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ABSTRACT 

Common practice in neoadjuvant  therapy clinical trials for breast cancer that use 

pathological complete response rate (pCR) as an endpoint are conducted within a Human 

Epidermal Growth Factor Receptor 2 (HER2) indication group for both Estrogen Receptor – 

positive (ER+) and Estrogen Receptor – negative (ER–) cancers. Given the clinical background 

and trends of breast cancer therapy trials, this study aims to demonstrate in cases where the 

observed prevalence and response rates may be so different from the expected values that priori 

sample size calculation and power analyses were based on, that dangers may arise in producing 

an insufficiently powered study with unreliable results. Critiques of the widespread practice of 

underpowered clinical trials are long-standing and such related ethical issues have been 

substantially debated in biostatistics and medicine. However, an overwhelming prevalence of 

underpowered studies even recently and studies failing to do a priori sample size and power 

calculation is still found. 

This study uses simple statistical methods to show the effects of not accounting for 

proportional differences and also detect power differences in pCR rates between two arms in a 

randomized study. To demonstrate how the overall pCR rate can change for the same effect size 

in a particular HER2 group study based on changing the proportion of ER+ and ER– patients, 

pCR rates are calculated over a series of hypothetical studies with varying proportions of cases. 

The power needed to detect an absolute difference in pCR rates between the two arms could vary 

greatly depending on the actual trial accrual by ER status.  

If a study is designed with specified prevalence rates for ER+ and ER- groups and the 

observed pCR rates are different than hypothesized, this situation could result in an 

underpowered study.  
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INTRODUCTION 
 

 

The burden of cancer in general is heavy in terms of mortality, incidence, and treatment. 

Among cancer cases in the United States, breast cancer is the leading cause of cancer among 

women and account for 29% of cancer cases and 14% of cancer deaths annually. Since 1975, 

breast cancer incidence has been fluctuating and increasing and mortality has steadily and 

shallowly declined. A reasonable guess in describing these statistics is that breast cancer has 

been extensively funded for more research to be done since the realization of its impact on public 

health (Toriola & Colditz, 2013). Treatment of breast cancer is highly dependent on post-

menopausal hormones and other factors that depend on personal cases.  

Although the factors involved in breast cancer identification and targeted therapy are 

many and complicated, this study is interested in the population with known human epidermal 

growth factor receptor 2 (HER2) and estrogen receptor (ER) status. Some are sensitive to the 

hormone estrogen, which stimulates the tumor to grow. The cancers that have estrogen receptors 

on the surface of their cells are called estrogen receptor–positive  (ER+) cancers, and those 

without detected receptors are estrogen receptor–negative (ER–). Another factor of breast cancer 

involves the human epidermal growth factor receptor 2 (HER2) that generally helps cells, grow, 

divide, and repair themselves. Women with HER2–positive cancer (HER2+) were found to have 

higher risk of recurrence due to the fast growth of cancer cells (Gonzalez-Angulo et al., 2009). 

Many recent studies group ER-, HER2-, and progesterone receptor (PR)-negative together into a 

so called “triple-negative” phenotype. Tumor markers are increasingly important in breast cancer 

research and studies thus far have found patients with such a diagnosis to react similarly and 

effectively to certain treatments for their basal-like characteristics (Bauer, Brown, Cress, Parise, 
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& Caggiano, 2007).  Despite the additional PR marker discussed that has been used in recent 

clinical trials, many trials focus on ER and HER2 statuses to determine the risk of recurrence or 

predict the success of treatment (Liedtke et al., 2008; Tischkowitz etal.,2007).
 
ER status is a 

significant prognostic factor for predicting treatment effects because it can identify patients who 

may benefit from endocrine therapy (Berry et al., 2006).  The results from early stage breast 

cancer clinical trials for endocrine therapy strongly have long suggested that this type of 

neoadjuvant therapy such as “letrozole”, may benefit patients with ER+ disease 

disproportionately to ER– disease (Ellis et al., 2001). In addition, patients who receive tamoxifen, 

which was initially tested as an adjuvant therapy, have found to be most receptive to those with 

ER+ and high expression of HER2 (Shou et al., 2004). 

Neoadjuvant chemotherapy, which is treatment given prior to the surgical procedure 

introduced early by Rosen in 1982, is performed in patients with early breast cancer when an 

indication for chemotherapy is given by a physician. It aims to reduce the burden of the tumor 

prior to a procedure, and also allows the option of lumpectomy to be available (Rosen et al., 

1982). These benefits of neoadjuvant chemotherapy are supported by current research, which 

suggest firmly establishing it as an option for women with breast cancer. Though it is not 

necessary for much of this study to be specific to neoadjuvant chemotherapy studies, it is critical 

to understand the benefits of having the ability to observe how the body reacts to certain drugs 

before operation and perform presurgical genetic testing to locate the markers, and design such a 

study in a statistically accurate manner.  

Pathologic complete response (pCR) is the endpoint of choice for this study; it is defined 

as the absence of any residual invasive cancer on hematoxylin and eosin evaluation of the 

resected breast specimen and all sampled ipsilateral lymph nodes following completion of 
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neoadjuvant systemic therapy, which is coded ypT0 ypN0 in the current AJCC staging system 

(Prowell & Pazdur, 2012). Pathologic complete response has been used as an endpoint in 

numerous trials of neoadjuvant systemic therapy for breast cancer. Other popular methods of 

analysis in breast cancer clinical trials include disease free survival and overall survival. A 

uniform definition of pCR has not been determined in conducting current breast cancer studies 

even throughout its use as an endpoint. For example, some investigators have defined pCR as the 

absence of both in situ and invasive cancer following neoadjuvant chemotherapy, whereas others 

have considered only the invasive component in the definition. Other definitions of pCR include 

the absence of residual cancer in the breast and regional lymph nodes at the time of definitive 

surgery, and as a complete response in the breast, irrespective of axillary nodal involvement 

(Buzdar et al. 2005; von Minckwitz et al. 2010; Bear et al. 2006; Wolmark et al. 2001). 

Furthermore, pathology outcomes in neoadjuvant trials have been termed not only pCR, but near 

pCR, quasi pCR, comprehensive pCR, strict pCR, and pCRinv (Kuroi, Toi, Tsuda, Kurosumi, & 

Akiyama, 2006). Such variation in the definition of pCR has made clinical interpretation of data 

from neoadjuvant trials challenging. Though there is need for an adoption of a single term with a 

standard definition for future proposed trials, a review of more current studies within that past 

ten years have argued for use of strictly complete and comprehensive pCR, which has been 

labeled type ypT0 ypN0 (von Minckwitz et al., 2012).  

The effectiveness of adjuvant therapy for breast cancer is well–established, but certain 

subpopulations of breast cancer patients continue to be at risk for recurrence and death, even 

with the best adjuvant therapy. Because even novel postoperative systemic therapies can only be 

assessed in multiyear trials, it is difficult to assess the potential effectiveness early. However, the 

potential clinical benefits of preoperative systemic therapy can be assessed and predicted early 
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using a pCR endpoint (Faneyte et al., 2003). Based on previous studies that use pCR as an 

endpoint, those patients who receive pCR are part of a nonrandomized patient subset determined 

by outcome subsequent to randomization. It has been expected that a large difference in pCR rate 

between treatment arms will be needed to produce a statistically significant difference in Disease 

Free Survival or Overall Survival for further analyses to show clinical significance (Donahue et 

al., 2009; Untch et al., 2011).  

Ongoing breast cancer trials have explored the effect of certain treatments on various 

subsets of possible groups using pCR as an endpoint. For example, Trastuzumab (Herceptin) has 

been found to be the most effective treatment in combination with neoadjuvant chemotherapy for 

HER2-positive cancers from comparing this group with HER2-negative cancers along with other 

subsets of identification. Though many of the treatment recommendations have come from 

similar results from repeated trials, many studies are underpowered due to changes in actual 

values from what was expected. Because sample size, power, and effect size calculations depend 

heavily on previous assumptions, it is important to consider how much power a study can lose 

from deviating enough from expectations.  

In addition, some previous randomized adjuvant chemotherapy clinical trials have shown 

that ER+ cancers were found to be more sensitive to chemotherapy and to have higher pathologic 

complete response rates than ER- cancers. Consequently, a combined analysis of several studies 

that examined chemotherapy hazard and recurrence reduction among patients with ER–positive 

and ER–negative cancers showed that the ER–negative group performed much better in these 

trials for similarly targeted treatments (Pusztai et al., 2008).  

Given the clinical background and trends of breast cancer treatment trials, this study aims 

to provide examples for cases in clinical trials where the observed prevalence and response rates 
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may be so different from the expected values that priori sample size calculation and power 

analyses were based on, that dangers may arise in producing an insufficiently powered study 

with unreliable results. This study uses simple statistical methods to show how changes in certain 

components may affect the power of the study for tests for treatment effect and group 

comparisons.  
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MOTIVATION FOR STUDY 

 

Trials must have sufficient statistical power to detect differences of clinical interest. 

However, critiques of the widespread practice of underpowered clinical trials are long-standing 

and the ethical issues associated with such situations have been substantially debated in medical 

journals alone (Halpern, Karlawish, & Berlin, 2002; Newell, 1978). However, an overwhelming 

prevalence of underpowered studies even recently and studies failing to do a priori sample size 

and power calculation is still found (Vogel et al., 2006; Coombes et al., 2004). Priori power 

analysis is essential in the planning of clinical trials because it determines the chance of detecting 

a true-positive result. Continuing a study with insufficient sample size or power will not produce 

reliable results, rendering it futile and undermining its clinical value.  

A priori sample size calculation and power analysis, using standard formula calculations 

and statistical software, can determine the sample size required to get a significant result with 

adequate power, characterize the power of a study to detect a meaningful effect, and conduct 

sensitivity analyses of power or required sample size to other factures such as how the 

prevalence rate affects the power for the particular interests of this study (SAS Institute Inc
 
., 

2004).  
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STATISTICAL BACKGROUND 

For binary endpoints such as the pCR rate, the required sample size depends on the 

desired level of significance and power, clinically relevant difference or effect size, and the 

overall event rate or proportions. As a consequence of the overall event rate varying considerably 

between studies, determination of this parameter is significant in obtaining the necessary 

statistical significance and power to have meaningful study results (Friede & Kieser, 2004).  

Because we are studying counts of success from pathological complete rates, we are 

concerned with the proportion of times that an event occurs rather than the number of times. We 

are interested in whether the discrepancy between proportions in each group that can be seen 

without statistical analysis is due to chance alone. Counts and proportions follow a binomial 

distribution, which provides the foundation for the analysis of proportions. Because with a large 

enough sample, the binomial distribution increasingly resembles that of a normal distribution, we 

are able to calculate standard normal probabilities for subsequent sample size calculation and 

power analyses (Pagano, Gauvreau, & Pagano, 2000).  

In addition, we are able to make statistical inference about the value of the population 

proportion from the central limit theorem that shows that the mean of the sampling distribution is 

the population mean   and the standard error is √ (   )    Such inference contributes to the 

derivation of the sample size and power formula which is a function of the standard error of the 

sample size for treatment effect and difference of two proportions.  

There are multiple hypotheses that can be tested using the attributes of statistics that 

simple sample size and power formulas have been derived from. The two hypotheses tested in 

this study is one of testing equivalency of a treatment and control groups and another of testing 

equivalency in proportions. Because the variances are a function of the sample size, the 
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calculated value simultaneously satisfies the equality P ( Z > Zα ) = α if the null hypothesis is 

true and P ( Z > Zα ) = 1-β if the alternative hypothesis is true (Lachin, 1981).  

The first approach we use is to determine the sample size in terms of risk or treatment 

difference between an experimental group and a control group (Donner, 1984).  The null 

hypothesis of no difference between the treatment group rate and the control group rate being 

zero is compared to the alternative hypothesis of the difference not being zero. 

              

                

The z statistic that is used for comparing such responses is: 

  
(  

 
   

 
)

√ ̅ (   ̅) ( 
 
  
  
 
  
 )

           ( ) 

  Test statistic for hypothesis test with mean 0 and variance 1 

   Number of participants in treatment group 

   Number of participants in control group 

   pCR rate for treatment group 

   pCR rate for control group 

 ̅ Estimated average of the pCR rates   ( ̅  
     

 
) 

 

Sample Size: 

When designing a study, investigators must determine a sample size that will be 

necessary to provide a specified power of a test of hypothesis, which is the probability that we 

will reject the null hypothesis given that it is false. For example, with equal sized groups and a 

significance level set at α = 0.05, we calculate the sample size needed to maintain the power of 
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the test at .8. This is assuming that we are willing to risk a 20% chance of failing to reject the 

null hypothesis.  

In order to calculate sample size, the estimated parameters required are z-value 

corresponding to the desired type I error ( ) for a two-sided test, z-value corresponding to the 

desired type II error (β), rate for experimental treatment group, rate for control group, and the 

estimated average of the two weights. The sample size formula is a derivation of the Z statistic 

formula, which is algebraically equivalent to the chi-square statistic that may be used, as well 

(Friedman, Furberg, & DeMets, 2010). The conventional   and β values are 0.05 and 0.2, 

respectively, but may vary closely and still be acceptable. Statisticians have used these values as 

a threshold, but sometimes may not be as conservative as to rejecting based on a rigid margin 

and accept   values even up to 0.1. Such decisions depend solely on the primary investigator and 

the statistician that considers how conservative they must be to generate reliable results.  

Given a case where two populations are stratified further into two groups and information 

regarding the prevalence and response rate is given for each group, the control rate for that 

particular population is calculated by summing the product of the prevalence and the response 

rate for one group.  

            (                 )   (                 )        ( ) 

Sample size formula, assuming equal sized treatment groups: 

   
  (         )

 
  ̅ (   ̅) 

| 
 
   

 
|
           ( ) 

  Total sample size for HER2 group 

     z-value corresponding to the type I error ( ) for a two-sided test 

   z-value corresponding to the type II error (β) 

   pCR rate for experimental treatment group 
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   pCR rate for control group 

 ̅ Estimated average of the pCR rates   ( ̅  
     

 
) 

 

where    is 0.84 for 80% power and      is 1.96 for α=0.05, both of which can be looked up in a 

z-table. 

 The second approach is to use the sample size that is calculated for the given parameter 

estimates and observe how varied prevalence rates in each of the stratified groups changes the 

power of the study. This is a case where certain prevalence and response rates were expected 

from previous findings of small studies, but the real rates that were found in the actual trial were 

different from expected. Having recruited based on the sample size calculation made before the 

study commenced, a difference in the prevalence rates per group will affect the overall response 

rate for the control group and therefore the power.  Not only prevalence rates, but also pCR rates 

can be found to be different than expected. However, the difference may be a negligible 

component that can be observed by simulation. 

Power: 

Formula for power derived from the sample size formula: 

    
   

 
√  ̅(   ̅)   √  |     |

√  (    )    (    )
           ( )   

  Sample size per group ( 
 

 
 ) 

     z-value corresponding to the type I error ( ) for a two-sided test 

   z-value corresponding to the type II error (β) 

   pCR rate for experimental treatment group 

   pCR rate for control group 

 ̅ Estimated average of the pCR rates   ( ̅  
     

 
) 
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METHODS 

This study aims to address and explore mainly two questions:  

Question 1: How does the complete response rate vary according to the prevalence of each group?  

Question 2:  How does the prevalence rate affect the power of a study? 

More recently, much neoadjuvant chemotherapy for breast cancer trials have been focused on 

investigating whether a particular treatment in addition to the chemotherapy leads to better 

outcomes than with chemotherapy only. In addition, studies also attempt to compare how 

effective the treatment in addition to chemotherapy is to one subset of the breast cancer 

population to another in order to be able to provide targeted and personalized treatments for 

patients as variable as those with breast cancer.  

The data presented by a clinician and verified by several studies is shown in Table 1 and 

is consistently referred to throughout.  According to clinical practice and judgment, HER2- and 

HER2+ groups should be studied separately (Untch et al., 2010; von Minckwitz et al., 2008; 

Iwata et al., 2011).
 
Therefore, when we vary parameters to observe effects on a certain 

component of interest regarding power and prevalence, we do so for either HER2 group. The 

same methodology is used for both groups. 

Prevalence estimates and pathologic complete response rates are provided for each ER 

group within an HER2 group. Overall, the prevalence of HER2- is 80% and that of HER2+ is 

20%. The prevalence of breast cancer patients with HER2- and ER+ markers is estimated to be 

70%; and, the prevalence for those with HER2- and ER- markers is estimated to be 30%, which 

is 1 – (HER2-, ER+ Prevalence). The corresponding pCR rates are 5% and 15% for HER2-,ER+ 

and HER2-,ER-, respectively. Among those with the HER2+ marker, 60% are ER+ with a pCR 

rate of 25%, and 40% are ER- with pCR rate 45%.  



16 

 

In the following sample size calculations and power analyses, the ER+ prevalence 

explored will range from 0.1 to 0.9 by 0.05. In addition, we use hypothetical varied treatment 

effects on pCR rates, which are 10%, 30%, 50%, and 70%. These are not the effect sizes, but are 

10%, 30%, 50%, and 70% increases from the control pCR rate. The effect sizes depend on the 

prevalence that is varied for these four cases.    

 

Question 1:  

 

First, the rate for the control group must be estimated from known information about the 

prevalence and rates of the group from previous studies. The endpoint in determining sample 

size and power is dependent on the prevalence of each group, where total pCR= (prevalence 

ER+)(pCR rate for ER+) + (prevalence ER-)(pCR rate for ER-). Based on the values presented in 

Table 1 for the HER2- group, the total pCR is (0.70)(.05) + (0.30)(.15) = .08, which is 8%. We 

are interested in varying the prevalence in order to see how the pCR rate differs from this value. 

In order to observe the trend of total pCR as prevalence of ER+ is increased, we calculate the 

total pCR with fixed pCR rates at 5% and 15% and plot against the prevalence. For further 

insight, we can also overlay plots of different pCR rates, which are hypothetical deviations in 

actuality from expected rates. The values chosen for investigatory pCR rates are arbitrary 

positive and negative deviations from the actual rates.  

Question 2: 

 The Z value for beta formula that is derived from the sample size formula is used to 

calculate the power given all fixed parameter estimates. In order to investigate the effects of 

varied prevalence rate on the power of a study given the fixed pCR rates, we calculate a sample 

size to detect an effect between two treatment groups under a variety of scenarios. One scenario 

is to assume that the pCR rate for one group is based on Table 1, and assume that the new 



17 

 

treatment increases the pCR rate by a certain percentage. An initial example based on the values 

presented by Table 1, with a total pCR for HER2- of 0.08 and assumed rate increase by 50% to 

0.12 is used for later comparisons. We calculate the sample size needed in order to detect this 

difference with a type I error of 5% for a two-sided test and 80% power. This procedure can be  

repeated for varying each parameter and for each HER2 group.  
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RESULTS 

 

As the  , β, and difference in response values are varied, the resulting effect on the 

magnitude of the sample size can be seen. When holding   and β constant, as the difference in 

response increases, the resulting sample size must increase in order to guarantee a high 

probability of detecting the real difference. If a particular trial is able to obtain a sample size 

much greater than what is necessary to detect an effect that is expected, then the study can be 

better powered and more accurate. However, most studies are not able to recruit enough 

participants to detect the expected difference and result in an underpowered study. In addition, 

the prevalence of participants recruited for a particular group may not be the expected prevalence 

and have a significant impact on the power. It is important to consider reasonable estimates for 

the parameters given previous clinical findings and acceptable significance and power 

constraints.  

 

Question 1: 

 Upon exploration of how the complete response rates vary according to the prevalence of 

each group, we observe HER2+ rates drop more sharply as prevalence of ER+ is increased than 

HER2- rates. Based on the values presented in Table 1 for the HER2- group, the total pCR is 8%. 

The same formula is used in order to calculate the total pCR of the HER+ case, which consists of 

different parameters. The two HER2 cases are independent of each other, and rely on different 

assumed pCR rates. The slope of the HER2+ group is sharper with equal increment increases of 

ER+ prevalence because the given pCR rate difference is larger; pCR rates are 25% for ER+ and 

45% for ER- in the HER2+ group, as opposed to 5% and 15%, respectively, in the HER2- group.  
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Figure 1 shows the plot of varied prevalence from 0.1 to 0.9 by 0.05 for ER+ and the 

corresponding total pCR rates, given pCR rates for ER+ and ER- and that the prevalence rate of 

ER- is 1-prevalence of ER+. The pCR rates used to calculate the data points in Figure 1 are as 

given by reference in Table 1. The total pCR axis was tailored to the minimum and maximum 

values of the output for better viewing of data points. In the case of HER- where pCR rate of 

ER+ is 0.05 and ER- is 0.15, the total pCR rate is maximum at 0.145 when the prevalence of 

ER+ is 0.05 and minimum at 0.055 when the prevalence is 0.95. Similarly, the maximum total 

pCR rate for HER2+ is 0.44 when ER+ prevalence is 0.05 and minimum is 0.26 with ER+ 

prevalence at 0.95.  

In addition, we also illustrate the curves for observed changes in pCR rates for the ER 

group. Because the trend of HER2+ and HER2- are similar, the inference of varying pCR rates in 

the case of HER2+ is analogical to that of HER2-. Figure 2 elucidates the idea that the range of 

the total pCR, when varied across ER+ prevalence, is restricted to the values of the pCR rates. If 

both the rates are increased or decreased by the same amount, the plotted points would shift up 

and down with the same slope. If the difference in the pCR rates change, the slope changes and 

the prevalence change has a lesser effect on the total pCR rate, which is used as the control rate 

for hypothesis testing and sample size calculation.  

 

Question 2:  

 

 We use the total pCR rate, calculated with formula 2 and previously explored with varied 

ER+ prevalence, as a the control rate then to observe how the change in prevalence rate affects 

the power of a study. This is the case where the actual observed prevalence rate once a study is 

completed is different from what the previous sample size calculation was based on. We simulate 
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such a situation by calculating a sample size to detect an effect between the treatment and control 

groups initially under the scenario given by Table 1.  

 The first example with a total pCR for HER2- of 0.08 and assumed rate increase by 50% 

to 0.12 resulted in a sample size of 1764. 882 participants are required in each treatment arm in 

order to detect a 4% difference between the experimental treatment and control group, assuming 

that the control pCR rate of the control group is 8%. 

Using the same method to calculate sample size for the HER2+ case with the values 

presented in Table 1, the control pCR is 33% and the corresponding sample size to detect a 50% 

increase in pCR rate from treatment effect to 49.5% is 280 with 140 participants in each group. 

This calculation assumes that the prevalence of ER+ is 60% with a pCR rate of 25%, and the 

prevalence of ER- is 40% with a pCR rate of 45%.  

Given these sample sizes, we recalculated the pCR rate for when the prevalence of the 

ER+ and ER- groups are different. For if the ER+ prevalence is 0.8 instead of 0.7 given the same 

known pCR rates for the HER2-, then the control pCR rate would be 0.07. A 50% increase in 

pCR rate for the treatment group to 10.5% yields for the difference between groups to be 0.035. 

Then, we determined the power necessary to detect the 0.035 increase in pCR rate for the 

treatment group given the previously calculated sample size of 1764 and new  ̅ of 0.0875. 

Applying the formula for investigatory values yields a    value of 0.6424 which 

corresponds to about 96% power for a study within the HER2- group. The same is method is 

used for a study pertaining to the HER2+ group, given a sample size of 280 and pCR rates of 25% 

and 45% for ER+ and ER-, respectively. Table 3 displays the resulting values of    per 

prevalence of ER+ and the corresponding power for both HER2+ and HER2- groups. For these 
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particular cases, the power can range from 66.73% to 97.24% for HER2+ and 66.75% to 95.42% 

for HER2-.  

 In addition, we found that no matter how extreme of a treatment effect we observe, the 

power of the study does not significantly change distinct from the varied prevalence. Figure 3 

shows the power plots for varied ER+ Prevalence for 10%, 30%, 50%, and 70% increase in 

treatment pCR rate for both HER2+ and HER2-. For a treatment only expected to increase the 

pCR rate, the power is sufficient given prevalence rates similar to what was expected regardless 

of how drastic of an increase is expected in the pCR rate. Overall, however, we can make 

inferences based on all of the analyses that there exists a danger of having underpowered studies 

with unexpected prevalence rates of ER+ and ER- within an HER2 group.  
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DISCUSSION 

 

The analyses in this study depended on roughly estimated response rates and prevalence. 

Numerous study designs exist to experiment and test the effect of neoadjuvant chemotherapy 

treatment on any possible subset of the breast cancer population. Due to the inability to obtain 

accurate and consistent values to present more impactful results, this study demonstrates trends 

for possible situations and provides guidelines for considerations in future sample size 

calculation and power analysis for similar studies. 

 Uncertainty in the power and sample size estimates arise because the ER+ and ER- breast 

cancers have very different sensitivities to chemotherapy. In addition, there are many other 

factors that can be considered in determining an inclusion criteria that it is difficult to know 

which subset of the population the treatment should target. Differences in patient composition 

have substantial impact on what the overall pCR rate is, and a comprehensive literature review of 

any particular subset of the population was difficult to obtain. In addition, pCR rates that were 

used as the base were provided by a consulting clinician and verified in the literature subjectively. 

Similar rates were accepted to use those values as the control example, even though the exact 

procedure and study design were not the same as any proposed here.   

 The major advantage to this study is the scope of its applicability. It generalizes several 

cases for clinical investigators to be able to apply their own study into such a framework towards 

the goal of maintaining enough power for their particular study. It also poses the hypothetical 

situations from changing parameters from control calculation with values that should be close to 

the unknown actual values. This study was aimed to emphasize an important concept of the 
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dangers of resulting in an underpowered study due to lack of priori power analysis and sample 

size calculation or observed values that deviate too far from the expected parameters.  

 Investigators should understand the concepts and relationships between parameters of 

sample size, power, and probability that were presented with statistical background in planning 

future breast cancer clinical trials.  
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APPENDIX 

Tables 

Table 1: Data presented and ranges explored (reference italicized) 

 HER 2 (-) HER 2 (+) 

Prevalence 80% 20% 

 ER (+) ER (-) ER (+) ER (-) 

Fixed prevalence 70% 30% 60% 40% 

ER+ prevalence explored 0.1 to 0.9 by 0.05 

Fixed pCR rates: 5% 15% 25% 45% 

Treatment effects on pCR 

rates explored 
10%, 30%, 50%, and 70% increase from control pCR rate 

Effect Size varied by proportions 

 

Table 2: Total pCR rates for varied prevalence of ER+ and ER-  

HER2-  HER2+ 

prev 
ER+ 

pCR 
ER+ 

prev 
ER- 

pCR 
ER- pCR 

 

prev 
ER+ 

pCR 
ER+ 

prev 
ER- 

pCR 
ER- pCR 

0.05 0.05 0.95 0.15 0.145 
 

0.05 0.25 0.95 0.45 0.44 

0.1 0.05 0.9 0.15 0.14 
 

0.1 0.25 0.9 0.45 0.43 

0.15 0.05 0.85 0.15 0.135 
 

0.15 0.25 0.85 0.45 0.42 

0.2 0.05 0.8 0.15 0.13 
 

0.2 0.25 0.8 0.45 0.41 

0.25 0.05 0.75 0.15 0.125 
 

0.25 0.25 0.75 0.45 0.4 

0.3 0.05 0.7 0.15 0.12 
 

0.3 0.25 0.7 0.45 0.39 

0.35 0.05 0.65 0.15 0.115 
 

0.35 0.25 0.65 0.45 0.38 

0.4 0.05 0.6 0.15 0.11 
 

0.4 0.25 0.6 0.45 0.37 

0.45 0.05 0.55 0.15 0.105 
 

0.45 0.25 0.55 0.45 0.36 

0.5 0.05 0.5 0.15 0.1 
 

0.5 0.25 0.5 0.45 0.35 

0.55 0.05 0.45 0.15 0.095 
 

0.55 0.25 0.45 0.45 0.34 

0.6 0.05 0.4 0.15 0.09 
 

0.6 0.25 0.4 0.45 0.33 

0.65 0.05 0.35 0.15 0.085 
 

0.65 0.25 0.35 0.45 0.32 

0.7 0.05 0.3 0.15 0.08 
 

0.7 0.25 0.3 0.45 0.31 

0.75 0.05 0.25 0.15 0.075 
 

0.75 0.25 0.25 0.45 0.3 

0.8 0.05 0.2 0.15 0.07 
 

0.8 0.25 0.2 0.45 0.29 

0.85 0.05 0.15 0.15 0.065 
 

0.85 0.25 0.15 0.45 0.28 

0.9 0.05 0.1 0.15 0.06 
 

0.9 0.25 0.1 0.45 0.27 

0.95 0.05 0.05 0.15 0.055 
 

0.95 0.25 0.05 0.45 0.26 
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Table 3: Power calculation for varied prevalence rates of ER+ 

  HER2+     HER2-   

ER+ Prevalence    Power (1-  ) ER+ Prevalence    Power (1-  ) 

0.1 1.916906 0.972375 0.1 1.687489 0.9542453 

0.2 1.746893 0.9596721 0.2 1.503327 0.9336226 

0.3 1.574272 0.9422877 0.3 1.329533 0.9081639 

0.4 1.398373 0.9189995 0.4 1.164603 0.8779101 

0.5 1.218388 0.8884617 0.5 1.007251 0.843093 

0.6 1.033313 0.8492712 0.6 0.856363 0.8041016 

0.7 0.841873 0.8000705 0.7 0.710954 0.7614436 

0.8 0.642392 0.7396907 0.8 0.570135 0.715707 

0.9 0.43258 0.6673401 0.9 0.433088 0.6675245 

 

 

 

Figures 

Figure 1: Plot of pCR control rate against prevalence of ER+ for both HER2+ and HER2- 
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Figure 2: Plot of pCR control rate against prevalence of ER+ for HER2+ 

 

Figure 3: Power plots for varied ER+ Prevalence for 10%, 30%, 50%, and 70% increase  
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Calculations 

 

1) Total pCR rate: (0.70)(.05) + (0.30)(.15) = .08 

 

2) Question 2:  

HER2- 

   
   (           )          

|          | 
      

HER2+ 

   
   (           )                

|           | 
             

 

3) Power calculation for HER-: 

    
      √         (        )  √     (          )

√     (       )      (      ) 
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