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Abstract

We consider the problem of binary hypothesis testing using a distributed wireless sensor
network. Identical binary quantizers are used on the sensor’s observations and the outputs
are encrypted using a probabilistic cipher. The third party (enemy) fusion centers are
unaware of the presence of the probabilistic encipher. We find the optimal (minimum-
probability-of-error) fusion rule for the ally (friendly) fusion center subject to a lower bound
on the the probability of error for the third-party fusion centers.

To obtain the minimum probability of error, we first prove the quasi-convexity of error
probability with respect to the sensor’s threshold for a given cipher and show the existence
of a unique positive minimum for error probability of the ally fusion center. The threshold
corresponding to the minimum error-probability is evaluated numerically and the appro-
priate cipher that deteriorates the performance of the third-party fusion center below the
required limits is obtained.

Our results show that, by adjusting the sensor threshold and the encryption parameters,
it is possible to achieve acceptable performance for the ally fusion center while causing
significant degradation to the performance of the third party fusion center.

viii



1 Introduction

Recent trends in VLSI and signal processing have led to the emergence of intelligent sensor
networks that are capable of improving the sensing performance in multiple dimensions [14].
The motivation for these networks dates back to the implementation of these networks for
military surveillance purposes across the borders. Now, this idea is extended to a wide
range of domestic applications such as disaster-monitoring, health-monitoring, managing
inventory, traffic-control and monitoring product-quality [11].

Distributed sensing came into picture with the emergence of applications where the location
of the phenomenon of interest is not known. Sensors when distributed spatially, enhance
the line-of-sight and thereby improve SNR, even with the presence of obstructions in the
field [10].

Wireless sensor network is a network of sensor nodes that are spatially distributed to mon-
itor an observation space for a physical parameter like temperature, pressure, or motion.
These sensor nodes, sometimes also called ”intelligent” sensors, consist of sensing, data pro-
cessing and communicating components. Each network comprises of many such individual
sensor nodes densely deployed whose position need not be engineered or predetermined.
This allows us to have a random deployment of these sensors which is particularly moti-
vating in regions or situations that are inaccessible. This also means that the design has
to involve parameters that have self-organizing capabilities [1].

Intelligent sensors, though limited by their processing abilities and energy-constraints be-
cause of the limited battery power, can network themselves and communicate with a central
agency (node) called the fusion center. The fusion center, having information from differ-
ent geographic locations in the total coverage area, can hence give a reliable decision. But
the constraints such as limited power supply, limited bandwidth and limited range of ra-
dio communication between the sensors and the fusion center makes the design of sensor
networks quite challenging.

1.1 Topologies

Wireless sensor networks can be organized in different ways depending on the arrangement
of sensors and the fusion center. There are three major topologies used for sensor networks
namely parallel, serial and tree topologies [1, 28]. The first is the parallel topology, as
shown in figure 1.1, wherein sensors do not communicate with each other. They collect

1



Chapter 1: Introduction
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Figure 1.1: Parallel fusion topology of the sensor network
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Figure 1.2: Serial topology of the sensor network

the information simultaneously, process it and transmit the partially processed data to the
fusion center where final decision is made.

Serial or Tandem topology as in figure 1.2 is another topology where the sensors are con-
nected in series and communicate with their immediate neighbors in a serial unidirectional
fashion. The first sensor hence preprocesses the data which it received from the surround-
ings and sends this information to the second sensor. There onwards, the sensors make
decisions based on both the sensed data from the observation space and also the data which
it received from its predecessor. Notice that there is no need for a fusion center for the
design of a serial topology.

In the tree topology depicted by figure 1.3, the sensors are arranged in the form of a tree.
Sensors are arranged in different stages and the successor stage gets the data both from
the sensors of the predecessor stage and the observation space. Sensor at the final stage
gives the final decision. This is similar to the serial network in a way that it does not have

2
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Figure 1.3: Tree topology of the sensor network

fusion center.

1.2 Distributed Detection using Sensor Networks

Potential applications of sensor networks include detection, estimation and tracking of a
physical parameter such as temperature, pressure and location. Detection and estimation
problems are static in nature as we only consider the present status of the phenomenon of
interest. On contrary, tracking is a dynamic problem where we track the changes in the
physical parameter in both time and space. Here, we are only interested in the detection
problem.

In a conventional sensor network design, the sensors collect information from the environ-
ment and transmit it to the fusion center so that a statistical decision can be made. Since
all the decision logic is located in one place in the network, this type of detection is known
as centralized detection. But the raw digital data that is collected occupy a lot of band-
width and hence we have a bandwidth constraint in the frequency spectrum allocated to
the network. In order to eliminate this problem, raw data obtained by the sensing units, is
partially processed in the sensor itself resulting in a signal that occupies low bandwidth for
transmission across the wireless channel. Hence this type of detection, popularly termed

3



Chapter 1: Introduction

decentralized detection is preferred over the conventional designs [28].

Distributed detection in sensor networks is one of the research problems that has been
extensively covered in the literature [5,24–26]. Several environments have been considered
in proposing an optimal design specific to the constraints posed by them. The following
paragraphs give a brief outline of the past research and then fits our work in their context.

Tenney and Sandell, for the first time, extended the problem of classical Bayesian detection
to the distributed sensors problem in [24]. The problem was formulated based on a standard
hypothesis testing problem was considered and proposed optimal decision rules for the
individual sensors. But since they never considered the design of an data fusion scheme,
Chair and Varshney proposed an optimal data fusion scheme (k-out-of-n rule) where each
sensor’s decision is weighted based on the reliability of the local decision rule (binary
quantizer) which is later compared to an optimal threshold for the final decision [5]. It is
important to note that both these works assume the presence of a noiseless channel.

Later, Tsitsiklis, in his pioneering work [25], proved that the sensors, with i.i.d. obser-

vations, can be segregated optimally into M(M−1)
2

groups in a M-hypothesis distributed
detection problem as the number of sensors tend to infinity and that each group has identi-
cal decision rules for all the sensors. Therefore, when a binary hypothesis testing problem is
considered, likelihood-ratio quantizers were proposed as an asymptotically optimal decision
rule identical to all the sensors.

More recently, focus has been shifted to designing a distributed sensor network in the
presence of a noisy channel. Different channel environments had been considered such
as the Rayleigh Fading Channel as in [13]. Indeed, the authors in [13] use the same
likelihood ratio statistic proposed by Tsitsiklis, as mentioned earlier, in the fading channel
environment, but assumes perfect knowledge of both the channel and the performance
indices of the local sensor decision rules. Nui et al., also proposed an alternative fusion
scheme, namely, the equal-gain combiner which barely requires prior information regarding
the sensor or the channel. Chen et al. consider the distributed detection problem for non-
ideal channels (binary symmetric channel, in short, BSC) and proves that the likelihood
ratio test for local sensor decisions are optimal in [9].

Recent trends in the development of wireless sensor network has been directed to the energy
efficient schemes which involve intelligent designs like those involving censoring scheme as
suggested by Rago et al., [15] which allow only the so-called ”informative” decisions to reach
the fusion center. In their paper, Rago et al., suggests that there exists a single interval in
which conditionally independent sensor information is being censored. Also that, the paper
suggests that different multiple intervals can be reduced to a model with single interval.

4



Chapter 1: Introduction

Figure 1.4: Censoring sensor network

After Rago et al., has first presented the idea of ’censoring’, there have been many authors
proposing wireless sensor networks designs using censoring scheme. Designs with send/no-
send transmission scenario has been proposed [2]. Authors like Appadawedula et al., and
Tay et al., have considered the problem of optimization over a sequence of detectors espe-
cially the case of asymptotic performance [2, 3, 23]. Especially, Tay et al., [23] considered
the problem of designing a network of binary sensors where the sensors have access to side
information that affects the statistics of the measurements.

1.3 Motivation for this work

In the case of distributed detection problem, the focus was mainly on energy-efficient designs
due to the practical constraints. But security is a key issue which has been neglected all
these days. All the above mentioned designs do not take into account the possibility
of the presence of an eavesdropper (insecure channel) who might try to use the sensor

5



Chapter 1: Introduction

decisions according to his convenience and distort the channel between the sensors and the
fusion center so that no effective decision can be made by our fusion center. Although
many security protocols were developed for sensor networks, never was the security issue
addressed in distributed detection/estimation problem until, Aysal et al., in 2008, for the
first time, proposed a system model with a cipher embedded in the local sensors’ design
in [4] for a distributed estimation problem. We therefore would consider extending this
feature to the distributed detection problem for the same model.

Here we discuss about the performance of distributed detection in a parallel sensor network
with an additional dimension of security embedded into its design. Probabilistic enciphers
are introduced in the sensor end so that the performance of ally fusion center (AFC)
is better than the unauthorized third-party fusion centers (TPFC) that try to seek the
information transmitted by the sensors illegally. Hence it is quite reasonable to assume
that the probability distribution of the stochastic parameter used in encryption is only
known to the AFC which makes the difference in the implementation of the two fusion
center designs.

Note that there is always a chance for the TPFC to trace back the cipher parameters and
use them to find a design that has a performance similar to the optimal AFC design. In
order to get this information, TPFC should have the prior knowledge of the observation
model, the sensor decision rules and a large amount of data to statistically compute these
probabilistic cipher parameters. The confidence in our model comes from the fact that,
even if TPFC has this information, we still have the control of selecting our own sensor
thresholds which changes the complete system parameters and thereby, ensuring security
back in our design.

6



2 System Model

In this chapter, we will be describing the model of the sensor network. We assume a parallel-
topology configuration of the sensors which transmit the data into the wireless channel.
This data, which is nothing but the ”intelligent” sensor decisions are available to the ally
fusion center. We also assume the presence of an eavesdropper in the neighborhood of
these sensors which collects the data, and makes its own decision using a third-party fusion
center(TPFC). By making such a decision, the eavesdropper can twist the observations at
the reception of the local sensors and thereby mislead our decision. Hence, we assume the
presence of a third party fusion center(TPFC) whose performance is deteriorated with the
proper design of individual sensors - of course, under a certain constraint on the degradation
of ally fusion center’s(AFC) performance. Let us start with a detailed description of the
sensor network model mentioned earlier in this paragraph.

Consider a system of n sensors observing an unknown hypothesis H where H ∈ {H0, H1}
and with prior probabilities of H0 and H1 being q0 and q1, respectively.

LetXi denote the observation of the ith sensor, i = 1, 2, 3, ..., n. It is assumed that given the
hypothesis Hη, (η = 0, 1), the observations X1, X2, · · · , Xn are independent and identically
distributed. The conditional PDF of Xi under the hypothesis Hη is given by pη

X(x). Each
sensor i, i = 1, 2, · · · , n, makes a decision ui ∈ {0, 1} regarding the state of the hypothesis
H using the likelihood ratio threshold test

p1
X(x)

p0
X(x)

ui=1

≷
ui=0

λ (2.1)

where λ is the identical threshold for all the sensors. In general, identical threshold as-
sumption need not lead us to an optimal solution. However, the complexity of the problem
would be prohibitive without such an assumption. Irving et al., proved that the optimality
is not lost when identical sensor thresholds are used in the case of a two-sensor system [12].
Furthermore, it is shown in [25] and [8] that this assumption of identical sensors would be
optimal asymptotically in the number of sensors, n. Relying on these results and in order
to make the problem tractable, we assume identical threshold λ for all the sensors.

The performance of this binary quantizer can be expressed using two quantities - false
alarm probability PF and the detection probability PD of individual sensors, which are
given by

PF = P (ui = 1|H0)

PD = P (ui = 1|H1)

7
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k
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Sensors
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Figure 2.1: Sensor network model

Note that these decisions are transmitted to the fusion center through a wireless channel
which can be accessed by many other unauthorized receivers and hence can use this data
from the sensors according to their convenience. So there is a need for an encryption system
that allows the sensor decisions to be accessible only to the fusion center.

A simple solution to this is to use a fixed cipher to the sensor decisions, but since TPFC
has access to the data, there is a very good chance that it may identify the presence of this
fixed cipher from the statistics of the data set it received and may change its parameters
to get a better performance. So, an appropriate solution is the use of a stochastic cipher
whose parametric distribution is known only to AFC. This eliminates the possibility for
TPFC to find the existence of a cipher and hence would never have better performance
than AFC.

The probabilistic encryption mechanism used in the sensors encrypts the decision ui of
sensor i to obtain zi such that P (zi = 1|ui = 0) = p1 and P (zi = 0|ui = 1) = p2. The
encrypted binary output zi is then transmitted to the AFC and may also be observed by
the TPFC.

An alternative description of this model can be given as zi = ui ⊕ vi, where vi ∈ {0, 1},
{vi}n

i=1 are independent random variables with P (vi = 1|ui = 0) = p1 and P (vi = 1|ui =
1) = p2, and where ⊕ is modulo-2 addition. It is assumed that the AFC has knowledge of
the value of p1, p2 but not the actual values of v1, v2, · · · , vn. On the other hand, the TPFC
has no knowledge of the existence of cipher and its parameters p1, p2 and can only assume

8



Chapter 2: System Model

Figure 2.2: Stochastic Encryption of Sensor Decisions

that it received the original decisions ui, i = 1, 2, · · · , n, which corresponds to p1 = p2 = 0.
Thus, AFC takes advantage of this additional information to improve its performance
over TPFC. But also note that introducing such a stochastic cipher would degrade the
performance of the system as a whole and so the performance of a non-encrypted sensor
network is always better than the encrypted design.

Both the fusion centers, AFC and TPFC, receive these encrypted bits zi and then combine
them to make a final decision on the hypotheses. Since both of them act greedily, trying to
achieve the best performance possible, the optimum (minimum probability of error) fusion
rule for both the AFC and TPFC fusion centers is a k-out-of-n rule is given by Equation
2.4. This can be proved by considering the maximum a posterio probability (MAP) rule
which is given by

P (H1|z)
H1

≷
H0

P (H0|z)

or P (z|H1)q1
H1

≷
H0

P (z|H0)q0

or
P (z|H1)

P (z|H0)

H1

≷
H0

q0

q1
(= Λ, in general.)

Since the zi’s are independent of each other, the MAP rule simplifies to

n∏

i=1

P (zi|H1)

P (zi|H0)

H1

≷
H0

Λ

Let θ0 and θ1 denote the conditional probabilities of zi = 0 given H0 and H1, respectively,
i.e.,

θ0 = P (zi = 0|H0) = 1 − p1 − (1 − p1 − p2)PF

θ1 = P (zi = 0|H1) = 1 − p1 − (1 − p1 − p2)PD

(2.2)

9



Chapter 2: System Model

and Λ = q0

q1
in the case of global minimum error-probability criterion, as mentioned earlier.

Hence the likelihood ratio test which is the optimal rule with respect to the probability of
error is given by

θ
n−#(ones)
1 (1 − θ1)

#(ones)

θ
n−#(ones)
0 (1 − θ0)#(ones)

H1

≷
H0

Λ

Since #(ones) =
n∑

i=1

zi = l (say), therefore we have

θn−l
1 (1 − θ1)

l

θn−l
0 (1 − θ0)l

H1

≷
H0

Λ

Applying logarithms, we have

(n− l) ln

(
θ1

θ0

)
+ l ln

(
1 − θ1

1 − θ0

)
H1

≷
H0

ln Λ

On simplification, we have the final optimal decision rule as follows.

n∑

i=1

zi

H1

≷
H0

ln Λ − n ln

(
θ1

θ0

)

ln

(
(1 − θ1)θ0
(1 − θ0)θ1

)

Hence, the optimal k is given by

kA =

ln Λ − n ln

(
θ1

θ0

)

ln

(
(1 − θ1)θ0
(1 − θ0)θ1

) (2.3)

On the other hand, for the TPFC, the optimum value of k is given by kTP = kA(λ, 0, 0),
which the TPFC calculates as given in [29] because of the lack of knowledge about the
presence of the stochastic cipher in each sensor.

Hence the fusion rule can be generalized as follows:

u0 =






1, if

n∑

i=1

zi ≥ k

0, if
n∑

i=1

zi < k

(2.4)

10



Chapter 2: System Model

where k = kA(λ, p1, p2) in the case of AFC and k = kTP (λ) in the case of TPFC.

In order to find the optimal k, we need to analyze the performance and quality of the
fusion centers. Also, note that TPFC does not have the control over the choice of λ, p1, p2

as it just uses whatever sensor decisions are released into the wireless channel. Hence we
find the metrics that measure the quality of the fusion centers in general and later find the
optimal parameters in favorable to AFC. The metrics discussed above are the false alarm
probability QF and the detection probability QD of the fusion centers as a function of λ,
p1, p2 and k, which are given by

QF =

n∑

i=k

(
n

i

)
(1 − θ0)

i (θ0)
n−i (2.5a)

QD =

n∑

i=k

(
n

i

)
(1 − θ1)

i (θ1)
n−i (2.5b)

Hence the probability of error for fusion centers is given by

PE = q0QF + q1 (1 −QD) (2.6)

While a number of performance criteria may be considered, we are interested in the mini-
mum probability of error and the Bayesian detection problem.

Remark: A remark is in order here. While the formulas for the false alarm and detection
probabilities, and the probability of error are the same for the two fusion centers AFC and
TPFC, the optimal parameter k is different. Consequently, the optimum performance for
the two centers will be different. Subsequently we will use the superscripts AFC or TPFC,
respectively, in order to distinguish these quantities for the two centers.

11



3 Problem Formulation

In the previous chapter, the system model and its performance metrics were introduced.
Now, we reached the stage of formulating the problem of finding the optimal (λ, k, p1, p2)
which, on one hand, minimizes the error probability for AFC and on other hand, would
simultaneously deteriorate the performance of TPFC.

As mentioned previously, the Bayesian detection problem is considered. Note that the
probability of error is a function of λ, k, p1 and p2. Our goal is to minimize the probability
of error for the AFC subject to a lower bound on the probability of error for the TPFC.
Equivalently one may consider maximizing the probability of error for the TPFC subject
to an upper bound for the AFC. Since the TPFC is assumed to be unaware of the values
of p1 and p2 used in the sensors, it attempts to minimize the probability of error over λ
and k assuming p1 = p2 = 0.

In the following we consider the former case. This problem can be formulated as a con-
strained optimization problem as follows.

Problem Statement.

arg min
λ,k,p1,p2

PA
E (λ, k, p1, p2)

such that

1. P TP
E (λ, k, p1, p2) ≥ α

2. 1 ≤ k ≤ n,

3. 0 ≤ p1, p2 ≤ 1

Since the TPFC has no idea about the randomization of ui’s, the optimal kTP as identified
by TPFC can be calculated as given in [29]. Also, PF and PD are both assumed to be
first-order differentiable with respect to λ.

To minimize PA
E , the optimal λ for each (k, p1, p2) is found and then the performance of

TPFC
(
P TP

E

)
is compared with that of AFC over different values of p1, p2 for each k.

12



4 Optimal Ally Fusion Rule

It is time to solve the problem that we formulated in Chapter 3. The motivation to solve
this problem comes from [29] which proves that the error-probability has a unique minimum
by proving the quasi-convexity property of Pe with respect to the identical threshold λ in
the case of an unsecured sensor network model which is quite similar to our model in terms
of the structure of the equations. In fact, we expect the function to be strictly convex
so that it has a unique minimum. But since error probability is no longer convex, we try
to check for a more relaxed property, i.e. the quasiconvexity property and therefore start
investigating the error probability Pe if it is a quasi-convex function of λ, for a given k,
p1 and p2 which also guarantees a unique minimum. This property of error probability
is also corroborated by another work by Shi et al., who proved the error probability as a
quasi-convex function of the sensor threshold λ for Gaussian-like distributions [17]. But
note that since we are only interested in the optimal design, Equation 2.3 is employed for
the value of k which takes care of the problem of optimizing the problem over k, thus
reducing the complex notation in the problem.

But before we start, let us know what quasi-convexity is.

Definition 1 (Quasi-convexity). A function f(λ) is quasi-convex if, for some λ∗, f(λ) is
non-increasing for λ ≤ λ∗ and f(λ) is non-decreasing for λ ≥ λ∗ [29].
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λ = λ*

Figure 4.1: Quasi-convex function
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In other words, if
dP A

E

dλ
≤ 0 (or

dP A
E

dλ
≥ 0) for all λ, or

dP A
E

dλ
≤ 0 when λ ≤ λ∗ and

dP A
E

dλ
≥ 0

when λ ≥ λ∗ for some λ∗.

Thus quasi-convexity of Pe guarantees the existence of an optimal solution λ = λ∗ to the
problem of minimizing Pe for a fixed k, p1 and p2. So, we start with Lemma 1 which gives
the condition for the quasi-convexity of Pe to be satisfied for the system model considered
in Chapter 2.

Lemma 1. Assume that
d

dλ

(
1

λ

PD

PF

)
≤ 0 (4.1)

Then for the optimal value of k (as given by Equation 2.3) and any fixed value of (p1, p2),
when p1 + p2 ≤ 1, PA

E (λ, kA(λ, p1, p2), p1, p2) is a quasi-convex function of λ.

Proof. In order to check for the quasi-convexity with respect to λ, for a fixed k, p1 and
p2, P

A
E (Equation 2.6) is first differentiated with respect to λ, and using Equations (2.5a,

2.5b), and dPD

dPF
= λ

(
= dθ1

dθ0

)
, we have

dPA
E

dλ
= q0

dQAFC
F

dλ
− q1

dQAFC
D

dλ

= q1λ (θ0)
′
n

(
n− 1

k − 1

)
(1 − θ1)

k−1 (θ1)
n−k

− q0 (θ0)
′
n

(
n− 1

k − 1

)
(1 − θ0)

k−1 (θ0)
n−k

where (θ0)
′ = dθ0

dλ
= −(1 − p1 − p2)

dPF

dλ
≥ 0 if p1 + p2 ≤ 1 and dPF

dλ
≤ 0. [4, 29]

Rewriting the above equation, we have

dPA
E

dλ
= g (λ, k, p1, p2)

(
er(λ,k,p1,p2) − 1

)
(4.2)

where

g (λ, k, p1, p2) = n

(
n− 1

k − 1

)
q0 (1 − θ0)

k−1 (θ0)
n−k (θ0)

′ (4.3a)

and

r (λ, k, p1, p2) = ln

(
q1

q0

)
+ lnλ+ (k − 1) ln

(
1 − θ1

1 − θ0

)
+ (n− k) ln

(
θ1

θ0

)
(4.3b)
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We have g (λ, k, p1, p2) ≥ 0 which means that the sign of
dP A

E

dλ
depends on the value of

r (λ, k, p1, p2). In order to complete the proof, r (λ, k, p1, p2) must be either always positive
or negative, or there exists λ∗ such that r (λ, k, p1, p2) ≤ 0 for all λ ≤ λ∗ and r (λ, k, p1, p2) ≥
0 for all λ ≥ λ∗. Note that r (λ, k, p1, p2) being either positive or negative would result in
an optimal λ that is either zero or ∞, which is a trivial solution. We would rather want
r (λ, k, p1, p2) which gives a unique solution to the optimal λ that is positive and finite.
So we check if r (λ, k, p1, p2) is either increasing or decreasing which would guarantee the
existence of optimal λ satisfying the equations.

Unfortunately, we were not able to proceed beyond this point without any loss of generality.
So, since we are interested in the optimal value of kA as given by Equation 2.3, we substitute
Equation 2.3 in Equation 4.3b and solve the problem only for this special case as follows.

r(λ, p1, p2) = ln Λ + ln
q1

q0
+ lnλ− ln

(
1 − θ1

1 − θ0

)
(4.4)

and by differentiating r (λ, p1, p2) with respect to λ, we get

dr(λ, p1, p2)

dλ
=

1

λ
− 1

1 − θ1

[
1 − θ1

1 − θ0
− λ

]
dθ0

dλ
(4.5)

From [29], we get a motivation to check if r(λ, p1, p2) is increasing, i.e.

dr(λ, p1, p2)

dλ
≥ 0 (4.6)

In other words, we check if

1

λ
− 1

1 − θ1

[
1 − θ1

1 − θ0
− λ

]
dθ0

dλ
≥ 0

or

1

λ
+

λdθ0

dλ

1 − θ1
≥ 1

1 − θ0

dθ0

dλ

Multiplying λ(1 − θ0) on both sides, we have

(1 − θ0) +

(
1 − θ1

1 − θ0

)
λ2dθ0

dλ
≥ λ

dθ0

dλ

Expanding the individual terms θ0 and θ1 with Equations 2.2 given in Chapter 2 and
dividing with the positive term (1 − p1 − p2), we have

p1

1 − p1 − p2
+ PF +

PF + p1

1−p1−p2

PD + p1

1−p1−p2

(
−λ2dPF

dλ

)
≥ −λdPF

dλ
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Since PF

PD
≤ 1, we know PF

PD
≤ PF +

p1
1−p1−p2

PD+
p1

1−p1−p2

. Therefore, if the inequality given by (4.7) is true,

it follows that dr(λ,p1,p2)
dλ

≥ 0.

PF + λ

(
−λdPF

dλ

)
PF

PD

≥ −λdPF

dλ
(4.7)

which is equivalent to the condition given by Equation 4.1.

Various noise distributions are considered that satisfy the above criterion for a particular
model. We start with symmetric noise distributions, obtain a special criterion due to
symmetry and then check if this is satisfied for Gaussian and Laplacian distributions.
Later we obtain a generalized condition for the model used and search for the distributions
that satisfy this condition.

4.1 Secure Detection in the Presence of Symmetric

Noise

Now, we have a condition for PA
E to satisfy the quasi-convexity criterion. But this condition

need not be true in general for any noise distribution. Therefore, we start with symmetric
noise model in general, obtain a special criterion due to symmetry and then prove the results
for both Gaussian and Laplacian noise models. But the condition given by Equation 4.1
can be true even for some special non-symmetric distributions, which is not in the scope
of this thesis.

Let us consider the following model for the received signal.

Xi = S +Ni (4.8)

where s = d under hypothesis H1, S = −d under hypothesis H0 and Ni ∼ pN(x). The local
log-likelihood decision rule for the ith sensor is

Ti = ln
pN(Xi − d)

pN(Xi + d)

H1

≷
H0

τ (4.9)

Let Ti ∼ p0(t) under H0 and Ti ∼ p1(t) under H1, which means that PD =
∫∞

τ
p1(t)dt =

f1(t) and PF =
∫∞

τ
p0(t)dt = f0(t). Hence, Equation 4.1 can be rewritten as

d

dλ

(
1

λ

PD

PF

)
= e−τ d

dτ

(
1

eτ

f1(τ)

f0(τ)

)
≤ 0 (4.10)
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Note that since e−τ > 0, it is sufficient if we can show d
dτ

(
1
eτ

f1(τ)
f0(τ)

)
≤ 0. Expanding this,

we have

eτf0(τ)
df1(τ)

dτ
− f1(τ)

[
eτf0(τ) + eτ df0(τ)

dτ

]
≤ 0

Since df1(τ)
dτ

= −p1(τ) and df0(τ)
dτ

= −p0(τ), and since eτ is a non-negative quantity, after
minimal rearrangements, we have

p0(τ)

f0(τ)
− p1(τ)

f1(τ)
≤ 1 (4.11)

At this point, we would like to introduce symmetry in the noise distribution as it can
eliminate one of the conditional distributions in the above Equation 4.11, making it easy
to solve. It is well known that under antipodal signalling, as is the model considered, with
symmetric noise, we have [21]

p0(t) = p1(−t)
Therefore, we can rewrite Equation 4.11 as

p1(−τ)
1 − f1(−τ)

− p1(τ)

f1(τ)
≤ 1 (4.12)

This is particularly useful if we do not have a closed form expressions for f1(τ) as in the
case of Gaussian distribution. So, we would first start with the Gaussian noise distribution
and later, would see the Laplacian noise case where we have closed form expressions for
both p1(τ) and f1(τ).

4.1.1 Gaussian Noise

The first and the foremost noise distribution that comes to anyone’s mind is the Gaussian
distribution and hence, we would like to continue with the same notion of following the
convention. It has some key features like symmetry and strong theory (like Central Limit
Theorem) supporting its practical significance which makes it an attractive option.

Coming back to the problem, the following lemma proves that the Gaussian noise distri-
bution in the presence of a stochastic cipher considered in the chapter earlier, satisfies the
quasi-convexity property as given in Lemma 1. Since Ti = 2dXi ∼ N (2d, 4d2) under hy-
pothesis H1, p1(−τ) = p1(τ + 4d2) and 1 − f1(−τ) = f1(τ + 4d2), an equivalent expression
for Equation 4.12 can be given by Equation 4.15.
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Figure 4.2: Gaussian Signal Model
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Lemma 2. Suppose Ni ∼ N (0, 1), i.e. Ni is a zero-mean Gaussian random variable with
unit variance. Then the condition given by 4.12 is satisfied.
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Proof. Note that in this case, Ti = 2dXi and therefore,

p1(t) =
1

2d
√

2π
e−

(t−2d2)2

8d2 (4.13)

and

f1(t) = Q

(
t− 2d2

2d

)
(4.14)

Furthermore, p0(t) = p1(t + 4d2). Therefore, an equivalent expression for condition 4.12
would be

g(τ) =
p1(τ + 4d2)

f1(τ + 4d2)
− p1(τ)

f1(τ)
≤ 1 (4.15)

Let h(τ, d) = p1(τ)
f1(τ)

. Hence we need to show that

h(τ + 4d2, d) − h(τ, d) ≤ 1

Observe that
lim

τ→−∞
h(τ + 4d2, d) − h(τ, d) = 0

lim
τ→∞

h(τ + 4d2, d) − h(τ, d) = 1

Note that lim
τ→∞

p1(τ)

f1(τ)
= lim

τ→∞

τ − 2d2

4d2
, implying that g(τ) tends to be linear with slope 1

4d2

as τ increases indefinitely and with zero slope as τ shoots to −∞. In light of the above
and the mean-value theorem, to prove 4.15, it is sufficient to show the following Lipschitz
condition on h(τ, d):

dh(τ)

dτ
≤ 1

4d2
∀ τ, d. (4.16)

Evaluating the derivative of h(τ, d), 4.16 gets reduced to

f 2
1 (τ) − 4d2f1(τ)p

′
1(τ) ≥ 4d2p2

1(τ)

Expanding the terms using Equations 4.13 and 4.14 and substituting x for τ−2d2

2d
, we have

x√
2π
e−

x2

2 Q(x) +Q2(x) ≥ 1

2π
e−

x2

2 (4.17)

A strict lower bound on Q(x) was proposed by [18] which is given below

Q(x) ≥ 2

x+
√
x2 + 4

1√
2π
e−

x2

2 (4.18)
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Using 4.18 in the LHS of Equation 4.17, we have

x√
2π
e−

x2

2 Q(x) +Q2(x) ≥ x√
2π
e−

x2

2
2

x+
√
x2 + 4

1√
2π
e−

x2

2 +

[
2

x+
√
x2 + 4

]2
1

2π
e−x2

After simplifying the RHS of the above condition, we find that it is equal to 1
2π
e−

x2

2 which
proves the lemma.

Hence, we can conclude that PA
E is a quasi-convex function of λ in the presence of Gaussian

noise.

4.1.2 Laplacian Noise

The next symmetric noise model we would like to consider is the additive Laplacian noise
model which has closed form expressions for PD and PF making it easy to solve the problem
from Equation 4.1 directly. Now let us start proving the quasi-convexity property of PA

E in
the presence of additive Laplacian noise, i.e. Ni ∼ L(0, 1) = 1

2
e−|t|. First, PD and PF can
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Figure 4.4: Laplacian Signal Model
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be expressed as

PD =

{
1
2
e−(τ−d) if τ ≥ d

1 − 1
2
e(τ−d) if τ < d

(4.19a)

PF =

{
1
2
e−(τ+d) if τ ≥ −d

1 − 1
2
e(τ+d) if τ < −d

(4.19b)

These expressions, given by Equations 4.19a and 4.19b, are now used to check if Equation
4.1 is satisfied in Lemma 3 as follows.

Lemma 3. If pN(t) = 1
2
e−|t|, then d

dλ

(
1
λ

PD

PF

)
≤ 0.

Proof. We evaluate 1
λ

PD

PF
as a piece-wise function for different values of τ using the Equations

(4.19a), (4.19b) and λ = eτ .

CASE-1 (τ ≥ d): In this case, 1
λ

PD

PF
= e−τe2d and hence, d

dλ

(
1
λ

PD

PF

)
= −e−τe2d ≤ 0.

CASE-2 (−d ≤ τ < d): Here, 1
λ

PD

PF
= (2 − eτ−d)ed. Therefore, d

dλ

(
1
λ

PD

PF

)
= −eτ ≤ 0.

CASE-3 (τ < −d): Finally, we have 1
λ

PD

PF
= 2e−τ−e−d

2−eτ ed and hence, d
dλ

(
1
λ

PD

PF

)
= −4(e−τ−ed)+eτ

(2−eτ ed)2
.

Since τ < −d, the numerator is non-negative and the lemma is proved.

Thus, both additive Gaussian and Laplacian noise models support the presence of stochastic
ciphers, allowing PA

E to be a quasi-convex function of λ for optimal value of k. Of course,
there are many other distributions waiting to be investigated in this direction, but this
thesis only gives a path to follow in the case of distributions with or without closed-form
expressions.

4.2 Minimizing the probability of error for AFC

4.2.1 Existence of minimum Pe

Quasi-convexity of PA
E (λ, p1, p2) with respect to λ does not guarantee the existence of

optimal λ. From 4.2, it is seen that if r(λ∗, p1, p2) = 0 for some λ∗, then dP A
e

dλ

∣∣∣
λ=λ∗

= 0.
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If we go back to Chapter 2 in which the system model is described, λ is the threshold
for likelihood ratio rule. Likelihood ratios are always non-negative as they are defined as
the ratio of two probability distributions. Comparing this ratio to a negative number is
trivial as it forces the decision to be always H0 irrespective of what the observation is. So,
when we try to find a non-trivial solution to r(λ∗, p1, p2) = 0 which is positive, we have a
reasonable solution. Hence we investigate the conditions under which there exists a root
for the equation r(λ, p1, p2) = 0.

Expanding r(λ, p1, p2) = 0, we have

r(λ, p1, p2) = ln Λ + ln q1

q0
+ lnλ− ln

(
1−θ1

1−θ0

)

= ln
(
Λ q1

q0
λ1−θ0

1−θ1

)
= 0

In other words,

Λ
q1

q0
λ

1 − θ0

1 − θ1
= 1

or,

λ =
q0

Λq1

1 − θ1

1 − θ0
(4.20)

Let ψ(λ) = q0

Λq1

1−θ1

1−θ0
. Let us consider some properties of ψ(λ). It can be verified that

ψ(0) = ψ(∞) = q0

q1Λ
> 0. Now since ψ(λ) is continuous, it must intersect the line y = λ at

some point λ∗ > 0. Therefore r(λ, p1, p2) = 0 has at least one positive solution. Uniqueness
follows from the monotonicity of r(λ, p1, p2).

Consider the ROC curve of individual sensors. Let λ(0,0) and λ(1,1) denote the slopes of this
ROC curve at the points (0,0) and (1,1), respectively.

Theorem 1. Given (p1, p2) such that 0 < p1, p2 < 1 and p1 + p2 < 1, if λ(0,0) = ∞,
λ(1,1) = 0, and q0,q1 > 0, then r (λ, p1, p2) = 0 has a unique positive root.

Proof. To make sure there exists a positive root for r (λ, p1, p2) = 0, since r (λ, p1, p2) is a
monotonically increasing function, we expect linearity at both ends, i.e. at λ = ±∞. In
order to maintain this linearity, the following condition is assumed which is true for a set of
sensors that have type-1 ROC curves [22,29]. If the slope of the ROC (= λ) at the corners,
i.e., at (0, 0) and (1, 1), are λ(0,0) = ∞ and λ(1,1) = 0, then for a given (p1, p2), r (λ, p1, p2)
has a positive root for λ.

22



Chapter 4: Optimal Ally Fusion Rule

−6 −4 −2 0 2 4 6
−5

−4

−3

−2

−1

0

1

2

3

4

5

τ

r(
τ)

Variation of r as a function of τ for diff. signal models

 

 
Gaussian Signal Model
Laplacian Signal Model
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Figure 4.6: ψ as a function of λ

As described above, from the properties of ROC, we know that

lim
λ→0

θ1

θ0
= 1 lim

λ→∞

1 − θ1

1 − θ0
= 1,

lim
λ→∞

θ1

θ0
= 1 lim

λ→0

1 − θ1

1 − θ0
= 1
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Defining τ = lnλ allows us to restrict the domain of r to non-negative real numbers, which
guarantees a positive λ = λ∗. Then it follows that

lim
τ→−∞

r (λ, p1, p2)

τ
= 1 and lim

τ→+∞

r (λ, p1, p2)

τ
= 1

Therefore, r (λ, p1, p2) = 0 is a linear function of τ at ±∞ and in general, an increasing
function of τ . In other words, there is a unique positive root for r (λ, p1, p2) = 0 which
assures the optimal threshold λ for the sensors.

Corollary 2. For a given (p1, p2) such that 0 < p1, p2 < 1 and p1 + p2 < 1, there exists a
λ = λ∗ such that PA

E (λ, p1, p2) is minimized and λ∗ satisfies

r(λ, p1, p2) = ln Λ + ln
q1

q0
+ lnλ− ln

(
1 − θ1

1 − θ0

)

Hence, there exists a positive λ = λ∗ such that the probability of error is minimized.

4.3 Numerical Algorithms for Optimal Threshold

In this section, we would like to go a step further and find the optimal λ, p1 and p2 that
minimizes Pe. First, we find the optimal λ = λ∗ which minimizes PA

e for a given (p1, p2).
Then, we try to find (p1, p2) that minimizes Pe under the constraints P TP

e ≥ α. We start
with the description of these numerical algorithms as follows.

Many iterative numerical algorithms can be used to find the solution of r(λ, p1, p2) = 0.
We would like to show two such algorithms - one being used earlier in literature [29] for
solving a similar problem and an other one which we proposed.

4.3.1 Secant Method

Let us first start with the SECANT method to numerically find the optimal thresholds for
the sensors. The following algorithm is used to find the optimal threshold for AFC and
also the threshold for TPFC assuming that the TPFC is designed without the knowledge
of the stochastic cipher used in AFC model.

1: Choose ǫ > 0. Arbitrarily choose τ1, τ2. Let r1 = r (τ1, p1, p2), r2 = r (τ2, p1, p2) and set
i = 3.
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2: Let

τi =
ri−1τi−2 − ri−2τi−1

τi−1 − τi−2
.

3: Let ri = r (τi, p1, p2).
4: If |ri| ≤ ǫ, stop; otherwise, let i = i+ 1, and go to step 2.

At the end of the above computation process, the optimum λ = eτ is found for the given
(p1, p2).

4.3.2 Iterative Method

This is a more direct method that comes from the proof of Lemma 1. The quasi-convexity
property of Pe comes from the result that there exists a unique root for the equation
r(λ, p1, p2) = 0. Hence we start from this point to continue further from Equation 4.20 and
find the optimal threshold.

As mentioned in Chapter 4, an equivalent expression to r(λ, p1, p2) = 0 is given as

λ = ψλ (4.21)

The iterative algorithm we proposed is based on Equation 4.21 as follows for a given n, d,
p1 and p2.

1: Choose ǫ > 0. Arbitrarily choose λ1. Let ψ1 = ψ(λ1) and set i = 2.
2: Let

λi = ψ(λi−1).

3: Let ψi = ψ(λi).
4: If |ψi − λi| ≤ ǫ, stop; otherwise, let i = i+ 1, and go to step 2.

In the following section, the performance of AFC is compared with that of the TPFC which
uses the optimal kTP from [29] over the range of values of p1 and p2.
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5 Simulation Results

In this chapter, we will be skimming through the details presented in Chapters 2, 3, and 4
along with the numerical results for the signal model considered in the presence of either
Gaussian or Laplacian noise. We started with the system model where the construction
of the sensors is described and then proved the quasiconvexity of Pe for the ally fusion
center. Later two different numerical algorithms were proposed to find the identical optimal
threshold used in the sensors as a function of p1 and p2. Finally, under the constraints placed
by TPFC’s performance, we find the best cipher that minimizes the PA

e .
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(b) Results for q0 = 0.9

Figure 5.1: Comparison of performance of AFC and TPFC for n = 10, p1 = 0.1, p2 = 0.1
and d = 1 in the presence of Gaussian noise

Remark: Note that kA is a continuous function of λ(Equation 2.3). In reality, kA should
be an integer since it is compared to the number of sensors that decide H1. So, we assume

kA =

⌈
ln Λ−n ln

θ1
θ0

ln
θ0(1−θ1)
θ1(1−θ0)

⌉
in the computations of our results.

5.1 Quasiconvexity of Error Probabilities

We start with the quasiconvexity of PA
e . Figure 5.1 depicts the performance of PA

e and P TP
e

for 10 sensors with a symmetric cipher using p1 = p2 = 0.1. These results are produced for
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(b) Results for p1 = 0.5, p2 = 0.1

Figure 5.2: Comparison of performance of AFC and TPFC for n = 10, q0 = 0.5 and d = 1
in the presence of Gaussian noise

the Gaussian noise model with Ni ∼ N (0, 1) and d = 1. Multiple graphs(black in color),
each one representing Pe for different values of k, are plotted in the same figure because of
which, we are able to clearly understand that the optimal PA

e curve is the lower envelope
of all the curves. While the P TP

e curve overlaps with one of the black curves because
kTP is found from [29] and is a fixed number which TPFC thinks is optimal for the given
environment scenario. Also, one can clearly observe that there is an improvement from
q0 = 0.5 case (worst-case scenario) as given in Figure 5.1a to a more practical situation
where q0 = 0.9 which is depicted by Figure 5.1b.

Furthermore, we can also observe that the optimal Pe is the same for both AFC and TPFC.
Since we want to improve the performance of AFC as we simultaneously deteriorate the
TPFC’s performance, a skew in the values of p1 and p2 is introduced to see if there is an
improvement in the performance which is clearly depicted by figure 5.2. Figures 5.2a and
5.2b both refer to ciphers with skewed parameters that are mirror-images to each other
which is directly reflected in the plots.

Also, the same set of plots are found for n = 20 (Figures 5.3 and 5.4) and we can clearly
find that there is a significant increase in the performance of error probabilities of the fusion
centers. This is a phenomenon which is expected in a sensor network as the resolution of
the observation increases with increase in n.

Similar results are presented in the case of Laplacian noise model in figures 5.5 and 5.6
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Figure 5.3: Comparison of performance of AFC and TPFC for n = 20, p1 = 0.1, p2 = 0.1
and d = 1 in the presence of Gaussian noise
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Figure 5.4: Comparison of performance of AFC and TPFC for n = 20, q0 = 0.5 and d = 1
in the presence of Gaussian noise

and the same arguments can be used to explain these results. The only difference observed
between Gaussian noise model and Laplacian noise model is that the curves are more
steeper in the case of Laplacian noise model which may be due to the fact that Laplacian
distribution has a discontinuity at its mean.
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(a) Results for q0 = 0.5
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(b) Results for q0 = 0.9

Figure 5.5: Comparison of performance of AFC and TPFC for n = 10, p1 = 0.1, p2 = 0.1
and d = 1 in the presence of Laplacian noise
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Figure 5.6: Comparison of performance of AFC and TPFC for n = 10, q0 = 0.5 and d = 1
in the presence of Laplacian noise
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(a) Results for q0 = 0.5
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(b) Results for q0 = 0.9

Figure 5.7: Comparison of convergence of the secant method with the proposed iterative
method for n = 10, d = 1, p1 = 0.1 and p2 = 0.1 in the presence of Gaussian noise

5.2 Convergence of Numerical Algorithms

The next stage is the numerical computation of the optimal thresholds. In fact, the numer-
ical computation is performed in the previous results where the optimal PA

e is depicted.
But since we presented two different algorithms to compute the optimal λ, we are more
interested in comparing the convergence of the two algorithms. The convergence arguments
depend on the initial values, we try to observe this for different initial values and find that
both the algorithms converge almost at the same rate, although our iterative algorithm
beats the secant method with a little difference which is almost negligible.

Note that in the case of Laplacian distribution, esp. in the case of cipher with skewed
parameters as in figure 5.10, convergence is much faster in the case of our iterative method.
It results in a solution in the very first iteration. While in the case of secant algorithm, it
was continuing to take more than 4 iterations, although the difference is very less. So the
difference is explicit only if we go for higher accuracy and precision in finding the roots.

But the one advantage we have with the proposed iterative method is that we only start
with one initial value and hence, there are less number of computations to start with,
making it a faster algorithm in time.
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(a) Results for p1 = 0.1 and p2 = 0.5
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(b) Results for p1 = 0.5 and p2 = 0.1

Figure 5.8: Comparison of convergence of the secant method with the proposed iterative
method for n = 10, d = 1 and q0 = 0.5 in the presence of Gaussian noise
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(a) Results for q0 = 0.5

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

Number of Iterations

τ

Convergence of Algorithms for d = 1, (p
1
,p

2
) = (0.1,0.5) and q

0
 = 0.5

 

 
SECANT mtd
Iterative mtd

(b) Results for q0 = 0.9

Figure 5.9: Comparison of convergence of the secant method with the proposed iterative
method for n = 10, d = 1, p1 = 0.1 and p2 = 0.1 in the presence of Laplacian noise
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(a) Results for p1 = 0.1 and p2 = 0.5
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(b) Results for p1 = 0.5 and p2 = 0.1

Figure 5.10: Comparison of convergence of the secant method with the proposed iterative
method for n = 10, d = 1 and q0 = 0.5 in the presence of Laplacian noise
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Figure 5.11: Constrained Optimization of AFC over TPFC in the presence of Gaussian
noise for d = 1 and q0 = 0.5

5.3 Constrained Optimization

After the optimal λ is computed numerically for a given (p1, p2) as described in the previous
section, our next step is to find the best cipher that fits the problem we formulated in
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Figure 5.12: Constrained Optimization of AFC over TPFC in the presence of Laplacian
noise for n = 10, d = 1 and q0 = 0.5

Chapter 3. We solve this by constraining the TPFC’s error probability with a lower bound
on P TP

e and then finding the cipher which minimizes PA
e , as depicted by figures 5.11 and

5.12 for Gaussian and Laplacian noise models, respectively.

In these figures, the colored contours represent PA
e while the black contours represent P TP

e .
Each color represents a value that is projected in the color-bar shown adjacent to the graph.
Say, if we constraint the TPFC’s performance as P TP

e ≥ α, then we find that contour of
PA

e with minimum value which intersects the P TP
e = α contour. Intersection of these two

contours gives the values of p1 and p2. This, in turn, gives the optimal value of λ and k,
thus completing the task of designing the optimal fusion center.

It is equally important to note that as n increases, there exists an intersection between PA
e

and P TP
e contours even if the difference between them is large. This can be articulated

from figure 5.11 where 5.11a has all the colored contours(PA
e ) concentrated close of the

unsecured end of the graph, which is represented by the point (p1 = 0,p2 = 0). While
as n increases, as in figure 5.11b, the contours move towards the diagonal represented by
p1 + p2 = 1, enhancing the difference between PA

e and P TP
e and making it a more secure

system.
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6 Conclusion and Future Work

Thus there is a clear picture of the comparison of both the AFC and the TPFC designs.
We first found a general condition for the quasi-convexity of Pe and then proved that
both additive Gaussian and Laplacian models satisfy the condition. Two fast numerical
algorithms were presented to compute the optimal thresholds. A significant improvement
in the difference of performance is observed in the presence of a cipher esp. in the case of
unequal cipher parameters p1 and p2, even in the worst-case scenario when the hypotheses
are equiprobable. Finally, we also presented the improvement in the performance of the
design as the number of sensors increases.

Although we could not solve the constrained optimization problem analytically, we provided
the numerical results that we achieved from simulations which give us a motivation to adopt
this scheme. In other words, security is embedded in the design that allows the AFC design
to be more reliable and the information is protected from the other optimal TPFC designs.

”Just when the caterpillar thought the world was over, it became a

butterfly.” - Anonymous.

Just as the above proverb quotes, solving this problem raised many new interesting ques-
tions. All this started with the distributed estimation problem which was solved by Aysal
et al. in [4]. This paper motivated us to introduce a similar cipher in a distributed detec-
tion problem. Now, we would like to follow the same trends which we find the unsecured
distributed detection problem. Let us go through some of the interesting problems one-by-
one.

The immediate extension to the problem we worked on is to find a general class of noise
distributions that hold the quasiconvexity property for secure sensor networks. It is im-
portant to know what makes a distribution eligible to participate in a secure distributed
detection problem. Also, we would like to extend this to other network topologies like serial
and tree topologies. Furthermore, another interesting extension to this problem is to use
different cipher constructions and evaluate the performance of the secure sensor network,
in the same way we solved this problem.

Sensor Networks became a very hot topic of research because of the unusual constraints
which we do not find in other optimal design problems. One such constraint is the limitation
of energy consumption in the individual sensors and hence, energy-efficient schemes were
proposed by several authors as discussed in Chapter 1. Therefore, we might be interested
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in developing energy-efficient schemes with a new dimension of security embedded into the
system model and solve the distributed detection problem for sensor networks.

Another interesting extension to [4] would be to extend the estimation problem to target
tracking problem. Also, similar to [19], it is interesting if we can work on a secure distance-
based fusion center that exploits the spatial effects of the phenomenon of interest with
reference to the location of sensors.

Thus, a problem which we thought is almost dead, now turned to be a very interesting
one.
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