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ABSTRACT 

Current and voltage asymmetry denigrates the power system performance. The current 

asymmetry reduces efficiency, productivity and profits at the generation, transmission and 

distribution of electric energy. Voltage asymmetry reduces efficiency, productivity and profits at 

the consumption/utilization level. 

There are a lot of conference and journal papers on the subject of voltage and current 

asymmetry, however, the information is scattered over a large number of journals and 

conferences and published over several years. Therefore, the thesis provides a comprehensive 

compilation of all possible published information on current and voltage asymmetry in the 

electrical power systems.  

Published information on sources of asymmetry, its propagation, negative effects upon 

transmission and customer equipment and possible remedies are compiled, discussed and 

analyzed in this thesis. This is done with respect to the voltage asymmetry and current 

asymmetry, as well as their mutual interaction. Some situations related to the voltage and current 

asymmetry are modeled in this thesis using the Electrical Transient Analyzer Program (ETAP) 

software.  

Due to the economics and efficiency of transmission, distribution and load diversity such 

as single-phase, two-phase and three-phase utilization, asymmetric current and voltage is an 

inherent feature in the distribution system. Therefore it has to be mitigated. The thesis discusses 

methods aimed at reducing the current and voltage asymmetry in the distribution system. Some 

of the sources of these methods are based on the Current Physical Component (CPC) power 

theory. 
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INTRODUCTION 

1.1 Negative Effects of Asymmetry 

The economic benefits of energy providers and its users are strongly dependent on the 

supply reliability, security and efficiency of the power system and consequently, on the supply 

quality and the loading quality. For instance, negative sequence current increases energy loss at 

delivery. The negative sequence voltage causes temperature increase of the induction motors. 

Also, there are other negative effects of the voltage and current asymmetries. Since the voltage 

and current asymmetry causes various negative effects in power systems, these effects are the 

subject of our concern and investigations.  

The three categories of asymmetry that contribute to the negative effect of asymmetry on 

the power system are: current asymmetry, voltage asymmetry and the simultaneous occurrence 

of both current and voltage asymmetry.  

Voltage asymmetry reduces efficiency, productivity and profits at the consump-

tion/utilization level. It contributes to a reverse magnetic field, increases the temperature of 

windings, reduces output torque and increases the slip of rotating machinery. According to ref. 

[17] and [18] the effect of voltage asymmetry on a three-phase induction motor operating at rated 

load will cause an increase in losses, increase in the temperature of the windings, reduction of 

life expectancy and reduce efficiency. For example, according to ref. [17], 1% voltage 

asymmetry increases motor winding temperature from 1200C to 1300C with a ܫଶܴ	loss of 33% of 

the total losses and an efficiency reduction of 0.5%. Furthermore the life expectancy of the 

windings is reduced from 20 years to 10 years. However as the percent voltage asymmetry 

increase so does the temperature of the motor. For instance at 4% voltage asymmetry the 

winding temperature increase from 1200C to 1600C with a ܫଶܴ loss of 40% of the total losses and 

the efficiency reduce by 3-4%. At these values the life expectancy is further reduced to 1.25 
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years. As a consequence of this, motors should be derated (larger power rating) to compensate 

for the extra heating. However, this could increase the difficulty of relay coordination and 

therefore increase the cost of protection.  

Three-phase rectifiers and inverters are also affected by voltage asymmetry - negative 

sequence voltage. There are three main negative impacts of voltage asymmetry on rectifiers. 

First, the voltage asymmetry produces a supply current asymmetry that increases the temperature 

of the rectifier’s diodes and disturbs protective devices. Second, the asymmetric voltage causes 

an increase in the magnitude of the zero sequence harmonics ref. [40] and also increase of the 

voltage ripples on the dc-bus voltage. This increases the electrical demand of the capacity on the 

dc-bus capacitor and or inductor. Third, it increases the ripple torque in the ASD induction 

machine thereby increasing mechanical and thermal demand ref. [54] and [55]. According to ref. 

[53] it is estimated that in the United States of America between 1-2 billion dollars per year is 

attributed to the reduction of life expectation of motors due to the presence of harmonic and 

voltage asymmetry.  

Current asymmetry means that a negative sequence component occurs in the supply 

current. Such a component does not contribute to useful energy transmission, but to transmission 

of energy dissipated in power system equipment in the form of heat. As a result, the current 

asymmetry reduces efficiency, productivity and profits at generation, transmission and 

distribution of electric energy. Consequently, the ampacity of cables, transmission and 

distribution lines have to be selected based on the level of negative sequence current it will be 

subjected to during operations. Also the capacity of transformers and the efficiency of motors are 

reduced. In other words the negative sequence current increases losses in the cables, transmission 

and distribution lines, transformers and equipment on the power system ref. [14]. This is shown 

in figure 4.6 of the ETAP model where the ampacity of cables, transmission and distribution 
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lines were overloaded due to negative sequence current flow. Also appendix B shows the data 

associated with this model.  

The negative sequence current causes voltage asymmetry. For instance, the current 

asymmetry caused by very large single-phase loads such as high speed traction systems and AC 

arc furnace contribute to dissimilar voltage drops on the balanced three-phases of the supply 

system and consequently, it produces voltage asymmetry. For example, in ref. [45] a situation is 

described, where a 350MW steam turbine generator supplies two 60MVA electric arc furnaces 

(EAF) through a three-mile 230 KV transmission line. The EAF draws asymmetrical current, 

which causes voltage asymmetry. As a result, the following sequence of events occurred: the 

generator had a cracked shaft near the turbine-end coupling, then there was two failures of the 

rotating portion of the brushless exciter and then while operating close to full load the 

generator’s exciter–end retaining ring of the rotor failed. This cost the company a significant 

amount of money and time to repair the generator.   

Other negative effects occur at transient asymmetries, mainly caused by faults in the 

power systems. Transient current asymmetry occurs due to single-phase - line-to-ground faults 

and line-to-line faults etc. These are extreme levels of current asymmetry that can last for only a 

few seconds but can lead to system instability and failure if not eliminated in time. Relays and 

circuit breakers remove the fault current before it exceeds the (in)2t characteristic of the devices 

and equipment connected. The operation of re-closers can produce transient asymmetry which 

can result in nuisance tripping of relays. This is because the negative sequence setting has been 

exceeded due to the transient asymmetry.  Also Single Phase Switching (SPS) scheme are used 

to improve the reliability of transmission systems and by extension also enhance the reliability of 

the electrically close generators.  However, according to ref. [58] the generators and transformers 

could be subjected to negative and zero sequence condition for up 60 cycles or longer with SPS. 
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Since the system will only be operating on two phases in this time period the generator would be 

subjected to heating due to the negative sequence current while the transformer will be subjected 

to zero sequence circulating current. However, asymmetry due to faults will not be covered in 

details in the thesis.   

In some situations both the voltage and the current asymmetry have to be taken into 

account. This increases the complexity of the problem and modeling is usually required. Figure 

4.10 shown in the ETAP model used to analyze the condition with 90% voltage magnitude of 

phase A and lumped7 load in network 6, representing single phase load imbalance. The results 

show that transmission and distribution lines and transformers were overloaded. Also most of the 

loads were subjected to currents that have exceeded their rated values. The combination of these 

two sources of asymmetry created critical operating conditions (appendix B) for the power 

system and should be avoided. 

1.2 Sources of Asymmetry 

Voltage asymmetry and current asymmetry are two different kinds of asymmetries in the 

power system. Also there source and nature of occurrence are different. For instance there are 

two reasons for the occurrence of voltage asymmetry. The first is due to the structural asymmetry 

of parameters of generators, transformers transmission and distribution lines. The second is 

caused by the voltage drop on the system impedance by asymmetrical currents. For example, the 

generator can contribute to voltage asymmetry if the stator impedances for particular phases are 

not mutually equal. This can be attributed to some level of mechanical asymmetry of the stator 

and its windings. For instance, the eccentricity of the rotor causes variation of the air gap which 

will result in asymmetry of the phase inductances. Another source of voltage asymmetry is the 

transformer. Transformers can affect the voltage asymmetry in two ways. The first is through the 

transformer geometry. This asymmetry is mainly due to the difference that exists between the 
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mutual impedances of the transformer phases. Mutual reactance is directly proportional to the 

magnetic couplings between ports and the occurrence of stray losses produced in the tank and 

frames are associated with the mutual resistances ref. [1]. The second is through the 

configuration such as an open delta connected transformer banks on the distribution system.  

The primary source of current asymmetry is load imbalance, which is due to single-phase 

loads on the distribution system or faults on the load side. Even though load imbalance is usually 

time-varying, it can be regarded as contributing to permanent current asymmetry. Permanent 

imbalance occurs under normal operating conditions of the system. The single or double phase 

loading of the three-phase 3-wire and three-phase 4-wire system and also imbalance three phase 

loads are the contributors to permanent imbalance. The magnitude of the current asymmetry with 

respect to traction loads is dependent on the path the train travels or route profile, the loading of 

the train and on the power supply configuration. AC arc furnace and heavy reactive single phase 

loads such as welders are some other examples of permanent imbalance on the power system. 

Also the voltage asymmetry causes asymmetry of the supply current. This is particularly visible 

in the current of induction motors supplied with asymmetrical voltage, since the motors 

impedance for the negative sequence is lower than that of the impedance for the positive 

sequence voltage. For example 1% asymmetry in the supply voltage can cause 6% or more of 

current asymmetry in induction motors. 

1.3 Methods of Asymmetry Mitigation. 

There are a few levels and approaches to the reduction of asymmetry in voltages and 

currents. Asymmetry can be confined or reduced by: 

1. Imposing regulation and standards with respect to: 

1. Equipment and transmission line construction. 

          2. Adopting standards on acceptable levels of current and voltage asymmetry. 
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    2. Structural modifications of single-phase loads – both on utility and customer sides. 

    3. Single-phase voltage regulators. 

    4. Balancing compensators  

1.1 Imposing regulation and standards with respect to equipment and transmission line 

design will provide a systematic and cost effective way of mitigating asymmetry in the power 

system. This initial stage of asymmetric reduction ensure that generators, transmission lines, 

transformers, switching equipment and three-phase motors are designed and manufactured to be 

symmetrical. For example, the impedance in each phase of the generator and motor is equal and 

symmetrical with respect to each other. Transmission and distribution lines are spaced and 

transposed to mitigate asymmetry. 

1.2 NEMA, IEEE and CIGRE/CIRED JWG C4.103 performed research and analysis to 

create standards for current and voltage asymmetry in the power system. When these standards 

are selected as the acceptable level of current and voltage asymmetry, fines can be imposed on 

the respective entities to reduce asymmetry. For instance, fines can be imposed on utilities and 

customers to keep asymmetry within the standard levels. Therefore, utilities are required to 

supply reliable power to customers and they are not allowed to have an asymmetric level beyond 

the level stipulated by the standards. Similarly, customers are not allowed to create asymmetry 

beyond the stipulated levels.  

2. One of the main objectives of asymmetric reduction is to use the most effective method 

of reduction in a cost effective way. Structural arrangement is one of those cost effective ways.  

For instance, the rearranging or redistributing of all single-phase loads equally among all the 

three phases can mitigate asymmetry. This refers to the distribution of the supply of individual 

homes or alternating connections in row of houses in residential subdivisions, per floor supply in 
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commercial buildings or street lights. Also by arranging the connection phases between the 

distribution transformers and the primary feeder, the level of asymmetry can be reduced ref. [59].  

For traction load, the load scheduling of the trains can improve the balance between the 

phases of the three-phase system. For instance, since this is a large single phase load the 

scheduling in relation with other traction system can be implemented in such a way that the 

loading on the three-phase system is balanced.  

2.1. Traction system transformer connections schemes. 

 V- connection: The schemes have different efficiency levels in asymmetry reduction. 

However, they can be selected based on the investment, operation and maintenance cost 

ref. [58]. According to ref. [58] the single-phase connection and the V-connection 

schemes are the most economical mitigation technique. But the V-connection scheme is 

more efficient when compared with the single-phase scheme. 

 Single – phase connection: In this arrangement the single transformer is fed with two 

phases. One of the output phases is connected to the catenary that supplies the train 

while the other is connected to the rails as the return current path. Therefore with this 

arrangement each of the different phases of the three-phase system can be balance by 

systematically distributing the phase connection base on the loading.  

 The Scott transformer: Is two single phase transformers consisting of special winding 

ratios, which is connected to the three phase system. The connection is such that the 

output, which is a two-phase orthogonal voltage system, will provide connection of two 

single-phase systems [13].  

 Leblanc transformer. 

Steinmetz – transformer: According to ref. [14] the Steinmetz transformer is a three-

phase transformer that is designed with a power balancing load feature. This consists of a 
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capacitor and an inductor that is rated in such a way that proportionality to the traction 

load will produce a balanced system. However, ref. [14] further states that the following 

condition must be realized if effective balancing is to be achieved: The three-phase rated 

power of the transformer must be equal to the active power of the single-phase load. 

When structural modifications are not sufficient for reduction of asymmetry to a level 

imposed by standards, some equipment which enables reducing of asymmetry can be used. This 

includes:  

3. Single-phase voltage regulators: Single-phase regulators are used to increase or decrease 

the voltage in each phase of a three-phase system, in such a way that symmetry is achieved. 

However, they should be used carefully, to ensure that asymmetry is not elevated. 

4. Balancing compensators: This can be built as reactance devices or as switching 

compensators. There are some situations in which shunt switching compensators and reactance 

devices are the best mitigation technique to use. For example, if the current asymmetry is caused 

by an arc furnace then a shunt switching compensator can be used. Shunt switching compensator 

not only mitigate asymmetry but it also mitigate reactance current, harmonics and any other 

quantities that degrade supply and loading quality. Also if the current asymmetry is caused in an 

industrial environment where large single-phase fixed parameter loads cannot be reconfigured to 

obtain balance then a reactance balancing compensator can be used [chapter 16 – Dr. Czarnecki 

unpublished data].  

1.4 Objective of the Thesis 

The thesis objective is to create a database of a variety of aspects of voltage and current 

asymmetry in the power system for future use. This database will include published information 

on 

 The sources of voltage and current asymmetry.  
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 The propagation of voltage and current asymmetry. 

 The negative effects voltage and current asymmetry has on electrical equipment. 

 The level of voltage and current asymmetry that can be expected in various situations. 

 Voltage and current asymmetry contribution to harmonic generation.    

 Compensation techniques used to mitigate the negative sequence current and voltage that 

is generated in the power system.  

1.5 Approach of the Thesis 

 The thesis objective will be achieved by compilation, arrangement and discussion of all 

the possible published information on the current and voltage asymmetry, their sources, 

propagation, negative effects on transmission and customer equipment and on possible remedies 

aimed at their reduction in the power system. 

Some situations related to the voltage and current asymmetry are analyzed and modeled 

using ETAP software.  

The negative impact of current and voltage asymmetry on the electrical devices and 

equipment in the power system will be discussed in Chapter 2. Sources and level of current and 

voltage asymmetry will be discussed in Chapter 3. Propagation of voltage asymmetry in the 

power system will be analyzed in Chapter 4. Design of reactance compensators for reducing 

current asymmetry, based on the CPC power theory, will be presented in Chapter 5.  
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CHAPTER 2 

 NEGATIVE IMPACT OF CURRENT AND VOLTAGE ASYMMETRY 
ON SELECTED EQUIPMENT 

The economic benefits of energy providers and its users are strongly dependent on the 

supply reliability, security and efficiency of the power system equipment and consequently, on 

the supply quality and loading quality. For instance, negative sequence current increases loss 

throughout the process of energy delivery. The negative sequence voltage increases temperature 

of induction motors. There are also other negative effects of the voltage and current asymmetries.  

The performance of some power equipment is affected by current asymmetry, some by 

the voltage asymmetry, and some by both. Specifically, current asymmetry affects mainly 

generating and transmission equipment, and the voltage asymmetry primarily affects customer’s 

loads. This is why they are analyzed and discussed separately below. 

2.1 Effects of Voltage Asymmetry 

2.1.1 Induction Machine 

When asymmetrical voltage is applied to a three-phase induction (asynchronous) motor, 

its performance will deteriorate and the life expectancy will be reduced refs.[11], [14], [16], [17], 

[60-65] and [18]. This voltage asymmetry causes current asymmetry. For example, according to 

NEMA MG-1, 1% voltage asymmetry in an induction motor can contribute to 6-10% increase in 

current asymmetry. The current asymmetry causes increase losses and by extension increase 

temperature which leads to reduced life-expectation and reduced efficiency of the induction 

motor. Furthermore it causes torque pulsation, increased vibration and mechanical stresses. In 

most of the industry and manufacturing plants, more than 90 % of all motors used for production 

are induction motors, therefore, voltage asymmetry decreases ref.[17] [53] the profit of these 

plants. The voltage asymmetry can be more harmful ref. [11] when the motor is operated at full 
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mechanical load. In other words the degree of impact of the voltage asymmetry varies with the 

motor loading at the time.   

The asymmetry of the supply voltage negatively affects, not only the motor, but also the 

environment in which the motor is installed. This can be seen by the example given in ref. [11] 

where a motor with a locked rotor current that is 6 times the normal operating current would 

increase to 30% asymmetry in the motor line current if the voltage asymmetry is 5%.  

The major effects of asymmetry on induction motors are compiled and discussed in more 

details below. 

2.1.1.1 Motor Temperature    

According to ref. [17] and [65] the temperature rise, losses, efficiency and life expectancy 

of a typical three-phase induction motor are dependent on the voltage asymmetry. Furthermore, 

ref. [17] describes an induction motor at rated load, when supplied with a symmetrical voltage, 

has winding temperature of 1200C, I2R losses of 30% of total losses and life expectancy of 

approximately 20 years. For such a motor, a voltage asymmetry increase of 1%, increases the 

temperature to 1300C, I2R losses increases to 33%, efficiency is reduced by 0.5% and life 

expectancy is reduced to 10 years. For the same motor at voltage asymmetry of 5%, the 

temperature increases to 1800C, I2R losses increases to 45%, efficiency is reduced by approx. 5% 

or more and life expectancy is reduced to 1 year. 

The variation of these major effects with the level of voltage asymmetry is shown in 

figure 2.2 ref. [17] and [11]. According to ref. [59], the power loss increases with increase of the 

voltage asymmetry, as shown in Fig. 2.1, but the winding temperature increases faster than the 

power loss. Some increase in power loss is related to increase in the winding resistance R with its 

temperature increase. This is known as the creeping phenomenon and it accounts for the spread 

between the heating and loss curves in figure 2.1 and 2.2 ref.[17] and [6].  
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2.1.1.3 The Speed of Rotation  

The slip s is defined as  

ݏ ൌ
݊௦െ݊௥
݊௦

∗ 100 

The positive sequence slip	ݏ௣ is small when compared with the negative sequence slip	ݏ௡. 

The impedance of induction motors is dependent on the slip. At high slip, such as at motor start 

or under locked rotor condition, the impedance is low. At low slip the impedance is high. 

Furthermore, the ratio of the positive sequence impedance to the negative sequence impedance is 

[11] approximately equal to the ratio of the starting current of the motor to the running current of 

the motor: 

ܼ௣
ܼ௡
	≃ 	

௦௧௔௥௧ܫ
௥௨௡௡௜௡௚ܫ

 

Where, ns denote synchronous speed, nr denotes rotor speed. The slip for positive sequence is: 

௣ݏ ൌ 	
݊௦െ݊௥
݊௦

 

   

Figure 2.2 Negative effect of voltage asymmetry on induction motor performance based 
on data taken from ref. [17] 
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asymmetry would double the slip and reduce the speed of a 4-pole pump motor with a 

synchronous speed of 1800 rpm that operates at 1764 rpm under normal operating balance 

voltage, to 1728 rpm [17].  

2.1.1.4. Torque 

In a response to supply voltage asymmetry i.e the presence of the positive and negative 

sequence components, the induction motor draws a current which contains positive and negative 

sequence components. These components depend on the slip. At voltage asymmetry the negative 

sequence current produces a magnetic field that rotates in the opposite direction to the field 

created by the positive sequence current as show in figure 2.5. In effect, the rotating field is 

elliptical rather than circular. This results in a net torque reduction. As a result the motor will 

operate at a higher slip which intern increases the rotor losses and heat dissipation ref. [14], [6] 

and [61]. According to ref. [6], a 6.35% (NEMA equation) voltage asymmetry can cause a torque 

reduction of 23%. Furthermore, the torque pulsation (at double system frequency) on the three-

phase induction motor can create mechanical stress ref. [17] on the mechanical component such 

as the gearbox which will cause noise and vibration that will eventually lead ref. [6] to failure of 

the motor. A typical torque – speed characteristics is shown in figure 2.6 below. The upper curve 

is due to the positive sequence torque while the lower curve is due to the negative sequence 

torque. Therefore, the net torque is less than that produce by a balanced system. Reduction in the 

peak torque will mitigate the ability of the motor to ride through voltage dips and sags which can 

affect the stability of the system [16] [62]. The stator and rotor will heat excessively with the 

flow of this negative sequence current.  
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2.1.1.5 Efficiency 

Voltage asymmetry reduces efficiency refs. [17], [60], [62], [63] and [64]. With the slip 

as stated above, the efficiency will reduce by about 2% [17]. However, according to ref. [60] 

[62] and [63] the effects of voltage asymmetry on a three-phase induction motor must not only 

be assessed based on the negative sequence alone but also on the positive sequence. For instance 

with the same voltage asymmetry factor, a higher positive sequence voltage leads to a higher 

motor efficiency and a lower power factor.   

2.1.1.6 Costs Associated with Motor Failures and Performance Deterioration  

Replacement or repair for premature motor failure, unscheduled downtime, loss of 

production and wasted energy are the financial impact of voltage asymmetry. According to ref. 

[53] it is estimated that in the United States of America between 1-2 billion dollars per year is 

attributed to motor loss of life expectancy due to the presence of harmonic and voltage 

asymmetry. For instance, according to ref. [17] the cost of downtime ($/hour) for a pulp and 

paper industry is approximately $15,000.00, for a Petro-chemical industry is approximately 

$150,000.00 and for a Computer manufacturing industry is approximately $4 million per 

incident. Furthermore ref. [17] stipulates that the cost to the United States industries could be 

approximately $28 billion a year due to voltage asymmetry. About 98% of the industry uses 

motor for their critical operation and an unscheduled down time – loss of production (due to 

current and voltage asymmetry) could cost more than expected ref. [43] and [44]. According to 

ref. [60] the electricity charge per year due to different voltage asymmetry such as under-voltage 

and over-voltage cases with 4% voltage asymmetric factor, for 1-5HP induction motor is shown 

in the bar graph below. 

Where:  

 1-phase-uv is single-phase under-voltage asymmetry. 
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 2-phase-uv is two-phase under-voltage asymmetry. 

 3-phase-uv is three-phase under-voltage asymmetry. 

 1-phase-ov is single-phase over-voltage asymmetry. 

 2-phase-ov is two-phase over -voltage asymmetry. 

 3-phase-ov is three-phase over -voltage asymmetry. 

 1-phase-α is unequal single-phase angle displacement. 

 2-phase-α is unequal two-phase angle displacement 

 

Figure 2.7 Effect of 4% voltage asymmetry on electricity cost – [60] 

2.1.2 AC Adjustable Speed Drive (ASD) System 

Although adjustable speed drives are used to improve motor operational efficiency, the 

presence of voltage asymmetry will negatively affect the ASD. Details can be found in refs. [18] 

and [40]. The structure of a typical ASD is shown in figure 2.7 below. The rectifier and the 

capacitor (sometimes also an inductor is used) should provide a dc voltage with the lowest 

ripples possible for the PWM inverter. The power and the motor speed of rotation are controlled 

by the PWM inverter output voltage magnitude and frequency. 
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Second, asymmetrical current harmonics of the 3rd and 9th order will increase with an 

increase of voltage asymmetry ref. [18], [40], [69], and [70]. The voltage ripples on the dc-bus 

voltage will also increase ref. [55]. This increases the electrical demand of the capacity of the dc-

bus capacitor and or inductor.  There is also an increase in the core losses on the dc-bus inductor. 

This increases the potential of magnetic saturation in the core. Ref. [54] further state that a 

typical voltage asymmetry can contribute to approximately 30% increase in core loss in a 

powder-core inductor when compared with a system supplied with symmetrical voltage. 

Third, it increases the ripple torque in the ASD induction machine. Reference [55] further 

states that this cause unwanted low frequency harmonic current to flow in the machine. As a 

result the pulsating torque can cause acoustic noise and mechanical vibration. Also the increase 

in the bus ripple current increases the temperature of the electrolytic bus capacitors and thereby 

reduces the life of the capacitor. According to ref. [54], a 2.5% voltage asymmetry can reduce 

the life of the capacitor to approximately 50% when compared to the symmetrical case. 

Furthermore the conduction time of the transistors will be longer and the pulse will be longer in 

the PWM. This condition can lead to more power loss in the devices. 

2.1.3 Transmission and Distribution Lines 

 The primary function of the transmission/distribution lines is to efficiently transmit 

energy to various destinations to be used by customers. The negative sequence voltage 

component contributes, along with other reasons, to the asymmetry of the line currents, meaning 

a negative sequence component occurs in the current. This current practically does not convey 

energy, because it is orthogonal to the positive sequence voltage. But it contributes to energy loss 

at the line resistance and this increases temperature of conductors. Therefore, the negative 

sequence current reduces the capacity of the transmission/distribution line.  
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2.1.4 Power System Restoration 

If the transmission line quantities are not shifted by one-third of the period with respect to 

each other, or the RMS values of phase quantities are not mutually equal or both phase and RMS 

asymmetry occurring at the same time, then a power system restoration is not possible. This is 

because, when trying to synchronize a generator to an asymmetrical system, the phases will not 

match and therefore, will not be able to be synchronized. The extent of this condition depends on 

the characteristic of the line, such as the length of the line and the loading of the line at the time. 

In the case of a long, extra high voltage (EHV) transmission line, that is not transposed, the 

resulting voltage asymmetry is due to the flow of current (symmetrical in this case) through the 

different impedance of individual conductors. This voltage asymmetry also causes current 

asymmetry.  

According to ref. [72], during system restoration, the voltage asymmetry; 

 Impedes the synchronization of incoming generation. For example, a generator, in a 

mid-western utility, could not be synchronized to an energized 345KV incoming line 

because of the presence of 11% negative sequence voltage. 

 Causes sequential tripping of generators that lead to section block out. For example, 

during a light-load period a utility in Australia experienced sequential tripping of 

their generators due to the excessive negative sequence voltage present on the 500 

KV systems. This particular even caused a total blackout.  

 Impedes remote starting of thermal units. According to ref. [72], a utility try to 

provide remote starting energy to a steam electric station via a 500 KV line but 

because of voltage asymmetry, the process had to be aborted, due to the damage it 

would cause to the equipment at that station such as rotating machinery. 
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According to the paper, one of the main reasons for the sequential tripping of the generators and 

the interference with the remote energization (cranking) operation is due to the imbalance in the 

line’s capacitance.  More details can be found in ref. [72].  

2.2 Effects of Current Asymmetry 

Current asymmetry reduces efficiency, productivity and profits at generation, 

transmission and distribution of electric energy. This is because the negative sequence 

component does not contribute to useful energy transmission, but to transmission of energy 

dissipated in power system equipment in the form of heat. As a consequence of this the ampacity 

of cables, transmission and distribution lines have to be selected based on the anticipated level of 

negative sequence current it will be subjected to during operations. Also the capacity of 

transformers and the efficiency of motors are reduced. In other words the negative sequence 

current increases losses in the cables, transmission and distribution lines, transformers and 

equipment on the power system ref. [14]. Furthermore, the negative sequence current cause 

voltage asymmetry. For instance, the current asymmetry caused by very large single-phase loads 

such as high speed traction systems and AC arc furnace contribute to different voltage drops on 

the symmetrical three-phases of the supply system and consequently, it produces voltage 

asymmetry. Some of the major impact of current asymmetry are compiled and discussed in more 

details below: 

2.2.1 Generator 

Synchronous generators essentially produce only positive sequence voltages, while the 

negative sequence voltage is negligible. Negative sequence current component can occur in the 

generator mainly due to imbalance loading conditions or faults.  

The symmetrical voltage produced by a synchronous generator and its asymmetrical 

current can be expressed as three-phase vectors as shown below: 
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ࢋ ൌ ൥
݁ோ
ௌ݁
்݁
൩ = ep            ࢏ ൌ ൥

݅ோ
݅ௌ
்݅
൩ = ip +in                                     2.1 

Thus, the active power delivered by the generator is: 

ܲ ൌ 	 ଵ
்
׬ ሺ݁ோ݅ோ ൅ ௌ݁݅ௌ ൅ ்்݁݅ሻ݀ݐ
்
଴ ൌ 	 ଵ

்
׬ ሺ்ࢋሺtሻ࢏ሺtሻሻ݀ݐ
்
଴ ൌ ሺ	ࢋ,  ሻ                                       2.2࢏

ൌ ሺࢋ௣, ௡ሻ࢏௣൅࢏ ൌ 	 ሺࢋ௣, ௣ሻ࢏ ൅ ሺࢋ௣,  		௡ሻ࢏

 																																																				ሺࢋ௣, ௣ሻ࢏ ൌ 	ܲ௣                                                                     2.3 

                                          ሺ	ࢋ௣, ௡ሻ࢏ ൌ 0                                                                        2.4 

The scalar product in equation 2.4 is zero because the positive and negative sequence 

components, as components of different sequences, are mutually orthogonal. Thus, the energy 

from the generator is delivered to the power system only by the positive sequence component of 

the generator voltage (ep ) and current (ip). However, the negative sequence current in contributes 

to the active power loss in the generator. This power loss in the generator stator resistance Rs due 

to the negative sequence current is ∆Ps = Rs ||i
n ||2. There is also an additional loss in the 

generator due to the flow of eddy current which contributes to generator heating. 

The negative sequence current component has three other main negative effects on the 

generator: 

1. It creates a rotating magnetic field in the air gap that rotates at angular speed of 2ω1 with 

respect to the rotor. This induces voltage e(t) = 2ω1NΦmsin2ω1t in the rotor. The rotor current 

which occurs due to this voltage contributes to an increase in the active power loss on the rotor 

resistance. As a result, the temperature of the rotor, and consequently, also the generator, 

increases. This phenomenon, according to ref. [71], is enhanced by an increase in the rotor 

resistance due to the skin effect. This is much more visible for the negative sequence component 

because of the frequency of the voltage induced in the rotor.  
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2. The reverse field contributes to torque pulsation and mechanical vibration. The torque 

pulsates at twice the supply frequency and is proportional to the negative sequence current in the 

stator.  

3. It causes terminal voltage asymmetry.  

These effects of the current asymmetry on synchronous generators are discussed in many 

papers, in particular, in refs. [68], [71], [73] and [74]. According to these references, the degree 

of impact of the negative sequence current is dependent on the type of generator. For instance, 

the IEEE standard C37.102-1995 in ref. [71] shows the continuous negative sequence 

capabilities and short time current asymmetry limits for different generators. This data confirms 

that the cylindrical rotor generator is affected more by the negative sequence component than the 

salient pole generator. According to ref. [71], there are two types of rotor failure in the 

cylindrical rotor generator, which are caused by current asymmetry: 

i. Overheating of the slot wedges. This causes hardening of material in the slot. Also there is a 

shear failure against the force of material in the slots, reported also in ref. [74].  

ii. Failure of the retaining ring. The heat created by the negative sequence component can 

cause the shrink fitted retaining ring to become free of the rotor body. As a result the 

retaining ring is not realigned after it cools and this lead to vibration. Ref. [73] presents a 

method for analyzing the rotor current and loss distribution under the negative sequence 

conditions in the generator. In ref. [74], a detailed experiment was conducted to illustrate 

the effect on rotor surface heating.  

Because of all these negative effects of the current asymmetry, generators are very 

sensitive to unbalanced loads connected in the vicinity of the generator. For instance, high power 

electric arc furnace (EAF) or a traction system operated in a close vicinity to a generator will 

cause current asymmetry to affect the generator. In refs. [45] and [46] it is concluded that, due to 
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the randomness of the EAF load (scrap metal size and type of metal) and the high current which 

is required for melting, the EAF generates a combination of harmonics and current asymmetry 

which cause reduced generator performance that could lead to failure of the generator, resulting 

in instability on the power system and also reduction in the life of the generator. In ref. [45] a 

situation is described, in which a 350MW steam turbine generator supplies two 60MVA electric 

arc furnaces (EAF) through a three-mile 230 KV transmission line. The EAF draws 

asymmetrical current, which causes voltage asymmetry. As a result, the following sequence of 

events occurred: the generator had a cracked shaft near the turbine-end coupling, then there was 

two failures of the rotating portion of the brushless exciter and then while operating close to full 

load the generator’s exciter–end retaining ring of the rotor failed. This cost the company a 

significant amount of money and time to repair the generator. Therefore the nature of the load, 

the size of the load, the characteristic of the load (resistive, inductive, capacitive or a 

combination) help to determine the extent of the current asymmetry and hence the level of 

impact on the generator. Similar effects are studied in ref. [15].  

3. The terminal voltage asymmetry is due to the presence of the negative sequence current in. 

This current causes a voltage drop across the negative sequence impedance ZG
n of the generator. 

Therefore when combined with the voltage drop across the positive sequence impedance ZG
p of 

the generator, which is due to the positive sequence current ip, the resulting terminal voltage of 

the generator is asymmetrical. This will lead to the propagation of voltage asymmetry in the 

power system. The negative effects of voltage asymmetry are already discussed and therefore 

will not be repeated here. Figure 2.10 illustrate the voltage drops discussed above.  
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Figure 2.11 Typical generator feeding an unbalance load  

Induction generators are affected in a similar way as the induction motors. A detailed 

experiment is conducted on a wind turbine generator in ref. [15]. 

2.2.2 Transformers 

The transformer is affected based on the configuration, with regard to the connection of a 

neutral wire on the primary and or secondary shown by the data in appendix B. For example, if 

the connection is delta / wye-grounded, then the zero sequence current is converted into a 

circulating current in the delta side as shown in figure 2.11 and also in the ETAP model in figure 

4.6. This circulating current cause energy loss and the windings heat as a result. The magnetic 

flux produced by this current is in phase with each other and as a result they do not cancel each 

other. This magnetic flux passes through the parts of the transformer causing eddy currents and 

energy losses. For instance, when case 1 and 2 in appendix B, is compared, the results show that 

when T2 in figure 4.6 is changed from delta/wye-grounded to wye-ground/wye-ground there are 

more losses in the system. This is because more transformers are subjected to the zero sequence 

components. This is shown in the branch loss summary report in appendix B. It shows an overall 

increase in losses from 82.5kw, 3301.0 kvar (case1) to 1661.6kw, 38359.6kvar (case 2). Another 

negative effect, however not validated by the ETAP model, is an increase in the acoustic noise of 
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the transformer. The positive and negative sequence components behave in the same way in the 

transformer, regardless of the configuration ref. [14] and [68]. 

 

Figure 2.12 Circulating zero sequence current in delta winding 

2.2.3 Micro-Grid 

One of the objectives of the Micro-Grid is to provide local power using ‘green energy’ 

sources. Green sources included: wind, solar, hydro, fuel cells, biomass, diesels powered from 

synthetic fuels and methane from landfills which supply gas turbines or diesels. Because the load 

and the generating source (Range from 1KW to about 10KW) is electrically close, the impact of 

asymmetry can be very expensive and destructive. For example, these small units such as 

photovoltaic installations are connected to the grid at low voltage via single–phase power 

electronic inverter units. The impact on electronic converters/inverters has already been 

discussed and will not be repeated here. However base on that analysis the Micro-Grid will be 

susceptible to failure because of negative sequence current component. Also since a majority of 

loads could be single phase this will increase the possibility of negative sequence current flow to 

the three-phase loads on the system such as induction motors. Since there is no inertia in the 

Micro-Grid system, any instability or sudden change on the system could lead to the shutdown of 

the system. 

2.2.6 Power Factor Reduction 

According to CPC power theory ref. [49] and [75], asymmetry causes power factor 

reduction and as a result increases apparent power. A three-phase load is connected in delta 
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This current is associated with the supply asymmetry, caused by the load imbalance. The power 

equation is: 

ܵଶ ൌ ܲଶ ൅ ܳଶ ൅  ௨ଶܦ

Apparent power: 

ܵ	 ൌ 	  	||	࢛	||	||	࢏	||

Active power:	

ܲ	 ൌ 	  	||	࢛||	||	ࢇ࢏	||

Reactive power: 

ܳ	 ൌ 	േ||	࢘࢏	||	||	࢛	||	 

and unbalanced power:	

௨ܦ 	ൌ 	 		||	࢛	||	||	࢛࢏	||

Now the power factor is:	

ߣ ൌ
ܲ
ܵ
ൌ

ܲ

ඥܲଶ ൅ ܳଶ൅ܦ௨ଶ
ൌ

||	ࢇ࢏	||

ඥ||	ࢇ࢏	||ଶ ൅ ଶ||	࢘࢏	|| ൅ ଶ||	࢛࢏	||	
 

This shows that as the asymmetric current increase the power factor decreases.  
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CHAPTER 3 

SOURCE AND LEVEL OF CURRENT AND VOLTAGE ASYMMETRY 

3.1 Meaning of Asymmetry and Unbalance 

There are three possible manifestations of asymmetry of three-phase quantities – currents 

and voltages. The first is phase asymmetry – phase quantities are not shifted by one-third of the 

period with respect to each other. Second: RMS asymmetry – RMS values of phase quantities are 

not mutually equal and the third: - both phase and RMS asymmetry occur at the same time.  

The imbalance/unbalance term is used in association with the load. Therefore, the loads 

that have mutually different impedances of individual phases are referred to as imbalanced 

loads. 

3.2 Supply Quality 

The symmetry of voltage, constant frequency, sinusoidal voltage, very low internal 

impedance – infinitely strong source, lack of transients, no harmonics and RMS variations are 

some of the quantities that represent an ideal supply quality. If any of these quantities deviate 

from the ideal case then the supply quality is regarded as a source with degraded supply quality. 

Therefore the characteristic of these quantities stipulate whether you have a good supply quality 

or not. 

 In this thesis the use of supply and loading quality deterioration will be in reference to 

asymmetry in the power system.   

3.3 Loading Quality 

If the load is balanced, resistive, linear, time-invariant, is not a source of high frequency 

noise and is not a source of transients then this constitutes an ideal loading quality. If any of 

these characteristics is not satisfied then the load is regarded as a load with a degraded loading 
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quality. For instance if the load is not balanced then it will cause negative sequence current to 

flow and as a result this will reduce the efficacy of energy use. 

3.4 Definition and Quantification of the Voltage and Current Asymmetry.  

Since asymmetry is inherent in the power system, standards were developed for 

evaluation of acceptable level of current and voltage asymmetry for generation, transmission and 

distribution equipment and also for customer’s load. Therefore, it is imperative that the level of 

current and voltage asymmetry be calculated in an efficient and effective manner. 

The level of asymmetry that is used in this thesis is specified as the ratio of the rms value 

of the negative sequence component to the rms value of the positive sequence component. This is 

not in-line with a variety of different approaches and standards. Some of these different 

approaches are due to the measurement technology that exists at the time and some are 

application oriented as discussed below. 

Differences in definitions of asymmetry reflect differences in measurement technology 

and changes in its capabilities. Originally, only analog meters were available for asymmetry 

measurements, now sampling technology and digital signal processing can be used for that 

purpose. For example, in the twenties when this phenomenon was first investigated ref. [56], 

there was not much harmonics in the power system. Also the technology at that time did not 

support Fast Fourier Transform (FFT) that can be used to find complex quantities of current and 

voltages. Therefore, the measuring instrumentation was not capable of taking samples to 

generate complex quantities of currents and voltages.  

Some definitions can be application oriented. For example, asymmetric definition from 

the point of view of synchronous generator operation can be different from that for three-phase 

rectifiers or ASD. For instance the continuous unbalance (asymmetric) capabilities (equation 3b) 

and the short time asymmetric current of the generator are calculated based on the negative 
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sequence current component. While for motors, it is important to have both phase angle and 

RMS magnitudes in its calculation of the VAF. Therefore equation (3a) would be the best to use 

in this case, because equation (1) and (2) both exclude phase angle asymmetry from there 

calculation of the voltage asymmetric factor (VAF), sometimes called “voltage unbalanced 

factor.” and as a result will not be as accurate. The VAF is used rather than the IAF because 

motors are affected by the level of voltage asymmetry as stated in chapter 2. 

Several papers, such as references [18], [41], [16] and [10] compared some definitions 

based on whether they use the phase angle or not in their calculation of the VAF. For example 

NEMA, IEEE, IEC and CIGRE all provide different ways to calculate the VAF. The concern 

regarding their respective definition of the level of asymmetric current and voltage is whether the 

calculation without the use of the phase angle will produce an accurate result of the asymmetric 

current and voltage level. NEMA uses line to line voltage while IEEE uses phase voltage in its 

calculation and as a result both exclude phase angle asymmetry from there calculation ref. [18], 

[41], [16] and [10]. However, IEC uses both phase angle and RMS magnitudes in its calculation. 

The respective differences are illustrated by the equations shown below. 

NEMA: 

Line voltage unbalance rate – LVUR  

௠ܸ௔௫ௗ௘௩ = Maximum voltage deviation from the average line voltage magnitude 

      		ൌ ሾ| ௔ܸ௕ െ ௅ܸ௔௩|, | ௕ܸ௖ െ ௅ܸ௔௩|, | ௖ܸ௔ െ ௅ܸ௔௩|ሿ 

௅ܸ௔௩ 	ൌ 	 ሾሺ ௔ܸ௕ ൅ ௕ܸ௖൅ ௖ܸ௔ሻ/3ሿ 

                                      LVUR	ሺ%ሻ 	ൌ 	 ௏೘ೌೣ೏೐ೡ

௏ಽೌೡ	
∗ 100                                   (1) 

IEEE: 

Phase voltage unbalance rate – PVUR 

௣ܸ௠௔௫ௗ௘௩ = Maximum voltage deviation from the average phase voltage magnitude 
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ൌ ൣ| ௔ܸ െ ௣ܸ௔௩ห, | ௕ܸ െ ௣ܸ௔௩ห, | ௖ܸ െ ௣ܸ௔௩|൧ 

௣ܸ௔௩ ൌ
ሾሺ ௔ܸ ൅ ௕ܸ൅ ௖ܸሻሿ

3
 

PVUR	ሺ%ሻ 	ൌ
௏೛೘ೌೣ೏೐ೡ

௏೛ೌೡ	
∗ 100……………… ..(2) 

IEC: 

Voltage unbalance factor – VUF 

ܸ௣= positive sequence voltage 

ܸ௡= negative sequence voltage 

ܸ௣ ൌ ௔ܸ௕ ൅ ߙ ௕ܸ௖ ൅ ଶߙ ௖ܸ௔

3
 

ܸ௡ ൌ ௔ܸ௕ ൅ ଶߙ ௕ܸ௖ ൅ ߙ ௖ܸ௔

3
 

Where: ߙ ൌ 1 ∗ ݁௝
మഏ
య  

VAF	ሺ%ሻ ൌ
ܸ௡

ܸ௣
∗ 100………… . . ሺ3ሻ 

In the case of equation 3, the system is assumed to be sinusoidal and in such a case do not 

contain any harmonics. However in all practical system there is always a level of harmonics 

present and as a result will increase the current and voltage RMS values. This is why equation 3a 

and 3b was derived to incorporate the impact of harmonics in the system.  

VAF	ሺ%ሻ ൌ ଵܸ
௡

ଵܸ
௣ ∗ 100………… . . ሺ3ܽሻ 

Current asymmetric factor: 

IAF	ሺ%ሻ ൌ
ଵܫ
௡

ଵܫ
௣ ∗ 100………… . . ሺ3ܾሻ 

CIGRE: 

Voltage unbalance factor – VUF 
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VAF	ሺ%ሻ 	ൌ ටଵିඥଷି଺∗ఉ

ଵାඥଷି଺∗ఉ
………..(4) 

	β	 ൌ
| ௔ܸ௕

ସ | ൅	 | ௕ܸ௖
ସ |	൅	| ௖ܸ௔ସ |

ሺ| ௔ܸ௕
ଶ | ൅	 | ௕ܸ௖

ଶ |	൅	| ௖ܸ௔ଶ |ሻଶ
 

According to ref. [41] and [11], IEC is the most accurate, because it uses the ratio of 

negative sequence to positive sequence voltage. According to ref. [41] different voltage 

asymmetric conditions such as under-voltage asymmetry, over-voltage asymmetry etc. was 

undertaken to illustrate this finding. The under-voltage case produces a higher value of the 

voltage asymmetry factor (VAF) when compared to the over-voltage case due to the increase in 

the negative sequence voltage, while the positive sequence voltage decreases ref. [41] and [42]. 

Also because the change of the phase angle does not affect the magnitude of the phases but affect 

the sequence components it is evident that IEC would give a more accurate result. Therefore, 

equation 3 and 4 produces the same results and are the best formulas to use when calculating the 

voltage asymmetry factor. If the line-to-neutral voltages are used in the formulas, the zero 

sequence components can give erroneous results. Zero sequence current does not flow in a three 

wire system. Therefore, the calculation of a zero sequence voltage asymmetry factor is irrelevant 

however, for a four wire system it would be relevant. This would be the ratio of the zero 

sequence voltage to the positive sequence voltage but this will not be discussed in details here.   

3.5 Standards for Voltage Asymmetry 

There was a study conducted by the Edison electrical Institute, about twenty years ago, to 

investigate the trade-off between the cost of reducing system voltage asymmetry and the cost of 

designing motors to tolerate imbalance. The result of this study revealed that utility cost for 

asymmetry reduction below 2.5% increases exponentially whereas the manufacturer cost of a 

motor capable of operating at asymmetry higher than 3.25% also increases exponentially. 
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3.6 Standards for Current Asymmetry 

The standards set for the voltage asymmetry automatically set the standards for current 

asymmetry in some cases. For example, knowing that 1% voltage asymmetry corresponds to 

approximately 6% current asymmetry in induction motor, the standard can be set for the voltage 

asymmetry. However in some cases, such as with the generator, this is different. For example, 

according to refs. [46] and [71], the continuous negative sequence capabilities for the cylindrical 

rotor generator (indirectly cooled) is 10% and 5% (without connected amortisseur windings) for 

the salient-pole.  More details on the different continuous negative sequence capabilities 

(permissible ||in || in percent) and the short time asymmetry current limits (permissible (in)2t can 

be found in ref. [71].   

3.7 Sources of Voltage Asymmetry 

3.7.1 Structural Asymmetry 

The voltage asymmetry of the structural nature is caused by a physical asymmetry of generating 

and transmission equipment, such as: 

 Generators 

 Transformers 

 Transmission lines 

 Distribution lines 

It means that some level of the voltage asymmetry is built in the system. This is a permanent 

source of asymmetry that can become worst if the system is loaded with unbalanced load. This 

can be seen by the data in case 4 in appendix B. 

3.7.1.1 Generators 

The generator can contribute to voltage asymmetry if the stator impedances for particular phases 

are not mutually equal. This can be attributed to some level of mechanical asymmetry of the 
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stator and its windings. For example, the eccentricity of the rotor causes variation of the air gap 

which will result in asymmetry of the phase inductances. Also asymmetry between leakage 

inductances can occur from asymmetry of winding heads and due to possible differences in the 

distribution of the coil conductors of different slots. However these are generally designed to be 

symmetrical. 

3.7.1.2 Transformers. 

Transformers can contribute to the voltage asymmetry in two ways. The first is through the 

transformer geometry. That is, the impedance can be asymmetrical. The second is through the 

configuration. However in this section the focus will be on the asymmetry caused by the 

structural features of the transformer. Figure shows the typical structure of a three limb 

transformer with magnetic flux. 

 

Figure 3.2 Typical three-phase three limb transformer structure  

The induced voltage is: 

݁ ൌ ܰ
݀Φ
ݐ݀

ൌ
݀λ
ݐ݀

 

Due to the structural asymmetry: 

஺݁ ൌ ܰ ௗ஍ಲ

ௗ௧
് ݁஻ ൌ ܰ ௗ஍ಳ

ௗ௧
് ݁஼ ൌ ܰ ௗ஍಴

ௗ௧
  

Asymmetry will always exist in distribution transformers with cores of standard 

geometry ref. [1]. The transformer core, tank and frame geometric orientation contributes to 
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asymmetric conditions. This asymmetry is mainly due to the difference that exists between the 

mutual impedances of the transformer phases. Mutual reactance is directly proportional to the 

magnetic couplings between ports and the occurrence of stray losses produced in the tank and 

frames are associated with the mutual resistances. Figure 3.2 illustrate this. Therefore, even 

though there is some asymmetry due to stray losses, the main asymmetry is due to the 

electromagnetic couplings between the phases. If the magnetic path length associated with the 

central phase of a three-phase three-limbed core type transformer is shorter than that of either of 

the outer phases, then the magnetizing current and core loss value will be asymmetric, to the 

degree stipulated by the path length ratio. If the central path length is one-half that of either 

outer, then its magnetizing current is likely to be about 30% less, and this is independent on the 

peak flux density level. 

 

Figure 3.3 Simplified circuit of a transformer showing mutual inductance between phases. 

The equation below shows the derivation of the relation between the current asymmetry and 

voltage asymmetry. This equation can be modified to illustrate a similar situation with 

transmission lines. 

൥
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To evaluate the level of impedance asymmetry that could be attributed to a transformer or 

the generator, modeling of its magnetic field is needed. The following is a list of possible 

programs that can be used to evaluate the specific level of asymmetry due to structural 

imbalance: 

 Maxwells 3D program 

 2D finite element method using the AC/DC module of COMSOL Multiphysics  

Transformer Bank.  

Three-phase transformer windings can be configured in delta or wye.  It can be done on a 

common magnetic core or using separate single-phase transformers arranged in either 

configuration (transformer banks). On the distribution system there is a need to supply both 

single-phase and three-phase loads. To achieve this in the distribution system single phase 

transformers are arranged in transformer banks. Therefore by using a 4-wire system comprising 

of transformers with secondary windings connected in delta or open delta with a center tap 
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ground on one leg of the delta, these loads can be supplied. Also in the 4-wire grounded wye 

system, the secondary winding neutral point is grounded. The focus below will be on transformer 

banks connected in floating wye – delta and open wye – open delta configuration.  

Delta – Delta and Floating Wye – Delta Banks: In this configuration the voltage 

asymmetry is caused by the dissimilarities between the single-phase transformers that make up 

the bank. The transformer to which the single-phase load is connected is referred to as the 

“lighting leg” (L) and the other transformer are referred to as “the power leg” (P). As a result the 

impedance is noted as ZL and Zp respectively. Figure 3.3 illustrates this. 

 

Figure 3.4 Delta-delta transformer bank configuration with balance 3-phase load 

 Even if both transformers have the same impedance (ZL=Zp), the maximum negative sequence 

voltage can be above 1%.  

Open Wye-Open Delta or Open Delta-Open Delta: Voltage asymmetry is caused by 

the asymmetry of the transformer bank configured in open wye-open delta or open delta-open 

delta supplying a three-phase load. Figure 3.4 illustrates this kind of transformer bank 

configuration. The voltage asymmetry with the open delta bank can be significantly higher than 

that with a closed delta bank supplying the same load ref. [23]. However, according to ref. [23], 

due to the use of only two transformers (3% impedance) in the bank arrangement, the voltage 

asymmetry at nominal load is approximately 1.73%. This is achieved when the primary supply 

system is symmetrical. However, if an untransposed line produces a 1 to 2 % range of 

asymmetry in the primary system, then the load would experience an asymmetry in the range of 

2.7 to 3.7%.  
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Figure 3.5 Open wye-open delta transformer bank  

3.7.1.3 Transmission and Distribution Lines  

The geometric positioning of transmission and distribution lines in space and to ground 

(earth) makes it impossible for the lines to be spaced equilaterally as shown in figure 3.6. Other 

similar structure and measurements can be found in ref. [76]. When the right-of-way consist of 

only one circuit it is easier to mitigate the voltage asymmetry. However, it is more difficult to do 

so when multi-circuit power lines exist in the right-of-way, especially when there are many load 

taps on the same circuit. 

One Circuit – The distance each line is placed from each other and ground will never 

achieve equilibrium and this will influence the impedance of the lines. In other words the flux 

linkages and inductance of each phase are never the same and this will produce voltage 

asymmetry in the system. Also the capacitances of each phase to neutral is unequal and since it is 

a shunt between conductors then charging current flows in the transmission line. With this flow 

of charging current and the unbalance inductance there will be voltage drop along the line which 

will lead to voltage asymmetry in the system. One of the only effective methods to reduce the 

source of voltage asymmetry in the overhead lines in transmission and distribution system is 

phase transposition. In other words the geometric orientation of the phases should be placed in 

such a way that the average current induced (especially at maximum loading of the line/s) is 

reduce to an acceptable level ref. [2]. Figure 3.5 is an example of phase transposition. 
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Figure 3.6 Cycle of a transposed line 

Multi-Circuit – When the right-of-way has more than one circuit with load-taps, the 

voltage due to induction between the circuits will be asymmetrical. The situation gets worst 

when the magnitude of the induction in one or more circuits is higher than the others due to more 

loading of that circuit. A typical multi-circuit description and layout is shown in ref. [3]. 

In this situation we have to look at both phase transposition within each circuit as well as the 

transposition of the circuits in the right-of-way in order to mitigate voltage asymmetry. Another 

factor to consider will be the type of circuits that share the right-of-way. For instance if one 

circuit is a 345kv system and the other is a 138kv system, then the geographic spacing will be 

different than if the circuits were the same ref. [3]. A detailed description and analysis of multi-

circuit is found in ref. [26-29].   

Some other causes of voltage asymmetry are: 

 Incorrect use or faulty capacitor banks - malfunction of power factor correction devices 

 Voltage regulation of single phase system. For example, one section of the single phase 

may require the regulator to increase the voltage while another may require that the 

regulator reduce the voltage. 
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Figure 3.7 400kv transmission structure showing geometric spacing of conductors and ground  

3.8 Sources of Current Asymmetry 

The primary source of current asymmetry is load imbalance due to the single-phase 

arrangement of loads and/or large single-phase load on the distribution system or faults on the 

load side. Load imbalance, though, usually time-varying, can be regarded as permanent 

asymmetry. Faults are rather transient.  

The supply system sees the entire user as a time-varying load, for example, the arc 

furnace load demand changes due to the kind and amount of scrap that it has to melt. In this case 

the supply system may see an unbalance load that is either: nonlinear, linear, resistive, 

capacitive, inductive and/or a combination. Therefore, the characteristic of the load will 

characterize the nature of the current asymmetry drawn due to the imbalance loading.  

3.8.1 Permanent Imbalance 

Permanent imbalance occurs under normal operating conditions of the system. The single 

or double phase loading of the three-phase 3-wire and three-phase 4-wire system and also 

unbalance three phase loads are the contributors to permanent imbalance. Single-phase loads 

such as traction systems and welders are examples of permanent imbalance on the power system.   
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Another load that contributes significantly to negative sequence current is the arc furnace. The 

nature of this load is nonlinear, random and also introduce harmonic into the system. These loads 

causes permanent imbalance in the system and they will be further discussed in details below. 

3.8.1.1 Residential and Commercial Single-Phase Loading  

The problem of unbalance loading in three-wire and four-wire systems is difficult to 

predict because the utility has no controls on the end user random use of the energy produced. 

For instance low voltage, single-phase loads such as PC’s, commercial lighting, washing 

machines, domestic air condition units etc., is difficult to balance between phases of the three 

phase system. Furthermore, even if the system is designed balanced by distributing the load 

equally between phase per floor or houses, there will still be imbalance due to the fact that the 

energy demand in each phase by individual users will be different from each other ref. [39] and 

[14]. 

3.8.1.2 Traction Systems  

Traction systems are electrically large single phase loads that can create current 

asymmetry. The loading characteristics or profile (when the train is in motion) of the AC traction 

system is nonlinear and time varying and produces imbalance loading. In other words as the 

position of the vehicle changes so does its geometry in relation to the power system to which it is 

connected ref. [34]. The large imbalanced traction loads (20MW for instance) may cause system 

current asymmetry and therefore overheat rotating machines, increase system losses, interfere 

with neighboring communication systems, and cause protection relays and measuring 

instruments to malfunction ref. [12]. As shown in ref. [13] the various transformer configurations 

are able to reduce the negative sequence current but not eliminate it.  
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3.8.1.3 Arc Furnaces  

The central process of mini-mills, which produce steel from scrap, is the electric arc 

furnace (EAF). The nature of the scrap being melted creates the random and nonlinear load 

which causes current asymmetry in the power system. The evidence of this was shown in ref. 

[19] where the utility compared the asymmetric current period with a metal company’s melting 

records and the findings were a match. The arc can change from zero to full load several times 

per hour as arcs are made and broken in the furnace. The current asymmetry that is produced can 

cause damage to generators that are electrically close to these metal plants. The arc providing the 

heat energy to melt the scrap is governed by the raising or lowering of the electrodes which 

depends on the voltage. The voltage is directly proportional to the arc length inside the furnace. 

This is also proportional to the current produced to provide the melting ref. [36]. Furthermore, 

some arc furnace electrodes have a triangular geographical orientation and the uneven distance 

between the electrodes and different position along the furnace wall result in an asymmetrical 

thermal load which in turn draws unequal current from the phases. Also the electromagnetic 

forces from the arc are deflected outwards from the center which is characterized as an 

imbalanced thermal load on the furnace walls – resistance and reactance in each phase is not the 

same ref. [37], [38]. This variation causes current asymmetry to flow in the system. This kind of 

characteristics of the arc furnace also causes harmonics which can also influence current and 

voltage asymmetry.  

3.8.2 Transient Imbalance 

Transient imbalances are unbalanced loading due mainly to faults on the power system. 

Single phase switching is also considered as transient imbalance. This condition last for 

approximately 60 cycles or more ref. [57]. During this time period the system experiences 
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current asymmetry. This negative sequence current can be very destructive to the surrounding 

equipment especially the generators.   

3.8.2.1 Faults 

The analysis of asymmetry due to faults is beyond the scope of the thesis. However, some 

basic information will be discussed. The following are possible cases of faults that produces 

critical asymmetric conditions on the power system: 

 Single line to ground faults – these are the most likely fault on the power system.  

 Line to line faults. 

 Misoperation of one or more poles of a breaker. 

 Blown fuse/s or loss of a phase. 

 A blown fuse on a 3 phase bank of power factor improvement capacitors. 

 Open phase on the primary of a 3 phase transformer on the distribution system. 

 Faults in the power transformer. 

  Large unbalanced industrial loads (such as multi-megawatts induction motors used in 

cement and mining industry) under single phase or two phase fault conditions. 

Approximately 80% of the failure on the power system is single phase faults and only 

about 3% are three-phase faults. At the point of the phase to ground fault (or abnormal loading of 

one phase) the current increases while the voltage decrease. Therefore, while the current in one 

phase of the three phase system is abnormal the other two phases is significantly lower, 

producing a current asymmetry in the system. According to ref. [32] the grounded or ungrounded 

system exhibits different magnitude of current asymmetry due to phase to ground, phase to phase 

and phase to phase to ground faults. This is due to the different impedance values involved. For 

example the line-to-line fault generates the highest negative sequence current. The vector 

diagrams in ref. [32] clearly illustrate the variation of phase and magnitude of the current 



48 

asymmetry. This stipulates that the impedance of the system grounding connection, the location 

of the fault and the type of fault influence the nature of the current asymmetry that will result 

from the fault. The detail of all the fault conditions that can occur on the power system will not 

be covered in the thesis. However, the point being illustrated here is that a fault on the power 

system produces current asymmetry.  

3.9 Interaction between Unbalanced Load and Supply Asymmetry 

In some situations both the voltage and the current asymmetry have to be taken into 

account. This increases the complexity of the problem and modeling is usually required. This is 

done in figure 4.10 with the respective data in case 4 in appendix B. This is why it is important to 

clearly define loading quality and supply quality in sections 3.2 and 3.3. The interaction of both 

occurring as a source of asymmetry, occurs due to the structural asymmetry of the source and 

single-phase load unbalance. This could be a combination of any of the sources discussed above.  

3.10 Voltage Response to Current Asymmetry 

In some situation the supply is symmetric but the load is imbalance and as a result you 

have both current and voltage asymmetry resulting from the current asymmetry. For example, if 

there is a load connected to one-phase of a three-phase system in such a way that it causes an rms 

current to flow which is greater than the other phases, then this will cause a voltage drop to occur 

which will lower the voltage in that phase. This causes both current and voltage asymmetry to 

flow in the system. This is shown in figure 4.9 and the corresponding data in case 3 in appendix 

B. The voltage asymmetry depends on the impedance of the system and the magnitude of the 

current asymmetry which depend on the characteristic and nature of the load causing the 

imbalance. In this case the characteristic of the unbalance load is shown in figure 4.8. Figure 4.9 

shows the respective asymmetric voltage drop on the cables and buses.  Even though voltage 
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asymmetry will impact the power system negatively, current asymmetry contributes more to 

power losses on the power system.  

3.11 Current Response to Voltage Asymmetry 

The voltage asymmetry can originate in generation and transmission system as discussed 

above. However, even though the load is balanced, asymmetric current will flow due to the 

asymmetry in the supply. This voltage asymmetry can also amplify the current asymmetry. This 

is clearly visible in induction motors where 1% of voltage asymmetry causes a 6 to 10 % current 

asymmetry. This is because the negative sequence impedance is much lower than that of the 

positive sequence impedance. This is illustrated in figure 2.4 in chapter 2.  
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CHAPTER 4 

PROPAGATION OF CURRENT AND VOLTAGE ASYMMETRY 

Chapter 3 categorizes and classifies the possible source of current and voltage asymmetry 

which occurs in the process of generation, transmission, distribution and utilization of energy in 

the power system. This chapter will look at how asymmetric current and voltage propagate 

throughout the power system. In particular, does the transformer, equipment, transmission and 

distribution line attenuate, amplify and/or influence the current and voltage asymmetry in the 

power system? To answer this question we have to analyze the type of system (three-phase, 3-

wire or three-phase, 4-wire), the source of the asymmetry and the characteristics of the devices in 

the power system. 

Transformers, transmission and distribution lines does not attenuate or amplify current 

and voltage asymmetry. However, the way in which asymmetry propagates from upstream (HV) 

to downstream (LV) in the power system will depend on the type of system. That is, whether the 

system is a three-phase 4-wire system or a three-phase 3-wire system. The type of the system is 

dictated by the transformer configuration. The main difference of the two systems is that zero 

sequence current component flows in the 4-wire system, but does not flow in the 3-wire system.  

The positive and negative sequence components affect the transformer in the same way. 

The impedances of both of these sequence components are the same in the case of the 

transmission lines and the transformers. However, the zero sequence impedance of the 

transmission lines depends on whether it is a cable or overhead line and also on the return path of 

the current. Furthermore the zero sequence impedance for the transformer depends on the rating 

and connection of the transformer ref. [10]. A simplified one line diagram of a power system is 

shown in figure 4.1. Figures 4.2 through 4.4, provides a basic illustration of the different 

sequence component in terms of an equivalent circuit.  
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 Figure 4.1 Simplified power system one line diagram. 

 

Figure 4.2 Equivalent circuit for the positive sequence 

 

Figure 4.3 Equivalent circuit for the negative sequence  

 

Figure 4.4 Equivalent circuit for the zero sequence  

The negative effects of voltage asymmetry discussed in details in Chapter 2 accentuate 

the importance of understanding how the voltage asymmetry propagates in the power system. In 

assessing how asymmetry propagates in the system, the type of system has to be identified as 

stated about. Then the source of the asymmetry needs to be identified followed by the location of 

the asymmetry such as, HV MV or LV. The ETAP model in figure 4.5 will be used to illustrate 

the propagation of asymmetry in the power system. The ETAP unbalance load flow analysis uses 
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both three-phase 4-wire and three-phase 3-wire system. The details of the ETAP system model 

can be found in appendix A. Also a full description and detail of the calculation method used and 

the system parameters can be found in chapter 20 of the ETAP help 7.5. 

4.1 Influence of Transformer Configuration on Asymmetry Propagation 

Two cases will be analyzed base on the transformer configuration of the system. T2 will 

be the only transformer changed. The degree of source asymmetry is exaggerated for the purpose 

of this study.   

Case1: The A phase of the supply is 80% of Va magnitude while B and C phase is 100% 

magnitude – without harmonics in the source. Transformer configuration T2- D/yn shown in 

figure 4.6. Figure 4.6 shows the unbalance load flow of the system. 

Case 2: The A phase of the supply is 80% of Va magnitude while B and C phase is 100% 

magnitude – without harmonics in the source. Transformer configuration - (T2) YN/yn as shown 

in figure 4.7.  

When the critical report data in appendix B was analyzed it is observed that the 

transformer configuration impedes or allow the flow of zero sequence components in the power 

system. For instance, for case 1 only bus 1, 2 and 3 had a critical zero sequence component alarm 

(VUF = 7.1% ) as shown in the critical report in appendix B.  However, for case 2, the zero 

sequence components propagate throughout the system wherever there is a YN/Yn configuration. 

Furthermore there are more losses associated with case 2 because of the flow of the zero 

sequence components in the system. This circulating current in the delta winding is converted to 

heat. This is shown in the branch losses summary report in appendix B. 

The equipment and lines in red, in figure 4.7, is an indication that the rated current is exceeded as 

shown in the branch loading summary report in appendix B 
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data in the critical report in appendix B which shows that when case 3 and 4 was compared, there 

is an increase in the respective sequence components. For example for case 3 the following 

values were obtained: max VUF2=7.5% and min VUF2 =2% and max IUF2=73% while min 

IUF2 = 5.6%. Now for case 4, max VUF2 increase to 7.8% and min VUF2 increase to 2.7% 

while max IUF2 increase to 74% and min IUF2 increase to 3.7%. The other increases are shown 

in the critical report in appendix B. Therefore, according to the current injection method used by 

the ETAP simulation there is a vectorial addition of the source’s (grid) asymmetry and the 

asymmetry caused by the lump7 load in network 6. Figure 4.10 and the critical and unbalance 

load flow report in appendix B provides more individual and system details of the systematic 

propagation of the sequence component due to different source of asymmetry in the power 

system. 
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CHAPTER 5 

REDUCTION OF CURRENT AND VOLTAGE ASYMMETRY 

There are a few approaches to the reduction of asymmetry in voltages and currents. These 

approaches are categorized in levels based on the source of the asymmetry and the most efficient 

and cost effective way of reduction.  

Asymmetry can be confined or reduced by the following approaches: 

1. Imposing regulation and standards with respect to: 

1.1 Equipment and transmission line construction. 

1.2 Adopting standards on acceptable levels of current and voltage asymmetry. 

    2. Structural modifications of single-phase loads – on both utility and customer sides. 

3. Single-phase voltage regulators. 

4. Balancing compensators. 

5.1 Imposing Regulation and Standards 

5.1.1 Equipment and Transmission Line Construction  

     Imposing regulation and standards with respect to equipment and transmission line 

design will provide a systematic and cost effective way of mitigating asymmetry in the power 

system. This initial stage of asymmetry reduction ensure that generators, transmission lines, 

transformers, switching equipment and three-phase motors are designed and manufactured to be 

symmetrical. For example, the impedance in each phase of the generator and motor is equal and 

symmetrical with respect to each other. Transmission and distribution lines are spaced and 

transposed to mitigate asymmetry. A detailed analysis and mitigation approach for reducing 

current asymmetry due to induction in heavily loaded multi-circuit power lines is presented in 

ref. [3].  
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5.1.2 Adopting Standards on Acceptable Levels of Current and Voltage Asymmetry  

NEMA, IEEE and CIGRE/CIRED JWG C4.103 perform research and analysis to create 

standards for current and voltage asymmetry in the power system. When these standards are 

selected as the acceptable level of current and voltage asymmetry, fines can be impose on the 

respective entities to reduce asymmetry. For instance, fines can be imposed on utility and 

customers to keep asymmetry within the standard levels. Therefore, utilities are required to 

supply reliable power to customers and they are not allowed to have an asymmetric level beyond 

the level stipulated by the standards. Similarly, customers are not allowed to create asymmetry 

beyond the stipulated levels. 

5.2 Structural Modifications of Single-Phase Loads 

One of the main objectives of asymmetry mitigation is to use the most effective method 

of reduction in a cost effective way. Structural arrangement is one of those cost effective ways.  

For instance, the rearranging or redistributing of all single-phase loads equally among all the 

three phases can mitigate asymmetry. This refers to the distribution of the supply to individual 

homes or alternating connections in row of houses in residential subdivisions, per floor supply in 

commercial buildings or street lights. Also by arranging the connection phases between the 

distribution transformers and the primary feeder, the level of asymmetry can be reduced ref. [59]. 

For traction loads, the load scheduling of the trains in addition to the use of special transformers 

can improve the balance between the phases of the three-phase system. For instance, since the 

traction system is a large single phase load the scheduling in relation with other traction system 

is implemented in such a way that the loading on the three-phase system is balanced.  

5.2.1 Traction System Transformer Connections Schemes. 

1. V- connection 

2. Single-phase connection 
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3. Scott transformers 

4. Leblanc transformers 

5. Steinmetz-transformer  

Each scheme is discussed below and a simplified connection diagram showing the application 

for some of these schemes. 

1. The schemes have different efficiency levels in asymmetry reduction. However, they can 

be selected based on the investment, operation and maintenance cost ref. [58]. For 

example, even though the V-connection is a source of asymmetry, according to ref. [58] 

the single-phase connection and the V-connection schemes are the most economical 

mitigation technique. This is because the V-connection has a high capacity utilization 

ratio and a simple structure. Also the V-connection scheme is more efficient when 

compared with the single-phase scheme. Reference [79] and [83] have compiled various 

comparison of transformers used in the electrified traction system. 

2. Single–phase connection. In this arrangement the single transformer is feed with two 

phases. One of the output phases is connected to the catenary that supplies the train while 

the other is connected to the rails as the return current path as shown in figure 5.1. 

Therefore with this arrangement each of the different phases of the three-phase system 

can be balance by systematically distributing the phase connection base on the loading.  
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Figure 5.1 Single phase transformer connection of the traction load 

3. The Scott transformer is two single phase transformers consisting of special winding 

ratios, which is connected to the three phase system as shown in figure 5.2. The 

connection is such that the output, which is a two-phase orthogonal voltage system, will 

provide connection of two single-phase systems. This configuration will mitigate the 

asymmetry in the system and with the addition of equal loading of the transformers can 

further reduce the asymmetry to approximately zero. 

 

Figure 5.2 Scott transformer connection for traction load 
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4. Leblanc transformer 

 

Figure 5.3 Leblanc transformer connection for traction load 

5. According to ref. [14] the Steinmetz transformer is a three-phase transformer that is 

designed with a power balancing load feature. This consists of a capacitor and an 

inductor that is rated in such a way that the proportionality to the traction load will 

produce a balanced system.  

For example: 

When ܳ௅ ൅ ܳ஼ ൌ
௠௔௚.		௉	

√ଷ
 , The three-phase supply sees a balanced load.  

Where, QL is the reactive power of the inductor, QC is the reactive power of the capacitor 

and P is the active power of the load. 

However, ref. [14] further states that the following condition must be realized if effective 

balancing is to be achieved: The three-phase rated power of the transformer must be 

equal to the active power of the single-phase load. 

When structural modifications are not sufficient for reduction of asymmetry to a level 

impose by standards, some equipment which enables reducing of this asymmetry can be used. 

These include:  
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 Single-phase voltage regulators.  

 Balancing compensators. 

5.3 Single-Phase Voltage Regulators 

Single-phase regulators are used to increase or decrease the voltage in each phase of a 

three-phase system, in such a way that symmetry is achieved. However, care must be exercised 

to ensure that they are controlled carefully not to increase asymmetry. 

5.4 Balancing Compensators 

This can be built as reactance devices or as switching compensators. There are some 

situations in which shunt switching compensators and reactance devices are the best mitigation 

techniques to use. For example, if the current asymmetry is caused by an arc furnace then a shunt 

switching compensator can be used. Shunt switching compensator not only mitigate current 

asymmetry but it also mitigate reactance current, harmonics and any other quantities that degrade 

supply and loading quality. Also if the current asymmetry is caused in an industrial environment 

where large single-phase fixed parameter loads cannot be reconfigured to obtain balance then a 

reactance balancing compensator can be used. However if the voltage asymmetry is caused by 

the source then a series compensator could be used to mitigate the voltage asymmetry. If it is 

from both then a hybrid (series and shunt compensator) can be used to mitigate the asymmetry. 

The mitigation technique used must be selected meticulously. The first thing that needs to 

be done when considering the mitigation technique for use is to choose the correct power theory 

that correctly represents the phenomenon been mitigated. Therefore, the CPC power theory will 

be used to analyze the compensation technique used to reduce the current and voltage 

asymmetric effect on the power system [49]. The second thing is to ensure that the source/s of 

the asymmetry is clearly identified in the particular system. For example in some case by 

reducing current asymmetry you also reduce voltage asymmetry. While in other cases such as the 
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occurrence of both the supply voltage asymmetry caused by structural imbalance and the current 

asymmetry caused by load imbalance, this is not the case [56]. Third, it is imperative that the 

type of load (fixed or varying) causing the permanent asymmetry be identified. Finally the 

compensation method is chosen base on the three cases mentioned above.  

5.4.1 Reactance Balancing Compensator  

According to the CPC power theory, the current is one of the primary components of 

power which can be decomposed into three mutually orthogonal currents, ia – active current, ir – 

reactive current and iu – unbalance current. As a result there exist three powers, active power (P) 

reactive power (Q) and unbalance power (D). Therefore Sଶ ൌ ܲଶ ൅ ܳଶ ൅  ଶ and the objective ofܦ

the compensator is to eliminate or mitigate D (iu) and Q (ir).  

According to ref. [49]: 

 ݅௥௖ ൌ √2ܴ݁ሾ݆ሼܤ௘ ൅ ሺ ௌ்ܶ ൅ ்ܶோ ൅ ோܶௌሻሽࢁሿ݁௝ఠ௧ ………….5.1.1a 

is reduced to zero when  

௘ܤ ൅ ሺ ௌ்ܶ ൅ ்ܶோ ൅ ோܶௌሻ ൌ 0 ……………………………..5.1.1b 

also at the same time 

݅௨௖ ൌ √2ܴ݁ሾሾܣ െ ݆ሺ ௌ்ܶ ൅ ߙ ்ܶோ ൅ ∗ߙ ோܶௌሻሿࢁ#ሿ݁௝ఠ௧ ……..5.1.1c 

is reduced to zero when 

ܣ െ ݆ሺ ௌ்ܶ ൅ ߙ ்ܶோ ൅ ∗ߙ ோܶௌሻ ൌ 0 ………………………..5.1.1d 

As a result the solution for calculating the admittances between the relevant phases is as follows: 

ோܶௌ ൌ ሺ√3ܴ݁ܣ െ ܣ݉ܫ െ  ௘ሻ/3…………………………5.1.1eܤ

ௌ்ܶ ൌ ሺ2ܣ݉ܫ െ  ௘ሻ/3……………………………………5.1.1fܤ

்ܶோ ൌ ሺെ√3ܴ݁ܣ െ ܣ݉ܫ െ  ௘ሻ/3……………………….5.1.1gܤ

The following is a numerical example illustrating how current asymmetry can be compensated 

using reactance elements in a sinusoidal system: 
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	ܣ ൌ 	െሺ0.1443 െ 0.408ଶሻ ൌ 0.022 

C = A = 0.022F 

ܮ ൌ ଵ

஺∗௭మ
ൌ   ܪ273.059

The individual compensation for each harmonic is not achievable and therefore the 

minimization of the unbalanced and reactive current is obtained using the following technique: 

Assuming that the frequency is normalize to ߱ଵ ൌ 1 ௥௔ௗ

௦
 and the resonant frequency of the LC 

branch is ߱௥ ൌ 2.5߱ଵ. Then the parameters of the minimized compensator are: 

ௌ்௢௣௧ܥ ൌ ቈ1 െ
߱ଵଶ

߱௥ଶ
቉ ௌ்ܶଵ

߱ଵ
ൌ  ܨ120.96݉

ௌ்ܮ ൌ
1

߱௥ଶܥௌ்௢௣௧
ൌ  ܪ1.323

ோ௢௣௧்ܮ ൌ െ
1

߱ଵ ௌ்ܶଵ
ൌ  ܪ6.94

5.4.2 Shunt Switching Compensator 

Shunt switching compensators shape the current via the sequential switching of the 

transistors. Figure 5.7 below represents a shunt switching compensator. Let’s say the supply is 

balanced but supplying an imbalance load such as a traction system or arc furnace, for example. 

The data acquisition system (DA) will take samples of the load voltage and current. This 

information is fed into a DSP (Digital Signal Processing) system which will perform FFT which 

will produce a current reference signal base on the CPC power theory. This signal is fed into the 

inverter switching control (ISC). The instruction of the ISC will cause the IGBT to switch in 

sequence which will shape the current in such a way that it will compensate the current 

asymmetry. The details are explained in appendix D. However, in general this system is a current 

control device because the current is control directly by switching and the voltage is indirectly 

affected in achieving compensation. 
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Therefore, ܸ஼ሺݐሻ ൌ ࢚࣓࢐ࢋ஼ࢁ ∓ Δࢁ஼࢚࣓࢐ିࢋ V, because of the rotation of vectors ࢁ஼and	Δࢁ஼in the 

opposite direction in certain instance of time. 

Since the DSP system does not function on continuous voltage U(t) and reference current J(t), 

then the DA provide there discrete values at time instance  ݐ௞ ൌ ݇ ௦ܶ, where ௦ܶ	is the sampling 

period of the DA system.  

U(k) = U(݇ ௦ܶሻ 

J(k) = J(݇ ௦ܶሻ 
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CHAPTER 6 
 

SUMMARY AND CONCLUSION 

6.1 Summary 

Generators: If the source of asymmetry is due to structural imbalance, then the terminal 

voltage of the generator will be asymmetric. This can be reduced by designing the generator as 

symmetric as financially possible. However if the source of asymmetry is due to imbalance 

loading, then a negative sequence current creates a rotating magnetic field in the air gap that 

rotates at angular speed of 2ω1 with respect to the rotor frequency. This will cause the following:  

 An induces voltage e(t) = 2ω1NΦmsin2ω1t in the rotor. This causes a rotor current which 

contribute to an increase in active power losses on the rotor resistance. This increases the 

temperature on the rotor and consequently the generator temperature increases. 

 It contributes to a torque that pulsates at twice the supply frequency and causes 

mechanical vibration. 

 It causes terminal voltage asymmetry. 

This can be rectified by balancing the single phase loading and/or use shunt switching 

compensators. 

Motors: The negative effects on motors are similar to that on generators. However the main 

source of asymmetry is voltage asymmetry. The following is a list of the negative effect of 

voltage asymmetry on the motor: 

 According to NEMA a 1% voltage asymmetry causes a 6-10% increase in the current 

asymmetry. This is because the negative sequence impedance of an induction motor is 

smaller than the positive sequence impedance. 
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 The negative sequence voltage causes a negative sequence current that creates a reverse 

rotating magnetic field in the air gap. The current sequence components are a function of 

the voltage asymmetry, the motor parameters and the slip. 

 It increases losses and by extension increase temperature which leads to reduced life-

expectation. 

The sequence of events is as follows:  

 

 It causes torque pulsation and reduction, increased vibration and mechanical stresses. 

 It reduces motor efficiency and increases cost of production in the industry. 

When the source of the asymmetry is clearly identified, if it cannot be reduce by imposing 

regulation and standards or ensuring that the system is structurally symmetric, then the impact 

can be reduced by derating the motor according to NEMA derating curve or use series switching 

compensation. A similar process can be adopted for the ASD system. 

Adjustable Speed Drive: The supply voltage asymmetry impedes the performance of the ASD. 

The voltage asymmetry affects three main areas of the ASD: the rectifier, DC link and the PWM 

inverter.  

 The supply voltage asymmetry causes asymmetrical current harmonics of the 3rd and 9th 

order. This increases the temperature of the rectifier diodes. 

 There is an increase in voltage ripples on the DC-bus. 
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 It generates harmonics on the induction motor terminal. 

 It causes ripple torque in the induction motor via the pulse width modulator inverter 

(PWM).  

Transmission and Distribution Lines: The capacity of the lines is reduced if they are exposed 

to voltage and current asymmetry. However by transposing the phases the asymmetry can be 

reduced. 

Transformers: Positive and negative sequence components affects the transformer in the same 

way. However, the zero sequence components affect the transformer in a different way. For 

instance, if the configuration is a delta/yn then the zero sequence current circulate in it and 

produce heat and losses.  

6.2 Conclusion 

The economic benefits of energy providers and users is strongly dependent on the supply 

reliability, security and efficiency of the power system and consequently, on the supply and 

loading quality. Current and voltage asymmetry is an inherent phenomenon in the power system 

that causes loading and supply quality degradation. However, it is not economically practical to 

totally eliminate asymmetry. However it can be mitigated to an economically justified level by 

making informed trade-offs. The data base provided in this thesis can be used for this purpose.  

This is why it is important to be aware of the negative impacts, the source of the negative impact 

and how it propagates in the system. Then, finally the most economical solution can be 

implemented. 

There are several technical solutions available for reducing asymmetry. However, when 

using compensators, the correct power theory must be used in designing the mitigation 

techniques and therefore the CPC power theory should be used. 
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 Let the ZERO z1 is selected as a known parameter, for example, z1 = 21 = 2. Thus, three 
equations for s = j, s = j3 and s = j5 have to be solved for parameters A, p1, p2 calculation, 
namely 
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This set of equations has a solution: A = 2.162 ,  p1 = 1.125,  p2 = 3.632. Thus, the admit-tance of 
the compensator has the form 
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 Reactance One-Port Structures. One of main features that differentiate the circuit 
synthesis from the circuit analysis is a possibility of existence of equivalent solutions of the same 
synthesis problem. In particular, one-ports of different structure with different parame-ters can 
have the same admittance or impedance.  

 There are four basic procedures of developing the reactance one-port structure when its 
admittance is known. These are two Foster procedures and two Cauer procedures.  

 The one-port admittance Y(s) can be developed in elementary fractions as follows 
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 These values are surprisingly high. Observe however, that the compensator admittance 
YC(s) and parameters of the compensator were calculated, for the sake of computation 
simplification, under the assumption that the fundamental angular frequency of the supply 
voltage is 1 = 1 rd/s. Such an assumption is referenced to as the frequency normalization. 
Moreover, often the level of admittance is normalized as well. It can be assumed for example, 
that BC1 = 1 S. Thus, the parameters of the compensator shown in Fig. 4.14 are parameters of a 
normalized compensator.  

 The admittance YD(s) of a de-normalized compensator are related to admittance of the 
normalized compensator by the relation 

D
1
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Using the Foster decomposition, we can find the LC parameters of a de-normalized com-
pensator as follows 
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Thus, de-normalization requires that the circuit parameters are recalculated, 
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Observe that the compensator inductances and capacitances decline with the voltage angular 
frequency, 1. For example, for f = 60 Hz, meaning 1 = 377 rd/s, and assuming that the 
admittance level is preserved, meaning k = 1, the parameters of the compensator shown in Fig. 
4.14 are 

LD1 = 5.36 mH,    CD1 = 0.846 mF,    LD2 = 1.59 mH,    CD2 = 0.334 mF. 

 Instead of decomposing the admittance into elementary fractions, its inversion, meaning 
the impedance can be decomposed in such a fractions, namely 
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The fractions in this decomposition stand for impedances of LC links connected in series, as 
shown in Fig. 4.15. Such a procedure is referred to as the Foster Second Procedure.  
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