0 λny


 and λi =





0, [Ñ1f ]
i = 0;

1, otherwise.

5.5 Examples

In this section several examples are given to illustrate our results.

Example 1. Consider the following plant with Gu = 0:

y = Gdd + Gff =




2 0

0 4

0 0


 d +




1 0

2 0

0 3


 f.

Assume γ = 1. Then M = I3, Nd = Gd and Nf = Gf .
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According to Theorem 7, we can design

F = Q =




0.5 0 0

0 0.25 0

0 0 α


 , α 6= 0 is a free parameter.

Now

QGd = QNd =




1 0

0 1

0 0




and ‖QNd‖∞ = 1 = γ,

QGf = QNf =




0.5 0

0.5 0

0 3α


 .

Now, the residual signal is

r =




1 0

0 1

0 0


 d +




0.5 0

0.5 0

0 3α


 f

and

‖QGf‖− =

∥∥∥∥∥∥∥∥∥




0.5 0

0.5 0

0 3α




∥∥∥∥∥∥∥∥∥
−

= min{0.5, 3α}.

‖QGf‖∞ = 3α.

It follows that fault sensitivity in H∞ norm can be arbitrarily assigned due to the free

parameter α. Given α > 1/6, ‖QGf‖− = 0.5 shows that this fault detection filter gives at

least 0.5 fault sensitivity for any fault.

Furthermore, for any fault in the space

ker
{

Ñ2f

}
=






 f1

0


 : f1 ∈ L 1

2





the fault sensitivity is 0.5.
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Example 2. Consider the following plant

y = Ddd + Dff =




2 0

0 4

0 0


 d +




0

0

3


 f.

The design criterion is maxQ{‖QGf‖ : ‖QGd‖ ≤ γ} and γ = 1.

According to Section 5, the disturbance can be completely decoupled from the residual

since rank{[Gd Gf ]} = rank{Gd} + rank{Gf} holds. We design fault detection filter as

follows

F = Q =




0 0 0

0 0 0

0 0 α


 , α 6= 0 is a free parameter

Thus, we have

QGd = QNd =




0 0

0 0

0 0




which implies that residual r is independent of disturbance d. Furthermore, we have

QGf = QNf =




0

0

3α




and ‖QGf‖− = 3α. It implies that the worst sensitivity of residual signal is 3α for any fault.

Example 3. Consider the following plant

y = Ddd + Dff =




2 0

0 4

0 0


 d +




1 1 0

0 0 0

1 0 1


 f.

The design criterion is maxQ{‖QGf‖ : ‖QGd‖ ≤ γ} and γ = 1.

According to Theorem 7, we have the following fault detection filter

Q =




0.5 0 0

0 0.25 0

0 0 α


 , α 6= 0.
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Thus,

QNd =




1 0

0 1

0 0




and ‖QNd‖∞ = 1,

QNf =




0.5 0.5 0

0 0 0

α 0 α




‖QNf‖− = min{0.5, α}

Given α > 0.5, the worst fault sensitivity is 0.5, which is only for any fault in

ker
{

Ñ2f

}
=








f1

0

f3


 : f1 + f3 = 0





while fault sensitivity may be arbitrarily assigned for faults in ker
{

Ñ2f

}
.

Furthermore, since [QNf ]
2 = 0, it is appropriate to revise Q as

Q̂ =




0.5 0 0

0 0 0

0 0 α


 .

Thus we have

Q̂Nd =




1 0

0 0

0 0


 ,

‖Q̂Nd‖∞ = γ = 1 and

Q̂Nf =




0.5 0.5 0

0 0 0

α 0 α


 = QNf .

It can be shown that Q̂ is better than Q, since this fault detection filter can reject the

noise/disturbance from the direction
[

0 1
]T

, while fault sensitivity is not changed. For

instance, assume that the disturbance is d =
[

0 sin(t)
]T

(t ∈ {0, 1, · · · }), when no fault
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exists, the fault detection filter Q generates a residual r =
[

0 4sin(t) 0
]T

6= 0, while the

fault detection filter Q̂ produces the residual r =
[

0 0 0
]T

, which shows clearly on the

non-existence of fault.

Example 4: Consider a dynamic plant with the following coefficients

A =




−0.2 0 5 0

0 −2.5 0 2.5

0 0 1.65 0

0 0 0 −1.85




B =




1

2

3

4




Bd =




0.8 0.4

−0.4 1

0.6 0.8

0.8 0.6




Bf =




1

0.5

2

3




C =




4 0 0 2

1 0 3 1

0 2 1 0


 D =




0.3

0.5

0.4




Dd =




0.2 0.4

0.4 0.6

0.3 0.6


 Df =




32

−3.1

0.3




By the algorithm in Chapter 2, we obtain

Ym = 0

Ωm =




0.2040 0

0.4040 0.0196

0.3040 0.0098




Lm =




4.5883 −6 2.2745

−9.0855 9 −4.6097

1.5455 −2 −0.3637

5.1460 −5 0.5693



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Um =




−0.4136 0.3696 −0.8321

−0.6663 −0.7456 0

−0.6204 0.5544 0.5547




Σ =


 1.0796 0

0 0.0668




Note that we used the free parameter L to guarantee that A+LmC is stable in the algorithm.

We take γ = 1. Given α = 1, the optimal filter is F with the following coefficients

Â =




2.529 1.15 3.428 0.475

0.8403 −0.1553 0.6409 −0.05557

0.6763 −0.9238 −4.184 −2.451

5.945 −0.3431 7.254 0.9723




B̂ =




−5.806 9.325 −3.543 0.7847

−1.608 2.763 −1.271 −0.1101

−0.2529 1.271 −1.544 −1.974

−8.316 7.103 −2.328 0.983




Ĉ =




2.748 −0.3346 −5.688 −0.4438

3.898 1.126 −3.46 13.99

1.356 1.988 0.2368 2.637




D̂ =




−0.3831 −0.6172 −0.5747 0.6534

5.534 −11.16 8.301 0.6013

−0.8321 0 0.5547 0.02774




Further, we have

QNd =




−0.4959z4−0.4156z3−0.07765z2−0.001465z
z4+0.838z3+0.1566z2+0.002916z

−0.8684z4−0.7277z3−0.136z2−0.00257z
z4+0.838z3+0.1566z2+0.002916z

−0.8684z4−0.7277z3−0.136z2−0.00263z
z4+0.838z3+0.1566z2+0.002916z

0.4959z4+0.4156z3+0.07761z2+0.001251z−0.0001254
z4+0.838z3+0.1566z2+0.002916z

0 0




QNf =




0.9747z4−75.74z3−893.2z2−2898z−1086
z4+0.838z3+0.1566z2+0.002916z

48.16z4−700.4z3−6088z2−1.415e004z−5013
z4+0.838z3+0.1566z2+0.002916z

−1.498z4−193.4z3−1265z2−2703z−943.4
z4+0.838z3+0.1566z2+0.002916z



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The last row of QNd is zero, which means the disturbance effect on the output 3 of residual

is removed. The poles of QNf are 0, −0.0209, −0.2430 and −0.5741, which are inside of the

unit disk and implies the stability.

Since the filter is related to the free parameter α, we compare the filters with different α

(α = 1, 5, 10 and 50). We have ‖QNd‖ ≈ 1 for all α. It can be seen from Figure 5.2 that

the frequency responses of QNd at each channels for different α are the same and the output

3 is identical zero. That is, QNd is independent of α. Figure 5.3 shows the three singular

values of QNd for θ = [0, 2π]. It can be seen that the disturbance sensitivity is bounded by

1. Figure 5.4 shows the frequency responses of QNf at each channels. Figure 5.5 shows the

singular values of QNf for θ = [0, 2π]. It can be seen that increasing α can improve the fault

sensitivity.
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Figure 5.2: Frequency Responses of QNd at Different α (Example 4)
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Figure 5.3: Singular Values of QNd over θ at Different α (Example 4)

Example 5: Consider the dynamic system:


 A Bd Bf

C Dd Df


 =




z+0.7
z+0.5

z+0.8
z+0.5

0 0


 =




−0.5 0.2 0.3
 1

0





 1

0





 1

0





 .

Define

Lm =
[

l1 l2

]
.

By solving the following Riccati system

[
1 l1 l2

]



0.04− 0.75Ym 0.5Ym + 0.2 0

0.5Ym + 0.2 1 + Ym 0

0 0 0


 = 0

we obtain the solution:

Ym = 0, l1 = −0.2, l2 arbitary.

We have

Q =




−0.7
[
−0.2 l2

]

 γ

0





 γ 0

0 α






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Figure 5.4: Frequency Response of QNf at Different α (Example 4)

QNd =


 γ

0


 , QNf =


 γ z+0.8

z+0.7

0


 .

Obviously, we have ker
{

Ñ2f

}
= L 1

2 which implies that all faults in L 1
2 have bounded

sensitivities. Actually, we have ‖QNf‖− = γ
∥∥ z+0.8

z+0.7

∥∥
− = 0.6667 which can be achieved at

frequency ω = π.

Example 6: Consider the following dynamic system with Gu = 0

[
Gd Gf

]
=




z+0.7
z+0.5

z+0.8
z+0.5

0 1




=




−0.5 0.2 0.3
 1

0





 1

0





 1

1





 .

Define

Lm =
[

l1 l2

]
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Figure 5.5: Singular Values of QNf over θ at Different α (Example 4)

By solving the following Riccati system

[
1 l1 l2

]



0.04− 0.75Ym 0.5Ym + 0.2 0

0.5Ym + 0.2 1 + Ym 0

0 0 0


 = 0

we obtain the solution:

Ym = 0, l1 = −0.2, l2 arbitary.

We have

Q =




−0.7
[
−0.2 l2

]

 γ

0





 γ 0

0 α







QNd =


 γ

0


 , QNf =


 γ z+0.8+l2

z+0.7

α


 .

Obviously, ker
{

Ñ2f

}
= {0}, which means that any fault in L 1

2 cannot have bounded

sensitivity. When α is big enough, we have

‖QNf‖− = γ

∥∥∥∥
z + 0.8 + l2

z + 0.7

∥∥∥∥
−

.
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Assume γ = 1. Figure 5.6 shows the singular values of QNf for all θ ∈ [0, 2π] at different l2.

Figure 5.7 shows ‖QNf‖− at different l2. It can be seen that l2 can be used to improve the

fault sensitivity ‖QNf‖− and the worst fault sensitivity can be arbitrarily assigned.
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Figure 5.6: Singular Values of ‖QNf‖− vs θ at Different l2 (Example 6)

Example 7: Consider the following dynamic system with Gu = 0

[
Gd Gf

]
=




z+0.7
z+0.5

z+0.8
z+0.5

1 0




=




−0.5 0.2 0.3
 1

0





 1

1





 1

0





 .

Define

Lm =
[

l1 l2

]
.

By solving the following Riccati system

[
1 l1 l2

]



0.04− 0.75Ym 0.5Ym + 0.2 0.2

0.5Ym + 0.2 1 + Ym 1

0.2 1 1


 = 0
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Figure 5.7: ‖QNf‖− at Different l2 (Example 6)

we obtain the solution:

Ym = 0 and l1 + l2 + 0.2 = 0.

We have

Q =




−0.5 + l1

[
l1 l2

]

 −1

2
γ

−
√

2
2

α





 −

√
2

2
γ −

√
2

2
γ

−
√

2
2

α
√

2
2

α





 .

System is stable when | − 0.5 + l1| < 1, that is, −0.5 < l1 < 1.5.

QNd =


 −γ

0


 , QNf =


 −1

2
γ z+0.8

z+0.5−l1

−
√

2
2

α z+0.8
z+0.5−l1


 .

Thus, we have ‖QNd‖ = γ and ker
{

Ñ2f

}
=

{
f : z+0.8

z+0.5−l1
f = 0

}
= {0}, which means every

fault could have arbitrary sensitivity. Actually, for any fault f ∈ L1
2 and f 6= 0, the residual

energy at the second output could be arbitrarily large due to free parameter α. Thus the

fault sensitivity in terms of ‖QNf‖∞ and ‖QNf‖2 could be arbitrarily large.

As for ‖QNf‖−, it is related to the free parameter l1. Given that α is zero and γ = 2, we

have ‖QNf‖− = 1
2
γ

∥∥∥ z+0.8
z+0.5−l1

∥∥∥
−

= 1 which is achieved when l1 = −0.3.
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Figure 5.8 shows the singular values of QNf for all θ ∈ [0, 2π] at different l1. Figure

5.9 shows ‖QNf‖− at different l1. It can be seen that l1 can be used to increase the fault

sensitivity ‖QNf‖−, but the maximum of the worst fault sensitivity is bounded.
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Figure 5.8: Singular Values of QNf over θ at Different l1 (Example 7)

Example 8:

[
Gd Gf

]
=




z+0.7
z+0.5

z+0.8
z+0.5

z+0.6
z+0.5

0 1 1




=




−0.5 0.2
[

0.3 0.1
]


 1

0





 1

0





 1 1

1 1





 .

Define

Lm =
[

l1 l2

]
.

By solving the following Riccati system

[
1 l1 l2

]



0.04− 0.75Ym 0.5Ym + 0.2 0

0.5Ym + 0.2 1 + Ym 0

0 0 0


 = 0
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Figure 5.9: ‖QNf‖− at Different l1 (Example 7)

we obtain the solution:

Ym = 0, l1 = −0.2, l2 arbitary.

We have

Q =




−0.7
[
−0.2 l2

]

 γ

0





 γ 0

0 α





 .

QNd =


 γ

0


 QNf =


 γ z+0.8+l2

z+0.7
γ z+0.6+l2

z+0.7

α α


 .

It follows that

ker
{

Ñ2f

}
=



f : f =


 f1

f2


 , f1 + f2 = 0, f ∈ L

nf

2



 .

Further,

‖QNf‖ker{Ñ2f}
− =

√
2

2
· γ

∥∥∥∥
z + 0.2

z + 0.7

∥∥∥∥
−

= 0.0832γ

which is independent of l2.
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From the expression of QNf , it can be seen that for the fault not in ker{Ñ2f} (f1+f2 6= 0),

the fault sensitivity can be arbitrary due to the free parameter α.

Example 9: Consider the following dynamic plant with Gu = 0

[
Gd Gf

]
=




z+0.7
z+0.5

z+0.8
z+0.5

z+0.6
z+0.5

1 1 1




=




−0.5 0.2
[

0.3 0.1
]


 1

0





 1

1





 1 1

1 1







Define

Lm =
[

l1 l2

]

By solving the following Riccati system

[
1 l1 l2

]



0.04− 0.75Ym 0.5Ym + 0.2 0.2

0.5Ym + 0.2 1 + Ym 1

0.2 1 1


 = 0

we obtain the solution:

Ym = 0 l1 + l2 + 0.2 = 0.

We have

Q =




−0.5 + l1

[
l1 l2

]

 −1

2
γ

−
√

2
2

α





 −

√
2

2
γ −

√
2

2
γ

−
√

2
2

α
√

2
2

α







System is stable when | − 0.5 + l1| < 1, that is, −0.5 < l1 < 1.5.

QNd =


 −γ

0




QNf =


 −1

2
γ z+0.8

z+0.5−l1
−1

2
γ z+0.6

z+0.5−l1

−
√

2
2

α z+0.8
z+0.5−l1

−
√

2
2

α z+0.6
z+0.5−l1




Further, we have

ker
{

Ñ2f

}
=






 f1

f2


 : f1 = −z + 0.8

z + 0.6
f2




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and

‖QNf‖ker{Ñ2f}
− = 0

which is independent of l2.

122



Chapter 6

Polynomial Matrix Approach to Fault
Detection Filter Design

In contrast to the previous chapter on the state-space model, we shall derive the fault

detection filter directly from transfer matrix. Section 6.1 presents the filter design procedure,

while Section 6.2 gives an example to illustrate the result.

6.1 Design Procedure

From the derivations in the previous chapter, the optimal filter design for linear discrete

time-invariant systems can be formulated as a problem of finding an appropriate Q such

that some measure of QNf is optimized while QNd is constrained in some sense. In general,

under the optimal condition, we have ‖QNd‖∞ = γ. From matrix theory, QNd and QNf

can be thought as transformations on the Nd and Nf respectively, which can be done by

row elementary operations. Therefore, we can try to do row elementary operations for Nd

till we find an appropriate Q. Specifically, if we are able to do elementary operations for

[
Nd Nf I

]
till Nd becomes diagonal, it is easy to find its inverse. In addition, the

information of the elementary operations is stored into the third block (the previous identity

matrix I). Based on its inverse and the third block, the filter Q can be constructed. By

following this idea, we have the following procedure for fault detection filter design.
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1. Find a left coprime factorization for G =
[

Gu Gd Gf

]
as follows

G = M−1N = M−1
[

Nu Nd Nf

]
.

2. Define q := z−1. Construct a combined transfer matrix N̄ as follows

N̄ =
[

Nd(q) Nf (q) Iny

]
.

Note: | in
[

Nd(q) Nf (q) Iny

]
is used to separate three blocks.

3. Pull out the denominator part for Nd(q) and then do row elementary operations iter-

atively for N̄ till N̄ becomes the following form

N̄ → Ñ =
[

Ñd Ñf Q̃
]

where

Ñd =




R1 0
. . .

0 Rnd

0 · · · 0




.

This transformation is possible since rank{Nd} = nd, ∀θ ∈ [0, 2π].

4. Design Q as

Q = ΨQ̃(q)

where

Ψ =




γT−1
1 (q) 0 0

. . .
...

0 γT−1
nd

(q) 0

0 · · · 0 αI(ny−nd)×nd




,

α is a free scalar and Ti (i = 1, . . . nd) are the spectral factors of Ri. In other words,

Ti can be obtained by reflecting the unstable zeros of Ri into the unit circle.
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Note that since Gd has no transmission zero on the unit circle, T−1
i (i = 1, · · · , r) are

stable.

5. Given some rows of Ñ1f are zero, it is appropriate to revise Q as

Q̂ = ΛQ = ΛΨQ̃(q)

where

Λ =




λ1 0
. . .

0 λny




and

λi =





0, [Ñ1f ]
i = 0;

1, otherwise.

6. The fault detection filter is

F = Q̂
[

M −Nu

]
.

Remark 35 The row elementary operations in Step 3 include three operations: exchanging

rows, adding one row on another row and multiplying a polynomial in terms of operator q

on one row.

6.2 Example

We give the following example to illustrate our procedure in Section 6.1.

Assume that we have already obtained the following matrix after left coprime factoriza-

tion

[
Nd Nf I

]
=




z+4
z+0.5

z+0.8
z+0.5

1 0

1 0 0 1


 =




4q+1
0.5q+1

0.8q+1
0.5q+1

1 0

1 0 0 1


 .

Step 1: By pulling out the common denominators, we have

[
Nd(q) Nf (q) I

]
=

1

0.5q + 1


 4q + 1 0.8q + 1 0.5q + 1 0

0.5q + 1 0 0 0.5q + 1


 .
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Step 2: Row elementary operations:

1. After the first row ×(0.5q + 1) and the second row ×(4q + 1), we have

1

0.5q + 1


(4q + 1)(0.5q + 1) (0.5q + 1)(0.8q + 1) (0.5q + 1)2 0

(4q + 1)(0.5q + 1) 0 0 (4q + 1)(0.5q + 1)


 .

2. After row 2 minus row 1, we have

1

0.5q + 1


(4q + 1)(0.5q + 1) (0.5q + 1)(0.8q + 1) (0.5q + 1)2 0

0 −(0.5q + 1)(0.8q + 1) −(0.5q + 1)2 (4q + 1)(0.5q + 1)


 .

3. To simplify it, we have


 (4q + 1) 0.8q + 1 0.5q + 1 0

0 −(0.8q + 1) −(0.5q + 1) 4q + 1


 .

4. Thus, we can have the following result:

Q =


 γ 1

q+4
0

0 α





 0.5q + 1 0

−(0.5q + 1) (4q + 1)


 =


 γ 0.5q+1

q+4
0

−α(0.5q + 1) α(4q + 1)


 .

In addition, we can easily verify

QNd =


 γ 0.5q+1

q+4
0

−α(0.5q + 1) α(4q + 1)







4q+1
0.5q+1

1


 =


 γ 4q+1

q+4

0


 =


 γ z+4

4z+1

0


 ,

‖QNd‖∞ = γ and

QNf =


 γ 0.5q+1

q+4
0

−α(0.5q + 1) α(4q + 1)







0.8q+1
0.5q+1

0


 =


 γ 0.8q+1

q+4

−α(0.8q + 1)


 =


 γ z+0.8

4z+1

−α z+0.8
z


 .

From the expression QNd, it can be seen that α is able to improve the fault sensitivity at

the second output of residual signal, but not the first one. Thus, the fault sensitivity at the

first output is bounded. In addition, we can do more row elementary operations in Step 2,

which can result in different Q. Therefore, Q is not unique.
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Chapter 7

Future Work

Robust fault detection filter design is an exciting area for both theoretical research and

practical application. As we saw in the previous chapters, our framework is suitable for

robust fault detection of LTI and LTV cases. In order to sufficiently explore this framework

on fault detection, the following future work could be a significant complement.

First, it is not immediate to extend the result in Chapter 5 to linear continuous time

systems. In Chapter 5 we have obtained the solution for the case in which Gd may not

be square or wide and Dd may not have full column rank for linear discrete time invariant

systems. Parallel results may be developed for linear continuous time-invariant systems by

employing similar techniques. However, it may be a little harder to relax the condition

Dd = 0.

The relaxation of the condition that


 A− jωI Bd

C Dd


 has full rank may be much harder.

This condition means there exists no transmission zero on the imaginary axis or the unit

circle for Gd. This condition is not necessary for the practical systems. It is highly possible

that without this condition there may be no rational solution in our framework. In this

situation, there are two issues: one is to explore more general solution set, i.e. nonlinear

filter; the other is to find approximated rational solution, but approximation error should be

evaluated in terms of a bound.
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In addition, further work should be addressed on the complete comparison and relation

with other criteria. Actually, there are some other criteria in robust fault detection with

the same model such as maximizing the ratio of fault sensitivity and disturbance sensitivity

[18]. An obvious drawback of this criterion is that the disturbance sensitivity cannot be

zero, otherwise, the objective function could be infinity. Thus, it cannot handle with the

decoupling problem simultaneously. Therefore, our decoupling and optimization mechanism

could be developed for this criterion.

since the general case contains both decoupling and optimization simultaneously and

it is related to a general Riccati equation (GRE), it is necessary to explore an efficient

algorithm for this equation. The current available methods for GRE can be classified into two

categories: one is the so called deficient subspace method, which is an extension of invariant

space method, but it is too complicated to compute [37]; the other is an optimization-based

method that aims to look for a matrix sequence that converges to the optimal solution, but

its convergence speed is not guaranteed for the general Riccati equation, especially when the

discrete time system’s poles close to the unit circle [28].

One assumption in the fault detection of linear time-varying systems is that Dd(t) is full

row rank for all time t > 0. However, this restriction could be a little strong for some time

varying systems that rank deficiency happens at only a few ’singular’ points. For instance,

for a system with time-varying term

Dd(t) =


 2− t 1

1 1




Dd(t) is of full rank for all time t except t = 1. The relaxation of our assumption to include

the case that Dd(t) is rank deficient at some discrete points makes sense. Mathematically,

the rank deficient set is of countable points.
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Another issue is the extension to sampled-data systems. This work will make much sense

because, as we all know, most modern systems that have computer involved are sampled-

data systems, a kind of hybrid systems that have continuous input and output for the plant,

but have discrete-time input and output for the controller. Actually, there are quite a few

of works on fault detection of sampled-data systems [39]. In [39] Izadi et al. the authors

considered maximizing the ratio of fault sensitivity and disturbance sensitivity in terms of

H2 or H∞ norm, while the popular H− index was not considered. By employing the similar

lifting technique in frequency domain or time domain, it may be possible to extend our

framework to sampled-data systems.

Our framework could be extended to infinite-dimensional systems as well. Infinite-

dimensional systems are systems in which system coefficients may be represented by op-

erators in Hilbert space, but not finite dimensional matrices. The extension of the result

to infinite-dimensional systems could be rather hard and the Riccati equation involved in

our fault detection framework could be an operator Riccati equation for infinite-dimensional

systems.

Optimal robust fault detection with model uncertainties could be a challenging work. In

this case, the plant in the framework is not exactly known, i.e., it may be represented by a

nominal plant G and model error G∆. The optimal fault detection filter design will be much

difficult since the residual generator should attenuate the negative effect of the uncertain

model error G∆ on the residual signal.

Nonlinear robust fault detection is another challenging work. One way is to look for

a broader solution set, i.e. nonlinear filter. The other is to linearize the nonlinear plant

to obtain a time varying (possibly time invariant) nominal model with plant error. This
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linearization method turns out to be the robust fault detection problem with model uncer-

tainty.
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Chapter 8

Conclusion

Several multi-objective fault detection problems such as H−/H∞, H2/H∞ and H∞/H∞

have been given for linear continuous time-varying systems (LCTVS) in time domain for

finite horizon and infinite horizon case, respectively. It has been proven that the optimal

solution is an observer determined by solving a standard differential Riccati equation. The

solution has also been extended to the case when the initial state for the system is unknown.

An example has also been given to illustrate the results.

The parallel problems have also been solved for linear discrete time-varying systems in

time domain. The solution is also an observer whose gain is determined by solving a standard

recursive difference Riccati equation (DDRE). The solution is also extended to the case when

the initial state for the system is unknown. An example has also been given to illustrate the

results.

We have also extended the framework to the more general case in which Gd may be a tall

or square transfer matrix, and Dd may not have full column rank for linear discrete time-

invariant systems (LDTIS). In this situation, the common H−/H∞, H2/H∞ and H∞/H∞

frameworks are not applicable. Based on several novel definitions of norms over a certain

subspace, we have proposed some new frameworks for both decoupling and optimization and

the solution has been given in state space form. Here, the solution is related to a generalized

131



Riccati equation (GRE). To be more specific, with this filter, some faults in certain subspace

can be completely decoupled from the residual signal, while the others are optimized in

terms of fault sensitivity. Furthermore, disturbance rejection based on the solution has been

discussed. In addition, we have provided a procedure for computing the fault detection filter

in transfer matrix form. Several examples have been given to illustrate the results.

Finally, some further explorations based on this framework have been also discussed.
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