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Abstract 

 

As the first step to defend against DoS attacks, Network-based Intrusion Detection 

System is well explored and widely used in both commercial tools and research works. Such 

IDS framework is built upon features extracted from the network traffic, which are 

application-level features, and is effective in detecting flooding-based DoS attacks. However, 

in a sophisticated DoS attack, where an attacker manages to bypass the network-based 

monitors and launch a DoS attack locally, sniffer-based methods have difficulty in 

differentiating attacks with normal behaviors, since the malicious connection itself behaves in 

the same manner of normal connections. In this work, we study a Host-based IDS framework 

which integrates features from architectural and operating system (OS) levels to improve 

performance of sophisticated DoS intrusion detection. Network traffic collected from a 

campus network, and real-world exploits are used to provide a realistic evaluation. 
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Chapter 1 

Introduction 
 

1.1   Overview 

Denials of Service (DoS) attacks impose serious threat on the availability and quality of 

Internet services [15]. They exhaust limited resources such as network bandwidth, DRAM 

space, CPU cycles, or specific protocol data structures, inducing service degradation or 

outage in computing infrastructures for the clients. System downtime resulting from DoS 

attacks could lead to million dollars’ loss. 

Generally, DoS attacks can be either flooding-based or software exploit-based. In a 

flooding-based DoS attack, a malicious user sends out a tremendously large number of 

packets aiming at overwhelming a victim host. For example, in a SYN-flooding attack, a 

significant number of TCP SYN packets are sent towards a victim machine, saturating 

resources in the victim machine. We can observe a surge of TCP connections in a short time, 

which are modeled by a tuple of application features <source IP, destination IP, source port, 

destination port>. In exploit-based DoS attacks, specially crafted packets are sent to the 

victim system targeting at specific software vulnerabilities in the operating system, service or 

application.  The success of exploitation will either overwhelm or crash the target system. 

An existing solution to the exploit-based attacks is to patch and update software frequently. 

 Currently, research work on DoS intrusion detections mainly rely on Network-based 

Intrusion Detection Systems (NIDSs) [3][5][6][7][8][10][21]. The NIDSs monitor features 

extracted from network packet headers at the application layer such as packet rate and traffic 

volume. Ramp-up behaviors and frequency domain characteristics are also studied to aid in 
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improving the accuracy and performance of IDS [3][6]. On the other hand, Host-based 

Intrusion Detection Systems (HIDSs) which widely employ audit trails and system call 

tracking can effectively identify buffer overflow (BoF) attacks [1][2][19]. However, the DoS 

attacks are not easily observed by such an HIDS and not widely researched in the HIDS 

literature. Some researchers have proposed to limit the bound of certain system calls [1] such 

as fork(). However, with the advent of large-scale application software, such bounds may 

seriously impair the performance of normal applications. Moreover, DoS attacks may not 

involve huge number of system calls at all. Therefore, a more generic solution is needed to 

detect DoS attacks. 

When increasingly sophisticated techniques are adopted by attackers, multi-tier attacks 

and IP spoofing are emerging to amplify destructive effects and evade detections. The attack 

patterns or behaviors will be difficult to identify by using only header-based network traffic 

analysis. For example, in a complicated scenario that an attacker gets around the network 

monitoring sensors and launches DoS attacks locally, a NIDS may not be able to detect this 

intrusion. In such a scenario, non-privileged access is good enough to successfully initiate a 

DoS attack against the host machine: once the attacker obtains the access to the victim 

machine, even if it is not root-privileged and difficult to further elevate to carry out other 

destructive or stealthy behaviors, he/she can still easily upload a DoS daemon to massively 

consume the machine’s limited resources. Instead of network information only, information 

originated and resided on the victim machine should be used to track and monitor such 

undergoing attacks in this case.  
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1.2   Major Contributions 

In this work, we propose an HIDS with multi-level integrated information from 

application, operating system (OS), and architecture levels to improve the detection rate of 

sophisticated DoS attacks. Figure 1-1 illustrates the framework of our proposed IDS 

framework. At different levels, we use different tools or schemes to collect and extract typical 

features of possible intrusions. According to our experiments, even if DoS attacks could 

successfully evade captures of NIDS monitors, architectural behaviors will still be triggered: 

tremendous jumps of Instruction Count, Cache Miss, Bus Traffic can be found. Based on this 

observation, a novel HIDS employing a modern statistical Gradient Boosting Trees (GBT) 

model is proposed to detect sophisticated DoS intrusions through the integration of 

application, OS, and architectural features. Our experiments show that the inclusion of 

architectural features can significantly improve the detection rate of such evasive DoS 

intrusions 

 

 
Figure 1-1.   Framework of multi-level IDS  
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1.3   Thesis Outline 

The rest of this thesis is organized as follows: background knowledge is introduced in 

chapter 2. Our proposed IDS methodology and framework is elaborated in chapter 3. Chapter 

4 provides the technical details of the multi-level IDS implementation. Dataset generation is 

described in chapter 5. The experiment results are shown and discussed in chapter 6. Related 

work is discussed in chapter 7. We conclude the work in chapter 8.  
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Chapter 2 
Background and Basic Concepts 
 

2.1  Types of Intrusion Detection Systems 

 Intrusion Detection Systems can be broadly divided into two categories: Host-based and 

Network-based Intrusion Detection System. Other types of IDSs could be considered variants 

or hybrid of these two basic types. 

2.1.1   Host-based Intrusion Detection System (HIDS) 

HIDS monitors and analyses the internal behavior of a computing system, including all 

or part of the dynamic behavior and the state of a computer system. Event logs, audit trails, 

system call tracking are widely utilized to identify and defend against attacks.  

 

 
Figure 2-1.  HIDS Topology 
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The topology of HIDS is shown in Figure 2-1. Machines labeled in blue are installed 

with the HIDS. Since the IDS is host-based, actual installation on the system under monitor is 

required. Otherwise, the IDS can not gain full access to the internal system information. 

2.1.2   Network Intrusion Detection System (NIDS) 

 As opposed to monitoring the activities that originates on a particular system, NIDS 

focus on external information outside monitored target. It sniffers network traffic and analyze 

all in-coming packets, looking for suspicious patterns of malicious connections. 

 

 

Figure 2-2.  NIDS Topology  

 

As shown in Figure 2-2, the NIDS highlighted in blue is usually placed behind the LAN 

firewall. It can be implemented as software, or appliance hardware. It keeps monitoring the 

traffic coming from outside network and within the LAN, and it also analyzes the content of 
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individual packets in search for malicious traffic. To monitor a LAN, only one such device is 

required to install. Comparing to HIDS, NIDS adopts a centralized infrastructure in the LAN. 

2.2  IDS Methodologies 

Signature and anomaly detection are two primary IDS approaches. They have their own 

advantages and disadvantages, and actually, they complement each other in the intrusion 

detection field. 

2.2.1   Signature-based IDS 

 Signature-based IDS employs specifically known patterns of misuse behavior to predict 

potential malicious activities. These patterns, i.e. signatures, could be the number of failed 

log-ins during a certain time frame, or specific patterns matching a portion of network 

packets. 

PROS: Signatures are easy to develop and understand if you know what malicious 

behavior you're trying to identify.  

CONS: Virus database must be constantly updated. A signature must be created for every 

attack, and novel attacks cannot be detected. 

2.2.2   Anomaly-based IDS 

 Anomaly-based IDS is designed to uncover misuse behavioral patterns by examining 

network traffic and system activities. They establish a baseline of normal behavior, observe 

when current behavior deviates statistically from the norm, and flag those activities as 

possible intrusions.   

PROS: Anomaly-based IDS has the ability to promptly detect novel attacks that are 
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unknown or for which signatures are not developed yet.   

CONS: As normal behavior can change easily and readily, there is no standard normal 

behavior profile. Anomaly-based IDS systems are prone to substantial false positives where 

attacks may be reported based on deviations from the norm patterns. 
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Chapter 3  

Multi-Level Intrusion Detection System 
 

3.1  Methodology 

 In our design, we integrate the information which only resides on the host machine under 

attacks, and then construct a multi-layer IDS to detect sophisticated DoS attacks. The 

correlation of system architectural behaviors and DoS attacks is analyzed by a modern 

statistical model employing Gradient Boosting Trees techniques. Architectural features are 

explored to improve the IDS performance. Our proposed scheme involves multiple steps 

listed as follows. 

 Step 1: Data Collection 

We use the tcpdump utility to record header information of network packets 

transmitting towards/from the host computer. Architectural behaviors are recorded using 

a device driver which periodically samples the CPU performance counters and dumps 

out the performance variation trace. System call tracking function embedded in the Linux 

kernel is utilized to record OS level events. 

 Step 2: Feature Extraction and Correlation 

Our desired application level features are extracted using a custom network traffic 

parser which models records by network sessions identified by src_ip:src_port <-> 

dst_ip:dst_port. OS level features are extracted from a system call tracking function 

embedded in the kernel. Architectural records are processed as a ratio of event numbers 

during the current session to a pre-measured normal session without attacks.                       
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Figure 3-1.  The framework of our IDS 
 

Since features of different levels are obtained by different collecting processes, we 

append a timestamp to each record for the correlation between architectural events and 

application events during the same session. 

 Step 3: Intrusion Prediction 

As a standard workflow, in this step, each correlated record is fed to the statistical 

model which has learned the patterns of normal and attack behaviors from the training 

dataset. It will raise an alert if the given record deviates from normal behaviors. 

3.2  IDS Framework 

 The framework of our proposed intrusion detection system consists of a learning module 

and an inference module as shown in Figure 3-1. The learning module is used to build up the 

knowledge from an offline training dataset. The knowledge base contains a statistical model 

which is learned from observed traffic, and has the ability to predict whether a network 

connection is malicious or benign. The inference module is the analysis engine of our IDS. Its 

task is to process the data collected from the sensors in order to identify intrusive activities.  
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The training set and the real-time traffic include features from different levels as shown 

in Table 3-1, Table 3-2 and Table 3-3. 

1. Application (APP) Feature Set  

Table 3-1.  Application Level Features 

Feature Name Description Type 
protocol_type Type of the protocol, e.g., tcp, udp, etc.  discrete 
service Network service on the destination system, e.g., ssh, 

http, telnet, etc.  
discrete 

duration Length of the connection  continuous 
size_from_client Number of data bytes from client to server  continuous 
size_from_server Number of data bytes from server to client  continuous 
packet_rate Number of two-way packets per second continuous 
wrong_ 
checksum_rate 

Percent of packets have wrong checksum continuous 

 

2. Architectural (ARCH) Feature Set 

Table 3-2.  Architectural Level Features 

Feature Name Description Type 
instruction_ 
retired 

Ratio of average instructions committed during a 
session to a pre-measured normal session 

continuous 

L1_cache_miss Ratio of average L1 cache miss during a session to a 
pre-measured normal session 

continuous 

L2_cache_miss Ratio of average L2 cache miss during a session to a 
pre-measured normal session 

continuous 

bus_access Ratio of average bus transactions during a session to a 
pre-measured normal session 

continuous 

 

We select these features because a typical network DoS attack can be monitored by 

observing these events [22]. These events exhibit very obvious variations during DoS attacks. 
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3. Operating System (OS) Feature Set 

Table 3-3.  OS Level Features 

Feature Name Description Type 
forked_socket_session Forked another network connection discrete 
forked_shell Forked shell sessions discrete 
forked_from_shell Forked from another network connection discrete 
coincided_pid Shares a same pid as another different 

network connection 
discrete 

 

3.3  Statistical Model 

The statistical model that we employed for intrusion detection is based on Gradient 

Boosting Trees (GBT), originally proposed in [4]. GBT is one of several techniques that aim 

to improve the performance of a single model by fitting many models and combining them 

for prediction. GBT uses two algorithms: “trees” from the Classification and Regression Tree 

and “boosting” which builds and combines a collection of models, i.e. trees.  

From a user’s point of view, GBT has three major advantages. First, GBT is inherently 

non-parametric and able to handle mixed-type of input variables. Both discrete and 

continuous data are supported. There is no need of data discretization. GBT does not need to 

make any assumptions regarding the underlying distribution of the values for the input 

variables. Thus, it relieves researchers from determining whether variables are normally 

distributed, and making transformations if they are not. Second, the tree is adept at capturing 

complex-structured behavior, i.e. complex interactions among predictors are routinely and 

automatically handled with relatively few inputs required from the analyst. This is in marked 

contrast to some other multivariate nonlinear modeling methods, in which extensive input 

from the analyst, analysis of interim results, and subsequent modification of the method are 
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required. Third, the tree is insensitive to outliers, and unaffected by monotone 

transformations and differing scales of measurement among inputs. Despite clear evidence of 

strong predictive performance, boosting-based learning methods have been rarely used in 

computer intrusion detection [24]. 

 Consider the binary classification problem with n observations of the form {yi, xi}, 

i=1,…,n, where xi is a multi-dimensional input vector and yi is the binary response yi∈{-1,+1}. 

In this paper, xi is the feature in multiple levels and yi is the prediction result, i.e., attack or 

benign connection. The negative log-likelihood for the binomial model or deviance (also 

known as cross-entropy) is used as the loss function: 

( ) ( )( )fyfyL ˆ2exp1logˆ, −+=  

The population minimizer of the loss function is at the true probabilities:  

( )
( )( )[ ] ( ) ( )

( )⎥⎦
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Or equivalently: 

( ) ( )x
x *21
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fe

y
−+

==  

where ( )( )[ ]xx fyLEY ,|  is the expectation value of the loss function over Y given the input X.  

 

The detailed algorithm for GBT in binary classification is the following.  
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b) { } ==
H
hhmR 1 H-terminal node tree based on { }n

iiimy 1,~ =x  

c) ( )( )∑
∈

+=
hmi R

iihm fyL
x

x γγ
γ

ˆ,minarg  

d) ( ) ( ) ( )hmhmmm RIff ∈×+= − xxx γν1
ˆˆ  

3) End algorithm. 

Note that ν  is the “shrinkage” parameter between 0 and 1 and controls the learning rate 

of the procedure. Empirical results have shown that small values of ν  always lead to better 

generalization error rates [4]. In this study, we fix ν  at 0.01. During each iteration, an 

H-terminal node tree, which partitions the x  space into H-disjoint regions, { }H
hhmR 1= , is 

fitted based on the current negative gradient for the loss function. 
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Chapter 4   

Implementation of Multi-Level IDS 
 

4.1  Overview 

We summarize network traffic captured in a tcpdump file into high-level connections. 

Specifically, a connection is a sequence of network packets starting and ending at some well 

defined points in time, between which data flows under a well defined protocol from a source 

IP address to a target IP address. Before processing the data with the IDS training algorithm, 

raw network traffic has to be pre-processed and summarized into connections or high-level 

events. Each connection is described with a set of features which IDS models can utilize to 

detect possible intrusions. 

4.2  Application Level Parser 

Our modified parser based on an open source utility Chaosreader extracts desired 

information in the application level out from the recorded tcpdump files, and groups packets 

into sessions by src_ip:src_port <-> dst_ip:dst_port, thus we will obtain a set of preprocessed 

data in the format that each entry represents a network connection, together with application 

features flagged accordingly. 

Our desired information is stored in different header levels, thus the parser strips the 

headers level by level, and construct the features we need. 

The workflow of the parser is shown in Figure 4-2. 
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Figure 4-1.   Network packet header  

 
Figure 4-2.   Workflow of application level parser 
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4.3  OS Level System Call Tracking 

At operation system level, we employ a system call tracking function based on 

BackTracker [9] to record all system call driven events, and related network socket sessions. 

We append a timestamp to every record; add full IP address and port number information to 

all socket sessions, in order to correlate OS events with other level events. BackTracker 

discovers sequences of steps that occurred during an intrusion. Starting at a single detection 

point (e.g., a suspicious file), it identifies files and processes that could have affected that 

detection point and displays chains of events in a dependency graph. BackTracker is able to 

record every dependency-causing event among OS objects, and span up a dependency chain 

starting from one object. Complete information such as process forking, file operations, and 

program execution (which is important for security analysis), is recorded in a system-call 

oriented manner. 

4.4  Architectural Level Kernel Module 

The Intel Pentium-D processor provides us with adequate performance counters to 

illustrate the CPU’s dynamic performance profile. A kernel module is implemented to sample 

the performance counters in regular intervals. We set the sampling interval to 0.5s, balancing 

the tradeoff between system performance overhead and accuracy of monitored performance 

variation. Thus, at regular interval, the values of these four architectural counters which have 

most representative architectural variation under a DoS attack are recorded and dumped to a 

trace file. The timestamp recorded together with other performance counters is used to 

correlate architectural events with network connections parsed from tcpdump files. 
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4.4.1   Performance Monitoring Counters 

Performance monitoring is introduced in Pentium processor. A set of performance 

monitoring registers are provided to monitor or measure processor performance profile. The 

performance monitoring mechanism varies with processor families. The target system used in 

the experiment is installed with Pentium-D processor, which features Intel NetBurst 

Microarchitecture. 18 Performance Counter MSRs (PC MSR) are provided to count events. 

Each PC MSR is associated with one Counter Configuration Control Register (CCCR) to set 

up a specific counting method. Every PC MSR and CCCR pair is controlled by a subset of 45 

Event Selection Control Registers (ESCR). Table 4-1 lists the registers we need to use to 

sample CPU performance events. All registers are read/written using RDMSR, WRMSR, or 

RDPMC instruction. 

 

Table 4-1.  List of registers used to monitor CPU performance 

Register Name Function 

MSR Model Specific Register Monitor performance, debug system, 
enable/disable model specific functions, 
etc. 

PC MSR Performance Counter MSR Store actual event number 

ESCR Event Selection Control Register Select events to be monitored by 
specific PC MSR 

CCCR Counter Configuration Control 
Register 

Set up the associated performance 
counter to function in a specific style 
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Table 4-2.  PC MSR and control registers used to sample  
desired architectural events 

Event to Monitor Register Address Register Name 

0x3b8 MSR_CRU_ESCR0 
0x36c MSR_IQ_CCCR0 

Inst_Retired 

0x30c MSR_IQ_COUNTER0 
0x3cc MSR_CRU_ESCR2 
0x370 MSR_IQ_CCCR4 

L1_Cache_Miss 

0x310 MSR_IQ_COUNTER4 
0x3a1 MSR_BSU_ESCR1 
0x362 MSR_BPU_CCCR2 

L2_Cache_Miss 

0x302 MSR_BPU_COUNTER2 
0x3a2 MSR_FSB_ESCR0 
0x360 MSR_BPU_CCCR0 

Bus_Access 

0x300 MSR_BPU_COUNTER0 
 

 

A specific procedure needs to be followed to correctly configure the control registers and 

enable performance counters to count on the correct events: 

Step 1: Identify events to monitor. 

Step 2:  For each selected event, choose an ESCR which support the event. 

Step 3:  Identify the CCCRs and PC MSRs associated with the ESCRs. 

Step 4:  Set up ESCR with correct event mask and privilege level. 

Step 5:  Set up CCCR with correct ESCR mask. (Cascading and event filtering are  

optional) 

Step 6:  Set CCCR enable flag to start event counting. 

Step 7: Sample PC MSRs to poll out CPU performance profile. 

For those four architectural events we need to monitor, PC MSR and control registers 

listed in Table 4-2 need to be configured or sampled. 
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4.4.2   Implementation of Kernel Module 

Although RDPMC instruction is allowed to execute in all privilege levels, control 

registers have to be configured with WRMSR instruction, which can only be executed at 

privilege level 0. Thus, a kernel module, i.e. device driver, is implemented to manipulate on 

hardware registers, and obtain the information of system runtime performance variations. 

Linux kernel allows kernel modules to be loaded and unloaded at run time, without rebooting 

the system. It runs at privilege level 0 and has full access to all system devices.  

A virtual file under /proc directory is also created to dump out information from kernel 

space to user space. /proc is a virtual file system that contains a hierarchy of dynamic virtual 

files. Those files represent current status of the kernel. They allow users and applications to 

gain insight of system’s kernel status, and communicate configuration changes to the kernel. 

The implemented module creates two directories under /proc; they serve as an interface 

between kernel space and user space:  

/proc/perf_mon/setting:  Used to configure counter sampling 

/proc/perf_mon/event:  Used for user-mode application to poll out counter values.  

 

The /proc/perf_mon/setting entry supports four types of command: 

Start:  Initiate all ESCRs and CCCRs, place sampling routine on wait queue to  

periodically sample PC MSRs at predefined intervals. 

 Clear:  Set all control registers to zero, clear PC MSRs. 

 Stop:  Set all ESCRs and CCCRs to zero, stop event counting, but values in PC  

MSRs are still preserved. 

 Read:  Increment internal read number counter. 
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Once sampling routine is initiated, it will keep writing event numbers to the 

/proc/perf_mon/event entry buffer. Since memory space for a /proc entry is limited, we 

implemented a user mode application to flush all event numbers from /proc/perf_mon/event 

entry at pre-calculated intervals. And the event entry will be refreshed after all contents are 

dumped out. 
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Chapter 5 

Datasets Generation 
 

5.1  System Environment 

 We use an Intel Pentium-D PC installed with Redhat Linux 9.0 as target system, and 

another machine installed with Suse 10 as attacker/client system. Both machines are 

connected to a department LAN. Exploits are launched from attacker to target system. 

Network traffic information is captured with the tcpdump tool. 

5.2  Developed Denial-of-Service Exploits 

Nowadays more sophisticated techniques are emerging to escape IDS detections; in this 

work, we assume crackers have gained unauthorized access to the victim machine (they may 

only have non-privileged access), and then intend to launch local DoS daemons. To emulate 

this scenario, we design five local DoS exploits which are used to model local DoS exploits 

exhausting different system resources. Each exploit target a specific type of system resources, 

intentionally exhausting a particular resource, and rendering the system unavailable to 

legitimate users. Table 5-1 outlines the detailed descriptions of these exploits. First three 

attacks are traversing a certain memory space with the stride of the cache line size (64 bytes 

in our system). In this case, regardless of set associativity of data cache, constant cache miss 

will be generated upon each memory access. 
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Figure 5-1.  Pseudo code snipet for BSB DoS exploits 

 

Table 5-1.   The self-developed DoS exploits  

Attack Type Description 
L2 Cache DoS Target L2 cache, sweep through L2 cache space 
BSB DoS Target backside bus bandwidth, sweep through twice the L1 D$ size, 

saturate backside bus 
FSB DoS Target front-side bus bandwidth, sweep through twice L2 cache size, 

saturate front-side bus. 
Memory DoS Target memory space; keep allocating memory space, max out 

memory usage. 
Loop DoS Target CPU usage, infinite dummy instruction. 

 

Table 5-2.   Dataset construction 

Dataset Combination 
Training 1 l2 + bsb + fsb + mem 
Training 2 l2 + bsb + fsb + loop 
Training 3 l2 + bsb + mem + loop 
Training 4 l2 + fsb + mem + loop 
Training 5 bsb + fsb + mem + loop 
Testing l2  + bsb + fsb + mem + loop + noise 
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We launch these exploits multiple times over a LAN to obtain five different training 

datasets, each containing only four exploit types. Details of the training and testing sets 

construction are listed in Table 5-2.    

The testing dataset includes a full set of the above five exploit types, 25 attack instances 

in total, and is injected with noise traffic data of CPU or memory intensive operations such as 

tar, compile, scp etc. Those noises are included in order to evaluate the ability of the IDS to 

differentiate normal operation and attack traffic. In addition, we also include 3630 normal 

connections. 

5.3  Real-world Exploits 

Apart from our crafted exploits, we also evaluate our proposed scheme using mixed data 

with real-world remote DoS exploits, and dataset of real-world local DoS exploits. The 

descriptions of real-world remote DoS exploits in the experiment are outlined in Table 5-3, 

and description of those local DoS exploits are listed in Table 5-4. 

We divide the mixed data of hand-crafted exploits and real-world remote DoS expoits 

into five training datasets and one testing dataset. Training data contains partial set of all 

exploits, while the testing data contains a full set of all exploit types. Testing data also 

include significant amount of noise traffic, which is injected intending to evaluate the ability 

of the IDS to detect exploits never seen before and avoid the false alarms. 

The real-world local DoS exploits will be used separately to evaluate the ability of our 

proposed IDS to identify novel local DoS attacks it has not seen before. 
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Table 5-3.  Real-world remote DoS exploits 

Attack Description 
CVE-2003-0132 Apache memory leak, drains memory via large 

chunks of linefeed characters. 
CVE-2003-0543 OpenSSL integer overflow, causes Apache server to 

enter CPU intensive loop. 
CVE-2004-0493 Apache memory exhaustion. 
CVE-2004-0942 Apache multiple space header DoS, drains CPU 

resource. 

 
Table 5-4.  Real-world local DoS exploits 

Attack Description 
Memory leak local DoS - 1 Kernel vulnerability causing exhaustion of 

system memory resource, inducing system crash. 
Memory leak local DoS - 2 Kernel vulnerability allows non-privileged users 

to read kernel memory and system performance 
degradation. 
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Chapter 6 
Results and Analysis 
 

6.1  Performance Metrics 

We use the typical four measurments to evaluate performance of our IDS. True positive 

(TP) rate is the ratio of the number of correctly detected attacks and the total number of 

attacks. The true negative (TN) rate is the ratio of the number of normal connections and the 

total number of normal connections. The false positive (FP) rate is the ratio of the number of 

normal connections that are incorrectly classified as attacks and the total number of normal 

connections. False negative (FN) is the rate of missed attacks. 

 

Table 6-1.   Measurements of IDS System 

 Predicted Normal Predicted Intrusions 

Actual Normal 
Connection 

True Negative (TN) 
 

False Positive (FP) 
 

Actual Intrusions 
(Attacks) 

False Negative (FN) 
 

True Positive (TP) 
(correctly detected 
intrusions) 
 

 

6.2  IDS Performance Comparison  

We conduct three sets of experiments, to evaluate the ability of different IDS schemes to 

identify simulated and real-world DoS exploits. 
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6.2.1  Evaluation with Developed Exploits 

Two sets of experimental results are shown to demonstrate how architectural events help 

to increate the true positive rate, and how OS events assist in decreasing false positives. 

6.2.1.1  Two Level Feature Sets 

Firstly, we train an IDS using the GBT model with only the application level features 

listed in Chapter 3. Results shown in Figure. 6-1 reveal that IDS built on the application 

features alone can only recognized around 30% of such DoS attacks (refer to the light bar 

group in Figure 6-1). These testing results demonstrate that the APP features are not 
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Figure 6-1.   Detection rate of IDS with one level and two level feature sets 

Table 6-2.   False alarm rate of IDS of one level and two level feature sets 

False Positive Rate ( % ) Training 
Set APP APP + ARCH 
1 0 0.19 
2 0 0.08 
3 0 0.19 
4 0 0.19 
5 0 0.19 
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sufficient to detect the DoS intrusions accurately. Over half of attack instances successfully 

escape from application level monitor.  

This result is expectable since we assume that our multi-step attacks can bypass the 

application level feature monitors and launch DoS exploits locally. The network connection 

behaves exactly the same as other normal connections. No typical properties such as traffic 

bursts of the DoS attacks could be observed at the application level. Therefore, the IDS can 

not differentiate them from other normal operations. 

To demonstrate the effectiveness of architectural monitors, we conduct another 

experiment with added architectural features. The results are illustrated in the gray bar group 

of Figure 6-1. From the figure, we can see that the capability to detect novel multi-step DoS 

attacks is greatly improved to an average of 91.2% by integrating  

ARCH features. For training set 3, 4 and 5, we achieve a detection rate almost to 100%.  

A few example records are shown in Table 6-3 to illustrate the different behaviors of 

malicious and benign operations monitored from multi-level features. For the ARCH event 

columns, we list the ratio of the numbers of the event during a session to a pre-measured 

normal session. The first entry is a normal ssh connection that is commonly seen in a local 

Table 6-3.  Sample records. The label is the actual attribute of the  
connection, pred_1 is prediction from APP framework, pred_2  

is the prediction result from APP+ARCH framework 
 

Num Service type duration size_server size_client pkt_r wrong_cks_r ic l1_m l2_m bus_acc label pred_1 pred_2 

1 

2 

3 

4 

... 

ssh   tcp  77.26    3993  2004    2.01  0.05  1.14  1.48    2.67  1.73  normal  normal  normal

ssh   tcp  355.16   0407  2148    0.77  0.05  55.75 3602.53  1.18  0.96  attack  normal   attack 

ssh   tcp  219.15  11393  3540    1.62  0.03  264.11 0.81    0.84  0.87  attack  normal   attack 

ssh   tcp  228.68  17121  3300    1.97  0.03  11.73  2.56   3.27  25.56  attack  normal   attack

... 
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network. The next three entries are BSB, loop, memory DoS attacks. Each of them has 

manifest architectural variations (see the bolded italic numbers), but the application (APP) 

level features stay in the same pattern as a normal connection. This explains why in a 

sophisticated DoS attack scenario, intrusions can escape detection from APP level. The IDS 

built with APP features only can not distinguish such attacks from other normal sessions. 

Therefore, it lacks sufficient information to make a correct judgment. 

However, ARCH features also bring in false positives compared to pure APP feature 

framework as shown in Table 6-2. Even though the false positive rate is as low as an average 

of 0.17%, considering the amount of normal connections is large, over 3000 records, the 

actual number of false alerts is not negligible. The most challenging issue to integrate ARCH 

features into IDS is how to reduce false positives, since at ARCH level, memory or CPU 

intensive workloads, and malicious DoS attacks have similar characteristics which is difficult 

to differentiate at the this level. 

6.2.1.2  Three Level Feature Set 

To reduce false positives brought in by ARCH events, we first analyze the way by which 

crackers may log-in to the victim system. In practice, remote Buffer-Overflow (BoF) and 

guessing password are mainly used to gain unauthorized access to the target machine. After 

crackers gain illegal access to the victim system, a DoS attack may be launched. In this paper, 

we assume that an illegal user will conduct a BoF attack first to obtain access to the target 

system then start a DoS attack. In this scenario, we enforce the IDS with BoF detection 

capability with OS level monitors and then write prediction results into the system event log. 

We can distinguish between a normal heavy duty program and an illegal DoS attack in this 
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way: we search the event log and check if a BoF exploit was found in this connection before. 

If it was found and architectural events also show an abnormal pattern, we think that the 

system is under DoS attack; otherwise, we believe that there is a legal heavy duty program 

running on the target machine, i.e., the system is in a normal state. 

We conducted experiments integrating OS level features into the IDS to detect remote 

BoF attacks. The OS features we employed include: forked_socket_session, forked_shell, 

forked_from_shell, coincided_pid. Those features are obtained using BackTracker’s [9] 

system call tracking function embedded in the Linux kernel. Through an experiment, we 

achieve an average True Positive rate of 90.3%, True Negative rate of 99.6%. Detailed 

experiment procedure is elaborated in Appedix A. 

With the highly accurate BoF detection rate, we apply the results into DoS detections in 

the way described in the last paragraph to reduce false alarm rate induced by ARCH monitors. 

As shown in the last column of Table 6-4, the false positive rate is almost reduced to zero in 

all of the cases. The true positive rate is slightly affected as shown by the dark bar in Figure 

6-2.  But its average, 90.81%, is still considered as good performance in detecting 

sophisticated DoS attacks. 

Note that we only take BoF for example here, just to demonstrate that additional 

information could be utilized to reduce the false positives. Guessing password can also be 

accurately identified by extracting other information from the application payload data. 
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6.2.2  Evaluation with Mixed Dataset 

Apart from our crafted exploits, we also evaluate our proposed scheme using mixed data 

with real-world remote DoS exploits. Remote DoS exploits involve a simpler attack scenario. 

Attackers only need to initiate a one-step procedure: launch the attack against a target system 

remotely. Using this set of datasets, we intend to simulate a realistic situation that both 

remote DoS and sophisticated DoS exploits are mixed together. Real network traffic tend to 
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Figure 6-2.  Detection rate of IDS with different feature sets 

Table 6-4.   False alarm rate of IDS for different feature sets 

False Positive Rate ( % ) Training 
Set APP APP + ARCH APP + ARCH + OS 
1 0 0.19 0.00051 
2 0 0.08 0.00022 
3 0 0.19 0.00051 
4 0 0.19 0.00051 
5 0 0.19 0.00051 
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be sophisticated, it will rarely contain only one type of attacks. The descriptions of real-world 

remote exploits in the experiment are given in Table 5-3.  

We also divide the data into five training datasets and one testing dataset. It is guaranteed 

that two exploit types are absent from the training data, while the testing data contains a full 

set of all exploits. A huge number of noise traffic is injected into the testing data. The 

strategy is intended to evaluate the ability of the IDS to detect exploits never seen before and 

avoid the false alarms. Results using mixed dataset (shown in Table 6-5) also prove the 

effectiveness of integrating architectural level features. In this experiment, the total number 

of normal connections is 9412 and the total number of attack instances of 472. 

6.2.3   Evaluation with Real-World Local Exploits 

Having shown how ARCH features benefits the IDS using our developed exploits, we 

test the system with two real-world local DoS exploits (Table 5-4) separately to further 

demonstrate the soundness of our work. These two exploits have been used by real hackers in 

the wild, to impair production servers. 

We use two sets of training data: one constructed with only the hand-crafted exploits, the 

Table 6-5.  Our IDS performance for mixed datasets 

# of False Alarms # of Missed Attacks Training 
Set APP APP + 

ARCH + OS
APP APP + 

ARCH + OS 
1 28 12 2 0 
2 33 11 2 0 
3 50 11 3 0 
4 36 17 2 0 
5 47 9 2 0 
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other one mixed with real-world remote DoS exploits (Table 6-6 and Table 6-7). Note that for 

both sets, first five training data only contains a subset of all exploit types, and the training 6 

contains a full set of all exploit types. 

 

Table 6-6.  Dataset constructed using developed exploits 

Dataset Combination 
Training 1 l2 + bsb + fsb + mem 
Training 2 l2 + bsb + fsb + loop 
Training 3 l2 + bsb + mem + loop 
Training 4 l2 + fsb + mem + loop 
Training 5 bsb + fsb + mem + loop 
Training 6 l2  + bsb + fsb + mem + loop 

 

 

Table 6-7.  Dataset constructed using mixed exploits 

Dataset Combination 
Training 1 l2 + bsb + fsb + mem + real_world_exploit 
Training 2 l2 + bsb + fsb + loop + real_world_exploit 
Training 3 l2 + bsb + mem + loop + real_world_exploit 
Training 4 l2 + fsb + mem + loop + real_world_exploit 
Training 5 bsb + fsb + mem + loop + real_world_exploit 
Training 6 l2 + bsb + fsb + mem + loop + real_world_exploit 

 

Figure 6-3 shows the comparison of True Positive rates using different training and 

testing datasets. Table 6-8 outlines the number of false alarms of different experimental sets. 

In Figure 6-3, group a’s results are based on training sets listed in Table 6-6, which are 

combinations of self-developed exploits. The APP + ARCH IDS achieves an average 

detection rate of 80.6% for Mem-leak-dos-1 attack, and 80.3% for Mem-leak-dos-2 attack 

(five out of six datasets have 100% detection rate). Meanwhile, the APP IDS’s average 

detection rates in these two cases are 19.4% and 0 separately. 
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a(1)   Detection rate of IDS with different feature sets tested using Mem-leak-dos-1 exploit 

 
a(2)     Detection rate of IDS with different feature sets tested using Mem-leak-dos-2 exploit 

 

 
b(1)   Detection rate of IDS with different feature sets tested using Mem-leak-dos-1 exploit 

 

b(2)   Detection rate of IDS with different feature sets tested using Mem-leak-dos-2 exploit 

 
Figure 6-3.  IDS performance comparison (group a’s training data   consists 

of hand-crafted exploits, group b’s training data consists of mixed-data) 



 35

 

The reason why the APP + ARCH IDS detects none of the mem-leak-dos-2 exploit when 

trained using training set 2 is that the exploit type missing from the training set, which is 

mem-dos, has the exact same architectural features as the attack. Therefore, even though the 

IDS is well trained with other exploit types, it fails to detect this particular exploit efficiently. 

The result of training set 6 tells that when trained with full set of all exploit types, the IDS 

can accurately identify all intrusion instances. 

Table 6-8.  IDS performance comparison (in each table, left group of 
columns indicates the IDS is trained with self-developed exploits, right 

group’s training data is based on mixed datasets) 
 

a.  Number of false alarms for Mem-leak-dos-1 

# of False Alarms  
Crafted Exploits Crafted + Real-world 

Exploits 

Training 
Set 

APP APP + ARCH APP APP + ARCH  
1 2 0 1 2 
2 1 0 1 0 
3 1 0 1 0 
4 1 0 1 0 
5 1 0 1 0 
6 1 0 1 0 

 

b.   Number of false alarms for Mem-leak-dos-2 

# of False Alarms  
Crafted Exploits Crafted + Real-world 

Exploits 

Training 
Set 

APP APP + ARCH APP APP + ARCH  
1 1 0 1 2 
2 1 0 4 0 
3 2 0 2 0 
4 1 0 0 0 
5 1 0 0 0 
6 1 0 0 0 
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For group b, which is trained with mixed datasets of developed and real-world remote 

exploits as listed in Table 6-7, the average TP rates for APP + ARCH IDS are 88.9% and 

100% for Mem-leak-dos-1 and Mem-leak-dos-2 separately; APP IDS can only detect 30.6% 

or none of those two types of attack instances. The injected real-world remote exploits in the 

training data improve the detection rate of APP + ARCH IDS as compared to group a. They 

remedy the degradation induced by absence of the mem-dos from the training data 2, since 

they bring in similar exploit types that have the same architectural behavior as the testing 

exploit. The 100% accuracy is obtained in attack detection using this set of training data. This 

indicates that with more comprehensive training data, our proposed IDS can achieve more 

accurate detection results.  

Number of false alarms is shown in Table 6-8 by grouping the results by the testing data. 

Table 6-8(a) lists the results for two sets of training data detecting mem-leak-dos-1 attack. 

The APP IDS raises an average of 1.17 or 1 false alarm for two training sets, and the APP + 

ARCH IDS raises 0.33 or no false alarm for those two training sets. When the volume of 

network traffic grows, the difference of number of false alarms raised by the two IDSs will 

increase significantly. Table 6-8(b) shows the average number of false positives for APP IDS 

is 1.17 and 1 tested using mem-leak-dos-2 exploit, while the average number is 0 and 0.33 for 

APP + ARCH IDS. 

In conclusion, the testing results also demonstrate that ARCH features are of significant 

use in identifying sophisticated DoS attacks. APP features alone can not reveal the intrusive 

behaviors by monitoring at the application level. By using our crafted exploits or real-world 

exploits, attackers can manage avoid detection by APP monitors, and directly induce drastic 

system performance degradation, with the APP monitors still showing everything is normal. 
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With addition of ARCH features, alarms will be triggered in this case because DoS attack can 

not be achieved without inducing numerous ARCH level activities. Even though attackers 

could escape from being caught at other levels, ARCH features will show all suspicious 

activities.
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Chapter 7 

Related Work  
 

Modern DoS attacks employ many advanced and sophisticated techniques to amplify the 

damage and elude detections or mitigations of countermeasures. IP spoofing is widely 

adopted by hackers to mask the real source of attacks, or launch reflective DoS attacks; 

Distributed DoS is used to initiate attacks from multi-source; low-rate pulsing method is 

utilized to reduce average packet rate and evade network monitors. Based on a header 

analysis, frequency domain characteristics are studied to improve the IDS performance [3][6], 

a ramp-up behavior is also considered as a way to distinguish between single- or multi-source 

attacks. In [8][10], authors propose to take a spectral analysis to detect shrew attacks which 

consist of short time bursts repeating at a maliciously chosen low frequency. This kind of 

low-rate attack sends out packets at certain fixed intervals, to intentionally reduce the average 

packet rate, rendering the IDS unable to discover undergoing attacks. To defend against IP 

spoofings, various off-line IP trace-back techniques are proposed to pinpoint the real origin of 

DoS attack [17][18], some on-line countermeasures are also developed to filter out those 

spoofed packets, help sustain service availability during attacks: [7] presents a Hop-Count 

Filtering scheme to utilize the Time-to-Live(TTL) value in the IP header to filter out spoofed 

IP packets.  

Recent work on intrusion countermeasures include machine learning IDS techniques, 

alert correlation, alert fusion and feature analysis. Machine learning techniques, such as 

decision tree, neural network, Bayesian network, are applied to detect network intrusions. 

Alert correlation attempts to correlate IDS alerts based on the similarity between alert 
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attributes, previously known attack scenarios, or prerequisites and consequences of known 

attacks [16]. Alert fusion combines detection outputs of the same attack from different 

independent detectors. Feature Analysis tries to optimize the information gained from 

multiple dimensional features through feature bagging, relevance and redundancy analysis, 

and feature weight classification [11][13][14][23].  

In the HIDS literature, various techniques utilizing system call tracking and auditing trails 

are proposed. System call arguments are integrated to capture data-flow behaviors of 

programs, and improve attack detections in HIDS [2]. A policy-driven solution is presented 

in [1] to define and enforce process behavior rules controlling processes’ access to system 

resources. All system behaviors are monitored in real-time by a modified kernel. 

Basically, research works investigating DoS attack utilize sniffer-based methodologies. 

They only rely on analyzing network traffic information at the application level. These 

network-based schemes suffer from fast traffic, switched network, information encryption, 

and most importantly, they have little knowledge of what is really going on in the victim 

machine. Significant useful information on the victim host is neglected. HIDS against DoS 

attacks are not widely researched since it is difficult to find a generic and low-cost way to 

defend against such attacks. We propose to utilize the strong correlation of architectural 

behaviors with DoS attacks, and employ multi-layer features to construct an IDS model. 

Close to our work, Woo and Lee [22] have observed performance degradation of 

multi-threaded workload under architectural DoS attacks. However, they do not further study 

the correlation of architectural behavior and DoS attacks and apply into an IDS in identifying 

and preventing such attacks. In our work, we are exploring architecture features to enrich the 

existing feature set used for intrusion detection research and demonstrate its effectiveness in a 



 40

systematic approach. OS level system events are also employed in our integrated IDS to 

reduce the false alarms. R. Tao et al. [19] has proposed to use architectural features to 

improve sophisticated DoS attack detections, which is the basis of our work. We have 

extended the work and evaluated our IDS using more comprehensive datasets to further prove 

the soundness of the multi-level IDS. 
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Chapter 8 

Conclusions 
 

We have conducted experiments to demonstrate that an IDS using only application 

features failed to detect sophisticated DoS attacks because these attacks appear normal if their 

behaviors are only monitored by the application feature set.  In order to detect the missed 

DoS attacks, we use a combination of application, OS, and architecture feature set. Both 

hand-crafted exploits and real-world exploits are used to evaluate the soundness of the 

multi-level IDS. Our experimental results showed improved IDS performance. In summary, 

we propose the idea that if crackers use sophisticated schemes to evade defense, the 

architectural level behavior monitored in conjunction with application and OS level features 

provides us valuable information to improve the IDS against such DoS attacks.  
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Appendix A 

Buffer Overflow IDS 
 

1.  Background 

Buffer overflow is one of the most prevalent methods hackers utilize to obtain security 

breach. The basis for buffer overflow is that no built-it boundary check is imposed by certain 

programming languages, such as C, C++. The code shown in Figure 1 is a valid program that 

compiles with no error. But the adjacent buffer which is beyond the allocated space will be 

overwritten. 

 

 
 

Figure 1.  Sample code of buffer overflow 

 
 

Generally the hacker would utilize the programming languages’ insufficient bound 

checking, store data beyond the boundaries of a fixed-size buffer. Adjacent memory locations 

would be overwritten with other buffers, variables, or program flow data, resulting in 

abnormal program behavior, such as memory exception, system crash, or security breach if 

deliberately exploited by malicious hackers. 
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2. Behavior of BoF Attacks 

Previous techniques detecting BoF attacks focus on parsing and analyzing the payload 

information during a connection, extract application level features, and feed the feature 

events to the statistical model to build the IDS. Such schemes highly rely on characteristics 

certain exploits exhibit and require comprehensive domain knowledge in feature construction. 

In our work, we propose an adaptive anomaly network IDS utilizing extracted features from 

the OS level together with application level features to gain higher accuracy. 

Unlike DoS attack, which involves huge number of certain activities, e.g. large amount 

of network requests, BoF attack generally exploits the vulnerability in a single connection by 

being embedded in the payload data. Network connection information from application level 

is not enough to identify and correlate attack sessions. We group network connections by 

src_ip:src_port <-> dst_ip:dst_port, and the remote buffer overflow will obtain a interactive 

shell session connected to a different port from which it originally launches the attack, 

resulting in multiple distinct network sessions which are difficult to identify the attack and 

correlate those distinct malicious connections. Analyzing the payload does not provide us 

useful information to solve the problem. Each exploit will exhibit different payload 

characteristic; they do not share a common pattern. Constructing features solely from the 

application level is possible, but extremely low efficient, because different exploits will need 

different features constructed accordingly, extensibility to cover novel attacks is not high, and 

requires extra time and work. However, from OS level, some typical abnormal behaviors of 

BoF attacks could be identified using BackTracker, which records every OS event. 

Figure 2 illustrates an example observed using BackTracker’s system call 
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Figure 3.   Execution flow of a sample BoF exploit 

 

tracking function. The highlighted system events exhibit abnormal behaviors that could assist 

us to identify BoF exploit. As shown in Figure 3, the execution flow of this BoF exploit 

consists of three steps: 

Proc_28088_0 
Socket 542490 0

Proc_28089_0 
Socket 542505 0

Proc_28095_0 
Shell

Figure 2.  Observation of BoF exploit using BackTracker 
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Step 1:  Attacker connects to target system from network 

Step 2:  Malicious network connection spawn another different network session 

Step 3:  Obtain interactive shell session through the forked network session 

3.   System Call Tracking 

In our work, BackTracker’s OS level event logging and dependency tracking is utilized to 

extract the OS level features of each network connections. BackTracker discovers sequences 

of steps that occurred during an intrusion. Starting at a single detection point (e.g., a 

suspicious file), it identifies files and processes that could have affected that detection point 

and displays chains of events in a dependency graph. BackTracker is able to record every 

dependency-causing event among OS objects, and span up a dependency chain starting from 

one object. Complete information such as process forking, file operations, and program 

execution (which is important for security analysis), is recorded in a system-call oriented 

manner. That information could be utilized to provide a novel view of exploit behavior 

analysis from the OS level. 

4.   IDS Implementation 

We integrate both the application level and OS level features. The application features 

we find informative in the case of remote BoF attacks are: type, service, duration, 

size_from_server, size_from_client, packet_rate, wrong_checksum_rate. And we also add 

four OS features (Table 1) according to our observation from the OS level to improve the 

prediction accuracy of our IDS: forked_socket_session, forked_shell, forked_from_socket, 

coincided_pid.  
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  Table 1.   OS level features 

Fearues Description 
forked_socket_session forked another network 

connection 
forked_shell forked  shell sessions 
forked_from_shell forked from another network 

connection 
coincided pid share a same pid as another 

different network connection 
 
 

These features in Table 1 are observable using a modified BackTracker. Modifications to 

BackTracker include attaching a timestamp to every system event; exporting detailed IP 

address and port number for socket sessions. With those changes, we can correlate high level 

network session records with system events recorded by BackTracker’s system call tracking 

function embedded in Linux kernel.  

5.   IDS Performance 

Exploits we used to train and test our BoF IDS are all from real-world. We successfully 

utilized those tools to exploit targeted software vulnerabilities, and obtained interactive shell 

sessions. Table 2 gives detailed information of BoF exploits we employed.  

The 60 exploit instances are divided into five training datasets, with one type of exploits 

absent from each training set. And the testing data include all types of BoF exploits. Testing 

result shown in Figure 4 demonstrates that OS level events help improve the accuracy of True 

Positive rate. An average True Negative rate of 99.6% is also considered as a good 

performance. 
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Table 2.  Description of BoF exploits 

CVE Number Name Description 
CVE-2002-0177 Icecast AVLLib Buffer 

Overflow Vulnerability
Remote user may send arbitrary 
long string to the server, leading 
to a stack overflow and execution 
of user supplied code. Execution 
privilege of the Icecast server will 
be obtained. 

CVE-2003-0201 Samba 
'call_trans2open' 
Remote Buffer 
Overflow Vulnerability

Anonymous user may corrupt 
sensitive locations in memory 
and execute arbitrary commands 
by passing excessive 
user-supplied data into a static 
buffer. 

CVE-2004-0396 CVS Malformed Entry 
Modified and 
Unchanged Flag 
Insertion Heap 
Overflow Vulnerability

A remote heap overflow could 
occur when handling 
user-supplied input for entry lines 
with 'modified' and 'unchanged' 
flags, possibly leading to 
arbitrary code execution. 

NA Dr.Cat Drcatd Multiple 
Buffer Overflow 
Vulnerabilities 

Unauthorized access and/or 
elevated privilege on the 
vulnerable system may be 
achieved by exploiting the 
vulnerability of insufficient 
boundary checks of some 
functions of this application. 
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Figure 4.     True Positive rate comparison 
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Appendix B 

Control Register Layout for Pentium D 
 

ESCR MSR: 

The layout of ESCR MSR is illustrated in Figure 1. 

 

63               30             24          8   5    4    3   2  1  0 
Reserved Event Select Event Mask Tag 

Value 

Tag 

Enable 

O

S 

USR   

 

Figure 1.  ESCR layout 

Bit 0-1: Reserved 

Bit 2: USR flag – set counter to count events when processor operates in user mode 

Bit 3: OS flag – set counter to count events when processor operates in privileged  

level. 

Bit 4: Tag enable – enable tagging of μops. 

Bit 5-8: Tag value field – select a tag value to associate with a μop. 

Bit 9-24: Event mask field – select events to count from event class selected 

Bit 25-30: Event select field – select a class of events to count. 

 

CCCR MSR: 

CCCR MSR controls the filtering and counting of events, together with interrupt 

generation. The layout of CCCR MSR is illustrated in Figure 2. 
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63            31  30 29         26  25 24  23          19  18 17   15                 13  12  11        0 

Reserved O  Reserved    Threshold  ESCR Select E Reserved 

 

Figure 2.  CCCR layout 

Bit 0-11: Reserved. 

Bit 12: Enable flag – enable events counting  

Bit 13-15: ESCR select – select the ESCR to be used to select the events to be  

counted. 

Bit 16-17: Reserved – must be set to 11B. 

Bit 18: Compare flag – enable filtering of the event counting. 

Bit 19: Complement flag – configure how the event count is compared with the  

threshold value. 

Bit 20-23: Threshold value – set the threshold value to be compared with. 

Bit 24: Edge flag – enable rising edge detection of filtering event counts. 

Bit 25: FORCE_OVF flag – force a counter overflow on every counter increment. 

Bit 26: OVF_PMI flag – enable a performance monitor interrupt (PMI) to be  

generated when the counter overflow occurs. 

Bit 30: Cascade flag – enable one counter in a pair to start counting when the other  

counter overflows. 

Bit 31: OVF flag – indicate that the counter has overflowed when set 
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