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ABSTRACT 

Background: Chronic hookworm infection affects an estimated 576 to 740 million people 

worldwide.  Despite mass drug administration efforts, the morbidity associated with this soil-

transmitted helminth remains a significant public health issue.  Due to inter- and intra- 

community heterogeneity in susceptibility to infection, mathematical modeling can serve as an 

effective and efficient tool for investigating hookworm transmission in different settings and for 

guiding policymakers to consider new treatment and prevention strategies.   

Methods: Here we developed an age-structured, compartmental S-I model to identify 

epidemiological parameters for hookworm infection and to assess rates of attributable anemia 

within the population of Zanzibar.  The model was first used to address the relative contributions 

of age group (adults versus children) and infection intensity status (high versus low) in 

transmission.  The Markov chain Monte Carlo (MCMC) method was implemented to generate 

negative binomial distribution parameters for describing population-level parasite aggregation. 

Gibbs sampling and data on prevalence of hookworm infection were used in a subsequent 

MCMC to parameterize the overall model and account for uncertainty.  Maximum likelihood 

point estimates for force of infection and natural recovery were derived from the 10,000 

posterior distributions generated.  Empirical data on average hemoglobin levels for given fecal 

egg count categories were included in the analysis to give distributions for the relative risk of 

moderate-to-severe anemia (hemoglobin < 90 g/L) among infected versus susceptible 

individuals.   

Results: Using maximum likelihood estimates for the negative binomial distribution parameters, 

it was determined that children prone to high intensity hookworm infections were 4.9 times as 

infectious as children prone to lower intensity infection; high intensity infection adults were 
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considered to be 4.7 times as infectious as low intensity infection adults. Model predictions with 

and without uncertainty were consistent in estimating that approximately 10% of the infected 

child population experienced moderate-to-severe anemia attributable to hookworm infection.  

Conclusion: The present model provides a population-level compartmental model framework 

for assessing hookworm-attributable morbidity independent of assumptions about worm burden 

thresholds.  To evaluate the effectiveness of different intervention strategies at reducing the 

incidence of infection and rates of hookworm-attributable anemia, the current epidemiological 

model can be extended structurally to include treatment and vaccine parameters. 
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INTRODUCTION 

Background 

Affecting an estimated 576-740 million people worldwide, human hookworm infection 

contributes significantly to the global incidence of iron-deficiency anemia, protein malnutrition, 

and other comorbid conditions [1-3].  In fact, chronic hookworm infection accounts for nearly 

22.1 million of the 57 million DALYS associated with all neglected tropical diseases [1].  Most 

human infections are attributed to two hookworm species, Necator americanus and Ancylostoma 

duodenale, which are endemic in tropical and subtropical regions of sub-Saharan Africa, south 

China, Southeast Asia, and the Americas [4].  The climate in these regions is conducive to larval 

survival, and in less developed regions, poor nutritional status combined with lacking sanitation 

infrastructure provides for significant morbidity due to high transmission rates and chronic 

infection [5].  

Hookworm infection results as third-stage larvae (L3) penetrate exposed skin upon 

contact with contaminated soil.  The larvae enter the circulatory system and migrate to the lungs. 

After coughing expels them from the respiratory tract, the parasites are swallowed into the 

digestive system and form a buccal capsule equipped with cutting plates [6, 7].  Larvae 

ultimately mature into adult hookworms in the small intestine, where their feeding on the mucosa 

and submucosa leads to a daily loss of up to 9 ml of blood [8].  While in the intestine, adult 

hookworms reproduce and their eggs are excreted with fecal matter [9].  Low iron bioavailability 

in hookworm-endemic regions increases susceptibility to iron deficiency anemia due to diets 

heavily dependent on starch-based foods, such as cassava [10]. 

 

Current and Projected Control Measures 

Over the past several decades, widespread deworming efforts targeting high-risk  
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individuals have been undertaken to reduce the prevalence and intensity of STH infection [11].  

Such programs have involved the administration of single-doses of benzimidazoles, such as 

mebendazole (500 mg dose) and albendazole (400 mg dose), in schools and other community 

settings [12]. In 2001, the World Health Assembly established a goal of treating 75% of all at-

risk school-aged children with anthelminthics by 2010 [13]. However, it is projected that long-

term mass treatment using benzimidazoles will be increasingly less effective due to rapid rates of 

reinfection and the likely emergence of drug resistance [14-16].  In addition, individual- and 

community-level differences in benzimidazole efficacy have been demonstrated [11], with a 

recent meta-analysis of randomized placebo-controlled studies reporting cure rates for single-

dose oral albendazole (400 mg) as low as 40% in Kenya (n = 34) during 1999 to as high as 100% 

in Haiti (n = 12) during 1990 [17]. 

In response to limited treatment options and variable efficacy, efforts are currently 

underway to identify antigens for development of a human hookworm vaccine.  The current 

approach involves investigation into a bivalent vaccine that will affect both the larval and adult 

stages of the parasite’s life cycle [4]. One potential class of antigens includes the aspartic 

proteases (APRs), which are proteolytic enzymes that interfere with the parasite’s digestion of 

skin macromolecules and thus inhibit larval movement across the epithelial barrier and into the 

circulatory system [7, 8].  Another class, the Ancyclostoma secreted proteins (ASPs), are 

involved in maturation of L3 larvae to adult hookworms upon human serum stimulation [8].  

Table 1 outlines recently investigated vaccine targets and the current phase of development for 

each. 
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Study Target Population 

The island region of Zanzibar is located off the coast of Tanzania. In 1994, a school-

based deworming program was launched by the local Ministry of Health and Social Welfare and 

involved administration of single does of mebendazole two to three times per year on Pemba, the 

smaller of the two islands making up Zanzibar [18].  The program was eventually extended to all 

of Zanzibar with reported coverage rates as high as 90% of all primary school children [19].  The 

school-based program was disrupted in 2000 due to difficulties in securing sufficient 

anthelmintic drugs.  It was restarted in 2003 with the administration of albendazole and 

praziquantel [20].  In 2001, Zanzibar also launched a community-wide campaign, The Global 

Elimination of Lymphatic Filariasis (GELF), which involved annual administration of 

albendazole and ivermectin to all eligible adults and children.  The combined effect of GELF and 

school-based deworming programs on helminth infection has been investigated [21].  The safety 

of combining community-based programs to address STH and other endemic parasitic infections 

has been considered as well [22].  Despite decades of large-scale deworming programs, infection 

prevalence remains as high as 99% in regions of the islands and some degree of iron deficiency 

anemia has been found to afflict about 60% of children [18, 19].  Due to extensive evaluation of 

the impact of mass drug administration in Zanzibar, trends in hookworm prevalence and disease 

intensity have been well documented. The region would thus be a feasible and logical site for 

future effectiveness trials on vaccination and other intervention strategies.  

 

Existing Models 

Mathematical modeling offers an effective and efficient way of evaluating hookworm 

transmission dynamics and considering how new intervention strategies could impact rates of 
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morbidity.  Since the 1980’s, models on helminth infection have evolved to include new 

approaches to treatment, prevention, and control.  Anderson and May proposed an early worm-

based model for evaluating the basic reproductive rate (R0) for macroparasites and considering 

the impact of treatment in terms of changing the mean worm burden and reducing R0 to below 

unity [23].  Medley et al expanded upon this model to specifically investigate the effect of 

anthelminthic treatment on symptoms attributable to roundworm (Ascaris lumbridoides) 

infection [24]. The use of a worm burden threshold to model levels of morbidity was further 

extended by Chan and his colleagues who incorporated age structuring into the Anderson and 

May model and compared predictions when different mechanisms of population-level host 

mixing were considered [25].  Most recently, Sabatelli et al developed an individual-based model 

to consider the impact of human hookworm vaccination in the context of community-level 

parasite aggregation and variation in host susceptibility [5].   

Despite significant progress in the development of mathematical models for helminth 

infections over the last several decades, the Disease Reference Group on Helminth Infections 

(DRG4), established by the Special Programme for Research and Training in Tropical Diseases 

(TDR), recently issued an agenda highlighting research priorities and gaps to address when 

modeling helminth infections [26].  Notably, it was recommended that models should be refined 

to more accurately capture the relationship between morbidity and the evolving infection status 

of individuals in regions with intermittent treatment and control campaigns [26]. 

 

Study Objectives 

Here we construct and parameterize an age-structured, risk-stratified deterministic model 

to identify epidemiological parameters for hookworm infection and attributable morbidity within 
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the population of Zanzibar. For the present model, morbidity was defined as anemia with a 

hemoglobin level less than 90 g/L.  An expanded model representing treatment and vaccination 

is also presented but not parameterized.  As far as we know, this is the first population-based 

deterministic model for evaluating the epidemiological impact of human hookworm infection. 
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METHODS 

Description of Compartmental Model 

A deterministic model was constructed to evaluate the population-level transmission 

dynamics of human hookworm infection and estimate moderate-to-severe anemia among 

infected children in Zanzibar.  This age-structured model (Figure 1) includes child compartments 

(subscript C) representing individuals younger than 15 years old and adult compartments 

(subscript A) representing individuals 15 years and older.  The age cutoff was chosen since 

treatment programs in Zanzibar target school-age children and the model was developed for 

ultimate use in evaluating similarly targeted intervention strategies.  To reflect community-level 

overdispersion of hookworm burden, both age classes were subdivided with individuals prone to 

high intensity infection (subscript 20) distinguished from those prone to low intensity infection 

(subscript 80).  Individuals in the high intensity compartments are expected to be more 

susceptible to infection due to nutritional, behavioral, and genetic factors as well as past infection 

experiences [23, 27].  The negative binomial distribution is frequently used when modeling 

parasite aggregation, and within high aggregation communities, it is often found that 20% of a 

given population harbors over 80% of the burden [28] such that for the present model, both age 

classes were risk-stratified to distinguish between those prone to heavy (20% of population) 

versus light (80% of population) intensity infections.  The overall S-I model structure assumed 

underlying levels of anemia due to nutritional and other factors.  Moderate-to-severe anemia was 

defined in terms of hemoglobin levels less than 90 g/L.  This cut off is consistent with that 

previously used during trials to investigate the effectiveness of hookworm control measures in 

Zanzibar [10].  Children and adults transition from the S compartments to I compartments at a 

rate defined by the force of infection γ, given by the following equation:   
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All infected individuals are assumed to acquire hookworms through contact with 

contaminated soil and have a chance of natural recovery back to the S compartment at a rate, ρ.  

The movement of individuals between compartments is given by eight (8) ordinary differential 

equations. 
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Parameterization and Uncertainty Analysis 
 

Demographic and disease parameters were used to define the transitions into and out of 

compartments.  All parameters for the transmission-only model are defined in Table 4. 

(a) Demographic Parameters  

Census data were used to identify and calibrate point estimates for birth rate, child- and 

adult-specific death rates, and the rate of aging from child to adult compartments.  Calibration 

involved setting the birth rate equal to the estimate derived from census data and adjusting the 
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death and aging rates to achieve both empirical population-level growth rates and age 

structuring, respectively [29]. 

(b) Force of Infection Equation 

According to our model, the force of infection addresses two between-compartment 

relationships for the infectiousness of different groups of individuals.   

The first relationship involves the relative infectiousness of individuals in high versus 

low infection intensity compartments.  This relationship was quantified as a multiplicative factor 

relating β80 and β20 and was calculated as a ratio of the expectation of the lower 80 percent of the 

density function for population-level fecal egg counts and the expectation of the upper 20 percent 

of the same density function.  Egg counts were used as an indicator of infectiousness since 

excreted hookworm eggs contaminate soil in areas lacking developed sanitation systems and 

subsequently result in the development of infectious L3 hookworm larvae [6].  A binned 

negative binomial distribution and a flat prior were used to model the probability of a given egg 

count in eggs per gram (epg) of fecal sample.  Posterior distributions for mean and variance 

parameters of a negative binomial distribution were generated through the Markov chain Monte 

Carlo (MCMC) method.  Although the likelihoods of ! and !! estimates were considered in the 

MCMC, equations ! =    !
!

!! 1− ! !!  and ! =   ! !!, where !! = ! + !
!

!, were 

utilized to produce distributions for the number of successes (R) and probability of success (P) 

parameters specific to the calculation of the negative binomial cumulative distribution function 

in Matlab.  A single MCMC was conducted for children and adults since independence of the 

study populations could not be assumed; however, separate ! and !! parameters of the negative 

binomial distribution were evaluated for each of the two age classes.  The likelihood function 

(Equation 10) for this analysis was based on population-level data that classified individuals into 
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four categories of hookworm infection intensity based on fecal egg counts [10]. The function 

depends on !! = ! ! − !(!), or an individual’s probability of being in a given fecal egg count 

category (range: z epg – y epg), as determined by the negative binomial cumulative distribution 

function; !!" and !!" represent the number of children and adults, respectively, from the study 

sample in the ith non-zero fecal egg count category. 

ℓ !! ,!!!, !!,!!! = !!" ∗ log  (!!")!
!!! + !!" ∗ log  (!!")!

!!!       (10)  

Best-fit estimates for the four parameters were considered as those that maximized the 

log likelihood equation in 200,150 iterations, with an expected burn-in period of 150 iterations. 

The negative binomial distributions generated by the best-fit parameters resulting from this 

MCMC were used to determine the expected egg count of an individual in the lower 80% of the 

density function and the expected egg count of an individual in the upper 20% of the density 

function, and a ratio was taken.  To address the uncertainty in the estimates, the entire parameter 

distributions from the MCMC were used to produce vectors of ratios to be applied as a prior 

distribution for the multiplicative factor relating βC80 and βC20 or that relating βA80 and βA20 in the 

uncertainty analysis.   

The second relationship within the force of infection equation considered the relative 

infectiousness of adults versus children.  Unlike parasite burden of other soil-transmitted 

helminth infections which peaks during adolescence and subsequently declines, the mean 

number of hookworms per person increases gradually until plateauing during adulthood [6]. 

However, considerable between-community heterogeneity has been observed in the relative 

infectiousness of adults versus children [25, 30].  In accord with the findings of Chan et al [25] 

for a comparable sub-Saharan African community, it was assumed for the present analysis that 

Zanzibari children are twice as infectious as adults due to less hygienic practices and a higher 



	
   10 

basic reproductive rate of worms; however, other relationships were considered in the 

uncertainty analysis.   

(c) Disease Parameters 

 Point estimates for baseline prevalence of hookworm infection for children and adults in 

Zanzibar were extracted from the available literature (Table 1). Prevalence estimates were 

assumed to follow the binomial distribution and be independent of one another. The MCMC 

method was used to determine the values of βC80 and ρ that maximized a log likelihood function 

based on the experimental prevalence data (Equation 11).  The beta-binomial distribution was 

assumed for the prevalence estimates.  In the equation, !! represents the prevalence estimate for 

children derived from a cross-sectional study by Stoltzfus et al [31] on Pemba Island, Zanzibar 

prior to mass drug administration and !! represents a prevalence estimate for Zanzabari adults 

[32], while !!!   and !!!  represent the prevalence levels predicted with a given set of parameter 

estimates. 

ℓ !!!",! = !!!! ∗ log !!! + !! − !!!! ∗ log 1− !!!  

    +  !!!! ∗ log !!! + !! − !!!! ∗ log 1− !!!     (11)  

Uninformative flat prior distributions were assumed for the two disease parameters.  For the 

uncertainty analysis, iterative Gibbs sampling was used to draw from the posterior distributions 

for the multiplicative factors relating βC80 and βC20 or that relating βA80 and βA20 to parameterize 

the force of infection equation.  

(d) Age Class Multiplier 

 Significant inter-community heterogeneity in the relative infectiousness of adults and 

children has been documented by Chan et al [25, 30].  For the present paper, it was assumed that 

children in Zanzibar are more infectious due to behavioral factors.  However, to address the 
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possibility of other relationships, the age-class multiplier was added as an additional parameter in 

the MCMC and allowed to vary randomly to consider the possible scenarios of increased 

infectiousness among adults and equal infectiousness between adults and children; the trend of 

the resulting MCMC output was visually inspected for convergence. 

 (e) MCMC Convergence Diagnostic 

The MCMC process was repeated to generate a series of two chains for each parameter; a 

burn-in period of 150 iterations of overdispersed values was used.  Convergence of posterior 

distributions was tested using the Gelman-Rubin diagnostic [33, 34].  This diagnostic uses the 

potential scale reduction factor (!), involving the estimated variance of a given parameter based 

on both the within- and between-chain variances, to determine whether the parameter 

distributions generated through the MCMC process converge to a stationary distribution 

(Criterion: ! < 1.2).  ! was calculated and the plot reflecting change in Gelman and Rubin's 

shrink factor was evaluated for each parameter [33]. 

 

Morbidity Measures 

Using published data on hemoglobin levels for a sample of Zanzibari children 

categorized according to five fecal egg count bins [31], the proportions of the susceptible (0 eggs 

per gram feces) and infected (>0 eggs per gram feces) populations with anemia were calculated.  

For individuals within a given fecal egg count range, hemoglobin (Hb) measurements were 

assumed to follow a normal distribution.  Underlying levels of anemia due to nutritional status, 

malaria, and other factors were also assumed.  The proportion of individuals with anemia not 

attributable to hookworm infection was found as the density of the cumulative distribution 

function below 90 g/L Hb for uninfected individuals.  A point estimate for the proportion of 
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susceptible children with anemia was calculated using the mean and standard deviation for 

hemoglobin levels among individuals in the 0 eggs per gram feces category.  For each fecal egg 

count category (i) of infected individuals, the density of the normal cumulative distribution 

function (A) under 90 g/L was multiplied by the proportion of the population with egg counts in 

that range (z epg – y epg), as determined using the best-fit parameters of the negative binomial 

distribution (F) found in the first MCMC (Equation 12).   

!"#$#"%&#'  !"#ℎ  !"#$%& =    !! 90 − !!(0) ∗ ! !! − !(!!)!
!!!    (12) 

For both susceptible and infected individuals, the uncertainty in the empirical data was 

addressed by drawing 10,000 random numbers from a normal distribution with the published 

mean and standard deviation for each fecal egg count range and randomly selecting a new mean 

for the distribution of anemia. Additionally, Gibbs sampling was used to select mean and 

variance estimates generated in the first MCMC for parameterizing the negative binomial 

distribution in the uncertainty analysis. 
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RESULTS  

Data 

Data on prevalence of hookworm infection in adult and child populations from Zanzibar 

or representative areas of eastern Tanzania were extracted from the available literature.  Pre-

treatment estimates for prevalence of hookworm infection were found for children and adults 

(Table 2).  The number of individuals in the high intensity compartments was calculated as the 

20% of the population expected to harbor the majority of the hookworm burden [6, 23].  

 

MCMC Convergence 

 The Markov chain Monte Carlo (MCMC) method was used to generate posterior 

distributions for mean and variance parameters of negative binomial distributions describing 

fecal egg counts in child and adult populations.  The Gelman-Rubin diagnostic (!) was found to 

be between 1.0 and 1.04 upon comparing two chains of parameter values for each of the four 

parameters considered in the MCMC. A similar analysis of convergence was conducted to 

evaluate the chains of posterior distributions of the two disease transmission parameters (!!!" 

and !) generated through the second MCMC.  Figure 2 reflects the tendency toward stationary 

distributions for the disease parameters based on the evolution of Gelman and Rubin's shrink 

factor.   

 When the age-class multiplier was allowed to vary to explore other possible relationships 

in the relative infectiousness of adults versus children, no convergence for this parameter was 

observed.  As a result, the relationship was fixed with children being twice as infectious as adults 

(!!!" =
!
!
∗   !!!") for the remaining analyses. 



	
   14 

Model Predictions Using Point Estimates 

Best-fit point estimates were determined as values maximizing the log likelihood 

functions for parameterizing the negative binomial distribution and subsequently the 

transmission model.  All parameter estimates are presented in Tables 3 and 4.  It was found that 

children in the model had, on average, 1303 hookworm eggs per gram feces and that, on average, 

adults had 1622 hookworm eggs per gram feces. Children prone to high intensity infections were 

found to be 4.9 times more infectious as children prone to low intensity infections in terms of 

their relative fecal egg counts.  Adults prone to high intensity infections were similarly found to 

be 4.7 times more infectious as adults prone to low intensity infections.  Using this information 

to parameterize the force of infection equation and run the transmission model, it was determined 

that moderate-to-severe anemia affected 6.2% of susceptible children. Among infected children, 

16.4% were found to have hemoglobin levels less than 90 g/L.  Accordingly, the model predicted 

the prevalence of hookworm-attributable anemia among children to be 10.2%. 

 

Model Predictions with Uncertainty 

The Markov chain Monte Carlo process was implemented twice to account for 

uncertainty in the data used.  The first MCMC considered the distributions of fecal egg counts 

for adults and children. A jump size of 250 (acceptance ratio: 0.5296) and a jump size of 0.32 

(acceptance ratio: 0.5834) were used for !!  and !!!, respectively.  A jump size of 445 

(acceptance ratio: 0.5122) and a jump size of 0.40 (acceptance ratio: 0.6334) were used for !! 

and !!!, respectively.  The resulting distributions of likely means and variances for the negative 

binomial distribution were used to find either the risk-class multiplier relating βC80 and βC20 or 

that relating βA80 and βA20 (Figures 3 and 4).  When taking uncertainty into account, it was found 
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that the relative infectiousness of children in the high intensity infection compartment compared 

to that of children in the low intensity infection compartment ranged between 3.4 and 7.2.  The 

infectiousness of the adults in the high intensity infection compartment was found to be between 

2.8 and 12.2 times that of adults in the low intensity infection compartment.  Ranges of 

parameter estimates from the uncertainty analysis are presented in Table 3.  The second MCMC 

used Gibbs sampling to evaluate the force of infection equation and prevalence data to 

parameterize the overall transmission model.  A jump size of 0.0025 (acceptance ratio: 0.2699) 

and a jump size of 0.0001 (acceptance ratio: 0.3115) were used for !!!" and !, respectively.  It 

was determined that underlying levels of anemia affect between 0% and 99.7% of the modeled 

child population (! = 14.2%).  Among the infected children compartments, it was found that 

between 0% and 93.1% had hemoglobin levels less than 90 g/L (! = 24.1%). Figures 5 and 6 

are histograms representing the frequencies of proportions for moderate-to-severe anemia in 

susceptible and infected child populations, respectively.  Accordingly, when accounting for 

uncertainty, the model predicted rates of childhood anemia attributable to hookworm infection is, 

on average, 9.9%. 
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DISCUSSION 

Results and Implications 

Chronic hookworm infection is a leading but preventable cause of anemia and other 

morbidity throughout communities that lack access to sufficient hygiene and sanitation 

resources.  Despite efforts at mass drug administration, the global prevalence of hookworm 

infection remains high and post-treatment rebounding suggests that current measures are not 

sustainable [16].  Mathematical modeling offers an effective tool for considering population-

level transmission dynamics and provides the framework for evaluating the impact of future 

interventions against hookworm infection.  The present model is unique in that it is the first 

population-level compartmental model for human hookworm infection and that it does not 

depend on a worm burden threshold for determining levels of morbidity.  Worm- and individual-

based models have considered a wide range (40-160 worms) as the threshold for morbidity and 

extrapolating worm burden from fecal egg counts is variable and often unreliable [35, 36].  

Using empirical distributional data for hemoglobin levels and well-established trends in parasite 

aggregation, we were able to determine the proportion of children with underlying anemia versus 

anemia attributable to hookworm infection both with and without model uncertainty. 

 

Limitations 

 The present findings are limited by assumptions about the population-level distribution of 

hookworm infection.  In particular, risk stratification in the current model depends on the “80-20 

Rule” which accounts for both parasite aggregation and the observed tendency of a small 

proportion of the population having increased susceptibility to higher intensity infections.  

Specifically, according to this rule, it is expected that 20% of the population in a given 
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community harbors over 80% of the total worm burden [23].   The degree of parasite aggregation 

that corresponded with the data used to generate negative binomial distributions in the present 

study was considered in an a posteriori analysis. Gibbs sampling was performed to randomly 

select a mean/variance pair for children or adults and parameterize a negative binomial 

distribution.  Using the resulting distributions, 3213 and 1077 observations were randomly 

generated to represent the worm burdens for samples comparable in size to the original 

experimental samples of children and adults, respectively [31, 32].  For the distribution 

representing each age class, all observations were sorted and normalized by their sum.  Upon 

sorting, the observation representing the cutoff between the lower 80% of observed egg counts 

and the upper 20% of observed egg counts was determined.  This process was repeated for 5000 

iterations.  The mean density above the 80% cutoff (the 2571st observation for children and the 

862nd observation for adults) was found to be 70.09% for children and 71.11% for adults.   

The current model uses the 80-20 cutoff as a way of subgrouping the population 

according to risk level, so the fact that the empirical distribution does not follow the 80-20 

expectation does not immediately impact the findings.  However, despite wide use of this rule for 

risk stratification, an empirically supported approach to categorizing by host susceptibility and 

parasite aggregation should be investigated and the impact of this particular cutoff on our 

transmission model should be considered in a sensitivity analysis. 

 

Future Directions 

The transmission model was expanded structurally to account for treatment and 

vaccination against hookworm infection (Figure 7).  The intervention parameters and variables 

are described in Table 6.  Before implementation of the full intervention model, it will be 
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important to consider how treatment and vaccination efficacy will be measured.  Efficacy 

measured as the transition from infected to susceptible is expected to be an overly conservative 

approach since reduction in infection intensity without complete cure is sufficient to reduce 

morbidity.  That is, anemia and other comorbidities are more prevalent among individuals with 

high intensity infections [6].  To capture this in the S-I compartmental framework, we will 

evaluate shifts in the negative binomial distribution—widely accepted to reflect parasite 

aggregation and individual-level susceptibility to hookworm infection [23].  It is expected that a 

compartmental model which stochastically models individual predisposition to infection, parasite 

aggregation in the host population, and parasite density dependence will sufficiently capture this 

distributional change at the population level without the computational requirements of an 

individual-based model.  Treatment and vaccine efficacies will be modeled as binomial 

probabilities of an individual hookworm’s death due to intervention.  This approach was used by 

Sabatelli et al in modeling the impact of anthelminthic treatment [5].  Reinfection studies are 

expected to provide insight into the distributional nature of levels of susceptibility and the 

sensitivity of the model to risk stratification, as individuals with high intensity infection are more 

likely to return to the same infection intensity status after treatment effects wane. 

 

Conclusion 

In summary, despite the limited availability of empirical data, an uncertainty analysis of 

our hookworm model provides insight into population-level transmission dynamics and allows 

for estimation of directly unmeasurable quantities such as relative infectiousness and parasite 

aggregation.  Underlying trends in infection were evaluated in terms of age-class and risk-class 

multipliers and rates of moderate-to-severe anemia among both susceptible and infected child 
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compartments were determined using distributional data on hemoglobin levels across fecal egg 

count categories instead of relying on a worm burden threshold.  In addition, the structural 

framework for a compartmental model accounting for treatment and prophylactic measures was 

provided and recommendations were offered for parameterization and interpretation. 
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FIGURES AND TABLES 

FIGURE 1: Model of Human Hookworm Transmission 
 

 

 

 

 

 

 

 

 

 

 

 

FIGURE 2: Demonstration of Markov chain Monte Carlo (MCMC) Convergence 
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FIGURE 3: Histogram of Multiplier Relating !!!" and !!!"for Mean Egg Count of High 
Intensity Versus Low Intensity Infection Adults 

 

 

 

FIGURE 4: Histogram of Multiplier Relating !!!" and !!!"  for Mean Egg Count of High 
Intensity Versus Low Intensity Infection Children 

 

 

 



	
   22 

FIGURE 5. Histogram for the Proportion of the Susceptible Child Population with Moderate-to-
Severe Anemia 

 

 

FIGURE 6. Histogram for the Proportion of the Infected Child Population with Moderate-to-
Severe Anemia 
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FIGURE 7.  Full Epidemiological Model with Treatment and Vaccination Parameters (without 
risk stratification) 
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TABLE 1. Human Hookworm Vaccine Targets 
Target Vaccine Mechanism Stage in Vaccine Development 
Necator americanus 
Ancyclostoma-secreted 
protein 2 (Na-ASP-2) 

Attenuate L3 larval migration to the 
gastrointestinal tract; generate antibodies to 
decrease risk of hookworm disease due to heavy 
infections [37] 

Phase I clinical trial suspended in 
2007 due to safety concerns 
regarding reports of allergic 
reactions [38] 

Glutathione S-transferase  
(Na-GST-1) 

Interfere with the digestive proteolytic cascade that 
is responsible for heme detoxification [4] 

Part 2 of a Phase I clinical trial 
currently underway among adults 
in Brazil [39] 

Necator americanus aspartic 
protease 
(Na-APR-1) 

Target macromolecules required by the mature 
parasite to metabolize erythrocytes; particularly, 
interfere with hemoglobin proteolysis [7] 

Phase 1 study of safety and 
immunogenicity scheduled to 
begin in Washington, DC in June 
2013 [40] 

 

TABLE 2: Pre-Treatment Prevalence of Hookworm Infection 
Compartment Symbol Measure Prevalence Estimate Reference 
     
Infected, Asymptomatic 
Children  

Ic Prevalence of Hookworm Infection 
among Children (epg > 0) 

72.5%  [31] 

Infected Adults Ia Prevalence of Hookworm Infection 
among Adults (epg > 0) 

92.8% [32] 

 
TABLE 3: Descriptions and Estimates for Parameterization of the Negative Binomial Distribution 
Model parameter definition Symbol Best Fit Point Estimate Range 
    
Mean fecal egg count for 
children (eggs per gram 
feces) 

!!  1303.3  
 

1044.6-1691.0 
 

Aggregation parameter for 
children 

!!  0.8485 0.5196-1.5175 

Mean fecal egg count for 
adults (eggs per gram feces) 

!!  1621.6 657.7229-2536.7 

Aggregation Parameter 
(Adults) 

!! 0.8921 0.3054-2.1821 

Egg count cutoff between 
risk stratification categories 
for children (eggs per gram 
feces) 

 2123  1694-2706 

Egg count cutoff between 
risk stratification categories 
for adults (eggs per gram 
feces) 

 2633 1071-4151 

Ratio of relative 
infectiousness between 
children prone to high versus 
low intensity infection  

!!  4.8842 3.4039-7.1777 

Ratio of relative 
infectiousness between 
adults prone to high versus 
low intensity infection 

!! 4.7157 2.8324-12.2289 
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TABLE 4: Descriptions and Estimates of Transmission Model Parameters 
Model parameter definition Symbol Point Estimate (Value or Proportion)/ Point 

Estimate 
(Rate in months, if applicable) 

Reference 

Demographic Parameters:    
Population size N 981,750 people 

 
[29] 

Total Number of Children (15 years and 
younger) 

Nc 434,886 people [29] 

Total Number of Adults (15 years and 
older) 

Na 546,864 people [29] 

Birth rate b 45.5 births per 1000 people annually / 0.00325 
per month; b80=0.8 b and b20=0.2 b 

[29] 

Death rate (children under 15) dc 10.7 per 1000 population per year / 0.00140 per 
month 

[29] 

Death rate (adults 15 and over) da 6.4 per 1000 population per year / 0.00127 per 
month 

[29] 

Aging rate α 6.1% of children per year / 0.00335 per month [29] 
Disease Parameters:    
Force of infection γ Equation 1 Present 

paper 
Effective transmission rate in children 
(low intensity infection) βC80 0.0164 Present 

paper 
Effective transmission rate in adults (low 
intensity infection) βA80 

!
!
∗ βC80 = 0.0082 Present 

paper; [25] 
Effective transmission rate in children 
(high intensity infection) βC20 !! ∗ βC80 = 0.0801 Present 

paper 
Effective transmission rate in adults 
(high intensity infection) βA20 !! ∗ βA80 = 0.0387 Present 

paper; [25] 
Rate of recovery from infected state ρ 0.8338 x 10-3 Present 

paper 
 

TABLE 5: Time Series Prevalence Estimate Data for Hookworm Infection 
Source Population Year Prevalence Estimate N Reference 
     
Total Infected Children  1998 73.3% 182 [41] 
Total Infected Children 2004 45.6% 228 [21] 
Total Infected Adults 2005 32.3% 929 [42] 
Total Infected Children 2007 18.3% 367 [43] 
Total Infected Population 2009 32.2% 184 [20] 
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TABLE 6: Description of Parameters and Variables for Full Intervention Model 
Model parameter definition Symbol Estimate Predicted 

Distribution 
Estimation 
Method/ 
Reference 

Treatment Parameters:     
Chemotherapy treatment coverage ν Six coverage terms sampled 

through MCMC and based on 
different treatment campaigns 

n/a 
 

MCMC 

Treatment efficacy rate εT 15% (mebendazole) 
72% (albendazole) 

Beta [17] 

Treatment Variables:     
Vaccine efficacy rate in terms of 
reducing force of infection  

εV1 Varied – 25%, 50%, 75%, 100% Beta MCMC; 
[5] 

Vaccine efficacy rate in terms of 
reducing progression to clinical disease 

εV2 Varied – 25%, 50%, 75%, 100% Beta MCMC; 
[5] 

Vaccine waning rate ω Varied – 1, 2, 3.5, 5 years  Exponential MCMC; 
[44] 

Vaccination coverage pV Varied – 25%, 50%, 75%, 100% 
per month 

n/a MCMC 
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