
Louisiana State University
LSU Digital Commons

LSU Master's Theses Graduate School

2009

Sophisticated denial-of-service attack detections
through integrated architectural, OS, and
appplication level events monitoring
Ran Tao
Louisiana State University and Agricultural and Mechanical College, rtao2@tigers.lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses

Part of the Electrical and Computer Engineering Commons

This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU
Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact gradetd@lsu.edu.

Recommended Citation
Tao, Ran, "Sophisticated denial-of-service attack detections through integrated architectural, OS, and appplication level events
monitoring" (2009). LSU Master's Theses. 979.
https://digitalcommons.lsu.edu/gradschool_theses/979

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_theses/979?utm_source=digitalcommons.lsu.edu%2Fgradschool_theses%2F979&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu

SOPHISTICATED DENIAL-OF-SERVICE ATTACK DETECTIONS
THROUGH INTEGRATED ARCHITECTURAL, OS, AND

APPLICATION LEVEL EVENTS MONITORING

A Thesis
Submitted to the Graduate Faculty of the

Louisiana State University and
Agricultural and Mechanical College

in partial fulfillment of the
requirements for the degree of

Master of Science in Electrical Engineering

In
The Department of Electrical and Computer Engineering

By
Ran Tao

Bachelor of Engineering in Electrical Engineering,
University of Electronic Science and Technology of China, 2005

August 2009

 ii

Acknowledgements

This work could not have been completed without the help and support from a lot of

people I am grateful to.

I would like to thank Dr. Lu Peng, my advisor, for the guidance and suggestions through

out the whole research study to help me work towards the completion of my Master program.

I would like to thank Dr. Li Yang from Department of Computer Science and Engineering,

University of Tennessee at Chattanooga, for her explanations of network security background

knowledge and assistance with the experimental procedure. I also wish to thank Dr. Bin Li

from Department of Experimental Statistics, Louisiana State University, for giving the

instructions on the R software statistical tool, and the help with statistical analysis.

Additionally, I really appreciate Dr. R. Vaidy and Dr. A. Skavantzos for agreeing to be

my committee member and taking the time to attend my defense.

I am extremely grateful to my parents for always being there for me, and continued

encouragement and support for me to finish my study in LSU. I also want to express my

sincere gratitude to all my friends for making my life delightful.

 iii

Table of Contents

Acknowledgements..ii

List of Tables ...v

List of Figures ...vi

Abstract ..vii

Chapter
1. Introduction...1

1.1 Overview...1
1.2 Major Contributions..3
1.3 Thesis Outline ...4

2. Background and Basic Concepts ..5

2.1 Types of Intrusion Detection Systems ..5
2.1.1 Host-based Intrusion Detection System (HIDS)..5
2.1.2 Network Intrusion Detection System (NIDS)..6

2.2 IDS Methodologies ...7
2.2.1 Signature-based IDS ..7
2.2.2 Anomaly-based IDS...7

3. Multi-Level Intrusion Detection System ..9

3.1 Methodology...9
3.2 IDS Framework...10
3.3 Statistical Model ...12

4. Implementation of Multi-Level IDS ...15

4.1 Overview...15
4.2 Application Level Parser...15
4.3 OS Level System Call Tracking..17
4.4 Architectural Level Kernel Module ..17

4.4.1 Performance Monitoring Counters ..18
4.4.2 Implementation of Kernel Module...20

5. Datasets Generation ..22

5.1 System Environment...22
5.2 Developed Denial-of-Service Exploits ...22
5.3 Real-world Exploits ..24

6. Results and Analysis ...26

6.1 Performance Metrics...26
6.2 IDS Performance Comparison ..26

6.2.1 Evaluation with Developed Exploits ...27

 iv

6.2.1.1 Two Level Feature Sets..27
6.2.1.2 Three Level Feature Set...29

6.2.2 Evaluation with Mixed Dataset..31
6.2.3 Evaluation with Real-World Local Exploits ..32

7. Related Work ..38

8. Conclusions...41

References..42

Appendix A. Buffer Overflow IDS...44
1. Background..44
2. Behavior of BoF Attacks..45
3. System Call Tracking...47
4. IDS Implementation...47
5. IDS Performance..48

Appendix B. Control Register Layout for Pentium D ..50

Vita...52

 v

List of Tables

Table 3-1. Application Level Features..11

Table 3-2. Architectural Level Features ...11

Table 3-3. OS Level Features ...12

Table 4-1. List of registers used to monitor CPU performance..18

Table 4-2. PC MSR and control registers used...19

Table 5-1. The self-developed DoS exploits...23

Table 5-2. Dataset construction ..23

Table 5-3. Real-world remote DoS exploits ...25

Table 5-4. Real-world local DoS exploits...25

Table 6-1. Measurements of IDS System ...26

Table 6-2. False alarm rate of IDS of one level and two level feature sets27

Table 6-3. Sample records ..28

Table 6-4. False alarm rate of IDS for different feature sets ..31

Table 6-5. IDS performance with mixed dataset ..32

Table 6-6. Dataset constructed using developed exploits ...33

Table 6-7. Dataset constructed using mixed exploits ...33

Table 6-8. IDS performance comparison..35

 vi

List of Figures

Figure 1-1. Framework of multi-level IDS...3

Figure 2-1. HIDS Topology..5

Figure 2-2. NIDS Topology..6

Figure 3-1. The framework of our IDS...10

Figure 4-1. Network packet header...16

Figure 4-2. Workflow of application level parser...16

Figure 5-1. Pseudo code snipet for BSB DoS exploits ...23

Figure 6-1. Detection rate of IDS with one level and two level feature sets27

Figure 6-2. Detection rate of IDS with different feature sets ...31

Figure 6-3. IDS performance comparison ..34

 vii

Abstract

As the first step to defend against DoS attacks, Network-based Intrusion Detection

System is well explored and widely used in both commercial tools and research works. Such

IDS framework is built upon features extracted from the network traffic, which are

application-level features, and is effective in detecting flooding-based DoS attacks. However,

in a sophisticated DoS attack, where an attacker manages to bypass the network-based

monitors and launch a DoS attack locally, sniffer-based methods have difficulty in

differentiating attacks with normal behaviors, since the malicious connection itself behaves in

the same manner of normal connections. In this work, we study a Host-based IDS framework

which integrates features from architectural and operating system (OS) levels to improve

performance of sophisticated DoS intrusion detection. Network traffic collected from a

campus network, and real-world exploits are used to provide a realistic evaluation.

 1

Chapter 1

Introduction

1.1 Overview

Denials of Service (DoS) attacks impose serious threat on the availability and quality of

Internet services [15]. They exhaust limited resources such as network bandwidth, DRAM

space, CPU cycles, or specific protocol data structures, inducing service degradation or

outage in computing infrastructures for the clients. System downtime resulting from DoS

attacks could lead to million dollars’ loss.

Generally, DoS attacks can be either flooding-based or software exploit-based. In a

flooding-based DoS attack, a malicious user sends out a tremendously large number of

packets aiming at overwhelming a victim host. For example, in a SYN-flooding attack, a

significant number of TCP SYN packets are sent towards a victim machine, saturating

resources in the victim machine. We can observe a surge of TCP connections in a short time,

which are modeled by a tuple of application features <source IP, destination IP, source port,

destination port>. In exploit-based DoS attacks, specially crafted packets are sent to the

victim system targeting at specific software vulnerabilities in the operating system, service or

application. The success of exploitation will either overwhelm or crash the target system.

An existing solution to the exploit-based attacks is to patch and update software frequently.

 Currently, research work on DoS intrusion detections mainly rely on Network-based

Intrusion Detection Systems (NIDSs) [3][5][6][7][8][10][21]. The NIDSs monitor features

extracted from network packet headers at the application layer such as packet rate and traffic

volume. Ramp-up behaviors and frequency domain characteristics are also studied to aid in

 2

improving the accuracy and performance of IDS [3][6]. On the other hand, Host-based

Intrusion Detection Systems (HIDSs) which widely employ audit trails and system call

tracking can effectively identify buffer overflow (BoF) attacks [1][2][19]. However, the DoS

attacks are not easily observed by such an HIDS and not widely researched in the HIDS

literature. Some researchers have proposed to limit the bound of certain system calls [1] such

as fork(). However, with the advent of large-scale application software, such bounds may

seriously impair the performance of normal applications. Moreover, DoS attacks may not

involve huge number of system calls at all. Therefore, a more generic solution is needed to

detect DoS attacks.

When increasingly sophisticated techniques are adopted by attackers, multi-tier attacks

and IP spoofing are emerging to amplify destructive effects and evade detections. The attack

patterns or behaviors will be difficult to identify by using only header-based network traffic

analysis. For example, in a complicated scenario that an attacker gets around the network

monitoring sensors and launches DoS attacks locally, a NIDS may not be able to detect this

intrusion. In such a scenario, non-privileged access is good enough to successfully initiate a

DoS attack against the host machine: once the attacker obtains the access to the victim

machine, even if it is not root-privileged and difficult to further elevate to carry out other

destructive or stealthy behaviors, he/she can still easily upload a DoS daemon to massively

consume the machine’s limited resources. Instead of network information only, information

originated and resided on the victim machine should be used to track and monitor such

undergoing attacks in this case.

 3

1.2 Major Contributions

In this work, we propose an HIDS with multi-level integrated information from

application, operating system (OS), and architecture levels to improve the detection rate of

sophisticated DoS attacks. Figure 1-1 illustrates the framework of our proposed IDS

framework. At different levels, we use different tools or schemes to collect and extract typical

features of possible intrusions. According to our experiments, even if DoS attacks could

successfully evade captures of NIDS monitors, architectural behaviors will still be triggered:

tremendous jumps of Instruction Count, Cache Miss, Bus Traffic can be found. Based on this

observation, a novel HIDS employing a modern statistical Gradient Boosting Trees (GBT)

model is proposed to detect sophisticated DoS intrusions through the integration of

application, OS, and architectural features. Our experiments show that the inclusion of

architectural features can significantly improve the detection rate of such evasive DoS

intrusions

Figure 1-1. Framework of multi-level IDS

 4

1.3 Thesis Outline

The rest of this thesis is organized as follows: background knowledge is introduced in

chapter 2. Our proposed IDS methodology and framework is elaborated in chapter 3. Chapter

4 provides the technical details of the multi-level IDS implementation. Dataset generation is

described in chapter 5. The experiment results are shown and discussed in chapter 6. Related

work is discussed in chapter 7. We conclude the work in chapter 8.

 5

Chapter 2
Background and Basic Concepts

2.1 Types of Intrusion Detection Systems

 Intrusion Detection Systems can be broadly divided into two categories: Host-based and

Network-based Intrusion Detection System. Other types of IDSs could be considered variants

or hybrid of these two basic types.

2.1.1 Host-based Intrusion Detection System (HIDS)

HIDS monitors and analyses the internal behavior of a computing system, including all

or part of the dynamic behavior and the state of a computer system. Event logs, audit trails,

system call tracking are widely utilized to identify and defend against attacks.

Figure 2-1. HIDS Topology

 6

The topology of HIDS is shown in Figure 2-1. Machines labeled in blue are installed

with the HIDS. Since the IDS is host-based, actual installation on the system under monitor is

required. Otherwise, the IDS can not gain full access to the internal system information.

2.1.2 Network Intrusion Detection System (NIDS)

 As opposed to monitoring the activities that originates on a particular system, NIDS

focus on external information outside monitored target. It sniffers network traffic and analyze

all in-coming packets, looking for suspicious patterns of malicious connections.

Figure 2-2. NIDS Topology

As shown in Figure 2-2, the NIDS highlighted in blue is usually placed behind the LAN

firewall. It can be implemented as software, or appliance hardware. It keeps monitoring the

traffic coming from outside network and within the LAN, and it also analyzes the content of

 7

individual packets in search for malicious traffic. To monitor a LAN, only one such device is

required to install. Comparing to HIDS, NIDS adopts a centralized infrastructure in the LAN.

2.2 IDS Methodologies

Signature and anomaly detection are two primary IDS approaches. They have their own

advantages and disadvantages, and actually, they complement each other in the intrusion

detection field.

2.2.1 Signature-based IDS

 Signature-based IDS employs specifically known patterns of misuse behavior to predict

potential malicious activities. These patterns, i.e. signatures, could be the number of failed

log-ins during a certain time frame, or specific patterns matching a portion of network

packets.

PROS: Signatures are easy to develop and understand if you know what malicious

behavior you're trying to identify.

CONS: Virus database must be constantly updated. A signature must be created for every

attack, and novel attacks cannot be detected.

2.2.2 Anomaly-based IDS

 Anomaly-based IDS is designed to uncover misuse behavioral patterns by examining

network traffic and system activities. They establish a baseline of normal behavior, observe

when current behavior deviates statistically from the norm, and flag those activities as

possible intrusions.

PROS: Anomaly-based IDS has the ability to promptly detect novel attacks that are

 8

unknown or for which signatures are not developed yet.

CONS: As normal behavior can change easily and readily, there is no standard normal

behavior profile. Anomaly-based IDS systems are prone to substantial false positives where

attacks may be reported based on deviations from the norm patterns.

 9

Chapter 3

Multi-Level Intrusion Detection System

3.1 Methodology

 In our design, we integrate the information which only resides on the host machine under

attacks, and then construct a multi-layer IDS to detect sophisticated DoS attacks. The

correlation of system architectural behaviors and DoS attacks is analyzed by a modern

statistical model employing Gradient Boosting Trees techniques. Architectural features are

explored to improve the IDS performance. Our proposed scheme involves multiple steps

listed as follows.

 Step 1: Data Collection

We use the tcpdump utility to record header information of network packets

transmitting towards/from the host computer. Architectural behaviors are recorded using

a device driver which periodically samples the CPU performance counters and dumps

out the performance variation trace. System call tracking function embedded in the Linux

kernel is utilized to record OS level events.

 Step 2: Feature Extraction and Correlation

Our desired application level features are extracted using a custom network traffic

parser which models records by network sessions identified by src_ip:src_port <->

dst_ip:dst_port. OS level features are extracted from a system call tracking function

embedded in the kernel. Architectural records are processed as a ratio of event numbers

during the current session to a pre-measured normal session without attacks.

 10

Figure 3-1. The framework of our IDS

Since features of different levels are obtained by different collecting processes, we

append a timestamp to each record for the correlation between architectural events and

application events during the same session.

 Step 3: Intrusion Prediction

As a standard workflow, in this step, each correlated record is fed to the statistical

model which has learned the patterns of normal and attack behaviors from the training

dataset. It will raise an alert if the given record deviates from normal behaviors.

3.2 IDS Framework

 The framework of our proposed intrusion detection system consists of a learning module

and an inference module as shown in Figure 3-1. The learning module is used to build up the

knowledge from an offline training dataset. The knowledge base contains a statistical model

which is learned from observed traffic, and has the ability to predict whether a network

connection is malicious or benign. The inference module is the analysis engine of our IDS. Its

task is to process the data collected from the sensors in order to identify intrusive activities.

 11

The training set and the real-time traffic include features from different levels as shown

in Table 3-1, Table 3-2 and Table 3-3.

1. Application (APP) Feature Set

Table 3-1. Application Level Features

Feature Name Description Type
protocol_type Type of the protocol, e.g., tcp, udp, etc. discrete
service Network service on the destination system, e.g., ssh,

http, telnet, etc.
discrete

duration Length of the connection continuous
size_from_client Number of data bytes from client to server continuous
size_from_server Number of data bytes from server to client continuous
packet_rate Number of two-way packets per second continuous
wrong_
checksum_rate

Percent of packets have wrong checksum continuous

2. Architectural (ARCH) Feature Set

Table 3-2. Architectural Level Features

Feature Name Description Type
instruction_
retired

Ratio of average instructions committed during a
session to a pre-measured normal session

continuous

L1_cache_miss Ratio of average L1 cache miss during a session to a
pre-measured normal session

continuous

L2_cache_miss Ratio of average L2 cache miss during a session to a
pre-measured normal session

continuous

bus_access Ratio of average bus transactions during a session to a
pre-measured normal session

continuous

We select these features because a typical network DoS attack can be monitored by

observing these events [22]. These events exhibit very obvious variations during DoS attacks.

 12

3. Operating System (OS) Feature Set

Table 3-3. OS Level Features

Feature Name Description Type
forked_socket_session Forked another network connection discrete
forked_shell Forked shell sessions discrete
forked_from_shell Forked from another network connection discrete
coincided_pid Shares a same pid as another different

network connection
discrete

3.3 Statistical Model

The statistical model that we employed for intrusion detection is based on Gradient

Boosting Trees (GBT), originally proposed in [4]. GBT is one of several techniques that aim

to improve the performance of a single model by fitting many models and combining them

for prediction. GBT uses two algorithms: “trees” from the Classification and Regression Tree

and “boosting” which builds and combines a collection of models, i.e. trees.

From a user’s point of view, GBT has three major advantages. First, GBT is inherently

non-parametric and able to handle mixed-type of input variables. Both discrete and

continuous data are supported. There is no need of data discretization. GBT does not need to

make any assumptions regarding the underlying distribution of the values for the input

variables. Thus, it relieves researchers from determining whether variables are normally

distributed, and making transformations if they are not. Second, the tree is adept at capturing

complex-structured behavior, i.e. complex interactions among predictors are routinely and

automatically handled with relatively few inputs required from the analyst. This is in marked

contrast to some other multivariate nonlinear modeling methods, in which extensive input

from the analyst, analysis of interim results, and subsequent modification of the method are

 13

required. Third, the tree is insensitive to outliers, and unaffected by monotone

transformations and differing scales of measurement among inputs. Despite clear evidence of

strong predictive performance, boosting-based learning methods have been rarely used in

computer intrusion detection [24].

 Consider the binary classification problem with n observations of the form {yi, xi},

i=1,…,n, where xi is a multi-dimensional input vector and yi is the binary response yi∈{-1,+1}.

In this paper, xi is the feature in multiple levels and yi is the prediction result, i.e., attack or

benign connection. The negative log-likelihood for the binomial model or deviance (also

known as cross-entropy) is used as the loss function:

() ()()fyfyL ˆ2exp1logˆ, −+=

The population minimizer of the loss function is at the true probabilities:

()
()()[] () ()

()⎥⎦
⎤

⎢
⎣

⎡
−=
=

==
x

xxxx
x |1Pr

|1Prlog
2
1,minarg *

| y
yffyLEY

f

Or equivalently:

() ()x
x *21

1|1Pr
fe

y
−+

==

where ()()[]xx fyLEY ,| is the expectation value of the loss function over Y given the input X.

The detailed algorithm for GBT in binary classification is the following.

1) Initialize () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−
+

=
y
yf i 1

1log
2
1ˆ

0 x , where y is the average for{ }iy .

2) Repeat for m = 1, 2, …, M:

a) Set the negative gradient:

()()
()

.,...,1 ,ˆ
ˆ,~
1

1 ni
f

fyLy
im

imi
im =⎥

⎦

⎤
⎢
⎣

⎡

∂
∂

−=
−

−

x
x

 14

b) { } ==
H
hhmR 1 H-terminal node tree based on { }n

iiimy 1,~ =x

c) ()()∑
∈

+=
hmi R

iihm fyL
x

x γγ
γ

ˆ,minarg

d) () () ()hmhmmm RIff ∈×+= − xxx γν1
ˆˆ

3) End algorithm.

Note that ν is the “shrinkage” parameter between 0 and 1 and controls the learning rate

of the procedure. Empirical results have shown that small values of ν always lead to better

generalization error rates [4]. In this study, we fix ν at 0.01. During each iteration, an

H-terminal node tree, which partitions the x space into H-disjoint regions, { }H
hhmR 1= , is

fitted based on the current negative gradient for the loss function.

 15

Chapter 4

Implementation of Multi-Level IDS

4.1 Overview

We summarize network traffic captured in a tcpdump file into high-level connections.

Specifically, a connection is a sequence of network packets starting and ending at some well

defined points in time, between which data flows under a well defined protocol from a source

IP address to a target IP address. Before processing the data with the IDS training algorithm,

raw network traffic has to be pre-processed and summarized into connections or high-level

events. Each connection is described with a set of features which IDS models can utilize to

detect possible intrusions.

4.2 Application Level Parser

Our modified parser based on an open source utility Chaosreader extracts desired

information in the application level out from the recorded tcpdump files, and groups packets

into sessions by src_ip:src_port <-> dst_ip:dst_port, thus we will obtain a set of preprocessed

data in the format that each entry represents a network connection, together with application

features flagged accordingly.

Our desired information is stored in different header levels, thus the parser strips the

headers level by level, and construct the features we need.

The workflow of the parser is shown in Figure 4-2.

 16

Figure 4-1. Network packet header

Figure 4-2. Workflow of application level parser

 17

4.3 OS Level System Call Tracking

At operation system level, we employ a system call tracking function based on

BackTracker [9] to record all system call driven events, and related network socket sessions.

We append a timestamp to every record; add full IP address and port number information to

all socket sessions, in order to correlate OS events with other level events. BackTracker

discovers sequences of steps that occurred during an intrusion. Starting at a single detection

point (e.g., a suspicious file), it identifies files and processes that could have affected that

detection point and displays chains of events in a dependency graph. BackTracker is able to

record every dependency-causing event among OS objects, and span up a dependency chain

starting from one object. Complete information such as process forking, file operations, and

program execution (which is important for security analysis), is recorded in a system-call

oriented manner.

4.4 Architectural Level Kernel Module

The Intel Pentium-D processor provides us with adequate performance counters to

illustrate the CPU’s dynamic performance profile. A kernel module is implemented to sample

the performance counters in regular intervals. We set the sampling interval to 0.5s, balancing

the tradeoff between system performance overhead and accuracy of monitored performance

variation. Thus, at regular interval, the values of these four architectural counters which have

most representative architectural variation under a DoS attack are recorded and dumped to a

trace file. The timestamp recorded together with other performance counters is used to

correlate architectural events with network connections parsed from tcpdump files.

 18

4.4.1 Performance Monitoring Counters

Performance monitoring is introduced in Pentium processor. A set of performance

monitoring registers are provided to monitor or measure processor performance profile. The

performance monitoring mechanism varies with processor families. The target system used in

the experiment is installed with Pentium-D processor, which features Intel NetBurst

Microarchitecture. 18 Performance Counter MSRs (PC MSR) are provided to count events.

Each PC MSR is associated with one Counter Configuration Control Register (CCCR) to set

up a specific counting method. Every PC MSR and CCCR pair is controlled by a subset of 45

Event Selection Control Registers (ESCR). Table 4-1 lists the registers we need to use to

sample CPU performance events. All registers are read/written using RDMSR, WRMSR, or

RDPMC instruction.

Table 4-1. List of registers used to monitor CPU performance

Register Name Function

MSR Model Specific Register Monitor performance, debug system,
enable/disable model specific functions,
etc.

PC MSR Performance Counter MSR Store actual event number

ESCR Event Selection Control Register Select events to be monitored by
specific PC MSR

CCCR Counter Configuration Control
Register

Set up the associated performance
counter to function in a specific style

 19

Table 4-2. PC MSR and control registers used to sample
desired architectural events

Event to Monitor Register Address Register Name

0x3b8 MSR_CRU_ESCR0
0x36c MSR_IQ_CCCR0

Inst_Retired

0x30c MSR_IQ_COUNTER0
0x3cc MSR_CRU_ESCR2
0x370 MSR_IQ_CCCR4

L1_Cache_Miss

0x310 MSR_IQ_COUNTER4
0x3a1 MSR_BSU_ESCR1
0x362 MSR_BPU_CCCR2

L2_Cache_Miss

0x302 MSR_BPU_COUNTER2
0x3a2 MSR_FSB_ESCR0
0x360 MSR_BPU_CCCR0

Bus_Access

0x300 MSR_BPU_COUNTER0

A specific procedure needs to be followed to correctly configure the control registers and

enable performance counters to count on the correct events:

Step 1: Identify events to monitor.

Step 2: For each selected event, choose an ESCR which support the event.

Step 3: Identify the CCCRs and PC MSRs associated with the ESCRs.

Step 4: Set up ESCR with correct event mask and privilege level.

Step 5: Set up CCCR with correct ESCR mask. (Cascading and event filtering are

optional)

Step 6: Set CCCR enable flag to start event counting.

Step 7: Sample PC MSRs to poll out CPU performance profile.

For those four architectural events we need to monitor, PC MSR and control registers

listed in Table 4-2 need to be configured or sampled.

 20

4.4.2 Implementation of Kernel Module

Although RDPMC instruction is allowed to execute in all privilege levels, control

registers have to be configured with WRMSR instruction, which can only be executed at

privilege level 0. Thus, a kernel module, i.e. device driver, is implemented to manipulate on

hardware registers, and obtain the information of system runtime performance variations.

Linux kernel allows kernel modules to be loaded and unloaded at run time, without rebooting

the system. It runs at privilege level 0 and has full access to all system devices.

A virtual file under /proc directory is also created to dump out information from kernel

space to user space. /proc is a virtual file system that contains a hierarchy of dynamic virtual

files. Those files represent current status of the kernel. They allow users and applications to

gain insight of system’s kernel status, and communicate configuration changes to the kernel.

The implemented module creates two directories under /proc; they serve as an interface

between kernel space and user space:

/proc/perf_mon/setting: Used to configure counter sampling

/proc/perf_mon/event: Used for user-mode application to poll out counter values.

The /proc/perf_mon/setting entry supports four types of command:

Start: Initiate all ESCRs and CCCRs, place sampling routine on wait queue to

periodically sample PC MSRs at predefined intervals.

 Clear: Set all control registers to zero, clear PC MSRs.

 Stop: Set all ESCRs and CCCRs to zero, stop event counting, but values in PC

MSRs are still preserved.

 Read: Increment internal read number counter.

 21

Once sampling routine is initiated, it will keep writing event numbers to the

/proc/perf_mon/event entry buffer. Since memory space for a /proc entry is limited, we

implemented a user mode application to flush all event numbers from /proc/perf_mon/event

entry at pre-calculated intervals. And the event entry will be refreshed after all contents are

dumped out.

 22

Chapter 5

Datasets Generation

5.1 System Environment

 We use an Intel Pentium-D PC installed with Redhat Linux 9.0 as target system, and

another machine installed with Suse 10 as attacker/client system. Both machines are

connected to a department LAN. Exploits are launched from attacker to target system.

Network traffic information is captured with the tcpdump tool.

5.2 Developed Denial-of-Service Exploits

Nowadays more sophisticated techniques are emerging to escape IDS detections; in this

work, we assume crackers have gained unauthorized access to the victim machine (they may

only have non-privileged access), and then intend to launch local DoS daemons. To emulate

this scenario, we design five local DoS exploits which are used to model local DoS exploits

exhausting different system resources. Each exploit target a specific type of system resources,

intentionally exhausting a particular resource, and rendering the system unavailable to

legitimate users. Table 5-1 outlines the detailed descriptions of these exploits. First three

attacks are traversing a certain memory space with the stride of the cache line size (64 bytes

in our system). In this case, regardless of set associativity of data cache, constant cache miss

will be generated upon each memory access.

 23

Figure 5-1. Pseudo code snipet for BSB DoS exploits

Table 5-1. The self-developed DoS exploits

Attack Type Description
L2 Cache DoS Target L2 cache, sweep through L2 cache space
BSB DoS Target backside bus bandwidth, sweep through twice the L1 D$ size,

saturate backside bus
FSB DoS Target front-side bus bandwidth, sweep through twice L2 cache size,

saturate front-side bus.
Memory DoS Target memory space; keep allocating memory space, max out

memory usage.
Loop DoS Target CPU usage, infinite dummy instruction.

Table 5-2. Dataset construction

Dataset Combination
Training 1 l2 + bsb + fsb + mem
Training 2 l2 + bsb + fsb + loop
Training 3 l2 + bsb + mem + loop
Training 4 l2 + fsb + mem + loop
Training 5 bsb + fsb + mem + loop
Testing l2 + bsb + fsb + mem + loop + noise

 24

We launch these exploits multiple times over a LAN to obtain five different training

datasets, each containing only four exploit types. Details of the training and testing sets

construction are listed in Table 5-2.

The testing dataset includes a full set of the above five exploit types, 25 attack instances

in total, and is injected with noise traffic data of CPU or memory intensive operations such as

tar, compile, scp etc. Those noises are included in order to evaluate the ability of the IDS to

differentiate normal operation and attack traffic. In addition, we also include 3630 normal

connections.

5.3 Real-world Exploits

Apart from our crafted exploits, we also evaluate our proposed scheme using mixed data

with real-world remote DoS exploits, and dataset of real-world local DoS exploits. The

descriptions of real-world remote DoS exploits in the experiment are outlined in Table 5-3,

and description of those local DoS exploits are listed in Table 5-4.

We divide the mixed data of hand-crafted exploits and real-world remote DoS expoits

into five training datasets and one testing dataset. Training data contains partial set of all

exploits, while the testing data contains a full set of all exploit types. Testing data also

include significant amount of noise traffic, which is injected intending to evaluate the ability

of the IDS to detect exploits never seen before and avoid the false alarms.

The real-world local DoS exploits will be used separately to evaluate the ability of our

proposed IDS to identify novel local DoS attacks it has not seen before.

 25

Table 5-3. Real-world remote DoS exploits

Attack Description
CVE-2003-0132 Apache memory leak, drains memory via large

chunks of linefeed characters.
CVE-2003-0543 OpenSSL integer overflow, causes Apache server to

enter CPU intensive loop.
CVE-2004-0493 Apache memory exhaustion.
CVE-2004-0942 Apache multiple space header DoS, drains CPU

resource.

Table 5-4. Real-world local DoS exploits

Attack Description
Memory leak local DoS - 1 Kernel vulnerability causing exhaustion of

system memory resource, inducing system crash.
Memory leak local DoS - 2 Kernel vulnerability allows non-privileged users

to read kernel memory and system performance
degradation.

 26

Chapter 6
Results and Analysis

6.1 Performance Metrics

We use the typical four measurments to evaluate performance of our IDS. True positive

(TP) rate is the ratio of the number of correctly detected attacks and the total number of

attacks. The true negative (TN) rate is the ratio of the number of normal connections and the

total number of normal connections. The false positive (FP) rate is the ratio of the number of

normal connections that are incorrectly classified as attacks and the total number of normal

connections. False negative (FN) is the rate of missed attacks.

Table 6-1. Measurements of IDS System

 Predicted Normal Predicted Intrusions

Actual Normal
Connection

True Negative (TN)

False Positive (FP)

Actual Intrusions
(Attacks)

False Negative (FN)

True Positive (TP)
(correctly detected
intrusions)

6.2 IDS Performance Comparison

We conduct three sets of experiments, to evaluate the ability of different IDS schemes to

identify simulated and real-world DoS exploits.

 27

6.2.1 Evaluation with Developed Exploits

Two sets of experimental results are shown to demonstrate how architectural events help

to increate the true positive rate, and how OS events assist in decreasing false positives.

6.2.1.1 Two Level Feature Sets

Firstly, we train an IDS using the GBT model with only the application level features

listed in Chapter 3. Results shown in Figure. 6-1 reveal that IDS built on the application

features alone can only recognized around 30% of such DoS attacks (refer to the light bar

group in Figure 6-1). These testing results demonstrate that the APP features are not

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5
Training Set

Tr
ue
 P
os
it
iv
e
ra
te

APP APP + ARCH

Figure 6-1. Detection rate of IDS with one level and two level feature sets

Table 6-2. False alarm rate of IDS of one level and two level feature sets

False Positive Rate (%) Training
Set APP APP + ARCH
1 0 0.19
2 0 0.08
3 0 0.19
4 0 0.19
5 0 0.19

 28

sufficient to detect the DoS intrusions accurately. Over half of attack instances successfully

escape from application level monitor.

This result is expectable since we assume that our multi-step attacks can bypass the

application level feature monitors and launch DoS exploits locally. The network connection

behaves exactly the same as other normal connections. No typical properties such as traffic

bursts of the DoS attacks could be observed at the application level. Therefore, the IDS can

not differentiate them from other normal operations.

To demonstrate the effectiveness of architectural monitors, we conduct another

experiment with added architectural features. The results are illustrated in the gray bar group

of Figure 6-1. From the figure, we can see that the capability to detect novel multi-step DoS

attacks is greatly improved to an average of 91.2% by integrating

ARCH features. For training set 3, 4 and 5, we achieve a detection rate almost to 100%.

A few example records are shown in Table 6-3 to illustrate the different behaviors of

malicious and benign operations monitored from multi-level features. For the ARCH event

columns, we list the ratio of the numbers of the event during a session to a pre-measured

normal session. The first entry is a normal ssh connection that is commonly seen in a local

Table 6-3. Sample records. The label is the actual attribute of the
connection, pred_1 is prediction from APP framework, pred_2

is the prediction result from APP+ARCH framework

Num Service type duration size_server size_client pkt_r wrong_cks_r ic l1_m l2_m bus_acc label pred_1 pred_2

1

2

3

4

...

ssh tcp 77.26 3993 2004 2.01 0.05 1.14 1.48 2.67 1.73 normal normal normal

ssh tcp 355.16 0407 2148 0.77 0.05 55.75 3602.53 1.18 0.96 attack normal attack

ssh tcp 219.15 11393 3540 1.62 0.03 264.11 0.81 0.84 0.87 attack normal attack

ssh tcp 228.68 17121 3300 1.97 0.03 11.73 2.56 3.27 25.56 attack normal attack

...

 29

network. The next three entries are BSB, loop, memory DoS attacks. Each of them has

manifest architectural variations (see the bolded italic numbers), but the application (APP)

level features stay in the same pattern as a normal connection. This explains why in a

sophisticated DoS attack scenario, intrusions can escape detection from APP level. The IDS

built with APP features only can not distinguish such attacks from other normal sessions.

Therefore, it lacks sufficient information to make a correct judgment.

However, ARCH features also bring in false positives compared to pure APP feature

framework as shown in Table 6-2. Even though the false positive rate is as low as an average

of 0.17%, considering the amount of normal connections is large, over 3000 records, the

actual number of false alerts is not negligible. The most challenging issue to integrate ARCH

features into IDS is how to reduce false positives, since at ARCH level, memory or CPU

intensive workloads, and malicious DoS attacks have similar characteristics which is difficult

to differentiate at the this level.

6.2.1.2 Three Level Feature Set

To reduce false positives brought in by ARCH events, we first analyze the way by which

crackers may log-in to the victim system. In practice, remote Buffer-Overflow (BoF) and

guessing password are mainly used to gain unauthorized access to the target machine. After

crackers gain illegal access to the victim system, a DoS attack may be launched. In this paper,

we assume that an illegal user will conduct a BoF attack first to obtain access to the target

system then start a DoS attack. In this scenario, we enforce the IDS with BoF detection

capability with OS level monitors and then write prediction results into the system event log.

We can distinguish between a normal heavy duty program and an illegal DoS attack in this

 30

way: we search the event log and check if a BoF exploit was found in this connection before.

If it was found and architectural events also show an abnormal pattern, we think that the

system is under DoS attack; otherwise, we believe that there is a legal heavy duty program

running on the target machine, i.e., the system is in a normal state.

We conducted experiments integrating OS level features into the IDS to detect remote

BoF attacks. The OS features we employed include: forked_socket_session, forked_shell,

forked_from_shell, coincided_pid. Those features are obtained using BackTracker’s [9]

system call tracking function embedded in the Linux kernel. Through an experiment, we

achieve an average True Positive rate of 90.3%, True Negative rate of 99.6%. Detailed

experiment procedure is elaborated in Appedix A.

With the highly accurate BoF detection rate, we apply the results into DoS detections in

the way described in the last paragraph to reduce false alarm rate induced by ARCH monitors.

As shown in the last column of Table 6-4, the false positive rate is almost reduced to zero in

all of the cases. The true positive rate is slightly affected as shown by the dark bar in Figure

6-2. But its average, 90.81%, is still considered as good performance in detecting

sophisticated DoS attacks.

Note that we only take BoF for example here, just to demonstrate that additional

information could be utilized to reduce the false positives. Guessing password can also be

accurately identified by extracting other information from the application payload data.

 31

6.2.2 Evaluation with Mixed Dataset

Apart from our crafted exploits, we also evaluate our proposed scheme using mixed data

with real-world remote DoS exploits. Remote DoS exploits involve a simpler attack scenario.

Attackers only need to initiate a one-step procedure: launch the attack against a target system

remotely. Using this set of datasets, we intend to simulate a realistic situation that both

remote DoS and sophisticated DoS exploits are mixed together. Real network traffic tend to

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 0 0%

1 2 3 4 5

Train ing Se t

Tr
ue

 P
os
it
iv
e
ra
te

APP APP + ARCH APP + ARCH + O S

Figure 6-2. Detection rate of IDS with different feature sets

Table 6-4. False alarm rate of IDS for different feature sets

False Positive Rate (%) Training
Set APP APP + ARCH APP + ARCH + OS
1 0 0.19 0.00051
2 0 0.08 0.00022
3 0 0.19 0.00051
4 0 0.19 0.00051
5 0 0.19 0.00051

 32

be sophisticated, it will rarely contain only one type of attacks. The descriptions of real-world

remote exploits in the experiment are given in Table 5-3.

We also divide the data into five training datasets and one testing dataset. It is guaranteed

that two exploit types are absent from the training data, while the testing data contains a full

set of all exploits. A huge number of noise traffic is injected into the testing data. The

strategy is intended to evaluate the ability of the IDS to detect exploits never seen before and

avoid the false alarms. Results using mixed dataset (shown in Table 6-5) also prove the

effectiveness of integrating architectural level features. In this experiment, the total number

of normal connections is 9412 and the total number of attack instances of 472.

6.2.3 Evaluation with Real-World Local Exploits

Having shown how ARCH features benefits the IDS using our developed exploits, we

test the system with two real-world local DoS exploits (Table 5-4) separately to further

demonstrate the soundness of our work. These two exploits have been used by real hackers in

the wild, to impair production servers.

We use two sets of training data: one constructed with only the hand-crafted exploits, the

Table 6-5. Our IDS performance for mixed datasets

of False Alarms # of Missed Attacks Training
Set APP APP +

ARCH + OS
APP APP +

ARCH + OS
1 28 12 2 0
2 33 11 2 0
3 50 11 3 0
4 36 17 2 0
5 47 9 2 0

 33

other one mixed with real-world remote DoS exploits (Table 6-6 and Table 6-7). Note that for

both sets, first five training data only contains a subset of all exploit types, and the training 6

contains a full set of all exploit types.

Table 6-6. Dataset constructed using developed exploits

Dataset Combination
Training 1 l2 + bsb + fsb + mem
Training 2 l2 + bsb + fsb + loop
Training 3 l2 + bsb + mem + loop
Training 4 l2 + fsb + mem + loop
Training 5 bsb + fsb + mem + loop
Training 6 l2 + bsb + fsb + mem + loop

Table 6-7. Dataset constructed using mixed exploits

Dataset Combination
Training 1 l2 + bsb + fsb + mem + real_world_exploit
Training 2 l2 + bsb + fsb + loop + real_world_exploit
Training 3 l2 + bsb + mem + loop + real_world_exploit
Training 4 l2 + fsb + mem + loop + real_world_exploit
Training 5 bsb + fsb + mem + loop + real_world_exploit
Training 6 l2 + bsb + fsb + mem + loop + real_world_exploit

Figure 6-3 shows the comparison of True Positive rates using different training and

testing datasets. Table 6-8 outlines the number of false alarms of different experimental sets.

In Figure 6-3, group a’s results are based on training sets listed in Table 6-6, which are

combinations of self-developed exploits. The APP + ARCH IDS achieves an average

detection rate of 80.6% for Mem-leak-dos-1 attack, and 80.3% for Mem-leak-dos-2 attack

(five out of six datasets have 100% detection rate). Meanwhile, the APP IDS’s average

detection rates in these two cases are 19.4% and 0 separately.

 34

a(1) Detection rate of IDS with different feature sets tested using Mem-leak-dos-1 exploit

a(2) Detection rate of IDS with different feature sets tested using Mem-leak-dos-2 exploit

b(1) Detection rate of IDS with different feature sets tested using Mem-leak-dos-1 exploit

b(2) Detection rate of IDS with different feature sets tested using Mem-leak-dos-2 exploit

Figure 6-3. IDS performance comparison (group a’s training data consists

of hand-crafted exploits, group b’s training data consists of mixed-data)

 35

The reason why the APP + ARCH IDS detects none of the mem-leak-dos-2 exploit when

trained using training set 2 is that the exploit type missing from the training set, which is

mem-dos, has the exact same architectural features as the attack. Therefore, even though the

IDS is well trained with other exploit types, it fails to detect this particular exploit efficiently.

The result of training set 6 tells that when trained with full set of all exploit types, the IDS

can accurately identify all intrusion instances.

Table 6-8. IDS performance comparison (in each table, left group of
columns indicates the IDS is trained with self-developed exploits, right

group’s training data is based on mixed datasets)

a. Number of false alarms for Mem-leak-dos-1

of False Alarms
Crafted Exploits Crafted + Real-world

Exploits

Training
Set

APP APP + ARCH APP APP + ARCH
1 2 0 1 2
2 1 0 1 0
3 1 0 1 0
4 1 0 1 0
5 1 0 1 0
6 1 0 1 0

b. Number of false alarms for Mem-leak-dos-2

of False Alarms
Crafted Exploits Crafted + Real-world

Exploits

Training
Set

APP APP + ARCH APP APP + ARCH
1 1 0 1 2
2 1 0 4 0
3 2 0 2 0
4 1 0 0 0
5 1 0 0 0
6 1 0 0 0

 36

For group b, which is trained with mixed datasets of developed and real-world remote

exploits as listed in Table 6-7, the average TP rates for APP + ARCH IDS are 88.9% and

100% for Mem-leak-dos-1 and Mem-leak-dos-2 separately; APP IDS can only detect 30.6%

or none of those two types of attack instances. The injected real-world remote exploits in the

training data improve the detection rate of APP + ARCH IDS as compared to group a. They

remedy the degradation induced by absence of the mem-dos from the training data 2, since

they bring in similar exploit types that have the same architectural behavior as the testing

exploit. The 100% accuracy is obtained in attack detection using this set of training data. This

indicates that with more comprehensive training data, our proposed IDS can achieve more

accurate detection results.

Number of false alarms is shown in Table 6-8 by grouping the results by the testing data.

Table 6-8(a) lists the results for two sets of training data detecting mem-leak-dos-1 attack.

The APP IDS raises an average of 1.17 or 1 false alarm for two training sets, and the APP +

ARCH IDS raises 0.33 or no false alarm for those two training sets. When the volume of

network traffic grows, the difference of number of false alarms raised by the two IDSs will

increase significantly. Table 6-8(b) shows the average number of false positives for APP IDS

is 1.17 and 1 tested using mem-leak-dos-2 exploit, while the average number is 0 and 0.33 for

APP + ARCH IDS.

In conclusion, the testing results also demonstrate that ARCH features are of significant

use in identifying sophisticated DoS attacks. APP features alone can not reveal the intrusive

behaviors by monitoring at the application level. By using our crafted exploits or real-world

exploits, attackers can manage avoid detection by APP monitors, and directly induce drastic

system performance degradation, with the APP monitors still showing everything is normal.

 37

With addition of ARCH features, alarms will be triggered in this case because DoS attack can

not be achieved without inducing numerous ARCH level activities. Even though attackers

could escape from being caught at other levels, ARCH features will show all suspicious

activities.

 38

Chapter 7

Related Work

Modern DoS attacks employ many advanced and sophisticated techniques to amplify the

damage and elude detections or mitigations of countermeasures. IP spoofing is widely

adopted by hackers to mask the real source of attacks, or launch reflective DoS attacks;

Distributed DoS is used to initiate attacks from multi-source; low-rate pulsing method is

utilized to reduce average packet rate and evade network monitors. Based on a header

analysis, frequency domain characteristics are studied to improve the IDS performance [3][6],

a ramp-up behavior is also considered as a way to distinguish between single- or multi-source

attacks. In [8][10], authors propose to take a spectral analysis to detect shrew attacks which

consist of short time bursts repeating at a maliciously chosen low frequency. This kind of

low-rate attack sends out packets at certain fixed intervals, to intentionally reduce the average

packet rate, rendering the IDS unable to discover undergoing attacks. To defend against IP

spoofings, various off-line IP trace-back techniques are proposed to pinpoint the real origin of

DoS attack [17][18], some on-line countermeasures are also developed to filter out those

spoofed packets, help sustain service availability during attacks: [7] presents a Hop-Count

Filtering scheme to utilize the Time-to-Live(TTL) value in the IP header to filter out spoofed

IP packets.

Recent work on intrusion countermeasures include machine learning IDS techniques,

alert correlation, alert fusion and feature analysis. Machine learning techniques, such as

decision tree, neural network, Bayesian network, are applied to detect network intrusions.

Alert correlation attempts to correlate IDS alerts based on the similarity between alert

 39

attributes, previously known attack scenarios, or prerequisites and consequences of known

attacks [16]. Alert fusion combines detection outputs of the same attack from different

independent detectors. Feature Analysis tries to optimize the information gained from

multiple dimensional features through feature bagging, relevance and redundancy analysis,

and feature weight classification [11][13][14][23].

In the HIDS literature, various techniques utilizing system call tracking and auditing trails

are proposed. System call arguments are integrated to capture data-flow behaviors of

programs, and improve attack detections in HIDS [2]. A policy-driven solution is presented

in [1] to define and enforce process behavior rules controlling processes’ access to system

resources. All system behaviors are monitored in real-time by a modified kernel.

Basically, research works investigating DoS attack utilize sniffer-based methodologies.

They only rely on analyzing network traffic information at the application level. These

network-based schemes suffer from fast traffic, switched network, information encryption,

and most importantly, they have little knowledge of what is really going on in the victim

machine. Significant useful information on the victim host is neglected. HIDS against DoS

attacks are not widely researched since it is difficult to find a generic and low-cost way to

defend against such attacks. We propose to utilize the strong correlation of architectural

behaviors with DoS attacks, and employ multi-layer features to construct an IDS model.

Close to our work, Woo and Lee [22] have observed performance degradation of

multi-threaded workload under architectural DoS attacks. However, they do not further study

the correlation of architectural behavior and DoS attacks and apply into an IDS in identifying

and preventing such attacks. In our work, we are exploring architecture features to enrich the

existing feature set used for intrusion detection research and demonstrate its effectiveness in a

 40

systematic approach. OS level system events are also employed in our integrated IDS to

reduce the false alarms. R. Tao et al. [19] has proposed to use architectural features to

improve sophisticated DoS attack detections, which is the basis of our work. We have

extended the work and evaluated our IDS using more comprehensive datasets to further prove

the soundness of the multi-level IDS.

 41

Chapter 8

Conclusions

We have conducted experiments to demonstrate that an IDS using only application

features failed to detect sophisticated DoS attacks because these attacks appear normal if their

behaviors are only monitored by the application feature set. In order to detect the missed

DoS attacks, we use a combination of application, OS, and architecture feature set. Both

hand-crafted exploits and real-world exploits are used to evaluate the soundness of the

multi-level IDS. Our experimental results showed improved IDS performance. In summary,

we propose the idea that if crackers use sophisticated schemes to evade defense, the

architectural level behavior monitored in conjunction with application and OS level features

provides us valuable information to improve the IDS against such DoS attacks.

 42

 References

[1] S. N. Chari and P. C. Cheng. BlueBoX: A Policy-Driven, Host-Based Intrusion Detection
System. TISSEC, 2003

[2] A. Chaturvedi, E. Bhatkar, R. Sekar. Improving Attack Detection in Host-Based IDS by

Learning Properties of System Call Arguments. In Proceedings of the IEEE Symposium
on Security and Privacy, 2006

[3] Y. Chen, K. Hwang, and Y.-K. Kwok. Collaborative Defense against Periodic. Shrew

DDoS Attacks in Frequency Domain. TISSEC, 2005

[4] J. H. Friedman, Greedy function approximation: a gradient boosting machine. The Annals

of Statistics, 29, 2001, 1189–1232.

[5] M. Handley, C. Kreibich and V. Paxson. Network Intrusion Detection: Evasion, Traffic

Normalization, and End-to-End Protocol Semantics. USENIX Security Symposium, 2001.

[6] A. Hussain, J. Heidemann, C Papadopoulos. A Framework for Classifying Denial of

Service Attack. In Proceedings of ACM SIGCOMM, 2003.

[7] C. Jin, H. Wang and K. G. Shin. Hop-Count Filtering: An Effective Defense against

Spoofed Traffic. CCS 2003.

[8] C. Jin, H. Wang and K. G. Shin. On a New Class of Pulsing Denial-of-Service Attacks

and the Defense. NDSS, 2005.

[9] S. T. King, and P. M. Chen, 2003. Backtracking intrusions. SIGOPS Oper. Syst. Rev. 37,

5, 223-236, 2003.

[10] A. Kuzmanovic and E.W. Knightly. Low-Rate TCP-Targeted Denial of Service Attacks.

In Proceedings of ACM SIGCOMM, 2003.

[11] A. Lazarevic and V. Kumar, Feature bagging for outlier detection. In Proceedings of the

Eleventh ACM SIGKDD international Conference on Knowledge Discovery in Data
Mining, 2005

[12] W. Lee and S. Stolfo, Data mining approaches for intrusion detection, Proceedings of the

7th USENIX Security Symposium, San Antonio, TX, 1998.

[13] Y. Li and L. Guo, TCM-KNN scheme for network anomaly detection using

feature-based optimizations. In Proceedings of the ACM Symposium on Applied
Computing, 2008.

 43

[14] H. Liu and L. Yu. Towards integrating feature selection algorithms for classification and

clustering. IEEE Transactions on Knowledge and Data Engineering, Vol. 17(3), 2005,
1-12.

[15] David Moore, Geoffrey M. Voelker and Stefan Savage. Inferring Internet

Denial-of-Service Activity. USENIX, August 2001.

[16] P. Ning and D. Xu. Hypothesizing and Reasoning About Attacks Missed by Intrusion

Detection Systems. ACM Transactions on Information and System Security, Vol. 7(4),
2004, 591-627.

[17] S. Savage, D. Wetherall, A. Karlin, and T. Anderson. Practical network support for IP

traceback. In Proceedings of ACM SIGCOMM, Stockholm, Sweden, August 2000.

[18] A. C. Snoren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio, S. T. Kent, and

W. T. Strayer. Hash-based IP Traceback. In Proceedings of ACM SIGCOMM ’2001, San
Diego, CA, August 2001.

[19] R. Tao, L. Yang, L. Peng, B. Li and A. Cemerlic. A Case Study: Using Architectural

Features to Improve Sophisticated Denial-of-Service Attack Detections. In Proceeding of
the 2009 IEEE Symposium on Computational Intelligence in Cyber Security, Nashville,
TN, Mar. 2009.

[20] D. Wagner, P. Soto, Mimicry Attacks on Host-Based Inrusion Detection Systems,

CCS’02, November 18–22, 2002.

[21] H. Wang, D. Zhang and K.Shin. Change-Point Monitoring for Detection for DoS Attacks.

TDSC, 2004.

[22] D. H. Woo and H.-H. S. Lee, Analyzing Performance Vulnerability due to Resource

Denial-of-Service Attack on Chip Multiprocessors, CMP-MSI, 2007.

[23] L. Yu and H. Liu, Efficient Feature Selection via Analysis of Relevance and Redundancy.

Journal of Machine Learning Resources. Vol. 5, 2004, 1205-1224.

[24] Z. Yu and J. Tsai, An efficient intrusion detection system using a boosting-based

learning algorithm. International Journal of Computer Applications in Technology, Vol.
27 (4), 2007, 223-231.

 44

Appendix A

Buffer Overflow IDS

1. Background

Buffer overflow is one of the most prevalent methods hackers utilize to obtain security

breach. The basis for buffer overflow is that no built-it boundary check is imposed by certain

programming languages, such as C, C++. The code shown in Figure 1 is a valid program that

compiles with no error. But the adjacent buffer which is beyond the allocated space will be

overwritten.

Figure 1. Sample code of buffer overflow

Generally the hacker would utilize the programming languages’ insufficient bound

checking, store data beyond the boundaries of a fixed-size buffer. Adjacent memory locations

would be overwritten with other buffers, variables, or program flow data, resulting in

abnormal program behavior, such as memory exception, system crash, or security breach if

deliberately exploited by malicious hackers.

 45

2. Behavior of BoF Attacks

Previous techniques detecting BoF attacks focus on parsing and analyzing the payload

information during a connection, extract application level features, and feed the feature

events to the statistical model to build the IDS. Such schemes highly rely on characteristics

certain exploits exhibit and require comprehensive domain knowledge in feature construction.

In our work, we propose an adaptive anomaly network IDS utilizing extracted features from

the OS level together with application level features to gain higher accuracy.

Unlike DoS attack, which involves huge number of certain activities, e.g. large amount

of network requests, BoF attack generally exploits the vulnerability in a single connection by

being embedded in the payload data. Network connection information from application level

is not enough to identify and correlate attack sessions. We group network connections by

src_ip:src_port <-> dst_ip:dst_port, and the remote buffer overflow will obtain a interactive

shell session connected to a different port from which it originally launches the attack,

resulting in multiple distinct network sessions which are difficult to identify the attack and

correlate those distinct malicious connections. Analyzing the payload does not provide us

useful information to solve the problem. Each exploit will exhibit different payload

characteristic; they do not share a common pattern. Constructing features solely from the

application level is possible, but extremely low efficient, because different exploits will need

different features constructed accordingly, extensibility to cover novel attacks is not high, and

requires extra time and work. However, from OS level, some typical abnormal behaviors of

BoF attacks could be identified using BackTracker, which records every OS event.

Figure 2 illustrates an example observed using BackTracker’s system call

 46

Figure 3. Execution flow of a sample BoF exploit

tracking function. The highlighted system events exhibit abnormal behaviors that could assist

us to identify BoF exploit. As shown in Figure 3, the execution flow of this BoF exploit

consists of three steps:

Proc_28088_0
Socket 542490 0

Proc_28089_0
Socket 542505 0

Proc_28095_0
Shell

Figure 2. Observation of BoF exploit using BackTracker

 47

Step 1: Attacker connects to target system from network

Step 2: Malicious network connection spawn another different network session

Step 3: Obtain interactive shell session through the forked network session

3. System Call Tracking

In our work, BackTracker’s OS level event logging and dependency tracking is utilized to

extract the OS level features of each network connections. BackTracker discovers sequences

of steps that occurred during an intrusion. Starting at a single detection point (e.g., a

suspicious file), it identifies files and processes that could have affected that detection point

and displays chains of events in a dependency graph. BackTracker is able to record every

dependency-causing event among OS objects, and span up a dependency chain starting from

one object. Complete information such as process forking, file operations, and program

execution (which is important for security analysis), is recorded in a system-call oriented

manner. That information could be utilized to provide a novel view of exploit behavior

analysis from the OS level.

4. IDS Implementation

We integrate both the application level and OS level features. The application features

we find informative in the case of remote BoF attacks are: type, service, duration,

size_from_server, size_from_client, packet_rate, wrong_checksum_rate. And we also add

four OS features (Table 1) according to our observation from the OS level to improve the

prediction accuracy of our IDS: forked_socket_session, forked_shell, forked_from_socket,

coincided_pid.

 48

 Table 1. OS level features

Fearues Description
forked_socket_session forked another network

connection
forked_shell forked shell sessions
forked_from_shell forked from another network

connection
coincided pid share a same pid as another

different network connection

These features in Table 1 are observable using a modified BackTracker. Modifications to

BackTracker include attaching a timestamp to every system event; exporting detailed IP

address and port number for socket sessions. With those changes, we can correlate high level

network session records with system events recorded by BackTracker’s system call tracking

function embedded in Linux kernel.

5. IDS Performance

Exploits we used to train and test our BoF IDS are all from real-world. We successfully

utilized those tools to exploit targeted software vulnerabilities, and obtained interactive shell

sessions. Table 2 gives detailed information of BoF exploits we employed.

The 60 exploit instances are divided into five training datasets, with one type of exploits

absent from each training set. And the testing data include all types of BoF exploits. Testing

result shown in Figure 4 demonstrates that OS level events help improve the accuracy of True

Positive rate. An average True Negative rate of 99.6% is also considered as a good

performance.

 49

Table 2. Description of BoF exploits

CVE Number Name Description
CVE-2002-0177 Icecast AVLLib Buffer

Overflow Vulnerability
Remote user may send arbitrary
long string to the server, leading
to a stack overflow and execution
of user supplied code. Execution
privilege of the Icecast server will
be obtained.

CVE-2003-0201 Samba
'call_trans2open'
Remote Buffer
Overflow Vulnerability

Anonymous user may corrupt
sensitive locations in memory
and execute arbitrary commands
by passing excessive
user-supplied data into a static
buffer.

CVE-2004-0396 CVS Malformed Entry
Modified and
Unchanged Flag
Insertion Heap
Overflow Vulnerability

A remote heap overflow could
occur when handling
user-supplied input for entry lines
with 'modified' and 'unchanged'
flags, possibly leading to
arbitrary code execution.

NA Dr.Cat Drcatd Multiple
Buffer Overflow
Vulnerabilities

Unauthorized access and/or
elevated privilege on the
vulnerable system may be
achieved by exploiting the
vulnerability of insufficient
boundary checks of some
functions of this application.

0%

10%
20%

30%
40%

50%

60%
70%

80%
90%

100%

1 2 3 4 5

Training Set

Tr
ue

 P
os

iti
ve

APP APP + OS

Figure 4. True Positive rate comparison

 50

Appendix B

Control Register Layout for Pentium D

ESCR MSR:

The layout of ESCR MSR is illustrated in Figure 1.

63 30 24 8 5 4 3 2 1 0
Reserved Event Select Event Mask Tag

Value

Tag

Enable

O

S

USR

Figure 1. ESCR layout

Bit 0-1: Reserved

Bit 2: USR flag – set counter to count events when processor operates in user mode

Bit 3: OS flag – set counter to count events when processor operates in privileged

level.

Bit 4: Tag enable – enable tagging of μops.

Bit 5-8: Tag value field – select a tag value to associate with a μop.

Bit 9-24: Event mask field – select events to count from event class selected

Bit 25-30: Event select field – select a class of events to count.

CCCR MSR:

CCCR MSR controls the filtering and counting of events, together with interrupt

generation. The layout of CCCR MSR is illustrated in Figure 2.

 51

63 31 30 29 26 25 24 23 19 18 17 15 13 12 11 0

Reserved O Reserved Threshold ESCR Select E Reserved

Figure 2. CCCR layout

Bit 0-11: Reserved.

Bit 12: Enable flag – enable events counting

Bit 13-15: ESCR select – select the ESCR to be used to select the events to be

counted.

Bit 16-17: Reserved – must be set to 11B.

Bit 18: Compare flag – enable filtering of the event counting.

Bit 19: Complement flag – configure how the event count is compared with the

threshold value.

Bit 20-23: Threshold value – set the threshold value to be compared with.

Bit 24: Edge flag – enable rising edge detection of filtering event counts.

Bit 25: FORCE_OVF flag – force a counter overflow on every counter increment.

Bit 26: OVF_PMI flag – enable a performance monitor interrupt (PMI) to be

generated when the counter overflow occurs.

Bit 30: Cascade flag – enable one counter in a pair to start counting when the other

counter overflows.

Bit 31: OVF flag – indicate that the counter has overflowed when set

 52

Vita

Ran Tao was born in Chengdu, Sichuan, China. She obtained the bachelor’s degree in

electrical engineering, from the University of Electronic Science and Technology of China, in

June 2005. In August 2006, she joined the department of Electrical and Computer

Engineering, Louisiana State University to pursue graduate study in computer architecture.

She is currently a candidate for the degree of Master of Science in Electrical Engineering,

which will be awarded in August 2009.

	Louisiana State University
	LSU Digital Commons
	2009

	Sophisticated denial-of-service attack detections through integrated architectural, OS, and appplication level events monitoring
	Ran Tao
	Recommended Citation

	Microsoft Word - thesis_rt_final.doc

