
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2010

Improving software quality using an ontology-
based approach
Yixin Luo
Louisiana State University and Agricultural and Mechanical College

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Luo, Yixin, "Improving software quality using an ontology-based approach" (2010). LSU Doctoral Dissertations. 1223.
https://digitalcommons.lsu.edu/gradschool_dissertations/1223

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/1223?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

IMPROVING SOFTWARE QUALITY USING

AN ONTOLOGY-BASED APPROACH

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

In

The Department of Computer Science

By

Yixin Luo

B.S., Wuhan University of Technology, 1991
M.S., Southern University, 2001

May 2010

ii

© Copyright 2010

Yixin Luo

All rights reversed

iii

谨将此论文

献给敬爱的父亲，罗孝杨

对您的怀念将伴我一生

和我的家人

母亲，蒋亚平

爷爷， 罗重秀 奶奶， 蒋金莲

外公， 蒋荣陪 外婆， 黄淑华

公公， 周垠庚 阿婆， 蒋宏英

 岳母， 曾桂芳

你们的关爱是我完成此文的动力之源

iv

Acknowledgements

I express my deepest gratitude to Dr. Doris Carver, my supervising professor, for her

guidance, patience, and encouragement throughout my graduate studies. It is an honor

and a blessing for being her student. She has a great knowledge and her wisdom is

second to no one. Also, her honesty and integrity is my moral model.

I wish to express sincere thanks to Dr. Allyson Hoss for her advice. She was persistent

in her encourage and support. She had spent a lot of time on my research.

As a full time employee while trying to pursue the degree, I would express my heartfelt

appreciation to my employers, Dr. Gregory Stone, the director of Coastal Studies

Institute, Dr. James Lupo, my supervisor at Computer Center for Technologies (CCT),

and Dr. Honggao Liu, the director of High Performance Computing (HPC) for their

active support and fully cooperation.

Also, my gratitude extends to my committee members Dr. Jianhua Chen, Dr. Don

Kraft, Dr, Yesho Chen, and Dr. Roberto Barbosa for their advice and cooperation.

I give a special acknowledgment to all the software engineers who participated in my

statistical survey and gave their advices on my research.

I am grateful for my parents, Mr. and Mrs. Xiaoyang Luo and Yaping Jiang as well as

my sister, Yunfei who are always my source of motivation and encourage me to study

by their examples. I would like to sincerely thank my mother-in-law, Guifang Zeng,

who handled the tasks that were due to me.

I would like to thank my wife, Yao and my daughters, Muzi and Mulan for everything.

v

Table of Contents

Acknowledgements ..iv

List of Tables ...vii

List of Figures ..viii

Abstract …………………………………………………………………………...........x

Chapter 1 Introduction ……..………………………………………………................1
 1.1 Design Patterns, Anti-Patterns and Bad Code Smells1
 1.2 Costs of Solutions …………………………………………………...............2
 1.3 Research Objective ………………………………………………….............4
 1.4 Dissertation Overview ………………………………………………............5
 1.5 Summary …………………………………………………………………….6

Chapter 2 Background and Related Research ………………………………............7
 2.1 Introduction …………………………………………………………............7
 2.2 Related Concepts …………………………………………………................7
 2.2.1 Design Patterns …………………………………………................7
 2.2.2 Anti-patterns ………………………………………………............8
 2.2.3 Bad Code Smells ………………………………………………...13
 2.2.4 Differences between Anti-patterns and Bad Code Smells ………14
 2.2.5 Refactoring ………………………………………………............15
 2.3 Software Quality Attributes ………………………………………..............17
 2.4 Related Work ………………………………………………………............19
 2.5 Summary ……………………………………………………………...........24

Chapter 3 Ontological Representations ………………………………………..........25
 3.1 Ontology Background…..………………………………………….............25
 3.2 Ontological Representations of Anti-patterns, Code Smells, And
 Refactoring …………………………………………………………….............29
 3.3 Why Use Ontological Representation ……………………………………..30
 3.4 Summary …………………………………………………………………..32

Chapter 4 Research Method ………….……………………………………………..33
 4.1 Introduction ………………………………………………………………..33
 4.2 Definitions of Class Properties ……………………………………............33
 4.2.1 Anti-pattern Properties …………………………………..............35
 4.2.2 Refactoring Properties …………………………………………..35
 4.2.3 Bad Code Smell Properties ………………………………...........37
 4.3 Quality Indexes of Bad Code Smells ………………………………...........42
 4.4 Templates for Bad Code Smell and Refactoring Analysis ………..............47
 4.5 Anti-patterns, Refactoring, and Code Smell Taxonomy ………….............50

4.6 Description Logics to Express Terminologies and Relations of OABR......55
4.7 Ontological Infrastructure …………………………………………............57
4.8. Tools and Platforms ………………………………………………………61
4.9 Technologies in Support of OABR for Communities Uses………..............64
4.10 Summary …………………………………………………………............74

Chapter 5 Application and Evaluation of OABR ………………..…………...........76

vi

 5.1 Introduction ………………………………………………………..............76
 5.2 Relations between Anti-patterns and Code Smells …………………..........76
 5.3 Testing the Relations between Anti-patterns and Code Smells in a Software
 Project …………………………………………………………………............79
 5.4 Summary ……………………………………………………………..........93

Chapter 6 Summary and Conclusions …………….………………………..............94
 6.1 Summary …………………………………………………………..............94
 6.2 Contribution …………………………………………………….................95
 6.3 Future Work ……………………………………………………….............96

References .………………………………………………………................................97

Appendix A: Bad Code Smell Examples ………………………………….............101

Appendix B: Refactoring Examples ……………………………………….............111

 Appendix C: Application for Exemption from Institutional Oversight ……......112

Appendix D: Examples of Using DL to Express OABR …………………….........115

Appendix E: Sample Tests from Metric-based Tools Such as Check Style, PMD,
and Analyst4j ………………………………………………………………………118

Appendix F: Examples of OWL for Code Smell …………………………….........123

Vita …………………………………………………………………………………..131

vii

List of Tables

Table 1.1: Relative Cost to Fix a Problem [Mogyorodi] ... 4

Table 2.1: Categories of Anti-patterns [Brown et al.]. .. 11

Table 2.2: Anti-Pattern vs. Bad Code Smell .. 14

Table 2.3: Refactoring and Bad Code Smells .. 16

Table 2.4: Impact of Design Patterns, Anti-patterns, Code Smells and Refactoring on

Software Quality [Gammar][Brown][Fowler][Mens] ... 18

Table 2.5: Comparison of Related Work on Anti-patterns and Bad Code Smells 20

Table 4.1: Examples of Blob Anti-pattern Properties .. 36

Table 4.2: Subset of Bad Code Smells of Which Symptoms Are Described by
Keywords [Fowler][Mika] ... 38

Table 4.3: Goals and Application of Traditional Software Metrics 39

Table 4.4: Properties of Bad Code Smells ... 41

Table 4.5: Definition of Quality Index .. 43

Table 4.6: Bad Code Smells Indexes .. 44

Table 4.7: Code Smell Quality Indexes from Survey .. 46

Table 4.8: The Domain and Range of OABR Non-taxonomy Relation Properties 60

Table 5.1: Rules for PMD to Check Code Smell ... 83

Table 5.2: The Output of Anti-patterns and Bad Code Smells Detected by PMD, Check

Style, and Analyst4j ... 86

Table 5.3: Testing of Correlation Coefficient R

2
 about Anti-patterns and Code

Smells. .. 90

Table 5.4: Testing of Pearson‘s P-Value about Anti-patterns and Code Smells 91

viii

List of Figures

Figure 1.1: Relations among Design Patterns, Anti Patterns, Bad Code Smells, and
Refactoring ... 3

Figure 2.1: An Example of Anti-pattern Blob [Brown et al.] .. 12

Figure 2.2: An Example of Anti-pattern Spaghetti Code [Brown et al.] 13

Figure 2.3: An Example of Refactoring (Extract Class) .. 17

Figure 3.1: A Simple Example of Ontology .. 27

Figure 3.2: A Partial Ontology Representing Human Illnesses 28

Figure 3.3: Simplified Conceptual Model of OABR ... 31

Figure 4.1: Outline Showing the Inputs to OABR ... 34

Figure 4.2: Subset of Refactoring Methods ... 37

Figure 4.3: Quality Index of Bad Code Smell ... 43

Figure 4.4: Bad Code Smell Template ... 48

Figure 4.5: An Example of Bad Code Smell – ―Middle Man‖ 48

Figure 4.6: Refactoring Template .. 49

Figure 4.7: An Example of Refactoring Template – ―Collapse Hierarchy‖ 49

Figure 4.8: Anti-pattern, Code Refactoring, and Bad Code Smell Taxonomies 52

Figure 4.9: Examples of DL Description of OABR .. 56

Figure 4.10: Conceptual Models of OABR ... 58

Figure 4.11: Hierarchy relations among classes .. 63

Figure 4.12: Code Smell Templates Represented by Protég ... 65

Figure 4.13: Example of CodeSmell(Large Class) Converted to OWL From ASCII

File ... 68

Figure 4.14: Examples of Accessing, Storing, Querying, and Mapping to OABR 71

ix

Figure 5.1: Instances of Anti-pattern Classes and Bad Code Smell Classes 80

Figure 5.2: Rules for Check Style to Detect Code Smells in XML 84

x

Abstract

Ensuring quality in software development is a challenging process. The concepts of

anti-patterns and bad code smells utilize the knowledge of reoccurring problems to

improve the quality of current and future software development. Anti-patterns describe

recurring bad design solutions while bad code smells describe source code that is error-

free but difficult to understand and maintain. Code refactoring aims to remove bad code

smells without changing a program‘s functionality while improving program quality.

There are metrics-based tools to detect a few bad code smells from source code;

however, the knowledge and understanding of these indicators of low quality software

are still insufficient to resolve many of the problems they represent. Minimal research

addresses the relationships between or among bad code smells, anti-patterns and

refactoring. In this research, we present a new ontology, Ontology for Anti-patterns,

Bad Code Smells and Refactoring (OABR), to define the concepts and their relation

properties. Such an ontological infrastructure encourages a common understanding of

these concepts among the software community and provides more concise definitions

that help to avoid overlapping and inconsistent description. It utilizes reasoning

capabilities associated with ontology to analyze the software development domain and

offer new insights into the domain. Software quality issues such as understandability

and maintainability can be improved by identifying and resolving anti-patterns

associated with code smells as well as preventing bad code smells before coding

begins.

1

Chapter 1

Introduction

The production and maintenance of quality software continue to provide challenges to

software developers. Many problems that cause failure of software products are chronic

and reoccurring. Attributes describing software quality include reliability,

efficiency/effectiveness, human engineering, understandability,

modifiability/reusability, testability/functionality, and portability/extendibility

[Glass][Bansiya]. Researchers have suggested pattern-based concepts and solutions

such as design patterns, anti-patterns, bad code smells, and refactoring to help improve

software quality by giving general descriptions of time-tested solutions to reoccurring

problems. Using knowledge from these pattern-based concepts in software

development, software developers can improve software quality.

One clear and concise definition of the term pattern is ―a three-part rule, which

expresses a relation between a certain context, a certain system of forces which occurs

repeatedly in that context, and a certain software configuration which allows these

forces to resolve themselves‖ [Gabriel]. The major benefits of pattern concepts are that

they provide proven solutions to solve software common issues, and they can improve

understanding among software agents, making communication between agents more

efficient.

1.1 Design Patterns, Anti-patterns and Bad Code Smells

Design patterns are descriptions of communicating objects and modules that are

customized to solve a general design problem in a particular context [Gamma et al.]. A

design pattern refers to both the description of a solution and an instance of the solution

2

for solving a particular problem.

Anti-patterns, like their design pattern counterparts, are literary forms that describe a

commonly occurring solution to a problem that generates decidedly negative

consequences [Brown]. Bad code smells refer to source code structures problems, and

refactoring addresses the resolution for anti-patterns and code smells.

This research addresses chronic problems that arise in software development by

identifying relations between anti-patterns and bad code smells and using the relations

to help solve or prevent problems. Figure 1.1 shows a high-level view of the

applications of anti-patterns, bad code smells, and refactoring solutions in software

development. Design patterns and anti-patterns ―guide‖ the design of software.

Software design ―creates‖ source code. Source code can ―contain‖ bad code smells

related problems. Refactoring helps ―solve‖ the source code problems described by bad

code smells and the problems created by anti-patterns. This research highlights the

differences between anti-patterns and bad code smells. Anti-patterns usually occur at

design, and code smells occur at the coding stage. Design patterns and anti-patterns can

prevent bad code smells related problems.

1.2 Costs of Solutions

It is widely accepted in the software industry that the cost of fixing a problem rises

dramatically when its discovery occurs in later phases of the software life cycle,

because there are more deliverables affected by each correction. No data accurately

reflects the exact cost differences, but rough estimations exist. Table 1.1 shows the

significant cost differences for fixing software problems at different stages of the

software life cycle [Mogyorodi]. This data was gathered from software products

3

Figure 1.1: Relations among Design Patterns, Anti Patterns, Bad Code Smells, and

Refactoring

4

developed by software industries such as IBM and GTE. For example, if the cost of

fixing a problem (bug) at the requirements level were one dollar, the cost of fixing it at

the testing level would be 15 to 40 dollars.

Table 1.1: Relative Cost to Fix a Problem [Mogyorodi]

Phase Cost Ratio

Requirements 1

Design 3-6

Coding 10

Testing 15-40

System/Acceptance Testing 30-70

Production 40-1000

(IBM, GTE, et al.)

Bad code smells related problems are found only in the source code, making them

costly to fix. Anti-patterns could help software developers to identify and prevent the

problems at the early stage of the software life cycle, thus reducing the cost.

1.3 Research Objective

This research is motivated by the need to eliminate chronic software problems and the

lack of research consistently defining anti-patterns, bad code smells, and refactoring as

well as detailing the relations between anti-patterns, bad code smells and refactoring.

Existing taxonomies and techniques identifying and defining bad code smells and anti-

patterns are based on informal human intuition that is both manual and heuristic.

Previous work lacks sufficient formal descriptions and classifications of bad code smell

5

anti-pattern, and refactoring. Also, existing identification and solutions of anti-patterns

and code smells are neither automatic nor systematic and are often overlapping,

inconsistent, and inaccurate.

The research objective is to improve software quality by detecting and removing

software problems that are defined by anti-patterns and bad code smells. We also aim

to improve sharing and understanding of anti-patterns, bad code smells, and refactoring

as well as their relations in the software community.

The general methodology is to develop and utilize a new ontology, Ontology for Anti-

patterns, Bad Codes Smells, and Refactoring techniques (OABR). We develop the

conceptual domain model for OABR to identify the concepts and the relations between

the concepts. Next, we define the properties for the OABR foundational concepts like

anti-patterns, bad code smells, and refactoring. We also define priority indexes for each

bad code smell that will help identify which bad code smells should be removed or

prevented and which should be tolerated. We develop templates for code smells and

refactoring to provide a consistent outline for documentation. The formally defined

concepts and relations will improve the understanding and help to find a new

taxonomy. The relations between code smells and anti-patterns will help prevent

problems related to bad code smells by detecting and resolving software problems early

in the software development life cycle, thereby saving the cost of identification and

removal at coding level. Finally, we apply ontological tools to implement and validate

OABR.

1.4 Dissertation Overview

Chapter 2 describes anti-patterns, bad code smells, and refactoring. It also reviews

6

other works that are related to this research. Chapter 3 presents the background and

benefits of ontology as well as a conceptual model of anti-patterns, bad code smells,

software problems, and refactoring in OABR. Chapter 4 presents the development and

process of the OABR infrastructure. Chapter 5 describes the application and validation

of OABR. Finally, Chapter 6 summarizes this research and discusses the future work.

1.5 Summary

Design patterns, anti-patterns and bad code smells with refactoring aim to describe and

help solve chronic software problems that cause failure of software projects. An anti-

pattern is a bad solution that causes problems, a bad code smell refers to source code

structure problems, and refactoring addresses their resolution. Many anti-patterns

happen at early stages of the software life cycle, and all the bad code smells occur in

source code. This research develops an ontology-based approach to provide a detailed

description of anti-patterns, bad code smells, refactoring, detection, and their relations

with the goal of improving understanding about these concepts among software

developers. Detecting and removing software problems at early stages of the life cycle

help developers to reduce the costs of development and maintenance of software

projects.

7

Chapter 2

Background and Related Research

2.1 Introduction

Reusable solutions such as design patterns, anti-patterns, bad code smells and related

refactoring have been shown to be efficient for improving understandability of software

reoccurring problems among software developers [Fowler][Brown et al.]. Use of these

concepts provides guidance to improve the quality and standards of the software

industry, map a general situation to a specific class of solutions, and improve

understanding among the software communities by providing a common vocabulary for

identifying problems and discussing solutions. Section 2.2 provides an overview on the

foundational concepts of this research. Section 2.3 describes software quality attributes

and the impact of design patterns, anti-patterns, bad codes smells and refactoring on the

software quality attributes. Section 2.4 reviews existing related research.

2.2 Related Concepts

This section elaborates on anti-patterns, bad code smells, and refactoring as well as

their application in software developments. It includes an introduction to design

patterns as it relates to the other foundational concepts.

2.2.1 Design Patterns

In 1995, Gamma, Helm, Johnson, and Vlissides (frequently referred to as the Gang of

Four (GoF)) introduced and described design patterns as ―Recurring solutions to

software design problems that are repeatedly found in real-world application

development‖ [Gamma et al.], to help address software development problems.

Currently, there are 23 Gamma Patterns defined by the GOF, 17 Buschmann Patterns,

8

72 Analysis Patterns, 38 CORBA Design Patterns, and 95 Anti-patterns. Gamma

patterns describe how to design [Gamma]. Buschmann Patterns cover core elements of

building concurrent and network systems such as service access and configuration,

event handling, synchronization, and concurrency [Buschmann]. Analysis Patterns

focus on object-oriented analysis and design [Fowler]. CORBA patterns give solutions

for designing and building distributed object-oriented systems [Mowbray & Malveau].

Anti-patterns are the extension and the counterpart of design patterns [Brown].

Each pattern definition typically includes some of the following fundamental elements

[Gamma][Brown]:

 Name describes the problem and solutions by vocabulary.

 Intent describes the goal behind the pattern and the reason for using it.

 Problem gives the context and description of problems that would be solved by

design patterns.

 Forces introduce a scenario in which the pattern can be used.

 Solutions give an abstract description of the solution and its constraints.

 Consequences provide the results and tradeoffs.

An example of a design pattern is the Factory Method Pattern. This pattern addresses

the problem when the application class does not know when to instantiate a new object

of a class or what kind of subclass to create. The Factory Method Pattern offers the

solution of creating a pattern that helps to model an interface for creating an object,

which can let its subclass decide which class to instantiate at creation time.

2.2.2 Anti-Patterns

The original work of GoF does not mention the concept of anti-patterns. In 1998,

Brown, Malveau, McCormick, Mowbray, the Anti Gang of Four (AGoF), suggested the

9

concept of an anti-pattern as ―a literary form that describes a commonly occurring

solution to a problem that generates decidedly negative consequences‖ to help address

recurring bad design solutions [Brown et al.]. Like design patterns, the main goal of

anti-patterns is to prevent chronic problems from reoccurring. AGof claimed that anti-

patterns are a natural extension to, but the opposite of, design patterns. When a design

pattern creates more problems than it solves, it becomes an anti-pattern. Anti-patterns

are studied as a category so that they can be avoided.

Software design involves making choices that are often complex with many issues to

consider such as reliability, cost, schedule, and adaptability. Usually, anti-patterns

originate from lack of experience of software developers or from the use of good design

patterns in the wrong context [Smith & Lioyd].

Anti-patterns are an effective way to capture knowledge, transfer ideas, and foster

communication. They provide the following benefits to software development and

maintenance [Brown et al.]:

 ―a method of efficiently mapping a general situation to a specific class of

solutions‖

 ―real world experience in recognizing recurring problems in software industry‖

 ―a common vocabulary for identifying problems and discussing solutions‖

 ―a holistic resolution of conflicts.‖

The following fundamental elements describe anti-patterns [Vesa]:

 Name describes the problem and solutions by vocabulary;

 Anti-Pattern Solution gives the symptoms, consequences and abstract

description of the problematic solution;

10

 Refactored Solution provides the description of refactoring methods and

positive consequences of the refactoring.

No standard classification or taxonomy exists for describing anti-patterns. AGoF

categorizes 42 types of anti-patterns based on different stages of the software life cycle.

The AGoF defined the design anti-patterns, architectural anti-patterns, and management

anti-patterns categories shown in Table 2.1. Other classifications include project

management anti-patterns, general design anti-patterns, programming anti-patterns,

methodologies anti-patterns, and configuration anti-patterns [Brown & Thomas].

Utilizing anti-patterns to prevent chronic problems from reoccurring includes the

following three steps:

1. Anti-pattern Identification - describes how to recognize the general

form;

2. Anti-pattern Removal - describes the refactored solutions to change the

anti-patterns into a sound design pattern;

3. Verification – describes the validation methods to prove that the anti-

pattern has been removed.

There are two widely accepted basic rules to recognize and process anti-patterns

[Laplante]:

 Rule 1: (―Rule of three‖) ―Someone must have experiences and report each anti-

pattern (and a successful refactoring) in three separate instances‖ [Laplante];

 Rule 2: ―It is a high risk to process several anti-patterns simultaneously.‖

[Brown].

11

Table 2.1: Categories of Anti-patterns [Brown et al.].

Categories Examples

Management Anti-Pattern Metric Abuse: the malicious or incompetent use of

metrics and measurement

Project Management

Anti-pattern

Smoke and Mirrors: demonstrating how unimplemented

functions will appear

General Design Patterns Ambiguous viewpoint: Presenting a model without

specifying its viewpoint

OO Design Patterns God object: Concentrating too many functions in single

part of the design

Programming Patterns Lava flow: Retaining undesirable (redundant or low-

quality) code because removing it is too expensive or

has unpredictable consequences

Methodological

Management Anti-patterns

Copy and paste programming: Copying (and modifying)

existing code rather than creating generic solutions

Configuration Management

Anti-patterns

DLL hell: Problems with versions, availability and

multiplication of Dynamic-Link Library|DLLs,

specifically on Microsoft Windows

Rule 1 shows that anti-pattern definition and identification is heuristic. The logical

basis for the Rule of Three is that the first occurrence shows that the design does not

work; the second occurrence shows that the design problem is interesting; and the third

12

occurrence suggests that it appears to have a wider applicability. The informal concept

behind the Rule of three is: ―the first occurrence is an event, the second occurrence is a

coincidence, and the third occurrence may be a pattern‖ [Sabt et al.].

Rule 2 refers to resolving anti-patterns. It suggests that the processing of anti-patterns

is not easy and that simultaneously processing of several anti-patterns is hard to control

and can cause new problems.

Existing research organizes anti-patterns using templates. Examples of anti-pattern are

the Blob and the Spaghetti Code described in template form developed by [Brown et

al.] and shown in Figures 2.1 and 2.2, respectively. These templates describe anti-

patterns by providing knowledge such as an informal cause analysis and refactoring

solutions for solving the anti-pattern.

Figure 2.1: An Example of Anti-pattern Blob [Brown et al.]

THE BLOB

Anti-pattern Name: The Blob

Also Known As: Winnebago and The God Class

Most Frequent Scale: Application

Refactored Solution Name: Refactoring of Responsibilities

Refactored Solution Type: Software

Root Causes: Sloth, Haste

Unbalanced Forces: Management of Functionality, Performance, Complexity

Anecdotal Evidence: ―This is the class that is really the heart of the architecture‖.

13

Figure 2.2: An Example of Anti-pattern Spaghetti Code [Brown et al.]

2.2.3 Bad Code Smells

Fowler suggested the concept of bad code smells [Fowler] with the following

introductory definition: ―A bad code smell is a structure that needs to be removed from

the source code by refactoring to improve the maintainability of the software.‖ Bad

code smells are defined and organized in an informal manner.

A bad code smell itself is not a problem but a sign of a problem. It shows poor structure

and poor qualities of software products. Bad code smells are not the same as syntax

errors or compiler warnings. Bad code smells are indications of bad program design or

bad programming practices. Bad code smells are not errors, but they could make

software projects difficult to develop and maintain when the program needs

modification. Examples of bad code smells include ―Large Class‖ which means a class

is doing too many things and that results in too many instance variables, ―Duplicated

Code‖ which means the same code structure exists in more than one place, and ―Long

Methods‖ which are methods that are too long to understand and reuse. Bad code

smells can be removed by applying refactoring methods.

SPAGHETTI CODE

Anti-pattern Name: Spaghetti code

Also Known As: N/A

Most Frequent Scale: Application

Refactored Solution Name: Software Refactoring, Code Cleanup

Refactored Solution Type: Software

Root Causes: Sloth, Ignorance

Unbalanced Forces: Management of Change, Complexity

Anecdotal Evidence: ―It is for future modification and extension‖.

14

2.2.4 Differences between Anti-patterns and Bad Code Smells

Although both bad code smells and anti-patterns describe re-occurring software

problems, a major difference is that the development of anti-patterns is generally at a

more abstract and higher level, like design level [Mika]. However, as current

definitions of anti-patterns and bad code smells are heuristic, thus, incomplete and

inconsistent, the definitions of some anti-patterns, such as the software development

anti-patterns, are similar to bad code smells and even have some overlap.

Table 2.2 shows comparisons between anti-patterns and bad code smells.

Table 2.2: Anti-Pattern vs. Bad Code Smell

 Bad Code Smell Anti-pattern

Number of Distinct

Types

23 95 (growing)

Software

Development

Stage(s)

Source code level Entire Software Life-cycle

Contents Symptoms Causes + Solutions

People Programmers Managers, Architects,

Designers, and Developers

Goals Tells developers when to

refactoring

How to prevent chronic

design problems

Identification Heuristics + Metrics Heuristics

Proof of existence None Rule of three

Solutions Refactoring Refactoring

Format English expression More formal templates

Known Causes No Yes

Removal cost Expensive N/A

15

Bad code smells are the symptoms of problems existing in the source code and indicate

when refactoring is needed. Anti-patterns give developers a way to recognize software

problems in advance to help avoid most common pitfalls. Bad code smells give

warnings to programmers that something may be wrong with the source code, while

anti-patterns provide software managers, architects, designers, and developers a

common vocabulary for recognizing possible sources of problems in advance.

Metrics-based tools can detect some bad code smells automatically while the

identification of most anti-patterns is based on heuristic analysis. The proof of

existence of anti-patterns is based on the obscure ―Rule of three‖. No rules exist for

proving the existence of bad code smells. Although the solution to both anti-patterns

and bad code smells is refactoring, the refactoring methods for bad code smells are

more technical and programming-based while refactoring for anti-patterns are

―approaches for evolving the solution into a better one‖ [Brown et al.]. Anti-patterns

are organized in a semi-formal template while code smells are described in plain

English. Each anti-pattern is given cause analysis, while bad code smells are

descriptions of symptoms. The identification of bad code smells is at the developing,

testing, and maintenance levels of life cycle and, therefore, the cost of removal is high.

2.2.5 Refactoring

When a design pattern becomes an anti-pattern, it is useful to have an approach for

evolving the anti-pattern back into a good design pattern. Also, removal of a bad code

smell will improve the structure and quality of source code. Solutions for both bad code

smells and anti-patterns are based on refactoring. ―This process of change, migration,

or evolution is called refactoring‖ [Ciupke]. Refactoring refers to the algorithms or

16

methodologies that are used to remove bad code smells/anti-patterns. A series of small

refactoring could require a significant restructuring of code. Table 2.3 lists examples of

some of the 80 types of refactoring given in [Fowler] along with bad code smells. For

example, ―Extract Class‖ could be used to fix the code smells of Large Class,

Duplicated Code, Data Clumps, and Divergent Change. Code smells such as ―Shot Gun

Surgery‖ would need two or more refactoring methods to solve, such as ―Move

Method‖ and ―Inline Class‖.

Table 2.3: Refactoring and Bad Code Smells

Refactoring Technique Bad Code Smell

Extract Class Large Class

Duplicated Code

Data Clumps

Divergent Change

Move Method Alternative Classes with Different

Interfaces

Data Class

Feature Envy

Shotgun Surgery

Inline Class Lazy Class

Short Gun Surgery

Speculative Generality

We define refactoring for bad code smells as:

(Functionality) R(C) ~ C

where

R is a refactoring operation

C is a code segment

17

―~‖ equivalent

Figure 2.3 shows an example of a refactoring named ―Extract Class‖.

The class ―Lab‖ on the left describes the name and obtains the address. The extracting

of this class into the Lab and Address classes will make the classes more

understandable and easier to reuse.

Figure 2.3: An Example of Refactoring (Extract Class)

2.3 Software Quality Attributes

ISO 9126 is the software product evaluation standard from the International

Organization for Standardization. ISO 9126 part one, also referred as ISO 9126-1,

defines the following six software quality attributes [ISO9126]:

 Functionality – ―A set of attributes that bear on the existence of a set of

functions and their specified properties. The functions are those that satisfy

stated or implied needs.‖

 Reliability – ―A set of attributes that bear on the capability of software to

maintain its level of performance under stated conditions for a stated period of

time.

Lab

name

street

state

country

getAddress

Address

street

state

country

getAddress

Lab

name

getAddress

http://en.wikipedia.org/wiki/Reliability

18

 Usability – ―A set of attributes that bear on the effort needed for use, and on the

individual assessment of such use, by a stated or implied set of users.‖

 Efficiency – ―A set of attributes that bear on the relationship between the level

of performance of the software and the amount of resources used, under stated

conditions. ―

 Maintainability – ―A set of attributes that bear on the effort needed to make

specified modifications.‖

 Portability – ―A set of attributes that bear on the ability of software to be

transferred from one environment to another.‖

The application of design patterns, anti-patterns, bad code smells, and refactoring have

benefits for improving the software quality attributes. Table 2.4 summarizes their

impacts on related attributes.

Table 2.4: Impact of Design Patterns, Anti-patterns, Code Smells and Refactoring on

Software Quality [Gammar][Brown][Fowler][Mens]

 functionalit

y

reliability usability efficiency maintainability portability

Design

Pattern

N/A + + N/A + N/A

Anti-Pattern N/A - - N/A - N/A

Code Smell N/A N/A - N/A - N/A

Refactoring N/A + + N/A + N/A

 ‗ + ‘ positively impact ‗ – ‗ negative impact ‗N/A‘ not available

http://en.wikipedia.org/wiki/Usability
http://en.wikipedia.org/wiki/Algorithmic_efficiency
http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Software_portability

19

The applications of design patterns will improve quality attributes such as reliability,

usability, and maintainability of software products while anti-patterns, the opposite of

design patterns, negatively impact software quality attributes. Bad code smells mostly

affect the usability and maintainability software quality attributes [Fowler].

Refactoring by definition aims to improve the reliability, maintainability and usability

of software products [Mens]. However, the impacts of anti-patterns and bad code

smells on other quality attributes are unclear.

2.4 Related Work

Numerous researchers have shown interest in anti-patterns, bad code smells and

refactoring in recent years. Most research is about representation, description, and

classification of anti-patterns and bad code smells. Also, the software community has

developed metric-based tools for the identification and removal of anti-patterns and

code smells. Table 2.5 gives an overview of the selected works focus on the

identification and classification of anti-patterns, bad code smells as well as refactoring

methods. The detection column indicates how detection is performed (by metrics-based

tools or heuristically) and what is detected (code smells or anti-patterns). The

classification column describes how to classify anti-patterns and bad code smells, and

what techniques are used, such as taxonomy or ontology.

Akroyd was the first one that documented problematic software constructs [Akroyd],

and Konig introduced the term of anti-pattern [Konig]. Brown et al. prompted the term

by suggesting 42 types of anti-patterns and describing them by using a uniform

template. Their work analyzed the causes, root causes, symptoms, and solutions of their

anti-patterns [Brown et al.].

20

Laplante developed a new catalog of anti-patterns that extends and complements

Brown‘s work. The catalog covers management anti-pattern, environmental or cultural

anti-patterns, and personality anti-patterns that help to correct problem identification

and provide solutions [Laplante et al.]. They listed and summarized 21 management

anti-patterns and 27 environmental anti-patterns. The structure described for each anti-

pattern involved ‗Name‘, ‗Central Concept‘, ‗Dysfunction‘, ‗Vignette‘, ‗Explanation‘,

‗Band Aid‘, ‗Self-Repair‘, ‗Refactoring‘, ‗Observations‘, and ‗Identification‘. The

structures are not a formal structure.

Fowler et al. showed the related refactoring methods for bad code smells. They also

suggested that no substitution can replace human intuition when it comes to deciding

whether a certain code smell should be refactored and that no precise criteria for

evaluating code smells can be given [Fowler & Becker].

Mika challenged Fowler‘s viewpoints by suggesting the following [Mika et al.]:

1. Automatic bad code smell measurement was possible if their measurability could

be addressed; Mika applied source code metrics for certain code smells;

2. Fowler‘s description of bad code smells was not organized and was not clear to

understand. Mika presented a taxonomy based on shorter concepts from a larger

context;

3. Programmers should have a common view in order to utilize bad code smells as

indicators of software defects.

Mika also presented an initial empirical study on the subjective evaluation of bad code

smells and provided a new view by using perceived evaluations. They selected Large

Class, Long Parameter List, and Duplicate code as a basis for subjective code

21

Table 2.5: Comparison of Related Work on Anti-patterns and Bad Code Smells

 Anti-patterns Bad Code Smells

Detection Classifications Detection Classification

Akroyd,

Konig,

Brown,

Laplante

Heuristics Software life

cycle

None None

Fowler

& Beck

None None Heuristics None

Mika et al. None None Metrics-based

analysis

Taxonomy

based on

symptom

analysis

Radu et al. Metrics-based

detection on three

anti-patterns

None None None

Emden,

Moonen and

Slinger

None None Metrics-based

tools

None

Cheng et al. None None None Ontology

classification

of bad smells

Moha et al. Metric-based

heuristics and

structure and

semantic

information

Classification

based on key

concepts

Metric-based

heuristics and

structure and

semantic

information

Classification

based on key

concepts

evaluation. They compared the results from subjective evaluation to those obtained

from metrics-based tools and found that the results between subject evaluation and

source code metrics do not correlate, suggesting that subjective evaluations are ―greatly

affected by conflicting perceptions of different developers‖ [Mika&Lassenius]. On the

22

other hand, Mika acknowledged that metrics-based tools are not always reliable.

Mika defined a simple taxonomy of bad code smells based on heuristic analysis from

his programming experiences [Mika]. Although the taxonomy can improve the

understanding of bad code smells and suggest common properties of several bad code

smells, it is not as powerful as an ontological representation because it cannot explain

what causes a bad code smell; how to prevent it from occurring; or the internal

relationships between code smells and refactoring, anti-patterns, and detections.

Radu et al. developed a set of detection strategies based on software metrics to detect

several anti-patterns [Redu et al.][Chidamber & Kemerer][Trifu & Marinewscu]. They

later refined the methodologies by using ―Historical information of the suspected

flawed structures‖ [Radu]. They showed how to detect anti-patterns such as God

Classes and Data Classes, and they indicated that their approach refines the properties

of anti-patterns, which leads to a two-fold benefit:

1. identify ―harmless‖ anti-patterns with the help of history information by a

single-version detection strategy, and

2. using additional information over their analyzed history could identify ―most

dangerous‖ anti-patterns [Radu].

However, they found that the selection of metrics is heuristic, and their metrics based

tools cannot find most other bad code smells and anti-patterns.

Emden and Mooned developed a bad code smell detecting tool named jCOSMO, a

Java-based code smell detector that can also be used with other tools. They showed

how to automatically detect code smells by breaking them up [Emden & Moonen], and

they also described how the bad code smell concept might be expanded to include

23

coding standard conformance. They suggested that their bad code smell detector is fully

automated and can show bad code smells graphically. Slinger developed a prototype of

code smell detection plug-in for the Eclipse IDE framework [Slinger].

Cheng and Liao created a taxonomy for bad code smells that is closely related to anti-

patterns. Their taxonomy contained three-levels, including description, detection

symptoms, and properties. They referred to their taxonomy as ―an ontology based

taxonomy‖ because it included semantic relations between objects in the domain. The

semantic relations include that ―companion smells‖ describes bad code smells that

often accompany conditional statements smells, and ―causal links‖ describes the

possible relations between bad code smells [Cheng & Liao].

Moha introduced a methodology based on a meta-model to detect and correct high-

level design defects utilizing refactorings. She defined design defects as bad code

smells and anti-patterns that include the Blob, the Functional Decomposition, the

Spaghetti Code and the Swiss Army Knife. Moha‘s meta-model approach and our

ontology-based approach share a common goal of improving software quality by

identifying and removing design and programming defects [Moha][Moha2][Moha et

al.]. Other similarities include analysis of textual descriptions of design defects to

identify key words used to define a common vocabulary, development of taxonomy to

describe design defects, and validation methods that include a survey within the

software community.

Meta-model and ontology are different in that an ontology is descriptive and belongs to

the domain of the problem, but a meta-model is prescriptive and belongs to the domain

of the solution. Ontology is specially suited for knowledge models. Some researchers

24

suggest that using the same meta-model without an ontology can cause different

knowledge representations of the same domain to be incompatible [Lee].

This research distinguishes itself from other works via its ontological approach that

covers several related concepts and capitalizes on the advantages ontologies offer such

as ontological tools and associated platforms to facilitate the establishment of class

hierarchy, development of rules and axioms, and reasoning about relationships.

2.5 Summary

Anti-patterns are the extension and opposite of the design patterns, and they are classes

of bad solutions to the problems. Bad code smells are the symptoms of problems in the

software source code. The existence of many bad code smells is a strong indication of

poor source code structure. Refactoring provides step-by-step solutions to improve the

quality of software by removing bad code smells and anti-patterns. However, as the

refactoring of bad code smells occur usually after the coding level of the software life

cycle, it can be very costly.

There is a lack of efficient methods to define, identify and analysis these concepts and

their relations. Chapter 3 introduces the ontology concept and its application in this

research.

25

Chapter 3

Ontological Representations

This chapter provides a general introduction to ontologies; a high-level view of the

OABR representation of anti-patterns, bad code smells, refactoring, and software

problems; and the relevance of ontologies to this research.

3.1 Ontology Background

In computer science, the term ―ontology‖ refers to a ―data model that presents a

specific part of the real-world and is used to reason about the relationships of objects or

concepts in the world‖ [Lee & Meier]. Another definition of ontology focuses on the

form of an ontology – ―An ontology defines the basic terms and relations comprising

the vocabulary of a topic area as well as the rules for combining terms and relations to

define extensions to the vocabulary‖ [Calero & Piattini]. Ontology is interpreted as the

formal representation of a conceptualization and as an efficient knowledge engineering

technique useful in representing concepts in a formal way. A general ontology contains

the following parts [Noy & McGuinness]:

 ―Instances are the basic components of ontology such as people, animals, tables,

automobiles, molecules, and planets.

 “Class (Concept) represents a concept in a domain or a collection of elements of

an instance of the concept with similar properties such as a person (the class of

all people), a molecule (the class of all molecules), and car (the class of all

cars).‖

 “Property describes the structure of a concept.‖

26

 “Relations show the properties and values.‖

 “Attributes are data types that consist of name and values.‖

Generally, an ontology is not a taxonomy or classification, though they often look alike.

An ontology provides more richness of information than a classification. In addition to

the concepts that both ontology and classification provide, ontology also includes the

relations among the concepts [Reinout].

A taxonomy is ―a system for naming and organizing things into groups, which share

similar qualities‖ [Cambridge Dictionary]. A taxonomy can make objects easier to

understand, help recognize the relationship between the objects, and help understand

the larger context for each object.

The major difference between an ontology and a taxonomy is that rules and constraints

are defined in ontology:

vocabulary + structure = taxonomy

taxonomy + relationship + constraint and rules = ontology [TopQuadrant]

Figure 3.1 shows a portion of a simple ontology for pets. In the pet ontology, the

related terms could be cat, dogs, pet, color, location, weight, hair, and age. Pet is the top

class while Cat and Dog are subclasses of Pet. The Pet class has the attributes or

properties such as color, location, weight, age, and hair. All the sub-classes of Pet also

inherit these properties. A cat name ―Romeo‖ is an instance of the Cat class. The non-

taxonomic relations in this ontology are like ―Dogs->chase->cats‖

Figure 3.2 provides a more complex example of an ontology that contains concepts and

relations similar to the ontology used in this research. It describes interrelationships

between abnormal life, symptoms of diseases, detection, and treatments.

27

Figure 3.1: A Simple Example of Ontology

It shows a partial ontology representing human illnesses and its interrelationships with

partial ontologies for anti-patterns in the form of abnormal life, bad code smells in the

form of disease and symptoms, refactoring in the form of treatment, and metrics-based

tools in the form of medical detection tools. It also shows Symptoms, Illness (disease),

Medical Detection Tools, Treatment, and Abnormal life. Symptoms describe diseases

that are the signs of problems in human bodies. There are thousands of symptoms

28

Figure 3.2: A Partial Ontology Representing Human Illnesses

29

that might be signs of disease/illness. In the diagram, we show three common

symptoms - "Headache", "Nausea", and "Vomiting‖. Diseases are classified according

to the different parts of human body such as head, heart, and lung. For example, various

diseases might cause a headache. A disease could be very serious such as a tumor, or

not so serious such as sinus. Medical tools detect symptoms based disease. For

example, an X-ray instrument could detect tumors but might not be reliable. Tools

could detect diseases as for treatments. Some diseases must be treated while others

might be tolerated considering the medical cost. Finally, abnormal Life causes diseases.

Examples of abnormal life include "overweight", "too little rest", or gene problems. If

people could solve the problems of abnormal life, the diseases might be prevented.

Thus, medical treatment cost could be reduced.

In general, the ontology includes the following non-taxonomic relations:

Abnormal life->causes->disease

Treatment->solves->symptoms

Detection->detects->symptoms

Symptoms->describe->diseases.

3.2 Ontological Representations of Anti-patterns, Code Smells, and Refactoring

Figure 3.3 shows a high-level view of the OABR conceptual domain model. For

example, anti-patterns cause software problems that can be source code problems or

other problems. The source code problems can be either errors or poor codes. Bad

code smells describe the symptoms of poor codes. Metrics can detect bad code smells,

and refactoring methods can solve bad code smells. Section 4.7 contains a detailed

view of OABR that facilitates the depiction of the interrelationships between and

30

among these software concepts.

The ontological representations provide a systematic approach toward defining the

properties of anti-patterns, code smells and refactoring as well as analyzing the

interrelationships between them. Figure 3.3 has similarities in common with the

concepts, relationships, and constraints shown in Figure 3.2. Bad code smells are like

symptoms of disease. Both concepts describe something wrong, and they can be

removed by addressing related problems. Both symptoms and bad code smells can be

detected heuristically or by tools. Anti-patterns and abnormal life are the causes of

problems. If they could be prevented, related chronic problems could be prevented from

reoccurring. Thus, the cost and risk would be reduced. Finally, refactoring is similar to

treatments that aim to solve problems.

3.3 Why Use Ontological Representation

We utilize a new ontology, OABR, to provide a formalized description of anti-patterns,

bad code smells, refactoring, and their relations. The use of OABR offers the following

advantages:

 sharing and improving common understanding of bad code smells, anti-patterns,

refactoring, and detection techniques among the software community because

they share the same underlying ontology of the terms;

 providing the reasoning capabilities associated with ontologies to analyze the

domain and offer new insights. The ontology can assist to find new anti-

patterns, new bad code smells, new identification methods, and refactoring

methods;

 enabling reuse of domain knowledge by other researchers to develop additional

31

Figure 3.3: Simplified Conceptual Model of OABR

32

ontologies for software domains such as software qualities attributes, software

design patterns, software cost estimation, software reuse, and maintenance.

An ontology mainly consists of lightweight ontologies and heavyweight ontologies.

Lightweight ontologies, the most commonly occurring type [David], are a subclass of

heavyweight ontologies. A lightweight ontology includes concepts, concept

taxonomies, relationships between concept, and properties that describe these concepts.

A heavyweight ontology has axioms and constraints plus the features of a lightweight

ontology [Calero]. We classify OABR in this research between lightweight and

heavyweight because OABR has constraints on bad code smells.

3.4 Summary

This chapter described the ontology concept, its application in this research and the

benefits of the ontology for improving the understanding of anti-patterns, bad code

smells, and refactoring. Chapter 4 will present the methodology used to develop the

OABR infrastructure.

33

Chapter 4

Research Method

4.1 Introduction

This chapter presents an ontology-based approach to define and apply the properties of

anti-patterns, bad code smells, refactoring, and the relations between them. We

collected, organized, and classified the properties of the related concepts for further

analysis (refer to Section 4.2). We expanded the properties for bad code smell by

creating a quality index used to prioritize bad code smells with the goal of providing

support for identifying which bad code smells should be removed, or tolerated (refer to

Section 4.3). We then created templates based on properties for additional bad code

smells and refactoring analysis (refer to Section 4.4). We also developed taxonomies

for anti-patterns, refactoring, and bad code smells to provide hierarchical classifications

(refer to Section 4.5). Section 4.6 shows the terminologies and relations represented by

the basic Descriptive Logics (DL) used to define ontology language. We developed an

OABR infrastructure including anti-patterns, bad code smells, related software

problems, detections, and refactoring based on the properties, taxonomy, and non-

taxonomy relations (refer to Section 4.7). Finally, we describe creating, accessing,

storing, querying, and mapping of OABR with the ontological tools, platforms, and

ontology registries/repositories in Section 4.8 and Section 4.9. Figure 4.1 provides the

inputs to OABR.

4.2 Definitions of Class Properties

Class properties provide organized information and internal structure for each class. For

34

Figure 4.1: Outline Showing the Inputs to OABR

35

each class, one part describes the class name, and the remaining part is properties of the

class describing various features and attributes of the concept such as causes, solutions,

and symptoms. Each property belongs to a certain class. A property is also called role

or slot.

The types of properties could be intrinsic properties such as the causes and symptoms

of an anti-pattern or the symptom of bad code smells; extrinsic properties such as name;

or the relations to other individuals. All the sub-classes of a class inherit the properties

of that class. In this section, we will enumerate and briefly describe the properties for

anti-patterns, refactoring, and bad code smells. As there are few formal and consistent

descriptions about bad code smells, we describe and define code smells properties in

more details.

4.2.1. Anti-pattern Properties

Many properties of existing anti-patterns were defined by [Brown] and [Laplante]

separately. In this research, we selected properties such as name, causes, consequences,

symptoms, and refactoring. Other properties such as root causes, variations,

background, and general forms are not included as they are dependent on the software

developers‘ personal experiences. Also, too many properties for a specific concept will

increase the complexity in accordance with the basic principle that ―the more

expressive the language, the harder the reasoning‖ [Horridgy et al.].

An example of the Blob anti-pattern with its properties is shown in Table 4.1.

4.2.2 Refactoring Properties

We defined the refactoring properties as name, scenario, and mechanics. The name of a

36

Table 4.1: Examples of Blob Anti-pattern Properties

Anti-pattern

Name: Blob

Causes: Lack of (an object-oriented architecture, architecture enforcement), too limited

intervention

Consequences: Too complex for reuse and testing, expensive to load into memory

Symptoms: Large number of attributes

Refactoring: Change responsibilities

refactoring usually consists of an operation and an object. For example, for the

―Remove Middle Man‖ refactoring, ―Remove‖ is an operation while ―Middle Man‖ is

an object. The scenario property provides description to each refactoring about when it

will be applied. The mechanics property describes how to apply methods step by step

for each refactoring to solve the related problem.

Refactoring could be classified as design refactoring and code refactoring. We focus on

existing code refactoring. Design refactoring is beyond to this research.

Figure 4.2 lists 35 code refactoring techniques, each with a numbering label that has

been applied to solve bad code smells related problems by software developers

[Fowler]. We use the number label rather than the full name of the refactoring methods

in subsequent tables and figures. Refactorings not related to bad code smells are not

included in Figure 4.2.

37

 Figure 4.2: Subset of Refactoring Methods

4.2.3. Bad Code Smell Properties

An objective of this research is to provide a more formal and consistent documentation

of properties to make each bad code smell easier to identify and compare. Current

definitions of bad code smells are described and organized in a rather informal and

inconsistent manner.

We analyzed initial properties of bad code smells as name, symptoms, metrics, and

refactoring. Symptoms property describes how to find a bad code smell. Table 4.2

contains subsets of the 23 bad code smells named by [Fowler] with the symptoms

property. We defined the symptoms property based on descriptions from both [Fowler]

and [Mika]. We expressed each bad code smell using key words instead of sentences to

describe symptoms in order to simplify comparison and inclusion as ontological

R1. Change Bidirectional

Association to Unidirectional

R2. Collapse Hierarchy

R3. Decompose Conditional

R4. Encapsulate Collection

R5. Encapsulate Field

R6. Extract Class

R7. Extract Interface

R8. Extract Method

R9. Extract Subclass

R10.Form Template Method

R11.Hide Delegate

R12.Inline Class

R13.Inline Method

R14.Introduce Assertion

R15.Introduce Foreign

Method

R16.Introduce Local

Extension

R17.Introduce Null Object

R18.Introduce Parameter Object

R19.Move Field

R20.Move Method

R21.Preserve Whole Object

R22.Pull up Methods

R23.Replace Array with Object

R24.Replace Conditional with

Polymorphism

R25.Replace Data Value with Object

R26.Replace Delegation with Inheritance

R27.Replace Inheritance with Delegation

R28.Replace Method with Method Object

R29.Replace Parameter with Explicit

Method

R30.Replace Temp With Query

R31.Replace Type Code with

State/Strategy

R32.Replace Type Code with Subclass

R33.Remove Middleman

R34.Remove Parameter

R35.Rename Method

38

properties. For example, the existence of ―Divergent Change‖ means a frequently

changed class. The symptom of ―Duplicate Code‖ is defined in the key words as

―Redundant Code‖.

Table 4.2: Subset of Bad Code Smells of Which Symptoms Are Described by
Keywords [Fowler][Mika]

Smell Name Symptoms

Alternative Classes

with Different Interfaces

A class operating with two classes

with different interfaces

Comments Poor structure code

Data Class Data with no logic

Data Clumps Data dependent each other

Divergent Change Frequently changed class

Duplicate Code Redundant code

Feature Envy Use other classes than itself

Inappropriate Intimacy Too tightly coupled

Incomplete Library

Class

Using incomplete library

Large Class Too many functions

Lazy Class Doing little things

Long Method Too long method

Long Parameter List Too long parameter list

Message Chains Coupling problems

Middle Man Delegating jobs to subsequent

classes

Parallel Inheritance

Hierarchies

Parallel class hierarchies exist

Primitive Obsession Using primitives instead of class

Refused Bequest Child class not support its

inherited methods

Shotgun Surgery Change one leading to changing

others

Speculative

Generality/Dead code

Code for future

Switch Statements No polymorphism and pass on

methods

Temporary Field Occasionally used variables

39

Bad code smells can be detected heuristically depending on a programmers‘

experiences or through the application of traditional software metrics such as these

metrics shown in Table 4.3 [Ronningen] [Rosenberg][Chidamber & Kemerer]. The

metrics property is how traditional software metrics is used to identify a bad code

smell.

Table 4.3: Goals and Application of Traditional Software Metrics

Metric Application Goals

LOC

(Lines of Code)

measure the size of a class understandability, reusability, and

maintainability

CP

(Comment

 Percentage)

understandability and

maintainability

understandability, reusability, and

maintainability

WMC

(Weighted Methods

 per Class)

sum of the complexities of

the methods-weighed

methods per class

understandability, reusability, and

maintainability

RFC

(Response For a

Class)

number of methods can be

invoked

understandability, maintainability, and

testability

LCOM

(Lack of Cohesion of

 Methods)

measure the dissimilarity of

methods in a class

efficiency and reusability

CBO

(Coupling between

 Objects)

count the number of coupled

classes

efficiency and reusability

Halstead measure a program module's

complexity

complexity

The metrics listed in Table 4.3 are defined as the follows.

 Weighted methods per class (WMC): WMC is the number of methods included

in a class weighted by the complexity of each method. High WMC indicates a

high complexity.

http://www.sei.cmu.edu/str/indexes/glossary/complexity.html

40

 Response for a class (RFC): RFC is a count of methods implemented within a

class plus the number of methods accessible to an object of this class type due

to inheritance.

 Cohesion (LCOM): A measure that indicates how well the parts of a component

belong together. Cohesion should be maximized to promote encapsulation.

 Coupling (CBO): A measure of the extent to which interdependencies exist

between software modules. Loose coupling decreases the complexity.

Software product metrics measure software products at different development stages,

ranging from measuring the complexity of software design to the size of the final

source code. The measurability of a bad code smell depends on the size, the

complexity, and the structure of the bad code smell. Some bad code smells such as

―Long Method‖ can be easily detected by traditional software metrics such as

Cyclomatic complexity and Halstead measures. However, the selected metrics types

used for each bad code smells are based on heuristic analysis. Some code smells such

as ―Dead Code‖ and ―Middle Man‖ are difficult to detect by software metrics. Many

bad code smells appear to be undetectable by software metrics. Mika developed an

index based on his heuristic analysis to show the measurability of each code smell,

where 0 means impossible to measure by metrics while 5 means easiest to use metrics

to measure [Mika].

The refactoring property describes the solutions to each code smell. Some refactoring

could solve several code smells, and some code smells may need several refactoring

methods to remove.

We developed Table 4.4 to describe bad code smells in an organized manner.

41

Table 4.4: Properties of Bad Code Smells

Code Smell

Name

Symptoms Metrics Refactoring

Solutions

Types M
Alternative

Classes with

Different

Interfaces

A class operating with two

classes with different

interfaces

None 0 R20,R35

Comments Poor structure code None 1 R8,R14

Data Class Data with no logic CC/Number of

fields

4 R4,R5,R20

Data Clumps Data dependent each other None 0 R6,R18,R21

Dead Code Static/dynamic

detection

3

Divergent change Frequently changed class None 0 R6

Duplicate code Redundant code LOC 4 R6,R8,R10,R22

Feature Envy Use other classes than itself Coupling 4 R8,R19,R20

Inappropriate

Intimacy

Too tightly coupled Coupling 4 R1,R11,R19,

R20,R27

Incomplete

Library class

Using incomplete library None 0 R15,R16

Large class Too many Functions NLOC

Cohesion

4 R6,R7,R9,R25

Lazy Class Doing little things NLOC/CC 4 R2,R12

Long Method Too long method NOLOC/CC/Hals

tead

5 R3,R8,R28,R30

Long Parameter

List

Too long parameter list Number of

parameters

5 R18,R28,R21

Message Chains Coupling problems Coupling 3 R11

Middle man Delegating jobs to

subsequent classes

Coupling/CC

2 R13,R26,R33

Parallel

Inheritance

Hierarchies

Parallel class hierarchies

exist

None 0 R19,R20

Primitive

Obsession

Using primitives instead of

class

None 0 R6,R18,R23,

R25,R31,R32

Refused Bequest Child class not support its

inherited methods

None 0 R27

Shotgun surgery Change one leading to

changing others

None 0 R12,R19,R29

Speculative

Generality

Code for future Static/dynamic

detection

3 R2,R12,R34,

R35

Switch statements No polymorphism and pass

on methods

LOC/CC/running

time detection

3 R17,R24,R29,

R31,R32,

Temporary field Occasionally used variables Methods

counting

3 R6,R17

42

Properties of each bad code smell include name, symptoms, metrics-based detection

analysis, and refactoring solutions. Each number label in the ―Refactoring Solution‖

column refers to one of refactoring methods shown in Figure 4.2.

From Table 4.4, we can define each bad code smell based on their properties. However,

it is difficult to compare them quantitatively because there is no computed value for

each attribute.

4.3 Quality Indexes of Bad Code Smells

To improve the software product quality, the best scenario is to identify and remove all

the bad code smells from source code. However, in reality, some code smells are

difficult or impossible to identify or too costly to remove. For example, some bad code

smells, such as ―Large Class‖, are difficult to remove while others, such as ―Lazy

Class‖, are easier to remove. Some bad code smells can be easily identified, but the

removal process is costly, such as ―Divergent Change‖. On the other hand, not all bad

code smells have the same level of importance to the source code. There is a tradeoff

between cost of identifying/removing bad code smells and improving the software

quality.

In this section, we define a quality index to prioritize bad code smells based on their

properties with the goal of comparing bad code smells and identifying which bad code

smells should be removed, prevented, or tolerated (Refer to Figure 4.3).

Identification is a mixture of heuristic analysis and metrics based tool detection that

indicates whether a bad code smell is easy or difficult to find. Remove reflects the

heuristic analysis of refactoring methods for removing a code smell and indicates

whether the code smell is easy to remove or not. Impact refers to the consequence and

43

potential danger of the problem that a bad code smell refers to and whether its impact is

in a small region or a large part of source code.

Figure 4.3: Quality Index of Bad Code Smell

For each property, we set a scale of 0 – 5 where ―0‖ means impossible to identify,

difficult to remove, and has little impact while ―5‖ means easy to identify, easy to

remove, and has strong impact on source code.

We rate a quality index as strong, medium, and weak are shown in Table 4.5.

Table 4.5: Definition of Quality Index

Quality Index Identification(I) Remove(R) Impact (Im)

Strong 3 < I < 5 3 < R < 5 3<Im<5

Medium 2 < I < 3 2 < R < 3 2 < Im < 3

Weak I<2 R < 2 Im < 2

Strong code smell related problems have a strong impact on the source code, and, thus,

should be removed. Weak code smell means is not easy to identify or to remove, as

well as its related problems do not have a strong impact on source code. Thus, it can be

tolerated. An example of a strong code smell is ―Large Class‖, and an example of a

Im = Impact

I = Identification

R = Remove

44

Table 4.6: Bad Code Smells Indexes

Code Smell Name Identification Remove Impact Quality

Alternative Classes with

Different Interfaces

0 5 3 Medium

Comments 4 4 1 Weak

Data Class 4 3 3 Medium

Data Clumps 4 5 1 Weak

Dead Code 4 5 2 Medium

Divergent Change 0 4 - Medium

Duplicate Code 4 4 4 Strong

Feature Envy 4 - - -

Inappropriate Intimacy 4 4 5 Strong

Incomplete Library

Class

0 - - -

Large Class 4 3 5 Strong

Lazy Class 2 2 1 -

Long Method 5 3 4 Medium

Long Parameter List 5 - 2 Weak

Message Chains 3 - - -

Middle Man 2 - - -

Parallel Inheritance

Hierarchies

0 - 3 Medium

Primitive Obsession 0 4 - -

Refused Bequest 3 - - -

Shotgun Surgery 0 - - -

Speculative Generality 3 - - -

Switch Statements 3 3 3 Medium

Temporary Field 3 - - -

‗ – ‗ = not able to assign

weak code smell is ―Lazy Class‖. These grouping are subjective and can be altered

based on the domain of use.

Table 4.6 shows the quality index applied to represent bad code smells based on our

heuristic analysis. For example, we evaluate Dead Code as easily detectable by

dynamic checking (rating as 4 for identification). It would be easy to remove (rating as

5 for remove index). Dead Code will affect the readability and understandability of

45

source code, but its impact is not significant. We rate the impact index for Dead Code

as 2. Another example is Large Class. The Large Class, which is easy to identify with

the cohesion metrics such as Lack Cohesion Metrics, thus, its index is rated as 4. The

removal of Large Class will use refactoring methods such as Extract Class, Extract

Interface, and Replace Data Value with Object. We define the rate of its remove index

as 3. The Large Class will not only affect the understandability and reusability, it will

also make source code hard to maintain. We rate the impact index for Large Class as 5.

The rating of the quality indexes like identification, remove, and impact of code smells

is subjective and intuitive. The ‗-‗ symbols in the Table 4.6 mean that we do not

assigned values to these code smell quality indexes.

To provide empirical support, we conducted a survey on the quality indexes of bad

code smells among senior software engineers. The questionnaire consists of two parts.

The first part collected background information on the responders such as IT related

degrees, years of programming experiences, preferred programming language, and

current projects. The second part provides a description of each code smell in plain text

and requests the responses to rate each code smell based on the properties we defined.

The questionnaire was distributed through emails and accessible via the following

websites (Part A – http://www.questionpro.com/akira/TakeSurvey?id=771431 and Part

B http://www.questionpro.com/akira/TakeSurvey?id=771311).

Fourteen responders have at least a Masters or above degree in IT related major, and

their average working experiences are 6 years. The software engineers came both from

industry (75%) and academia (25%). Results (refer to Table 4.7) affirm that bad code

smells differ with regard to their identification, remove, and impact.

http://www.questionpro.com/akira/TakeSurvey?id=771431
http://www.questionpro.com/akira/TakeSurvey?id=771311

46

Table 4.7: Code Smell Quality Indexes from Survey

Code Smell Name Identification Removal Impact

Mean Std. Mean Std. Mean Std.

Alternative Classes with

Different Interfaces

2.82 1.40 2.91 1.38 3.18 1.54

Comments 3.45 2.02 3.91 1.70 2.36 2.11

Data Class 3.09 1.30 2.82 1.40 2.82 1.33

Data Clumps 3.82 1.33 3.5 1.17 2.00 1.15

Divergent Change 3.56 1.23 2.20 1.40 2.50 1.43

Duplicate Code 4.27 1.27 3.5 2.01 2.45 1.57

Feature Envy 2.00 1.33 2.50 0.97 3.22 1.20

Inappropriate Intimacy 2.27 1.62 1.82 1.25 3.55 1.13

Incomplete Library Class 3.00 1.61 2.1 1.60 3.00 1.86

Large Class 2.55 2.07 1.82 1.60 3.60 0.84

Lazy Class 3.00 1.79 3.64 1.29 1.36 1.43

Long Method 2.82 2.04 2.09 1.38 3.2 1.32

Long Parameter List 3.45 1.64 3.00 1.27 2.45 1.81

Message Chains 3.10 1.10 2.55 1.44 3.55 1.04

Middle Man 2.36 1.50 1.91 1.58 3.36 1.43

Parallel Inheritance

Hierarchies

2.33 1.32 2.33 1.22 3.11 1.17

Primitive Obsession 3.09 1.22 3.36 1.29 3.00 1.33

Refused Bequest 3.00 1.49 3.30 1.57 2.56 1.59

Shotgun Surgery 2.40 1.58 1.70 1.49 3.80 1.47

Speculative Generality 2.9 1.37 3.18 1.25 2.40 1.07

Switch Statements 3.00 1.61 2.91 1.38 1.90 1.45

Temporary Field 2.55 1.51 3.36 1.36 1.55 1.29

47

The survey shows that the quality indexes of bad code smells are perceived differently.

While some code smell are easy to remove, to identify, and do not have a significant

impact on the source code, others are costly to identify and remove and have a

considerable impact on software products. We applied the survey results to assign

values to each code smell data property, calculating the average values of a property for

each code smell, and then filled in the values for the properties of each code smell to

assist software developers in determining whether a bad code smell related problem

should be removed or tolerated.

4.4 Templates for Bad Code Smell and Refactoring Analysis

Following the analysis of the properties of bad code smells and refactorings in Section

4.2 and Section 4.3, we created templates to express the properties of code smells and

refactoring. The example for the template of anti-pattern is shown in Table 4.1.

Templates provide a consistent outline for documentation, and they are used as a

reference for the input or output of OABR.

Figures 4.4 through 4.7 show the formats of templates for expressing the properties of

bad code smells and refactoring, along with examples.

 Figure 4.5 shows an example of the ―Middle Man‖ bad code smell represented using

the template defined in Figure 4.4. Other examples of bad code smells are shown in

Appendix A.

We organized a refactoring a template for properties as shown in Figure 4.6.

Figure 4.7 shows an example of the refactoring method named ―Collapse Hierarchy‖

represented using the refactoring template defined in Figure 4.6.

48

Figure 4.4: Bad Code Smell Template

Figure 4.5: An Example of Bad Code Smell – ―Middle Man‖

BAD CODE SMELL

Name: Code smell name

Symptoms: the Definitions of the code smell

Solutions: The refactoring method(s)

Identification: How is it easy/difficult to detect

Remove: How is it easy/difficult to remove

Impact: How much does the code smell impact the source code quality

MIDDLE MAN

Name: Middle Man

Symptoms: A class delegating most of its tasks to subsequent classes

Solutions: Inline Methods, Replace Delegation with Inheritance

Detection: Many methods coupled to one class with a low cyclomatic complexity

Identifications: Medium

Remove: Difficult

Impact: Strong

49

Figure 4.6: Refactoring Template

Figure 4.7: An Example of Refactoring Template – ―Collapse Hierarchy‖

The templates describe the anti-patterns, bad code smells and refactoring properties in a

uniform way that are later folded into OABR. More examples of refactoring are shown

in Appendix B.

REFACTORING

Name: What is the refactoring called?

Scenario: When is the refactoring needed?

Mechanics: How does the refactoring work?

COLLAPSE HIERARCHY

Name: Collapse Hierarchy

Scenario: Subclass and parent class is similar.

Mechanics:

1. Select the class to be removed

2. Merge the class

3. Adjust references and remove the empty class

50

4.5 Anti-pattern, Refactoring, and Code Smells Taxonomy

We arranged and organized the classes of anti-pattern, refactoring, and bad code smells

in hierarchical taxonomies. A taxonomy represents an ―is-a‖ relation (a class A is a

subclass of B if every instance of B is also an instance of A [Noy]) and a taxonomic

relation is as a ―kind-of‖ relation. For example, Dead Code is a kind of bad code smell.

The taxonomy not only makes the related concepts more understandable but also

identifies relations at a higher classification as well as improves the clarity and reuse of

an ontology.

Figure 4.8A shows the anti-pattern taxonomy. The anti-pattern taxonomy is based on its

application for software developments, software management or software maintenance.

There are currently six categories of anti-patterns, including software design, project

management, software analysis, programming, and methodology. We used software

design, methodology, and programming to this research. The anti-patterns categories

about organizational anti-patterns, project management, or analysis are beyond this

research.

Figure 4.8B shows a code refactoring taxonomy based on operations. A refactoring

method consists of an operation part and object part. For instance, we define the Extract

Method, Extract Interface, Extract Sub classes, and Extract Super classes as a category

of ―Extract‖ as they apply the same extract operation on different objects such as class,

super class, sub class, method, or interface. Other categories include the operations of

replace, remove, and introduce. The label for each refactoring term refers to the labels

shown in Figure 4.2.

Figure 4.8C shows the bad code smell taxonomy that is based on the comparison of

51

refactoring solutions to each code smell. Each code smell has one or more related

refactoring methods (solutions). The name of each category in the taxonomy reflects

the solution for the bad code smell. Our taxonomy is solution-based in contrast to

Mika‘s taxonomy that is based on symptoms [Mika].

The bad code smell taxonomy includes the following six categories:

 Extracting - describes bad code smells that could be removed by using the

refactoring method named ―expanding classes, methods, subclass, interfaces‖;

 Object Introducing - describes a group of bad code smells that could be solved

by applying the refactoring methods of adding new objects to the source code;

 Inline - describes a category of bad code smells that could be solved by

applying the refactoring method of inline class or inline method with other

refactoring methods;

 Moving - describes a category of bad code smells that could be solved by

applying the refactoring method of transferring method or field or along with

other refactoring methods;

 Delegation - describes a category of code smells that could be solved by

applying the refactoring methods related to OOP‘s Delegations with other

refactoring methods; In OOP, delegation ―is a technique of delegating or

deferring the implementation of an interface to the result of a function. The

purpose of delegation is for dynamic inheritance.‖ [Christopher];

 Others - include all the bad code smells that apply other refactoring methods.

With the solution-based taxonomy of bad code smells, the types of refactoring are

usually specified; thus, the analysis is based on a fixed set of concepts (keywords)

52

A. Anti-pattern Taxonomy

Figure 4.8: Anti-pattern, Code Refactoring, and Bad Code Smell Taxonomies

53

(Figure 4.8 continued)

B. Code Refactoring Taxonomy

54

(Figure 4.8 continued)

C: Bad Code Smell Taxonomy

55

because the names and types of refactoring methods usually do not change.

A solution-based taxonomy of code smells has some similarities to Mika‘s symptom-

based taxonomy. For example, we put Long Method, Large Class, Primitive

Obsession,and Data Clumps into the ―Extracting‖ category as Mika did by putting them

into the ―the Bloaters‖ category. The result makes sense as both the symptoms and

solutions have relationships with each other by reflecting same problems.

4.6 Description Logics to Express Terminologies and Relations of OABR

Description Logics (DL) is expressive, objective, and an ideal starting point for

describing concepts, properties, relations, and individuals in a domain [baader]. Also,

DL provides a useful tool for defining, integrating, and maintaining an ontology.

We apply DL to express terminologies and relations among concepts for OABR. Figure

4.9 shows examples of the basic DL‘s expression for OABR.

Atomic symbols consist of atomic concepts and atomic roles from which we build

complex descriptions.

A TBox describes concept hierarchies like relations between concepts by sentences. For

example, CodeSmell can be defined as poor code showing symptoms by writing this

declaration: ―CodeSmell ≡ showSymptoms.PoorCode‖.

An Abox consists of concept assertions and role or property assertions that describe the

relations between instances and classes. An Abox is also called individuals or

membership assertions [Baader]. For instance, Large Class and Extract Class are

instances, CodeSmell(Large Class) means that Large Class is an instance of code smell

class, Refactoring(Extract Class) means that Extract Class is an instance of Refactoring

method class, and hasRefactoring(Large Class, Extract Class) means that

56

Symbol

≡ (concept equivalence/definition)

 (existential restriction)

¬ (negation)

 (universal restriction)

∩ (intersection or conjunction of concepts)

 (union or disjunction of concepts)

() (Concept/role assertion)

Atomic Symbols

SoftwareProblems, SoftwareChronicalProblems, SourceCodeProblems, Solution, Good

solution, PoorCode, Refactoring

TBox

DesignProblems≡hasDesignProblem.softwareChronicalProblems

Sourcecodeproblems≡hasSourcecodeProblem.softwarechronicalProblems

Badsolution ≡ ¬ goodsolution

DesignPattern≡hasDesignProblemsoftwareChronicalProblems Solution

AntiPattern≡DesignProbelms BadSolution

CodeSmell ≡ showSymptoms.SourceCodeProblems

MediumCodeSmell≡((hasImpact.CodeSmell) ∩(≥2 hasImpact ∩ ≤3 hasImpact))

∩((hasIdentification.CodeSmell) ∩ (≥2 hasIdentification ∩ ≤3 hasIdentification)) ∩

((hasRemoval.CodeSmell) ∩(≥2 hasRemoval ∩ ≤3 hasRemoval))

StrongCodeSmell≡≡((hasImpact.CodeSmell) ∩ (3 ≤ hasImpact))

((hasIdentification.CodeSmell) ∩ (≥3 hasIdentification ∩ ≤5 hasIdentification)

((hasRemoval.CodeSmell) ∩∩(≥3 hasRemoval ∩ ≤5 hasRemoval))

WeakCodeSmell≡((hasImpact.CodeSmell) ∩ (2≥ hasImpact))

((hasIdentification.CodeSmell) ∩ (2≥ hasIdentification))

((hasRemoval.CodeSmell) ∩(2≥ hasRemoval))

ABox

Concept Assertions:

CodeSmell(LongMethod), CodeSmell(LargeClass), CodeSmell(PrimitiveObsession),

CodeSmell(LongParameterList), CodeSmell(DataClumps)

AntiPattern(Blob), AntiPattern(StovepipeSystem), AntiPattern(GasFactory)

Refactoring(ExtractClass), Refactoring(InlineClass), Refactoring(ForeignMethod),

Refactoring(RenameMethod), Refactoring(ExtractMethod)

Role Assertions:
hasSymptoms, showSymptoms, hasDesignProblems, hasSourcecodeProblems,

causeProblems, hasRefactoring, hasImpact, hasRemoval, hasIdentification,

hasProblem, hasContext, hasConsequences, hasRootCause, hasSolution

Figure 4.9: Examples of DL Description of OABR

57

Refactoring(Extract Class) could be used to solve the CodeSmell(Large Class) related

problems. More examples are shown in Appendix D.DL provides the ability to capture

different kinds of relationships. However, the DL‘s exponential computational

complexities usually make the automatic computation impractical. Also, some relation

properties like ―causes‖ or ―addresses‖ in OABR are impossible or very difficult to be

expressed in DL. There are non-standard inferences that support building and

maintaining DL knowledge bases [Baader].

4.7 Ontological Infrastructure

Based on the properties for each foundational concept and the taxonomic relations

defined in the previous sections, we developed the OABR infrastructure. Figure 4.10

shows a detailed view of the OABR representation. The OABR graphically shows the

interrelationships between and among the related software concepts.

The root class of OABR, the Problems class, refers to chronic software problems.

Source code problems and non source code problems are subclasses of software

problems. Non source code problems include all chronic problems at the different

software development cycles except coding level. The ―Poor Code‖ subclass is an

example subclass of ―Source Code Problems‖, and it shows some instances such as

SourceCodeProlem(Large_Class_Low_Cohesion),

SourceCodeProblem(Not_doing_enough_Class), and SourceCodeProblem

(Many_Object_High_Coupling).

The anti-patterns class causes software development problems. There are five classes of

antipatterns [Laplante] (refer to Figure 4.8A). OABR currently includes only the anti-

58

Figure 4.10: Conceptual Models of OABR

59

patterns categories that are related to designing , programming, and methodology. We

merge the anti-patterns in general design with those in OO design to design class.

Bad code smells are symptoms of problems in the source code and are classified as

either Symptoms-based on the symptoms properties or Solutions-based on the

refactoring properties of each code smell. Sub-classes of the Symptoms-based are from

[Mika et al.] and include: Bloaters, O-O Abusers, Change Preventers, Dispensable, and

Encapsulations [Mika]. Sub-classes of Solutions-based are from our taxonomy that

analyzes the refactoring methodologies on each existing bad code smell and includes:

Extracting, Object-Introducing, Inline, Moving, Removal, and Delegation (refer to

Figure 4.8C).

The detection class and refactoring class include the identification methods and

refactoring methods to indentify and remove bad code smells and anti-patterns. The

detection class contains methods for detecting anti-patterns and bad code smells.

Detection could be performed via heuristics analysis or software metrics.

Figure 4.10 gives three instances of Metrics: ―Coupling between Object Classes

(CBO)‖, ―Lines of Code (LOC)‖, and ―Halstead‖. Refactoring consists of two sub-

classes according to the refactoring objects. BS-BASED refactoring is applied to fix a

bad code smell related problems while AN-BASED refactoring are applied to address

Anti-patterns. BS-refactoring have two sub-classes according to refactoring behaviors,

―Extracting‖ and ―Non_Extracting‖ We merged other subclasses like ―Remove‖,

―Introduce‖, and ―Replace‖ into Non-Extracting class. The instances of each

refactoring sub-class including Refactoring(Extract Class), Refactoring(Extract

Subclass), and Refactoring(Extract Method) for ―Extracting‖ category; and

60

Refactoring(Inline Class) and Refactoring(Collapse Hierarchy) for ―Non_Extracting‖

category.

OABR facilitates the depiction of the interrelationships between and among these

foundational concepts. For example, anti-patterns cause software problems that can be

source code problems or other problems. Source code problems can be either errors or

poor code. Bad code smells describe poor code. Metrics can detect code smells, and

refactoring methods can solve some code smells.

Table 4.8: The Domain and Range of OABR Non-taxonomy Relation Properties

Property name Property type Domain Range

Describe Object Property Bad-Smells Poor-Code

Cause Object Property Anti-Patterns Problems

Address Object Property AP_Based

Refactoring

Anti-patterns

Detect Object Property Detection Bad-Smells

Solve Object Property BS-Based

Refactoring

Bad-Smells

Identification Data Property Bad-Smells Float

Remove Data Property Bad-Smells Float

Impact Data Property Bad-Smells Float

Relations can also be called properties. Properties may specify a domain and a range

and link individuals from the domain to the individuals from the range. Table 4.8 shows

relation properties of OABR.

61

To demonstrate how the OABR represents the inter-relationships among these software

concepts, we focus on the Poor Code instance ―Not-doing-enough-class‖. This instance

refers to a software problem in which the functionality of a class does not justify the

costs to maintain and understand that class. This instance is associated with the Anti-

pattern instances AntiPattern(Poltergeist); the bad code smell instance CodeSmell(Lazy

Class); and the Refactoring instances Refactoring(Collapse Hierarchy) and

Refactoring(Inline Class) to provide solutions to CodeSmell(Lazy Class) related

problems. The other related refactoring instances Refactoring(Sound-Architecture-

Precedes-Production-Code-Development), Refactoring(Establish-System-Level-

Software-Interfaces), and Refactoring(Object-Oriented-Architecture) provide solutions

to AntiPattern(Poltergeist). The PoorCode(Large-Class-Low-Cohesion) is associated

with the AntiPattern(Blob), and it has the symptoms shown by the bad code smell

instance CodeSmell(Large Class). The refactoring instances Refactoring(Extract Class)

and Refactoring(Extract subclass) correspond to provide the solutions to the code smell

of CodeSmell(Large Class) and the Refactoring instance

Refactoring(MoveBehaviorAway) to provide the solutions to the AntiPattern(Blob).

The OABR infrastructure provides a more systematic approach toward analyzing the

interrelationships between anti-patterns, code smells and refactoring.

4.8 Tools and Platforms

We implemented the conceptual model for OABR shown in Figure 4.10 with Protégé, a

powerful ontological editor with a library of plug-ins that adds more functionality to the

environment of the ontology. Protégé with the Protégé-OWL plug-in

[http://protege.stanford.edu/] were developed by Stanford University [Horridge et al.].

http://protege.stanford.edu/

62

The Protégé and related tools are open source software and can be installed locally.

They provide required functionality for this research, such as definition of classes,

hierarchies, and properties as well as relations analysis. Also, Protégé has a rich set of

operators.

Figures 4.11 and 4.12 provide snapshots produced by the information browser for

Protégé, Jambalaya. They graphically portray views of the OABR representation.

Figure 4.11 shows a general picture of the concepts and the relations between the

classes in OABR. The structure is similar to the concept domain model shown in Figure

4.10. In Figure 4.11, the solid lines show the taxonomy relations ―is-a‖ between the

subclass and super class. For example, classes (triangles) in the diagram are the

subclasses of Protégé root class [Brown et al.] shown by a rectangle. The dashed lines

show non-taxonomy relation properties between classes like ―Solve‖, ―isSolvedBy‖,

―Causes‖, ―isCausedBy‖, ―Detect‖, ―isDetectedBy‖, ―Describes‖, and ―isDescribedBy‖.

The brown dashed line from ―Bad-Smells‖ to ―Poor-Code‖ is the property of

―Describes‖ and the blue dashed line from ―Poor-Code‖ to ―Bad-Smells‖ is the

property ―isDescribedBy‖ which is the inverse function of property ―Describes‖. The

domain and range of some non-taxonomy relations are shown in Table 4.8.

We showed a general template describing the properties about bad code smells in

Figure 4.4. Figures 4.12A and 4.12B show examples of template representations for the

CodeSmell(Large Class) and CodeSmell(Long Method) using Protégé with Jambalaya

respectively. These figures show the code smell related source code problems,

detections, symptoms, refactoring solutions, and quantitative values for the

63

Figure 4.11: Hierarchy Relations among Classes

64

quality indexes of identification, impact, and remove for code smells.

The data properties such as quality indexes are the results from the survey. The

information will not only improve the understanding of software developers about each

code smell but also provide guidance for which code smell should be removed and

which one could be tolerated. For example, the CodeSmell(Large Class) (Refer to

Figure 4.12A) is difficult to remove and has a significant impact on the source code

quality though it is not difficult to identify. The OABR shows how to remove

CodeSmell(Large Class) through the instance of Refactoring(Extract Class) or

Refactoring(Extract Subclass) of BS-BASED refactoring, the sub class of refactoring

class. The CodeSmell(Long Method) (Refer to Figure 4.12B) is not difficult to remove

and identify, but it has a significant impact on source code quality according to its

quality indexes. For the removal of CodeSmell(Long Method), the OABR shows that it

can be solved by the instances such as Refactoring(Extract-Method),

Refactoring(Replace-Temp-with-Query) and Refactoring(Preserve-Whole-Object) of

BS-BASED refactoring of class of refactoring.

4.9 Technologies in Support of OABR for Communities’ Uses

Ontology is an open system promoting wide use and sharing. Its expansion and

validation depend on the input from the users of related community. The normal way is

to register the ontology with an ontology search engine, or with a repository to make

the ontology visible to the community. The responses from the community will make

the ontology more consistent and reliable.

In this research, tools from Marine Metadata Interoperability (MMI) were modified for

65

A: Example of CodeSmell(Large Class) with Properties

Figure 4.12: Code Smell Templates Represented by Protége

66

(Figure 4.12 Continued)

B: Example of CodeSmell(Long Method) with Properties

67

use to develop the OABR infrastructure. The MMI project is a successful example of

ontological applications though it is still under development. In the past five years, this

project has already developed usefully technologies and tools that are implemented for

the ocean observation ontology in North Gulf of Mexico. The tools and technologies

include Voc2OWL for creating Web Ontology Language (OWL), Ontology Registry

and Repository for users‘ registering, and The Vocabulary Integration Environment

(VINE) for mapping concepts [Bermudez][Graybeal]. The related open source software

tools can be downloaded from http://marinemetadata.org/tools/.

Voc2OWL can convert an ASCII Tab-delimited set of terms and definitions, i.e. the

templates of anti-patterns, code smells, and refactoring to the related OWL. The OWL

Web Ontology Language ―is designed for use by applications that need to process the

content of information instead of just presenting information to humans‖

(http://www.w3.org/TR/owl-features/).

Figure 4.13 shows an example of how to convert CodeSmell(Large Class) from a text

file to an OWL file. The text file can be easily transferred from the templates defined

for anti-patterns, bad code smells, and refactoring. The complete output of OWL for

Large Class is shown in Appendix F.

An open ontology repository supports storing, sharing, searching, governance, and

management of an ontology commonly used in the related community

(http://ontolog.cim3.net/forum/oor-forum/2008-04/msg00012.html). The registry

allows related community users to query the terms and properties within the ontology

through web services.

Figure 4.14 shows an example of the uploading, querying, and mapping of

http://marinemetadata.org/tools/
http://ontolog.cim3.net/forum/oor-forum/2008-04/msg00012.html

68

Category topic term variable

Code Smell LargeClass Symptoms TooManyInstanceVariablesOrMethods

Code Smell LargeClass Solutions ExtractClassAndExtractInterface

Code Smell LargeClass Identification 2.55

Code Smell LargeClass Remove 1.82

Code Smell LargeClass Impact 3.6

A. The Input File Transferred from CodeSmell (Large Class)

 Figure 4.13: Example of CodeSmell(Large Class) Converted to OWL From ASCII File

69

(Figure 4.13 continued)

B. Ascii File Converted to OWL by Voc2OWL

70

(Figure 4.13 continued)

<?xml version="1.0"?>

<rdf:RDF

……………………………………………

<!—CodeSmell(LargeClass) - >

 <topic rdf:ID="LargeClass">

 <istopicOfterm>

 <term rdf:ID="Solutions">

 <rdfs:label>Solutions</rdfs:label>

 <istermOfvariable>

 <variable rdf:ID="ExtractClassAndExtractInterface">

 <isvariableOfterm rdf:resource="#Solutions"/>

 <rdfs:label>ExtractClassAndExtractInterface</rdfs:label>

 </variable>

 </istermOfvariable>

 <istermOftopic rdf:resource="#LargeClass"/>

 </term>

 </istopicOfterm>

 <istopicOfCategory>

 <Category rdf:ID="Code_Smell">

 <isCategoryOftopic rdf:resource="#LargeClass"/>

 <rdfs:label>Code Smell</rdfs:label>

 </Category>

 </istopicOfCategory>

 <istopicOfterm>

 <term rdf:ID="Symptoms">

 <istermOfvariable>

 <variable rdf:ID="TooManyInstanceVariablesOrMethods">

 <isvariableOfterm rdf:resource="#Symptoms"/>

 <rdfs:label>TooManyInstanceVariablesOrMethods</rdfs:label>

 </variable>

 </istermOfvariable>

……………………………………………

</rdf:RDF>

C. OWL Partial Output of CodeSmell (LargeClass)

71

(A) Accessing and Storing [Bermudez]

Figure 4.14: Examples of Accessing, Storing, Querying, and Mapping to OABR

72

(Figure 4.14 continued)

(B) Querying [Bermudez]

73

(Figure 4.14 continued)

(C) Mapping [Bermudez]

74

CodeSmell(Large Class) in the OABR registry.

Figure 4.14A shows a web page of the OABR repository describing the related

information such as creator, keywords, class name, and URI about accessing OABR.

The instances described by OWL could be queried by an ontological query language

that supports discovery by domain, creator, terminology, and versions (Refer to Figure

4.14B). Users also could apply VINE to map vocabulary terms represented in OWL

(Figure 4.14C).

Mapping is a process to describe the relations between terms that can help ontology be

merged or aligned to one another [Staab et al.]. We define the mapping relations

among anti-patterns or code smells as exact match, related match, and not match.

Software development domain experts could compare the properties of different

instances through mapping. Therefore, software developers can avoid overlapping

definition by remove exact match instance, or put related match instances into new

taxonomic category, or define new instance (not match with any existing instances). In

Chapter 5, we will discuss more details about the relations and their applications.

We have obtained and modified several technologies and tools for implementing

OABR; however, more tools and advanced technologies are needed to help it easier and

more convenient for users to provide information so as to make OABR more complete

and consistent.

4.10 Summary

An ontology consists of concepts, taxonomic relations and non-taxonomic relations

among concepts. The OABR defines a knowledge domain model that gives a

consistent definition of the properties for anti-patterns, bad code smells, and

75

refactoring, thus, enabling the sharing of common understanding of these concepts

among software developers. The relationships between bad code smells and anti-

patterns through OABR provide a new view of the related key concepts. It facilitates

reliable results for properties based on ontological methods and statistical analysis. It

also provides a reuse model for developing other software pattern models such as a

software quality attributes model and design pattern model. We also presented tools

and their applications of ontology creation, mapping, querying, and registering for

OABR.

76

Chapter 5

Application and Evaluation of OABR

5.1 Introduction

According to [Calero], the criteria for evaluating the quality of a software onotlogy

include consistency, completeness, conciseness, clarity, generality, and robustness. An

ontology can be evaluated or validated by the application of the ontology and the

comparison of the results with the observation or the opinions from ontology experts or

the degree of acceptance from the related community [Calero]. In this research, the

validation and evaluation are based on the application of OABR to identify the relations

between anti-patterns and bad code smells.

We present the application of the Protégé framework to detect relations between anti-

patterns and bad code smells in Section 5.2. In Section 5.3, we describes the application

of metric based tools to analyze a middle- sized open source software product with

different versions to detect whether the relations between anti-patterns and code smells

deduced from OABR exist in the software.

5.2 Relations between Anti-patterns and Code Smells

We describe two scenarios utilizing the OABR infrastructure to identify the relations

between anti-patterns and code smells. At the software design level, the OABR

infrastructure can help to understand what kind of code smells related problems might

occur that are caused by a given anti-pattern. On the other hand, the properties of bad

code smells at the coding level may be of help tracing back to the anti-patterns at the

design level that cause the problems. The information will help software developers to

77

prevent bad code smells by refactoring anti-patterns at the design level.

Figures 5.1A and 5.1B show examples of the OABR infrastructures that can assist

software developers in understanding anti-patterns and bad code smells in two different

scenarios [Luo].

Scenario 1 Anti-patterns to Bad Code Smells: The OABR infrastructure improves the

understandability of the relations between anti-patterns and bad code smells in this

scenario by conceptually mapping from anti-patterns to code smells to inform software

developers of a code smell(s) that might result if the anti-pattern identified in a design

is not resolved in the design stage A software developer would first detect an

AntiPattern(Spaghetti code) by applying anti-pattern detection software such as

―Analyst4j‖ based on the software metrics ―Essential Complexity (EC_MTD)‖. The

software developer would utilize the OABR infrastructure to understand more about

AntiPattern(Spaghetti code). Figure 5.1A displays knowledge about

AntiPattern(Spaghetti code), a chronic design problem that involves applying

procedural thinking in OO design. The AntiPattern(Spaghetti code)(rectangle) causes

(Orange line) the instance ―Many_objects_High_Coupling‖ (Triangle) of "―Source

Code Problem‖" class. The instance PoorCode(Many_objects_High_Coupling) has the

symptoms described by the instance CodeSmell(Long Method). The domain of

property ―causes‖ is defined as class Anti-pattern, and the range of the ―causes‖

property is ―problems‖ class. For the ―describes‖ property, the domain is the ―code

smell‖ class and the range is the ―poor code‖ class. The OABR representation shows

that the instance of AntiPattern(Spaghetti code) could be solved by instances ―Code

Cleanup‖ of subclass AP-BASED of ―Refactoring‖ class. The

78

CodeSmell(LongMethod) could be removed by the instances Refactoring(Exact-

method), Refactoring(Introduce-parameter-Object), Refactoring(Preserve-Whole-

Object), and Refactoring(Replace-Temp-With-Query) of subclass ―BS_BASED‖ of

class ―Refactoring‖. Through the relation between AntiPattern(SpaghettiCode) and

CodeSmell(LongMethod), software developers would prevent

CodeSmell(LongMethod) related problems from occurring at source code by

refactoring AntiPattern(SpaghettiCode) at design level.

Scenario 2 Code Smells to Anti-patterns: The OABR representation improves the

understandability of the relationship between anti-patterns and bad code smells in this

scenario by conceptually mapping from code smells in existing source code to anti-

patterns at the design level to assist in resolving such code smells by indicating the

refactoring anti-patterns at the design level. In this scenario, software developers detect

the CodeSmell(Large Class) using a metrics based code smell detection tools such as

Eclipse with Check Style. Figure 5.1B provides information about CodeSmell(Large

Class). CodeSmell(Large Class) is an instance of SOLUTION_BASED subclass of

code smell. Its symptom property relates to the instance

PoorCode(Large_class_no_cohesion) that is caused by the AntiPattern(Blob) at the

design level. Therefore, the OABR infrastructure improves the understandability by

showing that the anti-pattern AntiPattern(Blob) causes CodeSmell(Large Class).

CodeSmell(Large Class) could be solved by refactoring(Extract Class) and

refactoring(Extract Subclass) from the ―BS-BASED‖ Refactoring category .

Figure 5.1B also implied creating a new taxonomy based on refactoring methods.

CodeSmell(Large Class) and CodeSmell(Data Class) could be put in the same category

79

of a taxonomy as these two code smells could be solved by same refactoring methods

like Refactoring(Extract Class) and Refactoring(Extract Subclass).

The relations between anti-patterns, bad code smells and refactoring shown through the

OABR infrastructure are valuable to software development. Software developers can

identify the existence of an anti-pattern represented in OABR and expect the

occurrence of chronic problems in the source code as shown by its associated code

smell and vice versa. The OABR also provides priority information about bad code

smells. Software developers could decide which code smell should be tolerated, which

should be removed and when to remove it, whether refactoring at source code might be

costly, or refactoring related anti-patterns at the design level is preferable. The

refactoring of bad code smells and anti-patterns, especially those ―strong‖ bad code

smells, will enable software engineers to improve software quality such as maintenance

and understanding in an efficient way.

5.3 Testing the Relations between Anti-patterns and Code Smells in a Software
Project

In this section, we describe the test of the relations between the anti-patterns and bad

code smells in an open source software project and compare them to the relations

represented in OABR infrastructure shown in Section 5.2.

We applied metric-based tools to detect an open source software. The testing tools we

used for detecting anti-pattern and bad code smells are ‗Analyst4j‘, ‗CheckStyle‘, and

‗PMD‘ with Eclipse. The download and related installation documents of metric-based

tools can be found at [http://www.sourceforge.net]. We use ‗Analyst4j‘ as a plug-in for

‗Eclipse‘ to detect anti-patterns along with ‗Checkstyle‘ and ‗PMD‘ as plug-ins for

80

A. Instance of AntiPattern(Spaghetti Code)

Figure 5.1: Instances of Anti-pattern Classes and Bad Code Smell Classes

81

(Figure 5.1 continued)

B. Instance of CodeSmell(Large Class)

82

 ‗Eclipse‘ to detect bad code smells. The benefits of metrics-based tools include testing

software that would be impossible to evaluate and ability to repeat processing codes

automatically and systematically. The disadvantages of metric based tools are that the

selection of metrics is heuristic [Wang] and they do not work for anti-patterns and bad

code smells that can only be detected by heuristic analysis.

The rules for setting metrics to test related code smells are shown in Table 5.1. For a

specific code smell, PMD and check style use the same metrics. Figure 5.2A to Figure

5.2C show examples of rules for detecting bad code smells in XML files for Check

Style. For example, we set a value like maximum lines of code (size violation) for

testing CodeSmell(Long Method). The default value for check CodeSmell(Long

Method) by Check Style is 150 (Note: Some researchers believe the value should be 20

at most [http://www.ibm.com/developerworks/library/j-ap07088/]). In Figure 5.2C, we

set 40 as the testing value, not including method declaration, constructor declaration or

counting empty.

Based on the identification property for anti-patterns and bad code smells, we chose

those that have the high or medium identification index or could be detected by metrics.

The testing of anti-patterns includes AntiPattern(Spaghetti Code), AntiPattern(Swiss

Knife), AntiPattern(Using Inheritance), AntiPattern(Procedure Oriented), and

AntiPattern(Blob). The testing of code smells includes CodeSmell(Long Method),

CodeSmell(Lazy Class)/CodeSmell(Data Class), CodeSmell(Large Class),

CodeSmell(Conditional Complexity), CodeSmell(Duplicated Code) and

CodeSmell(Data Class).

83

Table 5.1: Rules for PMD to Check Code Smell

Code Smell Metrics PMD Rule Names CheckStyle Rule

Long Method Cyclomatic

Complexity,

Halstead and

NLOC

‗ExcessiveMethodLength‘ Size Violations->

Maximum Method

Length

Data

Class/Lazy

Class

Cyclomatic

Complexity and

Number of fields

‗CyclomaticComplexity‘

‗TooManyFields‘

‗TooManyMethods‘

-

Large Class NCLOC and Lack

of Cohesion

Methods

‗ExcessiveClassLength‘ -

Switch

Statements

Conditional

Complexity and

NLOC

‗CyclomaticComplexity‘ Metrics->

Cyclomatic

Complexity

Long

Parameter

List

Number of

Parameters of

Each Method

‗ExcessiveParameterList‘ -

Duplicate

Code

- - Duplicates->Strict

Duplicate Code

84

A. CheckStyle Rules for Detecting CodeSmell(Conditional Complexity)

B. Checkstyle Rules for Detecting CodeSmell(Duplicated Code)

Figure 5.2: Rules for Check Style to Detect Code Smells in XML

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE module PUBLIC "-//Puppy Crawl//DTD Check Configuration

1.3//EN" "http://www.puppycrawl.com/dtds/configuration_1_3.dtd">

<!--

This configuration file was written by the eclipse-cs plugin configuration

editor

-->

<!--

Checkstyle-Configuration: duplicate code

Description:

Code smell of "Duplicate code" detected!

-->

<module name="Checker">

<property name="severity" value="warning"/>

<module name="StrictDuplicateCode"/>

</module>

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE module PUBLIC "-//Puppy Crawl//DTD Check Configuration

1.3//EN" "http://www.puppycrawl.com/dtds/configuration_1_3.dtd">

<!--

This configuration file was written by the eclipse-cs plugin configuration

editor

<!--

Checkstyle-Configuration: Conditional Complexity

Description:

Code Smell of "Conditional Complexity" detected!!!

-->

<module name="Checker">

<property name="severity" value="warning"/>

<module name="TreeWalker">

<module name="CyclomaticComplexity"/>

</module>

</module>

85

(Figure 5.2 Continued)

C. Check Style Rules for Detecting CodeSmell(Long Method)

<?xml version="1.0" encoding="UTF-8" ?>

<!DOCTYPE module (View Source for full doctype...)>

- <!--

This configuration file was written by the eclipse-cs plugin

configuration editor

-->

 <!--

Checkstyle-Configuration: Long Method

Description:

Hey, code smell of "long method" is detected here!

-->

- <module name="Checker">

<property name="severity" value="warning" />

- <module name="TreeWalker">

- <module name="MethodLength">

<property name="max" value="40" />

<property name="countEmpty" value="false" />

</module>

</module>

</module>

file:///F:/jfreechart1/jfreechart-0.9.15/.metadata/.plugins/net.sf.eclipsecs.core/internal_config__1248875609406.xml%23%23
file:///F:/jfreechart1/jfreechart-0.9.15/.metadata/.plugins/net.sf.eclipsecs.core/internal_config__1248875609406.xml%23%23
file:///F:/jfreechart1/jfreechart-0.9.15/.metadata/.plugins/net.sf.eclipsecs.core/internal_config__1248875609406.xml%23%23

86

Table 5.2: The Output of Anti-patterns and Bad Code Smells Detected by PMD, Check Style, and Analyst4j

A. Jfreechart 0915

 Anti-patterns Code Smell

V1 Spaghetti

code

Swiss

Knife

Using

Inheritance

Procedure

Oriented

Blob Long

Method

Lazy

Class/Data

Class

Large

Class

Conditional

Complexity

Duplicated

code

Long Parameter

List

V2chart (34) 1 1 8 4 3 13

20 3 11 7 1

V3axis.junit

(17)

0 0 0 16 1 3 1 1 0 0 0

V4plot (27) 3 3 18 1 7 36

52 6 27 27 0

V5chart.ui

(12)

0 0 10 1 0 5

3 0 2 2 0

V6data (50) 0 0 23 7 1 14 28 2 15 7 1

V2time (22) 1 1 8 4 3 4 5 0 3 0 0

V3render (50) 0 0 29 15 2 47

78 1

42 26 22

V4axis (35) 0 0 19 4 7 28 38 4 17 2 0

87

B. Jfreechart 056

 Anti-patterns Code Smell

V1 Spaghetti

code

Swiss

Knife

Using

Inheritance

Procedure

Oriented

Blob Long

Method

Lazy

Class/Data

Class

Large

Class

Conditional

Complexity

Duplicated

code

Long parameter

list

V2chart (38) 0 0 17 10 2 3 10 0 6 - 10

V3axis.junit(5) - - - - - - - - - - -

V4plot - - - - - - - - - - -

V5chart.uil (6) 0 0 6 0 0 0 0 0 0 - 0

V6data 0 0 0 1 0 0 0 0 0 - 0

V2time - - - - - - - - - - -

V3render - - - - - - - - - - -

V4axis - - - - - - - - - - -

88

C. Jfreechart100pre

 Anti-patterns Code Smell

V1 Spaghetti

code

Swiss

Knife

Using

Inheritance

Procedure

Oriented

Blob Long

Method

Lazy

Class/Data

Class

Large

Class

Conditional

Complexity

Duplicated

code

Long parameter

list

V2chart - - - - 5 - 15 - -

V3axis.junit

(21)

0 0 0 19 0 2 1 1 0 - -

V4plot (37) 3 3 23 1 9 14 76 11 34 - 1

V5chart.uil

(12)

0 0 10 1 0 2 - - 3 - -

V6data (19) 0 0 7 0 0 0 10 10 3 - -

V2time (26) 0 0 22 2 5 - 12 4 - -

V3render (10) 0 0 1 1 1 2 12 7 3 - -

V4axis (41) 0 0 22 4 8 4 59 13 23 - -

89

D. Jfreechart0920

 Anti-patterns Code Smell

V1 Spaghetti

code

Swiss

Knife

Using

Inheritance

Procedure

Oriented

Blob Long

Method

Lazy

Class/Data

Class

Large

Class

Conditional

Complexity

Duplicated

code

Long parameter

list

V2chart (25) 4 4 5 3 3 5 21 4 18 - 2

V3axis.junit

(26)

0 0 0 25 0 0 - 2 0 - 0

V4plot (34) 3 3 22 1 9 12 48 7 40 - 1

V5chart.uil(1

2)

0 0 10 1 0 2 5 0 6 - 0

V6data(50) 0 0 19 6 2 2 32 2 2 - 2

V2time(23) 0 0 20 1 3 0 5 0 0 - 0

V3render(50) 0 0 34 13 4 27 86 3 85 - 27

V4axis(38) 0 0 20 4 7 5 31 5 28 - 0

90

Table 5.3: Testing of Correlation Coefficient R
2
 about Anti-patterns and Code Smells

Correlation coefficient R
2

Anti-patterns

Spaghetti code Swiss Knife Using Inheritance Procedure Oriented Blob

C
o
d

e
S

m
el

l

Long Method 0.8693 - 0.432 0.1977 0.1613

Data Class/Lazy Class 0.202 0.202 0.6811 0.06 0.2805

Large Class 0.3489 0.3489 0.0835 0.0569 0.8415

Conditional Complexity 0.5084 0.5327 0.4491 0.0138 0.5263

Duplicated Code - - 0.4002 0.2954 0.5656

Long Parameter List 0.1794 0.1794 0.2466 0.4024 0.0054

91

Table 5.4: Testing of Pearson‘s P-Value about Anti-patterns and Code Smells

Pearson‘s P-value Anti-patterns

Spaghetti code Swiss Knife Using Inheritance Procedure Oriented Blob

C
o
d

e
S

m
el

l

Long Method 0.000 0.000 0.627 0.705 0.004

Data Class/Lazy Class 0.085 0.085 0.173 0.466 0.028

Large Class 0.831 0.831 0.514 0.681 0.009

Conditional Complexity 0.667 0.667 0.136 0.530 0.025

Duplicated Code 0.011 0.011 0.519 0.458 0.202

Long Parameter List 0.441 0.441 0.767 0.862 0.553

92

The sample project ―Jfreechart‖ is written in 100% JAVA language. It is open source

and well documented. The ―Jfreechart‖ project was founded in 2000 and is used by

more than 40,000 developers. Currently, there are about 30 versions of ‗Jfreechart‘ that

can be downloaded from http://sourceforge.net/projects/jfreechart/files/. We randomly

chose four versions, ―056‖, ―0915‖, ―0920‖ and ―pre100‖, as the testing samples.

Before the testing, we set up the configuration path and compiled the entire project.

As the number of the files processed by the free version of Check Style is limited to 50,

we selected modules instead of using the whole project to test each version of

‗JFreechart‘. The modules were selected randomly before the testing. The selected

modules include ―V2chart‖, ―V3axis.junit‖, ―V3plot‖, ―V5chart.ui‖, ―V6data‖,

―V2time‖, ―V3render‖, and―V4axis‖.

Table 5.2 shows the testing results of anti-patterns and bad code smells in the modules

of different versions. There are missing values for some data in Table 5.2, because the

testing modules do not exist in some versions. For example, version 056 does not have

the V6data, V3render, and V4 axis modules, thus some code smells like

CodeSmell(DuplicatedCode) could not be detected by the metric-based tools in some

versions of Jfreechart.

Analysis of R squared and P values for anti-patterns and bad code smells can measure

the strength of the linear relationship between anti-patterns and code smells. R squared

(also called the coefficient of determination) is the proportion of variance in Y that can

be accounted for by knowing X. A low p value (less than 0.05 for example) means the

possibilities of the future values that are not related is quite low, thus, there is a

significant relationship between two variables. The results for r squared and p value are

http://sourceforge.net/projects/jfreechart/files/

93

shown in Table 5.3 and Table 5.4, respectively. We conclude that AntiPattern(Blob)

and CodeSmell(Large Class), AntiPattern(Spaghetti Code) and CodeSmell(Long

Method) are positively linear correlated. The results support the finding about the

relations between anti-patterns and bad code smells from OABR analysis in Section

5.2.

Another interesting finding from the results is that the testing values for

AntiPattern(SpaghettiCode) and AntiPattern(SwissKnife) are the same, showing that

the definition of the properties for these two anti-patterns cannot be identified from

each other.

5.4 Summary

In this chapter, we showed the application of OABR in two scenarios for software

development by analyzing the relations between anti-patterns and bad code smells. The

tests on the anti-patterns and bad code smells by metric-based tools in different version

of a real software project ―Jfreechart‖ support the relations obtained from the OABR

infrastructure.

94

Chapter 6

Summary and Conclusions

6.1 Summary

Anti-patterns and bad code smells describe chronic problems that affect software

quality. Refactoring can help solve anti-patterns and bad code smells. In this research,

we developed an ontological infrastructure, OABR, showing the relations between anti-

patterns, bad code smells, and refactoring to assist in the identification and resolution of

their associated problems. Focusing on the interrelationships from anti-patterns to bad

code smells and from bad code smells to anti-patterns, the OABR infrastructure

provides guidance to software developers in the following ways.

At the software design level, the OABR infrastructure helps to understand what kind of

bad code smells related problems occur that are caused by a given anti-pattern and what

refactoring for the anti-pattern should be applied. This information will help software

engineers to reduce bad code smells at the design level.

At the coding level, the OABR infrastructure can help programmers to understand the

bad code smells caused by a specific anti-pattern, the identify methods, and the related

refactoring to remove the bad code smells.

At the design or coding level, information on the properties of bad code smells and

anti-patterns can help determine which anti-pattern or bad code smell should be

tolerated or removed. As removal of all the anti-patterns or bad code smells is not

practical, refactoring only the selected bad code smells or anti-patterns can improve the

maintainability efficiently.

95

6.2 Contributions

We developed the OABR infrastructure to help detect and remove software problems

through the refactoring, anti-pattern, and bad code smells identification in the early

stages of software development.

Significant contributions of this research to improve software quality include:

 Knowledge domain model including the software development concepts of

anti-patterns, refactoring, and bad code smells. This model can facilitate the

sharing of common understanding of these concepts among software

communities;

 Reuse model for the development of other software pattern models such as

quality models or design pattern model because OABR could be included with

other ontologies like software quality attributes, software metrics, or other

design patterns;

 Ontological approach including statistical analysis and more formal definitions

of bad code smells and anti-patterns above and beyond the existing heuristic

definitions, thereby improving their understandability and provability;

 New classification of anti-patterns, refactoring, and bad code smells that

improves the clarity of related concepts; for example, bad code smells with

similar causes might be resolved in similar ways;

 Consistent way to define bad code smells, anti-patterns and refactoring with

templates, making it easier to identify and compare.

96

 New insight to the relations between anti-patterns and code smells that assist in

determining whether or not to remove some anti-patterns in the early stages of

software life cycle to prevent the occurrence of bad code smells.

6.3 Future Work

The ongoing challenges and future work of the research include the following:

o Obtain more inputs from the software community to expand OABR and set

constraints for the class properties, given that the development of OABR is an

iterative process;

o Develop OABR registries and related web services, making it easier for users to

identify and test new bad code smells, anti-patterns, and refactoring.

o Expand or create a new ontology by merging or assigning OABR with other

ontologies about software development such as design patterns, software

metrics, and software quality attributes.

97

References

[Akroyd] M. Akroyd, ―Anti-Patterns: Vaccinations against Object Misuse‖, Proc.
Object World West, 1996.

[Badder] F. Badder, ―Handbook on Ontologies‖, Springer, ISBN: 3-540-40834-7, 2003.

[Badder et al.] Fraanz Baader, Diego Calvanese, Deborah Mcguinness, Daniele Nardi,
Peter Patel-Schneider, ―The Description Logic Handbook – Theory, Implementation
and Applications‖, Cambridge University Presss, ISBN 0-512-78176-0, 2003.

[Bansiya & David] Bansiya & David, ―A Hierarchical Model for Object-Oriented
Design Quality,‖ IEEE Trans. Software Engineering, vol. 28, no. 1, pp. 4-17, 2002.

[Bermudez] Bermudez, L.E., Graybeal, J., and Arko, R., "A Marine Platforms
Ontology: Experiences and Lessons," in Semantic Sensor Networks Workshop at the
5th International Semantic Web Conference (ISWC) 2006, Athens, GA, 2006.

[Bennett & Rajlich] K. Bennett and V. Rajlich, ―Software maintenance and evolution: a
roadmap‖, ICSE - Future of SE Track, 2000.

[Brown et al.] W.H. Brown et al., ―Anti-patterns: Refactoring Software Architectures
and Projects in Crisis‖, John Wiley & Sons, ISBN 0-471-19713-0, 1998.

[Buschmann & Schmidt] D. Schmidt, H. Rohnert, and F. Buschmann, ―Pattern-
Oriented Software Architecture, Volume 2, Patterns for Concurrent and Networked
Objects,‖ Wiley, ISBN-13: 978-0471606956, 2000.

 [Calero & Piattini] C. Calero, Francisco Ruiz, and Mario Piattini, ―Ontologies for
Software Engineering and Software Technology‖, Springer, ISBN 3-540-34517-5,
2005.

[Cheng & Liu]Yung-pin Cheng, ―An Ontology-Based Taxonomy of Bad Code Smells‖,
Proceeding (559) Advances in Computer Science and Technology, 2007.

[Chidamber & Kemerer] S. R. Chidamber and C. F. Kemerer, ―A metrics suite for
object oriented design‖, IEEE Transactions on Software Engineering, Page 476-493,
1995.

[David] Davies, J., D. Fensel, et al.., ―Towards the Semantic Web: Ontology-driven
Knowledge Management‖, Wiley Eds., 2002.

[Emden & Moonen]Eva Van Emden and Leon Moonen, ―Java Quality Assurance by
Detecting Code Smells‖, Proceedings of the 9th Working Conference Reverse
Engineering, May 2004.

[Eden & Turner] A. Eden and R. Turner, ―Toward an Ontology of Software Design:
The Intension/Locality Hypothesis‖, 3

rd
 European Conf. Computing And Philosophy –

ECAP, 2005

[Fowler] M. Fowler, ―Refactoring: Improving the Design of Existing Code‖, Addison-
Wesley, ISBN 0201485672, 1999.

98

[Fowler] M. Fowler, ―Analysis Patterns: Reusable Object Models‖, Addison-Wesley
Object Technology Series, ISBN-13: 978-0201895421, 1996.

[Fowler & Becker]Fowler, M. &. Becker, K. "Bad Smells in Code," in Refactoring:
Improving the Design of Existing Code. pp. 75-88. Addison-Wesley, 2001.

[Franz Baader] Fraanz Baader, Diego Calvanese, Deborah Mcguinness, Daniele Nardi,
Peter Patel-Schneider, ―The Description Logic Handbook – Theory, Implementation
and Applications‖, Cambridge University Presss, ISBN 0-512-78176-0, 2003.

[Gamma & Vlissides] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides, ―Design Patterns: Elements of Reusable Object-Oriented Software‖,
Addison-Wesley, ISBN-13: 978-0201633610, 1995.

[Graybeal] Graybeal, J. and Bermudez, L.E., "When Hydrospheres Collide: Lessons in
Practical Environmental Ontologies," in 7th International Conference on Hydroscience
and Engineering (ICHE 2006) Philadelphia, PA, 2006

[Horridge et al.] M. Horridge, H. Hanblauch, A. Rector, R. Stevens, C. Wroe, ―A
Practical Guide To Building OWL Ontologies Using The Protégé-OWL Plugin and
CO-ODE Tools‖, The Unviersity of Manchester and Stanford University, Aug. 2004.

[Hoss] Allyson M. Hoss , ―Ontology-based methodology for error detection in software
design‖, Louisiana State University, May 2006.

[Karpijoki] Vesa Karpijoki, ―AntiPattern,‖ Technical Report, 2006.

[Koenig] A. Konenig, Patterns and Anti-patterns, Journal of Object-Oriented
Programming, 8(10), March, 1995.

[Horridgy et al.] M. Horridge, H Knublauch, A. Rector, R. Stevens, C. Wroe, ―A
Practical Guide To OWL Ontologies Using the Protégé-OWL Plugin and CO-ODE
Tools‖, http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf, Aug.
2004.

[IEEE1990] http://standards.ieee.org/reading/ieee/std_public/description/se/index.html.

[ISO 9126] http://www.iso.org/iso/catalogue_detail.htm?csnumber=39752.

[Laplante] Phil Laplante, ―Antipatterns in the Creation of Intelligent Systems‖, Human
- Centered Computing, Feb. 2007.

[Laplante et al.] Phillip Laplante and Colin Neill, ―Antipatterns: Identification,
Refactoring, and Management‖, ISBN 0-8493-2994-9, Auerbach Publications, 2009.

[Lee & Meier] D. Lee and R. Meier, ―Primary-Context Model and Ontology:
A Combined Approach for Pervasive Transportation Services‖, Pervasive Computing
and Communications Workshops, March 2007.

[Luo] Yixin Luo, Allyson Hoss, and Doris Carver, ―Ontological Analysis of Anti-
Patterns and Code Smells‖, IEEE Aerospace 2010 Big Sky, Montana.

[Marinescu] R. Marinescu, ―Detecting design flaws via metrics in object oriented
systems‖, In Proceedings of TOOLS, 2001.

http://www.co-ode.org/resources/tutorials/ProtegeOWLTutorial.pdf

99

[Marinescu et al.] Radu Marinescu and Danie Ratiu, ―Quantifying the quality of object-
oriented design: The factor-strategy model‖, In Proceedings of WCRE on Software
Maintenance, Page 350-359, 2005

[Mens] T. Mens and T. Tourwe, ―A Survey of Software Refactoring‖, IEEE Trans.
Software Engineering, 30(20):126-139, Feb. 2004.

[Mika] Mika Mantyla, ―Bad Smells in Software - a Taxonomy and an Empirical
Study‖, Dissertation, Helsinki University of Technology, 2003.

[Mika & Lassenius] Mika Mantyla and C. L, ―Bad Smells - Humans as Code Critics‖,
Proceedings of the 20th IEEE International Conference on Software Maintenance
(ICSM'04), 2004.

[Moha et al.] Naouel Moha, Jihene Rezgui, Yann-Ga Gueuc, Petko Valtchev, Ghizlane
El Boussaidi. ―Using FCA to Suggest Refactorings to Correct Design Defects‖,
Proceedings of the 4th International Conference On Concept Lattices and Their
Applications (CLA 2006), pp. 297-302, In S. Ben Yahia & E. Mephu Nguifo Eds,
October 30-November 1st, 2006, Hammamet, Tunisia.

[Moha] Naouel Moha, Yann-Ga Gueuc, Pierre Leduc. ―Automatic Generation of
Detection Algorithms for Design Defects.‖ Proceedings of the 21

st
 IEEE International

Conference on Automated Software Engineering (ASE 2006), pp. 297-300, September
18-22, 2006, Tokyo, Japan.

[Moha 2] Naouel Moha. ―Detection and Correction of Design Defects in Object-
Oriented Architectures‖, Doctoral Symposium, 20

th
 edition of the European Conference

on Object-Oriented Programming (ECOOP 2006), July 3-7, 2006, Nantes, France

[Noy & McGuinness] N. Noy and D. McGuinness, ―Ontology Development 101: A
guide to Creating Your First Ontology‖, Stanford Knowledge Systems Laboratory
Technical Report KSL-01-05 and Stanford Medical Informatics Technical Report SMI-
2001-0880, March 2001.

[Ratiu & Marinescu] Daniel Ratiu and Radu Marinescu, ―Using History Information to
Improve Design Flaws Detection‖, In Proceedings of CSMR, May 2003.

[Reinout] Reinout Van Rees, ―Clarity in the usage of the terms ontology, taxonomy and
classification.‖ In Robert Amor, editor, Construction IT bridging the distance, W78
international conference. CIB-W78, University of Auckland, 2003.

[Slinger] Stefan Slinger, ―Code Smell Detection in Eclipse‖, Thesis, Delft University of
Technology, 2001.

[Smith & Lioyd] Connie Smith and Lioyd Williams, ―New Software Performance Anti-
Patterns: More Ways to Shoot Yourself in the Foot‖, Performance Engineering Services
and Software Engineering Research, Sept. 2006.

[Smith et al.] Connie Smith and Lloyd Williams, ―Software Performance Anti-
patterns?‖ Proceedings 2nd International Workshop on Software and Performance,
Dec. 2005.

[Staab et al.] S. Staab and R. Studer, ― Handbook on Ontology‖, Springer, ISBN 3-540-

http://www.ksl.stanford.edu/KSL_Abstracts/KSL-01-05.html

100

40834-7, 2004.

[Topquadrant] Topquadrant white paper, ―Ontology Myth or Magic? Toward the
Practical Application of Ontology-enabled Knowledge Solutions‖,
<http://www.topquadrant.com/documents/TQ0403_Semantic%20Solutions-
Getting%20Started.pdf>, USA, 2003

[Zhang] X.P. Zhang, ―Design and Implementation of an Ocean Observing System:
WAVCIS (Wave-Current-Surge Information System) and Its Application to the
Louisiana Coast‖, Dissertation, Louisiana State University, July 2003.

101

Appendix A: Bad Code Smell Examples

DATA CLUMPS

Name: Data Clumps

Symptoms: Data is always coherent with each other.

Detection: If one value is removed, the data set will be meaningless.

Relationship: Magic Numbers/Magic String

Solutions: Extract Class, Introduce Parameter Object, and Preserve Whole Object

Identifications: Medium

Removal: difficult

Impact: Medium

DEAD CODE

Name: Dead Code

Symptoms: code never process at running time

Detection: No reference to a method or a class

Relationship: Boat Anchor

Solutions: Collapse Hierarchy, Inline Class, Rename Method, and Remove Parameter

Identifications: Easy

Removal: Easy

Impact: Medium

102

DUPLICATE CODE

Name: Duplicate Code

Symptoms: Redundant code

Detection: Percentage of duplicate code lines in the systems

Relationship: Cut and Paste

Solutions: Extract Class, Extract Method, Form Template Method, and Pull Up Method

Identifications: Easy

Removal: Medium

Impact: Medium

FEATURE ENVY

Name: Feature Envy

Symptoms: A method is more tightly coupled to the other class than to the local one.

Detection: Measuring couplings

Relationship: N/A

Solutions: Extract Method, Move Field, and Move Method

Identifications: Difficult

Removal: Medium

Impact: Strong

103

INAPPROPRIATE INTIMACY

Name: Inappropriate Intimacy

Symptoms: Tightly coupled classes

Detection: Measuring couplings

Relationship: N/A

Solutions: Change Bidirectional Association to Unidirectional, Hide Delegate,

 Move Field, Move Method, and Replace Inheritance

Identifications: Medium

Removal: Difficult

Impact: Strong

INCOMPLETE LIBRARY CLASS

Name: Incomplete Library Class

Symptoms: not complete library

Detection: N/A

Relationship: N/A

Solutions: Introduce Foreign Method and Introduce Local Extension

Identifications: Medium

Removal: Medium

Impact: Strong

104

LARGE CLASS

Name: Large Class

Symptoms: Too many instance variables or methods

Detection: Lack of Cohesion Methods or measuring class size

Relationship: Blob/God Object

Solutions: Extract Class, Extract Interface, Extract Subclass, and Introduce Foreign

Method

Identifications: Medium

Removal: Difficult

Impact: Strong

LAZY CLASS

Name: Lazy Class

Symptoms: A class having little functions

Detection: Measuring the number of fields and methods in conjunction with

cyclomatic complexity.

Relationship: Poltergeist/Lava flow

Solutions: Collapse Hierarchy and Inline class

Identifications: Medium

Removal: Easy

Impact: Weak

105

LONG METHOD

Name: Long Method

Symptoms: Too long method that is difficult to understand and reuse

Detection: Cyclomatic complexity (polynomial metrics)

Relationship: N/A

Solutions: Decompose Conditional, Extract Method, Replace Method with Method

Object, and Replace Temp with Query

Identifications: Medium

Removal: Difficult

Impact: Strong

LONG PARAMETER LIST

Name: Long Parameter List

Symptoms: A method with too many parameters that is difficult to understand

Detection: Count the number of parameters

Relationship: N/A

Solutions: Introduce Parameter Object, Replace Method with Method Object, and

Preserve Whole Object

Identifications: Medium

Removal: Medium

Impact: Medium

106

MESSAGE CHAINS

Name: Message Chain

Symptoms: classes asking object from one to another

Detection: Measuring the couplings of a method

Relationship: N/A

Solutions: Hide Delegate

Identifications: Medium

Removal: Medium

Impact: Strong

MIDDLE MAN

Name: Middle Man

Symptoms: A class delegating most of its tasks to subsequent classes

Detection: Many methods coupled to one class with a low cyclomatic complexity

Relationship: N/A

Solutions: Inline Methods, Replace Delegation with Inheritance, and Remove

Middleman

Identifications: Medium

Removal: Difficult

Impact: Strong

107

PARALLEL INHERITANCE HIERARCHIES

Name: Parallel Inheritance Hierarchies

Symptoms: Existing parallel class hierarchies

Detection: N/A

Relationship: N/A

Solutions: Move Field and Move Method

Identifications: Medium

Removal: Medium

Impact: Strong

PRIMITIVE OBSESSION

Name: Primitive Obsession

Symptoms: Using primitive instead of small classes

Detection: N/A

Relationship: N/A

Solutions: Extract Class, Introduce Parameter Object, Replace Array with Object,

Replace Data Value with Object, Replace Type Code with Subclass/State/strategy

Identifications: Medium

Removal: Medium

Impact: Strong

108

REFUSED BEQUEST

Name: Refused Bequest

Symptoms: A class could not support its inherited methods or inherited data

Detection: N/A

Relationship: N/A

Solutions: Replace Inheritance with Delegation

Identifications: Medium

Removal: Medium

Impact: Medium

SHORTGUN SURGERY

Name: Shortgun Surgery

Symptoms: A small change affecting several classes

Detection: N/A

Relationship: N/A

Solutions: Inline Class, Move Field, and Replace Parameter with Explicit Method

Identifications: Medium

Removal: Difficult

Impact: Strong

109

SPECULATIVE GENERALITY

Name: Speculative Generality

Symptoms: Unnecessary code created in anticipating the future changes

Detection: Similar to Dead Code

Relationship: N/A

Solutions: Collapse Hierarchy, Inline Class, Remove Parameter, and Rename Method

Identifications: Medium

Removal: Medium

Impact: Medium

SWITCH STATEMENTS

Name: Switch Statements

Symptoms: Replacing polymorphism with type codes or runtime class type detection

Detection: runtime detection

Relationship: N/A

Solutions: Introduce Null Object, Replace Conditional with Polymorphism, Replace

Method with Explicit Method, Replace Type Code with Subclass/State/Strategy

Identifications: Medium

Removal: Medium

Impact: Weak

110

TEMPORARY FIELD

Name: Temporary Field

Symptoms: A class has a variable that is only used in some situations.

Detection: Comparing different methods that access each field

Relationship: N/A

Solutions: Extract Class and Introduce Null Object.

Identifications: Medium

Removal: Medium

Impact: Weak

111

Appendix B: Refactoring Examples

CHANGE BIDIRECTIONAL ASSOCIATION TO UNIDIRECTIONAL

Name: Change Bidrectional Association to Unidirectional

Scenario: Two-way association between classes needing just one associate

Mechanics:

1. Check the fields that hold pointers

2. Remove reader, updates to the field and remove the field

3. Compile and test

COLLAPSE HIERARCHY

Name: Collapse Hierarchy

Scenario: Sub-class and parent class is similar

Mechanics:

1. Select the class to be removed

2. Merge the class

3. Adjust references and remove the empty class

112

Appendix C: Application for Exemption from Institutional Oversight

113

\

114

115

Appendix D: Examples of Using DL to Express OABR

Symbol

≡ (concept equivalence/definition)

 (existential restriction)

¬ (negation)

 (universal restriction)

∩ (intersection or conjunction of concepts)

 (union or disjunction of concepts)

() (Concept/role assertion)

Atomic Concepts

SoftwareProblems, SoftwareChronicalProblems, SourcecodeProblems, Solution, Bad solution,

Refactoring

TBox

DesignProblems≡hasDesignProblem.softwareChronicalProblems

Sourcecodeproblems≡hasSourcecodeProblem.softwarechronicalProblems

Badsolution ≡ ¬ goodsolution

DesignPattern≡hasDesignProblemsoftwareChronicalProblems Solution

AntiPattern≡DesignProbelms BadSolution

CodeSmell ≡ showSymptoms.SourceCodeProblems

MediumCodeSmell≡((hasImpact.CodeSmell) ∩(≥2 hasImpact ∩ ≤3 hasImpact))

∩((hasIdentification.CodeSmell) ∩ (≥2 hasIdentification ∩ ≤3 hasIdentification)) ∩

((hasRemoval.CodeSmell) ∩(≥2 hasRemoval ∩ ≤3 hasRemoval))

116

StrongCodeSmell≡≡((hasImpact.CodeSmell) ∩ (3≤ hasImpact))

((hasIdentification.CodeSmell) (≥3 hasIdentification ∩ ≤5 hasIdentification))

((hasRemoval.CodeSmell) (≥3 hasRemoval ∩ ≤5 hasRemoval)))

WeakCodeSmell≡((hasImpact.CodeSmell) ∩ (2≥ hasImpact)) ((hasIdentification.CodeSmell)

∩ (2≥ hasIdentification)) ((hasRemoval.CodeSmell) ∩(2≥ hasRemoval))

Role links

Ans(antipattern cause problems show the symptoms by code smells) ≡causeProblems.(software-

chronicalProblemsBadSolution).haveSymptoms ∩ showSyptoms.sourcecodeProblems

anti-patterns design-patterns

design-patterns≡O-O design patterns GOF patterns micro-architecture and system patterns

concurrency patterns Process Patterns Anti-patterns

Anti-patterns ≡ Organizational anti-patterns Project management anti-patterns Team-

management Analysis general design O-O design programming methodological

Configuration

ABox (Concept Assertions)

CodeSmell(LongMethod), CodeSmell(LargeClass), CodeSmell(PrimitiveObsession),

CodeSmell(LongParameterList), CodeSmell(DataClumps), CodeSmell(SwitchStatemetns),

CodeSmell(TemporaryField), CodeSmell(RefusedBequest),

CodeSmell(AlternativeClasseswithDifferentInterfaces),

CodeSmell(ParallelInheritanceHierarchies), CodeSmell(LazyClass), CodeSmell(DataClass),

CodeSmell(DuplicateCode), CodeSmell(SpeculativeGenerality), CodeSmell(MessageChains),

CodeSmell(MiddleMan), CodeSmell(FeatureEnvy), CodeSmell(InappropriateIntimacy),

117

CodeSmell(DivergentChange), CodeSmell(ShotgunSurgery), CodeSmell(IncompleteLibraryClass),

CodeSmell(Comments)

AntiPattern(Blob), AntiPattern(StovepipeSystem), AntiPattern(GasFactory),

AntiPattern(LavaFlow), AntiPattern(AmbiguousViewpoint),

AntiPattern(FunctionalDecomposition), AntiPattern(Poltergeists), AntiPattern(BoatAnchor),

AntiPattern(GoldenHammer), AntiPattern(SpaghettiCode), AntiPattern(InputKludge),

AntiPattern(CutAndPaste), AntiPattern(StoveppipeEnterpise), AntiPattern(SwissAmryKnife)

Refactoring(ExtractClass), Refactoring(InlineClass), Refactoring(ForeignMethod),

Refactoring(RenameMethod), Refactoring(ExtractMethod), Refactoring(PullUpMethod),

Refactoring(MoveMethod), Refactoring(MoveField), Refactoring(CollapseHierachy),

Refactoring(DecomposeConditional), Refactoring(ReplaceParameterWithExplicitMethods),

Refactoring(IntroduceNullObject), Refactoring(ReplaceConditionalWithPolymorphism)

hasSolution(LargeClass, ExtractClass)

ABox (Role Assertions)

hasSymptoms, showSymptoms, hasDesignProblems, hasSourcecodeProblems, causeProblems,

hasRefactorings, hasImpact, hasRemoval, hasIdentification, hasProblem, hasContext,

hasConsequences, hasRoot-Cause, hasSolution

118

Appendix E: Sample Tests From Metric-based Tools Such As Check
Style, PMD, and Analyst4j

Metrics

119

120

Metrics - Peer Comparison

Metric Value Avg Min Max

Number of files of the package. 34.0 21.5 9.0 34.0

Number of classes of the

package.
29.0 18.0 7.0 29.0

Number of interfaces of the

package.
6.0 4.0 2.0 6.0

Number of commented lines of

the package.
5534.0 3210.5 887.0 5534.0

Number of lines of code of the

package.
5133.0 2878.0 623.0 5133.0

Average cyclomatic complexity

of method in the package.
2.17 1.87 1.57 2.17

Average number of anonymous

classes of the method in the

package.

0.0 0.0 0.0 0.0

Average inner classes of a class

in the package.
0.0 0.0 0.0 0.0

Average number of lines of

code of a class in the package.
136.0 96.72 57.44 136.0

Average weighted method of a

class in the package.
12.86 10.26 7.67 12.86

Average weighted method

complexity of a class in the

package.

33.69 24.56 15.43 33.69

Average response for class in

the package.
56.0 42.5 29.0 56.0

Average lack of cohesion of

methods of a class in the

0.7 0.61 0.51 0.7

121

package.

Average coupling between

objects of a class in the

package.

10.62 9.1 7.57 10.62

Average inheritence depth of a

class in the package.

1.37 1.35 1.33 1.37

Average halstead effort of a file

in the package.

- - - -

Average halstead volume of the

package.

3696.94 2757.92 1818.89 -

Average maintainability index

of a file in the package.

109.75 112.53 109.75 115.31

Average number of children of

a class in the package.

0.34 0.67 0.34 1.0

Average number of lines of

code of a file in the package.

150.97 110.1 69.22 150.97

Average number of conditional

statements of the method in the

package.

0.87 0.56 0.26 0.87

Average number of statements

of the method in the package.

5.19 4.4 3.61 5.19

Average number of unused

parameters of a method in the

package.

0.06 0.03 0.0 0.06

Average number of unused

variables of a method in the

package.

0.0 0.0 0.0 0.0

Average essential complexity

of a method in the package.

1.33 1.43 1.33 1.54

122

Average number of recursive

calls of the method in the

package.

0.0 0.0 0.0 0.0

Percentage of comments of the

package.

52.01 55.38 52.01 58.74

Dependency Inversion

Principle of a package.

45.71 61.75 45.71 77.78

Instability of a package. 0.0 0.0 0.0 0.0

Abstractness of a package. 0.29 0.25 0.22 0.29

123

Appendix F: Examples of OWL for Code Smells

<?xml version="1.0"?>

<rdf:RDF

 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

 xmlns="http://www.wavcis.lsu.edu/codesmell#"

 xmlns:owl="http://www.w3.org/2002/07/owl#"

 xmlns:dc="http://purl.org/dc/elements/1.1/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

 xml:base="http://www.wavcis.lsu.edu/codesmell">

 <owl:Ontology rdf:about="">

 <dc:source>version 2009-10-01</dc:source>

 <dc:title>Code Smell </dc:title>

 <dc:contributor>Yixin Luo</dc:contributor>

 <dc:description>Transfer code smells from ascii to OWL

 More information:

http://www.wavcis.lsu.edu/codesmellhttp://www.wavcis.lsu.edu/codesmell</dc:descrip

tion>

 <dc:date>2009-09-30T02:54:00</dc:date>

 <dc:subject>Parameter</dc:subject>

 <dc:creator>Luis Bermudez MMI</dc:creator>

 </owl:Ontology>

 <owl:Class rdf:ID="Solutions"/>

 <owl:Class rdf:ID="Name"/>

 <owl:Class rdf:ID="Detection"/>

 <owl:Class rdf:ID="subClassOf"/>

 <owl:Class rdf:about="#">

 <rdfs:label></rdfs:label>

 </owl:Class>

 <owl:Class rdf:ID="type"/>

 <owl:ObjectProperty rdf:ID="isNameOf">

 <rdfs:domain rdf:resource="#Name"/>

 <rdfs:range rdf:resource="#"/>

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hasName"/>

124

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="issubClassOfOf">

 <rdfs:range rdf:resource="#"/>

 <rdfs:domain rdf:resource="#subClassOf"/>

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hassubClassOf"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="hasSolutions">

 <rdfs:range rdf:resource="#Solutions"/>

 <rdfs:domain rdf:resource="#"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="istypeOf">

 <rdfs:domain rdf:resource="#type"/>

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hastype"/>

 </owl:inverseOf>

 <rdfs:range rdf:resource="#"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hastype">

 <rdfs:range rdf:resource="#type"/>

 <rdfs:domain rdf:resource="#"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isDetectionOf">

 <rdfs:range rdf:resource="#"/>

 <rdfs:domain rdf:resource="#Detection"/>

 <owl:inverseOf>

 <owl:ObjectProperty rdf:ID="hasDetection"/>

 </owl:inverseOf>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasDetection">

 <rdfs:range rdf:resource="#Detection"/>

 <rdfs:domain rdf:resource="#"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hassubClassOf">

125

 <rdfs:domain rdf:resource="#"/>

 <rdfs:range rdf:resource="#subClassOf"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:ID="isSolutionsOf">

 <owl:inverseOf rdf:resource="#hasSolutions"/>

 <rdfs:range rdf:resource="#"/>

 <rdfs:domain rdf:resource="#Solutions"/>

 </owl:ObjectProperty>

 <owl:ObjectProperty rdf:about="#hasName">

 <rdfs:domain rdf:resource="#"/>

 <rdfs:range rdf:resource="#Name"/>

 </owl:ObjectProperty>

 <owl:DatatypeProperty rdf:ID="symptoms">

 <rdfs:label>Symptoms</rdfs:label>

 <rdfs:domain rdf:resource="#"/>

 </owl:DatatypeProperty>

 <Detection

rdf:ID="Measuring_the_number_of_fields_and_methods_in_conjunction_with_cyclom

atic_complexity">

 <rdfs:label>Measuring the number of fields and methods in conjunction with

cyclomatic complexity</rdfs:label>

 <isDetectionOf>

 <rdf:Description rdf:ID="A_class_having_little_functions">

 <hasSolutions>

 <Solutions rdf:ID="Collapse_Hierarchy_and_Inline_class">

 <isSolutionsOf rdf:resource="#A_class_having_little_functions"/>

 <rdfs:label>Collapse Hierarchy and Inline class</rdfs:label>

 </Solutions>

 </hasSolutions>

 <symptoms>A class having little functions</symptoms>

 <hasDetection

rdf:resource="#Measuring_the_number_of_fields_and_methods_in_conjunction_with_

cyclomatic_complexity"/>

 <hastype>

 <type rdf:ID="Class">

 <istypeOf rdf:resource="#A_class_having_little_functions"/>

126

 <istypeOf>

 <rdf:Description rdf:ID="Too_many_instance_variables_or_methods">

 <hasName>

 <Name rdf:ID="LargeClass">

 <rdfs:label>LargeClass</rdfs:label>

 <isNameOf

rdf:resource="#Too_many_instance_variables_or_methods"/>

 </Name>

 </hasName>

 <hassubClassOf>

 <subClassOf rdf:ID="CodeSmell">

 <issubClassOfOf rdf:resource="#A_class_having_little_functions"/>

 <issubClassOfOf

rdf:resource="#Too_many_instance_variables_or_methods"/>

 <rdfs:label>CodeSmell</rdfs:label>

 <issubClassOfOf>

 <rdf:Description

rdf:ID="Too_long_method_that_is_difficult_to_understand_and_reuse">

 <hastype rdf:resource="#Class"/>

 <hasDetection>

 <Detection

rdf:ID="Cyclomatic_complexity_polynomial_metrics">

 <rdfs:label>Cyclomatic complexity (polynomial

metrics)</rdfs:label>

 <isDetectionOf

rdf:resource="#Too_long_method_that_is_difficult_to_understand_and_reuse"/>

 </Detection>

 </hasDetection>

 <symptoms>Too long method that is difficult to understand and

reuse</symptoms>

 <hassubClassOf rdf:resource="#CodeSmell"/>

 <rdfs:label>Too long method that is difficult to understand and

reuse</rdfs:label>

 <hasSolutions>

 <Solutions

rdf:ID="Decompose_Conditional_Extract_Method_Replace_Method_with_Method_O

127

bject_and_Replace_Temp_with_Query">

 <isSolutionsOf

rdf:resource="#Too_long_method_that_is_difficult_to_understand_and_reuse"/>

 <rdfs:label>Decompose Conditional, Extract Method,

Replace Method with Method Object, and Replace Temp with Query</rdfs:label>

 </Solutions>

 </hasSolutions>

 <hasName>

 <Name rdf:ID="LongMethod">

 <rdfs:label>LongMethod</rdfs:label>

 <isNameOf

rdf:resource="#Too_long_method_that_is_difficult_to_understand_and_reuse"/>

 </Name>

 </hasName>

 <rdf:type rdf:resource="#"/>

 </rdf:Description>

 </issubClassOfOf>

 <issubClassOfOf>

 <rdf:Description rdf:ID="Redundant_code">

 <hassubClassOf rdf:resource="#CodeSmell"/>

 <symptoms>Redundant code</symptoms>

 <hasSolutions>

 <Solutions

rdf:ID="Extract_Class_Extract_Method_Form_Template_Method_and_Pull_Up_Meth

od">

 <isSolutionsOf rdf:resource="#Redundant_code"/>

 <rdfs:label>Extract Class, Extract Method, Form Template

Method, and Pull Up Method</rdfs:label>

 </Solutions>

 </hasSolutions>

 <rdf:type rdf:resource="#"/>

 <hasDetection>

 <Detection

rdf:ID="Percentage_of_duplicate_code_lines_in_the_systems">

 <isDetectionOf rdf:resource="#Redundant_code"/>

 <rdfs:label>Percentage of duplicate code lines in the

128

systems</rdfs:label>

 </Detection>

 </hasDetection>

 <hastype rdf:resource="#Class"/>

 <hasName>

 <Name rdf:ID="DuplicateCode">

 <isNameOf rdf:resource="#Redundant_code"/>

 <rdfs:label>DuplicateCode</rdfs:label>

 </Name>

 </hasName>

 <rdfs:label>Redundant code</rdfs:label>

 </rdf:Description>

 </issubClassOfOf>

 <issubClassOfOf>

 <rdf:Description

rdf:ID="A_method_with_too_many_parameters_that_is_difficult_to_understand">

 <hasSolutions>

 <Solutions

rdf:ID="Introduce_Parameter_Object_Replace_Method_with_Method_Object_and_Pre

serve_Whole_Object">

 <rdfs:label>Introduce Parameter Object, Replace Method

with Method Object, and Preserve Whole Object</rdfs:label>

 <isSolutionsOf

rdf:resource="#A_method_with_too_many_parameters_that_is_difficult_to_understan

d"/>

 </Solutions>

 </hasSolutions>

 <hastype rdf:resource="#Class"/>

 <hasDetection>

 <Detection rdf:ID="Count_the_number_of_parameters">

 <isDetectionOf

rdf:resource="#A_method_with_too_many_parameters_that_is_difficult_to_understan

d"/>

 <rdfs:label>Count the number of parameters</rdfs:label>

 </Detection>

 </hasDetection>

129

 <hasName>

 <Name rdf:ID="LongParameterList">

 <rdfs:label>LongParameterList</rdfs:label>

 <isNameOf

rdf:resource="#A_method_with_too_many_parameters_that_is_difficult_to_understan

d"/>

 </Name>

 </hasName>

 <symptoms>A method with too many parameters that is difficult

to understand</symptoms>

 <rdfs:label>A method with too many parameters that is difficult

to understand</rdfs:label>

 <rdf:type rdf:resource="#"/>

 <hassubClassOf rdf:resource="#CodeSmell"/>

 </rdf:Description>

 </issubClassOfOf>

 </subClassOf>

 </hassubClassOf>

 <rdf:type rdf:resource="#"/>

 <symptoms>Too many instance variables or methods</symptoms>

 <rdfs:label>Too many instance variables or methods</rdfs:label>

 <hasDetection>

 <Detection

rdf:ID="Lack_of_Cohesion_Methods_or_measuring_class_size">

 <rdfs:label>Lack of Cohesion Methods or measuring class

size</rdfs:label>

 <isDetectionOf

rdf:resource="#Too_many_instance_variables_or_methods"/>

 </Detection>

 </hasDetection>

 <hasSolutions>

 <Solutions

rdf:ID="Extract_Class_Extract_Interface_Extract_Subclass_and_Introduce_Foreign_M

ethod">

 <isSolutionsOf

rdf:resource="#Too_many_instance_variables_or_methods"/>

130

 <rdfs:label>Extract Class, Extract Interface, Extract Subclass, and

Introduce Foreign Method</rdfs:label>

 </Solutions>

 </hasSolutions>

 <hastype rdf:resource="#Class"/>

 </rdf:Description>

 </istypeOf>

 <istypeOf rdf:resource="#Redundant_code"/>

 <istypeOf

rdf:resource="#Too_long_method_that_is_difficult_to_understand_and_reuse"/>

 <rdfs:label>Class</rdfs:label>

 <istypeOf

rdf:resource="#A_method_with_too_many_parameters_that_is_difficult_to_understan

d"/>

 </type>

 </hastype>

 <hasName>

 <Name rdf:ID="LazyClass">

 <rdfs:label>LazyClass</rdfs:label>

 <isNameOf rdf:resource="#A_class_having_little_functions"/>

 </Name>

 </hasName>

 <rdf:type rdf:resource="#"/>

 <rdfs:label>A class having little functions</rdfs:label>

 <hassubClassOf rdf:resource="#CodeSmell"/>

 </rdf:Description>

 </isDetectionOf>

 </Detection>

</rdf:RDF>

131

Vita

Yixin Luo is a doctoral candidate in the Department of Computer Science at Louisiana

State University. He received his Bachelor of Science degree in materials engineering

from Wuhan University of Technology. He received his Master of Science degree in

physics and computer science from Southern University at Baton Rouge in 2001. His

research interests are in software security, software development, high performance

computing, and software ontology. He is a student member of ACM and SAGE and a

member of AGU.

He worked as IT analyst for four years at Coastal Studies Institute (CSI) of Louisiana

State University. He maintained and developed software products for an ocean

observation system at Gulf of Mexico. He is currently employed by Center for

Computation and Technology (CCT) of LSU, and his work is related to Teragrid

development and maintenance. The degree of Doctor of Philosophy will be awarded at

the May 2010 commencement at Louisiana State University.

	Louisiana State University
	LSU Digital Commons
	2010

	Improving software quality using an ontology-based approach
	Yixin Luo
	Recommended Citation

	thesis

