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ABSTRACT 

 

 

Current classification approaches usually do not try to achieve a balance between fitting and 

generalization when they infer models from training data. Such approaches ignore the possibility 

of different penalty costs for the false-positive, false-negative, and unclassifiable types. Thus, 

their performances may not be optimal or may even be coincidental. 

This dissertation analyzes the above issues in depth. It also proposes two new approaches 

called the Homogeneity-Based Algorithm (HBA) and the Convexity-Based Algorithm (CBA) to 

address these issues. These new approaches aim at optimally balancing the data fitting and 

generalization behaviors of models when some traditional classification approaches are used. 

The approaches first define the total misclassification cost (TC) as a weighted function of the 

three penalty costs and their corresponding error rates. The approaches then partition the training 

data into regions. In the HBA, the partitioning is done according to some homogeneous 

properties derivable from the training data. Meanwhile, the CBA employs some convex 

properties to derive regions. A traditional classification method is then used in conjunction with 

the HBA and CBA. Finally, the approaches apply a genetic approach to determine the optimal 

levels of fitting and generalization. The TC serves as the fitness function in this genetic 

approach. 

Real-life datasets from a wide spectrum of domains were used to better understand the 

effectiveness of the HBA and CBA. The computational results have indicated that both the HBA 

and CBA might potentially fill a critical gap in the implementation of current or future 

classification approaches. Furthermore, the results have also shown that when the penalty cost of 



xi 

an error type was changed, the corresponding error rate followed stepwise patterns. The finding 

of stepwise patterns of classification errors can assist researchers in determining applicable 

penalties for classification errors. Thus, the dissertation also proposes a binary search approach 

(BSA) to produce those patterns. Real-life datasets were utilized to demonstrate for the BSA. 

 

Keywords: Data mining, classification, prediction, overfitting, overgeneralization, false-

positive, false-negative, unclassifiable, homogeneous region, homogeneity degree, convex set, 

convexity density, optimization, genetic algorithms. 
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CHAPTER 1. INTRODUCTION 

 

 

The importance of collecting enormous amounts of data related to science, engineering, 

business, governance, and almost any endeavor of human activity or the natural world is well 

recognized today. Powerful mechanisms for collecting and storing data and managing them in 

enormous datasets are in place in many large- and mid-range companies, not to mention research 

labs and various agencies. There is, however, a serious challenge in making the best use of such 

massive datasets and trying to gain new knowledge of the system or phenomenon that created 

these datasets. Human analysts cannot process and comprehend such datasets unless they have 

special computational tools at their disposal. 

The emerging field of data mining and knowledge discovery seeks to develop reliable and 

effective computational tools for analyzing such large datasets to extract new knowledge from 

the data. Such new knowledge can be derived from patterns that are embedded in the data. Many 

applications of data mining involve the analysis of data that describe the state of nature of a 

hidden system of interest. Such a system could be natural or artificial phenomenon (such as the 

state of the weather or the result of a scientific experiment), a mechanical system (such as the 

engine of a car), an electronic system (such as an electronic device), and so on. Each data point 

describes the state of the phenomenon or system in terms of a number of attributes and their 

values for a given realization of the phenomenon or system. Furthermore, each data point is 

associated with a class value which describes a particular state of nature of this phenomenon or 

system. The typical setting of interest in this dissertation involves the indication that each data 

point belongs to one of two classes, which will be referred to without loss of generality, as the 

positive and negative classes. This is not a real restriction as any multi-class problems revert to a 
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number of two-class problems (see, for instance, [Pujol, et. al., 2006], [Dietterich, et. al., 1995], 

and [Crammer, et. al., 2002]). Then the main problem is to use such historic data (also known as 

the training data) to infer a model which would accurately classify new observations of unknown 

class values. 

For instance, a bank administrator could be interested in knowing whether a loan application 

should be approved or not based on some characteristics of those applying for credit. There are 

two classes: “approve” or “do not approve.” Attributes in this hypothetical scenario might 

include the age of the applicant, the income level of the applicant, the education level, and the 

employment status. In this case, the goal of the data mining process would be to extract any 

patterns that might occur in the data of successful credit applicants and also any patterns that 

might be present in the data of non-successful applicants. Successful applicants are defined here 

as those who can repay their loans without any negative complications, while non-successful 

applicants are those who default on their loans. 

Many questions could be asked, but only a few of them would be important for the decision. 

With the abundance of data available in this area, a careful analysis could provide a pattern that 

discovers the main characteristics of reliable loan applicants. The data mining analyst often 

identifies such patterns from past data for which the final outcome is known, then uses those 

patterns to decide whether a new application for credit should be approved or not. 

In other words, many applications of data mining involve the analysis of historic data (also 

known as the training data) for which we know the class value of each data point. We wish to 

infer some patterns from these data which in turn help us to infer the class value of new points 

for which the class value is unknown. These patterns may be defined on the attributes used to 

describe the available training data. For instance, for the previous bank example the patterns may 
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be defined on the level of education, years on the same job, and level of income of the 

applicants. 

This kind of data mining analysis is called classification or class prediction of new data 

points because it uses patterns inferred from training data to aid in the correct classification / 

class prediction of new data points for which we do not know their class value. We only know 

the values of the attributes (perhaps not all of them) of the new data points. This description 

implies that this type of data mining analysis, besides the typical data definition, data collection, 

and data cleaning steps, involves the inference of a model of the phenomenon or system of 

interest to the analyst. This model consists of the patterns mentioned above. The data involved in 

deriving this model are the training data. Next, this model is used to infer the class value of new 

points. 

Many theoretical and practical developments have been made in the last two decades or so 

regarding the development of approaches for inferring classification models from training data. 

The most recent approaches include the Statistical Learning Theory [Vapnik, 1998], Artificial 

Neural Networks (ANNs) [Abdi, 2003] and [Hecht-Nielsen, 1989], Decision Trees (DTs) 

[Quinlan, 1987, 1993, and 1996], and Support Vector Machines (SVMs) [Cristianini, et. al., 

2000] and [Vapnik, 1998]. In such classification approaches, there are three different types of 

possible errors: 

• The false-negative type where a data point, which in reality is positive, is predicted as 

negative. 

• The false-positive type where a data point, which in reality is negative, is predicted as positive. 

• The unclassifiable type where the classification approach cannot predict the class value of a 

new point. This occurs when insufficient information is extracted from the historic dataset. 
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Current classification approaches may work well with some training datasets, while they may 

perform poorly with other datasets for no obvious reason. If the classification approach is 

accurate, then we praise the mathematical model and claim that it is a good model. However, 

there is no solid understanding of why such models are accurate or not. The performance of such 

models is often coincidental. 

A growing belief is that such approaches usually do not try to achieve a balance between 

fitting and generalization when they infer models from datasets. Thus, the models they infer may 

suffer from the overfitting and overgeneralization problems, and this causes their poor 

performance. Overfitting occurs when a model can accurately classify data points which are very 

closely related to the training data but performs poorly with data which are not closely related to 

the training data. Overgeneralization occurs when a model erroneously claims to be able to 

accurately classify vast amounts of data which are not closely related to the training data. 

In general, current classification approaches attempt to minimize the sum of the false-

negative and false-positive error rates without considering these two error rates in a weighted 

fashion. They also do not consider the case of having unclassifiable instances. To appreciate the 

magnitude of this situation, let us consider, for instance, the case of a diagnostic system for a 

serious disease (say some kind of aggressive cancer). In a situation like this, a false-positive 

diagnosis would subject a patient to some unnecessary medical tests and treatments, along with 

emotional distress. On the other hand, a false-negative diagnosis may cause loss of critical time 

which in turn may prove to be fatal to the patient. It is reasonable to argue here that these two 

cases of diagnostic errors should be associated with significantly different penalty costs (i.e., 

much higher for the false-negative case). Similar situations may occur when approving large 

lines of credit (as the current financial crisis is demonstrating), in oil exploration, issuing 

evacuation orders to avoid natural disasters (such as when a hurricane is approaching a 
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vulnerable area), classification of targets as enemy or not, and so on. The penalty associated with 

unclassifiable cases is more subtle. Currently the system does not make any diagnosis due to 

limited input information. However, in an extreme case a system may avoid any false-positive 

and false-negative types by reverting to unclassifiable outcomes for most diagnostic instances. 

That is, such a system would only offer advice when a new instance is of an obvious nature (i.e., 

either clearly positive or clearly negative) and avoid any challenging instance. That would result 

in high numbers of unclassifiable cases. Thus, this outcome should also be assigned a penalty 

cost as well. 

This dissertation carefully analyzes the following issues: the balance between fitting and 

generalization, the differences in penalty costs for the false-positive and false-negative types, and 

the consideration of the unclassifiable type. Two new approaches, called the Homogeneity-Based 

Algorithm (HBA) and the Convexity-Based Algorithm (CBA), are proposed to address the above 

issues. The new approaches attempt to balance both fitting and generalization by attempting to 

minimize the total misclassification cost (TC) of the final system. These approaches first define 

the TC as an optimization problem in terms of the false-positive, false-negative, and 

unclassifiable rates along with their penalty costs. They then identify regions in the space of the 

training data where the training data points are located in either a homogeneous or convex 

manner. The new approaches are used in conjunction with traditional classification approaches. 

Next, a genetic approach is applied to determine the optimal levels of fitting and generalization. 

The TC expression is used as the fitness function in this genetic approach. The final models are 

an aggregate of the models inferred from such regions. By employing these new approaches, it is 

hoped that the classification / prediction accuracy of the inferred models will be very high, or at 

least as high as can be achieved, with the available training data.  
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Furthermore, one of the significant results which the HBA and CBA obtained shows that 

rates of classification errors may be arranged in stepwise patterns. Stepwise patterns of 

classification errors can be useful tools for researchers in determining penalties for classification 

errors. In fact, assume that for given penalties a classification approach returns some error rates. 

We want to know whether an error rate is retained, if the corresponding penalty is increased or 

decreased. If the rate is not retained, it should show penalties in which the level of the rate is 

changed. Stepwise patterns can assist in answering these concerns. Each step of a stepwise 

pattern shows an interval of penalties in which the error rate is identical. The different steps of 

the pattern depict penalties where the error rate varies across levels. This dissertation also 

proposes a Binary Search Approach (BSA) to determine such patterns. 

The remainder of the dissertation is organized into seven chapters. The second chapter 

provides a preliminary description of the main research problem. The third chapter gives a 

summary of the major developments in the related literature. The HBA approach is highlighted 

in the fourth chapter. Meanwhile, the CBA approach is discussed in the fifth chapter. The sixth 

chapter discusses some promising results. These results give a good indication that these 

approaches may improve the performance of traditional classification approaches. The seventh 

chapter gives a description of the BSA and its results. Finally, the dissertation ends with some 

conclusions and proposed future work. 
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CHAPTER 2. A FORMAL PROBLEM DESCRIPTION
1
 

 

 

2.1 Some Basic Definitions 

In order to clarify some important ideas, we first consider the hypothetical data depicted in 

Figure 1. Let us assume that the circles and squares in this figure correspond to sampled 

observations from two classes defined in 2-dimensions. 

We assume that a data point is a vector defined on D variables along with their values. In 

Figure 1, D is equal to 2 and the two variables are indicated by the X and Y axes. In general, not 

all values may be known for a given data point. Data points describe the behavior of the system 

of interest to the analyst. The state space is the universe of all possible data points. In terms of 

Figure 1, the state space is any point in the X-Y plane. 

 

 

Figure 1: Sample data from two classes in 2-dimensions. 

                                                 
 
1 A partial part of this chapter was in “Soft Computing for Knowledge Discovery and Data Mining” (O. Maimon 
and L. Rokach, Editors), Part 4, Chapter 5, Springer, New York, NY, USA, 2008, pp. 391-431. 

X axis 
mutati

Y axis 
crosso
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We assume that there are only two classes. Arbitrarily, we will call one of them the positive 

class, while we will call the other one the negative class. Thus, a positive data point, also known 

as a positive example, is a data point that has been evaluated to belong to the positive class. A 

similar definition exists for negative data points (or negative examples). 

Given a set of positive and negative examples, such as the ones depicted in Figure 1, this set 

is called the training data (or training examples) or the classified examples. The remaining data 

from the state space is called the unclassified data (or unclassified examples). 

2.2. Problem Description 

We start the problem description with a simple analysis of the sample data depicted in Figure 

1. Suppose that a classification approach (such as a DT, ANN, or SVM) has been applied on 

these training data points. Next, we assume that two classification models have been inferred 

from these training data points. Usually, such classification models arrange the training dataset 

into groups described by the parts of a decision tree or classification rules. These groups of the 

training data points define regions inferred from the classification algorithm. For this 

hypothetical scenario, we assume that the classification algorithm has inferred the system regions 

depicted in Figure 2(a). 

In general, one classification system describes the positive data points (thus we will call it the 

positive model), while the other system describes the negative data points (thus we will call it the 

negative model). In Figure 2(a), the positive model corresponds to regions A and B (which 

define the positive regions), while regions C and D correspond to the negative model (which 

defines the negative regions). 
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Figure 2: An example of the overfitting and overgeneralization problems. 
 

Please recall that there are three different types of possible errors if one erroneously classifies 

a true positive point as negative or if one classifies a true negative point as positive. The first 

case is known as false-negative, while the second case is known as false-positive. Furthermore, a 

closer examination of Figure 2(a) indicates that there are some unclassifiable points which either 

are not covered by any of the regions or are covered by regions that belong to both models. For 

X axis 

Y axis 

A 

B 

C 

D 

(a) – Original classification 

M 
N 

X axis 

Y axis 

A 

B 

C 

D 

(b) - Overfitting 

M 
N 

X axis 

Y axis 

A 

B 

C 

D 

(c) – Overgeneralization 

M 
N 
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instance, point N in Figure 2(a) (indicated as a triangle) is not covered by any of the regions, 

while point M (also a triangle) is covered by regions A and C which belong to the positive and 

the negative regions, respectively. 

For the first case, since point N is not covered by any of the regions, the inferred model may 

declare point N as an unclassifiable point. In the second case, there is a direct disagreement by 

the inferred model as the new point (i.e., point M) in Figure 2(a) is covered simultaneously by 

regions of both classes. Again, such a point may also be declared as unclassifiable. Thus, in 

many real-life applications of classification one may have to consider three different penalty 

costs as follows: one cost for the false-positive type, one cost for the false-negative type, and one 

cost for the unclassifiable type. 

Next consider Figure 2(b). Suppose that all regions A, B, C, and D have been reduced 

significantly but still cover the original training data. A closer examination of this figure 

indicates that now neither point M nor point N are covered by any of the inferred regions. In 

other words, these points and several additional points which were classified before by the 

inferred regions now become unclassifiable. 

Furthermore, the data points which before were simultaneously covered by regions from both 

classes, and thus were unclassifiable, are now covered by only one type of region or none at all. 

Thus, it is very likely that the situation depicted in Figure 2(b) may have a higher total 

misclassification cost than the original situation depicted in Figure 2(a). If one takes this idea of 

reducing the covering regions as much as possible to the extreme, then there would be one region 

(i.e., just a small circle) around each individual training data point. In this extreme case, the total 

misclassification cost due to unclassifiable points would be maximal as the model would be able 

to classify the training data points only and nothing else. The previous scenarios are known as 

overfitting of the training data. 
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On the other hand, suppose that the original regions depicted as regions A, B, C, and D (as 

shown in Figure 2(a)) are now expanded significantly as in Figure 2(c). A closer examination of 

this figure demonstrates that points M and N are now covered simultaneously by regions of both 

classes. Also, more points are now covered simultaneously by regions of both classes. Thus, 

under this scenario we also have a large number of unclassifiable points because this situation 

creates many cases of disagreement between the two classification models (i.e., the positive and 

the negative models). This realization means that the total misclassification cost due to 

unclassifiable points will also be significantly higher than under the situation depicted in Figure 

2(a). This scenario is known as overgeneralization of the training data. 

Thus, we cannot separate the control of fitting and generalization into two independent 

studies. That is, we need to find a way to simultaneously balance fitting and generalization by 

adjusting the inferred models (i.e., the positive and the negative models) obtained from a 

classification algorithm. The balance of the two models will attempt to minimize the total 

misclassification cost (TC) of the final model. 

In particular, let us denote CFP, CFN, and CUC as the penalty costs for the false-positive, the 

false-negative, and the unclassifiable cases, respectively. Let RateFP, RateFN, and RateUC be 

the false-positive, the false-negative, and the unclassifiable rates, respectively. Then, the problem 

is to achieve a balance between fitting and generalization that would minimize, or at least 

significantly reduce the total misclassification cost. The problem is defined in the following 

expression: 

).(min RateUCCRateFNCRateFPCTC UCFNFP ×+×+×=                  (1) 

This methodology may assist the data mining analyst in creating classification models that would 

be optimal in the sense that their total misclassification cost would be minimized. 
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Figure 3: An example of a better classification. 
 

In terms of Figures 2(a), (b), and (c), let us now consider the situation depicted in Figure 3. 

At this point, assume that in reality point M is negative, while point N is positive. Figure 3 shows 

different levels of fitting and generalization for the two classification models. For the sake of 

illustration, regions C and D are kept the same as in the original situation (i.e., as depicted in 

Figure 2(a)), while region A has been reduced (i.e., it fits the training data more closely) and now 

does not cover point M. On the other hand, region B is expanded (i.e., it generalizes the training 

data more) to cover point N. The new situation may correspond to a total misclassification cost 

that is smaller than the cost in any of the previous three scenarios. The following chapter 

provides a literature review of approaches designed for controlling the fitting and the 

generalization problems. 
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CHAPTER 3. LITERATURE REVIEW
2
 

 

 

The following classification approaches have typically focused on minimizing the sum of the 

false-positive and false-negative error rates by controlling either fitting or generalization. 

However, these approaches have failed to consider the two error rates in a weighted fashion. 

3.1 Decision Trees (DTs) 

There are two methods for controlling the overfitting problem in DTs: pre-pruning methods 

in which the growing tree approach is halted by some early stopping rules before generating a 

fully grown tree and post-pruning in which the DT is first grown to its maximum size and then 

some partitions of the tree are trimmed. 

Recently much effort has focused on improving the pre-pruning methods. [Kohavi, 1996] 

proposed the NBTree (a hybrid of decision trees and naive-classifiers). The NBTree provides 

some early stopping rules by comparing two alternatives: partitioning the instance-space further 

on (i.e., continue splitting the tree based on some gain ratio stopping criteria) versus stopping the 

partition and producing a single Naïve Bayes classifier. [Zhou and Chen, 2002] suggested the 

hybrid DT approach for growing a binary DT. A feed-forward neural network is used to 

subsequently determine some early stopping rules. [Rokach, et. al., 2005] proposed the cluster-

based concurrent decomposition (CBCD) algorithm. That algorithm first decomposes the 

training set into mutually exclusive sub-samples and then uses a voting scheme to combine these 

sub-samples for the classifier's predictions. Similarly, [Cohen, et. al., 2007] proposed an 

                                                 
 
2 A partial part of this chapter was in “Soft Computing for Knowledge Discovery and Data Mining” (O. Maimon 
and L. Rokach, Editors), Part 4, Chapter 5, Springer, New York, NY, USA, 2008, pp. 391-431. 



14 

approach for building a DT by using a homogeneous criterion for splitting the space. However, 

the above approaches encounter difficulty in choosing the threshold value for early termination. 

A too large threshold value may result in underfitting models, while a too low threshold value 

may not be sufficient to overcome overfitting models. 

Under the post-pruning approaches described in [Breiman, et. al., 1984] and [Quinlan, 1987], 

the pruning process eliminates several partitions of the tree. The reduction of the number of 

partitions makes the remaining tree more general. In order to demonstrate the main idea, we 

consider the simple example depicted in Figure 4. Suppose that Figure 4(a) shows a DT inferred 

from some training examples. The pruning process eliminates some of the DT ’s nodes as 

depicted in Figure 4(b). The remaining part of the DT, as shown in Figure 4(c), implies some 

rules which are more general. For instance, the left most branch of the DT in Figure 4(a) implies 

the rule “if D∧  A ∧  B ∧  C, then …” On the order hand, Figure 4(c) implies the more general 

rule “if D∧  A, then …” 

 

 
Figure 4: An example of DT pruning. 
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However, more generalization is not always required nor is it always beneficial. A more 

complex arrangement of partitions has been proved to increase the complexity of DTs in some 

applications. Furthermore, the treatment of generalization of a DT may lead to the 

overgeneralization problem since pruning conditions are based on localized information. 

In addition to the pruning methods, there have been other developments to improve the 

accuracy of DTs. [Webb, 1996] attempted to graft additional leaves to a DT after its induction. 

This method does not leave any area of the instance space in conflict because each data point 

belongs to only one class. Obviously, the overfitting problem may arise from this approach. 

[Mansour, et. al., 2000] proposed another way to deal with the overfitting problem by using the 

learning theoretical method. In that method, the bounds on the error rate for DTs depend both on 

the structure of the tree and on the specific sample. [Kwok and Carter, 1990], [Schapire, 1990], 

[Wolpert, 1992], [Dietterich and Bakiri, 1994], [Ali, et. al., 1994], [Oliver and Hand, 1995], 

[Nock and Gascuel, 1995] and [Breiman, 1996] allowed multiple classifiers used in a 

conjunction. The above methods are similar to using a Disjunctive Normal Form (DNF) Boolean 

function. Furthermore, [Breiman, 2001] also used the so-called random forest approach for 

multiple classifiers. However, the above approaches might create conflicts among the individual 

classifiers’ partitions, as in the situation presented in C4.5 [Quinlan, 1993]. 

3.2 Rule-Based Classifiers 

A rule-based classifier uses a collection of “if … then …” rules that identify key 

relationships between the attributes and the class values of a training dataset. There are two 

methods which infer classification rules. First, direct methods which infer classification rules 

directly from the training dataset and, secondly, indirect methods which infer classification rules 

from other classification methods such as DTs, SVMs, or ANNs and then translate the final 
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model into a set of classification rules [Tan, et. al., 2005]. An extensive survey of rule-based 

methods can be found in [Triantaphyllou and Felici, 2006]. A new rule-based approach, which is 

based on mathematical logic, is described in [Triantaphyllou, 2010]. 

A well-known algorithm of direct methods is the Sequence Covering algorithm and its later 

enhancement, the CN2 algorithm [Clark and Niblett, 1989]. To control the balance of fitting and 

generalization while generating rules, these algorithms first use one of two strategies for growing 

the classification rules: general-to-specific or specific-to-general. Then, the rules are refined 

through the pre- and post-pruning methods mentioned in DTs. 

Under the general-to-specific strategy, a rule is created by finding all possible candidates and 

using a greedy approach to choose the new conjuncts to be added into the antecedent part of the 

rule in order to improve its quality. This approach ends when some stopping criteria are met. 

Under the specific-to-general strategy, a classification rule is initialized by randomly 

choosing one of the positive data points as the initial step. Then, the rule is refined by removing 

one of its conjuncts so that this rule can cover more positive points. This refining approach ends 

after the satisfaction of certain stopping criteria. A similar method exists for the negative data 

points. There are some related developments regarding these strategies. Such developments 

include the beam search algorithm [Clark and Boswell, 1991] which avoids the overgrowing of 

rules as a result of the greedy behavior and the RIPPER algorithm [Cohen, 1995] which uses a 

rule induction algorithm.  

Furthermore, the rules derived by the above methods are then treated by an approach 

described in [Mastrogiannis, 2009]. Specifically, the approach first estimates the resemblance 

between each data point in the calibration dataset and the rules. Next, the results are used to 

exclude redundant attributes and rules.  
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However, the use of the two strategies for growing classification rules has its disadvantages. 

First, the complexity for finding optimal rules is of exponential size of the search space. 

Secondly, although some rule pruning methods are used to minimize their generalization error, 

they also leave weaknesses as mentioned in the case of DTs. 

3.3 K-Nearest Neighbor Classifiers 

While DTs and rule-based classifiers are examples of eager learners, K-Nearest Neighbor 

Classifiers [Cover and Hart, 1967] and [Dasarathy, 1979] are known as lazy learners. That is, 

this approach finds K training points that are relatively similar to attributes of a testing point to 

determine its class value. 

The importance of choosing the right value for K directly affects the accuracy of this 

approach. A wrong value for K may lead to either the overfitting or the overgeneralization 

problems [Tan, et. al., 2005]. One method to reduce the impact of K is to weight the influence of 

the nearest neighbors according to their distance from the testing point. One of the most well-

known schemes is the distance-weighted voting scheme [Dudani, 1976] and [Keller, Gray and 

Givens, 1985]. 

However, the use of K-Nearest Neighbor Classifiers also has its limitations. First, classifying 

a test example can be quite expensive due to the need to compute a similarity degree between the 

testing point and each training point. Secondly, these classifiers are unstable since they are based 

only on localized information. Finally, it is difficult to find an appropriate value for K to avoid 

the overfitting and overgeneralization problems. 
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3.4 Bayes Classifiers 

Bayes classifiers use the modeling probabilistic relationships between the attribute set and 

the class variable for solving classification problems. There are two well-known implementations 

of Bayesian classifiers: Naïve Bayes (NBs) and Bayesian Belief Networks (BBNs). 

NBs assume that all the attributes are conditionally independent, given the value of the class 

variable. Next, they estimate the class conditional probabilities. This independence assumption, 

however, is problematic because in many real applications there are strong conditional 

dependencies between the attributes. Furthermore, when using the independence assumption, 

NBs may suffer from the overfitting problem since they are based on localized information. 

 

 

Figure 5: An example of a BBN [Rada, 2004]. 
 

BBNs [Duda and Hart, 1973] allow for pairs of attributes to be conditionally independent 

when the value of the class variable is known. Let us consider the following example. Suppose 

that we have a training dataset consisting of the following attributes: age, occupation, income, 

buy (i.e., buy some product X), and interest (i.e., “interest in purchasing insurance for product 

X”). The attributes age, occupation, and income may determine if a customer will buy some 

Interest 

Buy 

Age Occupation Income 
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product X. Given is a customer who has bought product X. There is an interest in buying 

insurance when we assume this is independent of age, occupation, and income. These constraints 

are presented by the BBN depicted in Figure 5. Thus, for a certain data point described by a 5-

tuple (age, occupation, income, buy, interest), its probability based on the BBN should be: 

P(age, occupation, income, buy, interest) =  

P(age) ×  P(occupation) ×  P(income) ×  P(buy | age, occupation, income) ×  P(interest | buy). 

Considerable efforts have been focused on improving BBNs. These efforts followed two 

general approaches: selecting a feature subset [Langley and Sage, 1994], [Pazzani, 1995], and 

[Kohavi and John, 1997] and relaxing the independent assumptions [Kononenko, 1991] and 

[Friedman, et. al., 1997]. However, these approaches have the following weaknesses. First, they 

require a large amount of effort when constructing the network. Secondly, the approaches quietly 

degrade to the overfitting problem because they combine probabilistically the data with prior 

knowledge. 

3.5 Artificial Neural Networks (ANNs) 

Recall that an ANN is a model that is an assembly of inter-connected nodes and weighted 

links. The output node sums up each of its input values according to the weights of its links. The 

output node is compared against a threshold value t. Such a model is illustrated in Figure 6. The 

ANN in this figure consists of the three input nodes X1, X2, and X3 which correspond to the 

weighted links W1, W2, and W3, respectively, and one output node Y. The sum of the input nodes 

can be Y = sign∑ −
i

ii tWX )( , and is called the perceptron model [Abdi, 2003]. 

In general, an ANN has a set of input nodes X1, X2, …, Xm and one output node Y. Given are 

n values for the m-tuple (X1, X2, …, Xm). Let 
∧

1Y , 
∧

2Y , …, 
∧

nY  be the predicted outputs and Y1, Y2, 
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…, Yn be the expected outputs from the n values, respectively. Let E = ∑
=

∧

−
n

i

ii YY
1

2][ denote the 

total sum of the squared differences between the expected and the predicted outputs. The goal of 

the ANN is to determine a set of the weights in order to minimize the value of E. During the 

training phase of an ANN, the weight parameters are adjusted until the outputs of the perceptron 

become consistent with the true outputs of the training points. In the weight update process, the 

weights should not be changed too drastically because E is computed only for the current 

training point. Otherwise, the adjustments made during earlier iterations may be undone. 

 

 

Figure 6: An example of an ANN [Tan, et. al., 2005]. 
 

In order to avoid the overfitting and overgeneralization problems, the design for an ANN 

must be considered. A network that is not sufficiently complex may fail to fully detect the input 

in a complicated dataset, leading to the overgeneralization problem. On the other hand, a 

network that is too complex may not only fit the input but also the noisy points, thus leading to 

the overfitting problem. According to [Geman, et. al., 1992] and [Smith, 1996], the complexity 

of a network is related both to the number of the weights and to the size of the weights. Geman 

and Smith were either directly or indirectly concerned with the number and size of the weights. 
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That is, the number of the weights relates to the number of hidden units and layers. The more 

weights there are, relative to the number of the training cases, the more overfitting amplifies 

noise in the classification systems [Moody, 1992]. Reducing the size of the weights may reduce 

the effective number of the weights leading to weight decay [Moody, 1992] and early stopping 

[Weigend, 1994].  

In summary, ANNs have the following disadvantages. First, it is difficult to find an 

appropriate network topology for a given problem in order to avoid the overfitting and 

overgeneralization problems. Secondly, it takes considerable time to train an ANN when the 

number of hidden nodes is large. 

3.6 Support Vector Machines (SVMs) 

Another classification technique that has received considerable attention is known as SVMs 

[Cortes and Vapnik, 1995]. The basic idea behind SVMs is to find a maximal margin hyperplane, 

θ, that will separate points considered as vectors in the D-dimensional space. The maximum 

margin hyperplane can be essentially represented as a linear combination of the training points. 

Consequently, the decision function for classifying new data points with respect to the 

hyperplane only involves dot products between data points and the hyperplane. 

In order to illustrate the ideas, we consider the simple example depicted in Figure 7. Suppose 

that we have a training dataset defined on two given classes (represented by the squares and 

circles) in 2-D. In general, the approach can find many hyperplanes, such as B1 or B2, separating 

the training dataset into the two classes. The SVM, however, chooses B1 to classify this training 

dataset since B1 has the maximum margin. Roughly speaking, B1 maximally separates the two 

groups of training examples. 
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Decision boundaries with maximal margins tend to lead to better generalization. 

Furthermore, SVMs attempt to formulate the learning problem as a convex optimization problem 

in which efficient algorithms are available to find a global solution. For many datasets, however, 

an SVM may not be able to formulate the learning problem as a convex optimization problem 

because of excessive misclassifications. Thus, the attempts for formulating the learning problem 

may lead to the overgeneralization problem. The following chapter will describe one of the 

proposed approaches which can address the limitations of current classification approaches. 

 
Figure 7: An example of an SVM [Tan, et. al., 2005]. 
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CHAPTER 4. THE HOMOGENEITY-BASED ALGORITHM (HBA)
3
 

 

 

4.1 Some Key Observations 

The HBA assumes that all attributes in a dataset are numerical.  If the data are not numerical, 

then there are procedures for converting them into equivalent numerical data.  This cannot be 

done for all cases as ordering relations in the converted numerical data may impose undesirable 

effects into the data. The interested reader may refer to the recent book [De Vaus, 2002] for a 

discussion on some related key problems in data analysis. 

In order to explain the HBA, we first consider the situation depicted in Figure 8(a). This 

figure presents two inferred regions. These are the circular areas that surround groups of training 

data (shown as small circles). Actually, these data are part of the training data shown earlier in 

Figure 1. The circles in Figure 1 represent positive points. Moreover, in Figure 8(a) there are two 

additional data points shown as small triangles which are denoted as points P and Q. At this time 

it is assumed that we do not know the actual class values of these two new points. We would like 

to use the available training dataset and inferred regions to classify these two points. Because 

points P and Q are covered by regions A and B, respectively, both of these points may be 

assumed to be positive examples. 

Let us look more closely at region A. This region covers areas of the state space that are not 

adequately populated by positive training points. Such areas, for instance, exist in the upper left 

corner and the lower part of region A (see Figure 8(a)). It is possible that the unclassified points 

which belong to such areas are erroneously assumed to be of the same class as the positive 

                                                 
 
3 A partial part of this chapter was in Expert Systems with Applications, Vol. 36, No. 5, 2009, pp. 9240-9249. 
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training points covered by region A. Point P is in one of these sparsely covered areas under 

region A. Thus, the assumption that point P is a positive point may not be very accurate. 

 

 

Figure 8: Region B is a homogeneous region, while region A is a non-homogeneous region. 
Region A can be broken into the two homogeneous regions A1 and A2 as shown in part (b). 
 

On the other hand, region B does not have such sparsely covered areas (see also Figure 8(a)). 

Thus, it may be more likely that the unclassified points covered by region B are more accurately 

assumed to be of the same class as the positive training points covered by the same region. For 

instance, the assumption that point Q is a positive point may be more accurate. 

The above simple observations lead to an assumption that the accuracy of the inferred models 

may be increased if the derived regions are somehow more compact and homogeneous [Pham 

and Triantaphyllou, 2008a, 2008b, and 2009a]. Based on [Webster Dictionary, 2010], given a 

certain class (i.e., positive or negative), a homogeneous region describes a steady or uniform 

distribution of a set of distinct points.  

The point pattern analysis [Greig-Smith, 1952], which is called the Quadrat analysis 

approach, has also discussed the concept of homogeneous regions. This approach states that 

within a pattern there are no regions (also known as bins) with unequal concentrations of 
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classified (i.e., either positive or negative) and unclassified points. In other words, if a pattern is 

partitioned into smaller bins of the same unit size and the density of these bins is almost equal to 

each other (or, equivalently, the standard deviation is small enough), then this pattern is a 

homogeneous region. According to [Pham and Triantaphyllou, 2008a, 2008b, and 2009a], an 

axiom and a theorem are derivable from the definition of a homogeneous region as follows: 

 

Axiom 1: Given an inferred region P of size one, then P is a homogeneous region. 

 

Theorem 1: Let us consider a homogeneous region P. If P is divided into two parts, P1 and P2, 

then these two parts are also homogeneous regions. 

 

Proof: We prove Theorem 1 by using contradiction. Since P is a homogeneous region, there 

is a uniform random variable Z which represents the distribution of points within P. Similarly, Z1 

and Z2 are the two random variables that represent the distribution of points within P1 and P2, 

respectively. Obviously, Z is the sum of Z1 and Z2. Assume that either P1 or P2 is a non-

homogeneous region. Then, Z1 + Z2 is not a uniform random variable. This contradicts the fact 

that Z is a uniform random variable. 

 

Looking once more at Figure 8, assume that the region which is represented by the non-

homogeneous region A in Figure 8(a) can be replaced by two more homogeneous regions 

denoted as A1 and A2 in Figure 8(b). Now region A is covered by the two new smaller regions A1 

and A2 which are more homogeneous than the area covered by the original region A. Given this 

consideration, point P may be assumed to be an unclassifiable point, while point Q is still a 

positive point. 
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As presented in the previous paragraphs, the homogeneous property of regions may influence 

the number of misclassification cases of the inferred models. Furthermore, if a region is 

homogeneous, then the number of training points covered by this region may be another factor 

which affects the accuracy of the overall inferred models. For instance, Figure 9 shows the case 

illustrated in Figure 8(b) (i.e., region A has been replaced by two more homogeneous regions 

denoted as A1 and A2). Suppose that all regions A1, A2, and B are homogeneous regions and a 

new point S (indicated as a triangle) is covered by region A1. 

 

 
Figure 9: An example of homogeneous regions. 

 

A closer examination of Figure 9 shows that the number of points in B is greater than those 

in A1. Although both points Q and S are covered by homogeneous regions, the assumption that 

point Q is a positive point may be more accurate than the assumption that point S is a positive 

point. This observation leads one to surmise that the accuracy of the inferred models may also be 

affected by a density measure. Such a density could be defined as the number of points in each 

inferred region per unit of area or volume. This density is also called the homogeneity degree 

(HD) [Pham and Triantaphyllou, 2008a, 2008b, and 2009a]. 
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In summary, a fundamental assumption here is as follows: if an unclassified point is covered 

by a region which is homogeneous and also happens to have a high value for HD, then it may be 

more accurately assumed to be of the same class as the points covered by that region. In other 

words, the accuracy of the inferred models may be increased when their regions are more 

homogeneous and have high values for HDs. 

4.2 Non-Parametric Density Estimation 

Please recall that a region P of size n is a homogeneous region if the region can be 

partitioned into smaller bins of the same unit size h and the standard deviation of the density of 

the bins is small enough. In other words, if P is superimposed by a hypergrid of unit size h and 

the density of the bins inside P is almost equal to each other, then P is a homogeneous region. 

The density estimation of a typical bin plays an important role in determining whether a 

region is homogeneous or not. According to [Duda, et. al., 2001], the density estimation is the 

construction of an estimate. That is, it is based on observed data points and on unobservable data 

points under a probability density function. There are two basic approaches for the density 

estimation: 

• Parametric in which we assume a given form of the density function (e.g., Gaussian and 

Gamma) and its parameters (i.e., its mean and variance) such that this function may optimally 

fit the model to the training dataset. 

• Non-parametric in which we cannot assume a functional form for the density function, and the 

density estimates are driven entirely by the available training dataset. 

In particular, the non-parametric approaches first divide region P into a number of small bins, 

called Rs, of unit size h. Next, these approaches estimate the density for a center point x of bin R 

by using Equation (2). Please note that d(x) denotes the density for center x. 
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As seen in the above equation, d(x) relies on the probability that points will fall in R. By 

using this idea, d(x) is indicated as follows: 
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where k is the number of points which fall in R and V is the volume enclosed by R. 

One of the most appropriate approaches for the non-parametric density estimation is Parzen 

Windows [Duda, et. al., 1973]. The Parzen Windows approach temporarily assumes that a 

typical bin is a D-dimensional hypercube of unit size h. To find the number of points which fall 

within R, the Parzen Windows approach defines a kernel function ϕ (u) as follows: 
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(centered at x) of unit size h, and zero otherwise. In the D-dimensional space, the kernel function 

can be presented as follows: 
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Substitute Equation (5) into Equation (3), then: 
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The following sections in this chapter will use the Parzen Windows approach for the density 

estimation. A right value for h plays the role of a smoothing parameter in the Parzen Windows 

approach. That is, if h→∞ , then the density at point x in P (i.e., d(x)) approaches a false density. 
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As h→0, then the kernel function approaches the Dirac Delta Function and d(x) approaches to 

the true density [Bracewell, 1999]. 

Suppose that we determine all distances between all possible pairs formed by taking any two 

points from region P. For easy illustration, assume that for region P which contains 5 data points 

these distances are as follows: 6, 1, 2, 2, 1, 5, 2, 3, 5, 5. Then, we define S as a set of the 

distances which have the highest frequency. For the previous illustration, we have set S equal to 

{2, 5} as both distances 2 and 5 occur with frequency equal to 3. By using set S, [Pham and 

Triantaphyllou, 2008a, 2008b, and 2009a] proposed Heuristic Rule 1 to find an appropriate value 

for h when estimating the density d(x). In particular, the heuristic rule uses the minimum value in 

S (which is equal to 2 in the previous illustration) as follows: 

 

Heuristic Rule 1: If h is equal to the minimum value in set S and this value is used to compute 

d(x) by using Equation (6), then d(x) can approach to the true density. 

 

This heuristic rule is applicable for the following reason. In practice, since region P has a 

finite number of points, the value for h cannot be made arbitrarily small. Obviously, an 

appropriate value for h is between the maximum and the minimum distances that are computed 

by all pairs of points in region P. If the value for h is the maximum distance, then P would be 

inside a single bin. Thus, d(x) approaches to a false density. In contrast, if the value for h is the 

minimum distance, then the set of the bins would degenerate to the set of the single points in P. 

This situation also leads to a false density and thus it is misleading. 

According to [Bracewell, 1999], as h→0, then d(x) approaches to the true density. 

Furthermore, a small value for h would be appropriate to approach to the true density [Duda, et. 

al., 2001]. Thus, the value for h described in Heuristic Rule 1 is a reasonable selection because it 
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is close to the minimum distance, but at the same time the bins would not degenerate to regions 

which only include P’s points. The following section describes the HBA which applies the 

concepts discussed above. 

4.3 The HBA 

We assume that two classification models denoted as M1 (one for the positive data and the 

other for the negative data) and the training dataset T are given. The desired goal of the HBA is 

to enhance models M1 in order to obtain an optimal TC as described in Equation (1). There are 

five parameters used in the HBA: 

• Two expansion coefficients α
+ and α

- to be used when expanding positive and negative 

homogeneous regions, respectively. 

• A breaking threshold value β+
 to be used when determining whether a positive homogeneous 

region is broken. A similar concept is applied on the breaking threshold value β- for a negative 

homogeneous region. 

• A density threshold value γ to be used when determining whether a region is homogeneous. 

The main steps of the HBA are described in Figure 10 and are summarized in terms of the 

following phases: 

• Phase 1 (Steps 1 and 2): Normalize the values of the attributes in T. Normalization is due to 

the fact that the Euclidean distance is used in the HBA. This distance requires that T ’s 

attributes should be defined in the same unit (i.e., as percentages). Next, the HBA divides T 

into two random sub-datasets: T1 whose size is, say 90% of T ’s size and T2 whose size, in this 

case, is the remaining 10% of T ’s size. These percentages can be determined empirically with 

trial and error. Suppose that models M1 group T1’s training points into a set of regions. Finally, 
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the HBA randomly initializes the four parameters (α+, α-, β+, β-) whose ranges depend on each 

individual application. 

• Phase 2 (Step 3): Break regions into hyperspheres. We use the concept of hyperspheres 

because each hypersphere is determined by a center and a radius. Such hyperspheres do not 

depend on the dimensionality of the training dataset. 

• Phase 3 (Steps 4 to 6): Determine whether the hyperspheres derived in Phase 2 are 

homogeneous. If so, then compute their HD values. Otherwise, break non-homogeneous 

regions into smaller hyperspheres. Some homogeneous regions are broken again if their HDs 

are less than either β+ (for positive regions) or β- (for negative regions). 

• Phase 4 (Step 7): Expand the hyperspheres obtained in Phase 3 in decreasing order of the 

values for HD. The expansion algorithms are shown in Section 4.3.3. 

• Phase 5 (Step 8): Apply the genetic algorithm (GA) described in Section 4.3.4 to Phases 3 and 

4 with Equation (1) as the fitness function and T2 as the calibration dataset. The GA approach 

finds the four optimal parameters ),,,( ****
−+−+ ββαα , for the three given cost 

coefficients CFP, CFN, and CUC. 

• Phase 6 (Step 9): Use the optimal parameters ),,,( ****
−+−+ ββαα  on the entire training 

dataset T to repeat Phases 3 to 4 and infer the final pair of models M2. 

The above phases can lead to the formulation of five sub-problems as follows: 

• Sub-Problem 1: Break M1’s regions into hyperspheres (see an example depicted in Figure 11). 

• Sub-Problem 2: Determine whether a hypersphere is a homogeneous region. 

• Sub-Problem 3: Break a non-homogeneous region into hyperspheres. 

• Sub-Problem 4: Break a homogeneous region into smaller homogeneous regions. 

• Sub-Problem 5: Expand a hypersphere. 
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Input: The positive and negative classification models M1, the training dataset T, the 

density threshold value γ, and the three cost coefficients CFP, CFN, and CUC. 

1. Normalize T and divide T into two random sub-datasets: the actual training dataset T1 

and the calibration dataset T2. Suppose that models M1 group T1 into a set of regions. 

2. Randomly initialize the values of the four parameters (α+, α-, β+, β-). 

3. Break M1’s regions into hyperspheres. This task is called Sub-Problem 1. 

4. Determine whether the hyperspheres are homogeneous regions. This task is called Sub-

Problem 2. Then we break non-homogeneous regions (if any) into homogeneous 

regions. This task is called Sub-Problem 3. 

5. Compute the HDs for the homogeneous regions. 

6. Break the homogeneous regions into sub-homogeneous regions, if their HDs are less 

than β+ or β- for the positive and negative data, respectively. This task is called Sub-

Problem 4. 

7. In decreasing order of the HDs, expand hypersphere P by using HD(P) and either α+ or 

α
- for the positive and negative data, respectively. This task is called Sub-Problem 5. 

8. Apply the GA approach to Steps 6 and 7 using Equation (1) as the fitness function and 

the calibration dataset T2. The GA approach finds the optimal values of the four 

parameters denoted as ),,,( ****
−+−+ ββαα . 

9. Use the optimal values ),,,( ****
−+−+ ββαα  on the entire training dataset T to 

repeat Steps 6 and 7 and infer the final pair of models M2. 

Output: The positive and negative classification pair of models M2. 

Figure 10: The HBA [Pham and Triantaphyllou, 2008a, 2008b, and 2009a]. 
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Because the task of Sub-Problems 1 and 3 are to break a region into hyperspheres, they use 

the same algorithm. Furthermore, according to Theorem 1, sub-regions broken from a 

homogeneous region are also homogeneous. Thus, Sub-Problem 4 also uses the same algorithm 

as Sub-Problems 1 and 3. The following sections present some procedures for solving Sub-

Problems 1, 2, 5, and also the GA approach. 

4.3.1 Sub-Problem 1 

In order to illustrate the following sections, we consider the situation depicted in Figure 

11(a). This figure presents two training sets (called the training dataset T1) of positive and 

negative training points in 2-D. Suppose that the classification models M1 has applied a DT 

algorithm on the training dataset T1 to infer a decision tree as depicted in Figure 11(b). This 

decision tree separates the training data into the four regions delineated by the two bold lines 

depicted in Figure 11(c). 

Let us consider the example in Figure 11(c). For each region in this figure, somehow Sub-

Problem 1 finds the minimum number of hyperspheres (i.e., circles in 2-D) which can cover all 

the points in the original region. For instance, this situation is depicted in Figure 11(d) in which 

the positive and negative points are covered by the corresponding circles (please note that in 2-D 

hyperspheres are circles): A, B, C, D, and E. 

The problem of finding the minimum number of hyperspheres that can cover a region P of 

size n is similar to a form of the set cover problem, an NP-complete problem [Karp, 1972]. In 

this dissertation, a heuristic algorithm is proposed as depicted in Figure 12. 

The algorithm starts by first estimating the densities of the n points by using Equation (6) in 

Section 4.2. We assume that the value for K is going from 1 to n. The algorithm will pick K 

points in P with the highest densities. Next, it uses these K points as centroids in the K-means 
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Figure 11: An example for Phase 2. 
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clustering approach [Seber, 1984]. In particular, the K-means approach uses a two-phase iterative 

algorithm to minimize the sum of point-to-centroid distances, summed over all K clusters. Each 

iteration in the first phase consists of reassigning data points to their nearest cluster centroid, all 

at once, followed by recalculation of cluster centroids. In the second phase, data points are 

individually reassigned if doing so will reduce the sum of distances and cluster centroids are 

recomputed after each reassignment. If the K hyperspheres which are obtained from the 

clustering approach cover P, then the algorithm will stop. Otherwise, we repeat the algorithm 

with the value for K increased by one. 

 

Input: Region P of size n. 

 

1. Estimate the densities of the n points by using Equation (6). 

2. For K = 1 to n do 

3.   Begin {for} 

4.       Pick K points in P with the highest densities. 

5.       Use the K-means clustering approach to find K hyperspheres. 

6.       If the K hyperspheres cover P, then STOP. 

7.   End {for}. 

 

Output: K hyperspheres. 

Figure 12: The algorithm for Sub-Problem 1. 
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For instance, in Figure 11(d) the algorithm determines two circles which can cover the two 

positive regions, while it uses three circles for the two negative regions. Please note that the 

algorithm depicted in Figure 12 is also applied to Sub-Problems 3 and 4. 

4.3.2 Sub-Problem 2 

Let us consider some hypersphere P. Sub-Problem 2 determines whether hypersphere P is 

homogeneous. By using the idea of the Quadrat analysis approach described in [Greig-Smith, 

1952], hypersphere P is first divided into a number of small bins of unit size h. Next, we 

approximate the density at the center x of each bin. The value h is defined as in Heuristic Rule 1 

in Section 4.2. If the densities at the centers are approximately equal to each other, then P is a 

homogeneous region. The algorithm for Sub-Problem 2 is given in Figure 13. 

In order to explain the main idea of the algorithm for Sub-Problem 2, we first consider the 

situation depicted in Figure 14. The left side of this figure presents two positive circles, called A 

and B in 2-D. Suppose that both circles A and B are superimposed by the same hypergrid V of 

unit size h equal to 1.00. This situation is depicted in the right side of Figure 14. By using 

Equation (6), the right side of Figure 14 shows that all bins in circle A are of the same density, 

equal to =
× 2116

1
0.0625. In contrast, the density of some of the bins in circle B is equal to 

=
× 2116

0
0. Thus, circle A is a homogeneous region, while circle B is not. 

Instead of the strict condition which requires the same density at the centers of the bins, we 

may apply a softer condition. That is, if the standard deviation of the densities at the centers of 

the bins is approximately less or equal to γ, say when γ = 0.01, then hypersphere P may be 

considered to be a homogeneous region. 
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Input: Hypersphere P of size n and the density threshold value γ. 

 

1.  Compute the distances between all pairs of points in P. 

2.  Let h be the distance described in Heuristic Rule 1 in Section 4.2. 

3.  Superimpose P into hypergrid V of unit size h. 

4.  Approximate the density at the center x of each bin. 

5.  Compute the standard deviation of the densities at the centers of the bins. 

6.  If the standard deviation is less than or equal to γ, then  

        P is a homogeneous region and its homogeneity degree HD(P) is computed by using 

Equation (7). 

7. Else, P is not a homogeneous region. 

 

Output: The decision whether or not hypersphere P is homogeneous. 

Figure 13: The algorithm for Sub-Problem 2. 
 

As mentioned earlier in Section 4.1, HD(P) is a factor which may affect the total 

misclassification cost of the inferred classification models. If an unclassified point is covered by 

a homogeneous region P which has a higher homogeneity degree, then that point may more 

accurately be assumed to be of the same class as the points covered by the homogeneous region 

P. Thus, a suitable definition for HD(P) is an important step in improving the accuracy of the 

derived classification models.  

The concept of the homogeneity degree HD(P) can be defined as the number of points inside 

the homogeneous region P per unit of P’s volume. This definition, however, has its weaknesses. 

For instance, let us look at circles A and E as depicted in Figure 11(d). According to the above 
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definition, HD(A) is equal to 1318.1
5.12

16
2

≈
×× π

, while HD(E) is equal 

to 5465.2
5.02

4
2

≈
×× π

. This means that region E is denser than region A. This is an 

apparent contradiction since in reality region A has more points and covers a wider region than 

region E. Thus, we need to find an appropriate definition for the concept of the homogeneity 

degree. 

 

 

Figure 14: Examples of the homogeneous region (at the top part) and the non-homogeneous 
region (at the bottom part). 

 

Intuitively, HD(P) depends on the value h defined in Heuristic Rule 1 and P’s size (n). If n 

increases, then HD(P) would slightly increase since the volume of P does not change and P has 

more points. Furthermore, if h increases, then the average distance between pairs of points in 

homogeneous region P increases. Obviously, this leads to HD(P) decreases. Hence, HD(P) is 

inversely proportional to h, while HD(P) is directly proportional to n. We use the function ln(n) 

to show the slight effect of n to HD(P): 

HD(P) = 
h

n)ln(
.             (7) 

A 

A is superimposed by 
a hypergrid of unit size h = 1.00 

B is superimposed by 
a hypergrid of unit size h = 1.00 

B 



39 

For instance, HD(A) as depicted in Figure 14 is equal to 77.2
1

)16ln(
≈ . Let us consider 

the example depicted in Figure 11(d). Now HD(A) is equal to 77.2
1

)16ln(
≈ , HD(B) is equal 

to 19.2
1

)9ln(
≈ , HD(C) = HD(E) is equal to 38.1

1

)4ln(
≈ , and HD(D) is equal to 

151.1
2

)10ln(
≈ . Intuitively, the HDs for the circles illustrated in Figure 11(d) make better sense 

than those derived from the concept of the volume definition. 

4.3.3 Sub-Problem 5 

Recall that the control of fitting and generalization for classification models may be achieved 

by expanding or breaking the inferred homogeneous regions by using their homogeneity degrees. 

Suppose that we are given a positive homogeneous region F with its homogeneity degree HD(F), 

the breaking threshold value β+, and the expansion threshold value α+. A similar approach can be 

developed for a negative homogeneous region. According to the main algorithm depicted in 

Figure 10, if HD(F) is greater than or equal to β
+, then F will be expanded by using the 

expansion threshold value α+. Otherwise, we will break F into smaller hyperspheres. 

In order to explain Sub-Problem 5, we consider the example depicted in Figure 11(d). Please 

recall that the homogeneity degrees of the homogenous regions A, B, C, D, and E are HD(A) = 

2.77, HD(B) = 2.19, HD(C) = 1.38, HD(D) = 1.15, and HD(E) = 1.38, respectively. Suppose that 

the two breaking threshold values β
+ and β

- are equal to 1.00 and 1.50, respectively. 

Furthermore, let the two expansion threshold values α+ and α- be equal to 2.00 (both equal). In 

decreasing order of the HD values, the regions A, B, C, E, and D are expanded or broken as 

shown in Figure 15. As depicted in this figure, the homogeneous regions A, B, and D are 

expanded (the expanded regions are indicated by the bold-line outer circles), while C and E are 
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broken into four smaller circles (the broken regions are indicated again by the bold-line circles). 

The algorithm for breaking a homogeneous region was described in Section 4.3.1 (i.e., Sub-

Problem 1). 

Two types of expansion exist for a homogeneous region F: radial and linear expansions. In 

radial expansion, a homogeneous region F is enlarged in all directions. In linear expansion, a 

homogeneous region F is extended in a certain direction. For instance, in Figure 15 circles A, B, 

and D have used the radial expansion approach. The following sections discuss in detail these 

two expansion types. 
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4.3.3.1 Radial Expansion 

In the radial type, a homogeneous region F is expanded in all directions. Let M be a region 

expanded from F. Let RF and RM denote the radii of F and M, respectively. In the radial 

expansion approach, RF is increased by a certain amount denoted as ST, called a step-size 

increment. Thus, one gets: 

RM = RF  + ST.             (8) 

By using a dichotomous search methodology, we assume that there exists a hypersphere G 

which covers the homogeneous region F. Furthermore, without loss of generality, let us assume 

that the radius RG may be computed by: 

RG = 2 × RF.             (9) 

By using RG and RF, we can derive the step-size increment ST. That is, ST must depend on the 

difference between RG and RF. One of the ways that ST may be determined is as follows: 

.
2

FG RR
ST

−
=                      (10) 

At the same time, ST should depend on HD(F) because of the dichotomous search 

methodology. That is, if HD(F) gets higher, then ST should get smaller. This means that HD(F) 

is inversely proportional to ST. If HD(F) is less than one, then an additional parameter L is 

applied. This parameter ensures that the step-size increment is not too fast. Furthermore, if 

HD(F) is too small, F is not expanded. Thus, the value for ST may be defined as follows: 

.
)(

1

2 FHDL

RR
ST FG

×
×

−
=                      (11) 

If we substitute back Equation (11) into Equation (8), RM becomes: 
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Figure 16: An example of radial expansion. 
 

In order to illustrate the radial expansion algorithm depicted in Figure 17, we consider the 

example indicated in Figure 16. This example uses the same hypothetical data depicted in Figure 

15. Assume that the value for L is equal to 1.00. A closer examination of Figure 16 indicates that 

circle A (i.e., the single-line inner circle with RA = 2.121) is surrounded by the three outer circles: 

a double-line circle which depicts circle G with RG = 2.121 ×  2 = 4.242, a bold-line circle which 

shows the final expanded region, and a dotted-line circle which presents the hypersphere M 

whose radius is computed as follows: 

.5.2
77.21

1

2

121.2242.4
121.2

)A(

1

2
≈

×
×

−
+=

×
×

−
+=

HDL

RR
RR MG

FM  

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

x

y

HD(D)=1.151 

HD(C)=1.38 

HD(E)=1.38 

HD(A)=2.77 

HD(B)=2.19 

RM=2.5 

R
C =

4
.2

4
2
 

R
A
=
2
.1

2
1
 



43 

Input: Hypersphere F of density HD(F) and radius RF, and the expansion coefficient α+ 

or α- (for positive or negative regions, respectively). 

 

1. Set M = F (i.e., RF  = RM). /*initialization*/ 

2. Set hypersphere G covering M with radius RG = 2 × RM. 

3. Repeat 

4.           Set E = M (i.e., RE = RM). 

5.           Expand M by using Equation (12). 

6. Until (RM satisfies stopping conditions discussed in Section 4.3.3.3 or RM = RG). 

7. If RM satisfies stopping conditions, then STOP. 

8. Else, go to Step 2. 

 

Output: An expanded region E. 

Figure 17: The algorithm for radial expansion. 
 

Similarly, Equation (12) computes the following values for RM in four iterations: 2.8, 3.06, 

3.23, and 3.25, respectively, until RM satisfies the stopping conditions mentioned later in Section 

4.3.3.3. The final expanded region is the bold-line circle depicted in Figure 16. Furthermore, this 

figure also shows that A’s expanded region has a small region (in between A’s expanded region 

and the vertical line at X = 5). This sub-region is now predicted as a positive region, while the 

DT approach has predicted it as a negative region. This illustration indicates that the HBA could 

yield more accurate results than the traditional classification approaches. 
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4.3.3.2 Linear Expansion 

The linear approach expands a homogeneous region F in a certain direction. A difference 

exists between the method presented in the previous section and the one presented in this section 

(i.e., linear vs. radial). That is, now the homogeneous region F is first expanded to hypersphere E 

by using the radial expansion. Then, hypersphere E is expanded in a given direction by using the 

radial approach until it satisfies the stopping conditions mentioned in Section 4.3.3.3. The final 

region is the union of all the expanded regions. 

In order to clarify the linear expansion approach, we consider the homogeneous region A 

depicted in Figure 18. Suppose that by using radial expansion for the homogeneous region A 

with the expansion threshold value equal to 2.00, we get the hypersphere U (i.e., the two-line 

circle depicted in Figure 18(a)). Next, we divide the hypersphere U in the X axis into two parts. 

The radial expansion approach would expand each one of the parts as the bold-lines depicted in 

Figure 18(b). A similar approach exists for the Y axis depicted in Figure 18(c). The final 

expanded region is the region which is defined by the union of the bold-lines depicted in Figure 

18(d). 

4.3.3.3 The Stopping Conditions 

The stopping conditions for expanding a homogeneous region F of size NF into M depend on 

HD(F) and the expansion coefficient α+ or α- (for positive or negative regions, respectively). If 

HD(F) is high, then a hypersphere F is expanded wider. However, the expanded region should 

not be too wide as this may lead to the overgeneralization problem. [Pham and Triantaphyllou, 

2008a, 2008b, and 2009a] proposed that the radius RM should not be greater than the product of 

the following terms: HD(F), α+, and RF. The stopping conditions also include that M should not 

intersect other regions. This can be determined while expanding M. The expanded region M can  
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Figure 18: An example of linear expansion. 
 

accept several noisy points if HD(F) is high enough. Thus, for positive regions the radial 

expansion approach is stopped if any one of the following two conditions given as Equation (13) 

is not satisfied: 

RM ≤ HD(F)×RF ×α
+ and the number of noisy points within M  is less than or equal to HD(F)×α

+.       (13) 

A similar equation exists for negative regions: 
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RM ≤ HD(F)×RF ×α
- and the number of noisy points within M  is less than or equal to HD(F)×α

-.        (14) 

4.3.4 A Genetic Algorithm (GA) for Finding the Threshold Values 

Recall that the main algorithm depicted in Figure 10 uses the four threshold values (α+
, α

-
, 

β
+
, β

-) to derive new classification models. The appropriate values for these parameters control 

whether or not the HBA provides better classification models. If the breaking threshold values 

(i.e., β+
 and β

-
) are too high, then this would result in the overfitting problem. On the other hand, 

too low breaking threshold values may not be sufficient to overcome the overgeneralization 

problem. The opposite situation is true with the expansion threshold values (i.e., α+
 and α

-
). 

Since the ranges for the threshold values depend on each individual application, the search 

space may be too large. An exhaustive search would be impractical. Thus, a GA approach is 

proposed to find approximate optimal threshold values denoted by ),,,( ****
−+−+ ββαα . 

According to [Goldberg, 1989] and [De Jong, 2005], the structure of a general GA approach is as 

depicted in Figure 19. 

A population in the GA approach consists of a set of chromosomes. Each chromosome is a 

series of genes. At each step, the GA uses the current population to create the children which 

make up the next generation. The algorithm first selects a group of individual chromosomes, 

called parents, which have better fitness values (according to the evaluative / fitness function) 

than the average of the current population. The GA then creates two types of children for the 

next generation. The first type is formed by using the crossover function. That is, children are 

created by combining the genes of a pair of parents. The second type is created according to the 

mutation function. Thus, children are created by introducing random changes, or mutations, to a 

single parent. Figure 20(a) represents the crossover function, while Figure 20(b) shows the 

mutation function. 
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1. Create a random initial population.  

2. Create a sequence of new populations. At each step, the algorithm uses the individuals in the 

current generation to create the next population. To create the new population, the algorithm 

performs the following steps: 

2.1 Score each chromosome of the current population by computing its fitness value.  

2.1 Select chromosomes, called parents, based on their fitness.  

2.3 Produce children from the parents. Children are produced either by making random 

changes to a single parent, which is called mutation, or by combining the chromosomes 

of a pair of parents, which is called crossover.  

2.4 Replace the current population with the children to form the next generation.  

3. The algorithm stops when any one of the stopping criteria is met. 

Figure 19: The structure of a general GA approach. 
 

In the HBA, the GA approach uses Equation (1) as the fitness function and the set T2 for 

calibration. Each chromosome in this GA approach consists of four genes corresponding to the 

four threshold values (α+
, α

-
, β

+
, β

-) as depicted in Figure 21. The use of the GA approach for the 

HBA was decided because the objective function (i.e., Equation (1)) may have multiple extreme 

points as the error rates may vary across the input data space in ways which cannot be expressed 

by usual mathematical functions. 

 

 

Figure 20: The two types of the children in a general GA approach. 
 

The parents 

The crossover child 

The parent 

The mutation child 

(b). The mutation function. (a). The crossover function. 
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α
+ α

- β
+ β

- 
 

Figure 21: An example of a chromosome consisting of the four genes. 
 

The initial population size was 20 (this size was determined empirically). One of the 20 

chromosomes was initialized to values (1, 1, 0, 0). When the value of α+ or α-
 is equal to 1, this 

indicates no expansion of a region is required. Similarly, when the value of β+ or β- is equal to 0, 

this indicates no breaking of a region is required. Over the given number of generations, the 

population evolves toward an optimal chromosome. 

The crossover function creates the crossover children by combining pairs of parents in the 

current population. At each coordinate of the child’s chromosome, the crossover function 

randomly picks the gene at the same coordinate from one of the two parents and then assigns it to 

the child. In order to explain the crossover function, we consider the two chromosomes A 

( −+−+
1111 ,,, ββαα ) and B ( −+−+

2222 ,,, ββαα ) depicted in Figure 22. The function randomly selects the 

gene at the same coordinate from one of the parents A and B and then assigns it to child C. Thus, 

chromosome C could be ( −+−+
1221 ,,, ββαα ). 

Chromosome A +
1α  

−
1α  

+
1β  

−
1β  

     

Chromosome B +
2α  

−
2α  

+
2β  

−
2β  

     

Chromosome C +
1α  

−
2α  

+
2β  

−
1β  

 

Figure 22: An example of the crossover function. 
 

The mutation function creates a child (g1, g2, g3, g4) by changing the genes of the parent 

chromosome (α+
, α

-
, β

+
, β

-). Let us consider the first two genes α+ and α- which are in the range 

[a, b], while the last two genes β
+ and β

- are in the range [c, d]. The mutation function first 
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randomizes a chromosome (t1, t2, t3, t4) by using the Gaussian distribution (this distribution was 

selected empirically by trial and error). Next, the genes of the mutation child are created by using 

Equations (15) and (16). These equations attempt to generate genes which are quite different 

from the parent genes. Furthermore, these equations try to prevent the mutated genes from 

assuming values outside the valid ranges of the four key control parameters described above. 

g1 = ((α+
 OR t1) OR a) AND b, and g2 = ((α-

 OR t2) OR a) AND b.       (15) 

g3 = ((β+
 OR t3) OR c) AND d, and g4 = ((β-

 OR t4) OR c) AND d.       (16) 

 

g1 g2 g3 g4 

(((2 OR 1) OR 0) AND 3) = 3 (((1 OR 1) OR 0) AND 3) = 1 (((5 OR 3) OR 0) AND 10) = 2 (((7 OR 7) OR 0) AND 10) = 2 

 

Figure 23: An example of the mutation function. 
 

In explaining the use of the mutation function, we consider the parent chromosome (α+
, α

-
, 

β
+
, β

-) to be (2, 1, 5, 7). Assume that (α+
, α

-) are in the range [0, 3], while (β+
, β

-
) are in the range 

[0, 10]. Suppose that the chromosome (t1, t2, t3, t4), which is created by using a Gaussian 

distribution, is (1, 1, 3, 7). Figure 23 represents the mutation child. In this figure, (g1, g2, g3, g4) is 

equal to (3, 1, 2, 2). Under the above settings, the GA approach runs during successive iterations 

and stops if there is no successive improvement for the fitness function. 

4.4 The Limitation of the HBA 

A problem with the HBA is that it may require excessive computing time. This is due to the 

way homogeneous regions are determined. In the HBA, Greig’s approach of quadrants [Greig-

Smith, 1952] was used to determine whether a hypersphere is homogeneous or not. In particular, 

we need to determine the centers of the bins to compute the densities. This step strongly depends 



50 

on the dimensionality of the training data. This is the reason why the HBA may be impractical 

for data of high dimensionality.  

The next chapter describes a new approach called the convexity-based algorithm (CBA). 

This new approach bypasses HBA’s problem by considering the classification of some 

strategically selected points outside the training dataset. Now the partitioning procedure does not 

depend on the dimensionality of the training data. The new method is much faster, but the 

derived systems may not be as accurate as the ones achieved by the HBA, yet still more accurate 

than the stand-alone traditional classification approaches. However, the CBA may derive 

systems in situations where the HBA cannot do it due to excessive computing time. 
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CHAPTER 5. THE CONVEXITY-BASED ALGORITHM (CBA)
4
 

 

 

5.1 Fundamental Assumptions in the Development of the CBA 

As it was described in the previous chapter, the HBA identifies regions in the space of the 

training dataset where training points are located in a homogeneous manner. A region of the data 

is considered as homogenous if it can be divided into sub-regions of the same size whose 

densities are approximately equal with each other. It is this step of the HBA that makes it 

computationally expensive. Instead of the concept of homogeneous regions, the new approach 

(i.e., the CBA described in [Pham and Triantaphyllou, 2010]) uses the concept of convex regions 

as defined in [Melnik, 2002]. Notice that regions derived from a given classification approach 

are also called decision regions. A region is convex if and only if, for every pair of points within 

the region, every point along the line segment between them is also within the region. A concave 

region is complementary to the concept of a convex region. The CBA also assumes that all 

attributes in a dataset are numerical. 

Melnik’s approach represents the training dataset as a graph. Any node of this graph uniquely 

corresponds to a training data point from the training dataset and vice-versa. Thus, we have 

positive nodes and negative nodes depending on whether they correspond to positive or negative 

training points, respectively. Two positive nodes are considered to be connected in this graph if 

and only if the following conditions are satisfied. First, we consider the line segment in the data 

space which connects these two nodes. Next, we sample along this line segment according to a 

predefined step length. The sample points defined in this way are classified according to the 

                                                 
 
4A partial part of this chapter was in Computers & Operations Research, Vol. 38, No. 1, 2010, pp. 174-189.  
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given classification approach. If all of these points are of the same class value as the two nodes, 

then we say that these two nodes are connected with each other. Otherwise, they are not 

connected. A similar graph can be defined for the negative training points. 

A clique in this graph corresponds to a set of training points which can be connected with 

each other in any possible pair. Therefore, according to the way provided in [Melnik, 2002], such 

a clique corresponds to a convex region, while remaining parts of this graph not forming such 

cliques are considered as concave regions. The CBA approach uses convex regions to substitute 

for the homogeneous regions applied in the more time-consuming HBA approach. However, 

there are a number of differences between the convex regions described above and the 

homogeneous regions used in the HBA. 

The ways in which a convex region and a homogeneous region are determined are different. 

That is, each homogeneous region is determined by training points located in a homogeneous 

manner. However, each convex region includes training points not necessarily located in such a 

manner. 

The convex region depends on two other factors that do not apply to the homogeneous 

region. The first factor is the number of sample points used to examine a connection between 

two positive (or two negative) nodes. If many points along the line segment between the two 

nodes are sampled, then the assumption that there is a connection between the two nodes is more 

accurate. Hence, we can have more confidence in the results when we work with the derived 

convex regions. This kind of sampling may, however, result in excessive computing time. 

Conversely, if too few points are sampled, then points belonging to different class values may be 

overlooked, thereby decreasing the accuracy of the assumption. A heuristic way to determine 

sample points is discussed in Section 5.2.1. The second factor is the accuracy of the original 

model obtained from a given classification approach. If the original model is inaccurate, then the 
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sample points used to examine a connection between two nodes are classified less accurately, 

thereby decreasing the validity of the assumption. This could make the derived convex regions 

inaccurate in some cases. 

The above observations indicate that the CBA may not always be superior to the HBA when 

it comes to improving accuracy. Thus, classification models derived from the CBA may not be 

as accurate as those of the HBA. However, because the convex regions do not depend on the 

dimensionality of the training points, the CBA is much faster than the HBA. 

Similar to the concept of the homogeneity degree used in the HBA, each convex region in the 

CBA is associated with a density measure, called a convex-density (CD) [Pham and 

Triantaphyllou, 2010]. This value measures the density of the training points within a given 

convex region. An appropriate definition of the CD value is discussed in Section 5.2.2. 

The key assumption for the CBA is summarized as follows. If an unclassified point is 

covered by a convex region which has a high CD value, then that point may be more accurately 

assumed to be of the same class value as the nodes (or training points) within the convex region. 

In other words, the performance of a given classification approach may be enhanced when 

regions derived from the original approach are convex regions which have high CD values. This 

could be done if such regions are used to find an optimal balance between fitting and 

generalization. 

5.2 The CBA 

Similar to the input of the HBA, we assume that two classification models denoted as M1 

(one for the positive data and the other for the negative data) and a training dataset T are given in 

the CBA. The desired goal of the CBA is to enhance models M1 in order to obtain an optimal TC 

as described in Equation (1). The key difference between the HBA and CBA is the CBA’s usage 
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of convex regions instead of homogeneous regions. The CBA also uses the same five parameters 

as those of the HBA: 

• Two expansion coefficients α+ and α- to be used when expanding positive and negative convex 

regions, respectively. 

• A breaking threshold value β+
 to be used when determining whether a positive convex region 

should be broken. A similar concept is applied on the breaking threshold value β
- for a 

negative convex region. 

• A density threshold value γ to be used when determining whether a region is convex. 

The main steps of the CBA are depicted in Figure 24 and are summarized in terms of the 

following phases: 

• Phase 1 (Steps 1 and 2): As with Phase 1 in the HBA, the first phase of the CBA begins with 

the normalization of the values of the attributes in T because the CBA uses the Euclidean 

distance in its implementation. This distance requires that T ’s attributes should be defined in 

the same unit (i.e., as percentages). This phase continues to follow by dividing T into two 

random sub-datasets: T1 whose size is, say, 90% of T ’s size and T2 whose size, in this case, is 

the remaining 10% of T ’s size. These percentages can be determined empirically with trial 

and error. The phase ends with the creation of the four random parameters (α+, α-, β+, β-). 

• Phase 2 (Step 3): Define the graphs and represent them as two connectivity matrices for the 

positive and the negative points in T1 by using the method described in Section 5.1. Next, we 

use clustering to identify concave and convex regions from the two graphs. These regions are 

represented by smaller connectivity matrices extracted from the above matrices. 

• Phase 3 (Steps 4 to 7): Break the concave regions obtained in Phase 2 into convex regions. 

The breaking task is used because concave regions do not describe the interrelationship of 

training points as do convex regions [Melnik, 2002]. A heuristic algorithm for this task is 
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shown in Section 5.2.3. Step 5 starts with the computation of the CD values of the convex 

regions. Some convex regions are broken again if their CD values are less than either β+ (for 

positive regions) or β
- (for negative regions). For example, we may have a convex region 

whose nodes are separated into two groups which are far away from each other. Under this 

consideration, the CD value of the convex region might be too small. Thus, it should be 

broken into smaller convex regions. Step 7 covers the convex regions by hyperspheres by 

using the algorithm discussed in Section 5.2.4. The covering task is based on the fact that each 

hypersphere is determined by a center and a radius. Hyperspheres do not depend on the 

dimensionality of the training dataset. 

• Phase 4 (Step 8): Expand the hyperspheres obtained in Phase 3 in decreasing order of their 

CD values. The CBA uses the same expansion algorithms as those of the HBA. These 

expansion algorithms, as described in Section 4.3.3, contain a four-step process which 

involves the expansion of the radius resulting in the creation of a new hypersphere. Please note 

that instead of the homogeneity-degrees the expansion algorithms in the CBA use the 

convexity-densities. 

• Phase 5 (Step 9): Apply the genetic algorithm (GA) to Phases 3 and 4 with Equation (1) as the 

fitness function and T2 as the calibration dataset. The CBA uses the same GA approach as that 

of the HBA described in Section 4.3.4. The GA approach seeks the four optimal 

parameters ),,,( ****
−+−+ ββαα , for the three given cost coefficients CFP, CFN, and CUC. 

• Phase 6 (Step 10): The final phase of the CBA mirrors the HBA by repeating Phases 2 to 4 

with the optimal parameters ),,,( ****
−+−+ ββαα  on the entire training dataset T in order 

to infer the final pair of models M2. 

The following sections provide the details of the above phases. 
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Input: The positive and negative classification models M1, the training dataset T, the density 

threshold value γ, and the three cost coefficients CFP, CFN, and CUC. 

1. Normalize T and divide T into two random sub-datasets: the actual training dataset T1 and the 

calibration dataset T2. 

2. Randomly initialize the values of the four parameters (α+, α-, β+, β-). 

3. Define the positive and negative graphs for T1 and use clustering to identify concave and 

convex regions from these graphs. 

4. Break concave regions (if any) into convex regions. 

5. Compute the CD values of the convex regions. 

6. Break the convex regions into sub-convex regions, if their CD values are less than β+ or β- for 

the positive and negative data, respectively. 

7. Cover the convex regions obtained in Steps 4 and 6 with hyperspheres. 

8. In decreasing order of the CD values, expand hypersphere P by using CD(P) and α+ or α- for 

the positive and negative data, respectively. 

9. Apply the GA approach to Steps 6 to 8 with Equation (1) as the fitness function and use the 

calibration dataset T2. The GA approach finds the optimal values of the four parameters 

denoted as ),,,( ****
−+−+ ββαα . 

10. Use the optimal values ),,,( ****
−+−+ ββαα  on the entire training dataset T to repeat 

Steps 3 to 8 and infer the final pair of models M2. 

Output: The positive and negative classification pair of models M2. 

 

Figure 24: The CBA [Pham and Triantaphyllou, 2010]. 
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5.2.1 A Heuristic for Determining Sample Points 

As described in Section 5.1, whether two positive (or two negative) nodes (training points) 

are connected depends on the classifications of the sample points between the two nodes. 

Assume that we are given a training dataset T1 and the positive and negative models M1. This 

section shows a heuristic way to determine these sample points. Assume that a value for d is 

defined as in Equation (17): 

d = min{the Euclidean distance of all pairs of training points in T1}.      (17) 

Two positive (or two negative) nodes are assumed to be connected if and only if the 

following test is satisfied. We divide the line segment between these two nodes into smaller 

segments of size d. Sample points derived from the above segmentation are classified by using 

M1. If all of these points are of the same class value as the two end nodes, then it is assumed that 

these two nodes are connected with each other. A distance equal to d, defined as above, worked 

well on our tests when used to sample the line segment between a pair of end nodes. If the 

sampling distance (step) is too large, then we have under-sampled. Conversely, if the distance is 

too small, then we have over-sampled. 

5.2.2 Determining Whether a Region Is Convex 

By using a sampling step of size d as defined in Section 5.2.1, the CBA derives the positive 

and negative graphs. Next, the CBA uses clustering to break a graph into regions. This section 

describes an algorithm which is used to determine whether a region is convex and is depicted in 

Figure 25. As discussed in Section 5.1, a convex region corresponds to a clique whose 

connectivity matrix includes all ‘1’s. The connectivity matrix is symmetric and all elements of 

the first diagonal are equal to 0 (‘0’ is used here in accordance with Matlab convention). Thus, 

whether a region P of size n is convex is determined by checking whether P’s connectivity 
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matrix includes all ‘1’s (with the exception of the elements of the first diagonal). A softer 

condition for P’s connectivity matrix can be applied. That is, if the percentage of the number of 

‘1’s in P’s connectivity matrix is greater than or equal to γ, say for γ equal to 0.9, then P is 

considered to be convex. The value of 0.90 was used for the parameter γ as result of some pilot 

tests.  If a value closer to 1.0 is used, then more and smaller regions will qualify to be designated 

as convex. This would result in more computing time for the rest of the steps of the CBA and 

also the derived models may be affected by overfitting of the training data.  The reverse would 

happen if the value of γ is a rather small number. 

 

Input: Region P of size n and the density threshold value γ. 

 

1. Consider P’s connectivity matrix denoted as W. 

2. Set num = the number of ‘1’s in W. 

3. If 
)1( −× nn

num
 ≥ γ, then P is convex and CD(P) is computed by Equation (19). 

 

Output: Whether P is convex. 

 

Figure 25: An algorithm for determining whether a region is convex. 
 

As seen in Step 3 in Figure 25, each convex region is associated with a CD value. Tichy in 

[Tichy, 1973] proposed CD(P) to be the proportion of P’s training points over the total number 

of points in T1 for a given class value. This definition, however, has its drawbacks. For instance, 

Figure 26 presents some positive and negative training points in 2-D of a given dataset T1. 

Suppose that M1 is applied on T1 and the convex regions are derived. The derived convex regions 
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are assumed to be the circles A, B, C, D, and E as depicted in Figure 26. Such regions do not 

always have to be circles but this is assumed here for simplicity. According to Tichy’s definition, 

CD(B) and CD(D) have the same value equal to 5.0
18

9
= . This is apparently a contradiction 

since circle B is denser than D. 

 

 

Figure 26: An example of convex regions in T1. 

 

 

The value for CD(P) is directly related to n and to the average minimum distance to 

neighbors denoted as h which is defined as follows: 

 ∑=
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The notation min(di) in Equation (18) is the Euclidean distance between each node and its 

nearest neighbor. If P has a higher n value and a smaller h value, then P is denser. The authors in 

[Pham and Triantaphyllou, 2010] propose CD(P) to be calculated as in Equation (19) where D is 

the number of dimensions of the training points in T1: 

 
Dh

n
PCD

)ln(
)( = .                                                              (19) 

 

 

Equation (19) shows that if n increases, then CD(P) slightly increases since P has more 

nodes. Furthermore, if h decreases, then P’s nodes are closer together. This leads to increasing 
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Figure 27: An example for the radial expansion algorithm. 
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the value of CD(P). Hence, CD(P) is inversely proportional to h, while CD(P) is directly 

proportional to ln(n). The function ln(n) achieves a slighter effect of n on CD(P). For instance, 

the CD(A), CD(B), CD(C), CD(D), and CD(E) values for Figure 26 now are equal to 

77.2
1

)16ln(
2

≈ , 19.2
1

)9ln(
2

≈ , 38.1
1

)4ln(
2

≈ , 55.0
2

)9ln(
2
≈ , and 38.1

1

)4ln(
2

≈ , respectively. 

Intuitively, these density values make better sense than the ones derived from Tichy’s definition. 

By using the radial expansion algorithm described in Section 4.3.3.1, let us consider the 

example indicated in Figure 27 which is based on the one shown in Figure 26. Assume that the 

value for threshold L in Equation (12) is 1.00. Let the two breaking threshold values β+ and β- be 

0.5 (both equal). No convex regions are broken because their CD values are greater than the 

breaking threshold values. Let the two expansion coefficients α+ and α- be 2.00 (both equal). In 

decreasing order of the CD values, the regions A, B, C, E, and D are expanded as shown in 

Figure 27. The expanded regions are covered by the bold-line circles (or hyperspheres) as 

discussed in Section 5.2.4. Regions A and D are portrayed as they are initially. This is due to the 

fact that at the first expansion step region A intersects region E. Similarly, region D intersects 

region A. 

A closer examination of Figure 27 reveals that circle B (i.e., the single-line inner circle with 

RB = 1.8019) is surrounded by three outer circles: a double-line circle G with RG = 1.8019 ×  2 = 

3.6038, a bold-line circle which shows the final expanded region, and a dashed-line circle M of 

radius RM given as follows: 
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In particular, region B is expanded by computing the following successive values for RM: 

2.5308, 2.7758, 2.9648, and so on, until RM is equal to 3.6036. At that moment, the iterations are 

terminated because of the stopping conditions described in Section 4.3.3.3. Please note that these 
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conditions specialize on homogeneous regions with the concept of the homogeneity-degrees. 

However, the stopping conditions of the CBA employ the convex regions with the concept of the 

convex-densities. 

5.2.3 A Heuristic Algorithm for Breaking a Region into Convex Regions  

The problem of finding the minimum number of convex regions that cover a region P of size 

n is similar to a form of the set cover problem, an NP-complete problem [Karp, 1972]. Melnik in 

[Melnik, 2002] proposed the Hamming distance for breaking P into smaller convex regions. The 

Hamming distance between two strings is defined by the number of positions for which the 

corresponding attributes are different. If the Hamming distance between a pair of rows in P’s 

connectivity matrix is small enough, then Melnik groups the nodes together. However, this 

method does not take into account the distances between P’s nodes as constraints for grouping 

them. Thus, Melnik’s approach may derive convex regions that overlap each other. 

A heuristic approach for breaking a region into a set of convex regions is proposed in Figure 

28. This approach is based on Hierarchical Clustering (HC) as described in [Seo, et. al., 2002], 

[Karypis, et. al., 1999], and [Moore, 2010]. HC is a deterministic approach and produces a 

hierarchy of clusters represented by a dendrogram. This dendrogram may be used to partition a 

dataset (of size n) into K desired clusters, where K = 1, 2, …, or n (see also [Moore, 2010]). 

The algorithm depicted in Figure 28 may end up with n clusters (in the degenerative case), 

each defined on a single data point only. This would happen if no partition of the dataset with 

convex regions was produced or the derived convex regions had CD values that were too small 

because the current breaking threshold values were inadequate (i.e., they were too large).  If this 

is the case, then the GA approach described in Section 4.6 will run again as the fitting function 

given as equation (1) would lead to a gross overfitting of the data. Successive runs of the GA 
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approach should converge to an optimal (or near optimal) set of the threshold values and thus the 

final partition would represent a balance between overfitting and overgeneralization.  Or in other 

words, the misclassification total cost would be minimum or very small. 

 

Input: A concave or convex region P of size n (in the form of a graph) and the breaking 

threshold values β+ or β- (for positive or negative data, respectively). 

 

1. Use the Hierarchical Clustering (HC) approach to produce a dendrogram with a hierarchy of 

all possible clusters (the maximum number of which is equal to n). 

2. For K = 1 to n do 

3. Begin {for} 

4.     Use the dendrogram produced by the HC approach to partition the region P into K clusters. 

5.     If all of these regions are convex, then 

6.   If their CD values are greater than or equal to the breaking threshold value (β+ or β-), then 

these regions are returned and we stop the iterations. 

7. End {for} 

 

Output: A set of convex regions. 

 

Figure 28: The heuristic algorithm for breaking a region. 

5.2.4 A Method for Covering a Convex Region by a Hypersphere 

A hypersphere can cover a convex region by using the linear algorithm developed by Ritter 

in [Ritter, 1990] and depicted in Figure 29. Let us consider a convex region P of size n. A 

hypersphere which covers P is determined by a center CP and a radius RP. The algorithm is 
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initialized by an educated guess for creating a hypersphere B1 for P. This is done by finding two 

nodes of P which are far from each other and using the line between them as the initial diameter. 

Let CP be located at the center of the diameter and RP be half the length of the diameter. 

Next, each node Si+1 of P is tested for inclusion in the current hypersphere. This is done by 

checking whether its distance from CP is less than or equal to RP. If Si+1 is in Bi, then Bi+1 = Bi, 

and the algorithm goes to the next node. Otherwise, Bi is expanded just enough to include itself 

as well as Si+1. This is done by drawing a line as depicted in Figure 30 from Si+1 to the current 

center CP of Bi and extending it further to intersect the far side of Bi. This segment is then used as 

the new diameter for an expanded hypersphere Bi+1 and CP is relocated at the center of the new 

diameter. 

 

Input: Convex decision region P of size n. 

 

1. Initialize a diameter. 

2. Set hypersphere B1 with CP as the center of the diameter and RP as half the length of 

the diameter. 

3. For each point Si+1 of P do 

4.   Begin {for} 

5.      If the distance from CP to Si+1 is less than or equal to RP, then Bi+1 = Bi. 

6.      Else 

      Bi is expanded just enough to include itself as well as the point Si+1. 

7.   End {for} 

 

Output: Bn. 

 

Figure 29: The algorithm for covering a convex region by a hypersphere. 
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Figure 30: An example for expanding a hypersphere of a convex region. 

5.3 Complexity Analysis 

Next, we analyze the time complexity of the CBA depicted in Figure 24 for the general case. 

Let n be the number of the training points in T. Step 1 normalizes T and then divides T into T1 

and T2. This takes linear time on the size of T or O(n). Step 2 takes O(1). Step 3 defines the 

positive and negative graphs for T1 and takes O(n3) time [Melnik, 2002]. 

Steps 4 and 6 operate in the same manner. These steps break either a concave or a convex 

region into smaller convex regions. The breaking algorithm depicted in Figure 28 is related to the 

algorithm depicted in Figure 25. Each iteration of the breaking algorithm includes two steps: 

breaking a region into smaller regions by using the hierarchical clustering approach and 

determining whether a region is convex. The time complexity of the hierarchical clustering 

approach is O(n2) [Seo, et. al., 2002] and [Karypis, et. al., 1999]. The time complexity for 

determining whether a region is convex is O(n2). Thus, the time complexity of Steps 4 and 6 is 

O(n3). The time complexity for Step 5 includes the time complexity of the breaking algorithm. 

Each convex region is covered by a hypersphere by using Ritter’s linear algorithm. Thus, 

Step 7 takes O(n2) time. Step 8 expands convex regions by using the algorithm depicted in 

Figure 17. There are two loops on Lines 3 and 4 of the algorithm. The loop on Line 3 is inside 

the loop on Line 4. The quadratic time applies to the loop on Line 3. Thus, the total time 

complexity of Step 8 is O(n3). Step 9 applies the GA approach on Steps 6 to 8. We assume that 

Bi 

CP_old 

CP_new 

Si+1 

Bi+1 
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the GA approach is executed for 100 generations. Thus, the time complexity of the GA approach 

is O(100×n
3) = O(n3) [Goldberg, 1989]. Step 10 repeats Steps 3 to 8 with the four optimal 

parameters ),,,( ****
−+−+ ββαα  on T. This step makes the total time complexity of Steps 3 

to 8 equal to O(n3) + O(n2) + O(n2) = O(n3). Therefore, the overall time complexity of the CBA 

is equal to O(n3). The following chapter presents some results obtained from the HBA and CBA. 

It also provides a discussion on those results. 
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CHAPTER 6. RESULTS AND DISCUSSION
5
 

 

 

6.1 Datasets and Environment for the Experiments 

The original classification approaches used in the experiments were SVMs, ANNs, and DTs. 

For a given 3-tuple of error penalty costs (CFP, CFN, CUC), each original algorithm was run alone 

and also in conjunction with the HBA and with the CBA. The following two methods were used 

to analyze the performance of the HBA and CBA: 

• The four-fold cross-validation method in which each dataset was divided into four parts 

where one part corresponded to the testing dataset and the three remaining parts formed the 

training dataset T. The performance of an approach was the average of the performances of the 

four folds. The authors in [Pham and Triantaphyllou, 2010] employed this method to analyze 

the performance of the HBA and CBA. 

• The test-set method in which we randomly chose 25% of the dataset to be in the testing 

dataset and the remaining 75% to be the training dataset T. The authors in [Pham and 

Triantaphyllou, 2008a, 2008b, and 2009a] applied this method to analyze the performance of 

the HBA. 

Under the above methods, the TCs obtained from the original algorithms and those found in 

conjunction with the HBA and with the CBA were compared when applied on the same dataset. 

The experiments used the twelve datasets found in [Asuncion, et. al., 2009], [Tin, et. al., 1996], 

and [Weiss, et. al., 1989]. The results of some previous studies on these datasets are shown in 

Tables 1(a) and 1(b). These datasets were selected because current classification approaches 
                                                 
 
5 A partial part of this chapter was in Computers & Operations Research, Vol. 38, No. 1, 2010, pp. 174-189 and in 
“Studies in Computation Intelligence,” (Roger Yin Lee, Editor), Chapter 2, Vol. 131, Springer, Berlin, Germany, 
2008, pp. 11-26.. 
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have analyzed them with varying success and also because they are considered benchmark 

datasets. 

 

Table 1(a): The datasets used in the experiments. 

Dataset No. of 
Points 

No. of 
Attributes 

Previous studies Accuracy(%) 

Pima Indians 
Diabetes 

(PID) 
[Asuncion, et. 

al., 2009] 

768 8 

Early Neural Networks in [Smith, et. al., 1988] 76.0 

IncNet in [Jankowski, et. al., 1997] 77.6 

Fuzzy approach in [Au, et. al., 2001]  77.6 

Flexible Neural-Fuzzy Inference System in 
[Rutkowski, et. al., 2003] 

78.6 

Fuzzy Neural Networks in [Leon, 2006] 81.8 

Statlog Project in [Michie, et. al., 1994] 78.0 

Haberman 
Surgery 
Survival 
(HSS) 

[Asuncion, et. 
al., 2009] 

306 3 

SVMs using linear terms in the objective function 
in [Kecman, et. al., 2001] 

71.2 

Proximal SVMs in [Fung, et. al., 2001] 72.5 

Integer SVMs in [Domm, et. al., 2005] 62.7 

Logical functions in [Shevked, et. al., 2007] 66.2 

Wisconsin 
Breast Cancer 

(WBC) 
[Asuncion, et. 

al., 2009] 

286 10 

C4.5 in [Quinlan, 1996] 94.7 

Rule Induction approach in [Hamilton, et. al., 
1996] 

96.0 

Linear Discriminant Analysis approach in [Ster, et. 
al., 1996] 

96.8 

SVMs in [Bennet, et. al., 1997] 97.2 

Neuro-Fuzzy approach in [Nauck, et. al., 1999] 95.1 

Fuzzy-GA approach in [Pena-Reyes, et. al., 1999] 97.5 

Neuro-Rule approach in [Setiono, 2000] 98.1 

Supervised Fuzzy Clustering in [Abonyi, et. al., 
2003] 

95.6 

Fuzzy Artificial Immune Recognition System 
(FAIRS) in [Polat, et. al., 2007] 

98.5 

Classification through ELECTRE and Data Mining 
in [Mastrogiannis, et. al., 2009] 

94.4 

Liver-
Disorders 

(LD) 
[Asuncion et. 

al., 2009] 

345 6 

RULES-4 algorithm [Pham, et. al., 2000] 55.9 

C4.5 in [Cheung, 2001] 65.5 

Reduced SVMs in [Lee, et. al., 2001a and 2001b] 74.9 

SVMs in [Van, et. al., 2002] 69.2 

Least Squares SVMs in [Çomaka, et. al., 2007] 94.3 

FAIRS in [Polat, et. al., 2007] 83.4 
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Table 1(b): Continued. 

Dataset No. of 
Points 

No. of 
Attributes 

Previous studies Accuracy(%) 

Statlog Heart 
(SH) 

[Asuncion, et. 
al., 2009] 

270 13 

Different approaches in Statlog Project in [Statlog 
Heart, 2009] 

76.7 

Attribute weighted artificial immune system in 
[Özşen, et. al., 2009] 

87.4 

Australian 
Credit 

Approval 
(ACA) 

[Asuncion, et. 
al., 2009] 

690 14 

C4.5 in [Friedman, et. al., 1997] 85.7 

Eight genetic programming approaches in 
[Sakprasat, et. al., 2007] 

83.0 

Different approaches in Statlog Project in [Statlog 
Australia Credit Approval, 2009] 

86.9 

Extend Naive Bayes in [Hsu, et. al., 2008] 76.7 

SVMs in [Huang, et. al., 2007] 85.5 

Appendicitis 
(AP) [Weiss, 
et. al., 1989] 

106 7 

Predictive Value Maximization approach in 
[Weiss, et. al., 1989] 

89.6 

Fuzzy Rule-Based Classification System in 
[Nakashima, et. al., 2003] 

84.0 

Nefclass in [Blachnik, et. al., 2006] 87.7 

FourClass 
[Tin, et. al., 

1996] 
862 2 

Fuzzy Kernel Multiple Hyperspheres in [Lei, et. 
al., 2007] 

99.8 

KNN-SVM in [Setiono, 2000] 100.0 

German 
Credit Data 

(GCD) 
[Asuncion, et. 

al., 2009] 

1,000 24 

Graph-based relational concept learner in 
[Gonzalez, et. al., 2001] 

71.5 

DTs in [Eggermont, et. al., 2004] 72.9 

SVMs in [Huang, et. al., 2007] 77.9 

Ionosphere 
(INS) 

[Asuncion, et. 
al., 2009] 

351 34 

Features Selection in conjunction with ANNs and 
KNNs in [Gavrilis, et. al., 2008] 

90.6 

Integration between fuzzy class association rules 
and SVMs [Kianmehr, et. al., 2008] 

89.2 

Parkinsons 
(PA) 

[Asuncion, et. 
al., 2009] 

195 23 

ANNs in [Ene, 2008] 81.3 

SVMs in [Little, et. al., 2009] 91.4 

SPECTF 
[Asuncion, et. 

al., 2009] 
267 45 

CLIP3 in [Kurgan, et. al., 2001] 77.0 

Rough set-base multiple criteria linear 
programming in [Zhanga, et. al., 2009] 

68.0 

 

In the experiments, a given dataset T was normalized by using Equation (20) so that all units 

would be dimensionless. The term Ti,j in this equation shows the value of the data point i in terms  
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of attribute j in T. A coefficient equal to 10,000 units was applied in Equation (20) instead of 100 

units. This was due to the fact that if the percentage normalization was applied directly, then the 

value normalized this way might be too small. Such small values might lead to difficulties in 

comparisons and computations. 

∑
×

=

i

ji

ji

ji
T

T
T

,

,
,

000,10
           (20) 

The HBA and CBA assumed that β+
 and β

- were in the range [0, 1], while α+ and α- were in 

the range [0, 30] with both ranges having been determined empirically. The experiments were 

run on a PC with a CPU of 2.8GHZ speed and 3GB RAM under the Windows XP operating 

system. We used the libraries associated with the default settings in [Matlab, 2007] to implement 

the original algorithms. The following section shows the results on four families of tests that 

were based on four different settings of penalty costs. 

6.2 Experimental Results 

Family #1 of tests: The first family of tests did not penalize for the unclassifiable type (i.e., its 

cost is 0), but penalized at the same level, say of one unit, for the false-positive and false-

negative types. This family of tests was equivalent to the analyses of previous studies. Thus, the 

objective function in this family was assumed to be: 

TC = min(1×RateFP + 1×RateFN). 

 

Under the four-fold cross-validation method, the results for this family of tests are 

presented in Tables 2(a) and 2(b) [Pham and Triantaphyllou, 2010]. These tables show the three 

failure rates (as percentages) and the TCs obtained under the various algorithms. The column 

“Improvement 1” shows any improvements (as a percentage) of the TC achieved by the HBA 
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when compared to that of the original algorithm. The column “Improvement 2” shows any 

improvements (as a percentage) of the TC achieved by the CBA when compared to that of the 

original algorithm. Values in the columns “Improvement 1” and “Improvement 2” are defined by 

the percent decrease between the TC achieved by the original algorithm and the TC obtained 

from the HBA and CBA, respectively. Similarly, the column “Improvement 3” shows any 

improvements (as a percentage) of the TC achieved by the CBA when compared to that of the 

HBA. Each value in this column is defined by the difference between the corresponding values 

in the columns “Improvement 1” and “Improvement 2.” A negative or zero value in the column 

“Improvement 3” shows that the CBA in terms of TC values had no improvement when 

compared to that of the HBA. The above notation is also used in Tables 3 to 12. 

In particular, Tables 2(a) and 2(b) show that the HBA when applied on the PID, HSS, WBC, 

LD, AP, and FourClass datasets found the average TCs to be less than those of the original 

algorithms by about 85.9, 57.4, 55.4, 87.2, 100.0, and 26.2%, respectively. The results show that 

the HBA could not run (i.e., it is N/A) with the SH, ACA, GCD, INS, PA, and SPECTF datasets 

because of its excessive computing time. Furthermore, Tables 2(a) and 2(b) show that the CBA 

when applied on the PID, HSS, WBC, LD, AP, FourClass, SH, ACA, GCD, INS, PA, and 

SPECTF datasets found the average TCs to be less than or equal to those of the original 

algorithms by about 25.2, 13.2, 34.3, 35.4, 0.0, 0.0, 35.4, 0.0, 52.9, 24.5, 26.7, and 25.6%, 

respectively. All the results obtained by using the CBA in terms of the TC values had no 

improvement when compared to those from the HBA.  

Tables 2(a) and 2(b) also show that some RateUC values achieved by the HBA and CBA 

were typically dominated by the sum of RateFP and RateFN. This was due to the fact that we did 

not penalize (i.e., that cost was equal to 0) for the unclassifiable type. Thus, the HBA and CBA 
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attempted to minimize the TC by classifying as many cases as possible in the unclassifiable type. 

This situation might lead to degenerative results with the extreme example of all cases being 

classified as the unclassifiable type. The degenerative results occurred when the HBA was 

applied on the LD and AP datasets. In such situations, the TC is equal to zero, but this is 

misleading. 

 

Table 3: The accuracy percentages of the HBA and CBA under the four-fold cross-validation 
method [Pham and Triantaphyllou, 2010]. 

Dataset Original algorithm HBA CBA Improvement 1 Improvement 2 Improvement 3 

PID 69.1 95.7 76.7 26.6 7.6 -19.0 

HSS 68.4 86.6 72.7 18.2 4.3 -13.9 

WBC 75.9 89.4 84.3 13.5 8.4 -5.1 

LD 65.5 95.7 77.5 30.2 12 -18.2 

AP 91.4 100.0 91.4 8.6 0.0 -8.6 

FourClass 94.6 96.3 94.6 1.7 0.0 -1.7 

SH 66.2 N/A 77.9 N/A 11.7 N/A 

ACA 66.9 N/A 69.9 N/A 3.0 N/A 

GCD 71.1 N/A 86.4 N/A 15.3 N/A 

INS 71.6 N/A 78.4 N/A 6.8 N/A 

PA 80.3 N/A 85.7 N/A 5.4 N/A 

SPECTF 78.1 N/A 83.6 N/A 5.5 N/A 

 

Under the four-fold cross-validation method, Table 3 shows the accuracy percentages of the 

HBA and CBA in terms of the sum of RateFP and RateFN [Pham and Triantaphyllou, 2010]. 

This table shows that the HBA (when it was possible to use) was more accurate than the results 

obtained from the CBA. There were six datasets (HSS, LD, AP, FourClass, GCD, and SPECTF) 

for which the HBA and CBA were more accurate than the results obtained from the previous 

studies. However, there were six datasets (PID, WBC, SH, ACA, INS, and PA) for which the 

CBA was less accurate than (but not by much) the results obtained from previous studies. 
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Table 4: TC = min(1×RateFP + 1×RateFN) under the test-set method [Pham and Triantaphyllou, 
2008b and 2009a]. 

Dataset Algo. 
Original algorithm Original algorithm  in conjunction with the HBA 

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement 1 

PID 

SVM 0.0 38.5 56.8 38.5 0.0 5.2 74.5 5.2 86.5 

DT 14.1 18.8 61.5 32.9 0.0 8.3 58.9 8.3 74.8 

ANN 11.5 20.3 61.5 31.8 0.0 5.2 74.5 5.2 83.6 

HSS 

SVM 7.9 22.4 35.5 30.3 1.3 7.9 27.6 9.2 69.6 

DT 21.1 14.5 32.9 35.6 1.3 7.9 27.6 9.2 74.2 

ANN 11.8 15.8 36.8 27.6 1.3 9.2 18.4 10.5 62.0 

WBC 

SVM 12.5 15.3 52.8 27.8 1.4 0.0 29.2 1.4 95.0 

DT 16.7 12.5 51.4 29.2 2.8 0.0 12.5 2.8 90.4 

ANN 18.1 5.6 56.9 23.7 1.4 0.0 15.3 1.4 94.1 

LD 

SVM 43.5 0.0 55.1 43.5 0.0 0.0 97.1 0.0 100.0 

DT 23.2 17.4 52.2 40.6 1.4 0.0 89.9 1.4 96.6 

ANN 23.2 17.4 50.7 40.6 4.3 0.0 87.0 4.3 89.4 

AP 

SVM 0.0 4.8 95.2 4.8 0.0 0.0 100.0 0.0 100.0 

DT 19.0 4.8 76.2 23.8 0.0 0.0 100.0 0.0 100.0 

ANN 0.0 4.8 95.2 4.8 0.0 0.0 100.0 0.0 100.0 

 

Under the test-set method, the results for this family of tests are presented in Table 4 [Pham 

and Triantaphyllou, 2008b and 2009a]. This table shows that the HBA when applied on the PID, 

HSS, WBC, LD, and AP datasets found the average TCs to be less than those of the original 

algorithms by about 81.6, 68.6, 93.2, 95.3, and 100.0%, respectively. Table 4 also shows that 

extreme degenerative results occurred when the HBA was applied on the LD and AP datasets. 

Analyses of the impact of RateFP, RateFN, and RateUC focus on the corresponding penalty 

costs. A higher penalty cost for a given type of error implies that the system will result in fewer 

cases of that type. The following families of tests describe such situations. 

Family #2 of tests: This family of tests analyzed the nine medical datasets: PID, HSS, WBC, LD, 

AP, FourClass, SH, PA, and SPECTF. In these tests, we penalized considerably more for the 

false-negative type than for the false-positive and unclassifiable types. For the medical datasets, 
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the false-negative type means that a patient who in reality has a disease is diagnosed as disease-

free. The false-positive type means that a patient who in reality is disease-free is diagnosed as 

having the disease. It was hoped that the higher penalty cost for the false-negative type would 

result in fewer false-negative cases. We assumed that the penalty cost for the false-negative type 

was 20 units. The penalty costs for the false-positive and unclassifiable types were 1 and 3 units, 

respectively. Thus, the objective function for this family of tests was assumed to be: 

TC = min(1×RateFP + 20×RateFN +3×RateUC). 

 

Under the four-fold cross-validation method, the results for this family of tests are 

presented in Table 5 [Pham and Triantaphyllou, 2010]. This table shows that the HBA when 

applied on the PID, HSS, WBC, LD, AP, and FourClass datasets found the average TCs to be 

less than those of the original algorithms by about 62.0, 71.3, 77.8, 75.5, 0.0, and 44.3%, 

respectively. The HBA could not run with the SH, PA, and SPECTF datasets because of its 

excessive computing time. Furthermore, Table 5 shows that the CBA when applied on the PID, 

HSS, WBC, LD, AP, FourClass, SH, PA, and SPECTF datasets found the average TCs to be less 

than or equal to those of the original algorithms by about 47.8, 62.5, 49.2, 44.9, 0.0, 0.0, 56.6, 

59.8, and 31.2%, respectively. The results support the ability of the CBA to run with all nine 

medical datasets. All the results from the CBA in terms of the TC values had no improvement 

when compared to those from the HBA. Since we penalized more for the false-negative type, the 

average RateFN achieved by the CBA in Table 5 was less than that of the CBA in Tables 2(a) 

and 2(b) by about 90.6%. 
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Table 6: TC = min(1×RateFP + 20×RateFN + 3×RateUC) under the test-set method [Pham and 
Triantaphyllou, 2008b and 2009a]. 

Dataset Algo. 
Original algorithm Original algorithm  in conjunction with the HBA 

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement 1 

PID 

SVM 0.0 38.5 56.8 940.4 0.0 8.3 54.7 330.1 64.9 

DT 14.1 18.8 61.5 574.6 2.6 5.2 70.8 319.0 44.5 

ANN 11.5 20.3 61.5 602.0 0.0 5.2 74.5 327.5 45.6 

HSS 

SVM 7.9 22.4 35.5 562.4 1.3 13.2 11.8 300.7 46.5 

DT 21.1 14.5 32.9 409.8 1.3 9.2 18.4 240.5 41.3 

ANN 11.8 15.8 36.8 438.2 1.3 13.2 10.5 296.8 32.3 

WBC 

SVM 12.5 15.3 52.8 476.9 15.3 0.0 11.1 48.6 89.8 

DT 16.7 12.5 51.4 420.9 15.3 0.0 12.5 52.8 87.5 

ANN 18.1 5.6 56.9 300.8 15.3 0.0 11.1 48.6 83.8 

LD 

SVM 43.5 0.0 55.1 208.8 43.5 0.0 55.1 208.8 0.0 

DT 23.2 17.4 52.2 527.8 0.0 8.7 84.1 426.3 19.2 

ANN 23.2 17.4 50.7 523.3 0.0 0.0 94.2 282.6 46.0 

AP 

SVM 0.0 4.8 95.2 381.6 0.0 0.0 100.0 300.0 21.4 

DT 19.0 4.8 76.2 343.6 0.0 0.0 100.0 300.0 12.7 

ANN 0.0 4.8 95.2 381.6 0.0 0.0 100.0 300.0 21.4 

 

Under the test-set method, the results for this family of tests are presented in Table 6 [Pham 

and Triantaphyllou, 2008b and 2009a]. This table shows that the HBA when applied on the PID, 

HSS, WBC, LD, and AP datasets found the average TCs to be less than those of the original 

algorithms by about 51.7, 40.0, 87.0, 21.7, and 18.5%, respectively. Table 6 also shows that 

extreme degenerative results occurred when the HBA was applied on the LD and AP datasets. 

Furthermore, we penalized even more for the false-negative type. In particular, we 

considered the following objective function: 

TC = min(1×RateFP + 100×RateFN +3× RateUC). 
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Table 8: TC = min(1×RateFP + 100×RateFN + 3×RateUC) under the test-set method [Pham and 
Triantaphyllou, 2008b and 2009a]. 

Dataset Algo. 
Original algorithm Original algorithm  in conjunction with the HBA 

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement 1 

PID 

SVM 0.0 38.5 56.8 4,020.4 31.8 0.5 12.5 119.3 97.0 

DT 14.1 18.8 61.5 2,078.6 29.2 0.5 16.7 129.3 93.8 

ANN 11.5 20.3 61.5 2,226.0 30.7 0.0 15.6 77.5 96.5 

HSS 

SVM 7.9 22.4 35.5 2,354.4 14.5 0.0 13.2 54.1 97.7 

DT 21.1 14.5 32.9 1,569.8 14.5 0.0 9.2 42.1 97.3 

ANN 11.8 15.8 36.8 1,702.2 14.5 0.0 13.2 54.1 96.8 

WBC 

SVM 12.5 15.3 52.8 1,700.9 2.8 8.3 19.4 891.0 47.6 

DT 16.7 12.5 51.4 1,420.9 16.7 12.5 51.4 1,420.9 0.0 

ANN 18.1 5.6 56.9 748.8 18.1 5.6 56.9 748.8 0.0 

LD 

SVM 43.5 0.0 55.1 208.8 43.5 0.0 55.1 208.8 0.0 

DT 23.2 17.4 52.2 1,919.8 0.0 0.0 97.1 291.3 84.8 

ANN 23.2 17.4 50.7 1,915.3 0.0 0.0 95.7 287.1 85.0 

AP 

SVM 0.0 4.8 95.2 765.6 0.0 0.0 100.0 300.0 60.8 

DT 19.0 4.8 76.2 727.6 0.0 0.0 100.0 300.0 58.8 

ANN 0.0 4.8 95.2 765.6 0.0 0.0 100.0 300.0 60.8 

 

Under the four-fold cross-validation method, the results for this family of tests are 

presented in Table 7 [Pham and Triantaphyllou, 2010]. This table shows that the HBA when 

applied on the PID, HSS, WBC, LD, AP, and FourClass datasets found the average TCs to be 

less than those of the original algorithms by about 95.0, 81.0, 90.2, 93.7, 0.0, and 29.0%, 

respectively. The HBA was not applicable to the SH, PA, and SPECTF datasets because of its 

excessive computing time. Furthermore, Table 7 shows that the CBA when applied on the PID, 

HSS, WBC, LD, AP, FourClass, SH, PA, and SPECTF datasets found the average TCs to be less 

than those of the original algorithms by about 91.9, 77.1, 88.8, 92.4, 0.0, 0.0, 91.1, 65.3, and 

32.9%, respectively. The results prove that the CBA could again run with all nine medical 

datasets. All the results from the CBA in terms of the TC values had no improvement when 

compared to those from the HBA. Since we penalized considerably more for the false-negative 



81 

type, the average RateFN achieved by the CBA in Table 7 was less than that of the CBA in 

Tables 2(a), 2(b), and 5 by about 92.2 and 16.7%, respectively. These results demonstrate that as 

the penalty cost for the false-negative type became higher, even fewer false-negative cases were 

found. 

Some results achieved by the CBA when applied on the medical datasets in Table 7 mirrored 

those on Table 5. This was due to the fact that the CBA optimized the TC by attempting to 

minimize RateFN. This rate was almost equal to zero when the CBA was applied on these 

datasets with the penalty cost equal to 20 units. Thus, the higher penalty costs for the false-

negative type could not result in an even smaller value for RateFN. Hence, the TC was the same. 

Similarly, the results achieved by the CBA when applied on the AP and FourClass datasets in 

Tables 2(a), 2(b), 5, and 7 were identical to those under the original algorithms. The reason was 

that the CBA optimized the TC by attempting to minimize RateFN. This rate was almost equal to 

zero when the original algorithms were applied on these datasets. Tables 5 and 7 also show that 

some degenerative results occurred when the HBA and CBA were applied on the PID, WBC, LD 

and SH datasets. 

Under the test-set method (see also Section 6.1), the results for this family of tests are 

presented in Table 8 [Pham and Triantaphyllou, 2008b and 2009a]. This table shows that the 

HBA when applied on the PID, HSS, WBC, LD, and AP datasets found the average TCs to be 

less than those of the original algorithms by about 95.8, 97.3, 15.9, 56.6, and 60.1%, 

respectively. Table 8 also shows that degenerative results occurred when the HBA was applied 

on the LD and AP datasets. Since we penalized considerably more for the false-negative type, 

the average RateFN achieved by the HBA in Table 8 was less than that of the HBA in Table 4 by 

about 37.9%. These results also show that as the penalty cost for the false-negative type became 
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higher, even fewer false-negative cases were found. Tables 2(a), 2(b), 4, 5, 6, 7, and 8 show that 

the four-fold cross-validation method provided slightly better results than those of the test-set 

method. Thus, the following families of tests would not apply the test-set method to analyze the 

performance of the algorithms. 

 

Family #3 of tests: This family of tests analyzed the ACA, GCD, and INS datasets which are 

related to applications of credit approval and physics. The HBA was not applicable to these 

datasets because of its excessive computing time. We created a greater penalty for the false-

positive type than for the false-negative and unclassifiable types with the hope that the higher 

penalty cost for false-positive type would result in fewer false-positive cases. We assumed that 

the penalty cost for the false-positive type was 20 units. The penalty costs for the false-negative 

and unclassifiable types were 1 and 3 units, respectively. Thus, the objective function in this 

family of tests was assumed to be: 

TC = min(20×RateFP + 1×RateFN +3×RateUC). 

 

Under the four-fold cross-validation method, Table 9 presents the results for this family of 

tests [Pham and Triantaphyllou, 2010]. This table shows that the CBA when applied on the 

ACA, GCD, and INS datasets found the average TCs to be less than or equal to those of the 

original algorithms by about 0.0, 54.9, and 16.7%, respectively. Since we penalized more for the 

false-positive type, the average RateFP achieved by the CBA in Table 9 was less than that of the 

CBA in Tables 2(a) and 2(b) by about 95.2%. 
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Table 9: TC = min(20×RateFP + 1×RateFN + 3×RateUC) under the four-fold cross-validation 
method [Pham and Triantaphyllou, 2010]. 

Dataset Algo. 
Original algorithm Original algorithm  in conjunction with the CBA 

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement 2 

ACA 

SVM 0.0 35.8 6.9 56.6 0.0 35.8 6.9 56.6 0.0 

DT 1.2 28.3 2.3 58.4 1.2 28.3 2.3 58.4 0.0 

ANN 0.6 24.3 1.2 39.3 0.6 24.3 1.2 39.3 0.0 

GCD 

SVM 28.0 0.0 0.4 561.2 0.0 0.0 100.0 300.0 46.5 

DT 23.6 5.6 1.2 481.2 0.0 65.2 8.4 90.4 81.2 

ANN 21.2 8.4 1.2 436.0 0.0 6.8 89.2 274.4 37.1 

INS 

SVM 0.0 30.7 5.7 47.7 0.0 30.7 5.7 47.7 0.0 

DT 0.0 31.8 2.3 38.6 0.0 31.8 2.3 38.6 0.0 

ANN 5.7 17.0 10.2 161.4 0.0 19.3 20.5 80.7 50.0 

 

Furthermore, we penalized even more for the false-positive type. In particular, we considered 

the following objective function: 

TC = min(100×RateFP + 1×RateFN +3× RateUC). 

 

Table 10: TC = min(100×RateFP + 1×RateFN + 3×RateUC) under the four-fold cross-validation 
method [Pham and Triantaphyllou, 2010]. 

Dataset Algo. 
Original algorithm Original algorithm  in conjunction with the CBA 

RateFP RateFN RateUC TC RateFP RateFN RateUC TC Improvement 2 

ACA 

SVM 0.0 35.8 6.9 56.6 0.0 35.8 6.9 56.6 0.0 

DT 1.2 28.3 2.3 150.9 1.2 28.3 2.3 150.9 0.0 

ANN 0.6 24.3 1.2 85.5 0.0 24.3 19.7 83.2 2.7 

GCD 

SVM 28.0 0.0 0.4 2,801.2 0.0 0.0 100.0 300.0 89.3 

DT 23.6 5.6 1.2 2,369.2 0.0 65.2 8.4 90.4 96.2 

ANN 21.2 8.4 1.2 2,132.0 0.0 10.8 80.4 252.0 88.2 

INS 

SVM 0.0 30.7 5.7 47.7 0.0 30.7 5.7 47.7 0.0 

DT 0.0 31.8 2.3 38.6 0.0 31.8 2.3 38.6 0.0 

ANN 5.7 17.0 10.2 615.9 0.0 19.3 20.5 80.7 86.9 
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Under the four-fold cross-validation method, the results for the third family of tests are 

presented in Table 10 [Pham and Triantaphyllou, 2010]. This table shows that the CBA when 

applied on the ACA, GCD, and INS datasets found the average TCs to be less than or equal to 

those of the original algorithms by about 0.9, 91.2, and 29.0%, respectively. Since we penalized 

considerably more for the false-positive type, the average RateFP achieved by the CBA in Table 

10 was less than that of the CBA in Tables 2(a), 2(b), and 9 by about 97.6 and 50.0%, 

respectively. The above results show that as the penalty cost for the false-positive type became 

higher, fewer false-positive cases were found. 

Some results achieved by the CBA when applied on the ACA, GCD, and INS datasets in 

Table 10 were the same as those of Table 9. As before, this was due to the fact that the CBA 

optimized the TC by attempting to minimize RateFP. This rate was almost equal to zero when 

the CBA was applied on these datasets with the penalty cost equal to 20 units. Thus, the higher 

penalty costs for the false-negative type could not result in a smaller value for RateFP. Hence, 

the TC was the same. In Tables 9 and 10, some degenerative results also occurred when the CBA 

was applied on the GCD dataset. 

As seen in Tables 2(a), 2(b), 4, 5, 6, 7, 8, 9, and 10, the HBA and CBA achieved TCs less 

than or equal to (i.e., better) those of the original algorithms. Some identical TCs occurred 

because the GA approach used in the HBA and CBA was initialized by one of the 20 

chromosomes whose values were (1, 1, 0, 0). This setting was discussed in Section 4.3.4. This is 

equivalent to the setting of the original algorithms. If the GA approach did not find a better TC 

value, then the HBA and CBA would return the TC value achieved by the original algorithms. 

Tables 2(a), 2(b), 5, 7, 9, and 10 show that the TCs obtained by the CBA were typically 

greater than (i.e., worse) those obtained by the HBA. The number of cases in which the TCs 
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obtained by the CBA were identical to those achieved by the original algorithms occurred more 

frequently than those achieved by the HBA. In fact, only ten cases under the HBA were identical 

to those under the original algorithms compared to thirty-seven cases under the CBA. The above 

results show that the classification models derived under the CBA might not be as accurate as 

those under the HBA. 

 

Family #4 of tests: The final family of tests analyzed the change of only one of the penalty costs 

(say for the false-negative type) from very low to very high values, while we kept the same level 

for the other two types. The purpose of this family of tests was to demonstrate that indeed the 

CBA can be very versatile with changes on the penalty costs. The HSS and PA datasets were 

used in this family as demonstrations. The SVM and DT in conjunction with the CBA were 

applied on the HSS and PA datasets, respectively. We assumed the same penalty cost for the 

false-positive and unclassifiable types and that was equal to one unit each. The penalty cost for 

the false-negative type was set at different values from 1 to 100 units. 

Under the four-fold cross-validation method, the results for the HSS and PA datasets in the 

fourth family of tests are presented in Figures 31 and 32, respectively. In these figures, the X-

axis represents the different penalty costs for RateFN, while the Y-axis shows RateFN (as a 

percentage) obtained under different penalty costs. 

The plots in these two figures show that the CBA determined different levels of RateFN at 

costs equal to 1, 5 or 75 units for the HSS dataset and at 1 or 15 units for the PA dataset. 

However, RateFN was at the same level for costs in the intervals [1, 1], [5, 70] or [75, 100] with 

the HSS dataset and costs in the intervals [1, 10] or [15, 100] with the PA dataset. These plots 

also show that the level of RateFN was inversely proportional with the penalty cost. 
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Figure 31: RateFN (in %) under different values of  CFN when the CBA in conjunction with an 
SVM was applied on the HSS dataset [Pham and Triantaphyllou, 2010]. 
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Figure 32: RateFN (in %) under different values of CFN when the CBA in conjunction with a DT 
was applied on the PA dataset [Pham and Triantaphyllou, 2010]. 

 

The above observations show that the plots followed stepwise patterns. There are two issues 

which can be seen from the stepwise patterns. First, a higher penalty cost for one type of error 

could indeed result in fewer errors of the corresponding type. Secondly, suppose that the CBA 

finds two different penalty costs whose error rates are at the same level. For any costs in the 



87 

interval between the two costs, the CBA also derives the same level of the error rate. Thus, we 

may use a binary search that will be discussed in the following chapter to determine all such 

intervals and the points of change. 
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CHAPTER 7. A BINARY SEARCH APPROACH TO DETERMINE 

TRENDS OF CLASSIFICATION ERROR RATES
6
 

 

 

7.1 Motivation 

Some theoretical and practical developments have been made in the past two decades 

regarding the determination of penalties for classification errors. Some approaches depended on 

experts to assess penalties for classification errors. However, the approaches, in many instances, 

amounted to little more than guesswork. Instead of fixed penalties, [Hollmen, et. al., 2000] 

formulated the penalties as functions. Using a Bayesian formulation, these functions were 

allowed to operate on training data and were recalculated for each training point. This approach 

was employed in the detection of telecommunication fraud. By looking at the training dataset, 

[Zadronzy, et. al., 2001] applied a least-square multiple linear regression to predict the penalties, 

and such penalties were then used for testing instances. [Ikizler and Güvenir, 2003] proposed an 

approach, the Benefit-Maximizing Classifier with Feature Intervals (BMFI), which applied five 

different voting methods to determine penalties. However, none of the above approaches 

attempted to find general patterns of penalties for classification errors. 

The family #4 of tests in the previous chapter shows that rates of classification errors might 

be arranged in stepwise patterns. The finding of stepwise patterns of classification errors can 

have important implications for data mining researchers in determining penalties for 

classification errors. In fact, for given penalties, a classification approach will exhibit some error 

rates. An interesting question is to find out whether an error rate stays the same if the 

                                                 
 
6 A partial part of this chapter was in a pending paper written by Pham, H. N. A. and Triantaphyllou, E. 
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corresponding penalty is increased or decreased. If the rate is not the same, it should show the 

penalties for which the level of the rate is changed. Stepwise patterns can answer such questions. 

Each step of a stepwise pattern shows an interval of penalties for which the error rates are 

identical. The different steps of the pattern depict penalties where the error rates vary across 

levels. 

The next section of this chapter explores patterns found in the family #4 of tests. Then, a 

binary search approach (BSA) is proposed to determine such patterns. LD, PA, WBC, and HSS 

datasets located at UCI [Asuncion, et. al., 2009] are used as test materials. Finally, some 

computational results are reported for the BSA. 

7.2 An Exploration of Patterns 

Assume that we are given a training dataset T and a traditional classification approach A. Let 

C denote the HBA, CBA, or any other similar approach. Assume that C is the CBA. Recall that 

CFP, CFN, and CUC are the unit penalties for the false-positive, the false-negative, and the 

unclassifiable types, respectively. RateFP, RateFN, and RateUC denote the false-positive, the 

false-negative, and the unclassifiable rates, respectively. We assume that the values of CFP are 

initially in the interval [a1, a2], while the values of CFP are in the interval [b1, b2]. The value of 

the TC (i.e., the total misclassification cost) is defined by: 

)(min RateUCCRateFNCRateFPCTC UCFNFP ×+×+×= .   (1) 

We also consider C as a function. The C’s input is comprised of T, CFP, CFN, CUC, and A. The 

function C returns a minimum value of TC associated with the three error rates: RateFP, RateFN, 

and RateUC. Furthermore, suppose that the sum of penalties for the false-positive, false-

negative, and unclassifiable types is equal to 100 units (i.e., CFP + CFN + CUC = 100). Thus, when 

the penalties of CFP and CFN are available, we can use those penalties to determine CUC. In the 
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following experiments, the values of CFP and CFN need to be considered. The BSA also employs 

all of the above assumptions and notation for its development. 

In the following experiments, C in conjunction with the SVM approach was employed for 

HSS, LD, and WBC. For PA, the traditional classification approach A was a DT approach. As 

discussed in the previous chapter, the values of CFN and RateFN are usually considered in 

medical applications. For each given value of CFP, C was run with different values of CFN, 

ranging from low to high. In particular, the values of CFP were 10, 20, 30, 40, and 50 units. The 

values of CFN were assigned from 5 units and were sequentially increased by a step-size of 5 

units. The sum of CFP and CFN has to be less than or equal to 100 units. The small step-size of 

CFN (i.e., 5 units) was adopted in order to find patterns for RateFN under different values of CFP. 

The following tests were run on a PC with a CPU of 2.8GHZ speed and 3GB RAM under the 

Windows XP operating system. 

In terms of the input: CFP and CFN and the output: RateFN, the results for LD, PA, WBC, and 

HSS are presented in Figures 33 to 36, respectively. As seen in these figures, the X-axis 

represents the different values of CFN, while the Y-axis shows the RateFN (as a percentage) 

obtained for different values of CFN. Each plot represents the relationship between CFN and 

RateFN for a given value of CFP. 

Figure 33 shows that C, when applied to LD, determined two levels for RateFN, 38.4 and 

0.0%, under the different values of CFP and CFN. All plots start with the same level (i.e., 38.4%) 

for RateFN because of the following reasons: First, the computational results show that the levels 

for RateFP, RateFN, and RateUC derived from the traditional classification approach A (i.e., the 

SVM approach) were equal to 0, 38.4, and 1.2%, respectively. Second, the levels for RateFP and 

RateUC were low. For given low values of CFN, higher values of CFP and CUC, when applied to 
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C, did not result in lower levels for RateFP and RateUC. Hence, the levels for RateFP, RateFN, 

and RateUC were retained. In other words, all of the plots retained RateFN at 38.4% for low 

values of CFN. All of the plots end at the second level (i.e., 0.0%) for RateFN. This is due to the 

fact that C used much higher values of CFN. 

Figure 34 shows that C, when applied to PA, also derived two levels for RateFN, 18.4 and 

0.0%, under the different values of CFP and CFN. The levels for RateFP, RateFN, and RateUC 

derived from the traditional classification approach A (i.e., the DT approach) were equal to 2.0, 

18.4, and 0%, respectively. The levels for RateFP and RateUC were low. This situation is similar 

to the scenario depicted in Figure 33. Thus, all of the plots begin at the same level (i.e., 18.4%) 

for RateFN. The second level (i.e., 0.0%) for all of the plots was produced by greatly higher 

values of CFN. In the same way, Figure 35 shows that C, when applied to WBC, derived two 

levels for RateFN, 27.8 and 0.0%, under the different values of CFP and CFN. Because the levels 

for RateFP, RateFN, and RateUC derived from A (i.e., the SVM approach) were equal to 0.0, 

27.8, and 8.3%, respectively, all of the plots begin at the same level (i.e., 27.8%) for RateFN. 

Upper values of CFN resulted in the second level (i.e., 0.0%) for all of the plots. 

Figure 36 indicates that C, when applied to HSS, determined three levels for RateFN, 5.2, 

2.6, and 1.3%, under the various values of CFP and CFN. All of the plots in this figure begin at the 

level of 5.2%. This is due to the fact that the levels for RateFP, RateFN, and RateUC derived 

from the traditional classification approach A (i.e., the SVM approach) were equal to 26.0, 5.2, 

and 5.2%, respectively. Under the current situation, the levels for RateFP and RateUC were low. 

For given low values of CFN, higher values of CFP and CUC, when applied to C, did not result in 

lower levels for RateFP and RateUC. Hence, the levels for RateFP, RateFN, and RateUC were 

retained. In other words, all plots retained RateFN at 5.2% for low values of CFN. For the values 
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of CFP which range from 10 to 30 units, the plots have two more levels (i.e., 2.6 and 1.3%). At 

the level of 2.6%, because the values of CFN which range from 45 to 55 units are higher than 

those of CFP and CUC, C optimized the TC by somewhat minimizing RateFN. This resulted in the 

level 2.6%. Much higher values of CFN derived the level of 1.3%. The plot in which the value of 

CFP is 40 units and in which the values of CFN range from 40 units only has the level of 1.3%, 

because the values of CFN are always greater than those of CFP and CUC. The plot in which the 

value of CFP is 50 units and in which the values of CFN range from 25 units has the level of 1.3%. 

Because the value of CFP is greater than the values of CFN and CUC, C optimized the TC by 

minimizing RateFP. The computational results show that the minimum level of RateFP was 

14.3% where the corresponding level of RateFN was 1.3%. 

The stepwise patterns depicted in Figures 33 to 36 may be explained as follows. For a given 

training dataset T and the traditional classification approach A, suppose that C employs two 

different 3-tuples of the penalties (CFP, 1
FNC , CUC) and (CFP, 2

FNC , CUC). The values of 1
FNC and 

2
FNC are much higher than those of CFP and CUC. We also assume that 1

FNC  is less than 2
FNC . 

Under such input, C returns TC1 and TC2, respectively. The values of TC1 and TC2 are associated 

with (RateFP1, RateFN1, RateUC1) and with (RateFP2, RateFN2, RateUC2), respectively. In 

order to minimize the values of the TC, the value of RateFN2 are certainly less than or equal to 

RateFN1. Furthermore, assume that we are in the case where the values of RateFN1 and RateFN2 

are the same. Under this consideration, the third 3-tuple (CFP, 3
FNC , CUC) is applied to C. The 

value of 3
FNC  is in the interval [ 1

FNC , 2
FNC ]. Next, the value of TC3 associated with (RateFP3, 

RateFN3, RateUC3) is achieved by C. The value of RateFN3 must be equal to RateFN1 and 

RateFN2. In fact, we assume that the values of RateFN3 is either greater or less than those of 

RateFN1 and RateFN2. Such cases contradict the fact that when the higher value of the penalty is 
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given, the lower level of the corresponding error rate can be achieved by C. The above results 

will be used now to develop the BSA. 

7. 3 The BSA 

The plots seen in Section 7.2 exhibit stepwise patterns. Because the patterns show a declining 

trend, the BSA depicted in Figure 37 can be applied in order to reproduce them. The BSA’s input 

is comprised of the training dataset T, the intervals [a1, a2] and [b1, b2] for CFP and CFN, 

respectively, and the traditional classification approach A. With these input, the search space 

becomes a rectangle created by the intervals [a1, a2] and [b1, b2]. 

Because of the assumption in which the sum of CFP, CFN, and CUC is equal to 100 units, Steps 

2 and 3 of the BSA show that if the initial search space does not satisfy the assumption, then the 

BSA returns the empty intervals. Otherwise, Steps 4 to 15 of the BSA apply C to find the optimal 

values for TC at the vertices of the search space. At each vertex, C is only applied when the sum 

of CFP and CFN is less than or equal to 100 units. Otherwise, the optimal value of TC and the 

associated rates are assigned to infinite values (denoted by “∞ ”s).  

Furthermore, without loss of generality, we can restrict the consideration to the levels for 

RateFN. If the differences between the RateFNs (which are not infinite values ) are less than a 

threshold value, say 0.5 units, then the BSA is stopped and returns the current intervals [a1, a2] 

and [b1, b2] as seen at Step 17. Otherwise, the BSA eliminates three-quarters of the search space 

from the consideration, and then performs the search on the remaining space. Such tasks are seen 

in Steps 20 to 23. 

The above procedure is due to the fact that the search space is a rectangle created by the 

intervals [a1, a2] and [b1, b2]. In a similar methodology of a traditional binary search, the 

rectangle is divided into four sub-spaces. Each recursion is then applied to a corresponding sub-
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space. By doing this repeatedly, the BSA will eventually return the non-overlapping areas in the 

search space where all of the levels for RateFN in each area are almost the same. 

 

BinarySearch(T, a1, a2, b1, b2, A ) 
 
1. Begin 
2.  If ( 10011 >+ ba ) and ( 10022 >+ ba ) and ( 10021 >+ ba ) and ( 10012 >+ ba ) 

3.         return the empty intervals 
4. If ( 10011 ≤+ ba ) 

5.        Set [TC1, RateFP1, RateFN1, RateUC1] = C(T, a1, b1, 100 – a1 – b1, A) 
6. Else Set [TC1, RateFP1, RateFN1, RateUC1] = [∞ ,∞ ,∞ ,∞ ] 
7. If ( 10022 ≤+ ba ) 

8.        Set [TC2, RateFP2, RateFN2, RateUC2] = C(T, a2, b2, 100 – a2 – b2, A) 
9. Else Set [TC2, RateFP2, RateFN2, RateUC2] = [∞ ,∞ ,∞ ,∞ ] 
10. If ( 10021 ≤+ ba ) 

11.         Set [TC3, RateFP3, RateFN3, RateUC3] = C(T, a1, b2, 100 – a1 – b2, A) 
12. Else [TC3, RateFP3, RateFN3, RateUC3] = [∞ ,∞ ,∞ ,∞ ] 
13. If ( 10012 ≤+ ba ) 

14.      Set [TC4, RateFP4, RateFN4, RateUC4] = C(T, a2, b1, 100 – a2 – b1, A) 
15. Else [TC4, RateFP4, RateFN4, RateUC4] = [∞ ,∞ ,∞ ,∞ ] 
16. If (RateFN1, RateFN2, RateFN3, and RateFN4 are not ∞ ) and 5.021 ≤− RateFNRateFN  and 

5.043 ≤−RateFNRateFN  and 5.031 ≤− RateFNRateFN  

17.        Return the intervals [a1, a2] and [b1, b2] 
18. Else 
19.       Begin 

20.        BinarySearch(T, a1, 
2

12 aa +
, b1, 

2
12 bb +

, A) 

21.        BinarySearch(T, a1,
2

12 aa +
, 

2
12 bb +

 , b2, A) 

22.        BinarySearch(T, 
2

12 aa +
, a2, b1, 

2
12 bb +

, A) 

23.        BinarySearch(T, 
2

12 aa +
, a2, 

2
12 bb +

, b2, A) 

24.     End 
25. End 

Figure 37: The BSA. 

7.4 Computational Results 

We employed the BSA on the medical datasets introduced in Section 7.2. We assumed that 

the intervals [a1, a2] and [b1, b2] for CFP and CFN were [10, 50] and [5, 85], respectively. For LD, 
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PA, WBC, and HSS, the BSA divided the search spaces (i.e., the rectangles) into the areas as 

shown in Figures 38 to 41, respectively. In each search space, the horizontal-axis represents the 

CFN interval, while the vertical-axis shows the CFP interval. In each search space, the areas that 

are in different gray levels represent the different levels for RateFN. For examples, Figures 38 to 

41 have 2, 2, 2, and 3 gray levels, respectively. 

The above rectangular representation can be shown in the XYZ-coordinate system (or 3-D) 

as follows. That is, the X-axis represents the CFN interval; the Y-axis shows the CFP interval; and 

the Z-axis indicates the levels for RateFN. In this representation, the levels for RateFN follow a 

stair. When the steps of that stair are projected onto the XY-plane, they completely cover the 

search space and do not overlap as seen in Figures 38 to 41. 

Furthermore, the search spaces depicted in Figures 38 to 41 can be represented in the same 

manner as the plots shown in Figures 33 to 36. The plots are shown in Figures 42 to 45. As it can 

be seen in these figures, each plot corresponds to a stepwise pattern whose levels and points of 

change are determined. Because the BSA divides a search space into non-overlapping areas, the 

levels of each plot are connected by straight lines. 
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CHAPTER 8. CONCLUSIONS AND FUTURE WORK
7
 

 

 

When current classification approaches derive models from training data, a balance between 

fitting and generalization is not considered in a systematic manner. Moreover, the error rates in 

conjunction with the penalty costs are not used in such approaches. 

This dissertation recognized the above problems and proposed a method, called the 

Homogeneity-Based Algorithm (HBA) [Pham and Triantaphyllou, 2008a, 2008b, and 2009a] to 

deal with them. When the HBA is combined with traditional classification approaches (such as 

Support Vector Machines, Decision Trees, and Artificial Neural Networks), it may significantly 

enhance their prediction accuracy by using the concept of homogeneous regions. However, the 

HBA may be impractical for large datasets because of the excessive computing time required in 

the way the HBA determines homogeneous regions. 

This dissertation also proposed a meta-heuristic approach, called the Convexity-Based 

Algorithm (CBA) [Pham and Triantaphyllou, 2010], to alleviate the problem of excessive 

computing time with the HBA. Instead of the concept of homogeneous regions, the CBA uses 

the concept of convex regions that do not depend on the dimensionality of the training data. 

The HBA and CBA were studied on twelve datasets, found at the machine learning data 

repository at University of California, Irvine (UCI), USA, with different penalty costs for 

classification errors assigned in a systematic way. The computational results obtained from the 

CBA were compared with those of (when they were possible to use) the HBA. Those results are 

summarized in Tables 11 and 12. 

                                                 
 
7 A partial part of this chapter was in Computers & Operations Research, Vol. 38, No. 1, 2010, pp. 174-189. 
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Table 11: The computing times (in hours) of the original algorithm, HBA, and CBA when 
applied on the datasets. 

Dataset Original Algorithm HBA CBA Times the CBA was faster than the HBA 

PID 0.76 14.95 4.14 3.61 

HSS 0.26 2.05 0.65 3.15 

WBC 0.06 14.81 0.45 32.91 

LD 0.06 10.17 0.89 11.43 

AP 0.01 12.09 0.20 60.45 

FourClass 0.97 4.33 4.31 1.00 

SH 0.13 N/A 0.38 N/A 

ACA 1.11 N/A 3.34 N/A 

GCD 3.94 N/A 6.55 N/A 

INS 0.53 N/A 1.05 N/A 

PA 0.11 N/A 0.22 N/A 

SPECTF 0.13 N/A 0.36 N/A 

 

Table 12: The TCs achieved by the original algorithms, HBA, and CBA when applied on the 
datasets. 

Dataset Original-TC HBA-TC CBA-TC Improvement 1 Improvement 2 Improvement 3 

PID 30.9 4.3 23.3 86.0 24.7 -61.3 

HSS 31.6 13.4 27.3 57.5 13.7 -43.8 

WBC 24.1 10.6 15.7 55.8 34.6 -21.2 

LD 34.5 4.3 22.5 87.6 34.8 -52.8 

AP 8.6 0.0 8.6 100.0 0.0 -100.0 

FourClass 5.4 3.7 5.4 31.4 0.0 -31.4 

SH 33.8 N/A 22.1 N/A 34.8 N/A 

ACA 30.1 N/A 30.1 N/A 0.0 N/A 

GCD 28.9 N/A 13.6 N/A 53.0 N/A 

INS 28.4 N/A 21.6 N/A 24.0 N/A 

PA 19.7 N/A 14.3 N/A 27.6 N/A 

SPECTF 21.9 N/A 16.4 N/A 25.0 N/A 

 

Table 11 presents the computing times of the HBA and CBA when applied on the twelve 

datasets. The CBA computing time on each dataset was defined as the average of the computing 

time of the SVM, DT, and ANN in conjunction with the CBA. A similar definition was used for 

the original algorithm and the HBA computing time. Table 11 shows that the CBA was 

applicable to all twelve datasets, while the HBA was applicable to only six datasets. 
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Furthermore, the CBA computing time was always less than that of the HBA (when it was 

possible to use). 

Table 12 is a summary of the results derived from Tables 2(a) and 2(b). In this table, the 

value “CBA-TC” for each given dataset was defined as the average of the TC achieved by the 

SVM, DT, and ANN in conjunction with the CBA. A similar definition was used for the 

“Original-TC” and “HBA-TC” cases. Table 12 shows that “CBA-TC” was always less than or 

equal to that of the original algorithms. However, “CBA-TC” was not less than that of the HBA 

(when it was possible to use). The results in Tables 11 and 12 indicate that the CBA was more 

efficient than the HBA, but less accurate than the HBA. However, the CBA was able to derive 

systems in situations where the HBA was not applicable due to excessive computing time. 

The HBA and CBA also indicated that for different penalties of a classification error the 

corresponding error rate exhibited a stepwise pattern. Thus, this dissertation proposed a binary 

search approach (BSA) to derive such patterns. With the assumption that the search space is 

created by two penalty intervals of two classification errors, the BSA recursively splits it into 

sub-spaces to locate the steps of the patterns. The well-known medical datasets: Liver-Disorders, 

Parkinsons, Wisconsin Breast Cancer, and Haberman Surgery Survival were employed in the 

experiments. The BSA determined the stepwise patterns of the false-positive type for the above 

datasets. Such patterns appeared as stairs in 3-D. When we project the steps of a stair onto the 

search space, their projections do not intersect and totally cover the search space. The results 

contribute to filling a critical gap in the data mining literature. That is, the determination of 

stepwise patterns of classification errors can assist researchers in determining their applicable 

penalties. Finally, the website http://csc.lsu.edu/~huypham/HBA_CBA/index.html gives the 

HBA and CBA approaches along with some related computational tools. 
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This research can be extended in several ways. For instance, a new approach in the CBA may 

derive convex regions more accurately. One way may analyze the obtained results in terms of the 

theoretical model proposed in [Thomas, et. al., 1999]. Finally, one may wish to study a standard 

tool which is similar to the Receiver Operating Characteristic [Fawcett, 2006]. This standard tool 

may assess the accuracy of different classification approaches with the three types of error 

associated with different penalty costs. The world just begins from now. 
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