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Abstract 

While several studies have reported a decrement in performance by older adults 

while walking and concurrently performing a dual task on even surfaces, to date the 

effects of dual tasking while walking on uneven surfaces commonly found in the 

community has received less attention. Thus, we sought to test the hypothesis that an 

incremental decrement in gait parameters will be observed, when walking on an uneven 

versus an even surface and furthermore, that this decrement would be dependent upon 

the concurrent performance of a secondary cognitive and/or motor task in functionally 

independent-living-community older adults. 

Dynamic Gait Index assessed the subject’s ability to modify gait in response to 

changing task demands and Mini Mental State Examination was used to screen 

cognitive function of the participants. Twenty-eight participants walked at a comfortable 

speed over the GAITRiteTM walkway placed over an even and uneven surface. Twenty-

four strips of wood measuring 0.10 square meters and 0.05 meter high attached 

randomly under the smooth surface of an artificial grass mat measuring 6 meter long 

and 1.2 meter in width simulated a natural uneven surface. Each participant randomly 

performed a total of three (3) trials each under the following four task conditions as they 

walked over an even or uneven surface: 1) no secondary task (single task), 2) 

concurrent cognitive task, 3) concurrent motor task, 4) concurrent cognitive-motor task. 

The presentation of the task conditions were counterbalanced across subjects. Gait 

speed, cadence, stride time, and double support time were analyzed using a 2 x 4 

repeated measures ANOVA. Also, to quantify subjects' ability for executing two tasks 

concurrently, we calculated the dual task costs. In addition, the cognitive, motor and 
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cognitive/motor tasks performances on even and uneven surfaces were assessed using 

Mann-Whitney U. 

The results of these analyses revealed significant main effects for concurrent dual-

tasking as well as surface for speed [F(1.86,50)= 21.93; p ≤ 0.05; F(1,27)= 24.3, p ≤  

0.05] , cadence [F(1.85,50)=33.824; p ≤ 0.05. F(1,27)= 22.2, p ≤  0.05], stride time 

[F(1.94,52.34)= 33.41, p ≤ 0.05; F(1,27)= 23.49, p ≤ 0.05], and double support time 

[F(1.99,53.62)= 7.4; p ≤  0.05; F(1,27)= 7.4, p = .011]. It was observed that the elderly 

slow down, take a lesser number of steps per minute, increase their stride time and 

spend more time in double support when walking on uneven surfaces and when 

performing a concurrent dual-task. However, interaction effects failed to achieve 

significance.  This study provides some preliminary evidence that independent, 

community living older adults use a default strategy that rely on making adjustments in 

gait that result in greater motor control. In other words the older adults err on the side of 

safety and focus their anticipatory resources towards controlling balance. It is important 

for clinicians to be aware of these strategies and incorporate them in the management 

of the elderly patient.  
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EFFECT OF DUAL TASKING ON WALKING OVER EVEN AND UNEVEN SURFACES 

IN FUNCTIONALLY INDEPENDENT COMMUNITY OLDER ADULTS 

General Background  
 

Growth of the older population in the United States is inevitable. There are now 

more older Americans than at any other time in U.S. history. According to a new Census 

Bureau report, there were 40.3 million older adults, ages 65 and over, on April 1, 2010, 

up 5.3 percent from 35 million in 2000. This population is projected to increase to 72.1 

million by 2030 and will constitute 19.3% of the population. As this population increases, 

the probability of age-related disorders and disabilities will also increase proportionally. 

This increase will have a great impact on individuals, families and healthcare providers 

(US Census Bureau, 2010).  

It has been well established that aging is associated with physiologic changes 

that naturally predispose the elderly to progressive weakening and functional decline 

(Hofer, Berg, & Era, 2003). One typical area of decline in the elderly is in the ability to 

balance. The loss of balance that accompanies aging may be due to sensory and/or 

motor changes, including decreases in muscle strength and power (Frontera, Hughes, 

Fielding, Fiatarone, & Evans, 2000; Johnson, Mille, Martinez, Crombie, & Rogers, 2004; 

Vandervoort, 2002).  

Sensory information and its processing is fundamental to detecting a state of 

postural stability and initiating appropriate strategies to correct for instability (Silsupadol, 

Siu, Shumway-Cook, & Woollacott, 2006). Therefore, age-associated changes in the 

somatosensory, optic, and vestibular systems would most likely contribute to postural 
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instability and the potential loss of balance. Decreases in velocity and accuracy in the  

processing of vestibular, visual, and proprioceptive information have been noted with 

aging (Silsupadol et al., 2006). These decreases affect the ability of the elderly to detect 

and react to disturbances in balance, leading to an increased risk for falls. Overall, the 

sensory impairments observed in the elderly have been associated with functional 

decline and fall risk, particularly when carrying out or performing functional tasks such 

as walking (Silsupadol et al., 2006). 

Further compromising the functional status of older individuals is the fact that 

aging increases the elderly‘s need to cognitively attend to the task of walking (Sparrow, 

Bradshaw, Lamoureux &Tirosh, 2002). It has also been suggested that with increasing 

age the act of walking demands higher levels of control processing, and gait becomes 

less automatic (Woollacott & Shumway-Cook, 2002). So, greater attentional demand is 

needed in the older adults to perform the otherwise unconscious/subconscious act of 

walking. 

Sparrow et al (2002) have suggested that this increase in attentional demands 

during walking would reduce the resources available for the performance of a 

concurrent dual task. Thus, in the case of walking while performing a cognitive task like 

reading, the primary task of walking is competing with the secondary task. This 

competition for cognitive resources can result in a change in walking-task performance, 

a decrease in the performance of the second task, and/or an increased likelihood of 

falling in the elderly. 

Many activities of daily living involve performing dual tasks concurrently (i.e., 

walking and talking). Dual task paradigm is a procedure that requires an individual to 
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perform two tasks simultaneously, in order to compare performance with single-task 

conditions. When performance scores on one and/or both tasks are lower when they 

are done simultaneously compared to separately, these two tasks interfere with each 

other, and it is assumed that both tasks compete for the same class of information 

processing resources in the brain. According to the dual-task paradigm, priority is 

typically given to one task while the other task suffers (Gerin-Lajoie, Richards, & 

McFadyen; 2005; Woollacott & Shumway-Cook, 2002).  

Literature is emerging to suggest that a performer’s characteristics, such as age 

and cognitive and/or motor impairments, may influence dual-task performance. The 

literature suggests that healthy adults walk slower when they are required to walk while 

performing another task (Abernethy, Hanna, & Plooy, 2002; Woollacott & Shumway-

Cook, 2002). In addition, Gerin-Lajoie et al. (2005) reported that healthy, active older 

adults have greater difficulty than young adults in dividing their attention between 

walking and performing a relatively simple mental task, such as listening to an auditory 

passage. Walking and talking at the same time has been found to result in a lower rate 

of speaking (Williams, Hinton, Bories, & Kovacs, 2006).  

Hollman, Kovash, Kubik, and Linbo, (2007) found that that gait velocity 

decreased by eight percent (8%) in young adults and by 20% in the elderly during dual-

task walking. Similarly, Priest, Salamon, and Hollman, (2008) reported a reduction of 

18% and 30% respectively in stride velocity when younger and older adults performed a 

dual task. This suggests that older adults need increased sensorimotor control to 

perform dual tasks while walking in order to maintain balance, as additional attentional 
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resources are required to complete the task successfully (Lajoie, Teasdale, Bard, & 

Fleury, 1996). 

In summary, the evidence suggests that there is a significant decrease in the 

elderly compared to young adults in performing the primary task of walking and/or in 

performing secondary tasks when they concurrently perform the two tasks at the same 

time. Thus, recognizing that the inclusion of an additional attention-demanding 

secondary task can affect gait performance (Li, Lindenberger, Freund, & Baltes, 2001; 

Lindenberger, Marsiske, & Baltes, 2000) makes it imperative that we further investigate 

the effects of dual-tasking on gaiting in the older adults, given the strong link between 

gait disturbances and fall prediction (Verghese, Holtzer, Lipton, & Wang, 2009). 

In addition to the decreases seen in the elderly in gait on level-surface walking 

when concurrently performing a secondary task, changes in gait characteristics on 

different walking surfaces have also been reported. Menz, Lord and Fitzpatrick (2003) 

evaluated the gait pattern of young and elderly subjects while walking on an even and 

an uneven walking surface. The study found that elderly participants exhibited reduced 

velocity, shorter step length and increased step-timing variability compared to the 

young. These differences were more pronounced when walking on an uneven surface. 

Previous studies that have investigated the effects of age on the ability to walk on 

uneven terrain have also reported increases in step variability and decreases in trunk 

and head variability in older adults (Thies, Richardson, & Ashton-Miller, 2005; Menz, 

Lord, & Fitzpatrick, 2003). More recently, Marigold and Patla, (2008) examined the 

effects of aging on gait variability over uneven and solid ground, and found that the 

elderly walked more slowly and took shorter steps compared to the young adults. 
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Although limited information exists regarding uneven surface demands in the elderly 

population when dual tasking, it appears that as task demands become more 

challenging additional adjustments need to be made while walking, particularly in the 

elderly. 

Several theories have been proposed in the literature as a means to explain the 

observed dual-task effects, including bottleneck, capacity sharing and crosstalk 

(Kanheman, 1973; Pashler, 1994). The capacity-sharing theory (Kanheman, 1973) 

suggests that humans have a limited amount of processing capacity available when 

performing tasks. Thus, the ability to perform two or more tasks successfully depends 

on how much demand the tasks make on a limited capacity processor. Tasks requiring 

less processing capacity for successful execution leave additional attention available for 

carrying out another task at the same time. Alternately, difficult tasks, which require 

more processing capacity, may limit the available attention needed to carry out 

simultaneous tasks effectively. Thus, performing even a simple secondary task while 

walking would necessitate additional processing capacity, leading to an overload on the 

capacity processor and, consequently, to a decrease in the performance of one or both 

tasks in the elderly. 

   The question of how to define task complexity is one that has been discussed in 

the literature (Peng & Zhizhong, 2012) and can be looked at from a variety of 

perspectives. The taxonomy of tasks proposed by Gentile (1987) provides a theoretical 

framework to understand the processing complexities of tasks performed individually as 

well as concurrently. There are two dimensions of Gentile’s taxonomy: environmental 

context (open/closed or inter-trial variability/no inter-trial variability) and function of 
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actions (stability/transport or manipulation/no manipulation). Gentile (1987) purports that 

the environmental conditions and the goal of the action regulate how a person must 

execute his or her movements in order to successfully negotiate the demands of the 

task and achieve the goal. Thus, walking and manipulating an object would require 

consistent attention, resulting in more complex processing than standing or walking 

down an uncluttered pathway. When the primary task requires an excessive deal of 

attention, performance of the secondary task would be expected to suffer because the 

remaining attentional resource for the secondary task is minimized. On the other hand, 

when the primary task requires less attention, a better secondary task performance 

would be expected. 

Statement of the Problem and Purpose 

Several studies have established the effect of dual-task performance in healthy 

young and elderly adults while walking on level surfaces (Abernethy et al., 2002; 

Woollacott & Shumway-Cook, 2002) and uneven surfaces (Thies et al., 2005; Menz et 

al.,, 2003; Lindenberger, et al., 2000). However, much less is known about the gait 

adaptations made by the elderly while walking on either even or uneven surfaces and 

simultaneously performing a cognitive and/or a motor task. Understanding the ways in 

which these conditions affect the gait of older adults may be important to the study of 

adaptive control mechanisms used by the elderly and, in turn, may have implications for 

fall prevention. Thus, the purpose of this study was to examine the effects of performing 

a motor and/or cognitive dual-task on the spatio-temporal characteristics of gait in the 

elderly as they ambulate on even and uneven surfaces. More specifically, the research 

questions of the study were:  
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1) Are there changes in spatio-temporal gait characteristics in functionally 

independent,  community living older adults as they walk on even surfaces 

compared to uneven surfaces, regardless of the tasks?  

2) Are there changes in spatio-temporal gait characteristics in functionally 

independent community living older adults as they perform different tasks 

regardless of the surfaces?  

3) If there are changes in spatio-temporal gait characteristics in functionally 

independent community living older adults as they walk on either an even or 

uneven surface, are these changes influenced by (or dependent upon) the type of 

secondary dual task (cognitive, motor, cognitive/motor) being performed, i.e., is 

there a surface-type x dual-task-type interaction?  

The hypotheses of the current study were: 

1) It is hypothesized that there will be changes in spatio-temporal gait   characteristics 

in functionally independent community living older adults as they walk on even 

surfaces compare to uneven surfaces regardless of the tasks.  

2) It is hypothesized that there will be changes in spatio-temporal gait characteristics 

in functionally independent community living older adults as they perform different 

tasks regardless of the surfaces.  

3) It is hypothesized that there would be a greater decrease in gait speed, and 

increased cadence, stride time and double support time in functionally 

independent  community living older adults with the addition of a secondary task 

while walking on uneven surfaces compared to even-surface walking. 
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Chapter II 

Review of the Literature 

As the number of Americans over the age of 65 increases, so does the problems 

and challenges related to the aging process. As this population ages, some individuals 

experience physical limitations, such as flagging muscle strength, weakening vision, 

decreased coordination and decreased reflexes. Furthermore, aging is associated with 

physiological and neurological changes that naturally predispose the elderly to 

progressive weakening and functional decline (Hofer et al., 2003). This functional 

decline includes but is not limited to impaired gait characteristics and deficits in static 

and dynamic balance. Consequently, with a decrease in functional capacity, the 

proportion of elderly needing assistance with everyday activities increases with aging. It 

has been reported that nine (9) percent of those between ages 65 and 69 need 

personal assistance, while up to 50 percent of elderly Americans over the of 85 need 

assistance with everyday activities (US Census Bureau, 2010). Importantly, these 

physical changes and deficits in functional status may result in falls. According to the 

National Safety Council (2010), one in every three subjects above the age of 65 is in 

danger of falling. Furthermore, falls are a leading cause of comorbidities, such as hip 

fractures, which lead to an additional decline in functional status (National Safety 

Council 2010). Falls can cause the elderly to lose confidence in their abilities to function 

safely, which can then contribute to an increased fear of falls. Half of the people who 

have fallen admit to restricting activities subsequently, which leads to increased periods 

of immobility and subsequent morbidity. Furthermore, a decrease in activity levels, in 

turn, leads to physical complications similar to the aging process itself, e.g., muscle 
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weakness, osteoporosis, and more fall risk (Tinetti, 2003). 

At a sensorimotor level, age-related changes in the elderly include increased 

reaction times, decreased auditory acuity and decreases in the processing and 

response to vestibular, visual, and somatosensory stimuli (Prince, Corriveau, Hebert, 

& Winter, 1997). These deficits have been shown to impact significantly on gait 

characteristics. Thus, compared to young adults, the older adults walk with a higher 

cadence, shorter stride length, and increased double support phase (both limbs are on 

the ground simultaneously) while walking at self-selected velocities. These changes 

make gait-related disorders the second most prevalent disorder in the elderly 

population (Rubino, 1993). Furthermore, it has been reported that sensorimotor 

impairments potentially decrease stability while walking, contributing to the large 

number of falls in the elderly population (Rubino, 1993).   

Elderly adults also demonstrate decreases in muscle strength and power 

(Frontera et al., 2000; Johnson et al., 2004; Vandervoort, 2002). Because of aging, the 

average adult aged 50 to 70 years loses 30% of muscle strength (Butler, 2000). The 

maximal cross-sectional area of the quadriceps is on average 25% lower in 70 year olds 

compared to 20 year olds (Young, Stokes, & Crowe, 1985). Furthermore, declines in 

muscle strength are attributed to decreases in the number and size of muscle fibers and 

the loss of entire motor units (Spirduso et al., 2005). Furthermore, Lexell, Taylor, and 

Sjostrom, (1988) have suggested that the denervation and re-innervation process 

resulted in a smaller cross-sectional area, which included a loss in the total number and 

size of the type II fibers. The older adults, age 60 and older, rapidly lose functioning 

motor units, while surviving units are typically enlarged and are slow in twitch nature, 
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suggestive of a loss of fast-twitch fibers. These changes in musculature in the older 

adults lead to adaptations during walking. The focus of the following sections will be on 

age-related changes in gait as the older adults negotiate different surfaces and perform 

dual tasks. 

Gait Changes with Aging 

Gait or walking is a very complex task that requires several muscles and joints to 

work in a synchronized pattern of coordinated movements. A continuous task involves 

the alternate and cyclical movements of the legs as the body is linearly displaced 

through space. A gait cycle is initiated when one foot contacts the ground and ends 

when the same foot contacts the ground again.   

During normal walking, there are two phases: a stance and a swing phase.  In 

self-paced walking, 60 percent of the gait cycle for one limb is spent in stance and 40 

percent in swing. Furthermore, approximately 20 percent of the total time during which 

both limbs are on the ground simultaneously is termed double support.  

A person’s walking velocity is defined by the spatial parameter of step length 

(distance from one heel to the next at one point in time) and the temporal parameter 

cadence (step frequency).  Walking velocity is increased by increases in both step 

length and cadence until physiological limits of step length is reached. As the velocity 

increases or decreases, the proportion of time spent in stance and swing phases 

changes (Shumway-Cook & Woollacott, 2001). The comfortable walking velocity for 

elderly adults, based on an average reported i n  t h e  literature is 1.16 m/second.  

This is 13.5% slower than the average of 1.34 m/second in young adults (Hausdorff, 

Edelberg, Mitchell, Goldberger, & Wei, 1997).  
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The older adults slow down as a strategy to minimize loss of balance, and this 

slowing down has been shown to be directly related to decreased stride length (Scott, 

Menz, & Newcombe, 2007; Kavanagh, Barret, & Morris, 2004; DeVita & Hortobagyi, 

2000) (Table 2 & 3). Scott et al. (2007) reported normalized walking velocity of young 

participants (mean age 20.9 ± 2.6 yr.) mean of 1.19 ± 0.14 m/s compared to 0.94 ± 0.18 

m/s for elderly participants (mean age 80.2 ± 5.7 yr.). Similarly, elderly participants 

(mean age 67.4 ± 5 yr.) exhibited a slower (1.21 m/s) walking velocity when compared 

with young participants (mean age 28.2±5 yr.) (1.32m/s) walking as they walked on a 

six-meter walkway at a self-selected velocity (Ostrosky, VanSwearingen, Burdett, & 

Gee, 1994). This decrease in velocity has been associated with less likelihood of falling. 

Montero-Odasso et al. (2005) reported that older adults with low walking velocity of less 

than 0.7 m/s have 72% chance of falling compared with 34% of those with median 

velocity  (0.7–1 m/s), and 20% with high walking velocity  (>1.1 m/s). 

Another strategy used by the elderly to compensate for decreased dynamic 

balance is to spend less time in swing phase and spend more time with both feet in 

contact with the ground, that is, increase time spent in double support. It has been 

observed that when walking velocity is controlled the elderly spend more time in double 

limb support than the young do. This occurs twice during the gait cycle, at the beginning 

and end of the stance phase. DeVita, & Hortobagyi (2000) reported that elderly 

participants spent on average 64.2% in double limb support as compared to 61.2% for 

young participants. This study also found that the elderly generally preferred to walk at a 

slower velocity, take shorter strides, have a higher cadence, and increase time spent in 

double support as compared to young adults (DeVita & Hortobagyi, 2000) (Table 5). 
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Another gait parameter that changes in the elderly is step length. Step length is 

the distance between corresponding successive points of heel contact of the opposite 

feet. Specifically, it is the distance from initial contact of one foot to the following initial 

contact of the same foot. It has been reported that step length is decreased in the 

elderly compared to young adults (DeVita & Hortobagyi., 2000; Ostrosky et al., 1994). 

Associated with this shortened stride, the elderly increase their cadence and reduce 

their forward velocity as they walk (Himann, Cunningham, Rechnitzer & Paterson, 

1987). 

Gait Changes in the Older Adults While Walking on Different Surfaces 

Successful walking in a community requires gait adaptations to avoid obstacles, 

negotiate uneven terrain, and accommodate for changes in velocity and direction. It has 

been reported that significant changes occur when an elderly individual is exposed to 

different walking surfaces (Thies et al., 2005). The elderly have been shown to exhibit 

greater step width variability compared to the young participants when they walk on an 

uneven surface at a self-selected walking velocity along a ten-meter walkway. Thus, 

surface type (even vs. uneven) had significant effects on the average step width and 

step width variability in the elderly compared with the young. In addition, the elderly 

exhibited increased step time variability as they walked on an uneven surface compared 

to an even surface (Thies et al., 2005). Similarly, Menz et al (2003) found that elderly 

participants (mean age 79 ± 3.0 yr.) exhibited a significant reduction in step length and 

increase in step timing variability compared a group of young participants (mean age 29 

± 4.3 yrs.) when walking on uneven surfaces (Menz et al., 2003).   
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Dual Task and Gait in the Older Adults 

Many activities of daily living involve performing dual tasks concurrently, such as 

talking on the phone and walking. Ebersbach, Dimitrijevic, and Poewe, (1995) reported 

that a significant change in gait pattern was induced by various concurrent secondary 

tasks in young adults aged 25-42 years. They reported that young participants 

increased their double support time as they walked while performing a concurrent 

cognitive and motor task. Furthermore, the researchers found that as the complexity of 

the task increased there was a concomitant increase in their double support time, which 

they suggested was a strategy used to control balance during the performance of an 

attention demanding tasks (Ebersbach et al., 1995). 

Similarly, the effects of aging on ambulation while performing a dual task have 

also been studied using a foot-targeting task that required subjects to place one of their 

feet on designated targets on the floor while walking (Sparrow,et al., 2002). The authors 

of this study found that the elderly had significantly longer visual and auditory reaction 

times while walking and performing dual tasks. 

Hollman et al. (2007) compared healthy elderly participants to the young, as they 

walked and concurrently performed a cognitive task. The researchers found that gait 

velocity decreased by 8% in young adults and by 20% in the elderly under the dual-task 

condition. Additionally, they found that in the elderly the impaired walking performance 

was associated with impaired cognitive performance as well.  

Priest et al. (2008) examined if gait velocity and variability-in-stride velocity 

differed in community-dwelling elderly women (80 ± 9 years) compared to healthy young 

women (23 ± 2 years) during dual-task walking. Participants walked under the following 
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two conditions: (1) a self-selected velocity and (2) a self-selected velocity while 

incrementally counting backwards. They found a reduction of 30% and 18%  in walking 

velocity while concurrently performing the dual tasking in the older and young adults 

respectively. The study also reported an increase in walking velocity variability in both 

groups in the dual-task condition. The researchers suggested that this increase in 

variability is indicative of a relatively more unstable gait (Priest, et al., 2008). Similarly, in 

a study in which elderly participants had to pay attention to auditory messages while 

walking, the results suggested that older adults have a decreased ability to walk while 

performing mental tasks simultaneously (Gerin-Lajoie et al., 2005).  

According to the dual-task paradigm, priority is typically given to one task, while 

the other task suffers (Gerin-Lajoie et al., 2005; Woollacott & Shumway-Cook, 2002). 

Evidence in the literature suggests that healthy adults walk slower when they are 

required to walk while performing another task (Abernethy et al., 2002; Woollacott & 

Shumway-Cook, 2002). In addition, Gerin-Lajoie et al. (2005) have reported that healthy 

active elderly individuals have greater difficulty than young adults do in dividing attention 

between walking and performing a relatively simple mental task, such as listening to an 

auditory passage.  Also walking and talking at the same time result in a slower rate of 

speaking (Williams et al., 2006). Taken together, it appears that a combination of 

cognitive and motor tasks and negotiating even and uneven surfaces may have a 

deleterious effect on the primary task, the secondary task, or both. 

In summary, walking and performing other tasks have become an important part 

of today’s life style. it is also true that individuals need to walk on different types of 

surfaces, such as concrete walkways, grass etc that create an uneven walking surface 
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to function independently in the community. Uneven walking surfaces afford the 

performer different conditions from that of a even walking surface and, thus, may 

require additional attention afforded to the surface characteristics.  

Dual task performance has been identified as a predictor of fall risk (Beauchet, 

Annweiler, Allali, Berrut, Herrmann, & Dubost, 2008). It is purported that performing a 

dual task increases the risk of falling among the frail elderly or those elderly who suffer 

from recurrent falls without any known organic reason as compared with non-fallers 

(Springer, Giladi, Peretz, Yogev, Simon, & Hausdorff, 2006). Also, Lundin-Olsson, 

Nyberg, and Gustafson, (1997) have suggested that many falls in balance-impaired 

elderly individuals do not typically occur during normal walking conditions but rather 

when they are walking and simultaneously performing a secondary task such as talking. 

Thus, it appears that the addition of a secondary task while walking results in a 

decrease in gait. Accordingly, understanding how the elderly adapt to walking on multi-

surface terrains while performing a dual task may provide useful information that may 

help design fall-prevention programs for the elderly population. 

Dual Task Theoretical Framework 

Several theoretical frameworks have been applied to understand the attentional 

processes involved during the performance of dual tasks. The first such theory put 

forward was that of a strict processing bottleneck or the ‘bottleneck theory’ (Pashler, 

1994). This refers to the idea that critical mental operations are carried out sequentially 

manner. Simple operations may require a single mechanism to be dedicated to them for 

a short period. However, when two or more tasks need the same mechanism at the 

same time, a bottleneck results, and one or both tasks will be delayed or otherwise 
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impaired. This kind of framework is generally referred to as a bottleneck or single-

channel model. Only one task stimulus can be process at a time. Thus, performing two 

tasks simultaneously creates difficulties because only one task can be concentrated on 

at a time.  

In contrast to the bottleneck, the cross-talk theory purports that in the 

performance of dual tasks the interference produced might be critically dependent not 

on what sort of operation is to be carried out but on the content of the information 

actually being processed. Thus, when two tasks are more similar, performing them 

together will cause more interference than would be the case with very different tasks 

(Pashler, 1994). This suggests that the interference depends on the similarity or 

confusability of the task.  

The third theory that attempts to explain the attentional demand associated with 

dual task performance is the capacity-sharing theory. This theory assumes that 

processing capacity is shared among tasks. When more than one task is performed at 

any given moment, mental processing capacity needs to be shared among the tasks, 

leading to a decrease in attentional resources and, therefore, potential task 

performance impairments (Kanheman, 1973). For instance, people who carry out 

several different activities at once will routinely exhibit difficulty in their performances as 

more and more activities are required to be completed concurrently. As a result, the 

performer requires more effort during dual tasking, which usually results in one or all of 

the activities being affected negatively. Exactly how attention is divided between the two 

tasks relies on several factors, including task complexity, familiarity, and importance. 

With the capacity-sharing model, dual task interference occurs only if the available 
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resource capacity is exceeded, resulting in a decline in performance on one or both of 

the tasks. This theory provides information as to allocation of resources and if the task-

required capacity is exceeded, the performance of the task is degraded. Based on 

Gentile’s taxonomy (Gentile, 1987) which classifies tasks based upon environmental 

context and the function of action the capacity-sharing theory represents a suitable 

theoretical framework to address dual-task performance (Tombu & Jolicoeur, 2003). 

Taxonomy of Tasks 

The taxonomy of tasks proposed by Gentile (1987) provides a comprehensive 

framework with which to understand the processing complexities of tasks, performed 

individually as well as concurrently. Moreover, the framework helps understand the 

biomechanical and information-processing demands imposed by the task in the context 

of the performer as well as the environment. Gentile (1987) suggested that the 

constraints imposed by the task and environment affect motor performance. For 

example, walking patterns are likely to demonstrate different kinematics and kinetics to 

accommodate walking on uneven surfaces such as sand when compared to walking 

over a level surface such as concrete (Patla, 1997). In addition, size and/or compliance 

of the standing support surface alters the balance strategies used by healthy 

participants (Nashner 1989). Accordingly, walking along a carpeted, well-lit and empty 

corridor would require less processing than walking in a similar corridor filled with 

chairs, pillars, moving objects/people and different floor surfaces (Gentile, 2000). Like 

with complex environments, Gentile (2000) suggested that processing requirements are 

also dependent upon a second dimension, that of the functional demands of the task. 

For example, does the task necessitate body stability/transport or object manipulation? 
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It is purported that the information processing requirements will be greater if the task 

requires transport as well as manipulation of the object (Gentile 1987).  

Gentile’s taxonomy classifies skills based on degree of difficulty and 

environmental factors. She proposed that a task would be more difficult when the body 

is moving during the task performance.  Tasks that require body transport and object 

manipulation are more complex than no body transport and no object manipulation 

because of the greater number of variables to deal with to complete the tasks. 

In summary, the need to process information related to the task and environment 

may compete for limited central resources and, hence, performance may be influenced 

by the complexity of the environment and/or the functional requirements of the task. 

Gentile’s taxonomy provides a basis for categorizing motor tasks in relation to the 

environmental context (Magill, 2007). Thus, simply walking in an uncluttered corridor 

would necessitate the utilization of less information processing than walking in a 

cluttered corridor while dialing a number on one’s cell phone. It has been shown that 

elderly participants and patient groups have difficulty walking and carrying objects 

(Lundin-Olsson et al 1997). Outwardly paced activities, dual-task performance and 

changing environments provide a greater challenge in information processing (Lundin-

Olsson et al 1997). This decrease in performance has been shown to affect the elderly 

greatly. 

Another mean to assess the effects of dual tasking is by calculating dual task 

cost (Bock, 2009; Cossette, Ouellet, & McFadyen 2014). Dual task cost is use to 

determine the relative change between single and dual tasks. Dual task costs can be 

calculated using the mean value of each task using the following formula:  
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Dual Task Costs (%) = Single task – Dual task ⃰ 100 

                                      Single task 

A high dual task cost value indicates a poorer performance under dual-task 

conditions compared with single-task conditions (Bock, 2009; Cossette, Ouellet, & 

McFadyen 2014).  

Effects of Cognitive Dual Tasking on Gait 

Based upon the taxonomy of tasks, one might infer that the difference in the 

effects of dual-task performance is influenced by the type of task performed, which can 

be defined by the degree of attention required: e.g. cognitive-based task, motor-based 

task, or cognitive-motor-based task.  

The concurrent-performance of a cognitive-based task such as counting  

backward while walking has been shown to decrease performance on one or both 

tasks. Fifty independent-functioning older adults in an institution were able to walk and 

follow simple instructions were recruited by Lundin-Olsson et al (1997). The elderly 

participants were observed by a physical therapist as they were accompanied from their 

living accommodations to an assessment room. Unbeknownst to them, they were 

assessed on the number of times they stopped when involved in a conversation. The 

results showed that of the 58 elderly participants, 12 stopped walking with initiation of a 

conversation and 12 participants fell during a six-month follow-up. 

 Verghese, Holtzer, Lipton, and Wang (2007) reported decreases in velocity and 

cadence and increases in double support time in elderly participants when they walked 

while reciting alternate letters of the alphabet (skipping the letter in between) on a 

walkway. Furthermore, it was observed that when subjects were asked to pay more 
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attention to reciting the letters than to their walking, the velocity and cadence decreased 

even more and double support time increased. 

Bootsma-van der Wiel et al. (2003) evaluated the effect of performing a cognitive 

task while walking in the elderly population. Walking time over a 12-meter distance was 

measured, as well as the verbal fluency to recite names of animals or professions 

during a 30-second period. The authors found that walking time and the number of 

steps taken were significantly higher and the number of words recited significantly lower 

when performing dual tasks.  

 Shumway-Cook, Brauer, and Woollacott (2000) asked elderly community-

dwelling participants to stand up, walk 3 m (10 ft.), turn, walk back, and sit down. 

Interestingly, they found that the time taken to complete the test strongly correlated with 

the level of functional mobility. Each participant was asked to complete three trials of 

this test while counting backward by threes from a randomly selected number between 

20 and 100. The authors demonstrated that elderly individuals with a history of falls take 

more time to complete the test by 25% compared with 16% in the elderly without a 

history of falls.  Similarly, Lindenerger, et al, (2000) found that the elderly had greater 

decrease in gait velocity than young participants when they needed to memorize a list of 

16 item words while walking. They suggested that decreased walking velocity can be 

attributed to a compensatory strategy that the elderly use when their attention is divided. 

It is generally assumed that self-paced walking is said to require minimal 

cognitive involvement and relies on automatic motor control processes that require 

minimal attentional resources (Mesure, Darmon, & Blin, 2001). However, with the 

introduction of additional cognitive demands during walking, attentional resources have  
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 to be shared between both the cognitive and the motor task as reflected by reductions 

in gait performance. In the elderly with limited attentional resource, reallocation may 

result in postural instability and an increase in risk for falls (Woollacott & Shumway-

Cook, 2002). 

Effects of Motor Dual Task on Gait 

It has been suggested that the mechanisms that regulate motor tasks are similar to 

those that regulate cognitive tasks and might share similar attentional resources 

(Ebersbac et al., 1995). It has been observed that when a driver (regardless of age) has 

to perform a simulated driving task and use a cellular phone at the same time, which is 

motor-based as it requires object manipulation, there is an increase in the probability of 

error and the driver missing a target (Rakauskas, Gugerty, & Ward, 2004). Similarly, 

when community-dwelling elderly participants were required to stand up, walk 3 m 

(10ft), turn, walk back, and sit down while carrying a full cup of water, there was a 

decrease in their performance. Also interestingly, elderly participants classified as fallers 

increased their performance time by 22% as compared to 15% in non-fallers 

(Shumway-Cook et al., 2000).  

Shkuratova, Morris, and Huxham (2004) examined the effects of aging on 

balance control while walking and concurrently performing a motor task. Twenty healthy 

elderly individuals (mean age 72 years) and 20 healthy young subjects (mean age 24 

years) were asked to walk in a figure-eight path in a clockwise direction at a comfortable 

velocity while performing a coins transfer from the right to the left pocket, using the right 

and left hand alternatively. The results showed that elderly participants walked more 
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slowly and demonstrated higher cadence rates and reduced stride lengths than did 

young adults while they concurrently performed the second task.  

Effects of Concurrent Cognitive and Motor Tasks on Gait 

 

Ebersbach et al. (1995) tested a group of young adult participants by measuring 

their gait while they performed four different secondary tasks. They found a significant 

decrease in stride time when the subjects were required to perform a concurrent fast 

finger-tapping movement. They also found that the memory of how many digits that a 

subject tapped within one trial decreased significantly during gait as compared to quiet 

standing.  

Eleven community-dwelling elderly individuals (mean age 76 years) and 13 

young participants (mean age 26 years) participated in a study that required them to 

walk along a figure-of-eight track at a self-selected velocity while concurrently 

performing an arithmetic task and/or carrying a tray holding a cup filled with water. It 

was found that the stride variance coefficient was 61% higher when the elderly 

performed both the cognitive and the motor tasks compared to the walking task only; it 

was only 57% higher when walking and performing the motor task (Laessoe, Hoeck, 

Simonsen & Voigt, 2008). Furthermore, their gait velocity compared to just walking was 

21% slower when they concurrently performed both the cognitive and the motor tasks, 

14% slower with just the cognitive task and 8% lower with solely the motor task.  

Thus, it appeared that the added processing and attentional resource 

requirements of concurrently performing cognitive and motor tasks contributed to the 

inability of the elderly to control dynamic balance during gait in a graded manner. Taken 

together, current evidence suggests that dual-task performance negatively affects gait 
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characteristics in the elderly. To date, it appears that no study has directly examined 

how spatio-temporal gait parameters are affected on uneven surfaces while performing 

a dual task. The available evidence suggests that there are significant reductions in the 

performance of the primary task as well as the secondary task in healthy elderly adults 

when they perform dual tasks and walk over a level surface. Thus, supporting the 

hypothesis that attention-demanding secondary tasks can affect gait performance (Li et 

al., 2001; Lindenberger et al., 2000).  In order to function independently in the 

community, the elderly must have the ability to multitask. Therefore, an elderly person 

whois unable to perform two or more tasks efficiently may have limitations in his or her 

functional independence, and may fall more frequently and thus need to depend on 

others. Additionally, these findings are of particular importance given that disturbances 

in gait are a strong predictor of falls (Verghese et al., 2009). 

In the literature, gait changes have been noted in the walking patterns of the 

elderly when walking over different uneven surfaces, although these findings did not 

include the observations of dual tasking. These studies examined gait deficits while the 

elderly simply walked on uneven surfaces, i.e., they did not perform a concurrent dual 

task. Menz et al (2003) evaluated the gait pattern of young and elderly subjects when 

walking on even and uneven walking surfaces. They found that elderly participants 

exhibited reduced velocity, shorter step length and increased step-timing variability 

when compared to the young. Importantly, these differences were particularly 

pronounced when walking on uneven surfaces. Similarly, previous studies that have 

investigated the effects of age on the ability to walk on uneven terrain have also 

reported increases in step variability and decreases in trunk and head variability in older 
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adults (Thies et al., 2005; Menz et al., 2003). More recently, Marigold and Patla (2008) 

examined the effects of aging on gait on uneven and on solid ground and found that the 

elderly walked more slowly and took shorter steps compared to the young adults. Hsieh 

and Cho (2012) reported that gait performance on two floor surfaces (hard and soft) 

while performing dual tasks resulted in increased stance time and decreased swing time 

when walking on the soft floor. Thus, taken together it appears that as task demands 

associated with the walking surface become more challenging additional adjustments 

need to be made while walking, particularly in the older adults. 

Recently, Ferraro, Pinto Zipp, Simpkins, & Clark, 2013 examined the spatio-temporal 

adaptations that occur when healthy elderly subjects walk up and down inclines. From 

this work, the authors suggested that the spatio-temporal changes that occur while 

walking on inclines could be loosely and indirectly characterized as being similar to 

those that occur while walking on uneven surfaces in that it similarly challenges the 

sensorimotor and attentional control processes. This work demonstrated  that cadence, 

step length and velocity all decreased on inclines, while the Gait-Stability ratio (GSR) 

increased on inclines relative to subjects’ level ground walking patterns. Pinto Zipp et al. 

(2013) expanded upon Ferraro et al. (2013)’s work and explored the effect of dual task 

performance in the elderly while they walked on inclines. Pinto Zipp et al. (2013) 

observed that, in order to successfully complete the requirements of both tasks 

concurrently, healthy older adults adapted a more stable pattern on inclines, particularly 

while walking and performing the cognitive task of color association. The researchers 

observed a decrease in gait velocity as well as notable errors in performing the 

secondary cognitive task. Inclines can be considered only one type of uneven walking 
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surface that older adults must walk over to continue to remain independently functional 

in the community.  

 In this current study, the authors propose that uneven walking with or without an 

incline is extremely important, as older adults in the community must be able to walk on 

uneven surfaces such as grass, sand, and carpets daily, while they perform a number of 

secondary tasks, like talking to a friend or carrying a grocery bag etc. Thus, studying the 

effects of these surface types on walking patterns in the elderly while dual tasking is 

imperative as one cannot assume that what was found in the level or incline surfaces is 

transferable. Therefore, this study will not only be an extension of the prior work 

conducted but will meaningfully add to the evidence-based literature on dual tasks and 

walking on uneven surfaces in the elderly.  

Additionally, while several studies have shown that there is an increase in 

attentional demands and consequent changes in gait parameters when performing a 

dual task while walking on even surfaces, few studies have looked at the effects of both 

cognitive and motor dual tasks while walking on different surfaces within the same 

study. Dual tasking depends on the efficient and accurate integration of cognitive and 

motor skills. Increasing the load in one or both of these areas for any given task may 

lead a decline in task performance due to the limited capacity of the control systems.  

 Thus, the purpose of this study is to examine the effects of concurrently 

performing a secondary cognitive and/or motor task on the gait characteristics (spatio-

temporal) in functional, independent-community older adults as they simultaneously 

ambulate on even and uneven surfaces. It was proposed that information from this 

study will provide much needed evidence about elderly gait while multitasking on 
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different surfaces and thus add to the body of knowledge in the area of geriatrics. 

Since research has not yet provided any normative data on elderly walking on uneven 

surfaces while performing a secondary cognitive or motor task, the information gained 

from this study will also provide baseline data for future research. Finally, participation 

in this study may benefit the participants by providing them greater insight into their 

abilities as they continue to dual task on uneven surfaces. 
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Chapter III 

Method 

Participants 
 

Twenty-eight community-dwelling older adult men and women aged 65-75 years 

who met the set inclusion criteria volunteered to participate in the study. Recruited 

participants were informed verbally (by the primary investigator) regarding the 

experimental protocol and were notified verbally as to the testing location, date and 

time.  

 Inclusion Criteria  

The study participants were between the ages of 65 to 75 years with systolic 

blood pressures of 90-130 mm Hg, diastolic 60-90 mm Hg, and pulse rates of 60-100 

beats per minute were included in the study. Each participant self-reported as being 

able to walk independently in the community without an assistive device for at least 50 

feet and as free from falls in the last six months.  

Exclusion Criteria 

The exclusion criteria was as follows: (1) Participants with neurological conditions (e.g., 

Stroke, Parkinson disease, Multiple Sclerosis, etc.); (2) participants that reported a fall in 

the last six months; (3) participants suffering from severe musculoskeletal pathologies or 

medical conditions that would affect participation; (4) participants that scored less than 

19 on the DGI, and (5) participants that scored below 23 on the MMSE.  
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Design  

The design used for this study was a repeated measures or a within subjects 

design.  There were two conditions: (1) type of surface–even versus uneven–and (2) 

type of tasks––no task (control condition), cognitive, motor and cognitive/motor. The 

GAITRite was used to measure the dependent variables - gait speed, cadence, stride 

time and double support time.  

Instrumentation 

GAITRite. GAITRiteTM (GAITRite GOLD, CIR Systems, PA, USA) is an electronic 

walkway with embedded pressure sensors connected to a computer via an interface 

cable measuring 4 meters (13 feet). In walks over the mat, the sensors close under 

pressure, enabling collection of spatial and temporal parameters. The standard 

GAITRite electronic walkway contains seven sensor pads encapsulated in a roll up 

carpet to produce an active area 61cm wide by 427cm long. The walkway is connected 

via a serial port to an IBM computer using GAITRite GOLD software running on 

Windows 7 operating systems. Data was collected at a sampling rate of 80 Hz. The 

GAITRite software controls the functionality of the walkway, processes the raw data into 

footfall patterns, and computes the temporal and spatial parameters of gait.  The 

resultant information was electronically stored in the software’s data files.  

The GAITRiteTM system is reliable and valid for measuring spatial and temporal 

gait parameters in both young adults and the elderly. Reliability coefficients ranging 

from 0.95 to 0.99 have been reported in the literature (Webster, Wittwer, & Feller, 2005; 

McDonough, Batavia, Chen, Kwon, & Ziai, 2001; Van Uden & Besser, 2004). The 

concurrent validity of the system is also high (ICC=0.99) when compared to another 
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common gait analysis tool, the in-sole Clinical Stride Analyzer (Bilney, Morris, & 

Webster, 2003). It is a widely used standard measurement tool used by physical 

therapists to assess spatial temporal parameters of gait. 

Uneven surface. An uneven walkway created to simulate a natural uneven 

surface by attaching twenty-four strips of wood, measuring 0.10 square meters and 0.05 

meter high, under a smooth surface of artificial grass, measuring 6 meter long and 1.2 

meter in width, in a random sequence (Appendix H).  The GAITRiteTM system mat was 

placed on top of this walkway to allow for measurements of the spatio-temporal 

variables. 

To the best of our knowledge, there is no study to date that has established reliability of 

GAITRite on an uneven surface (like the one used in this study), intra-rater reliability 

(across trials) of GAITRite when placed on an uneven surface was established. The 

data from the first six participants were used to establish reliability on uneven surfaces 

(reliability on uneven surfaces ranged from .91 to .99 for all the independent variables).  

 Tally counter clicker. A tally counter is a mechanical device used to maintain a 

linear count. A tally counter is usually made of metal and is circular in shape. Inside the 

counter are a number of rings that range from zero to nine in descending order going 

clockwise. Most counters have four such rings, allowing the user to count up to 9999. 

 The Mini-Mental State Examination: The Mini-Mental State Examination 

(MMSE–Appendix E) is a simple way to quantify cognitive function and screen for 

cognitive loss. It is a standard assessment tool used by entry-level physical therapists. It 

tests an individual’s orientation, attention, calculation, recall, language and motor skills. 

A maximum possible score on the MMSE is 30/30. Good test–retest and inter-rater 
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reliability with the correlation coefficients being 0.8 have been reported (Folstein, 

Folstein, & McHugh, 1975).  A score of 23 or lower is indicative of cognitive impairment. 

The MMSE takes only 5-10 minutes to administer and is therefore practical to use 

repeatedly and routinely. For the purpose of this study, each participant had to have a 

score of 24 or above. Those falling below the score of 23 were not eligible. 

 Dynamic Gait Index: The Dynamic Gait Index (DGI–Appendix G) is a 

standardized clinical assessment tool that asses a person’s ability to modify gait in 

response to changing task demands (Whitney et al., 2003). This is a standard 

assessment tool used by entry-level physical therapists. DGI is a performance-based 

test developed as part of a profile of tests and measurements that are effective in 

predicting the likelihood for falls in community-dwelling older adults. The DGI consists of 

different gait tasks that include walking at different velocity, walking with head 

movements, walking around and over objects, turning and stopping quickly, and 

ambulation on stairs and rates performance from zero (poor) to 3 (excellent) on these 

tasks. Scores on the Dynamic Gait Index range from zero to 24. Scores of 19 or less 

are related to an increased incidence of falls in the elderly. The DGI has been shown to 

have excellent Inter-rater reliability (ICC = 0.98) and Intra-tester (ICC = 0.76-0.98) 

(McConvey & Bennett, 2005). Those scoring below 19 were not eligible. 
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Procedure 

Upon arrival to the testing site, participants read and signed the informed 

consent. The primary investigator (PI) answered all questions posed by the participants. 

The primary investigator assessed blood pressure and pulse rates. The primary 

investigator (PI) then administered the Mini-Mental State Examination (MMSE) followed 

by the Dynamic Gait index (DGI), both of which are valid and reliable assessment tools 

commonly used by physical therapists. The PI was well versed in the use of these tools. 

These tests provided objective measures of the participants’ eligibility to participate in 

the study. The minimum cut-off for the MMSE and DGI are 23 and 19 respectively. Both 

tests were administered as described in the testing manuals as noted respectively in 

appendices E and G. 

Each qualified participant was assigned an alphanumeric code to maintain 

anonymity. All participants were randomized into testing protocol bins to ensure 

counterbalancing. Counterbalance was ensured by having subjects randomly pick a 

folder (A or B) in which the order of testing was randomized. Participants who chose the 

folder ‘A’ started on an even surface while concurrently performing either no task, a 

cognitive task, a motor task, or a cognitive-motor task in random order. Participants 

were subsequently tested while they walked on an uneven surface as they randomly 

performed the same tasks outlined above. In contrast, subjects who chose folder ‘B’ 

started on an uneven surface followed by testing on an even surface.  

Participants were randomly tested across all secondary task conditions during a 

single session that lasted approximately 90 minutes. Adequate rest intervals were 

provided as needed. Prior to testing, the participants received verbal instructions as to 
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what they needed to do and engaged in no more than 3 practice trials, if needed, under 

each condition to familiarize themselves with the testing procedure.  

White tape was attached to the floor 0.9 meters before and after the edge of the 

electronic walkway, which served as start and end points respectively to ensure 

consistency, as well as to establish constant gait speed while the data were recorded 

(Grabiner, et al., 2001). Standardized verbal instructions were provided to all 

participants via a script. Participants walked at a comfortable speed over the GaitRite 

walkway when they heard the command “start” and continued until they reached the 

“stop” white line. Each trial consisted of walking the length of the GAITRiteTM on the 

walkway. Participants performed three (3) trials under each of the following four task 

conditions in random order: 1) without performing any secondary task (single task), 2) 

while concurrently performing a cognitive task, 3) while performing a motor task and 4) 

while performing a cognitive/motor task.  

To ensure safety, a standard gait belt, routinely used by physical therapists and 

occupational therapists, was placed around the subject’s waist, allowing the primary 

investigator to follow the participant along a walkway and assist, if necessary, without 

interfering with the participant’s walking pace. The lab assistant trained by the primary 

investigator in the use of the GaitRite computer assisted during data collection. 

All quantitative gait evaluations were conducted using the GAITRiteTM system. 

When the GAITRite switched from an even to an uneven surface or vice versa, the 

participants were asked to wait and rest in a comfortable, secured chair in the waiting 

room. 
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Secondary task descriptions and attentional demands. According to Gentile’s 

Taxonomy, every action we carry out is a result of the complex interactions between the 

performer, the task and the environment. Therefore, the no task and cognitive task were 

categorized, according to Gentile’s Taxonomy, as body transport, no manipulation, and 

stationary no inter-trial variability on an even surface. The same tasks were categorized 

on the uneven surface as body transport, no manipulation, and stationary inter-trial 

variability. The cognitive and cognitive-motor tasks on even surfaces were categorized 

as body transport, manipulation, and stationary no inter-trail variability. On the uneven 

surface, cognitive and cognitive-motor tasks were categorized as body transport, 

manipulation, and stationary inter-trail variability. 

 Task 1 (no task).––Walking without performing any task–– Based upon Gentile’s 

Taxonomy, this task requires body transport with no limb manipulation in a stationary 

environment and no inter-trial variability while walking on an even surface. However, 

there is an inter-trial variability in addition to body transport, manipulation in a stationary 

environment on uneven surface. 

 Task 2 (cognitive). Testing on the cognitive task consisted of asking the 

participant to count backwards, from100 by fives (5), aloud. Correctness was ensured 

by asking the assistant to check for correctness and note the score achieved at the 

end of each walking pass. (Appendix D). Based upon Gentile’s Taxonomy, this task 

required body transport with no limb manipulation in a stationary environment and no 

inter-trial variability while walking on an even surface. However, there is an inter-trial 

variability in addition to body transport and manipulation in a stationary environment on 

an uneven surface. 
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 Task 3 (motor). For the motor task, participants were to press the button 

repeatedly on the tally counter clicker they held in their preferred hand while walking on 

the walkway. The dominant hand was used to press the numbers. Task accountability 

was determined by the PI through noting the total number recorded on the tally counter 

at the completion of the task and recording it on the appropriate data sheet (Appendix 

D). Based upon Gentile’s Taxonomy, this task required body transport with limb 

manipulation in a stationary environment and no Inter-trial variability while walking on an 

even surface. On the uneven surface, cognitive and cognitive-motor tasks were 

categorized as body transport, manipulation, and stationary inter-trail variability. 

 Task 4 (cognitive-motor). For the concurrent cognitive motor tasks, participants 

were to perform task 1 and 2 simultaneously. Based upon Gentile’s Taxonomy this task 

required body transport with limb manipulation in a stationary environment and no Inter-

trial variability while walking on an even surface. On the other hand, there was an inter-

trial variability with a stationary environment on an uneven surface.  

 
Data analysis 
 

The Statistical Package for the Social Science (SPSS) software (IBM, version 19) 

was used to conduct the statistical analysis on each dependent variable. To ensure 

Intratester reliability, Intra-class correlation (ICC) coefficients were used across trials for 

each of the dependent variables when participants walked on the GAITRite walkway 

that was placed on either the even or uneven surfaces. The data from the first six 

participants was used to establish intra-tester reliability. This reliability on uneven 

surfaces for all the independent variables Cronbach’s Alpha ranged from .91 to .99. 
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A repeated measure’s ANOVA is an appropriate statistical test for comparing 

differences when the same group of subject were measured under several conditions 

(Portney & Watkins, 2009). The level of statistical significance will be set to p</0.05.  

To determine relative change between single and dual tasks, dual task costs 

were calculated using the mean value of each task. The following formula was used:  

Dual Task Costs (%) = Single task – Dual task ⃰ 100 

                                      Single task 
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Chapter IV 

 
Results 

 
Subjects and Demographics 

 
Twenty-eight older adults aged 65-74 years old met the inclusive criteria and 

consented to participate in this study. All of the participants included in this study were 

healthy, active older adults living in the community.  

Participant demographics, Dynamic Gait Indices (DGI) and Mini Mental State 

Examination (MMSE) scores are presented in Table 1.The mean age of the sample was 

68.39 (± 3.04) in this study. The mean age for males was 69(± 3.3) and for females was 

67 (± 2.8). Sample Size: G* power software was used to calculate the appropriate 

sample size. With a small effect size (0.2) it was determined that a minimum of 36 

participants were necessary to demonstrate significance with 0.05 (Portney &Watkins, 

2009). 

Contrary to the calculated sample size of 36, the actual number of participants 

was twenty-eight. Post-hoc power analysis resulted in a power of 1.0 for surface (partial 

eta squared = 0.47) and task (partial eta squared = 0.45) individually, and a power of 

0.08 for surface and task interaction (partial eta squared =.13). 
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Table 1. Study Demographics and Subject Characteristics 
 
 
 

Variable                                                 N (%)                          Mean (STD) 

 
Gender                                                 
 
  Male                                                   13 (46)                                                                                                  
 
  Female                                               15 (54) 
 

 
 

      

Age 
 
  Male                                                   13                                 69 (±3.3) 
 
  Female                                               15                                 67 (±2.8) 

       

 
Dynamic Gait Index (DGI)                                                         21 (±1.2) 
 
  Male                                                                                           21 (±1) 
 
  Female                                                                                    21 (±1.4) 
 

  

Mini Mental State Examination (MMSE)                                   27 (±1.3) 
 
  Male                                                                                        27 (±1.3) 
 
  Female                                                                                    27 (±1.1) 
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Hypothesis 1  

It was hypothesized that there would be observable changes in spatio-temporal 

gait characteristics among functional, independent-community older adults as they 

walked on an even surface compared to an uneven surface, regardless of the tasks. To 

evaluate this hypothesis, a repeated measures analysis of variance was performed with 

the participants to compare the differences between their spatio-temporal gait 

characteristics on even and on uneven surfaces. The overall test for differences in 

means in the repeated-measures ANOVA was significant for velocity F(1,27)= 24.3, p ≤  

0.05; cadence F(1,27)= 22.2, p ≤  0.05; stride time F(1,27)= 23.49, p ≤ 0.05; and 

double-support time F(1,27)= 7.4, p = 0.011 on surfaces. There is a decrease in velocity 

on uneven surfaces compared to even surfaces, M diff = -6.89, 95% CI [-9.73, -4.01], p 

< .001 (Figure 1) and a decrease in the number of steps on uneven surfaces when 

compared to even surfaces, M diff = -4.15, 95% CI [-5.96, -2.34], p< .001 (Figure 2). 

Alternately, an increase was noted in stride time on uneven surfaces when compared to 

even surfaces, M diff = .05, 95% CI [.03, .07], p < .001 (Figure 3) and an increase in 

double-support time on uneven surfaces when compared to even surfaces, M diff = .01, 

95% CI [.003, .025], p < .001 (Figure 4). This finding supported hypothesis one. 
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Figure 1. Mean Velocity in Cm/s While Walking on Even and Uneven Surfaces 

Regardless of the Tasks. There is a significant decrease in velocity on the uneven 

surface (*= P< .05). 
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Figure 2. Mean Cadence in Steps/min. While Walking on Even and Uneven 

Surfaces Regardless of the Tasks. There is a significant decrease in cadence on the 

uneven surface (* = P<.05). 



 53 

 

 

 

Figure 3. Mean Stride Time in Seconds While Walking on Even and Uneven 

Surfaces Regardless of the Tasks. (*= P < .05). There is a significant increase in 

stride time on the uneven surface. 

 

 

 

 

 



 54 

 

 

Figure 4. Mean Double-Support Time in Seconds While Walking on Even and 

Uneven Surfaces Regardless of the Tasks. (*= P< .05). There is an increase in 

stride time on the uneven surface. 
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Hypothesis 2  

 Hypothesis 2 inferred that changes in spatio-temporal gait characteristics in 

functional, independent-community older adults exist based upon the characteristics of 

the task being performed regardless of the walking surface.  The assumption of 

sphericity using Mauchly’s was violated, therefore Greenhouse-Geisser was used to 

report the result.  The ANOVA was the significant main effect for velocity F(1.86,50)= 

21.93; p ≤ 0.05; cadence F(1.85,50)=33.824, p ≤ 0.05; stride time F(1.94,52.34)= 33.41, 

p ≤ 0.05; and double support F(1.99,53.62)= 7.4; p ≤  0.05.  

The Pairwise comparison (Figure 5) shows that the velocity decreased between 

occasions of no tasks and cognitive tasks M diff = 5.82, 95% CI [2.78, 8.85], p < .001. 

There was a significantly lower velocity between no tasks and motor tasks M diff = 4.34, 

95% CI [.24, 8.45], p < .001 and a significantly lower velocity between no tasks and 

cognitive/motor tasks M diff = 11.60, 95% CI [5.69, 17.50], p < .001. There was a 

significant decrease in velocity between motor tasks and cognitive/motor tasks M diff = 

7.25, 95% CI [2.95, 11.55], p < .001 and between cognitive tasks and cognitive/motor 

tasks M diff = 5.76, 95% CI [1.96, 9.60], p = .001. However, there was no significant 

effect in velocity between cognitive tasks and motor tasks M diff = -1.47, 95% CI [-4.26, 

1.31], p = .86. 

Pairwise comparison (Figure 6) shows that there was a significant decrease in 

the cadence mean when comparing no tasks to cognitive tasks M diff = 3.38, 95% CI 

[1.76, 4.99], p < .001 and no tasks to motor tasks, M diff = 1.57, 95% CI [.35, 2.79], p 

= .006. There was also a significant decrease in the cadence mean between no tasks 



 56 

 

and the  cognitive/motor tasks, M diff = 6.11, 95% CI [3.56, 8.67], p < .001; cognitive 

tasks and the cognitive/motor tasks, M diff = 2.74, 95% CI [.99, 4.48], p = .001; and 

the motor tasks and cognitive/motor tasks, M diff = 4.55, 95% CI [2.53, 6.56], p < .001. 

However, there was also a significant increase in cadence comparing cognitive tasks 

to motor task sM diff = -1.81, 95% CI [-3.27, -3.5], p = .009. 

Pairwise comparison (Figure 7) shows that there was a significant increase in the 

stride time mean comparing no tasks to cognitive task,s M diff = -.04, 95% CI [-.06, -

.02], p < .001; no tasks to motor tasks, M diff = -.02, 95% CI [-.04, -.001], p = .041; and 

no tasks to cognitive/motor tasks, M diff = -.07, 95% CI [-.09, -.04], p < .001. In 

addition, there was a significant increase in stride time when comparing motor and 

cognitive/motor tasks, M diff = -.05, 95% CI [-.07, -.03], p < .001; cognitive and 

cognitive/motor tasks, M diff = -.03, 95% CI [-.05, -.01], p = .015. However, there was 

a significant decrease in stride time between cognitive and motor tasks, M diff = .02, 

95% CI [.003, .034], p = .006.  

 Pairwise comparison (Figure 8) shows that there was a significant increase in 

double-support time when comparing no tasks to cognitive tasks, M diff = -.024, 95% 

CI [-.04, -.02], p < .001 and no tasks to motor tasks, M diff = .02, 95% CI [-.03, -.01], p 

= .002. There was also an increase in double-support time when comparing no tasks 

to cognitive/motor tasks, M diff =-.05, 95% CI [-.07, -.03], p < .001; cognitive tasks to 

cognitive/motor tasks, M diff = -.02, 95% CI [-.04, -.01], p = .001; and motor tasks and 

cognitive/motor tasks , M diff = -.03, 95% CI [-.05, -.01], p < .002. However, there was 

no significant difference between cognitive tasks and motor tasks, M diff = .01, 95% CI 

[-.01, .02], p = 1.  
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Figure 5. Mean Velocity in Cm/s While Performing Secondary Task Regardless 

of the Surfaces. There is a significant decrease in velocity when no tasks are 

compared to cognitive, motor and cognitive-motor tasks ( ⃰ p<.05). 
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Figure 6. Mean Cadence in Steps/Min. While Performing Secondary task 

Regardless of the Surfaces. There is a significant decrease in cadence with the 

addition of cognitive, motor, and cognitive-motor tasks (* p< .05).  
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Figure 7. Mean Stride Time in Seconds While Performing Secondary Task 

Regardless of the Surfaces. There is a significant increase in stride time with the 

addition of cognitive, motor and cognitive-motor tasks (*p< .05). 
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Figure 8. Mean Double-Support Time in Seconds While Performing Secondary 

Task Regardless of the Surfaces. There is a significant increase in double-support 

time with the addition of cognitive, motor and cognitive motor tasks p< .05. However, 

there is no significant difference in double-support time between cognitive and motor 

tasks p<.05. 
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Table 2. Cognitive, Motor and Cognitive/Motor Task Performance on Even and 

Uneven Surfaces 

 

 

 

 

 

 

 

 

 

 

 Mean Raw Data     Mean Rank        Mann-Whitney U Z P 

Cognitive Task 

     Even surface 

 

             5.64                    34.21 

 

232 

 

-2.64 

 

.008 

     Uneven surface              4.86                    22.79    

Motor Task 

     Even surface 

 

             19.95                  38.52 

 

111.5 

 

-4.6 

 

.0001 

     Uneven surface              16.92                  18.48    

Cognitive-Motor 

Task 

     Cognitive: 

     Even surface 

     Uneven surface 

 

 

 

                 5.0                   39.1 

                 3.7                   17.9 

 

 

95.5 

 

 

-4.88 

 

 

.0001 

Motor: 

     Even surface 

 

             15.52                  37.9 

 

129.5 

          

-4.3 

 

.0001 

     Uneven surface              12.83                  19.1    
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Hypothesis 3  

 Hypothesis 3 inferred that gait velocity, cadence, stride time and double-support 

time would change while performing different tasks depending upon the walking surface 

(even, uneven) among functional, independent-community older adults. The assumption 

of sphericity using Mauchly’s was violated for velocity, therefore; Greenhouse-Geisser 

was used in the result.  There was no significant interaction between surfaces and tasks 

for velocity F(2.1, 56.2) = 1.13, p = .331; cadence F(3,81) = .39, p =.12; stride time F(3, 

81) = .26, p =.86; or double support F(3, 81) = .97, p =.41. The results did not support 

hypothesis three. 

 
Dual Task Costs 
 

Dual-task cost is a measure of performance decrement when two tasks 

performed concurrently. Thus, to quantify the participants’ performance ability to 

execute dual-tasks, we calculated dual-task costs using the formula previously 

mentioned. As seen in Figure 9, dual-task costs increased in a linear manner as 

the complexity of the task increased similarly on both surfaces. It was observed 

that the cognitive-motor task had the greatest dual-task cost compared to the 

cognitive and motor tasks. This outcome supports the basis for Gentile’s 

Taxonomy of Tasks, which purports that the environmental context and the functional 

role it plays classify a skill. Thus, as the results show shown, the more complicated the 

task was functionally more was the dual-task cost on spatio-temporal parameters while 

walking. 
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Figure 9. Dual-Task Cost on Uneven and Even Surfaces 
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Discussion 

 

The result of this study demonstrate that surface type and task attentional 

complexity affect the velocity, cadence, stride time and double support time in older 

community dwelling adults however, no significant interactions between the task type 

and surface condition were observed.  Similar to previous studies that have reported 

deficits during walking on even surfaces while performing a dual task in older adults 

(Beauchet et al. 2009, Duost et al. 2006), our findings extend these observations to 

uneven walking surfaces.  Importantly, the adoption of different gait strategies by 

participants while concurrently performing a dual task on an uneven surface supports 

the need to ensure that when rehabilitating older adults they experience and train on 

uneven walking surfaces while performing a dual-task. 

Additionally, the observation that the type of concurrent dual-task performed 

regardless of the walking surface characteristics, resulted in older adults changing their 

gait strategy thus offering insight regarding differing secondary task demands influences 

on gait.  In our study, it was noted that dependent upon the type of secondary task 

performed gait strategies changed.  Not surprising, the task (Table 3) requiring the most 

attentional demand showed the greatest change which  further supported the findings of 

Ebersbach, Dimitrijevic, and Poewe (1995) who reported an increase in double support 

time and stride time while walking on even surface when the secondary task was a 

cognitive task.  

Taken together, we believe our findings can be discussed within the context of 

two ‘attention’ theories (capacity sharing and cross talk theory).  In the capacity sharing 

theory when two or more tasks are performed simultaneously, more attention might be 
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needed to perform the tasks than the total available capacity regardless of task 

similarities.  Therefore, one or both of the task performances might deteriorate in the 

dual task trials (Woollacott & Shumway-Cook, 2002).  As in our study findings, changes 

were observed in several gait parameters when walking over uneven surfaces and 

performing a dual task especially the cognitive-motor task thus leading us to infer that 

uneven surface walking while performing cognitive-motor task shared the same 

available attentional resources (Lajoie, Teasdale, Bard, & Fleury, 1993).  

As we consider the tenets associated with the crosstalk theory, when two tasks 

are similar in nature, the two tasks use similar codes and thus conflict with each other 

producing “crosstalk”.  Crosstalk can impair performance on one or both tasks.  Clearly, 

in our study the tasks used varied not only their level of difficulty but similarity.  As the 

tasks were more similar in nature we saw greater variability in gait strategies used. In 

terms of the motor task being the least disruptive, supports that this task is different 

from walking therefore, there is a less interference and crosstalk.  Alternately, 

performances of cognitive and motor tasks are more similar and performing them 

together causes more interference and crosstalk. 

Significant changes in spatio-temporal variables were observed when the older 

adults concurrently performed a cognitive-motor task versus a cognitive or a motor task.  

The observed progressive decrease in velocity and cadence was evident as the task 

complexity increased both on even and uneven surface.  Interestingly though, there was 

a progressive increased in stride time and double support time which lead to enhanced 

balance.  This finding compliments the findings of Huffman, Horslen, Carpenter and 
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Adkin (2009) who reported a decrease in the ability to track more than one moving 

target while walking as a strategy to stabilize ones balance.   

In addition, to the difference amongst the dual tasks performed with the cognitive-

motor task being the most challenging as evident by the greatest changes in walking 

pattern there was a observed higher DTC with increase in task complexity across 

surfaces. The cognitive-motor task had the highest DTC as compared to cognitive or 

motor task.  Our finding that older adults showed larger dual-task costs when 

performing dual task (cognitive-motor) is consistent with the finding of Lindenberger, 

Mariske, and Baltes, (2000), and with others showing that dual-task costs in older adults 

becomes larger as the demands on attentional control processes increases (Bock, 

2009; Salthouse et al., 1996; Hall et al., 2011). In addition, Neider et al (2011) 

concluded that older adults were more vulnerable to dual-task impairments than 

younger adults when cross task was present as dual-task costs effects were largely 

absent in younger adult groups. 

Our findings are consistent with Hsieh and Cho (2012) who assessed gait 

performance on two different floor surfaces (hard and soft), and found an increased 

stance time and decreased swing time when walking on a soft floor.  The authors 

explained the differences noted based upon floor type as a strategic plan used by the 

participants to enhance balance control on an unstable floor.  This finding complements 

our findings in that when encountering the uneven surface, subjects used a longer 

double support time and stride time as compared to the even surface. Increasing stride 

time provided a plan to maximize safe first in order to enhance balance control while 

walking on an uneven surface. 
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 Although, this current study did not demonstrate a significant interaction between 

surface type and task characteristics, a few possible explanations are offered.  One 

possible explanation may be due to our small sample size (Table 1). Another possibility 

may be a resultant of the age of the participants.  In this study, the age range was 65-

75 years with mean age of 68.39 ± 3.04.  In addition, the attentional requirements of 

the tasks may not have been enough to require an alteration in the motor control 

strategy used during dual tasking. It was observed that walking on an uneven surface 

caused greater decrements in task performance than even surface (Figure 9). The 

cognitive-motor task performance showed the largest decrement in performance 

among all the tasks. 

As with all studies, limitations must be acknowledged.  The small sample 

sizedecreased the study power, the use of a sample of convenience limits 

generalizability of findings,  the fact that only one type of uneven surface was used does 

not allow us to infer what would occur on all types of uneven surfaces. Finally,  given 

that the  task variability and complexity was limited to only three types of tasks further 

limits one’s generalizability from this work. However, this work does add to the literature 

and offers insight and direction for future work exploring these factors. 
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Conclusions 

The findings from this study support that spatiotemporal gait changes do occur 

when performing a concurrent cognitive and / or motor dual task, or while walking on an 

uneven surface compared to an even surface in older community living adults.  In the 

current study, older adults used a successful strategy which required them to slow down 

and decrease their cadence while walking on an uneven surface and when engaging in 

dual-tasks of increased complexity.  Thus suggesting that when the task requires 

additional attentional resources older adults err on the side of safety by focusing their 

anticipatory motor control resources towards controlling balance by slowing down and 

increasing their forward base of support.   

Based upon these findings, professionals such as physical therapists working to 

promote motor skill acquisition and prevention of secondary impairments in the elderly 

must ensure that they introducing uneven surfaces and multi-task conditions into their 

patient’s management.  The concurrent performance of two tasks may well create a 

situation that challenges participants to allocate attention to ensure their safety.  In the 

clinical setting, instructing patients to explore gait stability strategies during dual task 

uneven surface walking to ensure safety should be included in the plan of care.  Further 

study is warranted with increase in sample size, varying uneven surfaces, and differing 

types of tasks to increase generalizability. 

As we seek to explain our findings globally, the capacity sharing theory which 

states that when more than one task is performed at any given moment there is less 

capacity for each individual task, and performance is impaired  offers some insight on 

our findings.In this study we believe the tasks were different even though they may have 
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fallen within the same or similar classification by Gentile’s taxonomy because they did 

require differing  attentional demands. Therefore,   we believe that the capacity sharing 

theory is effective in explaining our findings as the more dissimilar the task the greater 

the disruption in performance. However, one might argue that the tasks were not so 

different based upon the function of the action ( body and limb requirements) and thus 

the crosstalk theory might be more effective in explaining our findings as the tasks are 

more similar. While it was not the purpose of this study to lend support for one theory or 

another in explaining dual tasking effects the findings leave us with more questions that 

will help us to refine our methods and potentially address this issue in further work 

especially addressing the need for in-depth task classification. 

This study provides some preliminary evidence that independent, community 

living elderly use a default strategy that rely on making adjustments in gait that result in 

greater motor control.  In other words, the elderly err on the side of safety and focus 

their anticipatory resources towards controlling balance.  It is important for clinicians to 

be aware of these strategies and incorporate them in the management of the elderly 

patient. 
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Appendix A 

                                    
How are you walking?  

 
 

Looking for independent community dwelling adults 65 to 75 years old 
willing to participate in a study that will analyze walking patterns on even and 
uneven surfaces while dual tasking (doing two things).  During this study valuable 
information will be gained about walking while doing two or more tasks on different 
surfaces.  

 
 

• Research will be conducted at Kebe Cares Physical Therapy located at 1285 
Oliver Street Fayetteville, NC.   

• Participation in this study will require approximately 90 minutes of your 
time. 

•  Individual appointment times will be made for each participant to avoid 
waiting. 

• Participation in this study is completely voluntary. 

• A code will be assigned to each participant to assure anonymity. 
 
 
Eligibility requirements: 

• You must be 65-75 years of age. 

• You must be able to walk independently without assistive device in the 
community for at least 50 feet. 

• You must be free from any falls in the last six months. 

• You must be free from any neurological problems such as stroke, 
Parkinson disease, multiple sclerosis etc. 

 
 
FOR MORE INFORMATION ON PARTICIPATION IN THIS STUDY AND TO 
SCHEDULE A TIME FOR TESTING PLEASE CONTACT THE PRIMARY 
INVESTIGATOR: 

 
 
Olajide Kolawole, PT 
917 753 3158 
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Appendix B 

Screening Protocol 

Hello Mr./Mrs..  _ 
 
Thank you for responding to the flyer posted. 
 
As you know my name is Olajide Kolawole and I am the physical therapist and student 
at Seton Hall University in NJ as part of my doctoral program I am conducting a 
research study on walking in the older adult when doing more than one thing at a 
time. I would like to take a few minutes of your time before you come to the research site 
to ask you a few questions to make sure that you are eligible for this study. 

 
These questions pertain to your level of interaction in the community and the level of 
assistance you require to walk in and around the community. If at any time you don't 
understand anything please stop me and ask that explain further. 

 
At this time I ask that you respond yes or no to the following questions  
 

Are you 65 years old and older and able to walk at least 50 feet                    Yes ___    
No ___ 
Are you able to walk without assistive device?                                       Yes___     
No___ 
 
Note to PI for Exclusion (yes to any of these questions below will exclude participant 
from the study) 
 
Have you fallen down within the last six months?                                  Yes__     
No ___    
Are you able to read?                                                              

Yes___   No__ 
Do you ever get dizzy when you walk?                                                     Yes___   
No___ 
Did you ever have any traumas such as a broken bone to ankle/foot that required 
medical attention? Yes___ No ___ 

Are you currently experiencing pain in either leg?                                     Yes ___ No 
___          
Do you suffer from any medical conditions that may affect your movement or 
balance?  
                                                                                                                       Yes__     
No__   
Do you have any neurological diagnosis such as stroke, Parkinsonism, multiple 

sclerosis etc?                               
Yes ___           No_ 
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Do you have any problems using your hands to hold or carry items such as a coffee 
cup, book, or dish?                   Yes ___           
No   

Do you have any sensory impairment in your lower extremities?       Yes__   No_ 
Based upon your responses to the previous questions Mrs.______________-you do      
indeed qualify for this study so I would like to set up an appointment that is convenient 
for you to come and participate in this study. Y o u r  d a t e  a n d  t i me  o f  t e s t i n g  
i s  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
Please wear comfortable shoes without a heel that he/she is comfortable walking in. 
 

Or  
 
Based upon your response to the previous questions Mrs.______________-you are not 
eligible to participant in the study.  I thank you for your willingness to determine your 
eligibility.  
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Appendix C1 

 
Data Sheet – Dual Task 

Subject Code:_______  
Walking Cognitive task  
Subjects will be instructed to walk at a self -preferred pace on the walkway while 
counting backwards in 5s starting from 100 to 0.   
Instructions: If the individual skips a number while counting backwards, mark an “X” in  
the  second column.  If the individual says a completely different number make an “X” in 
the third column. If the individual completes the task without any errors place an ‘”x” in 
the last column. 

 

 
 

Numbers  Number Missed     Wrong number 
was given    

Task Completed 
without errors  

100    

95    

90    

85    

80    

75    

70    

65    

60    

55    

50    

45    

40    

35    

30    

25    

20    

15    

10    

5    

0    
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Appendix C2 
 
Subject Code:_________  
Walking Motor task 
Subject will be instructed to press repetitively tally counter clicker with the dominant 
hand while walking on the walkway at a self-preferred pace on the walkway. 
Instructions: If the individual stopped clicking, the task will be repeated. The number of 
counts on the clicker will be recorded. 

 

 

Motor Task Number of counts 
Clicking  
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Appendix C3 
 
Subject Code:________ 
Walking Cognitive/Motor task 
Subject will be instructed to walk at a self-preferred while walkway while counting 
backwards in 5s starting from 100 to 0 and press repetitively tally counter clicker with 
the dominant hand simultaneously 
 Instructions: If the individual skips a number while counting backwards, mark an “X” in  
the  second column.  If the individual says a completely different number make an “X” in 
the third column. If the individual completes the task without any errors place an ‘”x” in 
the last column. In addition, if the individual stopped clicking, the task will be repeated. 
The number of counts on the clicker will be recorded. 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Motor Task Number of counts 
Clicking  
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Numbers  Number Missed     Wrong number 
was given    

Task 
Completed 
without errors  

100    

95    

90    

85    

80    

75    

70    

65    

60    

55    

50    

45    

40    

35    

30    

25    

20    

15    

10    

5    

0    
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Appendix D 

INFORMED CONSENT 

You are invited to be a participant in a research project entitled “Effects of Dual-
tasking on walking over even and uneven surfaces in functionally independent 
community older adults”.   

 

Investigator: I am Olajide Kolawole the primary investigator and a doctoral student at 
Seton Hall University in the School of Health Science and Medical science, 
Department of Graduate Programs in Health Sciences. This research is being 
conducted under the direction of Dr’s. Zipp, and Cahill who are Associate professors in 
the Department of Graduate Programs in Health Sciences, School of Health and 
Medical Science, Seton Hall University and Dr. Parasher. 

Purpose of Research:  

The purpose of this study is to assess how walking on even and uneven surfaces when 
a person is doing one or more activities at a time which demand different levels of 
attention.  The results of this study will help to identify which type of tasks demands 
more attention. 

Procedure:  

When participant arrives at the testing site, the participant will be required to read and 
sign this consent form. If the participant has any questions they will be answered by 
the primary investigator before signing the consent form.  The part ic ipant b lood 
pressure and pulse wi l l  be checked. 

Thereafter, the participant cognitive abilities will be tested using a simple test consisting 
of ability to tell time and place, immediate recall, short-term memory, calculation, and 
language ability.  

Next, the participant walking will be assessed.  As part of the walking assessment, the 
participant will be asked to complete tasks that include walking while turning head, 
walking around and over objects, turning and stopping quickly, and walking up and 
down stairs. During all of these tasks the participant will be provided close supervision 
by the primary investigator (Olajide Kolawole) as he will be in close proximity to the 
subject. 

If the participant is eligible to participate in the study, the participant will be asked to 
walk on a mat placed on an even surface and then on an uneven surface. The 
uneven surface is made of twenty-four strips of wood measuring two inches high under 
a smooth surface of artificial grass. The total length of this mat is 4 meters (13 feet). 
While walking on these surfaces participant will be asked to count backwards from100 
by 5, and press a button on the tally counter repeatedly and do combination of counting 
backwards and pressing tally counter simultaneously.  Participants will perform a total of 
three (3) trials under each of the task conditions in a random order. The mat upon which 
the participant walk will automatically allow us to measure the speed at which the 
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participant walks, the number of steps the participant takes and the amount of time 
simultaneously spend on both legs while walking.  

The primary investigator (Olajide Kolawole, Physical Therapist) will walk along the 
participant side to ensure safety.  The entire testing session will last for 
approximately 90 minutes during which adequate rest intervals will be provided as 
needed. 

All assessment tools used in this study will not be placed on the body. These are 
standardized tools used frequently in clinical practice.  

Refusal or withdrawal of participation: Participation in this study is voluntary.  
Refusal to participate or discontinue participation at any time will involve no penalty 
or loss of benefits to which the participant is otherwise entitled. 

Anonymity:  The subject data will be assigned a code that will ensure anonymity.  
Only the primary investigator will have access to the code. If information obtained 
from this study is reported in a journal or at a professional meeting only codes will 
be used. 

Confidentiality:  All data collected will be stored on a USB drive and locked in a file 
cabinet at the primary investigator’s office (Olajide Kolawole).  

Access to research records: Olajide Kolawole (primary investigator) will 
have the only access to this cabinet via lock and key.  

Anticipated risks/discomforts: Walking on even and uneven surfaces is a 
mobility task typically required during community ambulation. The primary 
investigator will walk along the mat with the subject during all trials to ensure safety. 

Benefits: There will be no direct benefits to you other than increasing knowledge 
about what happens when walking and performing a second task.  

Payment/remuneration: There will be no payment or remuneration for 
participating in this study. 

Alternative procedures: This study is not designed to examine 
treatment/intervention therefore no recommendations for alternative procedures 
will be made. 

Contact information: If you are interested in the results of this study or have any 
questions please contact Olajide Kolawole, at 917-753-3158 or Dr. Genevieve Zipp  
(researcher’s advisor) at 973 273 2076.  Questions need not be limited to this study 
but may also include what the researchers will do with the knowledge gained and 
future research ideas.  

In addition, any pertinent questions about the research and participant’s rights can 
also be addressed to the Institutional Review Board (Mary F. Ruzicka, Ph.D.) office 
at Seton Hall University at 972-313-6314. 

A copy of the consent form will be provided to you for your records. The signature of the 
participants identifies their willingness to participate in the study. 
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Name of participant:    Date:  _  

Signature of participant:    Date:_________  

Signature of researcher:   Date      

Assigned code:       ________ 
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Appendix E 
Mini Mental Status Examination  
Retrieved from http://www4.parinc.com/Products/Product.aspx?ProductID=MMSE  

 
 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 91 

 

 
 
Appendix F 
 

Physician notification letter 
 

 
Date: 
 
Dear Dr.___________________________ 
 
 
I have evaluated ____________________ and have a score of___on the Mini Mental 
States Examination. 
 
 
 
 
Sincerely, 
 
 
Olajide Kolawole, PT, MS 
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Appendix G 
 

Dynamic Gait Index  
 
Description:  
Developed to assess the likelihood of falling in older adults.  Designed to test eight 
facets of gait. Retrieve from 
http://iospress.metapress.com/content/xeb5qp3mkuna3cqm/ 
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Appendix H 
 
 

GAITRite on uneven surface 

 

 

 

 

The picture on the right shows the arrangement of the woods 

(Picture taken by Olajide Kolawole). 
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Appendix  I 

 

 

Definitions 

Gait Cycle: The interval of time between the occurrence of initial foot-contact with one 
foot and its occurrence again. It consists of two phases the stance and swing phase. 
Stance phase: The period of time when the foot is in contact with the ground. 

Swing phase: The period of time when the foot is not in contact with the ground.  

Double support: The period of time when both feet are in contact with the ground. This 
occurs twice in the gait cycle, at the beginning and end of the stance phase.  

Single support: The period of time when only one foot is in contact with the ground. In 
walking, this is equal to the swing phase of the other limb. 

Step length: The distance from a point of contact with the ground of one foot to the 
following occurrence of the same point of contact with the other foot. The right step 
length is the distance from the left heel to the right heel when both feet are in contact 
with the ground. 

Step period: Is the period of time taken for one-step and is measured from an event of 
one foot to the following occurrence of the same event with the other foot. 

Stride length: The distance from initial contact of one foot to the following initial contact 
of the same foot. It is sometimes also referred to as cycle length. 

Velocity: The rate of change of linear displacement along the direction of progression 
measured over one or more strides. 

Cadence: Rate at which a person walks, expressed in steps per minute. 

Stride time: The period of time from initial contact of one foot to the following initial 
contact of the same foot, expressed in seconds. 

Gait speed: Distance covered by the body in unit time. 
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Appendix  J  

 


