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ABSTRACT

In this thesis, we consider the problem of finding an optimal combination of multiplexing and

space-time coding over a MIMO array when a transmitter has a prior knowledge about correlation.

Some existing work in this area used multiplexing and space-time coding methods as a technique

to achieve capacity over a MIMO wireless channel. In this work, we consider a 2x2 lattice space-

time code of highest rank and multiplex it over a MIMO system to improve the bit error rate

performance. The main focus of this thesis is to address the problem of switching between spatial

multiplexing and space-time coding to enhance the performance of a MIMO system.

The data rate over wireless links is improved by using a MIMO system. For this type of

system, the spatial dimension is exploited by using spatial multiplexing and space-time coding

with diversity oriented transmission. Spatial multiplexing uses spatial degrees of freedom and

space-time coding uses the antennas. To integrate them the system has to compromise to some

extent in performance criterion.

This thesis investigates the need to switch between the spatial multiplexing and space-time

coding over space by making the instantaneous channel feedback available at transmitter. This

thesis also indicates that the bit-error rate of the combination of lattice space-time code and mul-

tiplexing can be reduced when compared with the combination of Alamouti scheme and spatial

multiplexing.
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CHAPTER 1

INTRODUCTION

1.1 Problem Formulation

If our principle motto is to improve the data rate of transmission over a wireless medium then

MIMO system is one of the choices available. In MIMO systems multiplexing and space-time

coding are two ways by which the capacity can be enhanced. Space-time coding uses antennas

to fight against Rayleigh fading while the spatial multiplexing uses spatial degree of freedom to

improve the data rate by simultaneously sending the independent symbol streams. There are some

differences in employing these schemes, the diversity scheme with more number of antennas has

less returns and the multiplexing scheme lacks in diversity using a simple linear receiver which

results in poor performance. Therefore we will try to solve both these problems due to multiplexing

and space-time coding by integrating these two schemes. There are proposed schemes where

combining these two schemes has been carried out over space and time. There were cases where

the required combination is to switch between spatial multiplexing and space-time coding over

time, this exploited the fact that spatial multiplexing performance was totally dependent on eigen

value spread whereas for the space-time coding depends on channel matrix energy.

In this part of our work we will concentrate on the problem of switching between the spatial

multiplexing and space-time coding over space. In this case the transmitter has instantaneous

channel feedback where long term characteristics are available. We will discuss about the MIMO

system model and then the two schemes, spatial multiplexing and space-time coding in detail and

then combining them over a Rayleigh fading channel. We will then investigate the performance
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gains with bit error rate simulations. Later in the second part of the work we will discuss about the

lattice codes and their relation in communications and integrating with spatial multiplexing. This

will be followed by studying the performance characteristics by examining the bit error rate curves

and comparing it with the normal mode. We have a 2x2 lattice code of highest rank 8 as proposed

by Yang [6]. We were able to rearrange the lattice in such a way that the Alamouti scheme can be

applied on it and also integrate this lattice space-time code with spatial multiplexing for a MIMO

system over a fading channel.

1.2 Contribution of the Thesis

The objectives of this Thesis are :

• To compare the performance of Alamouti code using 8-PSK, lattice space-time code of high-
est rank using BPSK, and the combined transmission scheme of lattice with spatial multi-
plexing for 2x1 and 2x2 MIMO systems.

• To analyze the BER and SER curves of the lattice space-time code combined with spatial
multiplexing.

This thesis provides the following information:

• Preliminary information about the various MIMO systems including the channel capacities
for the cases when the channel is known to the transmitter and when it is unknown to the
transmitter.

• Various space-time codes, spatial multiplexing schemes and their decoding procedures.

• Formulation of the lattice space-time code of highest rank such that the Alamouti scheme
for a 2x2 antenna system can be implemented for the evaluation of performance.

• Development of different procedures for simulation of SER and BER curves using matlab.

• Comparison of various space-time coding, spatial multiplexing and their combined transmis-
sion schemes.

1.3 Outline of the Thesis

This thesis is organized as follows.

Chapter 2 gives a brief information of multi-antenna systems and different types of array gain

and diversity gain involved.
2



Chapter 3 discusses about Alamouti scheme, which is a simple full rate space-time block code

scheme that has information spread across multiple antennas at the transmitter end.

Chapter 4 discusses about another diversity oriented transmission technique known as spatial

multiplexing (SM or SMX). This method is also called as ”BLAST” approach. This is another

approach of exploiting the spatial dimension offered by the MIMO system.

Chapter 5 focuses on combination of the Alamouti space-time code and spatial multiplexing

over Rayleigh fading channel.

Chapter 6 discusses about a lattice and how they are related to communications and a 2x2 lattice

space-time code of highest rank and how the Alamouti scheme is applied to this lattice code.

Chapter 7 focuses on integrating the highest rank lattice code and spatial multiplexing over

space.

Chapter 8 contains the comparative study of the BER and SER of lattice space-time code,

Alamouti scheme and these schemes combined with spatial multiplexing.

Chapter 9 gives conclusions and discusses about the future work.

3



CHAPTER 2

PRELIMINARIES

2.1 Multi-antenna Systems

The following figure Fig. 2.1 shows the different types of antenna configurations used in space-

time systems. Single-input single-output (SISO) which has one antenna at the transmission end

and one antenna at the receiver end and this is one of the well known configuration. Single-

input Multiple-output(SIMO) which has one antenna at transmitter end and Mr receiving antennas.

Multiple-input single-output (MISO) which has Mt antennas at the transmitter and one antenna at

the receiver end. Multiple-input multiple-output (MIMO) which has Mt antennas at the transmitter

end and Mr receiving antennas and finally MIMO-multiuser (MIMO-MU) which has a base station

with multiple antennas at the transmitter end and multiple receiving antennas interacting with

multiple users each with one or more antenna. Some of the terms related to MIMO systems are

discussed in the next section.

2.2 Array Gain

Array gain is defined as the average increase in the signal-to-noise ratio (SNR) at the receiver due

to the use of multiple antennas. Coherence combining effect of these antennas will be there either

at the receiver or at the transmitter or both [17]. There are two types of array gains

• Transmitter Array gain

• Receiver Array gain

Consider MISO system where we have multiple antennas at transmitter, if the channel state

information is known to the transmitter then it will weigh the transmission depending on the chan-
4



Figure 2.1 Different antenna configurations

nel coefficients. The gain at one antenna receiver which has coherent combining effect is called

transmitter array gain.

Now consider the SIMO system where we have one antenna at the transmitter end which do not

have any knowledge of the channel state information and multiple antennas which have complete

knowledge of the channel state information can suitably weigh the received signals and coherently

combine at the output thereby enhancing the signal. This is called receiver array gain.

Therefore multiple antenna system requires complete knowledge about either transmitter or

receiver or both to achieve this array gain.

2.3 Diversity Gain

In a communication system one of the major problem is multi path fading due to obstacles like

buildings, cars, trees etc. In a fading channel like Rayleigh channel the signal experiences fluc-

tuations in their strength. When the power of the signal drops to an extent then the signal is said

to be in a fade which results in bit error rate (BER). Diversity techniques are employed to fight

5



against fading, in this process several replicas of the transmitted signals are used over space, time

or frequency [17]. There are some traditional diversity schemes like

• Selection diversity.

• Maximal ratio diversity.

• Equal gain diversity.

These are diversity combining schemes employed for SIMO channels. The space-time coding

exploits diversity across space and time. There are several types of diversity schemes in wireless

communication systems,

• Temporal diversity.

• Frequency diversity.

• Spatial diversity

– Receiver diversity.

– Transmitter diversity.

– Polarization diversity.

– Angle diversity.

In temporal diversity [17] the replications of the transmitted signals are provided in time by

combining time interleaving strategies and channel coding. The channel must provide variations

in time, in some cases where the coherent time of channel is small we can guarantee that the

interleaved symbol is different from the previous transmitted symbol, hence the new replication

will be completely new than that of the original symbol transmitted [17].

In frequency diversity [17] the replications of the original transmitted signals are in frequency.

This happens in the case where the bandwidth of the signal is greater than the coherence bandwidth

of the channel, this guarantees that the spectrum will undergo different fades.

In spatial diversity the replications of the original transmitted signals are across different re-

ceiver antennas. In this case there are independent fades across different antennas as coherent

distance is smaller than the antenna spacing. This is also called as antenna diversity scheme which
6



is the best method to fight against the multi-path fading. We have to understand that, the better

the independent samples of the original signal transmitted the better the diversity scheme then the

probability of a signal to undergo fading in different parts of signal will be very small. There are

so many constraints on which it depends like coherence time, coherence bandwidth and coherence

distance. The receiver should be able to combine the different waveforms to get back the original

signal with good quality. This scheme may also be categorized based on the scheme application to

either transmitter or receiver [17].

Receive diversity: It is also called as maximum ratio combining, this is commonly applied

receiver diversity scheme to enhance the signal quality [17]. This is costly and difficult to handle

or use at the receiver side especially in cell phones, this is the reason that the other diversity scheme

became popular.

Transmit diversity: This is easier to implement at the base station, where controlled redundan-

cies are introduced at the transmitter. By employing appropriate signal processing at the receiver

the signal can be restored. In this scheme the transmitter should have complete knowledge about

the channel [17].

In this category of diversity we have two more types of diversity schemes.

Polarization diversity: In this type of diversity scheme there are two pairs of polarized anten-

nas, two at the transmitter and two at the receiver. Horizontal and vertically polarized signals are

sent from two differently polarized transmitter antennas and they are received by the two differ-

ently polarized antennas at receiver [17]. As they employ different polarization, there will be no

correlation between the data streams.

Angle diversity: This type of scheme is applicable for carrier frequencies greater than 10GHz, at

this high frequencies the transmitted signal undergoes scattering. They have two highly directional

antennas facing in different directions enables receiver to collect two different samples of the same

signal, which are different from each other [17].

7



So far in this chapter we discussed about the different multi-antenna systems and several con-

cepts like array gain, diversity gain and how they play a role in the performance of the system.

Now let switch to our main idea of the space-time codes in the next chapter.
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CHAPTER 3

ALAMOUTI SPACE-TIME CODING

In this chapter we will discuss about 2x2 Alamouti code with full diversity gain and also inves-

tigate simple maximum likelihood decoding algorithm. We shall examine how these space-time

codes behave in imperfect channel estimates and Rayleigh fading channels.

The Alamouti space-time block coding is a well known diversity technique which uses the

information spread across multiple antennas at the transmitter end. We make some assumptions

in this scheme, as the channel we are using is the Rayleigh fading channel and the modulation

technique used is BPSK, the Rayleigh channel is assumed to be flat fading channel [17], [1].

Consider a transmission sequence (x1, x2, x3, x4, x5, ., ., ., ., .xn) , in normal transmission x1 is

sent in first time slot and x2 is sent in the second time slot and x3 is sent in the third time slot and so

on xn is sent in the nth time slot, where as in this Alamouti scheme the encoder picks up the block

of two modulated symbols x1 and x2 in one encoding operation and feed it to the transmitting

antennas according to the following block code matrix [1]

X =

x1 x2

x3 x4

 . (3.1)

In the above matrix the columns represent the space and the rows represent time i.e., the

columns tells us about the transmission periods and the rows tell us about the symbols transmitted

from the antennas. Elaborating it, in the first symbol period the first and second antennas transmit

x1 and x2 and in the second symbol period they transmit −x∗
2 (complex conjugate of x2) and x∗

1

9



Figure 3.1 Alamouti scheme using rows and columns

(complex conjugate of x1). In the third symbol period x3 and x4 and in the fourth symbol period

−x∗
4 and x∗

3 and it continues till the nth symbol [1].

Actually the symbols are grouped in two and sent, by sending two symbols in two different

time slots the data rate does not change. The block diagram Fig. 3.2 below gives the exact idea

how the Alamouti scheme is implemented.

This is going to imply that we are transmitting both in space and time i.e., space-time coding.

By examining the encoding matrix we can tell that the sequences are orthogonal, as the inner

product of the x′ and x′′ is zero.

x′ = [x1,−x∗
2] (3.2)

x′′ = [x2, x
∗
1] (3.3)

x′x′′H = x1x
∗
2 − x∗

2x1 = 0. (3.4)

10



Figure 3.2 Block diagram of Alamouti coding

There will be fading and the coefficients related to fading are defined by h1(t) and h2(t), at time

t from antennas first and second respectively. By assuming that these coefficients will be constant

across two consecutive symbols gives us the following equations:

h1(t) = h1(t+ T ) = h1 = |h1|ejθ1 , (3.5)

h2(t) = h2(t+ T ) = h2 = |h2|ejθ2 , (3.6)

|hi| is the amplitude gain and θi,i=1,2 is the phase shift from transmitter i to the receiver antenna.

This received signals after passing through the channel can be expressed as below. In 1st time slot

y11 = h11x1 + h12x2 + n1
1. (3.7)

y12 = h21x1 + h22x2 + n1
2. (3.8)

y11

y12

 =

h11 h12

h21 h22


x1

x2

+

n1
1

n1
2

 . (3.9)

The channel remains constant and the second time slot

y21 = −h11x
∗
2 + h12x

∗
1 + n2

1. (3.10)

y22 = −h21x
∗
2 + h22x

∗
1 + n2

2. (3.11)

11



Figure 3.3 Alamouti coding in a 2x2 system

y21

y22

 =

h11 h12

h21 h22


−x∗

2

x∗
1

+

n2
1

n2
2

 , (3.12)

where hij represents ith receiver to the jth transmitting antenna and n1 and n2 are independent

complex variables.

3.1 Maximum Likelihood Decoding

The channel coefficients h1 and h2 are assumed to be perfectly recovered at the receiver and these

coefficients are used as the CSI [17]. The combiner combines the received signal as mentioned

below (3.13) and sends it to the maximum likelihood detector, where it reduces to decision

x̃1 = h∗
1y1 + h2y

∗
2 = (α2

1 + α2
2)x1 + h∗

1n1 + h2n
∗
2, (3.13)

x̃2 = h∗
2y1 − h1y

∗
2 = (α2

1 + α2
2)x2 − h1n

∗
2 + h∗

2n1, (3.14)

and the decision metric equation is given as

|y1 − h1x1 − h2x2|2 + |y2 + h1x
∗
2 − h2x

∗
1|2. (3.15)

12



Figure 3.4 Maximum likelihood detector

Therefore enquiring all the possibilities of x1 and x2 and deleting the non related codewords

reduce the above equation (3.15) to

|y1h∗
1 + y∗2h2 − x1|2 + (α2

1 + α2
2 − 1)|x1|2, (3.16)

|y1h∗
2 + y∗2h1 − x2|2 + (α2

1 + α2
2 − 1)|x2|2, (3.17)

for detecting x1 and x2 respectively. For the decision rule if the notation is

d2(a, b) = (a− b)(a∗ − b∗) = |a− b|2. (3.18)

The decision rule for each combined signal x̃j behaves as

(α2
1 + α2

2 − 1)|xi|2 + d2(x̃j, xi) ≤ (α2
1 + α2

2 − 1)|xk|2 + d2(x̃j, xk),∨i ̸= k. (3.19)

In the case of PSK signals the above equation (3.17) reduces to

d2(x̃j, xi) ≤ d2(x̃j, xk),∨i ̸= k. (3.20)

13



3.2 Maximum Ratio Combining

Figure 3.5 Maximum ratio combining

When we consider the case of maximum ratio combining, the received signals can be inter-

preted as

y1 = h1x0 + n1y2 = −h2x0 + n2, (3.21)

and the combined signal is

x̃0 = h∗
1x0 + h∗

2r2x̃0 = (α2
1 + α2

2)x0 + h∗
1n1 + h∗

2n2. (3.22)

The maximum likelihood detector uses the same decision rule as that of PSK signals and signal xi

is detected [17]. This MRC signal is almost same as the diversity scheme signal except for small

phase difference in the noise signal, which does not affect the signal-to-noise ratio. Hence we can

conclude that two-branch MRC and Alamouti diversity order in this case is same.

14



3.3 Transmit Diversity

Consider two distinct code sequences X and X̂ generated by the inputs (x1, x2) and (x̂1, x̂2), re-

spectively, where

(x1, x2) ̸= (x̂1, x̂2). (3.23)

We know that the transmissions are orthogonal in Alamouti’s scheme, hence the transmission

diversity is of order two. The codeword difference matrix is given by the following equation:

B(x, x̂) =

x1 − x̂1 −x∗
2 + x̂∗

2

x2 − x̂2 −x∗
1 + x̂∗

1

 . (3.24)

The rows of this code word difference matrix are orthogonal as the rows of the code matrix are

orthogonal. Code word distance matrix is given by

A(X, X̂) = B(X, X̂)BH(X, X̂). (3.25)

A(X, X̂) =

|x1 − x̂1|2 + |x2 − x̂2|2 0

0 |x1 − x̂1|2 + |x2 − x̂2|2

 , (3.26)

since the transmit diversity is two i.e., MT = 2. The resultant determinant of A(X, X̂) is given by

det(A(X, X̂)) = (|x1 − x̂1|2 + |x2 − x̂2|2)2. (3.27)

When we observe the above code word distance matrix (3.27), we can tell that it has two

identical eigen values. Out of the two, the minimum eigen value is the min squared Euclidean

distance in the signal constellation.

Therefore in brief according to Alamouti scheme there is no feedback to the transmitter from

receiver to get full transmit diversity. The main advantage is that there is no need of complex

decoders, and there is no bandwidth expansion as redundancy applied in space for these multiple

antennas.

Matlab Implementation:
15



1. A binary sequence of +1 and -1 is generated.

2. These are grouped into pairs of two symbols.

3. These are coded as per Alamouti scheme.

4. Multiply these symbols with channel and then white Gaussian noise is added.

5. The received symbols should be equalized.

6. Hard decision decoding is being performed on the received bits and number of errors are
counted.

7. This will be repeated for different values of Eb/N0.

Figure 3.6 Matlab implementation of 2x1 system

16



Figure 3.7 Matlab implementation of 2x2 system
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CHAPTER 4

SPATIAL MULTIPLEXING

In this chapter we will discuss about another diversity oriented transmission technique known

as spatial multiplexing (SM or SMX). This method is also called as ”BLAST” approach. This is

another approach of exploiting the spatial dimension offered by the MIMO system. This method

sends the symbol streams at a time using the spatial degree of freedom, which helps it to increase

the data rate. Here the stream is referred as the independent and separately encoded data signals

from the transmitting antenna. By sending the streams of symbols at a time the space dimension is

being used again and again more than once i.e., reused or multiplexed [17].

In spatial multiplexing if transmitter is transmitting using Mt antennas and receiver is using

Mr antennas, the maximum number of streams that can be transmitted in case of linear receiver is

used is

Ms = min(Mt,Mr), (4.1)

i.e., over a wireless channel Ms streams can be transmitted at a time leading to the increase in

spectral efficiency by the amount of Ms without requiring any additional bandwidth or power. This

capacity increment can be achieved only in MIMO channels. In this multiple antenna systems, the

independent sub streams transmitted undergo scattering due to the obstacles and scattering objects

like cars, walls of buildings, etc., and these transmitted signals takes different paths. This is the

reason for different transmitting antennas having different spatial signature. At the receiver end

the individual signal streams received undergo signal processing to decode them to get the original

signal. The added advantage in employing the spatial multiplexing technique is the orthogonal

18



signatures of the transmitted signals provided by the propagation channel, whereas in CDMA

or TDMA this orthogonal signatures are obtained at the cost of frequency spreading and time

spreading, hence their spectral efficiency is much decreased.

Figure 4.1 Spatial multiplexing system

Spatial multiplexing can be encoded in two different ways

1. Open-loop approach.

2. Closed-loop approach.

4.1 Open-loop Approach

This type of system uses Mt transmit antennas and Mr receiving antennas, the relation between

the output y and input x is given as

y = Hx+ n, (4.2)

where,

• x = [x1, x2, x3, x4, ., ., ., ., ., xNt ]
T is the transmitted symbols Mt x 1 vector.
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• y is the Nr x 1 vector of the received symbol.

• n is the noise vector.

• H is the Mr x Mt matrix of channel coefficients.

4.2 Closed-loop Approach

This type of system uses Mt transmit antennas and Mr receiving antennas, the relation between

the output y and input x is given as

y = HWs+ n, (4.3)

where,

• s = [s1, s2, s3, s4, ., ., ., ., ., ., sNt ]
T are the transmitted symbols Ms x 1 vector.

• y is the Mr x 1 vector of the received symbol.

• n is the noise vector.

• H is the Mr x Mt matrix of channel coefficients.

• W is the linear pre-coding matrix.

In this case we use a pre-coding matrix W to pre-code the symbols in order to increase the perfor-

mance. The columns of Ms of W are chosen in such a way that they are smaller than the columns

of Mt, as in most of the systems the number of transmit antennas are greater than the receiver

antennas.

For example consider a system with two transmitting antennas and two receiving antennas, if

you want to extend to more antennas in number this can be applied to any general case. At the

transmitter end the two antennas simultaneously transmit the modulated bit stream by splitting

it into two half-rate bit streams. In this system the receiver has knowledge about channel it has

receiver diversity, as the receiver knows about the channel it can recover and combine the received

bits to get back the original stream of bits. Whereas this is not the case of transmitter as bit streams

carry completely different data, hence transmitter diversity cannot be achieved. Therefore the
20



number of transmission antennas pairs have an impact on the transmission rate i.e., the transmission

rate increases when the number of pairs are increased, they are directly proportional to each other.

Figure 4.2 Spatial multiplexing for 2X2 system

In MIMO-MU case the two antennas simultaneously transmit the modulated bit stream by

splitting it into two half-rate bit streams to the base stations (BS). This base station can separately

transmit two different signals simultaneously with spatial filtering such that the receiver can decode

the signal without any error. Therefore the number of transmission antennas pairs at the base station

have an impact on the transmission rate, i.e., the transmission rate increases, when the number of

pairs at the base station are increased and also on the number of users.

In this multiplexing system we consider the channel to be flat fading channel i.e., Rayleigh

fading channel. Let x = [x1, x2, x3, x4, ., ., ., ., ., ., xNt ] be the sequence to be transmitted, the two

transmitter antennas group the symbols in group of 2 and they send as follows

• 1st time slot x1, x2 are sent.

• 2nd time slot x3, x4 are sent.

• 3rd time slot x5, x6 are sent.
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Figure 4.3 Spatial multiplexing with base station

• 4th time slot x7, x8 are sent.

• so on.

Therefore the number of time slots required are n/2, thus the data rate has been doubled. Where

hij is randomly varying complex number and µhij
= 0 and σ2

hij
= 1

2
. At the receiving antenna end

the noise has Gaussian distribution, therefore the distribution is given as [14]

p(n) =
1√
2πσ

e−
(n−µ)2

2σ2 , (4.4)

where µ = 0 and σ2 = N0/2.

4.3 Zero-forcing Detector

The ZF receiver is linear and it acts as a linear filter, which independently decodes each data stream.

At the receiver the output can be interpreted as

y1 = h11x1 + h12x2 + n1. (4.5)

y2 = h21x1 + h22x2 + n2. (4.6)
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Therefore the output can be expressed as

Y = HX +N, (4.7)

where Y, X, H and N are the output, input, channel and noise matrices w.r.t to the above equations

(4.5), (4.6). To solve for X we should be able to find a matrix W such that WH = I , where I is the

identity matrix. Hence with this ZF linear detector we get

W = (HHH)−1HH , (4.8)

HHH =

 |h11|2 + |h21|2 h∗
11h12 + h∗

21h22

h∗
12h11 + h∗

22h21 |h12|2 + |h22|2

 , (4.9)

where in HHH matrix the off diagonal terms are non-zero the ZF equalizer try to nullify the

interfering terms during equalization, i.e., while solving for x1 the interference terms due to x2

tried to be nullified and while solving for x2 the interference terms due to x1 are nullified. The

BER for MIMO system in Rayleigh fading channel with ZF equalization is given as following

referring to section 3.3 in [18]

pb =
1

2
− 1

2

√
(Eb/N0)

(Eb/N0) + 1
. (4.10)

This shows that the diversity order of the each independent data stream is given by Mr−Mt+1,

i.e., Mt parallel streams from the ZF receiver has the array gain of the order of Mr −Mt + 1.

Matlab Implementation:

1. The symbol sequences of +1’s and -1’s are generated.

2. Then these pairs are grouped in pairs which has two symbols per slot.

3. These symbols are then multiplied with channel and then Gaussian noise is added.

4. Equalization using ZF is done at the receiver.

5. Hard decision decoding is done and the number of bit error are counted.

6. This is repeated for different values of Eb/N0.
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Figure 4.4 Spatial multiplexing of 2x2 system using matlab
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CHAPTER 5

COMBINING ALAMOUTI’S SCHEME AND SPATIAL MULTIPLEXING

In this chapter we will discuss about combining the space-time codes and spatial multiplexing

over space, the proposed scheme focuses on the problem of switching these two methods over

space rather than on time. We use the simple algorithms proposed in [2] to generalize the work

of [7]. For both cases the long term correlation statistics of the transmitter is known and the

instantaneous channel feedback is available at transmitter. Here the problem of combining both

the techniques Alamouti and multiplexing on the same array by allocating the antennas to either

one scheme or the other is discussed. The combination in space inspired by [2], which in turn got

inspired by the combination in time by [7].

5.1 Combining in Time

In the paper [7] these two techniques are compared by checking the instantaneous channel matrices,

which uses different modulation schemes to make sure they have same bit error rate. The best

method is chosen based on a criterion that the closer the symbols are in the received constellation

the more likely that the decision made has been right. Therefore at any time for the received

constellation the one that gives the largest minimum Euclidean distance is chosen.

The minimum squared,Euclidean distance of the received constellations denoted as d2minSM(H)

for SM and d2minSTC
(H) for STC methods and the bounds on these are given as

d2min,SM(H) ≥ σ2
min(H)d2min,sm, (5.1)

d2(min,STC)(H) ≤ 1/N ||H||2Fd2min,stc. (5.2)
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In the above equations (5.1), (5.2) d2min,sm and d2min,stc are the minimum squared Euclidean dis-

tances of the transmit constellations, and σmin(H) is the minimum singular value of H. Using

conservative approach, spatial multiplexing is used only when

σ2(H)d2minsm ≥ ||H||2Fd2minstc. (5.3)

Therefore for a given channel matrix H, if it has a large Frobenius norm then diversity is preferred,

else if there is large minimum eigen value then spatial multiplexing is preferred.

5.2 Combining in Space

In paper [2] space-time code is considered as Alamouti scheme, here all these Alamouti coded

blocks have been spatially multiplexed consisting of independent group of two symbols in each

one. It is assumed that N = 2k, k ≥ 2,M ≥ N/2 and the transmitted block is X = [x0x1.......xN−1]
T

is transmitted over two symbol durations by forming matrix X of size Nx2 from the Xk Alamouti

matrices of size Nx2. The best way of assigning the Alamouti blocks to antenna is by choosing X

such that

Y = HX +N, (5.4)

where,

X =



X0

X1

X2

.

.

.

XN/2−1



. (5.5)
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This combination may also be expressed with respect to channel matrix

ỹ = H̃x+ n. (5.6)

These Alamouti blocks may be assigned to any antenna combination, if there are pN non-

trivially equivalent antenna patterns, then these are figured as pk, where kϵ[1, pN ]. When only two

antenna system is used then there is only one pattern possible so there is no complexity involved

but when two or more antennas are used then the pattern selection comes to light, for example

when N = 4 and and p4 = 3 then the patterns possible are shown below as in Fig. 5.2.

Figure 5.1 Two antenna transmit pattern

According to these different pk patterns available the general input output equation is given as

ỹ = H̃(pk)x+ n. (5.7)

The main goal is to select the pattern out of possible patterns available is to reduce the feedback

load and the complexity of the model.
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Figure 5.2 Four antenna transmit pattern

Figure 5.3 Combined spatial multiplexing with Alamouti space-time code
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CHAPTER 6

LATTICE SPACE-TIME CODES

In this chapter we will discuss about lattices and how they are related to communication sys-

tems and a 2x2 lattice space-time code of highest rank. For all the pervious construction of 2x2

lattice space-time codes with a positive diversity product, the rank r(2) is such that r(2) ≤ 4. An

example of 2x2 lattice space-time code of rank 5 with a positive diversity product was given by Li,

later 2x2 lattice space-time code of rank 8 with positive diversity product was given by [6] Yang,

Bo and Togbe as an answer to the open problem by Xing and Li. We use this high rank lattice code

and decode it such that Alamouti scheme can be applied to it and used for communication over

fading channel.

Lattice in general related to number of geometric problems like sphere packing. Sphere cov-

ering and the kissing number problem and also other areas of mathematics like number theory,

combinatorics. Chemistry has also lot of connections with lattices their 3-D structures has been

studied in areas like crystallography and in physics the high dimensional lattices like Leech lattice

and E8 are being studied.

The main application of lattices other than the mathematics and engineering is specifically in

communications. In recent years lattice codes have considerable attention because they provide

high data rate constellations. The main use of lattice is in the channel coding problem, the design

of codes in the bandlimited channel. Lattices are used for the construction of n-dimensional codes

for n-dimensional vector quantizers.

Definition: A lattice in Rn is the set of integer linear combinations of a given linear independent

set of vectors.
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6.1 Lattice and Channel Codes

The theory of classical linear channel codes over finite fields is same as the theory of lattices

i.e., sphere packing problem, this questions us how densely a large number of identical spheres

can be packed together in n-dimensional space. One of the most pleasing consequence is the

Gilbert-varshanov lower bound, which guarantees existence of channel codes with a certain rate

given minimum distance and the Minkowski-Hlawka theorem of lattices, which guarantees lattice

packing densities in dimensions for n > 1000. Following this approach the problem of achieving

channel capacity on AWGN channel was solved with lattice encoding and decoding [4].

6.2 Lattice and Space-time Codes

The codes achieving the optimal multiplexing diversity tradeoff in a MIMO environment are the

capacity achieving codes, involving lattice constructions. Another use of lattices for MIMO sys-

tems in detection, assuming the knowledge about the receiver and the input data vector are taken

from the lattice. The data vectors are all processed by the channel matrix so that the received

vector which is transformed lattice point can be applied for detection using some lattice reduction

techniques [4]. Lattice sphere decoder is one of the efficient decoding algorithm, which repeatedly

enumerates all the lattice points inside a sphere of a given radius with the received vector as its

center.

Lattice reduction: It is a technique to get a lattice basis that is more orthogonal to original basis.

In the decoding process it searches for the nearest lattice point with respect to the received vector,

this reduces to simple rounding operation.

6.3 2x2 Lattice Space-time Code of Rank 8

In these recent years plenty of research on space-time codes is going on, for constructing good

lattice codes mathematical subjects like number theory, algebra, combinatorics are being used.
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Initially a lattice space-time code of rank 5 is proposed by Xing and Li, later the open question of

any space-time code higher than the proposed one was solved by [6] Yang, Bo and Togbe, where

they showed that there is a lattice space-time code of rank 8 [6].

Assume that the C denote complex numbers, R denote real numbers, Z denote integers, N

denote positive integers and Mn(C) is set of nxn matrices over C. Lattice space-time code is

defined in this case as a set A of matrices in Mn(C) such that it forms a free abelian group under

matrix addition. Then dimension of this group is called the rank of A.

6.3.1 Abelian Group

An abelian group, is a commutative group in which the order of the group has no effect if there

is any group operation applied to the group. These are generally arithmetic addition of integers.

They are named after Abel. This is the one of the concept under the section of abstract algebra and

vector space [6].

An abelian group is a set T, with an operation
⊙

that combines a and b two elements to form

a new element denoted a
⊙

b. The symbol
⊙

is a general operation can be substituted by any

operation which needs to be performed on. To make a abelian group the set and operation (A,
⊙

),

must satisfy the following five axioms,

1. Inverse element: For each a in A, there exists an element b in T such that a
⊙

b = b
⊙

a =
e, where e is the identity element.

2. Identity element: There exists an element e in T, such that for all elements a in T, the
equation e

⊙
a = a

⊙
e = a holds.

3. Associativity: For all a, b and c in T , the equation (a
⊙

b)
⊙

c = a
⊙

(b
⊙

c) holds.

4. Commutativity: For all a, b in T , a
⊙

b = b
⊙

a.

5. Closure : For all a, b in T, the result of the operation a
⊙

b is also in T.

Therefore we can tell that in a group where group operation is not commutative is called as

non-abelian group or non-commutative group.
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The diversity product of A is defined as [6]

δ(A) = inf (| det(A−B)| : A,B ∈ A,A ̸= B), (6.1)

and the normalized diversity product of A is defined as [6]

dg =
(δ(A))

| detG|.|L|n/2
=

δ(A)2√
| det g

. (6.2)

In the above equation (6.2) we have,

• G is defined as the generating matrix of complex lattice A.

• g is real generating matrix for
∧

G.

• |L| is the absolute value of determinant of generating matrix of two dimensional real base
lattice L.

Criterion:

• The rank A should be as large as possible.

• The diversity product should be as large as possible.

• The discriminant ∆ should be as small as possible.

The maximal rank r(n) of lattice space-time code is determined as [6]

r(n) := max (rank(A) : A is a lattice in Mn(C), δ(A) > 0). (6.3)

The upper and lower bounds are given as 2n ≤ r(n) ≤ 2n2 for n = 2 it is 4 ≤ r(n) ≤ 8.

6.3.2 Linear Code

Linear code over a finite field with q elements Fq is the linear subspace C ⊂ F n
q and the code-

words are the vectors which form the subspace. If these codewords are chosen on the criterion of

maximum distance then they are called error correcting codes.

If C is a matrix then G is called the generator matrix of it, if its rows can generate all the

elements of C. Let

G = (g1, g2, g3., ., ., ., ., ., gk). (6.4)
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Then each and every code word W of C can be given as

W = C1g1 + C2g2 + C3g4 + .......+ Ckgk = CG, (6.5)

where,

C = (c1, c2.., ., ., ., .cK). (6.6)

Therefore G for lattice Ais given as below

G =

G1 0

0 −G2

 , (6.7)

where,

G1 =

1 −i

1 i

 . (6.8)

G2 =

 1 −i

−1 −i

 . (6.9)

Consider the eight 2x2 matrices over C

A1, A2, A3, A4, A5, A6, A7, A8, (6.10)

A1 =

1 0

0 1

 , (6.11)

A2 =

−i 0

0 i

 , (6.12)

A3 =

 0 1

−1 0

 , (6.13)
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A4 =

 0 −i

−i 0

 , (6.14)

A5 =


√
q 0

0
√
q

 , (6.15)

A6 =


√
qi 0

0
√
qi

 , (6.16)

A7 =

 o
√
q

√
q 0

 , (6.17)

A8 =

 0
√
qi

−√
qi 0

 , (6.18)

where q is the positive integer and let A be the lattice formed by the eight above matrices, hence

the rank of A is 8 and the diversity product of A is 1. We know that the matrices

A1, A2, A3, A4, A5, A6, A7, A8, (6.19)

are linearly independent over R.

A = x1A1 + x2A2 + x3A3 + x4A4 + y1A5 + y2A6 + y3A7 + y4A8, (6.20)

where,

(x1, x2, x3, x4, y1, y2, y3, y4) ̸= 0, (6.21)

and

|det(A)| ≥ 1. (6.22)
34



Therefore A can be expressed as

A =

 x1 + y1
√
q + i(−x2 + y2

√
q) x3 + y3

√
q + i(−x4 + y4

√
q)

−x3 + y3
√
q + i(−x4 − y4

√
q) x1 − y1

√
q + i(x2 + y2

√
q)

 . (6.23)

Let us define

Z1 = x1 + iy2
√
q (6.24)

Z2 = x2 + iy1
√
q (6.25)

Z3 = x3 + iy4
√
q (6.26)

Z4 = x4 − iy3
√
q. (6.27)

Thus A can be represented as below

A =

 Z1 − iZ2 Z3 − iZ4

−Z3 − iZ4 Z1 + iZ2

 . (6.28)

In the above matrix (6.28) if we consider

|a|2 = |Z1 − iZ2|2 = Z2
1 + Z2

2 (6.29)

|b|2 = |Z3 − iZ4|2 = Z2
3 + Z2

4 (6.30)

|c|2 = | − Z3 − iZ4|2 = Z2
3 + Z2

4 (6.31)

|d|2 = |Z1 + iZ2|2 = Z2
1 + Z2

2 (6.32)

. (6.33)

The total energy can be expressed as

|a|2 + |b|2 + |c|2 + |d|2 = 2(Z2
1 + Z2

2 + Z2
3 + Z2

4). (6.34)
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When we observe the lattice A, we can tell that it is similar to the Alamouti structure of space-time

code, therefore we can apply Alamouti space-time coding scheme for the above lattice. Let us

assume

k1 = Z1 − iZ2 (6.35)

k∗
1 = Z1 + iZ2 (6.36)

k2 = Z3 − iZ4 (6.37)

k∗
2 = Z3 + iZ4. (6.38)

The above lattice (6.28) can be modified to the following

A =

 k1 k2

−k∗
2 k∗

1

 . (6.39)

Let us send the bits, assuming that the channel is flat fading cannel,

• k1 and k2 → first time slot → b1 and b2.

• k∗
1 and −k∗

2 → second time slot → b∗1 and −b∗2.

According to first time slot

a11 = h11b1 + h12b2 + n1
1. (6.40)

a12 = h21b1 + h22b2 + n1
2. (6.41)

a11

a12

 =

h11 h12

h21 h22


b1

b2

+

n1
1

n1
2

 . (6.42)

The channel remains constant and the second time slot

a21 = −h11b
∗
2 + h12b

∗
1 + n2

1. (6.43)

a22 = −h21b
∗
2 + h22b

∗
1 + n2

2. (6.44)
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a21

a22

 =

h11 h12

h21 h22


−b∗2

b∗1

+

n2
1

n2
2

 . (6.45)

Therefore the resultant matrix can be can be given as

a11

a12

a2∗1

a2∗2


=



h11 h12

h21 h22

h∗
12 −h∗

11

h∗
22 −h∗

21



b1

b2

+



n1
1

n1
2

n2∗
1

n2∗
2


. (6.46)

We consider the noise to be i.i.d then the expectation of the noise is given as

E



n1
1

n1
2

n2∗
1

n2∗
2


(
n1
1 n1

2 n2∗
1 n2∗

2

)
=

|n2
1 + n1

2| 0

0 |n1
2 + n2

2|

 . (6.47)

Let us assume that the channel matrix H as

H =



h11 h12

h21 h22

h∗
12 −h∗

11

h∗
22 −h∗

21


. (6.48)

For a MxN matrix the pseudo inverse is given as

H+ = (HHH)−1HH . (6.49)

After solving for (HHH), we obtain the diagonal matrix and the inverse of the matrix is just inverse

of the diagonal elements:

(HHH)−1 =

1/|
∑

h2
11|+ |

∑
h2
21| 0

0 1/|
∑

h2
11|+ |

∑
h2
21|

 . (6.50)
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The estimate of the transmitted symbol at the receiver end is given as

ˆb1

b∗2

 = (HHH)−1HH



a11

a12

a2∗1

a2∗2


. (6.51)

ˆb1

b∗2

 =

b1
b2

+ (HHH)−1HH



n1
1

n1
2

n2∗
1

n2∗
2


. (6.52)

The estimated symbol is given by (6.52) now we will find out how to get the bit error rate. The

instantaneous bit energy to noise ratio at the ith receiver antenna is given as

γi =
|hi|2Eb

N0

. (6.53)

If the channel is equalized with hH in the Mr receiving antenna case, the effective bit energy to

noise ratio modifies to

γ =
∑ |hi|2Eb

N0

, (6.54)

γ = Mrγi. (6.55)

The effective bit energy to noise ratio in Mr receive antenna case in Mr times the bit energy to

noise ratio of single antenna case. If hi is a Rayleigh distributed random variable then h2
i is a

chi-squared random variable. The pdf of γi is given as

p(γi) =
1

(Eb/N0)
e
− γi

(Eb/N0) , (6.56)
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and the effective bit energy to noise ratio of γ is sum of Mr random variables, hence the pdf of γ

will have Mr degrees of freedom and given by

p(γ) =
1

(Mr − 1)!(Eb/N0)Mr
γMr−1e

− γ
(Eb/N0) , γ ≥ 0. (6.57)

The bit error rate for BPSK in AWGN, when the bit energy to noise ratio Eb

N0
is given by [14]

Pb =
1

2
erfc(

√
Eb

N0

). (6.58)

When the effective bit energy to noise ratio with maximal ratio combining is given as γ. The total

bit error rate is the integral of the conditional bit error rate over all the possible values of γ,

Pe =

∫
1

2
erfc(

√
γ)p(γ)dγ. (6.59)

Pe =

∫
1

2
erfc(

√
γ)

1

(Mr − 1)!(Eb/N0)Mr
γMr−1e

− γ
(Eb/N0)dγ, (6.60)

with reference to the section 11.3.1 performance with maximal ratio combining in [14], the equa-

tion (6.60) reduces to following equation

Pe = p2[1 + 2(1− p)], (6.61)

where,

p =
1

2
− 1

2

(
1 +

2

Eb/N0

)− 1
2

. (6.62)

Hence the BER for the BPSK modulation in Rayleigh channel with two transmit antenna and one

receive antenna case is given by equation (6.61) Pe.
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CHAPTER 7

COMBINING LATTICE SPACE-TIME CODES AND SPATIAL MULTIPLEXING

In this chapter we will try to combine the lattice space-time code using Alamouti scheme and

try to multiplex over a Rayleigh fading channel, the inspiration in combining these was from the

[2] Hilde, David and Nils. Although the combination can be done in time, we try to do it in space

as we are trying to switch them based on the instantaneous channel information.

In the paper [7] for the narrow band MIMO channels the agreement between the diversity and

multiplexing has been discussed based on the Euclidean distance of the code-book at the receiver

by inspecting the union bound on the probability of error. This method is completely different

form the regular schemes which examines the performance of the space-time coding schemes for

the average probability of error, whereas in this the Euclidean distance approach depends on the

instantaneous channel realization, because of this reason we can compare the performance of the

multiplexing and diversity as a factor of channel statistics. According to this if the variations in the

channel are slow then the feed back path will have low rate.

Although the comparison in the paper [7] revealed that it was for narrow band channels it is also

applicable to wide-band fading channels also, at that point of time it was explicit to multivariate

channels. Hence we thought of combining and comparing over space.

According to our procedure we consider our space-time code to be the lattice space-time code

as discussed in the earlier chapter. We are trying to spatially multiplex various lattice coded blocks,

which used the Alamouti code of two symbol groups.

We assume that N = 2k and k ≥ 2, M ≥ N/2 and the transmitted block is b = [b0b1.......bN−1]
T

is transmitted over two symbol durations by forming matrix B of size Nx2 from the Bk Alamouti
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matrices of size Nx2. The best way of assigning the Alamouti blocks to antenna is by choosing B

in A = HB +N such that

B =



B0

B1

B2

.

.

.

BN/2−1



. (7.1)

This combination may also be expressed with respect to channel matrix

Ã = H̃b + n. (7.2)

These Lattice blocks may be assigned to any antenna combination. Now the question arises about

the case, where there are multiple antennas then there will be pN of non-trivially equivalent an-

tennas patterns. Which can be figured as pk, where kϵ[1, pN ]. When only two antenna system is

used then there is only one pattern possible so there is no complexity involved but when two or

more antennas are used then the pattern selection comes to light, for example when N = 4 and

and p4 = 3 then the patterns possible are shown Fig 5.2. According to these different pk patterns

available the general input output equation is given as

Ã = H̃(pk)b + n. (7.3)
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For example ˜H(p2) is shown below [2]

˜H(p2) =



h11 h13 h12 h14

−h∗
13 h∗

11 −h∗
14 h∗

12

h21 h23 h22 h24

−h∗
23 h∗

21 −h∗
24 h∗

22

h31 h33 h32 h34

−h∗
33 h∗

31 −h∗
34 h∗

32

h41 h43 h42 h44

−h∗
43 h∗

41 −h∗
44 h∗
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. (7.4)

7.1 Instantaneous Pattern Optimization

The problem of choosing the best pattern can be solved by finding out the optimal antenna groups

over which the independent Alamouti blocks will be multiplexed. The performance of this can be

improved by choosing the pattern pk0 in detecting B according to the above mentioned equation

(7.1) and the equivalent patterns will be as below [2]

pk0 = arg(max
pk

(λ2
min(H̃(pk)

HH̃(pk)))). (7.5)

As assumed the transmitter will have instantaneous channel information through feedback from

the receiver, the best pattern can be found by using the correlation based on long term statistics.

Therefore the optimization is based on average behavior of the channel. Applying the singular

value decomposition to above equation (7.5) we obtain

pk0 = arg(max
pk

[λ2
min(H̃(pk)

HH̃(pk)]). (7.6)

By increasing the minimum eigen value of the following term

(H̃(pk)
HH̃(pk), (7.7)
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and replacing the above term (7.7) with its average the equation (7.6) changes to

pk0 = arg(max
pk

[λ2
min(E(H̃(pk)

HH̃(pk))]). (7.8)

H̃pk will have both transmit and receive correlation, but the received correlation does not affect

the transmit pattern, hence it can be ignored here. In this situation we will define R̃t(pk), a simple

function of transmit correlation matrix Rt and the transmit pattern pk

R̃t(pk) = E(H̃H(pk)H̃(pk)), (7.9)

therefore the equation (7.8) can be rewritten to the following equation

pk0 = argmax
pk

[λmin(R̃t(pk)]. (7.10)

43



CHAPTER 8

SIMULATIONS

In this chapter we will examine the BER and SER performance of combined lattice space-time

codes and spatial multiplexing and compare them with the previous cases of space-time codes,

where there is no multiplexing.

For the performance criterion we assume that uniform array of antennas are used, the BER

results are taken over thousands of different independent channel realizations, and zero forcing

detection is used at the receiver. For the Alamouti scheme we used 8-PSK modulation scheme and

for the lattice space-time code we used BPSK as we are comparing symbol error rate performance

so we just want to make sure that they are compared on a same platform. In lattice space-time code

the transmission matrix (6.39) has 2 bits in each symbol, by using BPSK modulation we will send

in total 8 bits per symbol. Therefore for the simulation to keep up the comparison with Alamouti

scheme we use 8-PSK modulation.

We can simulate the symbol error rates by calculating the bit error rate using the following

equation

Es = Eb log2M. (8.1)

In our simulation MATLABTM release 2008b was used as simulation tool in this thesis. The

components modeled using our simulation includes complex and real square orthogonal design

based on BPSK and 8-PSK constellations. There are 2 transmitting antennas and a single receiving

antenna. All the figures show the BER performance of all the transmission modes. There are 4

curves in each plot
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• Alamouti space-time code using 8-PSK.

• Alamouti combined with spatial multiplexing scheme.

• Lattice space-time code of highest rank.

• Combined lattice space-time code and spatial multiplexing.

As observed from the simulated results, for any ratio of energy per bit to spectral noise density

(Eb/N0), the fixed rate Alamouti code is outperformed by the lattice space-time code which in turn

outperformed by combination of Alamouti and spatial multiplexing scheme. The best performance

is achieved by using the combined lattice and spatial multiplexing transmission.

In Fig. 8.1, Fig. 8.2, and Fig. 8.3, we have 4 different graphs showing the bit error rates. We

can tell that the combined lattice and spatial multiplexing scheme outperformed the other three

schemes namely Alamouti, Lattice space-time code and Alamouti combined with multiplexing.

The graph was plotted with number of bits N = 104 and up to 20dB. We could not get the complete

graph hence we plotted the results till 25dB. In this case the BER of combined scheme has better

performance than that of Alamouti with spatial multiplexing but by what amount we are unable to

conclude hence we simulated the graph till 25dB. For the simulation of second and third figures

Fig. 8.2 and Fig. 8.3 we increased the number of bits for the simulation to N = 105 and N = 106

and we could observe the performance of the combined scheme has increased.

From the SER simulation curve Fig. 8.4, we can observe that the lattice combined scheme

is 3dB better performance than Alamouti combined scheme. For figures Fig. 8.5 and Fig. 8.6

we have increased the number of bits and plotted the simulations up to 25dB. We observed that

the SER of combined lattice and multiplexing also has performance improvement over the other

schemes.

However the performance improvement of combined scheme of lattice space-time code and

spatial multiplexing was at the cost of decoding time. i.e., the decoder takes more time to de-

code the lattice space-time code. Although the decoding time is more but it is still practical to
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implement, the lattice in equation (6.28) has Alamouti structure but it has complex bits hence the

decoding will take some more time when compared to simple Alamouti’s structure of equation

(3.4). Therefore the decoding time for Alamouti’s scheme, spatial multiplexing and the combined

scheme of Alamouti and spatial multiplexing is less when compared to the decoding time of com-

bined scheme of lattice space-time code and spatial multiplexing.

Figure 8.1 Simulation results of BER for N = 104 and SNR up to 20dB

Observing the graphs we can tell that the bit error rate and symbol error rate of the combined

system of lattice space-time code and multiplexing are better than the other systems by approxi-

mately 3dB.
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Figure 8.2 Simulation results of BER for N = 105 and SNR up to 20dB

Figure 8.3 Simulation results of BER for N = 106 and SNR up to 20dB
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Figure 8.4 Simulation results of SER for N = 104 and SNR up to 25dB

Figure 8.5 Simulation results of SER for N = 105 and SNR up to 25dB
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Figure 8.6 Simulation results of SER for N = 106 and SNR up to 25dB
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CHAPTER 9

CONCLUSIONS

One of the main achievement of this thesis is in developing a transmission scheme that com-

bines lattice space-time codes and spatial multiplexing through a simple block code antenna as-

signment scheme. The model illustrates significant potential improvement over regular space-time

codes by using space dimensions of the signal. Simulation results showed an increase in capac-

ity by an amount of 3dB for the integrated lattice space-time codes and multiplexing system over

other three systems namely Alamouti, lattice space-time code and Alamouti combined with multi-

plexing. However, for the lattice space-time code and multiplexing combination the decoder takes

more time than the combination of Alamouti’s scheme and spatial multiplexing.

In this work we have implemented the proposed transmission scheme on only one receiver an-

tenna system. This transmission scheme can be extended to multi-antenna system with multiple

antennas at receiver and at transmitter for enhancing the bit error rate. In general, if the number

of antennas are increased in a MIMO system, the pattern optimization has to be given more con-

sideration. In this thesis, we have discussed the issue of choosing the best pattern available in

multi-antenna system. We selected only a specific lattice code of highest rank through which this

transmission scheme can be applied to any lattice space-time code which can be combined with

spatial multiplexing for improving performance. Hence this transmission scheme yields much

better performance on multi-antenna systems.
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