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Abstract

The primary goal of this research is to assist temnical stakeholders involved in
requirements engineering with a comprehensible atethr managing changing
requirements within a specific domain. An importpatt of managing evolving
requirements over time is to maintain a tempordéang of the changes and to support
traceability of the modifications. This researclirtkes a semi-formal syntactical and
semantic definition of such a method using a visarajuage, RE/TRAC (Requirements
Evolution with Traceability), and a supporting fahsemantic notation RE/TRAC-SEM.
RE/TRAC-SEM is an ontological specification employia combination of models,
including verbal definitions, set theory and argjrianguage specification RE/TRAC-CF.
The language RE/TRAC-CF enables the separatidmea$yntactical description of the
visual language from the semantic meaning of thdeh@ermitting varying target
representations and taking advantage of existifigjexit parsing algorithms for context-
free grammars. As an application of the RE/TRAGespntation, this research depicts the
hierarchical step-wise refinement of UML use casgm@ms to demonstrate evolving
system requirements. In the current arena of soéwavelopment, where systems are
described using platform independent models (PWtsgh emphasize the front-end
design process, requirements and design documeditsling the use cases, have become
the primary artifacts of the system. Thereforertteagement of requirements’ evolution

has become even more critical in the creation aaithtenance of systems.
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1. Description of the Problem

There are many contexts where a generalized apgpisased at the onset of an
endeavor, and then additional ideas or conceptgrackially introduced to further incorporate
detail and difficulty. A challenging concept is comonly introduced in its simplest form, and
then qualifications and/or exceptions are introducea logical manner to facilitate
comprehension. An example is in the area of reqergs engineering in software development
where functional requirements are first looselycdiéed and then customized over time by
incrementally adding to or constraining the desmipof the system. As the evolution of
requirements progresses, a means of tracing thsftmanation is imperative. Additionally, the
process of refinement of requirements is compougeduse of the variability of expertise
among the participants. Foremost in the specificadf the requirements is the contribution of
the stakeholder who may, but often does not, haeetmical background.

The hypothesis of this research is that a fornddiiined system for the depiction of the
refinement and dependencies of requirements basadarmal representation benefits the
stakeholder by increasing understandability, priogidraceability and improving the quality of
the representation. This research defines a visodel, RE/TRAC (Requirements’ Evolution
with Traceability) [DouCar2006], to represent tk&mement of requirements and to enable the
tracking of evolutionary improvements. A RE/TRAC debenhances the evolutionary process
by providing a symbolic abstract depiction of changer time. Because RE/TRAC may be
useful in many areas by people from diverse, periman-technical backgrounds, a primary goal
is to support a step-by-step refinement procedsslmmprehensible and easy to employ.
System developers will benefit from utilizing RE/AR because it facilitates the customization

of a set of core requirements by a non-technieddettolder.



This research also describes an ontological spatidin, RE/TRAC-SEM, for describing
the semantic information in the requirements evofuprocess with limited reliance on the
graphical model [DouCar2007]. The formal semardgjf@resentation, i.e. the ontological
specification, employs a combination of modelsludimng set theory, a string language
specification RE/TRAC-CF, and verbal definitionsieTontology enables the syntactical
description of the visual language (VL) to be sapadt from the semantic meaning of the model,
permitting varying target representations and irggegn with other system views.

The hierarchical representation and step-wise egfegnt method has many application
domains; however, this research currently focusesequirements specification within the
requirements engineering domain.

1.1. Domain Modeling

An enterprise obtains a competitive advantagewitis the first to adopt innovative
technologies; however, as new technology employeddsoftware application becomes
commonplace, those who first employed the novéirnelogy lose their competitive edge.
Attention then shifts to enterprise goals and impdatation strategies in order to regain a
leadership position among competitors. Softwarestigers today recognize that these
fluctuations driven by changing technology requieens will persist in the future. One approach
to managing changing technologies is the use dfigoia independent models (PIMs) that
separate the implementation details, which relyemhnology decisions, from the representation
of the business processes. The separation of ghlemmentation from the analysis and design of a
problem solution allows developers to better foensdentifying the high level goals, refining
the goals, and implementing the goals [Foremang. diitput of the goal refinement stage is a set

of system requirements.



Before the goals are identified for a software dgwment application, the domain must
be identified, and the scope of the domain musiddmeated. Pender defines a domain as the
description of basic elements common to all systentise same subject area and their
relationships [Pender]. A primary activity of domangineering is to identify commonality and
variability within the domain under study and tampfor reusable components [Pender],
[Sutcliffe]. For a specific application within a mhain there may be elements in the domain that
are optional or excluded.

An application within a domain is developed usihg artifacts described by the domain
engineer, taking advantage of the commonality arébility documented within the domain
[Foreman], [Morisio et al]. The artifacts in eachge are often UML documents and text
[Foreman]. The domain model, which is a conceptaéin of the entities and their
relationships, is embodied in these artifacts. 3éteof requirements for an application is
represented in the domain model.

The responsibilities for the domain engineer hetvéied to reflect the emphasis on
PIMs. As auto-generation of code from the domaimeh@and from design documents has
become a reality, analysis and design phases o&mloamgineering have become more
significant. The analysis and design (front-endfats have become the primary representation
of the system, rather than the low-level executabbke. Whenever requirements change, only
the analysis and design artifacts are modified.

1.2 Motivation

Once a domain model has been clearly descrihedeguirements for an individual

application can be specified. There are severabresathat the domain engineer or stakeholder in

the system would want to directly manage the sjpatibn of the requirements:



1. Assuming auto-generation of code from the resgnents’ documents,
the enterprise stakeholders can react instaatesty to changes in the
environment by altering requirements documents.

2. There is a continuing trend in enterprise dgwalent towards
implementation of “best practices”; howeveg #nterprise
stakeholders may consider their goals privateraay distrust an
outside domain engineer who might duplicateesssful operation
strategies in other applications within the damWith auto-generation
of code from the requirements specificatioomesmf the enterprise’s
business strategies can conceivably be impleadeand maintained
privately.

3. Stakeholders can make adjustments tcetiignements based on
anticipated business expansion such as in g@@lorganization and
product development.

4. One-of-a-kind software systems are expensiget@lop and maintain.
A cost effective alternative to application-sifie software is
commercial off the shelf (COTS) software. Bfien customers cannot
modify the software to incorporate their owongesses and
implementation strategies. More often customaust amend their
individual operations to conform to an inflel@lsoftware product.

COTS software can solve these problems by pengithe user to specify requirements

in order to generate or alter the implementatiofra#nework of core generic requirements

provided explicitly for the domain defines the plevh space and thereby simplifies the



requirements specification process. Requiremeatsate structured in natural language-like
form can be easily understood and altered by theatio expert. However, the management of
large quantities of interconnected textual docusmeah become difficult. A global composite
view of the documents is helpful. A partial solutim the problem is to employ a visual diagram
or graphical depiction of the information to suppbe design effort. The fundamental aspects of
such a software development method are describisinlissertation.

RE/TRAC when applied to the evolution of requiretseznables traceability of changes.
The ability to trace system development over timenportant. Structuring the changes by
temporal order is important for sequencing therimteevents. As evolutionary changes are
made, a log should be maintained of the deviatsanhat the linear history can be queried in
both a forward and backward order. Tracking enadetuation of progress during
development; provides documentation; provides alit &ail for error and fault resolution; and
serves as a pattern for future developments. Whanlgamms occur in the verification and
validation of the requirements, tracing the alierat in a backward manner enables a rollback to
a viable system description. The current statd@fstystem requirements in the evolutionary
process is observable in the documentation. Sulbs¢gystems development may take
advantage of commonalities in a requirements sSigatibn already in practice and points of
delineation in the history may be marked.

Therefore, the motivation for this research isrgpewer the non-technical stakeholder in
requirements specification by facilitating requikams configuration management. The quality
of the method is sustained because all views arsistent with the formal representation of the
current and past states of the requirements spatdn. By enabling the tracing of the

systematic evolution to the front-end documentgrations noted in discrete change events may



be verified and validated in a temporal order. filles and constraints of the formal
representation enforce a uniform and coherentprggation of all views of the requirements
evolution.

1.3 Summary

Requirements engineering is the most importans@lod software development. If the
requirements are not well understood and describedesult is likely to be a failure. Today’s
emphasis related to application development isamain engineering to analyze, design, and
implement a set of related systems. Requiremeittsrva domain are described in a manner to
account for variability and commonality across was implementations. Platform independent
models (PIMs) enable the domain engineer to focusedy on realizing the enterprise goals and
representing the requirements within a system dégss of technology and platform. More
emphasis is placed on the accuracy and completeh#ss front-end artifacts from the analysis
and design phases, as they form the main artitddtee system from which implementation-
specific requirements will be added and code aetwetpted.

Enterprises are concerned about securing ttrategic goals and requirements as
reflected in the corresponding implementation.ddigon, the viability of the enterprise may
depend on immediate reaction and response to chkamgecompetitive market. The avoidance
of custom application software reduces the deperelen a domain expert outside of the
enterprise organization and lowers the expensaefod-a kind system development. An
enterprise could therefore benefit from employirgptiware development method for
requirements engineering that is domain-specificqgeumits requirements to be customized in a
flexible manner. Because the stakeholder may natteehnical expert, the approach should be

simple, intuitive, and robust. This research piegia method that supports the elaboration of



the core requirements within a specific domairhimform of a set of natural language-like
entities. The use of a visual diagram facilitates design process and eases the work of the
stakeholder by providing a simple abstraction efwork. The evolution of changing
requirements is recorded in a temporal order, @mglchanges to be traced in forward and
reverse directions. The separation of the visuagm@im from the text string language with the
accompanying formal semantic description permityiag target representations of the
requirements.

RE/TRAC can be applied to diverse applicationseY&tentities are elaborated and there
are relationships between entities, the effecthahge are compounded because of the possible
cascading impact on other entities that are inwbinentegrated relationships. A method such as
presented in this research is needed to faciltatsistency between the entities, including the

various versions over time as well as consistemtyééen various views depicting the entities.



2. Modeling with UML
21 Requirements Engineering

A system is built to satisfy the needs of a cliking into account possible constraints
such as cost, time, and resources. The client eetep system if it exhibits the desired features
or requirements that the client has expressedsameal for a successful software
implementation. Requirements engineering is corezemith defining the requirements for a
system under construction prior to design and implatation. This entails two stages,
requirements elicitation and requirements analy3idinarily, requirements elicitation involves
dialogue between the client(s) who are the domegner(s) and the developer(s) to obtain a
description of the work that the system should agadcsh. The developers then analyze the
descriptions of the requirements for feasibilitglaasolve any ambiguity in the specification of
the system.

Requirements are described as functional or noaotiumal and should be traceable to the
system goals. Functional requirements pertaindartteractions between the system and its
environment. Non-functional requirements pertaisystem implementation aspects such as
usability, reliability, and performance. This resgafocuses on the representation of functional
requirements and how the representation enables/iation of the requirements specification.

The requirements should be validated as completesistent, unambiguous and correct.
All aspects of the system should be representetljldmg exceptional behavior. The descriptions
should be clear in meanings, and there should e@abhtradictions between the requirements.
The system should be represented accurately, angdala client’'s needs. When the system is
implemented, repeatable tests should verify thasstem fulfills the requirements

specification; furthermore, the requirements shdddlescribed in the specification in a manner



so that requirements may be verifiable in the im@atation [BruDut]. The requirements
specification becomes the foundation for all subsetidocuments and artifacts in the system
modeling process. This research does not detaprgy@aration of the formal requirements
specification document, but recognizes that anyesgmtation of the requirements must embody
the character and purpose of such a document.

2.2 Overview of UML

The Object Management Group (OMG) formally devetbped approved a standard for
a modeling notation and also for several modelgupniques. The Unified Modeling Language
(UML) has emerged as the de facto standard for fimapebject-oriented software. UML
permits developers to specify and document modedsgraphical or visual manner. The
language provides extension mechanisms so thénigeage may be used to customize the
models to a particular technology or platform.

The architecture of UML is based on the Meta-Otfeacility (MOF) which is the
foundation for creating other modeling languagdse MOF defines standard formats for the
modeling elements so that pertinent facts aboutrtbéels may be shared or converted from one
modeling language to another. The Extensible Matlkamguage (XML) is such a language, and
the XML Metadata Interchange (XMI) facilitates tslearing of various model elements [MOF],
[OMG].

The Unified Modeling Language (UML) [OMG] is anlguage employed to describe the
system processes and structures of the businesbanesulting software. UML is especially
expressive in that the system can be described fitomerous views; however, the combination
of multiple views is needed to completely descthmsystem. A diagram depicts a view, or,

more often, a combination of diagrams of variowdam types (diagrams) is used to depict a



particular view. The motivation in using multipleagram types is to keep a single diagram,
which describes a view(s) in a graphical mannecjuitered, clearly dedicated to a particular
aspect of the system and therefore easy to unddtstaere is some repetition in the information
stored between diagrams, and additionally thereliagrams that span views. Keeping all
diagrams cohesive so that ambiguity and inconsigéerare checked is a daunting task.
Furthermore, most of the diagrams, while intuitiwea software developer, have fairly complex
syntax and semantics that can intimidate non-teahstakeholders. This research concerns the
specification of the use-case view.
2.2.1 The Use Case View

The use-case view that depicts the system fromnexternal actors perspective is the basic
building block of this research. Delineation of gystem provides boundaries between the actors
and the system. The detailed functionality of th&team is not emphasized at this time. So the
system is often referred to as a black box or 9@y The user (stakeholder) should be the most
comfortable with the use case view because it fe€es human interaction with the system and
avoids implementation details. The use-case vietwagoundation of all other views, and
ultimately the set of use cases will describe threefionality of the working system. The use case
view is composed of use cases, each of which me@reatomplete and specific set of actions that
are closely related. While use cases may join aikercases and incorporate other use cases,
duplication of functionality should be avoided.

According to [Eriksson et al] the main purposesuse cases are:

1. To refine and describe the functional requiretsehthe system,

2. To provide an unambiguous and consistent degamipf what the

system will do, and later upon implementatitwe, working functionality

10



of the system,

3. To provide the basis for carrying out tests ttaify that the system
performs as expected and to validate the systempabilities as
requested, and

4. To provide the means to trace functional recueets to the classes
and operations in the system.

[BruDut] describes how a use case is developeaglvequirements elicitation:

1. Actors identified. The users (actors) of thistem are identified.

2. Scenarios identified. The users are observddeaget of detailed
responsibilities or scenarios emaerpr the users. The developers rely

on the scenarios to communicate wasystem is to do.

3. Use cases identified. The scenarios are gbapeording to their
functionality into use cases. Tise cases will define the scope of the
system.

4. Use cases refined. Each use case is specifeetai, including
exceptional behaviors.

5. The relationships between use cases arefidentThere may be
commonality between the use caseependencies among the cases
that when identified, may simplihe system specification.

6. Non-functional requirements identified.

When a use case has been thoroughly investigateliMiAuse case diagram with

characteristic stick figures will be supplantednayural language (NL) text descriptions. The

11



descriptions are formalized by using a templaté shaws the sequential progression of actions
in a structured manner for a use case (see Appénfidockburn1997], [Cockburn1998]).

Use case approaches should address relationsluipaseneralizations, extensions, and
inclusion. [Pender] describes a refinement of actol use case similar to the way that classes
are generalized. Generalizations are called tha™elationship in a simple context. For
example, a project manager is an employee. A pgrajanager is a special case or refinement of
its parent class, employee. Likewise, the use deggam can depict generalization among
actors, which eventually will be represented almasc

The include relationship pertaining to use caseseésl to support the identification of
common features that may be used between obj&asdpr] describes the behavior as a call to
another use case. The calling use case incorparatesludes the called use case in a nesting
relationship. The extend relationship describegoopt behavior of another use case. The use
case that provides the extension functionalitynly mnserted into the base use case if a discrete
behavior necessitates the additional functionality.

Scenario diagrams (scenarios) help to isolate Bpdégnctionality in a use case. A
scenario shows a single task as a sequence ohathat will produce a final result. A scenario
will enact a single path in a use case and williergbme final conclusive state. Scenarios are
useful for requirements gathering and validatiothefsystem functionality because they are
depicted from the users’ or stakeholders’ persped¢éntPot]. Testing of a use case often
involves testing of each scenario in the use case.

An activity diagram is a dynamic depiction of thegjgential flow of events such as the
general process workflow. Creating activity diagsamconcert with the use cases is helpful for

defining operations, discovering and refining uases, and describing workflow between use
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cases. Flow in the activity diagram occurs uponmetion of an event or action. Control
mechanisms and conditionals are used to show #p@nse to triggers from external events or
from time dependent constraints. It can show palrallents as well. The activity diagram can be
used to identify the objects in the system thak melused to support the static behavior of the
modeled business. [Pender].

2.2.2 The Logical View

The use-case view describes what the systemahdoulOn the other hand, the logical
view describes how the system'’s functionality ipideed inside the System [Eriksson et al]. This
research uses “system” to denote the applicatigeldpment in its entirety, whereas “System”
is used to designate the internal system with wthehexternal actors will interact. The use-case
view represents the System as if it were a black imhereas the logical view describes the
System as a glass box. The internal workings oBystem must be described and defined in a
detailed manner. The logical view shows both thicsand dynamic behavior of the System
essential for later code generation. From the ase mentification, other UML diagrams are
employed to provide the necessary information néédeapture all of the system requirements
in the logical view. The static structure is depitby class and object diagrams, whereas, the
dynamic behavior is modeled using state, interacémd sequence diagrams.

The logical view is intended primarily for desigaend developers. The information
contained in the logical view is essential for itt@lementation but is difficult for the non-
technical stakeholders to comprehend. The reseanthto shield the stakeholders from the
complexity of the logical view, but acknowledgeattthe logical view is reliant on the

information content of the use-case view.
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The class diagram represents the things (cladsatsarte represented in the system and
how they are related. Classes are associated tarmtber, may be dependent, and may be a
specialization of a different class. Classes magrbeaped together or packaged as a unit for a
depiction at a higher level of abstraction. An ab@agram is very much like the class diagram
except class instances, called objects, are shostead of the more abstract classes.

State machines, interaction diagrams, and actiliggrams show how the objects will
interact during execution. A state machine complams#e class diagram by illustrating all the
states that an object can have and the eventsdhaé the states to change. A movement from
one state to another due to an event is calleahaitron. Sometimes an event may be caused or
triggered by another object interacting with thgeabbeing described. A transition from one
state to another is depicted in the diagram asegteid line with the behavior noted that
describes the action occurring during the traneacti

There are several types of interaction diagrantuesgce diagram, communication
diagram, and interaction overview diagram. Intacactliagrams are so named because they
demonstrate the interaction between objects d@xegution. A UML sequence diagram shows
the interaction of objects in a scenario and hoavsitenario unfolds over time [AntPot]. The
sequence diagram shows an ordering of messagesuwuonated between objects and also has
vertical lifelines to depict the time frame of ama@raction sequence.

The communication diagram is similar to the segeediagram but does not include
timelines. The communication diagram is sometinadked a context diagram because it is used
to depict the classes and their relationships fingle scenario within a use case. Messaging is
indicated on the connecting lines between the efaskhe use of the communication diagram is

significant to verify that the class diagrams aveplete for a use case. Eventually the class
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diagrams relevant to all use cases must be intjtatprovide a static view of all classes with
complete data elements and methods.
2.2.3 The Ontological Specification

We assume a single source of information or repnsfor a system. The system
dictionary is the central repository for the syst@ocumentation, artifacts and system
constraints, and it is vital to ensure consistdmetyveen the use case view and the logical views.
A configuration area for global reference contagnt@mmon information across multiple views
avoids duplication of information in the systemipi@y ensure a correct system that is consistent
in all views. The dictionary contains a glossaryess relevant to a particular domals use
cases are described, a dictionary of vocabularyfaetd from the domain will be referenced and
updated to later facilitate the integration of sldsagrams and the behavioral model. A diagram
(model) is generated based on the syntax and semafhthe UML metamodel and on
information pertinent to the diagram found in thetidnary.

The notation for requirements traceability usethia research can be described as a
particular view within the use case view for thpresentation of requirements. Data concerning
the requirements (structured as use cases), imgjudi versions over time, will be archived in a
common repository. By querying the repository,agitig of a use case including its derivation
history can be found. Constraints on use case l@haill be located in the repository also.

To facilitate code generation, use case descrip@wa semantically complete and
consistant such that each use case descriptite inde case view is unambiguous and in
compliance with the dictionary. This research agiedges that use of a controlled natural
language and the supporting dictionary provideegipe detailed description of the requirements

specification needed to facilitate code generafldns research also recognizes the importance
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of issues related to completeness of requiremeatifsgations, however, small-grain technical
issues necessary for code generation are not addréd/e maintain consistency within the
active versions and archived use cases only irréisisarch.

The common repository or dictionary is often repreéed by a specification, herein called
an ontology. The dictionary may in fact utilize niplle ontologies. The use of an ontology can
support the refinement process by providing a féstracture for coherence of the related
requirements’ documents for a particular domainiagton by simplifying the representation of
the information and by automating traceability. @dmtology is most often quoted as a “formal,
explicit specification of a shared conceptualizatigsruber]. Names and definitions are given to
terms and relationships in the domain to repregerbstract model. The abstract model is
depicted in a formal manner in order to remove guoiby and at times to provide flexibility in
the manner of presentation. The ontology can bd te@bly as a specification by providing
documentation, supporting maintenance and enal#nge of knowledge. A system may employ
various ontologies to structure the information andy the information in the repository for
searching and for viewing during all phases of tlgu@ent [UschJas]. We employ such an
ontology, RE/TRAC-SEM [DouCar2007], to support regments evolution within an
application domain.

2.3  Use Case Evolution

This domain-independent research focuses on asiteed to directly represent
requirements. This research relies on natural laggulescriptions of the requirements in the
form of use cases. We build on the knowledge timatdbmain has been defined and sufficiently

analyzed such that a core set of use cases conmiba tiomain have been defined in a planned
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and rigorous manner and that the functional requergs are sufficiently embodied in the form
of use cases. Use cases are represented usingtesipl a plaintext form for understandability.

We demonstrate a view of the domain model thataiebiow a set of use cases are
related and integrated over time. The refinemenisefcases, as well as the dependency
relationships between the use cases, is presdotiediing a step-by-step method specification
which incorporates traceability of changes. Theatonhs described in this research relate to use
cases using a compact representation of the nddungiage descriptions. RE/TRAC addresses
the abstract representation such that generalim{irefinements) are applied to the base set of
use cases. Use cases may be related to othersesewta the dependency relationships of
inclusion, and extension. Dependent use cases lsaya refined.
2.3.1 Hierarchical Structure of Use Cases

Hierarchical models are intuitive and supportdbal of a simple and understandable
portrayal of the system via use cases. The hieicalcdepiction of use cases is a graduated
presentation of the specification detail. Higheels typically will be of coarser granularity
while lower more recent levels in the use caseahodry will be of a finer granularity. The
hierarchical nature of the representation enableslown, step-wise refinements to the general
or base form of the use cases for customizingetige case model. In use-case modeling, this
concept is known as generalization, which is thatienship of a child use case to a parent use
case. Usually the child case adds more detaileégénent use case description by further
specializing of behavior and characteristics ofghgent. Also at any level, new requirements
may be introduced that are not part of the previeusl's base requirements. Each level in the

hierarchy represents an evolutionary change tb#se use case over time. A record of change is
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therefore captured as a means of documentatioeetules tracking of the transformations in
both a forward and backward manner.

In RE/TRAC, the child use case does not necdggarcompass more detail than the
parent. This research uses the term generalizafitire use cases to refer to refinement that
optionally incorporates more information. When adifioation transpires to create a child use
case, this research describes the child as a dieaticm of the parent. The child use case exists
independently from the parent case, but the relalip is recorded. This definition differs
substantially from the understanding of generalzain the context of classes. This research
uses the term child to mean that it is a more atigeneration or version of the previous parent
use case. A use case from the initial base satdaarent.

2.3.2 The ATM Banking Example

The example of a banking system providing automseker services is well known and
is used as a rudimentary introduction to the refiest of a use case as defined in this research.
An automated teller machine (ATM) provides an iattive user interface for banking
transactions such as withdrawals, deposits anduatceries. In this example a single use case
will undergo several evolutionary changes. Theaas® is presented in template form and based
on the ATM example use case in http://www.lv.psuledd18/ist240/ucn%20sect1%20ex.htm.
The template depicts actor/user actions in thehlaftd column and the System responses in the
right-hand column. The English language formamstrwuctured with abbreviated sentence
constructs. Appendix B Version 1 contains the rughtary base case describing the banking
transaction, “Withdraw Cash from an ATM”.

Referring to Appendix B Version 1 and event numbeétethe method of identification is

not explicit. The use case actions numbered 2 azahde altered to specify the way in which
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the customer is identified such as via pin numfaegerprint or eye scan. A refinement to the
original use case is made and a revised versitimeafise case is created and replaces Version 1
as the current active use case (see Appendix Bdre?y. Boldface type denotes evolutionary
changes to the use case shown in Appendix B. Tienastatement:
(Actor Actions: Version 1) 2. Customer Id’s selfATM
is revised to:
(Actor Actions: Version 2) 2. Custonaetivates the ATM.
The System response to action statement numisere®ised from:
(System Response: Version 1) 3. Verifies valid @onsr
Constraint:
If invalid customer ID,
stop transaction

to:

(System Response: Version 2) 3. System check#fisp&EM verification method.
(System Response: Version 2) 4. Directions foification method displayed.

After the verification method is determined, thestcumer will be prompted for identification in
the user action response re-numbered 5 from iggnaii Version 1 statement number of 2. All
other enumerations are altered accordingly.
2.3.3 Use Case Extension and Inclusion

The extend relationship between use cases allewsgér to customize a use case by
describing optional behaviors. This relationship ba used to complete generic high-level use
cases that are functional but not comprehensiveedsirements change, a use case may be
extended to incorporate additional use cases. &afimt by incorporating extensions supports
the component-based implementation of the systewelis

In the ATM example, assume customers with precapa credit limits can instigate an

instant loan when funds are insufficient for withdal. System action statement 14 in Version 2
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is extended to verify the instant loan feature aply with the pre-approved loan. See Appendix
B Version 3 for the revised use case with the esiten The original statement 14 in Version 2,

(System Response: Version 2 ) 14. Bank Info Sysetarns request status
Note:
If status insufficient funds,
return “Insufficient Funds”

incorporates the new functionality in Version 3,
(System Response: Version 3) 14. BafikSystem returns request status
Note:
If status insufficient funds,
return “Insufficient Funds”
check instant loan approval,
return instant loan ap@acamount.
After that, the user is given the option of acaggptihe instant loan terms if s/he is pre-approved.
Statement 15 is altered from
(Actor Actions: Version 3) 15. Customer views resfustatus

to

(Actor Actions: Version 4) 15. Customer views regustatus
Constraint:
If Customer approved for instant loan
Customer accepts or declines

The System reacts by dispensing the amount basadk#rs request. If the user selects the
instant loan feature, then the System actionsxdemnded in statement 16 Version 2 to
incorporate the additional functionality of the usese, “ATM Instant Loan”. System statement
16 is changed from originally,
(System Response: Version 2) 16. System disperséed amount
Constraint:
sthtus insufficient funds,

do not dispense.
to

(System Response: Version 3) 16. System dispersaed amount
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orgstraint:
If status insufficient funds or
tstsinstant loan approved and customer declines),
do notmkese.
If (status sufficient funds and customer accepts),
instigate Use Case: ATM Instant Loan
Moreover, a use case may be incorporated to fatelthe include relationship between
use cases. While a generalization refines at theé lgvel, the include relationship allows nesting
of use cases, which supports a component-basedipatjan. The use case(s) that is included is
always essential for all scenarios in the use cas@pposed to describing optional behavior of
the extend relationship. A use case example ofigigh in the ATM textual example may be
found in Appendix B Version 4. By grouping commextions into a composition of events, the
use case is simplified. The Customer Verificat®miodeled as a separate use case which can be
included in the “Withdraw Cash from an ATM” use eaSteps 3, 4, 5, and 6 are common in
Versions 2 and 3:
(System Response) 3. System checks for specific A&Mication method.
(System Response) 4. Directions for ID verifioatmethod displayed.
(Actor Actions) 5. stamer Id’s self
(System Response) 6. \gialid customer
Constraint:
Ifvimid customer ID,
stop transaction.
The statements are therefore combined and sepan&beal single use case, “System
Verifies Customer”. The statement 3 is revised to

(System Response: Version 4) 3. Instigate use: @ystem Verifies Customer

and the subsequent statement enumeration updated.
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An application may elect to totally exclude thadtionality of a use case. Employing the
option to literally delete is discouraged becatmseftinctionality may be needed at a later time.
Similarly, derived use cases that have once bderereced are archived, as they are required for
traceability.

24 Summary

The Unified Modeling Language (UML) defines a natatusing object-oriented
concepts. The notation, which is graphical, dessrifhe language syntax which embodies the
rules for depicting various models or diagrams. ddel is a simplified depiction of the system
with a goal or perspective in mind. The UML is ataamodel because it explains how each
artifact of a system may be put together or comgho&eadeveloper will describe a particular
system using models that adhere to the syntaxemdrstic rules of the meta-model.

Because UML offers many advantages in softwareldpueent and because it was
designed expressly for documenting object-oriesietems [Pender], it has become prevalent in
object-oriented development environments. In resanteys, the object-oriented paradigm
methodology is considered superior to the clasgiaeddigm that relies on structured
programming techniques using modules. While nobaevit problems, the object-oriented
paradigm continues to grow in acceptance as itsesges are repeatedly documented [Schach].
A few of the advantages UML offers are: a graphrnzzhtion fairly easy to understand by
developers; a meta-model depicted using an objgetted representation that is familiar and
has been a successful modeling strategy; and ebilégsnechanisms that offer creative and
flexible modeling solutions. UML enables the creatof specifications that are independent of
the programming language selection and developprecesses [Pender]. Finally, UML

supports view-oriented development of which theaase view is prominent.
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The ATM example presented in section 2.2.2 dematestithe need for a method to
manage evolution of requirements documents. Evémsruncomplicated example of a single
use case, several document versions were creadedegendent relationships created. As the
number of changes increase, the complexity of serjug the document versions and of
managing the dependent relationships grows alsosiniplify this problem and to maintain the
integrity of the system development, this reseaescribes a graphical representation,
RE/TRAC, that facilitates the depiction of systequirements within the UML use case view.
RE/TRAC visually shows a use case and its relatigsswith other use cases. After refinements
are made to a use case, the graphical depictiemgocates the changed use case and its
relationships, thereby enabling traceability.

This research employs a large-grain graphical ntetbananage system requirements
hierarchically to permit the user to straightfordigrunderstand the functionality of the system,
to support refinement of the system and to offeceability. Use cases are described during
requirements evolution using the concept of gerrat@n. A use case at a higher level in the
hierarchy will usually be coarser grained than@aese lower in the hierarchy. The stakeholder
should be able to enhance use cases to build ensygtecification in a step-wise manner. The
include and exclude relationships between use @sesso shown in a hierarchical manner that
depicts the integrated relationships of the usesaad supports modularity. A visual language
is described for presentation of the model to thkeholder. A related supportive grammar is
defined using formal methods in order to upholacedhcy and reliability aspects of the visual

model.
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3. Related Research

RE/TRAC is inspired by the paper “Generating Praduces of Product-Families”
[Batory et al], which describes primitive comporsetitat are the core constructs for features by
using an intuitive graphical depiction. A componbkas a hierarchy of levels or layers that are
the features, and it may represent refinementiseoptimitive form. The notion of feature
refinement is extended to describe the relationsbtveen multiple classes based on the
information contained in the various collaboratthagrams for a system model. In UML 2.0
[OMG] the collaboration diagram was renamed antbis called a communication diagram. As
described earlier, the communication diagram igreathic depiction without timelines showing
the relationship of objects and the exchange ofsamss between the objects.

Communication diagrams are developed in isaladioone another; therefore the
diagrams likely overlap in content, that is, thbgre common features that enable reusability
[Batory et al]. The union of all the communicatidiagrams provides the complete
representation of the classes and their intercongation. Figure 1 (see Appendix C, [Batory et
al]) demonstrates how refinements have been addaddnstant set (i) of classes. Levels in the
diagram indicate refinements to a class such aadtgion of new data members to a class, of
methods to the parent class, or of method overofiése parent class. The diagram does not
depict the communication between the classes,tbelyefinement as a particular collaboration
diagram is considered at each level.

In Figure 1 the complete set of classes is desttiyehe initial constant set i. Each class
has data members and methods pertinent to theactiinsNoted at these levels are the functions

I, , and k. [Batory et al] refers to a level akiaction because it denotes the functionality ndede
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Figure 1 Hierarchical Refinementdésses [Appendix C, Batory et al]

by a class in a particular collaboration diagramfi@ction j adds functionality from a particular
collaboration diagram, which brings in more conterd. In the same mannerand ¢ are
expanded. Also at Level 2, a new clagsisedefined. Likewise, at Level 3 another colladiamm

is considered and the functionality of k is incaigded into the classes, yieldingand d. The
bottom-most class (leaf) of a refinement chain {ctep by the connecting lines) constitutes the
class that is instantiated. A leaf class implematitsf the roles assigned to it via the totalify o
the collaboration diagrams. So in the above exantipdeapplication will need the classgs,k®,
Cc, tk, ande,.

A similar concept of a hierarchy of levels is enyad in this research to show levels of
refinement of use cases for a particular applicatio analysis and design of system software
development specific core or base requirementsutat® the most generic description of a
system within a domain. As the system requiremewbdve for a specific application instance,
refinements (generalizations) are made to the icoaestep-wise manner by formulating revisions

to the core use cases.
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The class diagrams depict dependencies with Itevef classes inheriting characteristics
of the upper level classes in the hierarchy. Thédasses of a class diagram are instantiated but
so are all the classes above it upon which it dégpehhis research differs from the typical class
diagram in that with each refinement step a newiwvarof the previous step is created that
replaces the instance above, and this researctpmrades interconnectivity of the parts.

In [BatO’Mal], an acyclic call graph is describexldepict reusability of components. The
edges denote the call relations between the coom@n€&igure 2 (see Appendix C, [BatO’Mal])

is an example of the graphical hierarchical notatio

Figure 2 Hierarchical System H Showing Nesting ofrff@onents [Appendix C, BatO’'Mal]

The hierarchical system, H, in Figure 2 is notedHgyexpression:
H = A[B[X], C[X]]
The subsystem, X, composed of components, D ardescribed as:
X = [D[E]]
The following expressions representing softwareesys, a[b[c]] and d[b[q]], reveal that
component b is reused. The common use of b inubexspressions indicates that b is used in

two different systems. Batory notes that componerag have input and output
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parameters such that there is one instance ofoithe for subsystem X (see Figure 2), but B and C
may use X differently based on the input paramegirilarly, components in [BatO’Mal] as in
RE/TRAC are denoted by rectangular symbols. Thisarch also graphically represents the
grouping of components in a nesting depiction lier include relationships between use cases.
This research differs from [BatO’Mal] by additiohaémploying a horizontal access dotted line
for extension and a component visual primitivedondensing portions of the diagram. The
component subsystem expression noted by [BatO’Maibt incorporated into the expressional
representational grammar for RE/TRAC but is a fiomcof the graphical transformation from the
expression. This research also uses a visual datrat is top-down in interpretation, but the
levels in RE/TRAC denote change over time. LeueRE/TRAC indicate refinements to
previous components symbolizing use cases.
3.1  AnIncremental Method for Specification

E. Astesino and G. Reggio [AstReg2002a][AstRegBDd2scribe how to organize and
represent requirements specification artifacts.il@ry, this research employs a multi-view use-
case driven approach to requirements specificanmhdescribes a representation of requirements
that depicts a separation of the domain model ftmarSystem model. This research differs in that
while the separation will simplify the presentatmiithe System via the use case view to the
stakeholder, the stakeholder may not always addnesSystem as a black box. The stakeholder
as the domain expert must know the internal streabfithe System, and, therefore, the System’s
operability must be explicit to the user, if onlyan request. The research assumes that the
System may not be totally separated from the dommaidel. One approach to requirements
specification uses diagrams described using the Wbthtion whereas this research does not

used the UML notation [AstReg2002a], [AstReg2002b].

27



[AstReg2002a] describes a method for initially cajoig the requirements and
incrementally adding to the specification while ntaining consistency among various views of
the system. It is use case directed to describayatevcapture the requirements and specify the
requirements. This research does not focus omthal icapture of requirements. It will assume
that the base set of use cases has been elictietth@set is represented in a declarative manner
so that the stakeholder can make additions, dakstend refinements to the core set of use cases.

The method presented in [AstReg2002a] providsiglim on how to initially set up and
organize the information about the core set ofaases from a multi-view viewpoint. This
method also shows the need for a method to bemireddo guide the stakeholder in the building
of the system by incrementally merging use casesnmulti-view context. Our research defines a
step-by-step procedure of the transformation froma et of entities (initially the core set) to
another set of entities as evolutionary changearpcather than the small-grain specification of
individual use case documents.

3.2 Graphical Representations of Requirements’ &avior

The notation of Message Sequence Charts (MSCsi¢R% is a behavioral diagram that
is a graphical formalism used to capture systerairements during the early stages of design.
MSCs are particularly useful to describe domairthsas telecommunications where message
passing is significant. An extension of MSCs, ahlleve Sequence Charts (LSCs), depicts the
behavior noted in the requirements explicitly, #merefore contributes more than MSCs toward
code generation [Harel]. LSCs enable the additidifedrentiation and depiction of possible,
necessary and forbidden behaviors.

Amyot describes the User Requirements NotatidRNVfor visualizing and analyzing

requirements and he argues the need for a forrdaflped notation for capture and analysis of
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requirements [Amyot2003]. URN is actually two natas: Goal-oriented Requirement Language
(GRL) for describing goals and non-functional regments and Use Case Maps (UCMs) for
scenarios. GRL is used to define business or sygtais and to evaluate alternatives for
achieving the goals with explicit rationales fooates. A main focus of the RE/TRAC research is
on the formation and maintenance of use casesebst#tkeholders to capture and describe the
behavioral qualities of the system rather than @al discovery.

Amyot notes that there are many notations ugefudescribing the behavioral qualities of
a system and most are variations of Message Seg@rarts (MSC). UML defines a similar
notation (syntax and semantics) for its Sequenegiaims. Many of these notations employ
messaging and inter-component interactions, whial be too detailed for requirements
engineering. Amyot proposes that Use Case Maps (£)@ké& practical for illustrating
operational scenarios and functional requiremefitsyjot2003].

UCMs (see Appendix D [Amyot2005]) are relevanthe tesearch because of their
simplicity and inherent understandability by theketholder. UCMs avoid expressing component
interactions as message exchanges. Moreover, UGMsesincremental development and
integration of scenarios for customizing the caedd requirements for a specific application
within the business domain. UCMs are similar to sashL diagrams in that they can express
forks, joins, conditionals, as well as concurreany partial ordering of responsibilities.
Additionally, UCMs enable the representation oftwafe components in an abstract and generic
manner [Amyot2003].

Amyot states that URN —FR (functional requiremehtdCMs can replace UML use case
and deployment diagrams. Rather than supplantasediagrams, the research is based on the

hypothesis that the stakeholder will benefit byihg\another simplified graphical representation
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to substantiate the textual representation of ases For business applications, the UCM
provides a similar functionality, as do workflonagrams. The UCM and the corresponding use
case declarative description must be consistentypA2®03].

Message Sequence Charts (MSC) and Use Case M@p4)(employ easy to understand
graphical representations of requirements. Thefsemal graphical notations are presented in a
simple manner and the semantics is often intuiBath notationally depict use cases as
components, and depict alternative paths in thewtian of various scenarios. We too describe a
semiformal graphical notation. Like MSCs and UCHihg research uses a large-grain approach to
formal method specification. Large-grain refershte size of the atomic parts in the depiction
rather than the size of the system. Small-grairhods are used at the lower level of statements
and in small programs. Huge-grain methods are tesddpict very large systems whose
components may be systems themselves [LuqGog]. i#awthe research differs from MSCs
and UCMs; it is more general and therefore morsatée in the application of the notation than
in the representation and specification of requerts. This research has a larger grain approach
that enables quicker comprehension of the deperekehetween modules or components.
Additionally this specification approach addressaseability.

3.3 Lightweight Behavioral Notations and Diagrams

In comparision to the use of UCMs, Dumas and Hdis{®umHof] have employed a
type of activity diagram that is simplified and anporates similar functionality. Fickas,
Beauchamp and Mamy [Fickas et al] represent reopaings as event trees in a similar manner to
the workflow specification. Anton and Potts [AntPdéscribe several specification formalisms
used for task analysis to depict Human Computerdation (HCI): Operational Sequence

Diagrams (OSD) which use a visual language sinddlowgraphs, GOMS (Goals, Operators,
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Methods, Selection Rules) for user/task orientedanchal descriptions of the methods needed to
attain a goal and User Action Notation (UAN) whictes a tabular notation for describing
human-computer dialogues. UML state machines (sts€s), interaction and activity diagrams
were discussed earlier. There are numerous nosafitomodeling the behavioral nature of a
software system. All of the above in this sectiogluding UCM, might be called lightweight
behavioral diagrams because they often lack theldeteded for code generation. The notation
developed and illustrated in RE/TRAC is not depand@ the detailed activities within the use
cases and is not classified as a behavioral diagrmdepiction of dependencies between
entities (use cases) as based on include relatpmsxtend relationships, and replacement (from
refinement) relationships is the focus of this agsb.

3.4 Requirements State Machine Language (RSML)

The Requirements State Machine Language (RSML)fnsslescribed for the
specification of safety-critical embedded contysdtems [Lev et al]. RSML was designed for
readability and understandability by the userdefdystem in requirements specification and not
by computer professionals, as is a goal in thisae. RSML is similar to statecharts in that it
supports parallelism, hierarchies, and guardeditians. Like RE/TRAC, RSML is described
using a static syntax and a semantic descriptidghehext-state mappings. The hierarchical
structure of the RSML state machine relates tatldering of the states, identification of
common parents, maintaining the global state, #ateé shanges. RSML defines a component-
based hierarchy as does RE/TRAC, but primitiveRSML model events and relationships
represent next state mappings. In RE/TRAC the s&ate mapping is always a result of a
revision of a use case either by refinement anttianges in associated use case relationships.

Therefore RE/TRAC while presenting a record of g®is less of a behavioral diagram than
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RSML. The RSML graphical notation begins with aiti@h global state and as transitions occur
the global state changes to depict the input atpubhistories of the machine. Similarly,
RE/TRAC diagrams contain a history of the changiaéainitial state of the use case.

Heimdahl and Keenan use a RSML specification teegge executable code [HeiKee].
Changes are made to the specification during nefer¢ and not to the source code for
regeneration of the executable code. The low-IB&VIL specification needed for code
generation necessitated an auxiliary tabular regptesion for guard conditions. RE/TRAC on the
other hand is not intended as a specification dolecgeneration but is useful for management of
use case documents in a larger-grained specificatioequirements.

3.5 Natural Language to Depict Use Cases

In this research, we assume the stakeholdenamdechnical domain expert. As a result,
the requirements will be described using naturadleage. However, the use of natural language
(NL) will create problems of ambiguity, and NL israplex in terms of syntax and semantics. For
instance, homonyms produce lexical ambiguity, danetgiral ambiguity occurs when a sentence
has two or meanings based on the sentence strictes:

A formal language may be used in place of a aatanguage to alleviate some of these
problems by using variables {W1...) , logic symbols( =A...), function symbols and predicate
symbols. Not only is a formal language difficultunderstand by the stakeholder, but also
documents written in a formal language are not @etde as contractual documents. A solution
is to use a controlled language that restrictqttaral language in order to reduce the size of the
language, the complexity, and inherent ambiguitye €ontrol language will constrain the

grammar, style, and lexicon, while providing theéfks of a readable text.
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Li constructs use cases according to similar cagy in a controlled language. The
controlled language is similar to the structuratlstoucts used in programming languages
including if statements, while statements, andengy directives [Li]. Thirteen patterns or
syntactic structures of simple sentences desantieeactions and responses. A parser is employed
that identifies static information including classebjects, and attributes. The parser gleans
dynamic information from the textual accounts, uthg operations and message sends. It
separates the sentence parts and matches thecgetaensentence type with predetermined parts
of speech in order to deduce subjects, verbs, bjatts. A message is determined, for example,
if the sentence is established to have a subjecvarb but no object.

RE/TRAC, as described in this dissertation, setia previous work in the area of the
declarative representation of the use cases, suaghilag restricted natural language and
describing the domain entities used in the textgal cases in the dictionary.

3.6 Model Grammars, Prepositional Connectives anBrepositional Calculus

The deficiencies of a sound semantic basis fon suethods as Booch’s object-oriented
design are noted [AchSch]. The method describexl, takes a formal approach to modeling and
notation specification [AchSch] and is based oneBby which uses an object oriented approach
to the formal specification Z. A specification vieih in Z employs the form of mathematical
proofs [Ince]. Object-Z’s logic is based on sequaitulus where constraints on inference rules
are given using meta-functions [Smith]. A meta-fimc returns information from the
specification text. A description of the transfotmoaal semantics permits notations in Fox to be
extended [AchSch]. This research employs a graphiodel as well as textual means for
specification. Likewise this research examinedrenfd representation of the constraints in the

local environment of a use case and also the gltpatonment. [AchSch] demonstrate formal
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methods for developing go@halysis and design specifications. Their reseasshimes that the
requirement documents are complete. We base aceainggson a combination of formal and
semiformal means to specify the requirements asritbesl in use cases. These works in formal
specifications influenced this dissertation work.

First-order logic can be applied to validate hiehgéral product line models [Mannion],
which has influenced this research. The produe-+leguirements are added gradually and
therefore in an incremental manner. Each requirémehe product line is represented as an
atom, and each relationship between requiremeipgrisayed as a logical expression. In totality,
a logical expression can be developed for reprasgatproduct-line. A variety of relationships
between the entities are expressed: mutual exclusimose one or more from a list, optional
(zero or more chosen). [Mannion] uses prepositiconahectives and propositional calculus to
represent subgraphs, dependency relations, anshagiscriminants (variations in requirements).
Given a product-line graphical model, the logicgbression can be derived from the model and
then evaluated for validity. Rather than express#iveggraph as a logical expression, this research
uses a string textual grammar to describe a vaéigly In textual grammars, the only relationship
between the objects is “immediately precedes” [®taal], which corresponds to the top-down
ordering of the entities in the proposed hierar@hitagram. In addition, the phrase-structure of a
textual grammar can be used to represent the iacdund extend relationships in a succinct
manner, and existing efficient parsing algorithmesavailable for parsing of textual strings.

A feature model that is a hierarchically arrandedjyram set of features [Mannion] has
been described [Batory]. After describing the magsehg a graph and a grammar, productions in
the grammar are associated with prepositional ftamBatory]. Our research is similar to this

work in that a graphical notation of a hierarchiegiresentation is represented with a diagram
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and with a grammar. This research differs in tle@heefinement in the diagram is a replacement
of a previous entity. Batory distinguishes relasibips of: and, alternative or mandatory, and
optional [Batory]. Our research initially addressies refinement, include, and extend
relationships.

3.7 Traceablity

The ability to record changes to entities over timeften needed. Most definitions of
requirements traceability (RT) include in the detiam that the requirements are tracked from
the development and specification through deployraed use. RT also refers to the tracking of
the changes to a requirement in both a forwardsankwards direction, as well as the ability to
describe the requirement adequately [GotFin].

Timeline demarcations are noteworthy, and thiefohg factors are important: the status
of the requirements before acceptance, the statihe ocequirements upon acceptance (the
baseline), and the status of the requirements@st@nary changes occur after acceptance.
RE/TRAC supports a representation depicting thepteal order, and it maintains a record of
the requirement version.

By restricting the application of the method toaarowly described domain, the core set
of requirements will have been described from theet. This description reduces problems that
occur because of lack of support for pre-requirdsispecifications (pre-RS)]. Pre-RS involves
the elicitation and formulation of requirementsoptio requirements specification which
culminates in the writing of the requirements speation document. Inadequate or delinquent
Pre-RS traceability results in most of the problewite poor overall RT according to [GotFin].
The post requirement specifications (post-RS) abitky involves a forward and backward

tracing to the initial baseline requirements speatfon. This research supports RT during all
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time intervals and also permits the forward anckbeaecd traceability of the requirement changes
as embodied in use cases. The core set of usedmsssped for commonality and variability
within a domain are considered the baseline objfs¢em under study.
3.7.1 Overview of RT Techniques
There are various techniques for providing RTtfRd:
1. cross referencing schemes — the ability teedinks to other
requirements and documents
2. key phrase dependencies — the selecting ofrezgent data via
information retrieval techniques
3. templates — essentially the use of forms famtaining textual
requirements written in natural languagedocumentation
4. RT matrices (RTM) — used to associate requergmwith
software development artifacts
5. matrix sequences — maintains RTM in a tempandér
6. hypertext — links in requirements to relatedwhments
7. integration documents — merging related docume
8. assumptions-based truth maintenance netwokkewledge-based
design support systems using artificial ildehce techniques and
9. constraint networks — restructures the doctatem based on
constraints.
Based on the broad techniques, our researchedpliRT would be considered a cross-

referencing scheme that links use cases descrird templates and depicts how the use cases
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are related and integrated over time. An implementdased on the method defined in the
research would generate tracings automatically.
3.7.2 Formal Methods for RT

[Pinheiro] describes the formal and informal feasuof requirements tracing. Likewise
we examined the use of both formal and informahtégues. [Pinheiro] provides a brief
overview of specification languages useful for iegments specification but notes that many are
not designed primarily for requirements tracingethodel introduced in our research is not
described as a fully detailed specification langubgcause it is for modeling information at a
more abstract level. RE/TRAC is focused on theilogof the occurrence of change rather than
the actual changes that occur. It maintains theg@ntation of an evolutionary process. Because
this research is restrictive in its applicatiore thethod is best described as a tracing
mechanization as opposed to a language for spatotiic Expressed concisely, this research
method supports a specification process.

RE/TRAC employs a formal language, BNF meta-laggu#o describe the textual
notation using a context-free language which difi@gnificantly from database query languages.
[Pinheiro] also uses a similar language called TQ@Rescribe module structures and depict
patterns in their relationships as regular expoessi

[Pinheiro] utilizes an object-oriented approach/REAC does not use an object-
oriented approach for the graphical model of tlsei@i diagram, and the grammar for the textual
representation. [Pinheiro] uses a relations cldastifier, Derive, to denote how the objects are
related. The language described in [Pinheiro] edusr linking a broad range of documents
related by shared references to a requirementsidd@OOR may assign custom definable

relations of the derive and refine types. Our redeeestricts all relationships to the include,
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extend, and refine relationships between entiéied, is therefore explicit and restrictive in the
allowable relationships. This restraint is in aclarce with our goal of a simple comprehensible
depiction. The use of abstract relationships degibly the derive and refine types of TOOR are
not seen as useful in the context of use caséssairne. [Pinheiro] uses the term “trace” to
mean that a requirement is traced between varioagndents. This research uses the term to
describe the linkage of an older form of an erditg a newer one, including the relationships
that the entity has with other entities at a poirttme. This research relies on previous work in
information retrieval to identify the actual diféarces.

TOOR enables the recording of peoples’ viewsginions concerning the requirements.
Such added functionality adds to the complexity ematributes to the difficulty in
understanding the language. TOOR would be espgcisdful for requirements elaboration.
However, our research describes a simpler langussgdul when the entities are very nearly
specified as in a domain model and the evolutiothefentities is uncomplicated. The tracing of
the entities in our research are automatic as @sage made to an entity. Like [PinGog], the
research supplements the grammar to describe thie€and their relationships with additional
assumptions, definitions and propositions.

[DorFly] define ARTS which presents a hierarchistlcture for linking requirements
and permits searching based on the attributesqoinrements. The method described in our
research, while hierarchical in structure, doesdestcribe searching. Our research method is
general-purpose and useful where information neeble stored in a hierarchical manner with
the before mentioned relationships noted over timeur research, querying the use cases is

made easier by the proposed structuring of thgiat®n of the use cases.
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3.8 Miscellaneous Diagrams

RE/TRAC shares some similarity to other static chags such as the configuration
model which depicts modules and/or subsystems neottkto the cooperation diagram
[ChoReg]. In [ChoReg] the use case diagram has aeended by using dotted connector lines
to indicate the include relationship but the diagiia not hierarchical. The requirements
specification described in [ChoReg] is written othbdiagrammatic and textual means with a
formal specification as a foundation based on geeification language CASL (Common
Algebraic Specification Language). They do not addrtraceability and are not specific to the
use case view but to the context view. A hiera@hilepiction of use case generalization is
shown in [Dion et al] but the depiction does nadr@ds traceability; the generalization is not a
refinement. A footprint graph is introduced in [Egy] to trace requirements which overlap in
different views and models. However the footgrapmbdeling individual requirements rather
than the tracing of individual documents in whibke tequirements are embedded. Finally, in
UML use case diagrams textual annotations dengieradkent use cases. These are called
stereotypes and are denoted as <<include>> anateras>>. RE/TRAC simplifies the
cluttered appearance by using simple shapes amgétierns instead of textual labels.
3.9 Summary

RE/TRAC presents a simplified notation and appnaapresenting evolution of
documents. The work described in [Batory et alhgpirational in that it suggests a hierarchical
representation for classes that may be adaptatidaepresentation of use cases or other entity
types. A difficulty in any requirements specificatimethod is ensuring that requirements are
complete, consistent, correct and non-ambiguosseksof completeness and ambiguity are

especially difficult to address in natural languaggresentations. Our research addresses
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consistency issues that arise during the evolutiopeocess that are related to version control
and active status.

Astesino and Reggio proposed an incremental mdtrapecification of requirements.
While the textual description of the use caseseseas the essential representation of the
requirements, this research presents a visual éggguescribed with a syntactic and semantic
language specification, to facilitate requiremesgscification by the stakeholder. The notation is
used to describe use cases and their relationahgsigher level of abstraction than textual
descriptions. Likewise, this notation is straightfard to be easily understood by the non-
technical user. This research describes an iner&hmethod including allowable actions and
constraints for recording the changes to a sehtifies, which may be applied to the refinement
of use cases. See table 1 for a comparison of séthe most common graphical representations
of requirements. In table 1, diagram features hegacterized as hierarchical (H), using
components (C ), and employing traceability (TheTegree of behavior is described as static
(S), having limited dynamics (L), or descriptivelshavioral actions (B). The complexity rating
is applied based on a clear and intuitive integireh of meaning and on the number of
primitives and connector types, and labeling. Tévaglexity range is from 1 to 5 with 1 being
low complexity and 5 highest complexities in thengarison.

Message Sequence Charts, UML Sequence Diagramdsan@ase Maps are some of the
better-known notations for requirements specifaatiThere are others that warranted study such
as Operational Sequence Diagrams, GOMS (Goals a@ipsr Methods, Selections Rules) and
the User Action Notation (UAN). While the purpodesach notation is quite different from this
research, the semi-formal to formal descriptiontheflanguages describing the notations

influenced RE/TRAC.
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Table 1:

Comparison of Common GraphiMathods for Requirements Specification

ts

ne

154
1

Diagram Diagram Degree of Complexity Usage
Features Behavior

Hierarchical H T |S 1 Depicts refinement of classes. Refinemen

Refinement of does not label | are related to class generalizations.

Classes connectors Traceability is viewed as levels when

[Batory et al] classes are refined via generalization of ti
class. Vertical, top-down ordering.

Acyclic Call H |C S 1 Depicts function or method call

Graph does not label | relationships.

[BatO’'Mal] connectors Diagrams are read top-down, left-to-right
for sequence interpretation of the calls.
Vertical, top-down ordering.

[AstReg2002a] S 5 Structures and represents requirements

[AstReg2002b] specification artifacts in general, multi-
view, use-case driven, UML-based (objec|
oriented).
Systematic approach developed using UN

Message H |C B 2 Visual formalism for capturing systems

Sequence requirements as scenarios. Similar to UM

Charts (MSCs) sequence diagrams. Useful in system

[Harel] requirements capture.

User H |C B 3 Standard visual notation used for speady!

Requirements functional and non-functional requirement

Notation: Use Used for use case formulation, high-level

Case Maps architectural design and test case

(UCMs) generation. Notation uses start points (pre

[Amyot2003] conditions), connectors and end points
(post-conditions). Connector lines (paths)
may be labeled with responsibilities.

Requirements |H |C | T | B 2 Uses a graphical hierarchical RSML

State Machine specification which describes dynamic

Language behavior defined by transitions and event:

(RSML)

[Lev et al]

Use Case S 1 Diagram and user-friendly notation that

Diagram uses a NL-like language for specification

(amended) the use cases.

[ChoReqg]

There are numerous techniques for traceabilitqfirements, however we found no

techniques that supported version control of usecacluding traceability. A formal BNF

grammar facilitates the internal structuring aratking of the requirements evolution over time.

Employing a BNF grammar will enable varied depicidoased on the language. Using a

diagrammatic notation as an interpretation depeinoiea sentence from the grammar will benefit
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the non-technical stakeholder by providing an ative but coherent viewing of the tracing
information. Consistency is maintained between nmgpim a RE/TRAC-CF sentence, its
diagrammatical interpretation of the sentence aecevolutionary changes to a use case. Clearly
the use of grammars to describe diagrams is natinbut it is a useful formal method in this
research which uses a unique combination of sermdband formal means to depict RE/TRAC

diagrams.
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4, The RE/TRAC and RE/TRAC-SEM Models
4.1 The Static Syntax

Static syntax describes all acceptable visuaksers in a language and the rules that
enable a decision of either accept or reject. fisaatences or individual diagrams are
assembled using a vocabulary consisting of a s@saél primitives; visual dimensions such as
shape, color, and juxtaposition; and relations betwthe primitives. Sentences in the visual
language (VL) are described by the static semaatidscorrespond to states in the application
domain [NarHub].

A goal in developing the RE/TRAC visual languabeiCar2006] is to be able to create
diagrams with an uncluttered appearance, few ahapns and whose meaning was easily
inferred. The primitives used in the RE/TRAC visaaldel are shown in Figure 3. The base case
which is the head of a diagram serves as an inttamuto a particular use case hierarchy and is
symbolized by the oval (Figure 3a). The oval angbseg (Figure 3b) are model symbols
representing documents containing meta-data infbomauch as the active status, name, unique
document identification label, creation date ané tio the NL textual document. A version

instance is shown by a square.

Figure 3 RE/TRAGBual Language Primitives
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The vertical refinement connector is shown in Feg8d. When a single case is refined by
two use cases, the refinement connector attachs taridge (Figure 3f) to represent a split. If
there are more than two child cases, then the éliglgxpanded and vertical connector lines
(Figure 3e) are inserted. Use cases related viexttension dependency are connected with a
horizontal dashed line (Figure 3g), and the dashetde (Figure 3h) is used with the extension
connector for depicting multiple extension relasbips.

Figure 4 shows the allowable relationships. Fovibyeonly refinements (Figures 4a, 4b)
of one child and single extensions (Figure 4c)paorided.A base use case has no parent as
shown in figure 4aDependent relationships except for refinement atgarmitted for the base
case in a diagram instance. The base use cadsmedrby zero or more use cases at the next
level (level 1). Likewise, any singular use casgFe 4b) may be refined by zero or more use
cases at each subsequent level; any use caseqBigumay also be extended by zero or more
use cased refinement can only be applied to a leaf use aa#s hierarchy because a leaf
represents a current active use case versiontiAdr wersions are frozeihe nesting of
primitive squares (Figure 4b) depicts an incluselationship. Only a single nested use case
primitive is shown (Figure 4d). A use case mayudel zero or more use cases. According to the
rules described, a dependent use case may haveddgpeelationships and also have
refinements. Obviously, a use case cannot inclu@xtend itself or versions of itself.

In a diagram instance, the size and juxtapositidhe primitives may vary for visual
appeal. In compound version instances that resarit uccessive nesting and/or repeated
refinements to dependent use cases, a compongatér3c) cubic symbol is used to compress
the presentation. The component relationships mwtex in Figure 4 but component primitives

are substitutable for all version squares excepigare 4d. A use case may include a
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component, but a component cube cannot have a depease case nor component. Active leaf

nodes are depicted in yellow.

(a) (b) (d)

Figure 4 RE/TRABual Language Relationships

A use case label is used for uniquely identifyimghbactive and archived versions in the
system. As shown in the example diagrams (Figuae$s, 6) the superscripts identify the base
cases of h b* and BB; subscripts denote levels; and concatenated setdans (') with
enumeration values denote siblings. The level galscript is optional. Use cases related via
refinement always share the same superscript. &seEs@re described as either core
(fundamental) use cases or dependent use casesite ase case. A dependent use case is a core
use case serving in context as in a supplemensargase to a core use case. Refinement labels
for a core use case must have ordered, uniqueansgcutively numbered levels. Level labels
for refinements depicted in dependencies are mmgsarily consecutive. A component label for
a component primitive adopts the superscript amd@upt string of the use case for which it is
replacing. The component primitive labelggin Figure 6 replaces use case primitivgand all

of its dependencies.
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In the RE/TRAC diagram for use case hierarch{figure 5a) there are two levels. Base
case fy was first described hy'; and then at a later time*; was refined by a split into versions
u'z1andu’y,. Use case’zqis related tou™; via inclusion. At the current state showhisb
described by the union of the €xreLeafActiveof active leaf use case versions in thedre
and the selom TotalActiveDependenciesLeafCorel'eaffall active leaf case versions of all
dependencies in the d@ependenof b' where~(Corée' N Dependent). In this example,

CorelLeafActivie= {u’.1, U},
TotalActiveDependenciesLeafCoréted u*?,, u.1},

CorelLeafActive/7 dom TotalActiveDependenciesLeafCorel’safl u'.1, u*3, u's-}

4
b b’
uzgl
........................ o
1
4 |
Ull u’q ---
1
1
1
............ X
v usz3
1 1
U2 uso |
Ut u%,
(@) (b)

Figure 5 RE/TRAC Diagram Examples

The RE/TRAC diagram for*(Figure 5b) shows that the core was first desdriyea version
u*; that referenced two use casé% andu®’; both via extension. At an even later tim&,ua
newer version of 1, was selected. Note that in this case, updatieglépendency did not
require a new version of'u The resultingCoreLeafActivéand

TotalActiveDependenciesLeafCoreleafe:
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CorelLeafActie {u*},
TotalActiveDependenciesLeafCorel%eaf (U*%;, u*) (U*%, u'1 )}
CoreLeafActivé /7 dom TotalActiveDependenciesLeafCoref.eaf u*y, u?%, U}

Figure 6 indicates that’has had two successive refinements, versidpandu’,. The
later revision included the updated version levef 8> which was even later updated to version
level 5. The use of the component primitive simeéifthe diagram instance. The resulting
CoreLeafActiveandTotalActiveDependenciesLeafCoreeatfe:

CoreLeafActive { u% },
TotalActiveDependenciesLeafCorelsaf (U%s, u%) (U™ ,u)}

CoreLeafActivé 7 dom TotalActiveDependenciesLeafCorel eaf u%, U, U

@
us
............ U23
9
U’y 2
Ui
U25
a4
u's
c
'_
(@) (b)

Figure 6 Diagram dbetailed Component Diagram

The set representation provides the foundatiothi@definition of the dynamic semantics of

RE/TRAC-SEM given in 4.2.
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Figure 7 shows a Parallel RE/TRAC Diagram modefestr fBatory et al] for a
hypothetical domain, D. All RE/TRAC diagrams foralle shown simultaneously including core
use cases and dependent use cases. The exampésrd@msists of core use cases 1, 2, and 3
and dependent use cases of 4 and 5. All base ss8s bave been refined at level 1; use cases 1
and 2 have been refined to a maximum level 2 anctase 3 refined to a maximum level of 3.
The yellow coloring indicates that leaves in ak eases including related dependencies are

active.

00 006

L1 Ull U21 Ual U41 U51 U41
U22
L2 U12 5 U41 U32
u, F-f--
L3 u’

Figure 7 Parallel RE/TRAC Diagram

The active state of the domain is:
ActiveState= CoreLeafActive 7 CoreLeafActive /7 CoreLeafActivé (7
ActiveDependentChddfCoreleaf /7
dom dom ActiveDepemﬁebependentChiIdLeafCoreLeaf
’FU L} O {u? }D jua} O{uw}0{u%}

= 2 3U1.U1
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Levels in the collective diagram depict discretedievents (refinements) in the use case
specification process for an individual use cashil&\a Parallel RE/TRAC Diagram may not be
practical for complex domain applications, its tisee shows a universal view including
interrelationships and depicts the consistenciésd®n the versions. In other words, a use case
cannot include or extend a use case version thest dot exist, and a use case may only refine
the most current use case in a base use casechigrar

4.2  The Semantic Model RE/TRAC-SEM

Several specification techniques were exploratiisresearch for describing the
semantic model for RE/TRAC. While formal specifioas are beneficial for precise and
unambiguous descriptions they are difficult an@wofimpractical to use. So the ambition of the
research was to leverage the advantages of fopealfications where the benefits could best
be achieved yet construct a specification thateessly understandable. The semantics were
first described using UML class diagrams which glyiecame cluttered and chaotic with
numerous constraints and cardinality specificatidime use of UML object oriented class
diagrams for the semantic specification appeareckmba design specification and therefore
compromised the predilection for a platform indegemt model. Likewise the uses of
prepositional calculus, predicate calculus, orgpecification language Z were found to be
cumbersome for the problem domain of use case dexumanagement with traceability.

A combination of specification models is used teatde the supporting ontology
RE/TRAC-SEM for RE/TRAC, including set theory, agmatical formalism, and informal
verbal definitions [DouCar2007]. As a hybrid modék language representation uses the
relevant model features of each to best describenitology [Kal et al]. The grammatical

formalism, RE/TRAC-CF, is a string language speatiion and provides a strong formal
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structure to the ontology. RE/TRAC-CF describesrdtationships of the use cases
independently of the justification and relationshgd the RE/TRAC primitives in order that the
visual interpretation may varfgecause the use case documents can be grouped tyréh
identification, the use of set theory was a logatadice for describing the constraints between
the use cases.

Feature models are employed to describe memberp@duct-line, where a feature is a
distinctive characterized aspect or quality of stem. A product-line denotes related marketable
goods with variability in features such as sizdépGor other qualities. A feature diagram (FD) is
a graphical way to represent a feature model thatahtree-like structure with primitive features
as the leaves and compound features as interi@snécng et al]. In [JonViss] the advantages of
converting a feature diagram to a grammar are thestrSimilar advantages are perceived in this
research which employs syntax tools for the speatifon of requirements.

This research also takes advantage of existinggsgniammar theory. While the string
grammar approach may be restrictive, the domairsefcase modeling is narrow also. The
RE/TRAC graphical depiction of relationships betwéee primitives for a single core use case
can be described succinctly at a higher level sfrabtion using a context-free grammar.
Efficient parsing algorithms exist for LL(K) or LRYtype grammars like RE/TRAC-CF which
employ top-down and bottom-up parsing respectiaely can be made to work deterministically
by looking ahead k symbols. Parsing a sentende, S&/TRAC-CF determines if S has adhered
to the syntactical rules and permits the extraatibthe meaning within S. This formalism
requires an initial lexical analysis phase to rexpg the relationships between the terminal

symbols and subsequent top-down generation of@hgrstance [Mar et al].
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4.2.1 RE/TRAC-CF

A context-free grammar consists of adquple (T, N, S, R) where: T is a finite set of
terminal symbols, N is a finite set of nonterminalsere N and T are disjoint, S is a unique
starting symbol ($1 N) and P is a finite set of productions of thenipA—> 3, where A is a non-
terminal and is a non-empty string of symbols. A sequentiatuaksentence, S, that conforms
to the RE/TRAC-CF grammar, describes the historghainge including dependencies for a core
use case and can be used to generate its corr@sgandphical representation, S’. The
grammar, shown in Figure 8, is represented in Badtaur Form (BNF); a detailed description

of the production rules is provided in table 2.

1) S:=b|bA

2.) Ai=<Z>

3) Z2:=2Z|(T)| (TA)
4) T:=u|uE|uG
5) G:=1]IE

6.) |:=1[Z]

7.) E=={Z}

&g 8 RE/TRAC-CF Grammar

The language is recursive as use caaggefine uses cases, use cases may include or
extend other use cases which can then includeasss evhich can be refined. When used in an
instance, S, the ‘<’ terminal begins a refinemetatronship and the ‘>’ terminal ends the
refinement relationship. The left and right parestés group a use case term including all of its
subsequent refinements and its dependencies. Titanteright square brackets set apart a use
case term including all of its subsequent refineima@nd dependencies to be included; curly
braces denote a use case term related to its pasesttension. The use case identification

superscripts and subscript levels are not notédeigrammar associated with the terminals b
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and u. References to the numeric children idensifage omitted also in order to keep the

grammar simple and context-free.

Table 2 Explanationsttoe RE/TRAC-CF Production Rules

RULE EXPLANATION

la | S:u=b b is base case in a core

b | S:=bA Base my be refined

2 A =<Z> ‘<’ indicates refinement; ‘>’ ends refinemnt

3a (Z2:=2Z Each use case term may be refined by emeave use case terms — a list

3b | A=(T) ‘(* indicates a use case term follows

3c | A:=(TA) Use case term is refined

4da | T:=u Term is “simple”

4b | T :=uE Term is “compound” with a dependent extensilationship E

4c | T :=uG Term is “compound” with a dependent relaship possibly inclusion or
both inclusion and extension

ba | G:=1 Term is “compound” with a dependent incarsrelationship

5b | G:=1IE Term is “compound” with both a dependerusion and extension
relationships. Rule forces inclusion as higher pdence.

6a |I|:=[Z] ‘[ indicates inclusion relationship. Z ay be one or more included terms

6b | E:={Z} {" indicates extension relationship. Z ay be one of more included terms|

The following are the RE/TRAC-CF representatiamstiie corresponding graphical
representations from the previous graph models:

Figure 5a:
S'= blo< (U < (U2 [(U™)]) (U22)>) >

Figure 5b:
S*= by < (U {(U™%) (U¥%< (UP%)>)}) >

Figure 6:
S = blo<(Ual(uD]<(ul(UZ<(Us[(u“g)])>)])>)>
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Figure 7:

S' = blo<(uli<(u'y)>)>

S = bro<(ui<(U[(u®L {(u*)})]) >)>

S = b (Ui (U <(U35)>)>)>

S'= blo<(uty)>

S = Po<(u{(u*)}) >
Additional RE/TRAC-CF examples with their corresdorg RE/TRAC depiction can be found
in Appendix E.
4.2.2 Dynamic Semantics

Changes in the application domain naaé\changes to RE/TRAC-CF sentences. The
dynamic syntax describes how a sentence is transfibrThe dynamic semantics describes the
conditional changes to the domain’s objects, atteb and relationships and their mappings to
conditional changes in the representation [NarHTibg dynamic semantics is partially
embodied in meta-restrictions which describe tleegorpost conditions associated with changes
to a RE/TRAC-CF sentence. Meta-restrictions desdtie dynamic semantics by defining
invariants that must be upheld to preserve thaiitieof the system [Rodri et al].

The semantics of RE/TRAC is describgdlefinitions of terms, set definitions and
meta-restriction descriptions. The term parenisisd to describe the head of a refinement or
dependent relationship. A child is described asstendant of a use case and is associated to its
parent via refinement. A parent is the older vargiba child use case related by refinement.
Multiple children of a parent are siblings. A degdent use case is related to its core parent via
inclusion or extension. A use case that has nat befened is called a leaf. A use case is part of
a dependency legacy if it is part of an inheritaclcain including dependencies that leads

upwards in the hierarchy to a dependent use casedne,Core'. In Figure 5b, tfsand (%

compose an extension dependency legacy oEtie’ use case*y. In Figure 6b, &, u’s and
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u*%s compose the inclusion legacy f6ore’ use casey. The set definitions applicable for a

given domain and application instance are givealhe 3.

Table 3: Beffinitions for RE/TRAC-SEM

1 U ={bo//u| i:N} where gand y are use cases. Archived use cases included.

2 Core = {b' Tu\¢mp:U |k m, n,v,z: N [kil<=k <=n [ Ar:l<=v <=z}
where k denotes the core identification of n nundjerse cases, v denotes the
version or level instance, “:m” is the child iddit@tion string and z is the maximum
number of refinement levels of a use calge b

3 Dependerit = { Uyg my: U | m:N, [N A<=j<=n [jzk}
Every u inDependerit is part of a dependency legacy of one or morergarse
cases in th€ore

4 ~(Core&* n Dependerf)

5 DependentChildCofe my = { Uy mp : Dependerit U my : Core” |

mv{: my* - uJv{: mp Child ukv{: my* [(U’v{: my*, ukv{: my )}

If uly. my 7dom DependentChildCdtg. my- then u is a dependent child of the
parent use casgore’y; my . Subscript identifiery: my, is the particular level
identifier for the {' or K" use case and does not indicate equality of theeesjon.

6 CoreLeaf= { u*¢ my- : Core’ | [ my , [ mp Where x{: myp> v {: mj* }
CoreLeaf is the set of leaf use case<Jare* . The comparison operator, >, means
there are no refinements of\,{um}* .

7a Status = {“active”, “inactive”}
CoreStatu$= Coré* X Status

7b | CoreStatusActive= { Uy my: dom CoreStatu CoreStatu$ Status‘active”}

7c | CoreStatusinactivie= Core® - CoreStatusActivé

8a | DependentStatUs; m» = DependentChildCofgy mp X Status.

8b | DependentStatusActiVg; mp = { (Ui my, U mp ) : dom DependentStatiig; my
| DependentStatusy Status'active” Uy mp U mp )}

8c DependentStatusinactig my = DependentChildCofg: my -

DependentStatusAtt. m-
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(Table 3 continued)

9a

CoreLeafActivé = CoreStatusActivé n CoreLeaf
The set of active use cases within the set of af€oré".

9b

CoreLeaflnactivé = CorelLeaf— CoreStatusActive
The set of inactive use cases within the set ofdeafCore".

10a

DependentRelation = {“include”, “extend”}
DependentReIationChiItl,{; mp = DependentChiIdCoFe,{; mp X DependentRelation

10b

DependentincludeChildCofg my =
{ (Uyg my, ukv{: mp ) domDependentReIationChif‘d,{; mp | ,
DependentRelationChifd;. n DependentRelatiotinclude” Uy my . Uy mye )}

10c

DependentExtendChildCofg. my =
{ (UWvg mp . U mp ) : dom DependentRelationChlig: - | |
DependentReIationChi'[d{; mp  DependentRelatiotextend” Uy mp | u"v{; mp )}

11la

DependentChiIdLeafCoreLe‘é\)‘{;m}* =
{ (Uvg mp, Usgmpy : DependentChildCofeg: my |

Ot mp , Ut mpe), = (W mp Where x{z mp> v { mp*
[ 0 me O CorelLeaf Mquve mp . Ut my )}

11b

DependentChiIdLeaflncludeCoreLé‘a{f mp =
{(Uyg mp U mp ): DependentChildLeafCoreLe&f;. my |
DependentChildLeafCoreLe&f. - n DependentincludeChildCofg; my- }

1llc

DependentChildLeafExtendCoreL 8af - =
{ (UWvg mp . U mp ) : DependentChildLeafCorele&f. my |
DependentChildLeafCoreLesf. m- n DependentExtendChildCdrgmy }

12a

ActiveDependentChildLeafCoreL€af my =
DependentStatusActi¥e. m+  »  DependentChildLeafCoreL €f. my

12b

InactiveDependentChildLeafCoreL€af. my =
DependentStatusinactig. m - ActiveDependentChildLeafCoreL &af my-

13

DependentToDependentChildLeafCorelsafy =
{u% my: Dependenf,
Uy mp:  dom DependentChildLeafCoreL&af -
Uyemp: CoreLeaf | |
a(uqv{: m}*, _U]v{: m}*), Uk v{: m}*), qu{: mp* M uJv{: m}* 0 )
auqv{: m}*, u]v{: m}*), Uk v{: m}* ), uJv{: m}*, M uk v{: mp* ﬂ(uqv{: m}*, u]v{: m}* ), Uk v{: m}* )}

14a

StatusDependentToDependentChildLeafCoret.gafy =
DependentToDependentCiidCoreLeaf . m X Status
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(Table 3 continued)

14b

ActiveDependentToDependentChildLeafCorel gafy: =

{ ((qu{: my uJv{: mp ) 'J(v{: mp )
dom StatusDeimrrttoDependentChiIdLeafCoreLéa{f my* |
StatusDependentToDependentLeafCoref gafy- DependentRelatiotActive”

ﬂ(uqv{: my* s ujV{: mp ), LrV{i my )}

14c

InactiveDependentToDependentChildLeafCorel gafy: =
DependentToDependentChildLeafCoretgafy- -
ActiveDependentToDependentChildLeafCoref.gaf-

15

DependentToDependentLeafChildLeafCorelgafy: =
{(Cup mp, Uogmp )y Eopmy )
_ Depenﬂ'ejDependentChildLeafCoreLéaf; mp |
a(uqv{: my, dv{: mp)s u v mp)s uqy{: my Child uJv{: my*
Ua(uqv{: my, l_JJv{: my)s ut Vi mp ) uJv{: my Child U v{: my*
Uﬂ(uqv{: m}* uJv{: m}*), Uk v{: mp* ), - ﬂ'qx{: m}* where )1( m}* >V {: mpx
ﬂ(uqv{: m}*, urv{: m}* ), Lrv{: m}* )}

16a

ActiveDependentToDependentLeafChildLeafCoref.gafy =
ActiveDependentToDependentChildLeafCoretgafy 1
DependentToDependentLeafChildLeafCorelaaf,-

16b

InactiveDependentToDependentLeafChildLeafCorefgaf: =
InActiveDependentToDependentChildLeafCoretgafy
DependentToDependentLeafChildLeafCorelgafy:

17

TotalActiveDependenciesLeafCorel &af

ActiveDependentChildLeafCoreLeaf/

{ U mp Zdom dom ActiveDependentToDependentLeafChiIdLeen‘.@rarfk Vi My
Uk v my L/ran ActiveDependentToDependentLeafChiIdLeafComL@%}* |

((qu{: m}* uJv{: m}*), Uk v{: m}*)U

ActiveDependentToDependentLeafChildLeafCorel gafy (g mp  Uvpmp) }

TotalActiveDependenciesLeafCoreLEfthe union of all active leaf dependencies in
CoreLeal.

18

ActiveState = { ;. my £ CoreLeafActive,

Ul mp 7dom TotalActiveDependenciesLeafCorelddf:N, q:N /1<= k <=n,
l<=q<=n}

The current active state of the use case spedtfica’, is defined by the union of the

active leaf cases in the core and the active lesé<in the legacies of use cases in

CorelLeafActivé
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Meta-restrictions on the set entities prescribetéitions on use case refinement,
identification, and status alteration in contexientihere is a change% There are restrictions
on the identification numbering system for refinelevels, for dependent use cases, and for
differentiation between siblings. All use case€ore are related via a refinement hierarchy.
Refinement labels for core use case€ane must have ordered, unique and consecutively
numbered levels. Operations or actions permittetheydynamic semantics are described as
commands.

A RE/TRAC diagram usually expands vertically amemments are made. Changes can
only be made to documents represented at the |dexeds in a diagram: to a use cdse
CoreLeaf or to the most current dependent use case asseidth some use cagéCoreleaf
X The addition of a dependent relationships may bellinked to a use cagéCoreLeafChild
dependent use cases to the new dependency areatigtily associated.

The following parameterized commands are neced$sargaintaining consistency among the
use case versions and preserving the integritigefeéquirements specification:

(1) REFINE_CORE_SINGLE (Figure 9),

(2) REFINE_DEPENDENT_SINGLE_RELATION (Figure 10),

(3) CORE_ADD_RELATION (Figure 11),

(4) SET_CORE_ACTIVE (Figure 12a),

(5) SET_CORE_INACTIVE (Figure 12b),

(6) SET_DEPENDENT_STATUS (Figure 13),

(7) REFINE_CORE_MULTIPLE (Figure 14),

(8) REFINE_DEPENDENT_MULTIPLE_RELATION (Figure 1and,

(9) UNION_DEPENDENT_DEPENDENT (Figure 16).
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The commands make possible the refinement of alyoeesingle use case or a split into
multiple children. A core use case may have a dégretnuse case added. A core leaf may be set
to active or inactive status. Likewise dependerdy be refined singly or by multiples and may
have their statuses altered. The command to j@erm#ent use cases to another dependents use
case is UNION_DEPENDENT_DEPENDENT. The support cand) SET_HISTORY, is
incorporated to maintain a log of the active/inaetstatus a use case relative to its core parent.
The function, TIME, is employed in conjunction wahhistory recording.

The commands REFINE_CORE_SINGLE and
REFINE_DEPENDENT_SINGLE_RELATION are defined foredinement of only one child
use case. When a core leaf case is refined, teénewnber is increased by one (i+1) from the
parent level (). The REFINE_CORE_SINGLE commandefined in Figure 9. The newly
added core leaf case is set to active status htlcdammand SET_CORE_ACTIVE in

Figure 12a.

Pre-Condition: Gi1g my O CoreLeaf

Command = REFINE_CORE_SINGLE( mp, USe1g mp ) =
(U mp 7 CoreLeaf JCoreLeaf = {} =

( (CoreLeaf') = CoreLeaf* - { U my-}

[J(CoreLeaf) = CoreLeaf 7{ uSs1pmp} )

[JSET_CORE_ACTIVEWs1g mp ) ).

Post-condition: {j. m 0 CoreLeaf

Figure 9 Refine Core Single

Similarly dependent use cases can lieegkf However the new level label is not
necessarily consecutive but will be ordered andumi Refinements @y my /7 dom

DependentChiIdLeafCoreLé‘a{f; mp Maintainthe same relationship to the parent core as its
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immediate parent. The command REFINE_DEPENDENT_SIRNGRELATION is described
in Figure 10 for the relationships include and agte The parameter list includes the new
dependent use case, its dependent parent, thpaaet, and the relation either “include” or
‘extend”. To enforce traceability, only leaf dependies directly related to a core leaf parent
may be refined. When a dependent use case is defime newly added use case is set to the

active default status.

Pre-condition:(Uy; mp . U mpr) O DependentChildLeafCorele&f; my
Command = REFINE_DEPENDENT_SINGLE_RELATION

_ (Uji{; mp s dx{; my lJ(V{; my relation) =
((Uig mp U mp) 7DependentChildLeafCorele&fy. my

[7x >i [Jrelation /7{“include”, “extend”} =

( (DependentChildCofgy. my )’ = DependentChildCoréy;. mp 7 {(Uxg my» Usg: mpe )}
[J(DependentChildLeafCoreLe&f my ) =

DependentChildLeafCoreLe&f; mp - {(Uig: my, Ust: my )}
[J(DependentChildLeafCoreLe&fi my ) =

DependentChildLeafCoreLeaf. my 7 { Uxgmp, Uspmy) }

7 UNION_DEPENDENT_DEPENDENTUyg: mp , Uvg: mpe)
[JSET_DEPENDENT_STATUS @ my, Uy my ) , relation)

[J(DependentRelationChift. my<) =
DependentReIationChi\‘d{: mp L7 {(Uxg: my ukv{: mp ), relation ) )).
Post-condition: (. my , U my-) £7DependentChildLeafCoreL e, m-

gkre 10 Dependency Refined

A dependent use casg my- is associated with a core use case via the command
CORE_ADD_RELATION described in Figure 11.The stattithe added dependency (include
or extend) is set to active. Use cases may onigdleded or extended to use case€arelLeaf

X, All other versions are frozen. When a dependeataasely;. my , is associated with a leaf
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core use casé\;. mp by refinement commands or commands to add depeiwdeto the core,
all dependenta®. my 7dom DependentToDependentLeafChildLeafCoreLgafy are also
associatedith U . The command to associate dependents to a dapertdlel leaf is

UNION_DEPENDENT_DEPENDENT described in Figure 16.

Pre-condition: {, U mp) DependentChildLeafCoreLef: my:
Command=CORE_ADD_RELATIONUy¢ my, Usg my , relation) =
(U mp 7 CoreLeaf  [Trelation 7 {“include”, “extend”} =
( (DependentChildCofgg my: )=
DependentChildCor&: mp 7 {(Uvg mp» U mpe )}
[J(DependentRelationChiftg. mp= )’ =
DependentRelationChifgy my 7 {(Uvgmy, Usq mpe , relation}
[J(DependentChildLeafCoreLe&f mp) =
DependentChildLeafCoreL&gf my 7 {(Uvg:mp » Ui mp)}
[7 UNION_DEPENDENT_DEPENDENTUy; my + Usvg: my)
[JSET_DEPENDENT_STATUS @ my, Usqmy ) , “active”) )).
Post-condition: éu, Ukv{: my) DDependentChiIdLeafCoreLe‘é,f; my*

Figure 11 Dependency Added to Core Leaf

Because use case versions may not beedeh order to enforce traceability, the inactive
or active status is used to denote that it is cdiy@r was previously a viable version within a
hierarchy. Each use case in a core hiera@tng andDependent has a status and a status
history is maintained. The status from active tactive or vice versa may only be changed for
leaf use cases both in the cau&({; my* [JCoreLeaf ) or dependencies to the core
((Uvg mp » UXygmp ) 7DependentChildLeafCoreLef;. my ). A newly added use case
Wi mp i the core is set to the active default statug dttions of the SET_CORE_ACTIVE
and SET_CORE_INACTIVE commands are provided in FedgilRa and Figure 12b

respectively.
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@
Pre-Condition: (v my , “active”) [7CoreStatu$
Command = SET_CORE_ACTIVEX v, my- ) =
(v mp 7 CoreLeaflinactive =
(( CoreStatus) = CoreStatu$ - {(U* . my- , “inactive”)
[J( CoreStatus)’ = CoreStatu$ 7 {(U* v mp , “active”)
[ISET_HISTORY (fyg my ) , “active”, TIME() ) ).
Post-condition: (fi. my , “inactive” ) /7CoreStatu$

(b)

Pre-Condition: (i my , “inactive”) [7CoreStatu$

Command = SET_CORE_INACTIVEX . - ) =

(Uvmp JCorelLeafActivé,

((qu{: mp uJv{: mp ), U vemp ) L
DependentToDependentLeafChildLeafCoret.gafy /7
DependentToDependentLeafChiIdLeafCoret@at}* ={} =

( (CoreStatus) = CoreStatus - {(U* s my , “active”)

[7 ( CoreStatus)' = CoreStatu$ /7 {(U* . my- , “active”)

[7 SET_HISTORY((UE yi. my ) , “inactive”, TIME() )

[ SET_DEPENDENT_STATUS(Gvgmys Uvemy ) , “inactive”))).

Post-condition: tiy; m= [JCoreLeafActivé

Figure 12 Commands: SET_CORE_ACTIVEa@ SET_CORE_INACTIVE(b)

Similarly for a use case immediately dependera oore use{(Uyg. my, U mp)} O

DependentChiIdLeafCoreLe‘é,f; my) L7 ] # K, the status may be changed by applying the

command, SET_DEPENDENT_STATUS, as shown in Fig@teThe dependents to a

dependent (W my , Uvgmy ), Uvpmy ) O DependentToDependentChildLeafCorel'gafy-)

[7)# k) are initially set to the default status ofithessociated status in their respective core

hierarchies. For a use case version serving irpardiency role, additionally, there will be a

current status in the hierarchy in which it appease cases in dependent relationships retain a

status history within the context of the dependeN¢lien the status of a core use case is made

inactive (command SET_CORE_INACTIVE) or an immeelidependency is made inactive
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(SET_DEPENDENT_STATUS), all leaves in its lega@es automatically updated to status

inactive.

Precondition:((Uvg my, U v my ), Status)
O StatusDependentChildleafCoreL€&gf my

Command = SET_DEPENDENT_STATUS (funy, u*y¢ mp+ ) , Status ) =
((Uigmp, Ui mp ) O DependentChildLeafCoreLéaf my-
[Jj #k [OJgatus//{"active”, “inactive”}) =
((StatusDependentChildLeafCorelL& fop) =
StatusDependentChildLeafCoreL&af my - {(UWyg: mp , Uy my ), — Status }

0 (StatusDependentChiIdLeafCoreLéqfm}*)’ =
StatusDependentChildLeafCoreL&af my 7 {((Uvg: my » U vp: my ), Status)}

[7 SET_HISTORY((Uyg: my= , Uy my ), Status, TIME() )

[J(StatusDependentToDependentChild LeafCoreL‘é@fny )=
StatusDependentToDependentChildLeafCorel'ogf (7
{((Pogmy, Usgmp ), U mp ) :DependentToDependentChildLeafCoreL&gfyy
| U((qu{: my, uJx{: mp)s u vemp)s
SET_HISTORY((Uug: mp , Uxg: mp#), U v mye ) , Status, TIME() )

(W my > Usgmy )y Uypmy ) X status) })).

Postcondition: (g my , U v mp ), - Status )
[7 StatusDependentChildLeafCoreL g m-

Figure 13 Command SBEPENDENT_STATUS

In the case of a refinement split, npdtichildren are created from a single parent and a
enumerated child label extension string, denoted™above, is appended to the identification
level subscripts for each sibling. Child labels angitted if there is only one child. To create a
level identification label for a refinement to seusase irCoreLea, the level number is
increased by 1 as described above and the chilik extension string, if one exists, beginning

with ‘" of the parent is concatenated to the clsillével. If there are multiple children at the new
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level, suffixes of ©:1’, ©:2’, ... to “:m” are finay composed and concatenated. In Figure 14 the
command to refine a core leaf use case by multiplelren is shown. The command to refine a
dependency by multiple siblings, REFINE_ DEPENDENTUIMIPLE_RELATION, is shown

in Figure 15. All siblings are set to the defawdttgs of active.

Pre-Condition: L‘ii+1{; m}*:p+0 ,uki+1{; mpp+l seee s L Uki+1{: mpp +(n-1) U CoreLeaf
Command = REFINE_CORE_MULTIPLE
(Uki{: mp Uki+1{: m}*:p+0 .Uki+1{: m}*:p+1 '---'Uki+1{: mpp +(n-1)) =
( REFINE_CORE_SINGLE . my=p+o )
REFINE_CORE_SINGLE lﬁul{; mpp+l )
REFINE_CORE_SINGLE lﬁhh{: mpp +(n-1) ) ))-

Post-condition: tj. m» O CoreLeaf

Figure 14 Command to Refine a Core Leaf Oase by Multiple Children

I:)re'C(_)ndition:(ij{: m}* :p+0, , ukv{: mp* ), (ij{: m}* ;p+1, ,Ukv{: m}*) A
(Uxg mp p+ (1) USemp) O DependentChildLeafCoreLef; my-

Command = REFINE_DEPENDENT_MULTIPLE_RELATION
(Uji{: m}* ljx{: m}* :p+0, uJx{: m}y* p+ls--ey uJx{: mpp+(n-1) ukv{: m}* , relation) =
(relation 7{“include”, “extend”} 7 Uiz my JDependenty mp =
REFINE_DEPENDENT_SINGLE_RELATION
Ly o Usg mp pro » USg mye, Telation )
REFINE_DEPENDENT_SINGLE_RELATION
Ly Usg mp pr1 » USg mye, Telation )

REFINE_DEPENDENT_SINGLE_RELATION
Ji{(lph}* ’ ljx{: m}* :p+(n-1) » ukv{: m}* relation )))

Post-condition: (. my , U mp) 7DependentChildLeafCoreLeff;, my-

Figure 15 Command to Refa Dependency by Multiple Children
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Use of the RE/TRAC-SEM commands restietiznges to a sentence in RE/TRAC-CF.
By stipulating that all changes must be made tedsan which there are no further refinements,
traceability of the requirements evolution is preed. An organization of use caskg,is
initially described and then at discrete advanndsmne, variability is introduced via refinements
and associations. The dynamic semantics constifamsge changes so that consistency is

maintained in the evolutionary change process. gplieation example follows in section 4.3.

Precondition: (G my . Usg mp )y Uy my )
O DependentToDependentChildLeafCorel §zfny

Command= UNION_DEPENDENT_DEPENDEI\HE‘X{: mp ,uk\,{; mp) =
( Zzk =
((DependentToDependentChildLeafCoreL&afy) =
DependentToDependentChildLeafCorel'safy 7

{( g my, Uxemp ):DependentChildLeafCoreLe@f my

v mp :CoreLeafq. my _

| l:((qu{: m}y* uJv{: m}*). ukv{: m}*), qu{: m}* M u]v{: m}*
O E(qu{: m}* s
UNION_DEPENDENT_DEPENDENT: mp , U vf: mp+)
E((qu{: m}p* uJx{: mp* )1 ukV{: mp* )} ))

Postcondition: (B¢ mp, Uxgmp )r Wopmpr )
DependentToDependentChildLeafCoreL8gfi-

Figure 16 Command: UNION_DEPENDENEPENDENT Use Cases

4.3 Example
As a rudimentary application of RE/TRAC-SEM, comsid software development
company that maintains an online conference registr system for use by various

professional organizations. The following are baseore caseld in the example domain, D:
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b' — Inquire available conferences

b” — Register for a specific conference and tallyegfistration fees
b® — View specific attendee’s registration informatio

b* — Change attendee’s registration

b> — Delete attendee’s registration

b® — Verify attendee

b’ — Debit attendee’s account

b® — Credit attendee’s account

b’ — Join organization

b*® — Lookup discount for organization members

Recall that brepresents thé'lbase case ‘u represents a more detailed description of

the base case, and subsequent versionsindigate the evolutionf the base case over time. A
sentence 'Sdepicts all use cases related to thédse case. Given the domain D, an
application instance numbered 3, represented®ais Bepresented by the sentences, & S,
Si S, S, S, S} After an initial selection of sentences 1-8 anfirst refinement
incorporating the inclusion of several dependestaases, the following base cases at time 1,
denoted By, are described:

'3 pi<(uty)>

23 b§<(U§1[(U;1)])>

S b<ual(uD>

53 b5<(U51[(U61)(U81)(U 1)])>

S br<(u4[(u)(u")])>

63 b6<(u61)>

73 b7<(u7l)>

83 b8<(U81)>

93 b9<(u91)>

Use Case 2 describes the registration of a camferattendee and includes Use Case 7

which records the participant’s fees as paid ih fthis example assumes that payment for the
conference is due upon registration. Use Casevitoinformation about an attendee must first
verify that the customer has previously registexe@n attendee. The added functionality is

provided by the inclusion of Use Case 6 in Use Gadka customer requests a change to his

registration as portrayed in Use Case 4, the magjish is first verified (Use Case 6), then the old
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fees are credited to his account (Use Case 8hahefee calculated and his account debited (Use
Case 7) with the corrected fee tally. If a custoelects to withdraw from a conference (Use
Case 5), the attendee’s registration is verifiese(Qase 6) and the relevant account is credited
(Use Case 8). Inclusion of embedded use caseB/MARAC-CF sentences 2, 3, 4 and 5 are
denoted by square bracket pairs ([ ]) as notedbfet2. The relevant RE/TRAC_SEM sets &t D
are shown in Figure 17.
The client decides that if a registrant must chacegistration within one week of the
conference, there will be a refund of only 50%.e Dinganization is striving to increase
memberships, so even if an attendee withdraws &@onference, he may be interested in
joining the organization. So before an accounteslited (Use Case 8), the client would like a
prompt for the user to become an organization meifibge Case 9). So now at timé&Pf; is
extended by U and there is a change t® to include a test for one week before invokifig u
The commands,
(3) CORE_ADD_RELATION (&, u%;, “extend”)
(9) UNION_DEPENDENT _DEPENDENT%uU® ) - no action taken
(6) SET_DEPENDENT_STATUS%u®,, “Active”)

(1) REFINE_CORE_SINGLE 8y, U*»)
(4) SET_CORE_ACTIVE )

(3) CORE_ADD_RELATION ((8, 1), “include”)

(9) UNION_DEPENDENT_DEPENDENT %y ) - no action taken
(6) SET_DEPENDENT_STATUS%u W, “active”)

(3) CORE_ADD_RELATION ((8: , v,), “include” )
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(9) UNION_DEPENDENT_DEPENDENT {u, *,) - 1’; added,
(9) UNION_DEPENDENDEPENDENT (&, &’;) — no action taken
(6) SET_DEPENDENT_STATUSHu, \",, “active”).
are employed generating the following evolutionemgnges to %and S:
&= < {(u°)})>
S = b<(U’ [(U*) (UPD]<(U> [(UP) (WP (u)D])>)>
Pertinent set changes are shown in Figure 18.

The client chooses to provide a discount to thamiation members attending a
conference at time ), so W, is refined to include the test for organizationnmbership and
then subsequently to invoke the lookup for thealist. Commands

(1) REFINE_CORE_SINGLE {8, u'%)

(4) SET_CORE_ACTIVE (%)
(1) REFINE_CORE_SINGLE (4, %)
(4) SET_CORE_ACTIVE ()

(3) CORE_ADD_RELATION ((t , %) , “include”),

(9) UNION_DEPENDENT_DEPENDENT {u, t/>) - no action taken
(6) SET_DEPENDENT_STATUS (u, %, ), "active”)

(3) CORE_ADD_RELATION ((t°;, 1% ), “extend”)

(9) UNION_DEPENDENT _DEPENDENT 1%, %) - no action taken

(6) SET_DEPENDENT_STATUS {4, 1), "active”).

are applied causing the sentenc&sahd $to be altered:
g0 _ o <(u101)>
$ = BP<(U[(u"D]<(u? [(U'D] {(u™)})>)>
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A patrtial listing of the sets is provided in Figur@.

U = { bl! ulla b21 uzl, bga u311 b41 u4l,b51 usl, b61 uela b71 u7la bsa usl ,bgy ugl lblc}

CoreLeaf = {ul,} CoreLeafAct@vé: {uil,}
CoreLeaf = {u%} CoreLeafActl_v%: {u %}

CoreLeaf= {u%} CoreLeafAc'glvéz {u®}
CoreLeaf'= {u'} CoreLeafAct!vé1 ={u'}

CoreLeaf = { u®} CoreLeafActive = { u}
CoreLeaf = { u®} CoreLeafActivé = { u®}
CoreLeaf = { u”,} CoreLeafActivé = {u’}}
CoreLeaf = { u®} CoreLeafActivé = { u®}
CoreLeaf = { u%} CoreLeafActivé = { u®}

CorelLeafActive = { h , U21 , u31 , U41 , Usl, u61 , U71 , UBJ_ , u91}
DependentChildCor = {}
DependentChildCorg = { (u’;, u? )}
DependentChildCorg = {( u®, u®)}
DependentChildCorg = { (u%, u%), (U"y, u*), (U®, u*)}
DependentChildCorg = { (u®, t?), (F,, )}
DependentRelationChilf = {}
DependentRelationChifd = { ((u’y, u? ), “include”)}
DependentRelationChif§ = {((u®,, u®), “include”)}
DependentRelationChifty = { ((u®,, u), “include”), ((u’y, u®), “include”),

(UL u), “include”) }
DependentRelationChiftf = { (u®, U*y), “include”), ((u®; , ), “include”)}
DependentincludeChildCorfe = { (uy, u% )}
DependentincludeChildCorg = {( u®, u® )}
DependentincludeChildCofe= { (u®;, u®), (U3, u*), (%, u*)}
DependentincludeChildCorg= { (u®, W*y), (W, &)}
DependentChildLeafincludeChildCofe= { (u’;, u? )}
DependentChildLeafincludeChildCote= {( u®, u®)}
DependentChildLeafincludeChildCote= { (U, u®), (U'y, u), (U®, u®)}
DependentChildLeafincludeChildCote= { (u%, %), (L, WPy)}
ActiveDependentChildLeaflncludeChildCdre= { (u’y, u% )}
ActiveDependentChildLeaflncludeChildCdie= {( u®, u®)}
ActiveDependentChildLeaflncludeChildCdies { (u®y, u*), (U'y, u™), (U, u®)}
ActiveDependentChildLeaflncludeChildCdie { (u®, W), (Ff;, 1Py)}
TotalActiveDependenciesLeafCoreLeaf = {(w? ), (1, u®), (U°y, u®),

(@ uhy), WP, uh), (W, &), (Pr, )Y
CorelLeafActive’7 dom TotalActiveDependenciesLeafCorelLeaf =
{Jli, Uzl,Usl, U41, U51, Uel, U71, Usl}

Gig 17 Sets ath
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U= { bl, Ul]_, bz, U21, b3, U31, b4, U41, b5, U51,U52 ,b6, U61, b7, U71, b7, UB]_ ng, Ugl , blo}

DependentChildCofe = { (u%, L?))}
DependentRelationChify= { (u°;, \,), “extend” }
DependentChildLeafCoreLe&f= { (U1, 1P1)}
StatusDependentChildLeafCoreL&af { (u®;, L), “active”}

DependentToDependentChildLeafCoreLeaf u= {(( t’; , tf; ), 1 )}
Core® ={b°, P, P53}

CoreLeaf ={u®}

CoreStatu¥ = { u>, “active™}

CoreLeafActivé = { u>}

DependentChildCorg& = { (u®, %), (LF1, (P2)}
DependentRelationChif = { ((u®, 1), “include”), ((u®;, ), “include”)}
DependentincludeChildCore= { (u®, 1), (L1, W)}
DependentChildLeafincludeChildCote= { (%, 1), (L1, 1P))}

DependentChildLeafCoreLedf= { (u®, %), (L1, o)}
StatusDependentChildLeafCoreLeaf u {((u®; , P,), “active”), (U1, U™),
“active”)

ActiveDependentChildLeafChildCote= {(u®y, 1), (L1, u*)}
StatusDependentToDependentChildLeafCoref eaf(( u®; , f; ), ), “active™}
ActiveDependentToDependentChildLeafCorePeaf(( u®; , 1 ), U’ )}
ActiveDependentChildLeafCoreLeaf { (u°; , P»)}

CoreLeafActive ={t , %y, 1’1, U, o}

CoreLeaflnactive = {b, ¥, b*, b*, b, w1, b®, b’ , b, 1, b'°
TotalActiveDependenciesLeafCorelLeaf (U%; , 1P,) , (L1, 1), (1, )}

TotalActiveDependenciesLeafCorelLeaf = {i(u? ), (1, u®), (L1, u*),
(KL U41), (U81, U41), (Uel, U52),

@, ), (P, U) }

CorelLeafActive/ domTotalActiveDependenciesLeafCorelLeaf
{ Uy, Py 0P, Uy 0, WPy, Uy, Py, U )

Figut8 Sets at 1

Similarly at D, the client decides to prompt a registrant to jbimorganization if not

currently a member, resulting in a refinement @ftai L. If the customeis not currently a
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member, Use Case 10 is invoked conditionally. Thiewing commands are applied,
(1) REFINE_CORE_SINGLEU?% u%)
(4) SET_CORE_ACTIVE f)

(3) CORE_ADD_RELATION ((&, U%3), “extend”)

(9) UNION_DEPENDENT _DEPENDENT%y %) - no action taken
(6) SET_DEPENDENT_STATUS {u?s), "active”)

(3) CORE_ADD_RELATION ((t°;, 1%5), “extend”)

(9) UNION_DEPENDENT_DEPENDENT, %) - no action taken
(6) SET_DEPENDENT_STATUS {4, %), "active”)
(3) CORE_ADD_RELATION ((t%, 1%3), “include”)
(9) UNION_DEPENDENT_DEPENDENT %, t/s) - no action taken
(6) SET_DEPENDENT_STATUS (fu s ), "active”).
resulting in the following revisions t&’S
S = B<(Uf(uDI<(U? [(u"D)] {(u DI U] {(u®) U°)}>)>)>
A partial listing of the sets at tin@*;is provided in Figure 20.

Given the RE/TRAC-CF representation and the comggrgrovided by the dynamic
semantics, a history of change including the cpoading dependent relationships is preserved
during requirements evolution of use cases. Theryiss explicit in the RE/TRAC
visualizations in Figure 21 for the sentenéaiSime D, and in Figure 22 for St time D,.
Other RE/TRAC diagrams for domair? &e not shown, as they are trivial. Each levehin t
RE/TRAC interpretation of the RE/TRAC-CF sentenca&sponds to a discrete time illustrating
that a change has occurred. Commands that aieditto evoke the evolution have pre-

conditions, post-conditions and rules for limitithg relationships, governing the change in
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relationships, registering time history, and statizsntenance. By following the commands to
oversee the evolutionary process, we have correwintained sentences in RE/TRAC-CF and
generated the corresponding RE/TRAC with correammay. This demonstrates that the
dynamic semantics specified by RE/TRAC-SEM impas®essistency between the RE/TRAC

sentences and its corresponding diagrammatic neton.

U= { bl, Ull, bz, Uzl' U22, b3, U31, b4, U41' bs, Usl’ U52 Ybe, U61, b7, U71, b7, Uslybg, Ugl , blo, Ulcl}

Core® ={b'%, U}
CoreLeaf’ = {u*’}
CoreStatu¥ = {(u'%, “active”)}

(:Ore2 = {bzo, Uzl, Uzg}
CorelLeaf = {u?}
CoreStatus = {&, “active”}
CoreLeafActive = {u?}

DependentChildCore= { (u’;,u%), (U'1,u%), (U%,u%),}
DependentRelationChifd = { (u’;,u?%), “include”), ((u'% ,u%), “extend”) }
DependentincludeChildCore= {(u’;,u%)}
DependentChildLeafCoreLe&t { (uy,u? ), (U, u%)}
StatusDependentChildLeafCoreLéaf {((u’y,u? ), “active”),

((tP;,u?,), “active”}
DependentChildLeafincludeChildCofe= {(u’;,u?)}

DependentExtendChildCofe= {(u'% ,u%)}
DependentChildLeafExtendChildCde= {(u®,u%)}
ActiveDependentChildLeafincludeChildCdse {(u’s,u?% )}
ActiveDependentChildLeafExtendChildCéye { (u™% ,u% )}
TotalActiveDependenciesLeafCoreLeaf = {(w?% ), (U°;,u%), (WP, u?),
(Ei U41)- (U71. U41)- (U81, U41)-

G ), (Fr, )}

CorelLeafActive/ dom TotalActiveDependenciesLeafCorelLeaf =

{Ull- U22, U31, U41, U52, U61. U71, Ugl,Ugl ) Ulol}

Figure 19 Sets at®
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U={ bl, Ull, bz, U21, U22. U23,b3. U31, b4, U41, bs, USl, U52 ,b6, U61. b7. U71, b7, Usl,bg.
ugl , blO, ulol}

Core2 :{bzo, UZ]_, U22, U23}
CoreLeaf’ = {u%}

CoreStatu$ = {( u’%, “active”)}
CoreLeafActive = {u?s3}

DependentChildCore={ (u’y,u% ), (U1,u%), (U% ,u%),
"(w?), (P1,u%), (U%,u%)}
DependentRelationChitg= { (u’1,u%), “include”),
ut(,u%), “extend”),
u'll,u%), “extend”) }

DependentincludeChildCofe= {(u’y, u%)}
DependentChildLeafChildCote= {(u’1,u%), (W1,u%), U ,u%)}
DependentChildLeafincludeChildCdge {(u’y, uZ)}
ActiveDependentChildLeafincludeChildCye {(u’1, u%)}
DependentExtendChildCdes= {(u®1, u%), (U™ ,u%)}
DependentChildLeafExtendChildCése {(u®:, u%), (U1 ,u?)}
ActiveDependentChildLeafExtendChildCare{(u’s, u%), (u'®;,u%)}

TotalActiveDependenciesLeafCoreLeaf = {1(w? ), (1,u%), (U ,u%)}

CoreLeafActive7 dom TotalActiveDependenciesLeafCorelLeaf =
{0y, 3, 0%, Uy, Py, WPy, U7y, WPy U0, UM}

igre 20 Set Sets at’p
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S = P<(Uf(uD]<(uU’2 [(u D] {u ™ D}< (U U D] {u®) U DD>)>)>

By )
> us
7
ui
10
s u% u'
—» u71 __________
ugl
B, :
U23 !
U71 ______
_____ ulo1

Figure 21 5= BP<(Ua(u"D]<(u? [(W'D] {(u ™ D}<(uZU"D] {(u®) (U)})>)>)> at D
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S = <UL [(u®) (U< (U [(U) (U°D)])>)>

@

5
u-
By
—_— us usy
5
u
B, 2
_— 9
u
U]_ ul _________ 1

Figure 22°S BP<(U; [(Us)(UPD]<(u® [(u®) (L%, {(u®)})>)> at D%
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5. Method Validation

In [Ped et al] the validation of reseangthin the field of engineering design is said ® b
problematic because is relies on subjective statgsras well as mathematical modeling and
therefore does not lend itself to traditional stfenvalidation based on logical induction and/or
deduction. [Ped et al] assert “ that research atibad is a process of building confidence in its
usefulness with respect to a purpose” and is fodimshewhether the design solution is shown to
be effective and efficient by employing qualitateved quantitative means respectively. Their
research validation process is called the “Valmlattquare” where the process is divided into
two parts: structural validation (a qualitative pess steps 1,2, and 3) and performance
validation (a quantitative process steps 4, 5 gndrée validation square is shown in Figure 23

in which detailed steps are numbered (1) through (6

(1)&(2) (6)
Theoretical Theoretical
Structural Performance
Validity Validity

3) (4) & (5)
Empirical Empirical
Structural Performance
Validity Validity

Figure 23 The “Validation Square” [Ped et al]

The validation for RE/TRAC follows the Validatiorg&are process for method validation. In
order to show that the method has theoretical negg structural validity, confidence in the
validity of the individual constructs (1) of RE/TRAIs demonstrated. Secondly (2), we
demonstrate method consistency in the manner inhwthie RE/TRAC’s constructs are

integrated. The empirical structural validity (8)established by explaining the appropriateness
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of the example problem in supporting our hypothddext, (4) we describe how RE/TRAC
improves the requirements evolution process byesding the quality of the method.
Subsequently we show that the usefulness is lifketb using the RE/TRAC method. By
showing that the RE/TRAC method is useful beyondeséimited purposes (6), then in a more
general sense we have confirmed the theoreticpeance valid. The sections below are
numbered (5.1 — 5.6) according to the numbered ocomqts in the Validation Square.
5.1  Accepting the Constructs’ Validity

Hierarchical step-wise refinement is simtlaa top-down design method. Top-down design
is a proven incremental approach where the dautdisigof solving a large problem is addressed
by first breaking it into smaller and smaller compaots, each with more detail than its
predecessor [KenKen], [PetPed], [Sommerville]. A-tlown design approach emphasizes
interrelationships and interdependencies of subrsys{KenKen]. Just as the top-down approach
facilitates defining of subsystems and modular paogning [KenKen], the hierarchical step-wise
refinement of requirements’ documents lends itged component-based organization of the
artifacts. Both are divide-and-conquer approachasproven in military strategies and algorithm
development.

Visual languages have been found in varimigpan cultures and from earliest pre-history
until modern times. They may be of a highly abgtfaanm or a very detailed well-defined
notation such as a musical notation or an engiaekssign blueprints. Visual languages
contribute another form of communication besideistan or spoken languages. In addition,
visual languages are not necessarily constraineddgguential processing of the symbols as they
are read or spoken [Crapo et al], [MarMey]. As destrated by a number of researchers,

appropriate visualization models can improve thgndove reasoning and can increase problem-
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solving performance. A system is modeled usingcthgnitive processes of the stakeholder, and
external representations, such as visual modegharprimary method of extending working
memory by harnessing the parallel processing cipediof the working brain [Crapo et al].
RE/TRAC provides an alternative highly abstractrfaf communication of the written

requirements artifacts and their interrelationshipgermits another view of the history of the
evolution of the artifacts other than written teadtlists possibly in an indexed hierarchical
display format. There is a similarity to writteaxtual artifacts in that the top-down left to right
ordering of the primitives in a RE/TRAC diagramldols the natural reading and comprehension
of the English language and many other languades n€sting of symbols to depict inclusion has
its roots in the formalism of Euler circles [Eularjd later Venn diagrams [Venn] which have
been beneficial in solving various mathematicabpgms. The number of symbols defined in
RE/TRAC is limited to the purpose so that unneagssaless important details in the model are
not distracting to the viewer. Limiting the congtisitoward an explicit representational model
has been claimed as an accepted axiom in developaogls toward making models more
effective [Alabastro], [Crapo et al], [Johnson]tdBGur]. While some users are not comfortable
with graphical depictions, others find them simghel often self-explanatory. In this research we
take the position that a graphical depiction oéirglationships is quicker to comprehend than
detailed written documentation especially if the+#echnical stakeholder has little or no prior
understanding of component-based design.

Grammatical approaches to visual languagedechniques very close to the specification of
string languages, which have a long history. RE/TR2EM employs a generalized context-free
grammar, RE/TRAC-CF, to formalize the rules for $toacting corresponding correct RE/TRAC

visual models. Production rules describe acceptaledimensional generalizations of
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concatenation, and terminals specify two-dimendipranitive objects. RE/TRAC-CF does not
describe the connectors or spatial positionindnefitisual primitives. In this way it shares
characteristics of positional grammars [Mar ewdiere the sequence of the primitives in a
RE/TRAC-CF language sentence indicates where tkigpmignitive is relative to the current
primitive and what kind relationship it is. Accondito Chomsky [Chom1957], [Chom1965], a
sequential language is described using a (phrasetste) grammar composed of production
rules. While a visual sentence in RE/TRAC may restassarily be viewed sequentially (top
down), the abstract representation is stored seigllgrand its RE/TRAC visual representation is
constructed sequentially (top down or bottom up).

Based on previous success in the apitaxample section 4.3 and use of the
fundamental building blocks of RE/TRAC, the meth®gdhown to have a firm foundation in
principles and purpose which are accepted and dallierarchical models have been shown to
be useful in many areas of computer science. Ta@isgisual languages has a long history of
success in communication. The use of a restridtivevith limited primitives and relationships
enables an abstract diagram that one can readibpgneaning and association with the domain
application. Grammatical approaches are utilizetthéarea of visual languages with success.
RE/TRAC relies on the BNF grammar for generatirtiegram, but uses formal set theory to
primarily describe the semantics. Both BNF gramnaac set theory have been shown to be
adequate for modeling domain applications [Marlet a
5.2  Accepting Method Consistency

In order to build confidence in the RE/TRA®@thod’s internal consistency, several
techniques were employed. The programs Lex and@A@re employed to verify that the

RE/TRAC-CF language was consistent with its purpBETRAC-CF constrains the path of
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refinement such that it is always linear (top-dowan)l associates dependencies at each level in
the refinement process. RE/TRAC-CF preserves thtenyi of the evolution so that traceability is
enabled. Lex is a program that creates a lexitalyaer which is a function that takes a stream

of characters as input, and whenever a group aactexrs (token) (see Figure 24) matches a

[ b][0-9]+ yylval=(char *)strdup(yytext); return TOK BASECASE;
[uU1[0-9]+[\][0-9]+(:[0-9]+)*
yylval=(char *)strdup(yytext); return TO KUSECASE;

[<] return TOKLEFTANGLE;

[>] return TOKRIGHTANGLE;
[(Q return TOKLEFTPARENS;

D] return TOKRIGHTPARENS;
[{] return TOKLEFTCURLY;

[}] return TOKRIGHTCURLY;
[\ return TOKLEFTSQUARE;
[\]] return TOKRIGHTSQUARE;
[;[] return TOKEND;

[ \t]+ /* ignore whitespaces */

[\n] /*ignore new lines */

[a] yyerror("invalid character\n®);
[A] yyerror(“invalid character\n®);
[b-tv-wB-TV-WO0-9] yyerror(“invalid character\n");

Figu4 Descriptions of Tokens

defined key an action is taken. In the case ofrésgarch, when a token is matched, a return
value indicates what kind of token has been datectdéne tokens are described for input to Lex
in Figure 24 including error conditions. Note thaprocess strings of RE/TRAC-CF sentences, a
sentence delimiter (‘;’) primitive was added to tirammar for test purposes.

YACC (Yet Another Compiler-Compiler) is a tool fdictating structure on the input to a
computer program. It is an LALR(1) (Look-Ahead Eft-to-right, Right-most) parser generator.
The user of the YACC tool first prepares a speatfan of the input process. The specification

contains user-defined rules describing the inputcsire, code to be involved when a rule is
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recognized, and a routine to handle basic inpugnT™WACC generates a parser function which
when supplied with the tokens provided by the lakanalyzer, organizes them according to the
production rules. When a rule is matched the cpoeding user supplied action is executed. In

this research, a print command is supplied to phi@tule with the input primitives. In Figure 25,

Z:
27

printf("TRACE RULE Z: Z Z | Z Z |\n");
}

I
TOKLEFTPARENS T TOKRIGHTPARENS
printf("TRACE RULE Z: TOKLEFTPARENS T TOKRIGH TPARENS | \(
T) [\n");
i
TOKLEFTPARENS T A TOKRIGHTPARENS

printf("TRACE RULE Z: TOKLEFTPARENS T A TOKRI GHTPARENS |
\(TA)\nY;
}

Figure 25 Grammar rule in YACC specification fomterminal Z

if the non-terminal Z has been determined, thenadrteree match sequences must be made:

ZZ, TOKLEFTPARENS T TOKRIGHTPARENS, or TOKLEFTPARENS T A TOKRIGHTPARENS

For the RE/TRAC-CF sentence, b46<(U46\1[(U29\2<(1429)])>;, the ouptut of YACC is

shown in Figure 26. No inconsistencies were deteict¢he test cases (see Figure 27) using the
RE/TRAC-CF production rules specified in YACC. thns context, consistency relates to the fact
that all erroneous RE/TRAC-CF sentences were deteantd no sentence was accepted that was

incorrect. An erroneous sentence is one which doesxhibit the hierarchical relational
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structure of inheritance nor the component relatigps of extension and inclusion. Example

executions depicting error detection are locatefigpendix F.

TRACE RULE T: TOKUSECASE | U29\2 |

TRACE RULE T: TOKUSECASE | U29\V |

TRACE RULE Z: TOKLEFTPARENS T TOKRIGHTPARENS | (T )|
TRACE RULE A: TOKLEFTANGLE Z TOKRIGHTANGLE | < Z > |
TRACE RULE Z: TOKLEFTPARENS T A TOKRIGHTPARENS [ ( TA)|
TRACE RULE |; TOKLEFTSQUARE Z TOKRIGHTSQUARE |[[Z] |
TRACE RULEG: | | I]

TRACE RULE T: TOKUSECASE G | U46\1 G |

TRACE RULE Z: TOKLEFTPARENS T TOKRIGHTPARENS | (T )|
TRACE RULE A: TOKLEFTANGLE Z TOKRIGHTANGLE | < Z > |
ACCEPT TRACE RULE core_expression: TOKBASECASE A | b46 A |

Figure 26 Output of YACC with Fir&E/TRAC-CF Production Rules

5.3  Accepting the Example Problems

A tree-like structure is an intuitive defpon of progression from one step to another,
whether it is modeling event control and/or objgattrol. Warnier diagrams depict hierarchies
using a horizontal tree of textual items connegtéh braces ({) and special relational symbols
[Pfleeger]. Hierarchical dependency diagrams ase ased in the depiction of the relatedness of
objects used in separate compilation [Meyers] alBependency graphs are useful tree structures
for showing the order of separate compilation ofles for the building of a Makefile. In a
Makefile, script instructions search for the mastant version of a file and oversee recompilation
of only those modules that have been changed amdassemble all in a prescribed sequence.
The managing of the revision of documents includiogfiguration files and requirement
specification artifacts is an old problem of verstntrol. Like source and object files, use cases
are revised over time and have related dependeactethe process must be supervised over

time.
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Figure 27 contains example problems to wkinehRE/TRAC method is applied. Each

example has been statically tested for its semamigning and the sentence structure verified

b1;
. b32<(U32\1)>;
. b56<(U56\1:1)(U56\1:2)(U56\1:3)>;
b49<(U49\1:1<(U49\2:1:1)>)(U49\1:2)(U49\1:3<(U49\2: 3:1)(U49\2:3:2)>)>;
. b49<(U49\1:1<(U49\2:1:1)>)(U49\1:2)(U49\1:3<(U49 \2:3:1<(U49\3:3:1:1)>)>)>;

. b46<(U46\1[(U29\2)])>;
. ba6<(U46\1[(U29\2<(U29\4)>)])>;

. b46<(U46\1[(U29\2<(U29\4[(U45\5)])>)])>;

. b46<(U46\1[(U29\2<(U29\4[(U45\5<(U45\7)>)])>)])> :

10. b46<(U46\1:1[(U29\2<(U29\4[(U45\5<(U45\7)>)])>) 1<(U46\2:1:1)>)(U46\1:2)>;
11. b31<(U31\1[(U2\4[(U55\3)])(U5\2)(UB\1)])>;

12. b49<(U49\1[(U35\2)(U43\6)]<(U49\2[(U35\3)])>)>;

13. b67<(UB7\1{(U54\2)})>;

14. b54<(U54\1{(U29\3)(U42\2)})>;

15. b59<(U59\1{(U29\3)}<(U59\2:1)(U59\2:2[(U2\1)])> )>:

16. b54<(U5A\1{(U29\3)(U42\2<(U42\3:1)(U42\3:2)>)}) >:

17. b25<(U25\1{(UA\1[(u3\3)])}<(U25\1{(U4\3)})>)>;

18. b25<(U25\1[(U32\2)[{(U45\3)})>;

19. b67<(UB7\1[(UB5\3)[{(US4\2[(U29\1)])})>;

CONOUAWN R

Figure 27 Test Cases Supporting Version ControlTaadeability

using YACC. Each sentence for the base case hoddsdcessary information for tracing the
refinement of the base case, including its depetidsrand any refinements to the dependencies.
The data in Figure 27 has been useleaalistract representation from which graphical
RE/TRAC diagrams are created using open sourcéngrigpalization software, Graphviz. The
dot language in Graphviz was used to create th@ REC directed graphs. A C++ program was
written to create a .dot file for each example datee software Graphviz viewer, dotty, was then
utilized to display the .dot file in a graphicalstture. Dotty was selected because it employs a
layout algorithm which aims edges in the same toadtop to bottom, or left to right) and then
attempts to avoid edge crossings and reduce edgthlerhe high-level algorithm developed for

generating a .dot file is provided in Figure 28eHource file, written in C++, for generating .dot
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files is located in Appendix G. The .dot file gestexd from the RE/TRAC-CF expression
numbered 9 in Figure 27 is provided in Figure 2@ @e corresponding graph as drawn in dotty

is shown Figure 30.

To generate a .dot file:
1. Build an adjacency table for the RE/TRAC-CF exp@ss
2. Build .dot file
a. Name nodes for .dot file
b. Initialize graph
c. Build the refinement stack top-down left to right
d. Build the graph following language rules for dot
For each node in the refinement stack:
i. Init node cluster
ii. For each node related via inclusion:
1. Build the refinement stack (2c)
2. Build the graph (2d)
iii. Link to parent
iv. For each node related via extension:
1. Build the refinement stack (2c)
2. Build the graph (2d)

Figure 28 High-LevdpArithm for Generating .dot File

While the dot language and the viewer Dotty wegpful to the research in substantiating
that a visual diagram could be generated from a&RBEC-CF sentence, the performance of dot
with dotty was rather poor. Performance was hélpdti for actual use some features were not
supported such as composition of the refinememector, centering refinement connectors over
the refinement use case figure, and setting raskiegween extend dependencies and the parent.
Other graphing softwares were explored such as dbagiv, MSDN System.Drawing, Essential
Diagram for asp.net, yWorks, and GDE—GoVisual DeagrEditor. Some were cost prohibitive

and/or were lacking the flexibility needed in prdivig a diagrammatic programmable language
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with hierarchical and ranking features for posiitmgnof the primitives

development of a better visualization tool.

digraph G {

compound=true;

fontsize = 12;

label="b46<(U46\1[(U29\2<(U29\4[(U45\5<(U45\7)>)])> >
ranksep=.5;

node[fontsize=10];

subgraph cluster0{

color=white;

node [shape=box];

label =" ",

nodeO[label=b46, shape=ellipse];
}// end cluster0

subgraph cluster1{

label="U46\1";

nodel[style=invis, fixedsize=true, height=.09, widt h=.09];
subgraph cluster2{

label="U29\2";

node2[style=invis, fixedsize=true, height=.09, widt h=.09];

}// end clustercluster2

subgraph cluster3{

label="U29\4";

node3[style=invis, fixedsize=true, height=.09, widt h=.09];
subgraph cluster4{

label="U45\5";

node4[style=invis, fixedsize=true, height=.09, widt h=.09];

}// end clustercluster4

subgraph cluster5{

label="U45\7";

node5[style=invis, fixedsize=true, height=.09, widt h=.09];

}// end clustercluster5

node4->nodeb5[tailport=s, headport=n, label=".....", Itail=cluster4 ,Ihead=cluster5];
} /I end clustercluster3

node2->node3[tailport=s, headport=n, label=".....", Itail=cluster2 ,Ihead=cluster3];
}// end clusterclusterl

node0->nodel[tailport=s, headport=n, label=".....", Ihead=cluster1];

} /I end graph

. Future work will include

Figure 29 .doteRand Graphviz Dotty View for Expression

b46<(U46\1[(U29\2<(U29\4[(U45\5<(U45\7)>)])>)])>;
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Dotty view for expression:

b46<(U46\1[(U29\2<(U29\4[(U45\5<(U45\7)>)])>)])>:

b46<(U461[(U292<(U294[(U455<(U457)>)D>)1)>;

Figure 30 Dottyevi for RE/TRAC-CF Expression
b46<(U46\1[(U29\2<(U29\4[(U45\5<(U45\7)>)])>)])>;
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5.4  Accepting Usefulness of Method

Reduction in cost is frequently related todsaving and/or quality improvement. Overall
timesaving of alternative design methods in genaaahot be fully determined until the project
and the control project(s) have been completednaade operational. A saving of time spent in
the requirements analysis phase does not implyiagsaoverall. If software, especially for a
one-of-a-kind small system, is in the maintenartasp, going back and establishing RE/TRAC
version control of use cases might be impractidalvever, if the software were intended for
multiple product-lines or different applicationstian the same domain, then formalizing the use
case manageability would benefit all subsequenlicgifpns. As mentioned earlier, some users,
where a user is anyone involved in requirementsuéion, are more adept at reading abstract
visual diagrams than others. Also some users are proficient at reading abstract visual
diagrams than reading and comprehending organezédal documents. RE/TRAC provides an
alternative view more easily comprehensible to stma others. This would amount to a
timesaving for some users.

While quality is usually associated with thesrall quality of the product, in this research we
are concerned with the quality of the requiremanti$acts in the form of use cases. Increased
guality during requirements analysis is relatethooverall quality of the end product [Schach].
In particular, we have provided a visual and strtadtframework for management of use cases.
The dynamic semantics of RE/TRAC-SEM improves amdgrves the quality of the method by
providing a solid framework for the specificatiohuse cases. The rigid yet informal set
definitions and meta-restrictions restrict modifioas so that the versions must conform to a
vertical hierarchy. All information pertaining touse case is stored in the single physical place in

the form of a RE/TRAC-CF expression so that allwaeare consistent and correct.
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5.5  Accepting That Usefulness Is Linked to Applying theMethod
This research began with the visual motle¢ simplicity of the visual model drove the
specification of the ontology. For instance, if@der use case could be altered and refined, then
the diagram could have multiple versions of versianvarious levels in the diagram; this could
present a confusing graph. It would follow thatreunt active use cases could be anywhere in the
diagram which would reduce the comprehensibilitgystderably. A RE/TRAC diagram is read
top to bottom and left to right as is the Englishduage which follows an intuitive pattern to
many people. This research has used a nestingigaafdature as analogous to the meaning of
inclusion in textual form which is an intuitive siarity. Likewise to extend something is to
supplement or to connect. RE/TRAC uses a connagtbrthe same perceptive visual meaning.
Because a graphical depiction is difficult to stanel to alter, the internal representation

was simplified using a context-free grammar. Bgtammatical representation is more difficult
to read and interpret than the corresponding REALRIAgram because of the length of some
expressions, and the abstract symbols for refinégsr{e®), for inclusion ([ ]) and for extension
({}. The dynamic semantics ensures that the granmearesentation conforms to the RE/TRAC
syntax. The rules must be addressed before a chargRE/TRAC-CF expression is made. The
visual model and the ontology together result method that adds usefulness to requirements
evolution. Figure 31 shows the synergistic relatlop of the parts.
5.6  Accepting Usefulness of Method Beyond Example Pradains

To prove theoretical performance validityduction is based on the following. In section 5.1
we showed that the individual constructs of hidnaral method, visual languages and
grammatical approaches are generally accepteaioe applications. In section 5.2 we

established that the grammar is consistent withmtaning of the refinement of use cases and
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their dependencies via Lex and YACC. In sectionvieonfirmed that graphs could be
generated from a sentence in the RE/TRAC-CF gramimaection 5.4 we demonstrated the
usefulness of the method in relation to cost, tamé quality. In section 5.5 we confirmed that the
usefulness of a VL alone had limitations and thedrtext-free grammar sentence is a poor visual
mechanism for comprehensibility. Therefore it is thethod as a whole that generates usefulness

to solve the problem of the maintainability of wsses documents.

RE/TRAC-SEM
A

~~

RE/TRAC-CF Dynamic Semantics
Expression, S Definitions & Rules

RE/TRAC
Visual Diagram, S

Figure 31 Relationships@f/ TRAC and RE/TRAC-SEM

The software developer and/or stakeholder willdbgfrom this research in practical use
because RE/TRAC:
* Presents a visual model that requires little tregrfor the non-technical stakeholder to
understand but is based on formal methods.
While a sentence in RE/TRAC-CF is difficult to daoer without tool support, a
RE/TRAC diagram presents an evocative image ofalaionship of use cases to one
another. Sentences in RE/TRAC-CF must adherdés af the grammar and when

changes to use case documents are made, the ssnéeaconsistent with the
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semantic rules. RE/TRAC is simple in definition arghge and therefore perhaps
more narrowly applicable than requirements speatific languages such as MSCs but
more specific and suitable to its purpose.
* Incorporates traceability during the evolutionlod tequirements for tracing of the log
history in both forward and backward directions.
The importance of traceability is described in mect.2 of this dissertation and is
summarized here:
1. Used to access the progress of the development
2. Provides documentation of the requiremspéification stage,
3. Logs changes for error and fault discoveny eorrection,
4. Enables rollback to a stable requirementsrgesm,
5. Clearly delineates the current state of tleeiigation.
* Supports domain-independent modeling.
RE/TRAC is beneficial to requirements specificatiomstances where a core set of
domain requirements have been identified and stredt Example domains
demonstrated in the research include the ATM exarapt the conference
registration system. There are other domains tlea¢gually suited to RE/TRAC.
* Works in unison with UML.
RE/TRAC fits within the use case view of the UMLdaserves as a first step before
generating scenario diagrams and activity diagrdiniise use cases are described
using structured English, then RE/TRAC can serva lasdge to the logical view and

can facilitate automatic code generation.
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Supports requirements evolution for any softwdezlicle process models.

RE/TRAC can be employed with any process model asdhe waterfall model,
evolutionary development, formal systems develogmearemental development and
especially facilitates reuse-based development.

RE/TRAC can be used for initial requirements speaiion, but was developed to
target systems for evolutionary specification tlage set of requirements. It is
consistent with a platform independent model in Waaying target applications may
be any programming language paradigm.

Supports the customizing of requirements withimadpct-line.

When a system is specified with consideration redoping product-lines, the
requirements for commonality are separated fronvénmble requirements dependent
on the product. RE/TRAC supports the specificaiba common set of requirements

for product-line development.
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6. Summary and Conclusions

The primary goal of this research was to gle\an easily comprehensible method for
controlled refinement of requirements. The objextiv meet this goal was to develop a graphical
depiction of the refinement and dependencies afirements based on formal methods that
would benefit the stakeholder by increasing undedbility, providing traceability and
improving the quality of the representation. Thehmod is described as large-grained for
representing entities at a high-level of abstracéind coarse granularity.

To achieve this objective we defined a Vamed RE/TRAC (Requirements Evolution with
Traceability), for depicting the evolution of chanip use cases. RE/TRAC allows a high-level
abstract view of the use case documents in a gralpformat. The static and semantic syntax of
the language were defined including the languageifives and the allowable visual language
(VL) relationships between the primitives. Thiseach presumed that a core set of use cases had
been previously identified, named and describathiaral language format.

A supporting specification, RE/TRAC-SEM, wiescribed using a combination of
specification models. The purpose of the format#mation is to constrain the evolution
process in order to ensure that the integrity efdbcuments is maintained and that a diagram is
a correct depiction of a core use case’s histodypaesent state. A context-free grammar,
RE/TRAC-CF was selected as the underlying fornralcsétire for the VL. The visual language 2-
D primitives of the oval, the square, the vertigdinement connector, and the dashed extension
connector correspond to terminals in the conteeg-fyrammar. Other RE/TRAC-CF primitives
such as the ‘[* or the ‘{* describe how the 2-Drpitives are concatenated. Conditional changes

to use cases including relationships to dependantases were defined in the dynamic
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semantics. Definitions and set definitions werstfget forth followed by the meta-restrictions on
the definitions constraining the use case refindmen
Validation of the method followed the valida square process. The software tools, Lex,
YACC, and Graphviz were employed to validate théTRRAC and RE/TRAC-CF models.
Section 4.3 presented an example application ofiyhamic semantics, RE/TRAC-SEM, to a
problem in the application domain. By applying opamo a sentence in RE/TRAC-CF according
to the commands in the meta-restrictions, coreased sentences were created from which
RE/TRAC diagrams were generated. A static valtatheck also confirmed that the
RE/TRAC-SEM pre and post conditions were suffidgspecified.
6.1 Contributions
This research contributes to the evolutioregluirements in the following ways:
» Specifies an ontology that supports component ogveént of a system or a set of
systems (domain).
The ontology for RE/TRAC-SEM describes the ruled aonstraints for use case
relationships. Entities (use cases) are descrikedbmponents of the system where
reuse of components and top-down ordering of compisnsimplify the requirements
specification and consequently the design and imetgation.
* Provides a method for unifying views within theineiment of use cases.
A RE/TRAC diagram and its corresponding RE/TRAC<grtence are parallel
symbolic depictions of the requirements evolutioncess. Each representation
presents a particular view of requirements evolfutiith traceability. The textual
documents form another view that is in accordanitie the RE/TRAC and

RE/TRAC-CF representations.
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» Specifies a supporting ontology to document artifac the repository for access in
later stages of software design and implementatidoding automatic code
generation.

The use of RE/TRAC unifies the use case view aaddgical view by describing the
set of requirements current for a system. Fronsétef all S in RE/TRAC-CF,
activity diagrams may be created/generated andtlateclass and object diagrams
followed by the dynamic models (state, interacton sequence diagrams) of the
system. All views must be consistent.

* Specifies an ontology that constrains the refin@néuse case documents in order
to minimize points of change and therefore simplifg change process.
Refinements as specified in the ontology must aba@cur to use cases that are
represented as leaves in the RE/TRAC diagram.ignathy, the diagram is always a
top-down view of the elaboration of the requirensena the use case versions. Quick
analysis of the existing current configuration iagticable, because active current use
cases are always located in the leaves of a RE/T&agram.

» Specifies an ontology that provides a trace oftheument change sequence and
supports the tracking of changes in the evolutippaocess.

The semantics of RE/TRAC does not permit deletioa wse case. In this manner a
trace may always be made of the evolution of acase including its dependencies.

Table 4 is an update of the research comparidne taven in table 1 with one additional

entry for RE/TRAC. As presented in table 1, diagfeatures are characterized as hierarchical
(H), using components (C), and employing tracesili). The degree of behavior is described

as static (S), having limited dynamics (L), or dgso/e of behavioral actions (B). RE/TRAC is
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the only method discussed with limited dynamic&RE'TRAC diagram is a static display, but it
depicts discrete time changes in the sequenciegaits. The RE/TRAC visual display does not
highlight what the particular changes were and dm¢slocument the triggers that necessitated
the update to the document(s). Therefore RE/TRAEs admt strongly exhibit behavioral
attributes. Quite a few of the methods are bothanahical in depiction and support a component
based diagram feature: Acyclic Call Graph [BatO'MBMSCs [Harel], UCMs [ Amyot2003]
and RSML [Lev et al]. But none of those that aréhidgerarchical and component based also
depict traceability except for the RequirementgeSkdachine (RSML). The Requirements State
Machine Language comes the closest to RE/TRACnuotfanality, however it is a graphical
language with strong behavioral features. RE/TR&@s$s complicated than RSML in terms of
intuitive meaning determined from the number ofrptives, connector types, and labeling. This
research asserts that the non-technical stakehoddr understands a simple diagram, designed
for the specific application of requirements moagli
6.2 Future Work
Future work includes research of the following
* Incorporating associations and relationships ssdh@usive and exclusive conjunctions.
A use case version may be associated via the extefrationship with multiple use
cases, however only one of the use cases may hesmety used in any one scenario. In
this particular case, the exclusive context magfreotated. In other contexts, all use
cases may be activated for a scenario, one orthiee or both. In this case the inclusive
relationship may be designated.
* Adding concepts such as those used in structumsctiar example illustrating an

include relationship that repeats the use withengharent.
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A use case version may rely on a dependent usarcasanclusion relationship.
However, the dependent use case may be utilizeeMaral instances within the parent
use case and/or in varying locations. Some meamslwlting the multiplicity could be
documented in the RE/TRAC diagram.

Including temporal information to the visual notei

In complex RE/TRAC diagrams where the tree is wfi@dd, noting some temporal
order could be beneficial.

Create other views within RE/TRAC at lower levelsabstraction (greater detail).

As other features are considered for RE/TRAC, kegthe diagram language simple and
uncluttered will continue to be a goal in ordeptomote understandability. Therefore if
increasing information is to be displayed, haviagarate views with alternative
information may meet both needs. Another altereatrould be to have the tool user
select features to be displayed in a RE/TRAC diagra

Implement a query-based tool founded on RE/TRAC-SEM

Given a grammar to describe entities, such astrestr requirements, and their
relationships with other entities, a parser coddybnerated to enforce consistencies
between the different versions for configuratiomtcol. If there are constraints to be
placed on the refinements or upon the other reialips, then a type checker could be
added to the parser. Using the grammar, a viewetaareditor could be developed to
create an interactive environment in which thedrrical information can be displayed
in a succinct manner and changes validated. Ostieture is described, then queries

may be generated such as:
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all instances of usage,

which entities are active,

what is the derivation history of a particulatign

what is the similarities/difference between tvaysions,

who is the parent.
When a change is made, then consistencies mustdo&ed and enforced. If the entity is
used in multiple places, then a change must bdatald in all uses in order to maintain

consistency.
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Table 4: Comparison of Common Graphical Mdthfor Requirements Specification
(including RE/TRAC)

cal

ts

ne

—F
1

Diagram Diagram Degree of Complexity Usage
Features Behavior
RE/TRAC H|C |T]|L 1 Graphical depiction of requirements
does not label | evolution represented as use cases. Verti
connectors top-down ordering.

Hierarchical H T |S 1 Depicts refinement of classes. Refinemen

Refinement of does not label | are related to class generalizations.

Classes connectors Traceability is viewed as levels when

[Batory et al] classes are refined via generalization of ti
class. Vertical, top-down ordering.

Acyclic Call H |C S 1 Depicts function or method call

Graph does not label | relationships.

[BatO’'Mal] connectors Diagrams are read top-down, left-to-right
for sequence interpretation of the calls.
Vertical, top-down ordering.

[AstReg2002a] S 5 Structures and represents requirements

[AstReg2002b] specification artifacts in general, multi-
view, use-case driven, UML-based (objec]
oriented).
Systematic approach developed using
UML.

Message H |C B 2 Visual formalism for capturing systems

Sequence requirements as scenarios. Similar to UM

Charts (MSCs) sequence diagrams. Useful in system

[Harel] requirements capture.

User H |C B 3 Standard visual notation used for

Requirements specifying functional and non-functional

Notation: Use requirements. Used for use case

Case Maps formulation, high-level architectural desig

(UCMs) and test case generation. Notation uses

[Amyot2003] start points (pre-conditions), connectors
and end points (post-conditions).
Connector lines (paths) may be labeled
with responsibilities.

Requirements |[H |C | T | B 2 Uses a graphical hierarchical RSML

State Machine specification which describes dynamic

Language behavior defined by transitions and event:

(RSML)

[Lev et al]

Use Case S 1 Diagram and user-friendly notation that

Diagram uses a NL-like language for specification

(amended) of the use cases.

[ChoReqg]
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Appendix A: Example Use Case Template

Consent

Date: Fri, 22 Apr 2005 09:17:24 EDT
From: ACockburn@aol.com
To: douglas@bit.csc.Isu.edu
Subject: Re: Permission for use of Basic Use Case T
Parts/Attachments:
1 OK b5llines Text
2 Shown ~65 lines Text

Of course, you are most welcome.
Alistair

In a message dated 4/21/2005 9:14:38 P.M. Mountain
douglas@bit.csc.Isu.edu writes:
| am working on my proposal for my dissertati
referencing your
work on Use Case Templates.
May | use the templates from your website, "B
Template" as
entries in the appendix of my research docume
Sincerely,

Coretta Douglas
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Template in Table Form http://alistair.cockburn.us/usecases/uctempla.htm

USE CASE #

< the name is the goal as a short active verb phrase>

Goal in Context

<a longer statement of the goal in context if needed>

Scope & Level

<what system is being considered black box under design>
<one of : Summary, Primary Task, Subfunction>

Preconditions

<what we expect is already the state of the world>

Success End Condition

<the state of the world upon successful completion>

Failed End Condition

<the state of the world if goal abandoned>

Primary, Secondary Actors

<a role name or description for the primary actor>.
<other systems relied upon to accomplish use case>

Trigger <the action upon the system that starts the use case>
DESCRIPTION Ste Action
p
1 <put here the steps of the scenario from trigger to goal delivery,and any
cleanup after>
2 <.>
3
EXTENSIONS Ste Branching Action
p
la <condition causing branching> :
<action or name of sub.use case>
SUB-VARIATIONS Branching Action
1 <list of variation s>

RELATED INFORMATION

<Use case name>

Priority: <how critical to your system / organization>
Performance <the amount of time this use case should take>
Frequency <how often it is expected to happen>

Channels to actors

<e.g. interactive, static files, database, timeouts>

OPEN ISSUES

<list of issues awaiting decision affecting this use case >

Due Date

<date or release needed>

...any other management
information...

<...as needed>

Superordinates

<optional, name of use case(s) that includes this one>

Subordinates

<optional, depending on tools, links to sub.use cases>
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Appendix B: Use Case Refinement

Course of Events — Version 1:

,Use CaseWithdraw Cash from an ATM

Actors: Customer, Bank Info System

Purpose: To process customer’s request for cash

Overview: Customer arrives at ATM. Customer logs in. ATMeagthe Customer options and the customer chooses
withdraw cash. The Customer requests funds frorimateaccount and if there are sufficient funds, Afiévi

processes the request.

Type: Primary and essential

Actor Actions System Response

1. Customer arrives at ATM

2. Customer Id’s self to ATM

3. Verifies valid customer
Constraint:
If invalid customer ID,
stop transaction.
4. Displays options
5. Customer chooses withdraw cash

6. System displays choice of accounts

7. Customer chooses account

8. System asks for amount

9. Customer enters amount desired
10. System checks Bank Info System

11. Bank Info System returns request status
Note:
If status insufficient funds,
return Insufficient Funds”

12. Customer views request status

13. System dispenses desired amount
Constraint:
If status insufficient funds,
do not dispense.
14. System siaut receipt

1. Based onhttp://www.lv.psu.edu/cad18/ist240/ucn%20sect1 % A@ex
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Use Case Refinement
Course of Events — Version 2:

Actor Actions

System Response

1. Customer arrives at ATM

2. Customer activates the ATM

5. Customer Id’s self

8. Customer chooses withdraw cash

10. Customer chooses account

12. Customer enters amount desired

15. Customer views request status

3. System checks for specific ATM
verification method.

4. Directions for ID verification method
displayed.

6. Verifies valid customer
Constraint:
If invalid customer ID,
stop transaction.

7. Displays options

9. System displays choice of accounts

.1%ystem asks for amount

13. System checks Bank Info System

14. Bank Info System returns request status
Note:
If status insufficient funds,
return “Insufficient Funds”

16. System dispenses desired amount

Constraint:
If status insufficient funds,
do not dispense.

17. System prints out receipt
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Use Case Refinement
Course of Events — Version 3:

Actor Actions

System Response

1. Customer arrives at ATM

2. Customer activates the ATM

5. Customer Id’s self

8. Customer chooses withdraw cash

10. Customer chooses account

12.Customer enters amount desired

15. Customer views request status
Constraint:
If Customer approved for instant lan
Customer accepts or declines
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3. System checks for specific ATM
verification method.

4. Directions for ID verification method
displayed.

6. Verifies valid customer
Constraint:
If invalid customer ID,
stop transaction.

7. Displays options

9. System displays choice of accounts
.1%ystem asks for amount

13. System checks Bank Info System

14. Bank Info System returns request status
Note:
If status insufficient funds,
return “Insufficient Funds”
check instant loan approval,
return ingtéloan approval amount

16. System dispenses desired amount
Constraint:
If status insufficient funds
(status instant loan approved and

customer declinedp not dispense.

If (status insufficient funds and customer
accepts),

irpdite Use Case: ATM Instant Loan

17. System prints out receipt



Use Case Refinement
Course of Events — Version 4:

Actor Actions System Response

1. Customer arrives at ATM

2. Customer activates the ATM
3. Instigate Use Case: “System Verifies Customer”

4. Displays options
5. Customer chooses withdraw cash

6. System displays choice ofoats
7. Customer chooses account
8ystem asks for amount
9. Customer enters amount desired

10. System checks Bank Info System

11. Bank Info System
returns request status
returns instant loan
approval amount
Note:
If status insufficient funds,
return “Insufficient Funds”

12. Customer views request status
Constraint:
If Customer approved for instargrio
Customer accepts or declines

13. System dispenses desired amount
Constraint:
If status insufficient funds or

(status instant loan approved and
customer decline),not dispense.

If (statsisfficient funds and customer
accepts),

imtte Use Case: ATM Instant Loan

14. System prints out receipt
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Appendix C: Consent for Diagram Use Figures 1 [Baty et al] and 2 [BatO’Mal]

Date: Thu, 26 Jul 2007 09:36:07 -0500
From: Don Batory < batory@cs.utexas.edu >
To: Coretta Douglas < douglas@csc.Isu.edu

Subject: Re: LSU/ Computer Science - request permis
Coretta:

Sure, use whatever you want with citations.
and when you finish, send me a pdf of your thesis!

don

----- Original Message ----- From: "Coretta Douglas
To: < batory@cs.utexas.edu >

Sent: Thursday, July 26, 2007 9:23 AM

Subject: LSU/ Computer Science - request permission

> Hi Dr. Batory,

> | am requesting permission to use

> the following diagrams in my dissertation

> under the direction of Dr. Doris Carver, my

> major professor:

> 1. DIAGRAM p. 7 from

> [BatoryO.Malley] Batory, D. and S. O.Malley. .The
> of Hierarchical Software Systems with Reusable Co
> on Software Engineering and Methodology, 1(4), Oc
> 2. FIGURE 6 from

> [Batory et al] Batory, D., R. E. Lopez-Herrejon,

> Product-Lines of Product-Families.. In Proc. of

> Automated Software Engineering (ASE 02). 2002.
>

> Sincerely,

> Coretta Douglas

> Louisiana State University

> Department of Computer Science

> Software Engineering Laboratory

>| Computer Science Department | OFFICE: (225)
>| Louisiana State University | FAX: (225)

>| 295 Coates Hall | EMAIL:

>| Baton Rouge, LA 70803 | MAIN OFFICE:

>
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" < douglas@csc.Isu.edu >

to print

Design and Implementation
mponents.. ACM Transactions
t. 1992.

and J. Martin. .Generating
The 17th IEEE Conference on

578-4359 |
578-1465 |
douglas@bit.csc.Isu.edu |

(225) 578-1495 |



Appendix D: Use Case Map Reference Guide
Consent

Date: Thu, 21 Apr 2005 23:12:47 -0400
From: Daniel Amyot <damyot@site.uottawa.ca>
To: Coretta Douglas <douglas@bit.csc.Isu.edu>

Subject: Re: permission to use Use Case Maps Quick

Hello Coretta,

Certainly, please go ahead. What is your proposal a
Regards,

Daniel

Coretta Douglas wrote:

> | am referencing your work in my proposal for dis
> asking permission to include your

> Use Case Maps Quick Reference Guide

> in the appendix of the research proposal.

> http://www.usecasemaps.org/pub/UCMtutorial/UCMquick

Reference Guide

bout?

sertation research. | am

Ref.html

>

> Sincerely,

Coretta Douglas
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Use Case Map Quick Reference Guide

SLart — Imagine tracing a path through a system of objects 10 l':!'.ph.liﬂ i
Point i —— End causal sequence, leaving be hislh.i a visual Aiglmlurc.\l..':se Case
}U_._J /,.--—— |'|-|i1][ Maps capture such Sﬂt'|lli‘:]i{"t" .I hey are mmpn}‘.cd of:
*-.._E_x_____- * start points (filled circles representing pre-
conditions or triggering causes)
|:| + causal chains of responsibilities (crosses, represent-
HResponsibilitics ing actions, tasks, or functons W be performed)
T v + and end points (bars representing post-conditions or
Componenis |:| resulting effects).
'. The responsibilities can be bound to components, which are

the entities or objects composing the system.

Al Basic notation and interpretation

: (anp O join (b} f}l{—;c\l?.:

N o | MN:M
() AND-fork () ANERpoan (@) Genene wersion

fuh I'cunn\li.v\l\- reste
s Heniifed Ad. Concurrent rovtes with AND-forks/joins.
A2, Shared routes and OR-forks/joins,

wling paihs, I'N M-l

..-*\..IU _..-—'\k-"' Fffect i of o l{ }:ll.. ::Ii-: k. :H

with the Firke-giin Remlesvous Synchironisg
joined end

{2l Synchronous inlers

A5, Variations on AND-forks(joins.

vhi Asynchromos inferaction

AZ, Path interactions,

/f-\ R’
THER ]

waitig patly

<learing path 12
{a) Stazic stubs have only cae pl

G Throeers may be seld, reser, and tmed-omn thk Top paih abons Botdom path afier B1

PR '___,_—--P R 1
'#_--’"\——. p—— T _'? .‘*_%'—*_l
{erGironnd symbols indicate posssble pach fnlure poins Gl b B is @ shared responsibility
i E}.\||;||!||-; sluhs may hive maltiple plog-ios
AT Timers, aborts, failures, and shared responsibilities.

A6, Stubs and plug-ins,
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as data

A8, Component types,

— move
'—b minve-slay
+
— Cree
— destroy
+
L':III}

(1) Moverment of DOs as data

At DO in sl

1
[P .
1 deter 1O from slot

e D ol of slot

1
/—l‘\:./ ey [0 it skoe
1

fe) Into or out of slots

A0, Movement notation Tor dynamic components (DCs),

(a) Team: pencric conlainer

(¢} Process: aclive component

(d) ISR: Interrupt Service Request

(1) Pool: container for dynamic components

{a) Stack: multiple instances

(b} Ohject: passive component

- (b Protected: for mutnal exclusion

' v () Slot: placeholder for dynamic components
L] L] . .
' ' a8 operational units

() Agent: for agent sysiems

{d) Anchored: in a plug-in, refers to a compo-
nent defined in another map

P

A Component atiributes,

create I in path

helote TR can of pah

b

i) Gl tags are sart and end poings

Tiog pevils i Ay sl
by Directly into or out ol paths
D i 1 6
i in pon

md gnd poinls

GUITCHICILS

for response L

delere DO from poil

Stuh

(b Direction arrows can be osed when

~im pe ;
pui B dn pool path direction is

E3
£l
"—gv ot I S ek
3

() Into or out of pools

All. Motation exlensions

Daniel Amyot September 2, 1999Amyot2005]
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Appendix E Grammar and Diagrammatic Examples

EXAVPLE: 1
DESCRIPTION: base case is replaced
by a single use case.
Sentence:
b<(u)> b

()

EXAMPLE: 2
DESCRIPTION: base case is replaced by multiple use cases.
Sentence:

b<(u)(u)(u)>
T

(T)
Z
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EXAMPLE 3:
DESCRIPTION: base case is first refined into 2 use
There is a subsequent level of refinement for both
use cases. The first is refined by a single use cas
other refined by splitting into 2 use cases.
Sentence:
b<(u<(u)>)(u<(u)(u)>)>
T
(T)

cases.
of the
e; the
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EXAMPLE: 4

DESCRIPTION: The base is refined to a use case whic h has a
single use case accessed via inclusion.

SENTENCE:

B< (u(w)) >
T
(M
Z

z1 ]

EXAVMPLE: 5
DESCRIPTION: A base case is refined by a use case w ith
multiple use cases included.
SENTENCE: b

b< (U[(U)T(U)(U)]) >
a
Z
T urj
(M
- O]
Z O]
T

(T)
Z
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EXAVPLE: 6
DESCRIPTION: a nested inclusion is shown
SENTENCE:

b< (U[(U[(U)]T)(U)(U)]) >
(T
Z
T
(M
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EXAMPLE: 7

DESCRIPTION: The base case is first refined and the n the
refinement is refined with a use case which has an
inclusion.
SENTENCE:
b< (u<(u[(W)])>) > b
T
o
Z
[Z] N
I
ul
T u
T
SN =
u A
T A
T A )
Z
< Z >
A
b A
S
EXAMPLE: 8
DESCRIPTION: The base case is refined with a use ca se

with two extensions.
SENTENCE:

b< (u{(u)(u)}) > b
T

(T
Z
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EXAMPLE: 9

DESCRIPTION: the base case is refined by a use case with
two extensions. The second extension has been refin ed by a
split into two separate use cases.

SENTENCE:
b< (u{(U)(uT<(U)(U)>)}) >

(M) b
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EXAVPLE: 10
DESCRIPTION: A first refinement contains both an in clusion

and an extension.
SENTENCE:

b<(u[(u%]{(u)})>
(M
Z

(zy
E
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EXAMPLE: 11

DESCRIPTION: A base case is refined by a use case w ith
both an inclusion and an extension. The inclusion i s then
refined as well as the extension.

SENTENCE:

b< (U[(U<(U)>¥{ (u<(u)>)p) >
(T)
Z

<zZ> ]

A

uA u u

TA | 0 |1

(T)
A —— ]

Z }
E u u

34

N
\Y

dJdc

N—r
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EXAMPLE: 12

DESCRIPTION: The base case is refined by a use case with an
inclusion. The inclusion is then refined by a use ¢ ase with
an extension.

SENTENCE:
b<(u[(u<(u{(u)h>)])>
T b
(M
Z
zy
E u
uE ]
T
Ty
< Z >
u A u u
T A
(T )
Z
[ 2 ]
|
u |
T
(T )
Z
< Z >
A
b A
S
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EXAMPLE: 13

DESCRIPTION: The base case is refined with a use ca
an extension. The refined use case is then refined

use cases one of which has an inclusion. Note that
extension in the first refinement is no longer acti

SENTENCE:

b< (U{(U)}<($)(U[(U)])>) >
(M
Z

[Z]

se and
with two
the

ve.
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EXAMPLE: 14

DESCRIPTION: The base case is replaced by a use cas
an inclusion. The next refinement replaces all prev

cases with a use case with an extension.

SENTENCE:
b< (u[(u)l< (uT< Wy >)>)>

(M
{Z}

e with
jous use
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Appendix F: Example Lex and YACC Error Detection

EXAMPLE 1: Left refinement missing

Script started on Tue Jul 31 09:51:20 2007
%cat RETRACexp3_header.in

2
b1;
b32(U32\1)>;

%lex rel.l

%yacc -d -v rel.y

yacc: 1 shift/reduce conflict
%cc lex.yy.c ytab.c -o rel
%orel

invalid character

ACCEPT TRACE RULE core_expression: TOKBASECASE | bl
syntax error

%exit exit Script done on Tue Jul 31 09:52:09 2007

EXAMPLE 2: Right Parentheses Missing on Multiple

Script started on Tue Jul 31 09:50:05 2007
%cat RETRACexp3_header.in

3

b1;

b32<(U32\1)>;
b56<(U56\1:1)(U56\1:2(US6\1:3)>;

%lex rel.l

%yacc -d -v rel.y

yacc: 1 shift/reduce conflict
%occ lex.yy.c y.tab.c -o rel
%rel

invalid character

ACCEPT TRACE RULE core_expression: TOKBASECASE | bl
TRACE RULE T: TOKUSECASE | U32\1 |

TRACE RULE Z: TOKLEFTPARENS T TOKRIGHTPARENS | (T
TRACE RULE A: TOKLEFTANGLE Z TOKRIGHTANGLE | < Z >
ACCEPT TRACE RULE core_expression: TOKBASECASE A |

TRACE RULE T: TOKUSECASE | U56\1:1 |
TRACE RULE Z: TOKLEFTPARENS T TOKRIGHTPARENS | (T

syntax error

%exit exit Script done on Tue Jul 31 09:50:46 2007

) |
b32 A|

)
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EXAMPLE 3: Right Parenthesis Missing

Script started on Tue Jul 31 09:48:36 2007
%cat RETRACexp3_header.in

4
b1;
b32<(U32\1)>;

b56<(U56\1:1)(U56\1:2)(U56\1:3)>;
b49<(U49\1:1<(U49\2:1:1)>)(U49\1:2)(U49\1:3<(U49\2:

%lex rel.l

%yacc -d -v rel.y

yacc: 1 shift/reduce conflict
%cc lex.yy.c y.tab.c -o rel

%rel
invalid character

ACCEPT TRACE RULE core_expression: TOKBASECASE | bl

TRACE RULE T:
TRACE RULE Z:
TRACE RULE A:

TOKUSECASE | U321 |
TOKLEFTPARENS T TOKRIGHTPARENS | (T
TOKLEFTANGLE Z TOKRIGHTANGLE | < Z >

ACCEPT TRACE RULE core_expression: TOKBASECASE A |

TRACE RULE T:
TRACE RULE Z:
TRACE RULE T:
TRACE RULE Z:
TRACE RULE T:
TRACE RULE Z:
TRACE RULE Z:
TRACE RULE Z:
TRACE RULE A:

TOKUSECASE | U56\1:1 |

TOKLEFTPARENS T TOKRIGHTPARENS | (T
TOKUSECASE | U56\1:2 |

TOKLEFTPARENS T TOKRIGHTPARENS | (T
TOKUSECASE | U56\1:3 |

TOKLEFTPARENS T TOKRIGHTPARENS | (T
22122|

27|22|

TOKLEFTANGLE Z TOKRIGHTANGLE | < Z >

ACCEPT TRACE RULE core_expression: TOKBASECASE A |

TRACE RULE T:
TRACE RULE T:
TRACE RULE Z:
TRACE RULE A:
TRACE RULE Z:
TRACE RULE T:
TRACE RULE Z:
TRACE RULE T:
TRACE RULE T:
TRACE RULE Z:
TRACE RULE T:
TRACE RULE Z:
TRACE RULE Z:
TRACE RULE A:
syntax error

TOKUSECASE | U49\1:1 |

TOKUSECASE | U49\2:1:1 |
TOKLEFTPARENS T TOKRIGHTPARENS | (T
TOKLEFTANGLE Z TOKRIGHTANGLE | < Z >
TOKLEFTPARENS T A TOKRIGHTPARENS | (
TOKUSECASE | U49\1:2 |

TOKLEFTPARENS T TOKRIGHTPARENS | (T
TOKUSECASE | U49\1:3 |

TOKUSECASE | U49\2:3:1 |
TOKLEFTPARENS T TOKRIGHTPARENS | (T
TOKUSECASE | U49\2:3:2 |
TOKLEFTPARENS T TOKRIGHTPARENS | (T
22|22|

TOKLEFTANGLE Z TOKRIGHTANGLE | < Z >

%exit exit Script done on Tue Jul 31 09:49:32 2007

3:1)(U49\2:3:2)>>;

)|
b32 A |
)|
)|
)|
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Appendix G: Source Code to Generate .dot Files

Script started on Mon Jul 30 10:40:19 2007
%ocat InitGraphTable.h

void InitGraphTable(GRAPHTABLE graphTable][]) {
int countNodes;
int countDeps;

for (countNodes = 0; countNodes < MAXNODES; coun tNodes++) {
graphTable[countNodes].visit = false;
graphTable[countNodes].gTitleNum = -1;
graphTable[countNodes].gTitleStr = "----";
graphTable[countNodes].gParent =-1;
graphTable[countNodes].gCtRefinements = 0;
graphTable[countNodes].gCtInclusions = 0;
graphTable[countNodes].gCtExtensions = 0;

for (countDeps = 0; countDeps < MAXREFINEMENT S; countDeps++)
graphTable[countNodes].gRefinements[countD eps] =-1;
for (countDeps = 0; countDeps < MAXINCLUSIONS ; countDeps++)
graphTable[countNodes].gInclusions[countDe ps] = -1;
for (countDeps = 0; countDeps < MAXEXTENSIONS ; countDeps++)
graphTable[countNodes].gExtensions[countDe ps] = -1;
} /! end init
return;

} /I end InitGraphTable

%cat BuildTable.h

void BuildTable(ifstream& fin,
char expression[],
int& nodeCount,
GRAPHTABLE graphTablel[])

stack<int> parentSt;
stack<char> modeSt;
string titleStr;

int expressionMarker;
int parentTop; //temp
int index; I/l temp

char garbage;

nodeCount = 0;
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fin.getline(expression, MAXLINESIZE + 1);

/I init table and parent stack with base case
expressionMarker = 0;
ParseBase(expressionMarker, expression, titleStr

/I Add base to the graphTable
graphTable[0].gTitleNum = 0O;
graphTable[0].gTitleStr = titleStr;

nodeCount++;

/[Put base on parent stack
parentSt.push(0);

while(expression[expressionMarker] I=";") {

/I process expression char by char
switch (expression[expressionMarker]) {
case'"
expressionMarker++;
break;

case '<"
modeSt.push('R");
expressionMarker++;
break;

case >"
modeSt.pop();
expressionMarker++;
break;

case '(":
expressionMarker++;
break;

case )"
parentSt.pop();
expressionMarker++;
break;

case "
modeSt.push('l");
expressionMarker++;
break;

case '
modeSt.pop();
expressionMarker++;
break;

case {"
modeSt.push('E");
expressionMarker++;

127



break;

case '}
modeSt.pop();
expressionMarker++;
break;

case 'U"
case 'u"

ParseTitle(expressionMarker, expression
graphTable[nodeCount].gTitleNum = nodeC
graphTable[nodeCount].gTitleStr = title
parentTop = parentSt.top();
graphTable[nodeCount].gParent = paren

switch (modeSt.top())
{

case 'R"
index = graphTable[parentTop].gCt
graphTable[parentTop].gRefinement
graphTable[parentTop].gCtRefineme
break;

case 'l':
index = graphTable[parentTop].gCt
graphTable[parentTop].gInclusions
graphTable[parentTop].gCtinclusio
break;

case 'E"
index = graphTable[parentTop].gCt
graphTable[parentTop].gExtensions
graphTable[parentTop].gCtExtensio
break;

default:
cout << kxR PROBLEM WITH
break;

} /I end SWITCH mode check
parentSt.push(nodeCount);
nodeCount++;

break;

default:
cout <g "rxErxikxikxk INVALID PARSE ***
break;

} /I END SWITCH character check char by char

128

, titleStr);
ount;
Str;

tTop;

Refinements;
s[index] = nodeCount;
nts++;

Inclusions;
[index] = nodeCount;
ns++;

Extensions;
[index] = nodeCount;
ns++;
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} /I end parse loop
return;

} /I end BuildTable

%cat ParseUseCase.h

void ParseBase(int& expressionMarker,
const char expression[],
string& titleStr)

{
titleStr = ";

while(expression[expressionMarker] = '<' &&
expression[expressionMarker] !="") {
titleStr = titleStr + expression[expressionMa
expressionMarker++;

} /I end read of base case
return;

} I* end ParseBase */

void ParseTitle(int& expressionMarker,
const char expression[],
string& titleStr)

titleStr = ";

while(expression[expressionMarker] I=")' &&
expression[expressionMarker] I='{' &&
expression[expressionMarker] 1= " &&
expression[expressionMarker] !='<") {

titleStr = titleStr + expression[expressionMar
expressionMarker++;

} /1 end parsing of use case title

}/l end ParseTitle

%cat PrintTable.h

void PrintTable(ofstream& fTableOut,
string ofName,
const char expression[],
int nodeCount,
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GRAPHTABLE graphTable[])

/[Print Headings

fTableOut << "GRAPH_TABLE EXPRESSION: " << expr

fTableOut << "See file: " << ofName << endl <<
fTableOut.setf(ios::left);
fTableOut << "NODE "

<< "NODE_NAME "
<< "Parent ";

fTableOut << "REFS "

<<"INCLS "
<<"EXTS™;

fTableOut << "|REF "

<<"|[INCLS "
<<"|EXTS " << endl;

for (int count = 0; count < nodeCount; count++)

{

fTableOut.precision(1);
fTableOut.setf(ios::right);

fTableOut << setw(4) << graphTable[count].
fTableOut.setf(ios::left);

fTableOut << setw(10) << graphTable[count]
fTableOut.setf(ios::right);

if (graphTable[count].gParent == -1)
fTableOut << SetW(7) << "X™
else

fTableOut << setw(7) << graphTable[coun
fTableOut << setw(6) << graphTable[count].
<< setw(6) << graphTable[count].
<< setw(6) << graphTable[count].

fTableOut << " |";
for (int countdep = 0; countdep < MAXREFIN
if (graphTable[count].gRefinements[coun
fTableOut <<

else
fTableOut << setw(3) <<

graphTable[count].gRefinements[countdep];

}

fTableOut << "|";
for (int countdep = 0; countdep < MAXINCLU

if (graphTable[count].gInclusions[count
fTableOut << " *;
else
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endl;

gTitleNum << " ";

.gTitleStr;

t].gParent;
gCtRefinements
gCtinclusions
gCtExtensions;

EMENTS; countdep++)

tdep] ==-1)

SIONS; countdep++)

dep] == -1)



fTableOut << setw(3) <<
graphTable[count].gInclusions[countdep];

fTableOut << "|";
for (int countdep = 0; countdep < MAXEXTEN SIONS; countdep++)
if (graphTable[count].gExtensions[count dep] ==-1)
fTableOut << " *;
else

fTableOut << setw(3) <<
graphTable[count].gExtensions[countdep];

}

fTableOut << endl << endl;
} /I end print of table contents

} // end PrintTable

%cat bdg.cc

#include <iostream>
#include <fstream>
#include <cstdlib>
#include <iomanip>
#include <string>
#include <stack>
#include <deque>

using namespace std;
const int MAXREFINEMENTS = 8;

const int MAXINCLUSIONS =5;
const int MAXEXTENSIONS =5;

const int MAXNODES =100;
const int MAXLINESIZE = 90;
const int MAXCHAR = 500;
struct GRAPHTABLE {

bool visit;

string gClusterName;
string gNodeName;

int  gTitleNum;
string gTitleStr;
int gParent;

int gCtRefinements;

int  gCtinclusions;

int  gCtExtensions;

int gRefinements]MAXREFINEMENTS];
int  glnclusions[MAXINCLUSIONS];

int  gExtensions[MAXEXTENSIONS];
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}; 1 end GRAPHTABLE
//***************** P ROTOTY P ES kkkkkkkkkkkkkkkk

void BuildTable(ifstream& fin,
char expression[],
int& nodeCount,
GRAPHTABLE graphTable]]) ;

void ParseBase(int& expressionMarker,
const char expression[],
string& titleStr) ;

void InitGraphTable(GRAPHTABLE graphTablel[]);
void ParseTitle(int& expressionMarker,

const char expression[],

string& titleStr) ;

void PrintTable(ofstream& fTableout,
string ofName,
const char expression(],
int nodeCount,
GRAPHTABLE graphTable]]) ;

void BuildDot(ofstreamé& fout,
const char expression(],
int nodeCount,
GRAPHTABLE graphTable[]);
void InitGraphNames(int numNodes, GRAPHTABLE Grap
void InitGraph(ofstreamé& fout,
const char expression[],
GRAPHTABLE graphTable][]) ;
void BuildRefinementStack(int beginNode,

GRAPHTABLE graphTable[],
stack<int>& refStack) ;

bool FindNext (int topnode, GRAPHTABLE graphTable[]
void BuildGraph(ofstreamé& fout,
GRAPHTABLE graphTable[],
stack<int>& refStack);
void PrintStack(stack<int> refStack);
#include "InitGraphTable.h"
#include "BuildTable.h"
#include "ParseUseCase.h"

#include "PrintTable.h"

int main(){
ifstream fin; [ffile for expressions
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ofstream fTableOut; // file for each graph table
ofstream fout;  /ffile for .dot files, one f

// build for .dot file names
string ofNameFirst = "graph";
char ofCountfMAXCHARY];
string ofNameEnd = ".dot";
string ofName;

int numExpressions;

char garbage[MAXLINESIZE];
char expression[MAXNODES];
int nodeCount;

GRAPHTABLE graphTable[MAXNODES];

fin.open("RETRACexp3_header.in");

if (fin.fail()) {
cout << " INPUT FILE OPEN FAILURE ***
exit(1);

}

fTableOut.open("GraphTable.data");

if (fTableOut.fail() ) {
cout << "*xQUTPUT .data TABLE FILE ERROR
exit(1);

}

fin >> numExpressions;
fin.getline(garbage, MAXLINESIZE+1);

for(int count=1; count <= numExpressions; count+
sprintf(ofCount, "%d", count);
ofName = ofNameFirst + ofCount + ofNameEnd;
fout.open(ofName.c_str());
if (fout.fail()) {
cout << "+ *QUTPUT .dot FILE ERROR ****"
exit(1);

InitGraphTable(graphTable);

BuildTable(fin, expression, nodeCount, graphT
PrintTable(fTableOut, ofName, expression, nod
BuildDot(fout, expression, nodeCount, graphTa
fout.close();

} /1 build another .dot file

fTableOut.close();
fin.close();

return O;
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}/l end main

void BuildDot(ofstreamé& fout,
const char expression(],
int numNodes,
GRAPHTABLE graphTablel[])

stack<int> refStack;
InitGraphNames(numNodes, graphTable);
InitGraph(fout, expression, graphTable);
BuildRefinementStack(0, graphTable, refStack);
BuildGraph(fout, graphTable, refStack);

fout << endl << "} // end graph";

} /1 end BuildDot

void InitGraphNames(int numNodes, GRAPHTABLE graphT
// Build node & cluster names
string nodePrefix = "node";
char nodeNum[MAXCHAR];
string clusterPrefix = "cluster";

1
for (int count = 0; count < numNodes; count++) {
sprintf(nodeNum, "%d", graphTable[count].gTit
graphTable[count].gNodeName = nodePrefix
graphTable[count].gClusterName = clusterPrefi
} / end naming

} /1 end InitGraphNames

void InitGraph(ofstream& fout,
const char expression[],
GRAPHTABLE graphTablel[])

{
/I INIT GRAPH
fout << "digraph G {" << endl;
fout << "compound=true;" << endl;
fout << "fontsize = 12;" << endl;
fout << "label=" << "\"" << expression << "\"" <
fout << "ranksep=.5;" << endl;
fout << "nodesep=.5;" << endl;

fout << "node[fontsize=10];" << endl;
/I end cluster

fout << end| << endl;
} /l end InitGraph

void BuildRefinementStack(int beginNode,
GRAPHTABLE graphTable[]
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stack<int>& refStack) {

int topNode;

int ctRef;

int nextChild,;
stack<int> tempStack;

/finit stack
tempStack.push(beginNode);
graphTable[beginNode].visit = true;

while (tempStack.empty())
{
topNode = tempStack.top();
if (FindNext(topNode, graphTable, nextChild)

tempStack.push(nextChild);
topNode = tempStack.top();
graphTable[topNode].visit = true;

else {// no more children
refStack.push(topNode);
tempStack.pop();

}

} /1 end walk to find refinement paths
} /I end BuildRefinementStack

bool FindNext (int topNode, GRAPHTABLE graphTable[]

{

bool found = false;
int count;
count = graphTable[topNode].gCtRefinements;

for (;count > 0 && !found; count--) {
nextChild = graphTable[topNode].gRefinements|
if (graphTable[nextChild].visit == false)
found = true;
}

return found;

M/ end FindNext

void BuildGraph(ofstreamé& fout,
GRAPHTABLE graphTable][],
stack<int>& refStack) {

int topNode;

int workingNode;

int parent;

int count;
stack<int> incStack;
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stack<int> extStack;
topNode = refStack.top();
while(IrefStack.empty())

workingNode = refStack.top();
refStack.pop();

if (workingNode == 0) {

//BEGIN INIT NODE CLUSTER
fout << "subgraph ";
fout << graphTable[0].gClusterName
<<"{" << endl;
fout << "color=white;" << endl;
fout << "node [shape=box];" << endl;
fout << "label =\" \"; " << endl;
fout << graphTable[0].gNodeName;
fout << "[label="
<< graphTable[0].gTitleStr
<< ","
<< " shape=ellipse];"
<< endl;

fout<<"}//end "
<< graphTable[0].gClusterName
<< endl << endl;

} /1 end build of first cluster

else
{
//BEGIN INIT NODE CLUSTER
fout << "subgraph ";
fout << graphTable[workingNode].gClusterNa me;
fout << "{" << endl;
fout << "label="
<< M\
<< graphTable[workingNode].gTitleStr
<"\ << """ << endl;

fout << graphTable[workingNode].gNodeName;
fout << "[style=invis, fixedsize=true, "

<< "height=.09, width=.09" << "]"

<<"" << endl;

/l FOR EACH INCLUSION BUILD SUB-TREES

count = graphTable[workingNode].gCtInclusi ons;

for (; count >0; count--) {
int incNode = graphTable[workingNode].g Inclusions[count-1];
BuildRefinementStack(incNode, graphTabl e, incStack);

BuildGraph(fout, graphTable, incStack);
I END PROCESSING EACH INCLUSION
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/I END CLUSTER

fout << "} // end cluster"”
<< graphTable[workingNode].gClusterNa
<< endl << endl;

/I LINK TO PARENT
if (workingNode != topNode)

{
parent = graphTable[workingNode].gParen

fout << graphTable[parent].gNodeName;
fout << "->";
fout << graphTable[workingNode].gNodeNa

fOUt << II[II
<< "tailport=s, headport=n" << ",
<< "label=\"....\"" << "

if (parent = 0) {
fout << "ltail=" << graphTable[parent].

}

fout << "lhead=" << graphTable[workingN
<"
<<"" << endl << endl;

}

/I ATTACH EXTENSION USE CASES

count = graphTable[workingNode].gCtExtensi

for (;count >0; count--) {
int extNode = graphTable[workingNode].g
BuildRefinementStack(extNode, graphTabl
BuildGraph(fout, graphTable, extStack);

if (count == graphTable[workingNode].gC
fout << "{rank = same; "
<< graphTable[workingNode].gN
<< graphTable[extNode].gNodeN
<<"}"<<endl;
}
fout << graphTable[workingNode].gNodeNa
fout << "->";
fout << graphTable[extNode].gNodeName;
fout << "["
<< "tailport=e, headport=w" << ",
<< "style=dotted" <<,
fout << "ltail=" << graphTable[workingN
fout << "lhead=" << graphTable[extNode]
<"
<<"" << endl << endl;
} /I end procession extensions
} // end Build cluster

me

me;

gClusterName << " ",

ode].gClusterName

ons;
Extensions[count-1];
e, extStack);
tExtensions) {
odeName << "; "

ame

me;

ode].gClusterName << " ,";
.gClusterName

} /I end recursive build of clusters
} /1 end BuildGraph
void PrintStack(stack<int> refStack) {
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int node;

cout << "\n---------- Print stack pop/print\n
while(refStack.empty(){
node = refStack.top();
refStack.pop();
cout << node << endl;
}
}

%exit exit Script done on Mon Jul 30 10:41:59 2007

138



Vita

Coretta Willis Douglas was born in Jackddmssissippi, and received her bachelor of arts
degree in computer science from Mississippi Statéisity. Subsequently she worked as a
programmer analyst at Mississippi Chemical Corponain Yazoo City in implementing an
automatic re-order purchasing system and in maamies of other functional systems. She then
moved to Baton Rouge and was employed as the gmlogrammer for Capital Bank
maintaining a large overlay system for bankingeerals. She returned to academia
completing a Master of Science in Systems Sciehteuwsiana State University in 1998 and
thereafter became an Instructor within the Comp8t@ence Department at Louisiana State
University. Her research interests include requerts specification, visual languages,
ontologies, and risk management.

She is married to Carl L. (Mel) Douglas,ald is the mother of two daughters and the

grandmother of three.

139



	Louisiana State University
	LSU Digital Commons
	2008

	Visual language representation for use case evolution and traceability
	Coretta Willis Douglas
	Recommended Citation


	

