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ABSTRACT  

 

 

Obtaining real-time and accurate estimates of energy intake while people reside in their 

natural environment is technically and methodologically challenging. The goal of this project is 

to estimate energy intake accurately in real-time and free-living conditions.  In this study, we 

propose a computer vision based system to estimate energy intake based on food pictures taken 

and emailed by subjects participating in the experiment. The system introduces a reference card 

inclusion procedure, which is used for geometric and photometric corrections. Image 

classification and segmentation methods are also incorporated into the system to have fully-

automated decision making. 
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1. INTRODUCTION 

 

 

The prevalence of obesity is getting increased dramatically in the United States [1, 2]. 

Obesity is one of the most leading factors for numerous diseases, such as heart disease, hyper-

tension and diabetes [3]. There is a strong correlation between obesity and positive energy 

balance, which is the difference ingested energy from expended energy. Energy Intake (EI) is 

being taken into account as one of the primary reasons for gaining weight. Energy intake can be 

defined as the calorie equivalent of the consumed amount. Measuring free-living peoples’ EI 

presents methodological and technical challenges. Even though extensive research has been 

conducted in measuring EI, accurate and affordable methods have not been proposed yet [4].  

In this study, a unique framework is proposed specifically to measure food intake in free-

living conditions, and it builds upon the digital photography methodology [5, 6]. The proposed 

food intake evaluation system consists of reference card detection and geometric 

transformations, image analysis, gram amount estimation, and manual correction modules. 

In Section 3, we articulate how to the detect reference card and its corners and then 

utilize it in geometric and photometric corrections. The reference card corners are used to 

geometrically correct the image to account for the view-angle and distance of the camera to the 

food. The color of the reference card is used to do photometric correction, which is essential to 

extract reliable color features to be used in classification and segmentation. 

 The purpose of the image analysis section (Section 4) is to explain how the classification 

and segmentation techniques are incorporated into the system. The classification module requires 

a training stage, where the food region is outlined by user; this is employed to extract the features 

for each food type. The training stage is illustrated in Figure 1.1. The Mahalanobis distance [7] 

and multilayer neural networks [36] are the techniques incorporated into the classification 
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module. In the testing stage, pixel classification is followed by segmentation to determine the 

food regions. There is an optional manual correction in case of the automatic classification and 

segmentation processes fail. The flowchart of the testing stage is illustrated on Figure 1.2.  

Section 5 details how to obtain gram amounts from classified and segmented food 

images. The classified/segmented image is warped to do geometric correction. The real area of 

food region is determined using the reference card. The gram amount for each food type, which 

is entered in the training stage, has a correlation with food region area. Based on the association 

between the food region area and gram amount, the amount of the food in the picture is 

estimated. Once we have the estimated gram amount, this value is combined with the portion 

code and portion weight as well as the nutritional information in the USDA Food and Nutrient 

Database for Dietary Studies (FNDDS) to determine the final energy intake. 
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Figure 1.2: Testing stage of the system. 
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2. LITERATURE REVIEW   

2.1. Methods to Measure Energy Intake 

2.1.1. Doubly-Labeled Water (DLW) and Self-Report Methods 

  Obtaining and measuring energy intake accurately in real-time is a challenging task while 

people reside in their natural environment. Currently, the doubly-labeled water (DLW) is known 

as the gold standard for measuring energy intake in free-living conditions. The fundamental idea 

behind this technique is explained as follows [10, 11]. A water solution that contains deuterium 

and oxygen is given to the subject, and the urine samples are gathered for analysis. In the body, 

the deuterium is fluxed and turned into water, whereas oxygen is fluxed and transformed into 

water and carbon dioxide. The difference of the rates of transformation results, from deuterium 

to water and from oxygen to water-carbon dioxide, is a measure of carbon dioxide flux. With this 

carbon dioxide flux, energy expenditure can be calculated using standard indirect calorimetric 

equations. The DLW consists of some experimental analysis, applications of indirect 

calorimetric, calculation methods and some complicated assumptions and sources of errors. The 

DLW accounts for the total energy expenditure (TEE), and during energy balance, energy 

expenditure is equivalent to energy intake. However, it is the fact that when a person is 

experiencing a large energy deficiency, energy balance will not equal to energy intake; this will 

cause some difficulties for obtaining an accurate estimate of energy intake [12]. Even though the 

DLW gives us an objective measure of energy intake, it requires some intricate experimental 

steps and drives a high-cost. Another drawback of the DLW method is that it does not provide 

any information regarding ingested composition of foods. As a result, the DLW has some 

limitations in order to obtain accurate energy intake. Hence, it is not an applicable method which 

can be simply used as a tool in free-living conditions. 
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Most alternative methods to measure food intake rely on participant self-report, including 

food records, 24-hour recall, and food frequency questionnaires. These methods rely on the 

participants to recall or record their food consumption and estimate or measure of the amount 

(portion) of food eaten. Although these methods are frequently utilized to estimate food intake in 

research and clinical settings, they underestimate food intake by 37% or more [13-15]. In 

addition to this, people who are overweight or obese underreport food intake to a greater degree 

than lean people when using these methods [15]. The largest source of error in estimating food 

intake from self-report is attributable to participants’ poor estimation of portion size [16]. Hence, 

methods that do not rely on the participant to estimate portion size are needed. 

2.1.2. The Digital and Food Photography  

The aim of food photography is to assist the subject to estimate portion size by utilizing 

depicted portion size ranges in the photograph [17]. The purpose of the research is to determine 

the correlation between food photography and estimation, and the errors related with the 

conceptualization. In this study, volunteered people from different social and professional 

backgrounds were instructed to complete evaluations regarding estimating portion size 

associated with photographs. Subjects were asked to eat one meal (breakfast, lunch, or dinner) 

consisting of four and six various food types. Portion sizes were weighted before and after the 

meal by the researchers. After five minutes passed, researchers began to show food photographs 

depicting portion size incrementing from 5
th

 to the 95
th

 percentile. Following these photographs, 

subjects were questioned to determine the portion size correlated with consumed food and 

nutrient content of meals. In the result of the questionnaire, apparently small portion sizes were 

overestimated whereas larger portion sizes were underestimated. Consequently, the food 

photography, which depicts various ranges of food portion sizes, was a beneficial method for the 

subject who was asked to estimate what was consumed. This research also revealed the errors 
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where it occurred from the sense of conceptualization. Additionally, body mass index, age, sex 

and portion size are critical factors during the food intake estimation. 

The digital photography of foods method [18, 19] was developed to unobtrusively 

measure food intake in cafeteria settings, and it does not rely on the participant to estimate 

portion size. The digital photography of foods method involves using a digital video camera to 

capture a photograph of a participant’s food selection before they eat, and plate waste after they 

finish eating. While in the cafeteria or dining location, photographs are carefully captured of 

measured standard portions of the foods served on the day of data collection. At a later date in 

the laboratory, these photographs are analyzed by registered dietitians (RDs) who estimate the 

amount (portion) of food selection and plate waste by comparing these photographs to the 

standard portion photographs. These portion size estimates are entered into a custom built 

computer application that automatically calculates the grams, kilocalories (kcal), and macro- and 

micro-nutrients of food selection, plate waste, and food intake based on a United States 

Department of Agriculture (USDA) database [20]. The digital photography of foods method has 

been found to be highly reliable and accurate (valid), and overestimates energy intake by less 

than 6 grams on average [19]. 

2.1.3. Computer-Based Applications via Hand-Held Devices 

  With rapidly developing technology, hand-held devices such as PDA (Personal Digital 

Assistant) have become the part of energy intake dietary analysis system in which most of them 

consist of computer-based applications and hand-held devices. The PDA-based energy intake 

program is aimed to assess the validity of the usage of PDA as a food recording tool and 

investigate source of error from this methodology [16]. In study, after the subjects were trained 

how to use PDA as the food recorder tool, they were let to use PDA for 72 hours to test the 

usability and to get preliminary food records. Aftermath, they were given a questionnaire, 
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regarding the usability of PDA, and 24-h recall. The subject used PDA to obtain food records for 

an observed and weighted lunch while recording time was kept for each meal by researchers. The 

actual and 24-h recall food intake results were compared with recorded intakes where the 

subjects used PDA. In this comparison, PDA-as the food recording tool and 24-h recall were 

found as fairly correlated, an exploration of the source errors showed that food portion 

estimation was primary source of the error. Finally, PDA-based food recording method is 

comparable to 24-h recall in the sense of energy intake. 

 Another PDA-based energy intake method was introduced by utilizing an innovated 

hand-held device consisting of a digital camera and a mobile phone card attachment. In the 

proposed paper by Wang et al. [21], the validity study in which the majoring food and nutrition 

subjects were asked to take pictures of recorded pictures while having 1-d weighed diet records, 

and they sent them to the dietitians by using mobile phone card attached PDA. The reliability in 

which the subjects were asked to take the pictures of the meal by two instruments, and they sent 

them to the different dietitians via mobile phone card capability. In order to assist dietitians to 

estimate accurately, the subjects were required to apply these essential four steps while taking 

digital images as follows. The ruler-stick should be placed next to the plate and the PDA was 

held at 45 angled while taking pictures. The content of the food types was typed into PDA and 

added details of the subject dietary habits. With regard to the validity, the innovated PDA 

method gave the comparable result with respect to the diet record method. This research 

concluded that the innovated PDA based method was beneficial tool for estimating energy 

intake.  One of the most recent novel approaches in the hand-held-based energy intake system 

was studied as follows [22]. What the proposed system aimed is that a network connected PDA, 

which has built-in camera on it, is employed to take digital images during before and after intake, 

and with attaching some specific information such as time label, send them to the central nutrient 
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database consisting of automatic image analysis and visualization system. The case of where the 

food image can’t be captured or be found, PDA let the used to search and find the food image 

from existing menu. The automatic image analysis and visualization is composed of image 

calibration and acquisition, segmentation, feature extraction, classification, volume estimation 

and computing consumed food steps. The goal of image calibration and acquisition step is to 

obtain 3D calibrated system by having reference information such as the dimension of the plate 

and different angled views. In the segmentation step, the food regions are automatically 

segmented from the image scene by first converting image to grayscale then YCbCr color space. 

Color and Gabor texture features are considered to perform feature extraction step. After 

performing segmentation and extracting the features, statistical pattern recognition techniques 

[23, 24] are employed to do food recognition. Support vector machine SVM [25] is the classifier 

which was used in the classification step. The volume estimation step is indicated as a future 

work in which multiple images and 3D shape reconstruction techniques will be devised to use. 

From before and after meal images, obtaining volume will be integrated with portion code and 

weight in the USDA Food and Nutrient Database for Dietary Studies (FNDDS) to compute the 

gram of the particular food type. 

  This proposed research was used as a pilot study in children’s dietary assessment [26]. 

In the pilot study, the participants, Chinese girls and boys, were asked to use six different dietary 

assessment methods: 24-hr, FR (paper and pencil), PDA with hierarchical menu, PDA with 

search menu, PDA with camera, camera with notebook. After they applied these methods, they 

were given questionnaire to obtain their feedback regarding these methods. The results showed 

that adolescents had much more tendency for using digital images and PDA-based tools than 

other methods. 
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 Mariappan et al. [27] presented the updated status of Zhu et al. [22] where it was stated 

that the dietary assessment system consisted of two different configurations, namely client-server 

and standalone configuration. In the client-server configuration, the client takes the picture of the 

food and sends them to the server where the image analysis is performed, food recognition and 

volume estimation. The server then sends back to the client with the results to obtain 

confirmation. Lastly, the confirmed data gets back to the server for matching nutrition and using 

further analysis. In the standalone configuration, all steps are performed in the mobile device. 

However, it was indicated that it was not implemented. In the classification results, they obtained 

93.745% classification accuracy by using Food Replicas where the images were obtained under 

certain conditions such as the white plate and the checker-board patterned tablecloth were used 

to help segmentation and volume estimation. On the other hand, they also obtained 57.55% 

classification accuracy when real foods were used on the checker-board patterned tablecloth. 

Another progress they described in this paper is the frame of the user interface where the user 

has opportunity to label or edit the meal, and the user interface lets also the user intervene when 

food can’t be recognized. 

The Remote Food Photography Method (RFPM) [28, 4] was developed specifically to 

measure food intake in free-living conditions and it builds upon the digital photography 

methodology. When using the RFPM, participants are trained to use a camera-equipped cell 

phone with wireless data transfer capabilities to take pictures of their food selection and plate 

waste and to send these pictures to the researchers over the wireless network. To reduce the 

frequency of participants forgetting to take photographs of their foods, they receive and respond 

to automated prompts reminding them to take photographs and to send the photographs to the 

researchers. These prompts are consistent with ecological momentary assessment (EMA) [29] 

methods and consist of emails and text messages. The images are received by the researchers in 
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near real-time and can be analyzed quickly to estimate food intake. When analyzing the images, 

the RDs rely on methods similar to the digital photography of foods method, but the participants 

are not required to take a photograph of a standard portion of every food that they eat, as this 

would be unfeasible. Alternatively, an Archive of over 2,100 standard portion photographs was 

created. This allows the RDs to match foods that participants eat to a standard portion 

photograph that already exists. Initial tests supported the reliability and validity of the RFPM 

[28, 4]. The RFPM underestimated food intake by ~6% and, importantly, the error associated 

with the method was consistent over different levels of body weight and age. 

 Woo et al. [30] articulated the study of Zhu et al. [22] where volume estimation was 

promised as a future study. With the fact that the image itself and segmented image are 

employed, as well as the checker-board patterned card are placed next to every meal for 

performing scaling and posing, the camera parameters, which are essential for the further 

estimation, are obtained. Feature points are extracted and unprojected onto 3D space. In the 

volume estimation approach, utilizing camera parameters and feature points, spherical and 

prismatic approximation models are applied to reconstruct of various food types. Lastly, visual 

refinement is carried for prismatic objects. 
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 3. REFERENCE CARD DETECTION AND GEOMETRIC TRANSFORMATIONS 

3.1. Reference Card Detection 

In order to estimate food portions accurately in free-living conditions, we need a 

reference in the pictures to account for the viewpoint and distance of the camera. For this 

purpose, the subjects are asked to place a reference card next to their food before taking a 

picture. The reference card is a standard 85.60x53.98mm [ISO/IEC 7813] ID card with a specific 

pattern printed on top. The pattern consists of two concentric rectangle (bull’s-eye) patterns and 

a surrounding rectangle, as seen in Figure 3.1(a). The bull’s-eye patterns are used to locate the 

reference card within the picture; and the surrounding rectangle is utilized for determining the 

four corners of the card.  

The first step in reference card detection is to binarize the input image. Since global 

thresholding is likely to fail in capturing the local structures (therefore, the bull’s-eye pattern), 

we employ an adaptive thresholding method [9]. In the adaptive thresholding, a gray scale image 

is taken as input, and then a threshold is computed for each pixel. Two major approaches are 

employed for calculating threshold, namely Chow and Kaneko and local thresholding. In the 

Chow and Kaneko approach, the image is split into subimages; and for each subimage, an 

optimum threshold is determined by examining its histogram. For each pixel, threshold is 

obtained by interpolating results of the subimages. On the other hand, the underlying idea behind 

of local thresholding is to utilize statistical functions, namely, mean and median. The intensity of 

local neighbor of each pixel is checked to use these functions. While employing the adaptive 

thresholding, we take the difference between the luminance channel of an image and its filtered 

version (which is obtained using an 11x11 averaging filter), and threshold the difference image 

to obtain the binary image. The pattern detector starts with the first row of the binary image, runs 

along the rows, first from left to right and then from right to left, and returns a high value at 
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center locations of alternating color patterns with mirror symmetry. Such bull’s-eye detection is 

also used in localization of 2D barcodes, such as the MaxiCode [31]. Figure 3.1 illustrates that 

the adaptive thresholding method successfully extracts the local texture even if there is 

nonuniform illumination, and the reference card detector works well regardless of the orientation 

or the perspective of the card as seen in Figure 3.2. Once the patterns are located, we do a 

morphological region fill operation on the binary image to determine the exact location of the 

entire reference card. The seed points of the region fill operation are chosen as the points along 

the line that connects the centroids of the two peak regions (bull’seye centers) inside the card; 

this guarantees filling of the entire card region. After the entire card region is filled and the 

morphological operations are applied to the image, then the image is smoothed by a Gaussian 

filter to reduce noise. The Harris corner detector [32] is applied to the smoothed image to locate 

the four corners of the card, which can later be used for perspective correction of the food area 

estimates. The Harris corner detector is built on autocorrelation matrix M, whose formula is 

written explicitly below, xI  and yI  are the horizontal and vertical gradients of the image I, and 

w(x,y) is a weighting function, which is typically a Gaussian. The autocorrelation matrix at a 

pixel location is  

                                        

2

,
2

( , ) ( , ) ( , )

(
( , )

, ) ( , ) ( , )

x x y

x y yx y

I x y I x y I x y

I x y I x y I x y
M w x y

 
  

  
                           (3.1) 

At a particular point, both of the eigenvalues of M matrix are large if the point is a corner. If the 

point is an edge point, one of the eigenvalues is large. If the point is on a smooth region, both 

eigenvalues are small. While cornerness response could be based on the eigenvalues, the Harris 

corner detector proposes a cornerness response that is based on the determinant and trace of the 

autocorrelation matrix;   
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2det ( )R M k traceM                                                                     (3.2) 

 where k is a small constant. After computing cornerness response of all points, non-maxima 

suppression is utilized to get the corner points. The cornerness response of the Harris corner 

detector is shown in Figure 3.3. Non-maximum suppression is then applied to locate the corners 

of the card.  

3.2. Geometric Correction 

In this section, we summarize the geometric transformation models [33], and we use to 

do geometric correction. A geometric transformation T maps the coordinates       in one image 

to the corresponding coordinates         in the other: 

                                                                                                                         (3.3) 

To transform a target image on the coordinate system of a reference image, the transformation 

from target image to the reference image needs to be estimated. (See Fig. 3.4.) This can be 

achieved by fitting the model to a set of correspondences. Once the model parameters are 

estimated, we can obtain the corresponding coordinate for an arbitrary input coordinate. The 

corresponding coordinate will typically be a non-integer location; in that case, the nearest 

neighbors are used to interpolate the intensity at that location. Scanning the entire set of 

reference image coordinates, the target image is transformed onto the reference image coordinate 

system. In order to apply perspective or affine transformation to the input image, we need to 

have at least four or three corner pairs respectively. The reference card detector provides us four 

corners, and using these corners we can form a rectangle, which is proportional to size of the 

reference card, on the canvas image. Utilizing perspective or affine transformation models, the 

transformation coefficients are obtained. Then each pixel is transferred onto canvas image by 

using the transformation coefficients.  
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Figure 3.1: Adaptive thresholding for reference card detection: (a) Input image (b) Result of the 

adaptive thresholding. 
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Figure 3.2: Adaptive thresholding and reference card detection under various illumination 

conditions and geometric transformations: (a) Input image (b) Result of the adaptive thresholding 

(c) Response of the pattern detector. 
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Figure 3.3: Reference card corner detection: (a) Response of the pattern detector applied to the 

binary image shown in Figure 3.1(b) (b) Detected reference card (c) Cornerness response of the 

Harris corner detector. 
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 Reference Image         Target Image 

 

Figure 3.4: Forward mapping for spatial transformation of images. 

 

3.2.1. Affine Transformation 

The affine transformation model has six parameters and maps one coordinate system to 

another as follows [33, 34].   

            
1 2 3

4 5 6

'

'

x a x a y a

y a x a y a

  

  
                                                (3.4) 

The mapping can also be written as a matrix form as follows. 

 

                                                             
4 5 6

1 2 3ax x

a y

a

a

a

ay

       
             

                                          (3.5) 

When we have a set of corresponding points, 1, 2, 3,......,i N between reference and 

target image, the affine transformation coefficients can be obtained from these correspondences. 

N correspondences produce 2N equations, and the value of N has to be at least 3 to calculate the 

6 unknown parameters. This system can be expressed in a matrix form as follows. 

y 

x x’ 

y' 

Forward 

Mapping 

      

       T 

(x1,y1) (x2,y2) 

(x3,y3) (x4,y4) 
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(x’3,y’3) (x’4,y’4) 
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    
    
    

     
     

    
    

         

                                               (3.6) 

This matrix equation can be represented in a short form as b A a . The solution of this equation 

can be obtained using pseudo inverse: 

                                                                                     
1( )

T T

T T

A b A Aa

a A A A b




                                                               (3.7) 

Several common spatial transformations (scaling, translation, rotation and skew as illustrated in 

Figure 3.5) can be modeled by the affine transformation matrix. The limitation of the affine 

transformation is that it cannot map an arbitrary quadrilateral into another arbitrary quadrilateral, 

unlike the perspective transformation. 

 

 

 

 

 

Figure 3.5: Transformations that can be generated by affine transformation. 

 

3.2.2. Perspective Transformation 

Perspective transformation model has eight parameters and is expressed as follows [33, 

34].                               



20 
 

                                 1 2 3

7 8

'
1

a x a y a
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a x a y

 
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 
      

4 5 6

7 8

'
1

a x a y a
y

a x a y

 


 
                                                  (3.8) 

    

Since the perspective transformation has 8 coefficients in the transform matrix, this gives 8 

degree of freedom to the perspective transformation, which is superior to the affine 

transformation. It can be also written in the form of homogeneous coordinates: 

 

                                                           

1 2 3

4 5 6

7 81 1 1

x a a a x

y a a a y

a a

     
      
     
          

                                               (3.9) 

 

When we have a set of corresponding points, 1, 2, 3,......,i N  between reference and target 

image, perspective transformation coefficients can be obtained from this set of points. N points 

generate 2N equations, in case of N equals 4, there are 8 unknown parameters. This system can 

be expressed in a matrix form as following. 
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               (3.10)  

 

The given matrix equation can be represented as the following equation b A a . The solution of 

this equation can be obtained using pseudo inverse as in equation (3.7). 
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Figure 3.6: Transformations can be generated by perspective transformation. 

 

3.2.3. Scaling 

Scaling [33, 34] is such a transformation where the image size gets bigger or smaller. The 

idea behind of scaling is to change the number of pixels in the image contains by using 

interpolation techniques. This transformation is expressed with the following equations. 

                                                                   
'

'

x

y

x s x

y s y




                                                                            (3.11) 

This can be also written in a matrix form as follows. 

 

                                   (3.12) 

 

In this study, we scaled the input images such that the number of pixels in the reference card area 

of the input image is equal to the number of pixels in the reference card area of the reference 

image. The horizontal and vertical scale factors (sx,sy) are kept equal; and nearest neighbor 

interpolation [9] is used to obtain the scaled image. An example of scale correction is depicted in 

Figure 3.7. In Figure 3.8, affine and perspective corrections are shown. 

3.3. Photometric Correction 

The purpose of photometric correction is to compensate when RBG pixel values are 

different from true values. The basic strategy of our approach is that the white regions of the 

' 0 0

' 0 0

1 0 0 1 1

x

y

x s x

y s y

     
     


     
          
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reference card are used to do white balancing, which improves the performance. The first step in 

this strategy is that we extract reference card region for each channel separately by using the 

mask of the reference card, as shown in Figure 3.3(b). After having extracted reference card 

region in the image (which is depicted Figure 3.9(c)), we find out maximum pixel value, and 

replace it with a proper ratio for each channel. So that maximum pixel value is set to 255 in each 

channel. This proper ratio becomes a correction coefficient for a particular channel. Then, for 

each pixel in each channel is scaled with its own coefficient to compensate, as illustrated in 

Figure 3.9.  
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(a)                                                                                            (b) 

Figure 3.7: Scale correction: (a) Reference image 

(b) Scaled target image, such that the reference cards have the same number of pixels. 
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                                                                         (b) 

Figure 3.8: Affine and Perspective correction: (a) Affine transformed image (b) Perspective 

transformed image. 
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Figure 3.9: Photometric correction: (a) Input image (b) Image after photometric correction 

 (c) Extracted reference card region. 
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4.  IMAGE ANALYSIS  

 

4.1. Mahalanobis Distance 

Mahalanobis distance [7, 34] is a distance measure which determines the similarity of an 

unknown set from a known sample set. Mahalanobis distance is also an extension of the 

Euclidean distance; it incorporates the covariance of the features included in the feature vectors. 

Mahalanobis distance between vectors  1 2, ,
T

Nf f ff and  1 2, ,
T

N     can be 

expressed as  

                                                  
1( , ) ( ) ( )Td   C  f f f                                              (4.1) 

where C is the covariance matrix of f and . 

Mahalanobis distance indicates correlation between different features shows the scaling 

of axes. These capabilities make Mahalanobis distance superior to Euclidean distance. On the 

other hand, these attributes require more time and memory requirements. 

Given a set of training data 1 2[ , ,.... ]T

i i iNf f f
i

f , the mean and covariance matrix of the 

set can be estimated as [7, 34]; 

                                                                
1

1 k

i

ik 

  f                                                                            (4.2)                          

                                                                     
1

1
( )( )

k
T

i i

ik 

    C f f                                                       (4.3) 

        If the covariance matrix, C, is diagonal with equal values along the diagonal, the 

Mahalanobis distance reduces to Euclidean distance which is expressed as follows. 

                                                               ( , ) ( ) ( )Td     f f f                                     (4.4) 

Mahalanobis distance can be also used as a minimum-distance classifier. Given the mean 

and the corresponding covariance matrix of each class, a feature vector f can be classified by 
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determining the Mahalanobis distance from f to each of means, and assigning f to the class where 

Mahalanobis distance is minimum. 

   In classification, Mahalanobis distance (illustrated in Figure 4.1) can be computed to 

classify a testing point. After computing the covariance matrix for each class; for a given sample, 

the Mahalanobis distance is calculated to each class. The test sample point is assigned to the 

class where the Mahalanobis distance is the smallest.  

 

 

 

 

 

 

 

 

                           (a)                                                                                 (b) 

Figure 4.1: Sample figure for Mahalanobis distance: Center of each cluster is determined by the 

mean vector, and its shape of the cluster is determined by the covariance matrix. 

(a) Distribution of two different classes (b) The ellipses show equal probability lines.   

 

4.2. Multilayer Neural Networks and the Backpropagation Algorithm 

4.2.1. Introduction 

In a typical classification problem, linear discriminates are not capable of minimizing 

error issues where non-linearly separable patterns exist. On the other hand, selecting proper 

nonlinear functions are not as easy as it seems. One of the applicable solution approaches can be 
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addressed with the guidance of training data, namely multilayer neural networks, which can learn 

nonlinearity from training data [24].  

The fundamental of multilayer network [24] is based on the backpropagation algorithm. 

The backpropagation is also known as gradient descent in error. Training for multilayer network 

is much easier and applicable for even so complicated classification problems due to the fact that 

it can be analyzed graphically. The backpropagation is basically generalization of the LMS 

(Least-Mean-Squares) algorithm. The idea of the backpropagation is to increase training speed, 

improve performance and obtain desired output values by adjusting weights and scaling inputs. 

Selecting the neural network structure is extremely important in classification problems. This 

may also cause overfitting or underfitting for the training samples. Adjusting complexity of 

neural network architecture is known as regularization. 

The single perceptron can only be used for the classes that are linearly separable whereas 

a typical multilayer network [35], which is learned by the backpropagation algorithm, has 

aptitude to classify the classes which are not necessarily linearly separable.  

4.2.2. Feedforward Operation  

A simple three-layer neural network [24], shown in Figure 4.2., has input, hidden, and 

output layers. There is also a single bias unit that has connection with all units except input units. 

Since these connected components treat like biological neurons, they are named as neurons. All 

input vectors are presented to the input layer, and the outputs of input neurons corresponds to 

component vectors. Net activation is computed in hidden neurons which take weighted sum of 

inputs into account. Briefly, net activation is the sum of the inner products of weight and input 

vectors added by initial weight. The net activation is shown below  

                          0

1

 
d

j i ji j

i

net x w w                                                    (4.5) 
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where i denotes ith input, and j denotes a node (neuron) in the hidden layers. The activation 

function ( )f  produces output of the hidden neuron: 

                                                                    
( )j jy f net                                                           (4.6) 

 

                                         z1          z2                            zc 

 

    

  

 

                         

 

                                                     1x              2x
                 ix  

Figure 4.2: A simple three-layer neural network with bias. 

As the expression (4.7) is shown below, net activation is calculated for each output neuron in the 

hidden neurons. 

                                                                0

1

 
Hn

k j kj k

j

net y w w                                          (4.7) 

where Hn  is the number of hidden neurons, and wkj is the weight from jth hidden neuron to kth 

output neuron. The output of the kth neuron is as follows. 

                                                               ( )k kz f net                                                               (4.8) 

Since the multilayer neural network has ability to use hidden layer and various functions (such as 

linear, sign and etc.), this feature makes multilayer network [24] more powerful compare to other 

networks. The equations above, (4.5) through (4.8), can be generalized for the multilayer neural 
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network which has c output neurons and whose discriminant function ( )kg x  , the signal from 

each output neurons, as follows.  

                                          0 0

1 1

( ) ( ( ) )
Hn d

k k kj ji i j k

j i

g x z f w f w x w w
 

                         (4.9) 

4.2.3. The Backpropagation Algorithm  

  The Backpropagation algorithm [24] is one of the most common methods in multilayer 

neural networks for supervised learning. The major issue here is to obtain desired outputs 

adjusting weight vectors based on inputs provided by training sets. The idea behind the 

backpropagation algorithm is to obtain the sum of the smallest squared difference between actual 

outputs and desired outputs. This learning rule is valid for not only two-layer architecture but 

also three-layer architecture. The underlying idea behind network learning is to present a training 

pattern to an untrained network’s input layer and to let the signal pass through hidden layer to 

output layer. Output layer then generates output. The difference between generated output and 

desired output (target value) is called an error. The aim of the learning rule, which is presented 

here, is to minimize the error adjusting the weights and presenting learning rule is also pattern 

basis method. The training error on a pattern basis can be defined as the sum of the squared 

difference between desired output (target value) kt and the actual output kz .This can be 

expressed with the following equation [24]. 

                                                               
2

1

1
( ) ( )

2 

 
c

k k

k

J w t z                                            (4.10)   

In the network, the size of output vector is c and w is the vector consisting of all the weights. 

Here, the backpropagation is gradient descent algorithm which changes the weights values in a 

direction where the error is minimized. This is expressed as following: 
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J

w
w




  


                                                       (4.11)                

where  , namely learning rate, controls how much change occurs in weights. With each update 

of (4.11), the criterion function J(w) is to reduced. According to the learning rule, the learning 

will eventually stop at local or global minima. This iterative approach can be expressed as 

follows: 

                                           ( 1) ( ) ( )w m w m w m  
                                                     (4.12) 

where it takes a weight vector for the particular index m and updates it. In case of a three-layer 

net in the equation (4.11), the chain rule is used for differentiation assuming that      is the 

hidden-to-output weights 

                                                             

k k
k

kj k kj kj

net netJ J

w net w w


  
  

   
                                     (4.13) 

where the equation (4.14) is called the sensitivity of unit k and that shows how the general error 

changes.  

                                                (4.14)   

 

When we differentiate equation (4.10), we can obtain such an output, k as follows. 

                                               

( ) '( )k
k k k k

k k k

zJ J
t z f net

net z net


 
     

  
                           (4.15) 

The last derivative in equation (4.13) can be generated as follows. 

                                                                                     

k
j

kj

net
y

w





                                                                   (4.16) 

 

These results provide us the weigh update or learning rule for the hidden-to-output weights as 

follows. 

kjw

k
k

J
net
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
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( ) '( )kj k j k k k jw y t z f net y    

         
                     (4.17) 

 

If the output is linear, then as the backpropagation rule becomes follows. 

                                                               '( )k kf net net
                           (4.18)

 

                                                                

'( ) 1kf net 
        (4.19)

 

By using chain rule, from equation (4.11), we compute 

                                                                          

j j

ji j j ji

y netJ J

w y net w

  


   
                                                    (4.20) 

 

The right side of the equal sign in the first term should be taken care of carefully: 

  

 

 

       (4.21) 

 

                                               

 

The chain rule is applied to the second step as well. The final, in equation (4.21), step 

plays crucial role in order to calculate effective target activation for each hidden unit since it 

indicates that how the hidden output unit affects the error. For a hidden unit, the sensitivity can 

be described with using equation (4.21) as follows. 

                                                             1

'( )
c

j j kj k

k

f net w 


                                                                    (4.22) 
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Then the learning rule can be also expressed which consist of the sum of individual sensitivities 

for a hidden unit as follows. 

                                                  1

'( )
c

ji i j kj k j i

k

w x w f net x   


 
    

 
                                           (4.23) 

 

 The equations (4.23) and (4.17) basically address the backpropagation algorithm, which is also 

called backpropagation of errors due to fact that while performing learning of the input-to hidden 

weights, the error must be occurred. A description of the backpropagation algorithm can be 

found in [24].  

4.3. Training Stage 

The goal of the training stage is basically to obtain essential variables and coefficients 

and to incorporate them into the testing stage. Training stage consists of reference card detection, 

region selection & feature extraction and training of the classifiers steps. The flow chart of the 

training stage is shown with details in the Figure 1.1. Since reference card detection step is 

already taken care of in the Section 3, here, we will explain region selection & feature extraction 

and training of the classifiers steps.  

4.3.1. Region Selection and Feature Extraction 

This section consists of region selection, in which the food region is outlined, and feature 

extraction of the food, in which R, G, B color and Gabor texture features [37, 38] are utilized, in 

the train image. This requires extraction of the features for each food type in a training process. 

During training stage, a user manually selects the food region for each food type. How the 

feature extraction process occurs is that the matrix multiplication, element by element, is 

performed between manually segmented food region as illustrated in Figure 4.4(b) and R, G, B 

channels which are individually extracted from the image. To extract Gabor texture features from 
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the train image, we will consider Gabor Filter. A two-dimensional Gabor function is composed 

of a modulated a sinusoid by a Gaussian along with some frequency and orientation. In special 

domain, a complex Gabor function can be expressed as follows [37, 38], 

 

                                                ( , ) ( , ) ( , )rg x y s x y w x y                                                                 (4.24) 

 

where s(x,y) is a complex sinusoid, and wr(x,y) is a Gaussian-shaped function, namely the 

envelope. The complex sinusoid is viewed as below: 

 

                                                         0 0( , ) exp( (2( ))s x y j u x v y P                                                    (4.25) 

 

where 0 0( , )u v is the spatial frequency, and P is the phase of the sinusoid of the complex 

component, whereas the Gaussian envelope is expressed as follows: 

 

                                       
2 2 2 2

0 0( , ) exp( ( ( ) ( ) ))r r rw x y K a x x b y y                                     (4.26) 

 

where 0 0( , )x y is the peak location, K is the scales the magnitude, ( , )a b  is the scaling parameters 

of the Gaussian envelope, and r is the rotation operation. 

 The Gabor texture features are generated as follows. At each pixel, we do following 

transformation: 

                                            

16 65.481 128.553 24.966

128 37.797 74.203 112.000

128 112.000 93.786 18.214
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                (4.27)
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Then, Gabor filter is applied to Y channel as follows: 

 

                                                                             
( , ) ( , )* ( , )i iG x y Y x y g x y                                          (4.28) 

 

where g(x,y) is a Gabor filter. After having filtered image, element by element matrix 

multiplication is performed between the filtered image and the segmented image, which is 

consists of a matrix. This operation yields the Gabor texture feature vectors. In Figure 4.3, the 

Gabor filter response and filtered image sequences are shown with parameters’ various values.  

  Then the features associated with that food type are extracted and saved. (Figure 4.3. and 

4.4. show a screenshot of the region selection and feature extraction process.) The user is also 

asked to enter the gram amount (or volume) of the food type; this information is used to establish 

the association between the food region area and the gram amount for each food type. In our 

prototype system, we use the color RGB data (red, green, and blue values) and Gabor texture as 

the feature vector for the classifier as follows. 
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     (a)                                                                                            (b) 

                                  

   

  

 

 

 

 

 

 

 

 
                          (c)                                                          (d)                                                     (e) 
                                      

    

  

 

 

 

 

 

                        (f)                                                            (g)                                                        (h) 

Figure 4.3: Gabor texture feature extraction: (a) Input image (b) Pseudo-colored luminance 

channel of the input image. The Gabor filters used to obtain texture features: (c) Scaling 

parameters a=b=16 0 0u v =0.01125π (d) a=b=4 0 0u v =0.08725π  

(e) a=b=3.5 0 0u v =0.083125π   (f) a=b=9.5 0 0u v =0.05594π  

(g) a=b=10.5 0 0u v =0.040625π (h) a=b=11 0 0u v =0.0453125π. 
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                                                                         (a) 

 

 

 

 

 

 

 

 

 

                                                                                         (b) 

Figure 4.4: Manual selection of the food region during training stage: 

(a) The region of interest is outlined by the blue points that are clicked by the user 

(b) Segmented the region of interest to extract features from the food region. 
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Figure 4.5: Distribution of the color samples in RGB space for the region selected in Figure 4.4. 

 

4.3.2. Training of the Classifiers 

4.3.2.1. Training of the Mahalanobis Distance 

The distribution of the RGB data in a selected food region is modeled as a Gaussian (as 

seen in Figure 4.5); the parameters of the Gaussian model are mean and covariance matrix. 

During the training stage, the mean and covariance matrix are computed for a particular food 

type using extracted features from the food region in the image. (We should also note here that 

the white regions of the reference card are used to do white balancing, which improves the 

performance.) If the features are not extracted yet, the features will extracted from the food 

region in the image before computing mean and covariance matrix. Once these operations are 

performed, essential coefficients (computed mean and covariance, food type, feature type) are 

saved for each food type to be used in the testing stage. 
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4.3.2.2. Training of the Neural Network 

In general, training of a feedforward neural network consists of four major steps [36] as 

follows: obtaining training data, generating the network object, training the network and 

simulating the network response to test inputs. According to these steps, the first thing we need 

to do is to assemble the training data which are basically feature vectors and target vectors for 

each food type. The feature vectors are already obtained during the region selection and feature 

extraction section, whereas target vectors, which correspond to particular food type, are needed 

to be generated. The idea behind of generating target vectors is that 1 is assigned to the 

corresponding class and others become 0. With this procedure, target vectors are generated for 

all classes.  

Once the feature vectors and target vectors are available to be used, the first step of 

training the feedforward network, which is to create a network object, can be implemented. In 

Matlab, the newff function creates the feedforward network structure which requires at least three 

input arguments and returns the network object. The first argument is a matrix which consists of 

feature vectors whose length is number of feature types by the length of segmented region. The 

second argument is a matrix which contains target vectors whose length is number of food types 

(food classes) by the length of segmented region. The third argument is an array which contains 

size of each hidden layer in the feedforward network. There are several optional arguments for 

which can be used in the newff function. In the proposed system, the default training functions 

for hidden layers tan-sigmoid, and for the output layer is linear. Besides, the default training 

functions, trainlm, is used in the newff due to fact that it is very fast. The number of epochs and 

the number neurons in the hidden layer are set to 20 for the existing system. 

After creating the network object, the next step for training the feedforward network is to 

initialize weights and biases even though newff command initializes the weights. This is done 
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with init command. This function takes network object as input and returns it with all weights 

and biases initialized.  

The next step after having initialize weights is to simulate network which takes feature 

vectors and the network object net as inputs and returns the network outputs. In our proposed 

system, we do simulation before and after training to be able to compute mean-squared error for 

both cases. 

After completing these steps; creating the network object, initializing weighs and 

simulating networks, the next important step is to train the feedforward network. During training 

(as seen in Figure 4.6 and 4.7), weights and biases of the network are iteratively adjusted to 

minimize the network performance function, namely MSE, the average squared error difference 

between the target vectors and the network outputs. During training, Figure 4.6 interprets how 

mean squared error is getting decreased from a large value to a smaller value which is simply 

called learning of the network. The plot is divided into 3 lines which correspond to three sets; 

60% of the set is used for training, 20% of the set is used for validation, and the last 20% of the 

set become a test set for the network.  

The backpropagation technique is used to determine the gradient of the performance 

which adjusts the weights to minimize error. Since the gradient descent algorithm works pretty 

slower compare to the several backpropagation algorithms in practical problems, in our system 

we use the Levenberg-Marquardt [36] backpropagation algorithm (as seen in Figure 4.7) which 

is based on numerical optimization technique. 

4.4. Testing Stage 

The goal of the testing stage is to determine and obtain the gram amounts of food classes 

by using either the Neural Network [36] or the Mahalanobis Distance [24] classifier and utilizing 

the segmentation and gram estimation algorithms, as well as the reference gram and surface area 
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data extracted from training stag. Testing stage consists of reference card detection & geometric 

transformation, pixel classification, segmentation, and gram estimation steps which are 

illustrated in detail in Figure 1.2. Since reference card detection & geometric transformation step 

is already explained in Section 3, we will point out pixel classification, segmentation and gram 

estimation steps. 

4.4.1. Pixel Classification  

4.4.1.1. Pixel Classification with Mahalanobis Distance 

In the proposed system, there are two types of image sequences, namely before intake 

and after intake images (as illustrated in Figure 4.8 and 4.9). During pixel classification stage by 

Mahalanobis distance [24] technique, the distance between each pixel and a food class is 

calculated using the Mahalanobis distance, which accounts for the distribution of the feature 

values. A typical distance image sequence is illustrated in Figure 4.8 and 4.9 for particular 

classes. The distance calculation process is repeated for all food classes. Pixels that are close to a 

class (i.e., pixels with Mahalanobis distance less than a pre-determined threshold) are assigned to 

that class. After repeating for all classes, we have the food regions for each class. After this 

process, the next step would be segmentation and post processing which is described in the next 

sections where food regions are segmented and classified. 

4.4.1.2. Pixel Classification with Neural Network  

This section briefly explains how to obtain the distance of pixels to a particular food type 

incorporating Neural Network [36] into the system. In order to begin with the distance 

calculation process, the first step is to extract and generate feature vectors, namely RGB color 

and Gabor texture features [37], from the test image. Since manually selection process does not 

exist in the testing stage, instead we generate ones matrix whose size is the same with the test 

image. Then to create color feature vectors, the ones matrix, which is basically segmented food 
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region for testing image, is applied to each channel, namely RGB, separately for performing 

element by element matrix multiplication. On the other hand, to generate the Gabor texture 

feature, firstly test image is converted to gray scale image which is become an input argument 

for the Gabor filter function. After having filtered image, element by element matrix 

multiplication is performed between filtered image and the ones matrix. This operation yields the 

Gabor texture feature vectors. From the training stage, what we have is trained net object which 

is used as one of the input arguments to simulate network. The other input argument is the 

generated feature vectors. The network is simulated to yield an output vector in which output 

neurons correspond to the particular food type. After the output vector is generated, then the 

Euclidean distance is computed as the sum of squared difference for each food type gives us the 

distance matrix for each food type. As Section 4.4.1.1, there are two image pattern sequences, 

namely before intake and after intake, which are depicted in Figure 4.10 and 4.11. The obtained 

distance images are shown in Figure 4.10 and 4.11 for selected classes. 

4.4.2. Segmentation  

This section consists of two major processes, namely segmentation and post processing. 

In the segmentation process, the essential element is the distance matrix which is yielded as an 

output after pixel classification with Mahanalonobis Distance [24] or Neural Network [36] 

section. The underlying idea of segmentation process is that the smallest element is chosen for 

each pixel among all food classes, and this operation is repeated for all pixels. Thus, this process 

produces an output image matrix which is composed of integers where each number represents a 

food class. Within segmentation process, the next step is basically to apply mode filter [9] to the 

output image matrix, as well as ignoring bad pixels that have no value. What mode filter does is 

that each pixel value is replaced by its most common neighbor. Once this operation is performed, 
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final resulted image can be obtained as follows. Before and after intake image patterns are 

illustrated in Figure 4.12 and 4.15. 

The aim of the post processing is to obtain much accurate classification and segmentation 

for each food type by getting rid of pixels which are classified as a food type. The way which is 

followed is composed of three parts; removing tiny regions, clearing targeted regions and 

clearing the outside of defined rectangle boundary mask. The idea of removing tiny regions is 

that whichever region is smaller than certain threshold is removed (by assigning zero) from the 

classified image. Clearing targeted regions is based on defined boundary rectangle mask around 

the plate. Targeted regions, which touch to the boundary rectangle mask, are cleared with the 

same idea. Lastly, the outside of defined rectangle boundary is cleared. The classified and 

segmented image patterns are seen in Figure 4.12 through 4.15 during before and after post 

processing. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: The change in MSE as a function of the number epochs is plotted  
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Figure 4.7: A screen shot of neural network training tool in Matlab 
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(a)                                                                       (b) 
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                                                                         (e) 

Figure 4.8: Region segmentation and pixel classification (before intake): (a) Input test 

image. Mahalanobis distance of pixels to the food class: (b) Chicken breast pieces (c) Macaroni 

and cheese (d) Sweet peas (e) Plate. 
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Figure 4.9: Region segmentation and pixel classification (after intake): (a) Input test 

image. Mahalanobis distance of pixels to the food class: (b) Chicken breast pieces (c) Macaroni 

and cheese (d) Sweet peas (e) Plate. 
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Figure 4.10: Region segmentation and pixel classification by Neural Network classifier 

(before intake): (a) Input test image (b) Chicken breast pieces (c) Macaroni and cheese (d) Sweet 

peas (e) Plate. 
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Figure 4.11: Region segmentation and pixel classification by Neural Network classifier 

(after intake): (a) Input test image (b) Chicken breast pieces (c) Macaroni and cheese (d) Sweet 

peas (e) Plate. 
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                                                                                            (c) 

Figure 4.12: Region segmentation and pixel classification by Mahalanobis distance 

classifier (before intake): (a) Input test image (b) Segmented and classified image (c) Post 

processed segmented and classified image. 
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Figure 4.13: Region segmentation and pixel classification by Mahalanobis distance 

classifier (after intake): (a) Input test image (b) Segmented and classified image (c) Post 

processed segmented and classified image. 
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Figure 4.14: Region segmentation and pixel classification by Neural Network classifier 

(before intake): (a) Input test image (b) Segmented and classified image (c) Post processed 

segmented and classified image. 
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Figure 4.15: Region segmentation and pixel classification by Neural Network classifier (after 

intake): (a) Input test image (b) Segmented and classified image (c) Post processed segmented 

and classified image. 
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5. ESTIMATION AND PERFORMANCE ANALYSIS 

5.1. Gram Estimation and Performance Analysis 

The aim of this section is to address how to compute gram estimation for each food type 

utilizing segmented and classified image, considering reference gram amount which is entered 

by user, and integrating reference card corner detection and geometric transformation in the 

system, as well as describing and analyzing the performance of the existing system. The 

underlying idea behind of gram estimations is as follows, which is illustrated with details in 

Figure 5.2. First of all, the reference card corners are applied to geometric transformation to 

generate the warped card corners. To warp segmented and classified image, the warped card 

corners, reference card corners, and the segmented and classified image are plugged into 

geometric transformation function.   

 In the next step, once we have the number of pixels in both the warped card image and 

the particular food area, and also real card area (which comes from the Training Stage) in terms 

of squared inches, then the surface area of the classified particular food is calculated in the unit 

of squared inches considering correlation between number of pixels and real card area (which is 

depicted in Figure 5.2). In the last step, with known the ratio of the weight and surface area of 

the training food, where density is defined as the weight of training food over the surface area of 

the training food, is multiplied by the surface area of the classified particular food. This 

operation gives us gram food amount for a particular food class.            

As described above, the real area of the food region is determined using the reference 

card. Based on the association between the food region area and gram amount (equivalently, 

volume), the amount of food in the picture is estimated. The formula between the area and the 

volume depends on the food type and shape of the plate used. For some food, the volume is 

roughly proportional to the area. On the other hand, for some other foods, such as soup, the 
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shape of the bowl needs to be known to establish the formula between the area and the volume. 

(See Fig.5.1 for an illustration.) In our current system, we assume linear proportionality between 

the food area and the volume. As a result, we estimate the area (therefore, the volume and gram 

amount) of the food in before and after pictures, and estimate the amount of food intake.  

The system performance is tested with Baylor Image Sets. The gram amount estimates 

are shown in Table 5.1. According to the table, the system performed some over estimates for the 

following food types’ after intake photos, garlic toast, spinach, baked beans and rice. On the 

other hand, the system carried out some under estimates for the following food types’ before 

intake photos, potato salad with mayo, spinach and broccoli with cheese. 

 We will add a feature to our system to associate the area-volume formula with the food 

type so that the volumes are estimated more accurately for food that is put in bowls; the system 

will assume a standard bowl shape to establish the area-volume formula. 
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Figure 5.1: Area-Volume relation. (a) Volume is linearly proportional to 

the area; that is, V2 = A2 (V1 / A1). (b) The volume depends on the shape 

(namely, top and bottom areas and the height) of the bowl, which modeled 

as a cut cone. 
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Geometric Transformation-Warping (Perspective/Affine) 

 

 

 

 

  

 

 

 

 

 

                            

              
 
                                                           

                                                  
 

 

 

 

 

                                                 
                           

                                  
 

  

 

 

 

Figure 5.2.: Flowchart of gram amount calculation. 
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Table 5.1: Comparison of gram estimations and percentage error table 

 

 

 

 

 

 

 

 

 

 

Food Type 
Before 
Intake(g) 

After 
I.(g) 

Final 
I.(g) 

Before(cor
rect) 

After(corr
ect) 

Final I. 
(correct) 

Before 
Error 

After 
E. 

Final 
E. 

Corn on the Cob 136.11861 141.42 0 129.8 84 45.8 5% 0% 0% 

Garlic Toast 39.426152 11.995 27.430 38 6.6 31.4 4% 82% -13% 

Lasagna 155.21957 56.770 98.449 142.1 38.4 103.7 9% 48% -5% 

Spinach 49.474755 23.834 25.640 53.6 13.4 40.2 -8% 78% -36% 

Baked Beans 122.31519 48.485 73.830 98.6 15.2 83.4 24% 219% -11% 

Baked Drumstick 121.58870 0 121.58 135.3 25.8 109.5 -10% 0% 11% 

Potato Salad w 
Mayo 72.952025 28.382 44.569 136.3 57 79.3 -46% -50% -44% 

Enchilada Casserole 
- whole 171.43673 0 171.43 129.9 0 129.9 32% 42% 32% 

Pinto Beans 51.989962 21.261 30.728 39.2 12.5 26.7 33% 70% 15% 

Spanish Rice 60.145378 25.741 34.403 45.1 15.8 29.3 33% 63% 17% 

Chicken Breast 
Pieces 56.933028 25.747 31.185 54.5 17.9 36.6 4% 44% -15% 

Macaroni and 
Cheese 44.230352 24.532 19.697 47.1 16.1 31 -6% 52% -36% 

Sweet Peas 79.279388 38.521 40.757 64.2 27.7 36.5 23% 39% 12% 

Broccoli with 
Cheese 63.006484 20.529 42.476 79.3 17.2 62.1 -21% 19% -32% 

Chili Mac 93.099989 47.820 45.279 88.4 28.5 59.9 5% 68% -24% 

Rice 49.067331 18.952 30.114 32.4 10.4 22 51% 82% 37% 

Total             20% 60% 21% 
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Table 5.2: Weight, Surface Area, and Density for training sets of tested food classes  

Chicken Breast Pieces 

Weight Surface Area (Affine) Surface Area (Scaling) 

Weight/Surface 

Area (Affine) 

Weight/Surface 

Area (Scaling) 

106.8 25.74 25.98 4.15 4.11 

90.6 24.06 24.49 3.77 3.70 

80 23.02 22.68 3.48 3.53 

69.6 19.12 19 3.64 3.66 

60.7 17.87 17.77 3.40 3.42 

38.7 14.8 14.94 2.61 2.59 

31.7 9.14 9.24 3.47 3.43 

21.3 12.1 12.07 1.76 1.76 

11.7 4.51 4.50 2.59 2.60 

50.9 14.88 15.38 3.42 3.31 

      3.23 3.22 

Macaroni and Cheese 

Weight Surface Area (Affine) Surface Area (Scaling) 

Weight/Surface 

Area (Affine) 

Weight/Surface 

Area (Scaling) 

102.5 27.72 27.55 3.70 3.72 

91.7 25.99 25.82 3.53 3.55 

79.8 23.27 23.61 3.43 3.38 

69.4 22.4 22.28 3.10 3.11 

59.4 22.1 21.72 2.69 2.74 

50.5 18.22 18.12 2.77 2.79 

40.6 14.2 14.47 2.86 2.81 

30.7 11.82 11.72 2.60 2.62 

20.1 6.12 6.22 3.28 3.23 

10 3.8 3.78 2.63 2.65 

      3.06 3.06 

Sweet Peas 

Weight Surface Area (Affine) Surface Area (Scaling) 

Weight/Surface 

Area (Affine) 

Weight/Surface 

Area (Scaling) 

97.6 18.89 18.91 5.17 5.16 

88.2 24.41 24.67 3.61 3.58 

75.5 15.61 15.76 4.84 4.79 

62.9 17.92 18.21 3.51 3.45 

50.5 12.76 12.7 3.96 3.98 

40.4 14.39 14.45 2.81 2.80 

30.2 11.03 10.97 2.74 2.75 

20.7 7.77 7.91 2.66 2.62 

10.3 4.97 4.95 2.07 2.08 

      3.49 3.47 
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Figure 5.3: Area-surface correlation for various food classes: Chicken breast pieces, Macaroni 

and cheese, and Sweet peas (from top to bottom). 
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6. CONCLUSIONS AND FUTURE WORK 

Measuring people’s energy intake in free living conditions has been challenging for so 

long. Numerous approaches have been proposed to measure energy intake. The goal of our work 

is to present a framework to automatically estimate the food intake in free living conditions. We 

use a reference card system to estimate the true area of the food portions. This gives us the 

estimated gram amount. Once we have the estimated gram amount, this value is joined with the 

portion code and portion weight as well as nutritional information in the USDA Food and 

Nutrient Database for Dietary Studies (FNDDS) to obtain the final energy intake. 

The system relies on accurate detection of the corners of the reference. In the event of 

low-resolution images, the corners may not be estimated accurately; in such a case, we may do a 

template matching to the reference card or fit lines to the edges of rectangles in the card using 

Hough transform to eventually have a more accurate estimate of the position of the card. Main 

contribution of this thesis was to develop an image analysis system to classify and segment each 

food item. We achieved up to 80% classification accuracy by incorporating optional manual 

correction into the framework.  

 Currently, we are using color features, Gabor texture features [37, 38] in our system; 

these are obviously not sufficient as different foods may have similar color and texture features. 

We will add various texture features such as DCT, Gray-level co-occurrence matrix [33, 34] to 

improve the performance of our system. Another possible addition to our system will be use of 

the Support Vector Machine (SVM) classifier [25]. We are also planning to include image 

enhancement modules, such as image denoising, compression artifact reduction, and contrast 

enhancement subsystems, to handle low-quality images. Another future work is to investigate the 

use of multiple images to construct 3D structures, and to have more accurate estimate of the 

gram amounts. 
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