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We define Markov strategy and Markov perfect equilibrium (MPE) for games
with observable actions. Informally, a Markov strategy depends only on payoff-
relevant past events. More precisely, it is measurable with respect to the coarsest
partition of histories for which, if all other players use measurable strategies, each
player's decision-problem is also measurable. For many games, this definition is
equivalent to a simple affine invariance condition. We also show that an MPE is
generically robust: if payoffs of a generic game are perturbed, there exists an almost
Markovian equilibrium in the perturbed game near the initial MPE. Journal of
Economic Literature Classification Numbers: C72, C73. � 2001 Academic Press
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1. INTRODUCTION

Strategic phenomena studied in economics and the other social sciences
are often intrinsically intertemporal in nature, and therefore require a
dynamic formulation. In their study of dynamic interactions, many researchers
have focused on the class of strategies variously called ``Markovian,'' ``state-
contingent,'' ``payoff-relevant,'' or (for stationary games) ``stationary.'' Such
strategies make behavior in any period dependent on only a relatively
small set of variables rather than on the entire history of play.

For example, consider a dynamic game in which, in every period t,
player i 's payoff ? i

t depends only on the vector of players' actions, at , that
period, and on the current (payoff-relevant) ``state of the system'' %t # 3t .
That is, ? i

t= g i
t (at , %t). Suppose, furthermore, that player i 's possible
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actions A i
t depend only on %t : A i

t = A i
t (%t) and that %t is determined

(possibly randomly) by the previous period's actions at&1 and state %t&1 .
Finally, assume that each player maximizes (the expectation of) a discounted
sum of per period payoffs: E(�t $t&1? i

t). In period t, the history of the
game, ht , is the sequence of previous actions and states ht=((a1 , %2), ...,
(at&1 , %t)). But the only aspect of history that directly affects player i 's
payoffs and action sets starting in period t is the state %t . Hence, a Markov
strategy in this model should make player i 's period t action dependent
only on the state %t rather than on the whole history ht .

In this example, it is quite clear how a Markov strategy should be
defined, primarily because the set of period t payoff-relevant states 3t is
given exogenously. In an arbitrary dynamic game, by contrast, we must
first derive the set of states in order to discuss Markov strategies. In the
Markov literature, this has been done in largely ad hoc fashion: the ques-
tion of which variables to include in 3t has been normally decided on a
case-by-case basis.

We propose a general treatment. A major task of this paper and its com-
panion [14] is to show that the payoff-relevant states and therefore the
concept of an equilibrium in Markov strategies (Markov perfect equi-
librium or MPE) can be defined naturally and consistently in a large class
of dynamic games. In this paper we concentrate on games with observable
actions,1 in which case, the period t history ht is known to all players
before they choose their period t actions.

As we have noted the concept of MPE��a refinement of Nash equi-
librium��figures prominently in applied game theory. In our view, this fact
already justifies giving it greater theoretical attention. The concept's pop-
ularity stems in part from several practical considerations. First, MPE is
often quite successful in eliminating or reducing a large multiplicity of equi-
libria in dynamic games, and thus in enhancing the predictive power of the
model. Relatedly, MPE, by preventing non-payoff-relevant variables from
affecting strategic behavior, has allowed researchers to identify the impact
of state variables on outcomes; it for example has permitted researchers to
obtain a clean, unobstructed analysis of strategic positioning in industrial
organization. A second pragmatic reason for focusing on MPE is that
Markov strategies substantially reduce the number of parameters to be
estimated in dynamic econometric models. Such models can therefore be
more easily estimated and the Markov restriction subjected to a specifica-
tion test. The validity of the Markov restriction can also be assessed in
experiments as in [15]. Finally, and relatedly, Markov models can readily
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1 Such games are also called games of almost perfect information or games of perfect
monitoring. They include games of perfect information, in which players move sequentially.



be simulated. Indeed Pakes, Gowrisankaran and McGuire developed a
Gauss program capable of computing Markov perfect equilibria.2

MPE embodies three philosophical considerations besides its practical
virtues. First, Markov strategies prescribe the simplest form of behavior that
is consistent with rationality. Strategies depend on as few variables as
possible; they involve no complex ``bootstrapping'' in which each player
conditions on a particular variable only because others do the same. This
is not to imply that we find bootstrap behavior uninteresting but only to
suggest that its polar opposite��Markov behavior��is equally worthy of
study. Indeed, a large literature on bounded rationality has developed
arguing that simplicity of strategies is an important ingredient in good
modeling.3 Second, the Markov restriction captures the notion that
``bygones are bygones'' more completely than does the concept of subgame-
perfect equilibrium. Markov perfection implies that outcomes in a subgame
depend only on the relevant strategic elements of that subgame. That is, if
two subgames are isomorphic in the sense that the corresponding preferences
and action spaces are equivalent, then they should be played in the same
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2 The program can be accessed by ``ftping'' to econ.yale.edu, using ``anonymous'' as the
login, name and your user identification as the password, and retrieving all files from the
directory ``pub�mrkv-eqm.'' The authors ask those who access the program to send their
name, institutional affiliation and e-mail address to ``mrkv-eqm�econ.yale.edu.'' in order to
keep track of the usefulness of their experiment and to send improvements.

3 Ariel Rubinstein ([17], p. 912) offers a different perspective on the notion of simplicity:
``Consider, for example, the sequential bargaining literature in which the authors assume
(rather than conclude) that strategies are stationary. That is to say, a player is confined by
hypothesis to the use of offers and response patterns (response to offers made by the other
player) that are independent of the history of the game. This literature presents this sta-
tionarity assumption as an assumption of simplicity of behavior. Consider, for example, player
1's strategy: ``Demand 500 of the surplus and reject any offer which gives you less than 500,
independent of what has happened in the past.'' Simplicity of behavior implies that player 1
plans to make the same offer and make the same responses independently of how player 2 has
reacted in the past. However, this strategy also implies that player 2 believes that player 1
would demand 500 of the surplus even if player 1 demanded 600 of the surplus in the first,
let us say, 17 periods of bargaining. Thus, stationarity implies not only the simplicity of player
1's behavior but also the passivity of player 2's beliefs. This is unusual, especially if we assume
simplicity of behavior. If player 2 believes that player 1 is constrained to choose a stationary
plan of action, then 2 should believe (after 17 repetitions of the demand of 600) that player 1
will continue to demand 600. Thus, assuming passivity of beliefs eliminates a great deal of
what sequential games are intended to model: namely, the changing pattern in players'
behavior and beliefs, as they accumulate experience.'' We are sympathetic to this point of
view, but do not consider it to be a criticism of Markov strategies. Rubinstein's description
suggests a game in which players are incompletely informed about each other's preferences. In
this case, the appropriate version of the Markov concept is Markov perfect Bayesian equi-
librium and not Markov perfect equilibrium. But in a Markov perfect Bayesian equilibrium
of a game with incomplete information, beliefs are not ``passive'': beliefs about a player's type
are updated on the basis of his or her behavior.



way.4 Third, it embodies the principle that ``minor causes should have minor
effects;'' that is, only those aspects of the past that are ``significant'' should
have an appreciable influence on behavior.

We proceed as follows. In Section 2 we lay out the model and define the
concept of Markov strategy. This definition requires players to make their
strategies measurable with respect to a certain partition of possible
histories. More specifically, a vector of partitions, one for each player, is
consistent if, at each point of time, a player's preferences over his continua-
tion strategies are the same for any history in a given element of his parti-
tion provided that the other players use strategies that are measurable with
respect to their own partitions. Section 2 provides weak conditions under
which, for any consistent vector of partitions, all players have the same
partition. Hence we may refer to a consistent partition, rather than a con-
sistent vector. We show that there is a unique, maximally coarse consistent
partition. Strategies that are measurable with respect to this partition are
called Markovian, and a subgame perfect equilibrium in Markov strategies
is called a Markov perfect equilibrium (MPE). For multiperiod games
in which the action spaces are finite in any period an MPE exists if the
number of periods is finite or (with suitable continuity at infinity) infinite.

In Section 3 we show that, for a broad class of games there is a simple
criterion by which we can check whether or not two date t histories ht and
h$t lie in the same element of the Markov partition (and, therefore, whether
or not a given strategy is Markovian): for each player i there must exist
scalar :>0 and function ;( } ) such that for all vectors of current actions
at=(a i

t , a&i
t ), the player's utilities following histories ht and h$t are linked

by the following von Neumann�Morgenstern (VNM) transformation,

ui (ht , ft)=:ui (h$t , ft)+;(a&i
t ) for all ft ,

where ft corresponds to actions taken in period t and subsequently.
As mentioned above, the Markov restriction embodies the principle that

``minor causes should have minor effects;'' that is, only those aspects of
the past that are ``significant'' should have an appreciable influence on
behavior. Actually, the Markov restriction reflects this idea in a rather dis-
continuous way: payoff-relevant history affects behavior, payoff-irrelevant
history does not, and there is nothing in between. Indeed, this discontinuity
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4 Hellwig�Leininger ([10], p. 1) call this the subgame-consistency principle, i.e., ``the
behaviour principle according to which a player's behaviour in strategically equivalent sub-
games should be the same, regardless of the different paths by which these subgames might
be reached.'' Similarly, Harsanyi�Selten ([9], p. 73) argue that ``invariance with respect to
isomorphisms'' is ``an indispensable requirement for any rational theory of equilibrium point
selection that is based on strategic considerations exclusively.'' We compare our concept with
that of Harsanyi and Selten later.



gives rise to the following concern. The restriction to Markov strategies has
force only in a game in which there exists at least one pair of distinct
histories that differ only according to payoff-irrelevant variables. But by
perturbing the payoffs of such a game slightly, one can ensure that the
histories differ payoff-relevantly. Formally, therefore, one might criticize the
Markov assumption as being ``generically'' unimportant, since, in the per-
turbed game, Markov- and subgame-perfection are the same. But if one
accepts the minor cause�minor effect principle (MCMEP), it is natural to
focus only on those equilibria that are close to MPEs of the original game.
By doing so, one guarantees that those aspects of history that had zero
effect on future payoff functions in the original game��and, therefore, have
only small effect on future payoffs in the perturbed game��have only a
small influence on future equilibrium behavior in the perturbed game,
which is very much in the spirit of MCMEP. Thus the principle helps
ensure the wide applicability of Markov restrictions. Of course, to invoke
MCMEP, there had better exist equilibria in the perturbed game near the
original equilibrium. That is, a form of lower hemi-continuity had better
hold. In Section 4, we confirm that this indeed is the case, at least generi-
cally.

2. MARKOV STRATEGIES AND MARKOV
PERFECT EQUILIBRIUM

Let G be a game with n players (indexed by i=1, ..., n) and T periods
(indexed by t=1, ..., T ), where T can be finite or infinite. In every period
t, each player i chooses an action a i

t in his or her finite action space, where
this space may depend on actions chosen in earlier periods. Note that
although in this formulation players choose their actions simultaneously in
period t, we can readily accommodate sequential games (i.e., games of per-
fect information) by endowing all but one player (the player who really
moves in period t) with degenerate action spaces in period t. For con-
venience, we will restrict attention to games in which the timing of moves
(who is active at date t) is independent of previous actions. Observe too
that by treating ``nature'' as one of the players, we can incorporate
stochastic payoffs or action sets; randomness corresponds simply to a
mixed strategy by nature.

Let at #(a1
t , ..., an

t ) and a#(a1 , ..., aT). The history in period t is the
sequence of actions chosen before period t: ht #(a1 , ..., at&1). Let Ht be the
set of all possible period t histories. We shall assume throughout that G is
a game with observable actions: history ht is common knowledge in period
t. (See our companion piece, [14], for the case of unobservable actions.)
The future in period t is the sequence of current and future actions:
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ft #(at , ..., aT). We assume that players have von Neumann�Morgenstern
preferences over action sequences. Thus, player i 's preferences are repre-
sentable by a utility function ui (a)=ui (ht , ft).

A (behavior) strategy si for player i is a function that, for all t and each
history ht # Ht , assigns a probability distribution to the action space
Ai

t (ht), i.e., si (ht) # 2(A i
t (ht)), where 2(X) denotes the set of probability dis-

tributions on set X. Let S i be the set of strategies for player i. Given t and
history ht # Ht , let S i

t (ht) denote the set of continuation strategies, i.e., the
set of strategies in the T&t+1 period subgame starting after ht . We will
denote the vector of strategies by players other than i by s&i and the vector
of all strategies by s#(si, s&i).

Given strategy vector s, player i 's expected utility is vi (s)#Ea (ui (a) | s).
His or her expected utility conditional on history ht is denoted by

vi (s | ht)#Eft
(u i (ht , ft) | s).

That is, vi (s | ht) is player i 's expected payoff if, after history ht , players
behave according to s.

A subgame-perfect equilibrium ([18]) is a strategy vector s that forms a
Nash equilibrium after any history; i.e., for all t, ht # Ht , and i,

vi (s i, s&i | ht)�vi (ŝ i, s&i | ht),

for any alternative strategy ŝi. Subgame-perfect equilibrium (SPE) refines
Nash equilibrium by ruling out empty or incredible threats.

For all t, let Ht ( } ) denote a partition of Ht , where Ht (ht) (�Ht) denotes
the set of period t histories that are in the same element of the partition as
ht . Let H} ( } ) denote a collection of partitions [Ht ( } )]T

t=1 . We shall call
collection H$} ( } ) weakly coarser (weakly finer) than collection H} ( } ), if, for
all t, either H$t ( } ) is coarser (finer) than Ht ( } ) or Ht ( } )=H$t ( } ). [H$t ( } ) is
coarser than Ht ( } ) if every element of the latter is contained in some ele-
ment of the former and H$t ( } ){Ht ( } ); in that case, we also say that Ht ( } )
is finer than H$} ( } ).] We shall call H$} ( } ) strictly coarser (strictly finer) than
H} ( } ) if it is weakly coarser (weakly finer) and, for some t, H$t ( } ) is coarser
(finer) than Ht ( } ).

For all i, let H� } ( } ) be the collection of players' action-space-invariant par-
titions. That is, for all t and all ht , h$t # Ht , h$t # H� t (ht) if and only if
S i

t (ht)=S i
t (h$t) for all i.5 If the collection H i

} ( } ) is weakly finer than H� } ( } ),
then strategy si is measurable with respect to H i

} ( } ) if, for all t and for all
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5 Or, equivalently,
\{�0, \(at , ..., at+{&1),

A i
t+{ (ht , at , ..., at+{&1)=A i

t+{ (h$t , at , ..., at+{&1) for all i.



ht , h$t # Ht , si (h$t)=si (ht) whenever h$t # H i
t (ht) (we require H i

} ( } ) to be
weakly finer than H� } ( } ) in the definition of measurability because otherwise
setting si (h$t)=si (ht) may not even be feasible). Let S i (H i

}( } )) be the set of
all strategies for player i that are measurable with respect to H i

} ( } ).
For any finite set B and two real-valued functions f, f $: B � R, we shall

write ftf $ if one function is a positive affine transformation of the other,
i.e., there exist :>0 and ; such that f ( } )=:f $( } )+;.

We shall call the vector of collections (H 1
} ( } ), ..., H n

} ( } )) consistent if, for
all i, (a) H i

} ( } ) is weakly finer than H� } ( } ), and (b) if all other players j use
strategies that are measurable with respect to their collections H j

} ( } ), then,
after any two period t histories lying in the same element of H i

t ( } ), player
i 's preferences over his continuation strategies are the same, i.e.,

for all s&i # _
k{i

S k (H k
} ( } )), for all t,

for all ht , h$t # Ht such that h$t # H i
t (ht), (1)

vi ( } , s&i | ht)tvi ( } , s&i | h$t).

It is in general possible that not all players share the same collection of
partitions in a consistent vector. For instance, consider the following three-
player game.

Example 1. Player 1 moves first and chooses from [A, B, C]. Then
players 2 and 3 move simultaneously and choose from [T, B] and [L, R]
respectively. The payoffs are summarized in Fig. 1.

Notice that the pair (H 2
2 ( } ), H 3

2 ( } ))=([[A, B], [C]], [[A], [B, C]])
constitutes a consistent vector (we can omit player 1 from the vector,
because no history has yet occurred when he moves): Player 2's decision
problem is the same whether A or B has occurred but it is different if C has
occurred; player 3's decision problem is the same whether B or C has
occurred but differs when A has occurred. Note, in particular, that
H 2

2 ( } ){H 3
2 ( } ).

FIGURE 1
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But example 1 is special in the sense that players 2 and 3 do not ``inter-
act'': player 2's actions do not affect player 3's preferences between L and
R, nor vice versa. In the ``nondegenerate'' case in which all pairs of players
moving in the same period do interact��the case that subsumes most
economic games of interest��it turns out (as shown in Theorem 2.1) that,
in any consistent vector, all players have the same collection.

For any i and j, ht # Ht , strategy s # _S k (H� } ( } )), a i
t # A i

t (ht), and
a j

t # A j
t (ht), let

wi (a i
t ; ht , s, a j

t )#vi (s | ht , a i
t , a j

t ),

i.e., wi ( } ; ht , s, a j
t ) represents player i 's preferences over period t actions a i

t ,
given that the history is ht , player j 's period t action is a j

t , and all other
players' period t actions and all players' future actions starting in period
t+1 are determined by s.

Call a game G simultaneous-nondegenerate if for all i, for all t in which
player i moves (i.e., in which his or her action space is not a singleton),6

for all ht , h$t # Ht such that h$t # H� t (ht), and for all j{i such that player j
moves in period t, there exist strategy vector s # _Sk (H� } ( } )) and actions
a j

t , a j
t $ # A j

t (ht)=A j
t (h$t) such that

wi ( } ; ht , s, a j
t )t% wi ( } ; h$t , s, a j

t $). (2)

In words, the game is simultaneous-nondegenerate if, in any period and
given any two histories ht and h$t and any active player i, any other active
player j moving simultaneously can ensure that player i 's decision problem
after ht differs from that after h$t , holding some future sequence of random
actions fixed. [It may not actually be possible to hold all future actions
fixed, because what actions are feasible may depend on whether (ht , a j

t ) or
(h$t , a j

t $) has occurred. Hence we do the next best thing by making s
��which determines future actions��measurable with respect to the coarsest
possible partition consistent with feasibility.]

Theorem 2.1. Let G be simultaneous-nondegenerate. If (H 1
} ( } ), ...,

H n
} ( } )) is a consistent vector of collections, then, for all t, if players i and j

both move in period t,

H i
t ( } )=H j

t ( } ).
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Proof. Suppose that players i and j move in period t. Choose ht , h$t # Ht

such that h$t # H i
t (ht). We must show that h$t # H j

t (ht). From non-
degeneracy, there exist a j

t , a j
t $ and vector s # _S k (H� } ( } )) satisfying (2). If

h$t � H j
t (ht), then player j 's strategy of playing a j

t after any history in
H j

t (ht), and a j
t $ after any history in H j

t (h$t) and otherwise playing according
to s j is measurable with respect to H j

} ( } ) (since H� } ( } ) is at least as coarse
as H j

} ( } )). Hence, (2) implies a violation of (1). We conclude that
h$t # H j

t (ht), as claimed. K

Except for the second half of Theorem 2.3, we will henceforth restrict
attention to simultaneous-nondegenerate games and therefore, in view of
Theorem 2.1, need deal with only a (single) consistent collection H%} ( } )
rather than with a consistent vector of collections.

Intuitively, we would expect that if players' strategies are measurable
with respect to a consistent collection H%} ( } ) and they do not distinguish
between histories ht and h$t in period t (i.e., h$t # H%t (ht)), then these
strategies should not distinguish between ht and h$t in subsequent periods
either. That this ``successive coarsening'' property need not hold, however,
is illustrated by the following game.

Example 2. Player 1 moves first and chooses U or D. Then player 2
moves and chooses L or R. Finally player 3 moves and chooses L or R.
The payoffs are as in Fig. 2. Notice that H%2 ( } )=[U, D] and H%3 ( } )=
[[UL, UR], [DL, DR]] constitute a consistent collection but violate the
successive coarsening property: player 2's decision problem does not
depend on which of U or D occurred, but player 3's decision problem does
depend on the choice of U or D.

Still, example 2 is degenerate in a way that is similar to example 1:
player 3 has no effect on player 2's decision problem. Accordingly, call a
game backward sequential-nondegenerate if, for all i, for all t in which player
i moves (his or her action set is not a singleton), for all ht , h$t # Ht such that
h$t # H� t (ht), for all at # At (ht), and for all j{i such that j moves in period

FIGURE 2
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t+1 there exist a j
t+1 , a j

t+1 $ and s # _Sk (H� } ( } )) such that a j
t+1 , a j

t+1 $ #
A j

t+1 (ht , at)=A j
t+1 (h$t , at) and

wi ( } ; ht , a&i
t , a j

t+1 , s)t% wi ( } ; h$t , a&i
t , a j

t+1 $, s), (3)

where, analogous to before, wi ( } ; ht , a&i
t , a j

t+1 , s) denotes player i 's
preferences over a i

t , given that the history is ht , other players' period t
actions are a&i

t , player j 's period t+1 action is a j
t+1 , and the non-j players'

period t+1 actions and all players' actions starting in period t+2 are
determined by s. In words, the game is backward sequential-nondegenerate
if in any period t, any active player i 's period t decision problem can be
affected by the action of any other active player j moving in period t+1,
for some fixed choice of other actions (here we make the same qualification
about fixing other actions as after our definition of simultaneous non-
degeneracy.) It is readily verified that most economic applications of
Markov equilibrium that have been considered in the literature are back-
ward sequential-nondegenerate.

We now show that the successive coarsening property holds in games
satisfying the two nondegeneracy conditions defined thus far.

Theorem 2.2. Let H%} ( } ) be a consistent collection in a simultaneous-
and backward sequential-nondegenerate game. If, for some t and ht , h$t # Ht ,
we have h$t # H%t (ht), then, for any at # At (ht) (=At (h$t)),

(h$t , at) # H%t+1 (ht , at). (4)

Proof. Consider ht , h$t and at as in the statement of the theorem.
Choose player i who moves in period t and j who moves in period t+1.
Backward sequential-nondegeneracy implies that there exist a j

t+1 , a j
t+1 $

and s satisfying (3). Now the strategy by each player k{i, j to play ak
t in

period t and subsequently according to sk is obviously measurable with
respect to H%} ( } ). If (h$t , at) � H%t+1 (ht , at), then the strategy for player j
of playing a j

t+1 in period t+1 (followed by s j) after any history
ht+1 # H%t+1 (ht , at) and otherwise playing a j

t+1 $ (followed by s j) is also
measurable with respect to H%t+1 ( } ). But then (3) violates h$t # H%t (ht). We
conclude that (4) holds after all.7 K

Define a consistent collection H%} ( } ) to be maximally coarse if there exists
no other consistent collection H}%%( } ) that is strictly coarser than H%} ( } ).
From this definition, it may appear as though there could exist a multi-
plicity of maximally coarse consistent collections (since the relation ``coarser
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than'' is only a partial ordering), but in fact there can be only one. The
intuition for this uniqueness result is that the coarsening operation exhibits
a form of complementarity across players: If all other players switch to a
coarser partition, the remaining player can use a partition that is weakly
coarser than before (i.e., at worst the same as before and possibly strictly
coarser), as he or she ``needs to remember less.'' Hence, if H%t ( } ) and
Ht%%( } ) are both maximally coarse consistent partitions, and all players
but i make their strategies measurable with respect to the finest common
coarsening H%t ( } ) 7 Ht%%( } ), player i can do the same. Hence H%t ( } ) and
Ht%%( } ) could not have been maximally coarse after all.

Theorem 2.3. (i) If a game is simultaneous-nondegenerate, then there
exists a unique maximally coarse consistent collection H*} ( } ). H t*(ht) con-
stitutes the state of the system or the payoff-relevant history.

(ii) If we do not impose simultaneous-nondegeneracy, there is a unique
maximally coarse consistent vector of collections H i

}*( } ), i=1, ..., n.

Proof. (i) Let 7 be the set of all consistent collections. Notice that 7
is nonempty because it includes the collection in which each period t
history ht is in its own separate partition element. Define H*} ( } ) so that, for
all t,

H t*( } )= �
H }

% ( } ) # 7

H%t ( } ).

That is, H t*( } ) is the finest common coarsening (i.e., the meet) of all parti-
tions H%t ( } ) for which the corresponding collection H%} ( } ) is consistent.
Note that because Ht is finite, H t*( } ) is the meet of only finitely many dis-
tinct partitions (even though there may be infinitely many consistent collec-
tions if T is infinite). We claim that H*} ( } ) is consistent. To see this, choose
i, t, s&i # _j{i S j (H*} ( } )), ht , h$t # Ht such that h$t # H t*(ht). By definition
of H*} ( } ) there exists a sequence [ht (1), ..., ht (m)] of period t histories such
that ht (1)=ht , ht (m)=h$t , and, for all k=1, ..., m&1, there exists a con-
sistent collection kH%} ( } ) such that

ht (k+1) # kH%t (ht (k)). (5)

Because s&i is measurable with respect to kH%} ( } ), (1) and (5) imply that,
for all k,

vi ( } , s&i | ht (k))tvi ( } , s&i | ht (k+1)). (6)

Hence (6) continues to hold when ht (k) is replaced by ht and ht (k+1)
by h$t . Therefore H*} ( } ) is consistent, as claimed.
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Now, by construction, H*} ( } ) is at least as coarse as any other consistent
collection H%} ( } ). Therefore, H*} ( } ) is uniquely maximally coarse.

(ii) The proof when we drop simultaneous-nondegeneracy is com-
pletely analogous. K

We shall define a strategy to be Markovian if it is measurable with
respect to H*} ( } ). That is, s is Markovian if, for all t, s(ht)=s(h$t) whenever
h$t # H t*(ht) (in which case we say that ht and h$t are Markov-equivalent).
We call H*} ( } ) the Markov collection of partitions. Hence, Markov
strategies are the simplest strategies (i.e., the strategies measurable with
respect to the coarsest partition and hence dependent on the fewest
variables) that are consistent with rationality in the sense that, if the other
players make their strategies measurable with respect to some coarser par-
tition H� t ( } ), it would not always be optimal for a player to make his or her
choice between any two given continuation strategies measurable with
respect to H� t ( } ). Note that, if one's measure of a strategy's complexity is
the number of states an automaton requires to execute it, then the
Markovian strategies are also the least complex strategies consistent with
rationality.

Recall the simple example at the beginning of this paper. In that
example, a Markov strategy was measurable with respect to the state space
3t . Notice that this is precisely the same conclusion that we would draw
using the general concept of Markov strategy just defined. We shall define
a Markov Perfect Equilibrium (MPE) to be a subgame perfect equilibrium
in which all players use Markov strategies.

Continuous action spaces. We can readily extend the above analysis to
games with continuous action spaces. Indeed there is no change in any of
the arguments except that it may no longer be clear that maximally coarse
consistent partitions exist. To establish existence, consider a sequence
of consistent partitions H 1

t ( } ), H 2
t ( } ), ... such that, for all m, H m+1

t ( } ) is
coarser than H m

t ( } ). Then for each element e1
t # H 1

t ( } ) we can find elements
em

t # H m
t ( } ), m=2, 3, ... such that e1

t �e2
t � } } } . Define H �

t ( } ) so that for
each e1

t # H 1
t ( } ), the corresponding element of H �

t ( } ) is ��
m=1 em

t . H �
t ( } )

is evidently a partition (by construction its elements are collectively
exhaustive; to see that they are mutually exclusive, note that if ht #
(��

m=1 em
t ) & (��

m=1 êm
t ) then there exists m such that ht # em

t & êm
t which

implies that em
t =êm

t and so ��
m=1 em

t =��
m=1 êm

t ) and consistent. Moreover
it is coarser than any partition in the sequence. Hence, Zorn's Lemma
implies that maximally coarse consistent partitions exist.

Stationary strategies. Many economic models entail games that are
stationary in the sense that they ``look the same'' starting in any period, i.e.,
they do not depend on calender time. (Clearly, such games must have
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infinite horizons). For these games it is natural to make Markov strategies
independent of calendar time as well. To capture this independence, we
shall say that two histories ht and h$t$ are action-space equivalent provided
that \{�1, \(a1 , ..., a{&1), \i, A i

t+{ (ht , a1 , ..., a{&1)=A i
t$+{ (h$t$ , a1 , ...,

a{&1) (we are slightly abusing notation here). One then generalizes the
notion of partition by allowing two histories, ht and h$t$ , at two different
dates to belong to the same element of a partition. The vector of partitions
(H1 ( } ), ..., Hn ( } )) is consistent if given that all other players j play
strategies that are measurable with respect to their partitions H j ( } ) then
player i 's preferences over his or her continuation strategies are the same
for all t, t$, ht , and h$t$ such that ht # H i (h$t$). That is, condition (1) remains
the same except that elements of a partition can encompass histories at dif-
ferent dates. One then proceeds as previously to define the stationary parti-
tion as the maximally coarse consistent partition. A strategy is stationary
provided that it is measurable with respect to the stationary equivalence
classes, i.e.,

si (ht)=si (h$t$) if ht and h$t$ are stationary-equivalent.

Note that in ``cyclical'' games��in which the payoff structure in period t is
the same as that in period t+km (k=1, 2, 3, ...), where m is the length of
the cycle��stationary strategies will, in general, depend on ``cyclical time''
(i.e., the time from the beginning of the last cycle), rather than on calendar
time.8

Establishing the existence of stationary perfect equilibria in stationary
games that are continuous at infinity and have finite action spaces each
period is not a difficult matter: Constrain each player to choose the same
behavioral strategy each time he or she moves. Require also that this
strategy be measurable with respect to the Markov partition. If we intro-
duce some (Markov-measurable) trembles, then the limit of the fixed
points as the trembles go to zero will be a stationary perfect equilibrium.
This proof is actually borrowed from the stochastic games literature, which
aims (among other things) at demonstrating existence of equilibria in ``state
space strategies'', where the ``state'' is defined in some arbitrary manner.
The proofs apply in particular to the situation in which the state space is
our Markovian state space.

Existence. Proving existence of MPE for finite action spaces follows the
standard lines (see our discussion paper [13] for more detail.) Assume
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the same starting in any period.'' However, they become stationary if we adopt the perspective
that an entire cycle corresponds to a period. Other ``modifications at the margin'' of the
Markov concept can be envisioned as well. For example, one might require that two action
sets that are identical up to a relabelling be treated as the same action set.



that, for all i, t, and ht , A i
t (ht) is finite. In the case of an infinite horizon

game, assume further that the game is continuous at infinity (this condition
is satisfied if, for example, players discount future payoffs at a constant rate
r>0). Then there exists a Markov perfect equilibrium.

To prove existence for a finite horizon game, one can, as usual, work
backwards, and select the same Nash equilibrium for all histories in an
equivalence class so as to obtain Markov measurability. An instructive
method of proof in the infinite horizon case consists of taking the limit of
(finite horizon) MPEs of truncated games. By standard arguments (see
[6]), this limit is a perfect equilibrium. That this limit equilibrium is also
Markovian results roughly speaking from the fact that at a fixed date t
players ``should remember more'' if the horizon is longer. That is, the parti-
tion of histories into equivalence classes in the limiting game is finer than
that in any game along the convergent subsequence (i.e., if ht and h$t are
equivalent in the limiting game, they are equivalent for any game in the
subsequence). In Section 4 we shall exhibit an example of a different sort
of sequence of games in which the limiting partition is coarser than those
in the sequence (i.e., if ht and h$t are equivalent for some game in the
sequence, the same is true in the limiting game.) As we shall see, this
coarseness implies that the limit of MPEs need not be Markovian.

3. A SIMPLE CRITERION FOR MARKOV STRATEGIES

We have defined Markov strategies as those that are measurable with
respect to the maximally coarse consistent partition (the Markov parti-
tion). Although, we would argue, this is the right definition conceptually, it
is a bit cumbersome practically. How does one go about finding this parti-
tion? We claim, however, that for a broad class of games there is a pair of
readily checked conditions that enable us to determine whether or not two
histories belong to the same element of the Markov partition.

Let H}**( } ) be the collection defined so that, for all t and for all ht ,
h$t # Ht , h$t # Ht**(ht) if and only if

(i) H� t (ht)=H� t (h$t)

and

(ii) for all i there exist scalar :>0 and function ;: A&i
t (ht) � R such

that

ui (h$t , ft)=:ui (ht , ft)+;(a&i
t ) for all ft . (7)
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Note that (i) requires us only to verify that action spaces following ht

and h$t are the same, whereas (ii) simply involves checking that continua-
tion utility functions are appropriate affine transformations of one another.
Indeed, condition (ii) may be viewed as a multiplayer extension of the
familiar von Neumann�Morgenstern invariance condition for one-person
decision-problems. Note also that since the goal of this section is to find a
criterion for determining whether or not strategies are Markovian that
does not require actually computing the Markov partition, the criterion
essentially has to be expressed in terms of ``constant'' (i.e., uncontingent)
strategies, since only those strategies are assured of being Markovian
regardless of what the Markov partition turns out to be.

We first show that, in general, H t*( } ) is at least as coarse as Ht**( } )
(Theorem 3.1). To illuminate when the two partitions are, in fact, equal, we
then introduce an auxiliary partition Ht***( } ) such that h$t # Ht***(ht) if
and only if

(i) H� t (ht)=H� t (h$t), and

(ii) for all i there exist scalar :>0 and function #: _{=t, ..., T

A&i
{ (h{) � R such that

ui (h$t , ft)=:ui (ht , ft)+#( f &i
t ) for all ft . (8)

It can be shown, (see [11]), that if h$t # H t*(ht), then (i) and (ii) are
satisfied (Theorem 3.2). Hence, Ht***( } ) is always at least as coarse as
H t*( } ). (Example 3 below illustrates that Ht***( } ) can be strictly coarser).
However, provided that the decision problem of any player moving in
period t+1 can be affected by any player moving in period t (i.e., forward
sequential nondegeneracy holds) and a fairly mild indifference condition
holds, we can show, using Ht***( } ), that H t*( } )=Ht**( } ).

We first show that for simultaneous-nondegenerate games, the ``coarser
than'' relation always holds in one direction: H*} ( } ) is at least as coarse as
H}**( } ). The proof of this theorem as well as that of Theorem 3.3 are in the
Appendix.9

Theorem 3.1. Suppose that a game is simultaneous-nondegenerate. For
all t, the Markov partition H t*( } ) is at least as coarse as Ht**( } ).

Consider now the following coarsening of H}**( } ). Let H}***( } ) be the
collection defined so that, for all t and for all ht , h$t # Ht , h$t # Ht***(ht) if
and only if (i) and (ii) above hold. Notice that (8) is the same as (7) except
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actions. That is, we will refer to preferences over strategies s i

t inducing constant action paths
f i

t . It so happens that we can prove the theorems appealing only to paths of actions.



FIGURE 3

that #( } ) may depend on other players' entire future, whereas ;( } )depends
only on other players' actions in period t.

Theorem 3.2. H }***( } ) is at least as coarse as H*} ( } ).

Proof. For i, t, ht and h$t such that h$t # H t*(ht), and any random actions
f� &i

t , the consistency of H*} ( } ) implies that player i 's preferences over f i
t

given f� &i
t are independent of whether the history is ht or h$t .

We can think of f� &i
t as a random variable representing the state of

nature. We are, therefore, in the realm of state-dependent preferences, and
can thus appeal to Karni, Schmeidler, and Vind [11] to conclude that
there exist :>0 and #( } ) such that (8) holds.10 Hence h$t # Ht***(ht). K

In general, H}***( } ) is actually strictly coarser then H*} ( } ). To see this,
consider the following two-person game:

Example 3. Player 1 moves in period t and player 2 in period t+1 and
conditional on history ht payoffs are as in Fig. 3a, whereas conditional on
history h$t payoffs are as in Fig. 3b.

Notice that, whether ht or h$t has occurred, it is optimal for player 2 to
play L if player 1 has played T and to play R if player 1 has played B.
However, h$t � H t*(ht) because, given that player 2 behaves in this way,
player 1 prefers T to B after ht but B to T after history h$t . Nevertheless
h$t # Ht***(ht) since if

#(a2
t+1)={&2,

1,
if a2

t+1=L
if a2

t+1=R
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t : for each act si, the objective uncer-

tainty corresponding to f� &i
t is just the lottery over payoffs (prizes) vi (si, f� &i

t | ht). With the
appropriate change of notation, Theorem 3.2 is nothing more than the Karni�Schmeidler�
Vind representation theorem.



we have

u1 (h$t , a1
t , a2

t+1)=u1 (ht , a1
t , a2

t+1)+#(a2
t+1)

for all a1
t , a2

t+1 .
This example illustrates the idea that if we permit # to depend on f &i

t+1

then, indirectly, it can depend on a i
t (in which case there is no reason to

expect h$t # H t*(ht)) since players other than i may condition their behavior
in period t+1 (or after) on a i

t . This suggests that, in a sufficiently ``rich''
game (such as the example), we will have to restrict # to depend only on
a&i

t (as Ht**( } ) requires) in order to obtain consistency.
To capture the idea of richness, call a game forward sequentially-

nondegenerate if for all j, all t+1 in which j moves, all ht # Ht , all
s # S(H� } ( } )) and all i{ j such that i moves in period t, there exist a i

t ,
at

i $ # A i
t (ht) such that

w j ( } ; ht , a i
t , s)t% w j ( } ; ht , a i

t $, s), (9)

where the argument of w j is player j 's date t+1 action.
In words, the game is forward sequentially-nondegenerate if in any

period t+1, any active player j 's period t+1 decision problem can be
affected by the action of any player i moving in period t, for any choice of
others' actions. To see that this property is satisfied in Example 3, observe
that player 1 does indeed affect player 2's ranking between L and R.

Theorem 3.3. Suppose that a game is simultaneous-nondegenerate and
forward sequentially-nondegenerate. Suppose, furthermore, that for all t, all
ht , h$t # Ht , all players i who move in period t, all feasible f� &i

t and f� &i
t $, there

exist f� i
t and f� i

t $ such that ui (ht , f� i
t , f� &i

t )=ui (h$t , f� i
t $, f� &i

t $). Then H*} ( } )=
H}**( } ).

Remark. The last hypothesis in Theorem 3.3 is the fairly mild require-
ment that, given histories ht and h$t (with fixed plays by other players
corresponding to each history) player i has a way of playing after each
history such that his or her overall payoff is the same in either case. (Note
that this condition can be satisfied in mixed strategies). The condition can
alternatively be formulated as follows: \ht and h$t , \f� &i

t and f� &i
t $, [u i | there

exists f� i
t such that ui=u i (ht , f� i

t , f� &i
t )] & [ui | there exists f� i

t $ such that
ui=ui (h$t , f� i

t $, f� &i
t $)] is a nondegenerate interval. Expressed this way, it is

obviously an open condition (as are the other two hypotheses of
Theorem 3.3), in the sense that if it is satisfied by game u, then it is also
satisfied by all games in an open neighborhood of u.
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FIGURE 4

Theorem 3.3 amounts essentially to establishing that #( f &i
t ) in (8) is

independent of f &i
t+1 . The argument makes important use of forward

sequential-nondegeneracy. To see what happens when this condition fails,
consider the following example.

Example 4. Player 1 moves first and chooses from [A, B, C]. Player 2
then chooses from [T, M, D]. Finally, player 3 chooses from [L, R]. The
payoffs are as in Fig. 4. Notice that the game is simultaneous- and back-
ward sequentially-nondegenerate and satisfies the indifference condition in
Theorem 3.3. However, it is not forward sequentially-nondegenerate
because all period 3 histories belong to the same (unique) element of
H3*( } ), and hence condition (9) cannot be satisfied for player 3. Indeed,
even though B # H2*(A), we do not have B # H2**(A). Instead,

u2 (B, a2 , a3)=u2 (A, a2 , a3)+#(a3) for all (a2 , a3),

where

#(a3)={1,
0,

if a3=L
if a3=R.

Because # depends on period 3 actions, it violates (7)

Remark 1. With one qualification discussed below, our Markov con-
cept is stronger than the invariance with respect to isomorphisms proposed
in Harsanyi�Selten ([9], p. 73). Consider the two-player example of Fig. 5,
in which the two players move simultaneously.

FIGURE 5
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Harsanyi and Selten consider two subgames G and G$ to be isomorphic
if, for all players i, there exist scalars :i>0 and ; i and a bijection between
player i's continuation strategy spaces in the two subgames such that, for
any player i payoff pi in subgame G, the corresponding payoff (as deter-
mined by the bijections) in G$ is :ip i+;i. By this criterion, the subgames
after ht and h$t are not isomorphic. [Note that player 1's possible payoffs
after ht are [0, 1], whereas after h$t they are [8, 6, &3, &1]. Clearly there
is no affine transformation that maps the former set into the latter.]
However, it is readily verified that ht and h$t are Markov-equivalent
(because for each i there exist :i>0 and ;i (a&i

t ) such that each payoff pi

after ht gets mapped into :ipi+;i (a&i
t ) after h$t).

On the other hand, as noted above, Harsanyi and Selten [9] allow for
``bijection equivalence''. Their concept deems strategies played in two dif-
ferent subgames to be equivalent even if the action spaces in these sub-
games are not identical, but only related by a bijection. We have not
allowed for bijection equivalence both for notational simplicity and because
in most applications action spaces are in fact the same in (Harsanyi�Selten
[9]) equivalent subgames, so that no extra power is obtained from impos-
ing the stronger concept. However, we could readily incorporate ``bijection
equivalence'' within our definition of Markov-equivalence, in which case
our notion would be unambiguously stronger than that of Harsanyi and
Selten [9].

Remark 2. In deeming two decision problems to be equivalent if and
only if they give rise to the same preferences over actions, we are working
in the tradition of Savage who demanded that all acts (even strictly
dominated acts11) be ranked. Another tradition, dating back at least to
Chernoff, asks only that the best act (or acts) be identified. In a game
theoretic setting this alternative requirement would imply that two
problems are equivalent if their best-reply sets are the same (see Mertens
[16] who pursues this second notion of equivalence).12
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11 Actually, however, we could easily strengthen our concept of Markov-equivalence by
eliminating strictly dominated strategies (this would be a change that would require no other
alteration in our formation).

12 While we find our point of view attractive, it is thus not the unique ``right'' way of
proceeding. Which philosophy one adopts is ultimately a matter of taste. Let us point out,
however, that even if we went the Mertens route and used best-response sets as the basis of
equivalence, nothing would change practically. Again, in every economic application of
Markov equilibrium that we have seen, the decision-theoretic and best-response approaches
give the same equilibria. This is because in applied work, researchers almost invariably use
utility functions with single-crossing properties, so that if a variable changes, all of a player's
strategies are affected in the same direction. That is, there is nothing to particularly distinguish
the best-response set from the other strategies. And so, one does not get a coarser partition
by focussing only on the best-response set.



4. CONTINUITY

The assumption that strategies are Markovian is restrictive only if
there is more than one history in some element of the Markov partition.
Otherwise all strategies are Markovian, and an MPE is the same thing as
a subgame-perfect equilibrium. Moreover, it is easy to see that in a
``generic'' extensive form game in which every player has at least three
available actions each time he or she moves,13 the Markov partition con-
sists entirely of singletons. Thus formally the Markov requirement has no
bite generically. Nevertheless, as we suggested in the introduction, the prin-
ciple that minor causes should have minor effects might enable us to extend
the Markov ``spirit'' more generally.

The issue is one of lower hemi-continuity. Fix a finite extensive form of
a game with T periods, but omit the payoffs. We identify this extensive
form with the set A of possible sequences of action vectors a=(a1 , ..., aT).
Given this form the description of a game is then completed by specifying
a vector of payoff functions u=(u1, ..., un) defined on A. (In what follows,
we will keep the extensive form fixed and abuse terminology by identifying
a game with its payoffs u.) Let H u

} ( } )#[H u
t (ht)]t, ht

denote the collection
of Markov partitions for game u. Consider a sequence [um] converging to
u.14 The associated Markov partitions H um

t ( } ) may well differ from H u
t ( } ).

We ask whether for each MPE s of game u there exists a sequence sm con-
verging to s such that each sm is an MPE of um . If so (and if this is true
of any other sequence converging to u), then the MPE correspondence
satisfies lower hemi-continuity (lhc) at s, and, for sufficiently high m, the
strategies sm put little weight on aspects of the past that are not payoff-rele-
vant in game u. In that respect, they are the true embodiment of the
Markov spirit, even though, literally interpreted, the Markov restriction
may be ineffective in game um .
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13 When there are at least three actions, a generic perturbation of payoffs changes the von
Neumann�Morgenstern preferences.

14 Given a fixed extensive form, the distances between two games u and û and between two
strategy vectors s and ŝ are defined by

&û&u&#max
[i, a]

|û i (a)&ui (a)|

and

&ŝ&s&# max
[i, t, ht]

&ŝi (ht)&si (ht)&,

where &ŝi (ht)&si (ht)& denotes the Euclidean distance between the probability vectors ŝ i (ht)
and si (ht).



FIGURE 6

Unfortunately, lhc does not hold for all games. For a counterexample,
consider the sequence [um] depicted in Fig. 6.15

In each game um , player 1 chooses U or D in period 1. Player 2 observes
player 1's choice and in period 2 picks L or R. Game um has a unique sub-
game-perfect (and therefore Markov perfect) equilibrium: Player 2 plays L
following U and R following D, and player 1 plays U. Equilibrium payoffs
are (1, 1�m) and converge to (1, 0) as m tends to infinity. In the limit game
u=limm � � um , however, player 1's choice does not affect player 2's von
Neumann�Morgenstern preferences (u2 (D, a2)=u2 (U, a2)+1 for all a2=
L or R). Thus in any MPE of u, player 2's strategy must be independent
of a1 , which implies that player 1 plays D. We conclude that lhc fails for
u. Indeed, the set of MPE payoffs for u is [( 1

2+x, 1)]x # [0, 1] , which is quite
different from the limit point (1, 0).

This game, however, is nongeneric within the class of games having the
same Markov partitions as u. This class consists of all those games for
which

H2 (U)=H2 (D). (10)

Game u is degenerate because it not only satisfies (10) but also the
property that player 2 is indifferent between L and R. In view of this
degeneracy, we are not especially concerned about the failure of lhc here.
Indeed, one implication of Theorem 4.2 below is that lhc is satisfied in
well-behaved (i.e., generic) games satisfying (10).
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(and that therefore it cannot be described by a set of continuous equations).



For a given collection of partitions H} ( } ), consider the set U(H } ( } )) of
payoff vectors u for which the Markov partitions are H} ( } ). Note that
U(H} ( } )) is defined by a set of linear equations, and so is isomorphic to Rl

for some l. We will say that a proposition is true for generic (or almost all )
u in U(H} ( } )) if it is true for an open and dense subset of U(H} ( } )); that
is, the proposition is generic in the class of payoff functions whose Markov
partitions are H } ( } ). Note that if H} ( } ) consists entirely of singletons (i.e.,
no two histories are equivalent), then a proposition that is true for generic
u # U(H} ( } )) is, in fact, true for generic u in the class of all games with the
same extensive form (since, as we have noted, the singleton property is
itself generic). An MPE s of a game u is robust if, for all =>0, there exists
! such that any game û satisfying &û&u&<! has an MPE ŝ for which
&ŝ&s&<=. That is, an MPE is robust if, for any small payoff-perturbation,
one can find a nearby MPE. Note that we do not require that the nearby
game û have the same Markov partitions as u (indeed, generically it will
not unless H} ( } ) consists entirely of singletons).

A game is essential if it has only finitely many MPEs and all of these are
robust. Essentiality thus ensures lower hemi-continuity. Essential equilibria
have received some attention in the literature on strategic-form games16.
Almost all such games are essential (where the definition of essentiality is
unchanged except that ``MPE'' is replaced by ``Nash equilibrium''):

Theorem 4.1. (a) (Wu and Jiang [22]) For a generic strategic-form
game having fixed and finite strategy spaces, all Nash equilibria are robust;

(b) (Harsanyi [8]) a generic strategic-form game has finitely many
equilibria.17

Theorem 4.1 does not answer the question of whether extensive-form
games are generically essential because the class of games having a par-
ticular extensive form is nongeneric in the class of games having the corre-
sponding strategic form.18 Moreover, a Nash equilibrium need not be an
MPE. Theorem 4.2 establishes, however, that for a given collection of
Markov partitions H} ( } ), almost all games u in U(H} ( } )) are essential. To
prove Theorem 4.2, we will make use of the following
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16 See van Damme [20] for a good exposition.
17 See Wilson [21] for the first result on the generic finiteness of the Nash equilibrium set.
18 Suppose for instance that player 1 chooses between U and D in period 1 and that player 2

reacts by picking L or R in period 2. The payoff vector following U is independent of the
action that player 2 would have picked if player 1 had chosen D. The associated equality
constraints therefore make the payoff vector nongeneric in the space of strategic form games
with two pure strategies for player 1 and four pure strategies for player 2.



Lemma. If u is essential, then

(a) for all a1 , u(a1 , } ) is essential, and

(b) if, for all a1 , sa1
is a second-period continuation MPE for u and s}

is measurable with respect to H u
2 ( } ), (i.e., s â$1

=s â1
if â$1 # H u

2 (â1)), then the
``one-period game'' u( } , s}) is essential.

Proof. (a) Note first that for any a1 , u(a1 , } ) has only finitely many
MPEs; otherwise, u itself would have infinitely many MPEs (since each
MPE of u(a1 , } ) is a continuation of an MPE of u). Consider an MPE sa1

of u(a1 , } ). We must show that it is robust. Let s=(a~ 1 , s}) be a correspond-
ing MPE for the overall game (note that s} must be measurable with
respect to H u

2 ( } )). Consider a T&1-period game û, near u(a1 , } ). To prove
the robustness of sa1

, we must show that û has an MPE near sa1
.

Now û can be extended to a T-period game û$ near u by setting

û$(a$1 , } )={û( } ),
u(a$1 , } ),

if a$1=a1

if a$1 {a1 .

Because u is essential (by hypothesis), û$ has an MPE ŝ$=(a~^ $1 , ŝ$}) near s.
Hence, the continuation strategy ŝ$a1

constitutes an MPE of û( } ) near sa1
,

and so sa1
is indeed robust.

(b) Let

u*(a1)=u(a1 , sa1
) for all a1 .

We must show that u* is essential. Any Nash equilibrium a~ 1 of u* is, by
construction, part of an MPE s=(a~ 1 , s}) of u. Hence, because u has only
finitely many MPEs, u* has only finitely many Nash equilibria. To estab-
lish, therefore, that u* is essential, it remains to show that each Nash equi-
librium a~ 1 is robust. Consider a one-period game u% near u*. We can
extend u% to a T-period game u%% near u as follows. Let

=(a1)=u%(a1)&u*(a1)

and

u%%(a1 , f2)#u(a1 , f2)+=(a1)

for all a1 and f2 . Because u% is near u*, u%% is close to u. Furthermore, for
any a1 , u%% and u have the same second-period continuation MPEs.
Because u is essential, s=(a~ 1 , s}) is robust, and so u%% has an MPE
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s%%=(a~ 1%%, s}%%) near s. Since, moreover, u and u%% have the same set of con-
tinuation MPEs and u has only finitely many MPEs, s}%% must coincide
with s} if u%% is near enough u. Therefore, for all a1 ,

u%%(a1 , s%%a1
)=u(a1 , sa1

)+=(a1)

=u(a1 , sa1
)+u%(a1)&u*(a1)

=u%(a1).

And so, a~ 1%% is a Nash equilibrium of u%. Because it is near a~ 1 this estab-
lishes the robustness of a~ 1 and the essentiality of u*. K

Theorem 4.2. Fix a finite-horizon game with corresponding collection of
Markov partitions H}( } ). Then, almost all games u in U(H}( } )) are essential.

Proof. We must establish two things: (i) if u # U(H}( } )) is essential, then
there exists an open neighborhood N of u in U(H}( } )) such that each
u$ # N is essential; and (ii) for any u # U(H}( } )) there exists a sequence
[um]�U(H}( } )) such that um � u and um is essential for all m.

To establish claim (i), we must show that if u$ # U(H}( } )) is near enough
u, it is essential too. We shall establish this by induction on T, the number
of stages. Note that for T=1 the claim follows from Theorem 4.1.

We first note that if u$ is near enough u in U(H}( } )), then all its MPEs
are near MPEs of u. If not, then for some =>0 there exists a sequence
um � u such that, for all m, um # U(H}( } )) and um has an MPE sm for
which &s&sm&>= for each MPE s of u. But any convergent subsequence
of [sm] converges to an MPE of u (since all the games in the subsequence
share H}( } ) as their Markov partitions), a contradiction.

Next, we must show that if u$ is near enough u in U(H}( } )), it has only
finitely many MPEs. Suppose to the contrary that it has infinitely many
MPEs. Then either (a) for some vector of first-period actions a1 the con-
tinuation game u$(a1 , } ) has infinitely many MPEs, or else (b) for some
collection [s$a$1

]a$1 # A1
, where for all a$1 , s$a$1

is a continuation MPE following
a$1 and where s$a$1

=s$â$1
if â$1 # H2 (a$1), the first-period game u$( } , s$}) has

infinitely many Nash equilibria. Now, from part (a) of the lemma, u(a1 , } )
is essential. Hence, since we are assuming that claim 1 holds for T&1 stage
games, u$(a1 , } ) is also essential, ruling out case (a). In case (b), because the
MPEs of u$ are close to those of u (from the previous paragraph), s$a1

is
close to a continuation MPE sa1

for each a1 . Therefore, the one-period
game u$( } , s$}) is near u( } , s}). Now, from part (b) of the lemma, u( } , s}) is
essential. Hence, by Theorem 4.1, u$( } , s$}) is essential too, and so has only
finitely many equilibria, a contradiction.

Finally, we must show that if u$ is near u in U(H} ( } )), any MPE s$=
(a~ $1 , s$}) of u$ is robust. For any a1 , we noted above that the inductive

214 MASKIN AND TIROLE



hypothesis implies that u$(a1 , } ) is essential. Hence s$a1
is robust and so, if

û$ is near u$ in the space of all games, û$(a1 , } ) has an MPE ŝ$a1
near s$a1

.
Now if û$ is near enough u$, H û$

2 ( } ) either equals or is a refinement of H u$
2 ( } )

(=H2 ( } )). To see this, note that if h$2 � H u$
2 (h2) then if we rescale u$i (h$2 , } )

and u$i (h2 , } ) so that their minimum values are 0 and their maximum
values are 1, we obtain

&u$i (h2 , } )&u$i (h$2 , } )&sup #max
f2

|u$i (h2 , f2)&u$i (h$2 , f2)|>0. (11)

Thus if û$ is near u$ (and rescaled so that its minimum value is 0 and its
maximum 1), (11) also holds for û$, and so h$2 � H û$

2 (h2) (if h$2 # H û$
2 (h2),

then &û$i (h2 , } )&û$i (h$2 , } )&=0). So indeed H û$
2 ( } ) either equals or is a

refinement of H u$
2 ( } ). Hence if a$1 # H û$

2 (a1), then a$1 # H u$
2 (a1) and so s$a1

=s$a$1
(since s$ is an MPE for u$). This in turn means that we can assume that
ŝ$a1

= ŝ$a$1
, i.e., ŝ$} is measurable with respect to H û$

2 ( } ). Now, from part (b) of
the lemma, the one-period game u$( } , s$}) is essential. Thus since ŝ$} is near
s$} , û$( } , ŝ$}) is near u$( } , s$}) and so (from Theorem 4.1) has a Nash equi-
librium a~^ $1 near a~ $1 . Thus ŝ$#(a~^ $1 , ŝ$}) constitutes an MPE of û$ near s$,
establishing that s$ is robust and thus claim (i).

To establish claim (ii), we will again proceed by induction on T. The
case T=1 is handled by Theorem 4.1. Now, from each element of H u

2( } )
choose a first-period action vector a1 and consider u(a1 , } ). From inductive
hypothesis, there exists a sequence um (a1 , } ) � u(a1 , } ) such that each
um (a1 , } ) is essential and um (a1 , } ) # U(H u(a1, } )

2 ). Now, from Theorem 3.1, if
a$1 # H u

2(a1), then for all i there exist :i>0 and ; i ( } ) such that

ui (a$1 , f2)=:iui (a1 , f2)+;i (a&i
2 ) for all f2 .

Hence, because um (a1 , } ) is essential and converges to u(a1 , } ), if, for all i,
we define

u i
m(a$1 , f2)=:iu i

m(a1 , f2)+;i (a&i
2 ) for all f2 ,

then um (a$1 , } ) is essential and converges to u(a$1 , } ). In other words, when
we piece together all the games [um (a$1 , } )]a$1 # A1

, we obtain a T-period
game um # U(H u

} ( } )) such that um (a$1 , } ) is essential for all a$1 . Now, um may
not be essential. But we will show that, for each m, there exists a game in
U(H u

} ) near um that is essential, and this sequence of essential games will
establish claim (ii).

To see this, for all m, list all the functions sm
}1 , ..., sm

}km
that map first-period

actions to continuation MPEs of um . Because um (a$1 , } ) is essential for all
a$1 , there are only finitely many of these (i.e., km is finite). Define

ûm, 1 ( } )#um ( } , sm
}1).
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From Theorem 4.1, there exists an essential one-period game u# m, 1

near ûm, 1 .
Let

=m, 1 (a$1)#u# m, 1 (a$1)&ûm, 1 (a$1)

and

um, 1 (a$1 , f2)#um (a$1 , f2)+=m, 1 (a$1) for all a$1 , f2 .

Because um # U(H u
} ( } )) and um (a$1 , } ) is essential for all a$1 , the correspond-

ing properties are true of um, 1 and um, 1 (a$1 , } )(um, 1 (a$1 , } ) is just um (a$1 , } )
plus a constant). Since u# m, 1 is essential, um, 1 has only finitely many MPEs
that entail sm

}1 (this follows because um, 1 ( } , sm
}1)#u# m, 1) and all of these are

robust. (To see the robustness, let (a~ m
1, 1 , sm

}1) be an MPE of um, 1 . If u$m, 1 is
near um, 1 , then by inductive hypothesis u$m, 1 (a$1 , } ) is essential for all a$1 ,
and so there exists ŝm

}1 near sm
}1 such that, for a$1 , ŝm

a$1, 1 is an MPE for
u$m, 1 (a$1 , } ). Moreover, by the same argument we used with ŝ$} in the proof
of claim (i), ŝm

}1 can be chosen to be measurable with respect to H û$m, 1
2 ( } ).

Now u$m, 1 ( } , ŝm
}1) is near u# m, 1 , and so, by the essentiality of the latter, the

former has an equilibrium a~^ m
1, 1 near a~ m

1, 1 , which is an equilibrium of u# m, 1 .
Hence, (a~^ m

1, 1 , ŝm
}1) is an MPE for u$m, 1 near (a~ m

1, 1 , sm
}1), establishing the

robustness of the latter.)
The fact that the MPEs of um, 1 in which the continuation MPE is sm

}1 are
finite in number and robust does not establish that um, 1 is essential because
it says nothing about, say, MPEs of the form (a~ m

1 , sm
}2). We next show,

however, that we can find um, 2 near um, 1 all of whose continuation MPEs
are in the set [sm

}1 , ..., sm
}km

] and whose MPEs with continuation sm
}1 or sm

}2 are
robust and finite in number.

Specifically, define the one-period game ûm, 2 ( } )=um, 1 ( } , sm
2 ). From

Theorem 4.1, there exists an essential one-period game u# m, 2 near ûm, 2 . Let

=m, 2 (a$1)#u# m, 2 (a$1)&ûm, 2 (a$1)

and

um, 2 (a$1 , f2)#um, 1 (a$1 , f2)+=m, 2 (a$1).

for all (a$1 , f2). Then um, 2 # U(H u
} ( } )) (since um, 1 # U(H u

} ( } ))). Moreover,
by argument analogous to that for um, 1 , um, 2 has only finitely many MPEs
that entail sm

}2 , and all of these are robust. Finally, because um, 1 ( } , sm
}1) is

essential, inductive hypothesis implies that for =m, 2 ( } ) small enough,
um, 2 ( } , sm

}1) is essential, and so um, 2 has only finitely many MPEs that entail
sm

}1 and all of these are robust.
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Continuing iteratively, we can define um, 3 , ..., um, km
, where um, km

is near
um and has only finitely many MPEs that entail sm

}1 , ..., or sm
}km

, all of which
are robust. But, by construction, um, km

has the same second-period con-
tinuation MPEs as um , and so these MPEs entailing sm

}1 , ..., or sm
}km

are the
only ones that um, km

has. Hence um, km
is essential. Moreover since um � u,

and um, km
is near um , we have um, km

� u. K

APPENDIX

Proof of Theorem 3.1

Because H*} ( } ) is maximally coarse among consistent collections, it suf-
fices to show that H}**( } ) is consistent. Given i, consider t, ht , h$t # Ht such
that h$t # Ht**(ht). There exist :>0 and ;: A&i

t (ht) � R such that for all
{�0, at , at+1 , ..., at+{ , and ft+{+1 ,

ui (h$t , at , ..., at+{ , ft+{+1)

=:ui (ht , at , ..., at+{ , ft+{+1)+;(a&i
t ). (A.1)

And so because ;( } ) in (A1) does not depend on ft+{+1

(h$t , at , ..., at+{) # H**t+{+1 (ht , at , ..., at+{). (A.2)

Consider strategies s&i that are measurable with respect to H }**( } ). Then
(A.2) implies that

s&i (h$t , at , ..., at+{)=s&i (ht , at , ..., at+{),

and so

vi (s i, s&i | h$t)=:vi (si, s&i | ht)+;(a&i
t ), for all s i.

Thus H}**( } ) is consistent, as claimed:

vi ( } , s&i | ht)tvi ( } , s&i | h$t). K

Proof of Theorem 3.3

It suffices to show that H}**( } ) is at least as coarse as H*} ( } ). Suppose
therefore that for some t, ht and h$t , h$t # H t*(ht). We must show that
h$t # Ht**(ht). Now, from Theorem 3.2, h$t # Ht***(ht). Hence there exist
:>0 and #( } ) such that

ui (h$t , ft)=:ui (ht , ft)+#( f &i
t ) for all ft (A.3)
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Write f &i
t =(a&i

t , f &i
t+1). We must show that

#(a&i
t , f &i

t+1)=#(a&i
t , f &i

t+1 $) for all f &i
t+1 $.

Suppose, to the contrary that there exists f &i
t+1 $ for which

#(a&i
t , f &i

t+1){#(a&i
t , f &i

t+1 $). (A.4)

Fix s # S(H� } ( } )). Consider a player j who moves in period t+1. From
forward sequential-nondegeneracy, there exist a i

t , a i
t $ # A i

t (ht) such that

w j ( } ; ht , a i
t , a&i

t , s)t% w j ( } ; ht , a i
t $, a&i

t , s),

where the argument of w j is a j
t+1 . Hence, from simultaneous non-

degeneracy and Theorem 2.1,

H*t+1 (ht , a i
t , a&i

t ){H*t+1 (ht , a i
t $, a&i

t ). (A.5)

Now, from the last hypothesis of the Theorem, there exist f� i
t+1 and f� i

t+1 $
such that

ui (ht , a i
t , a&i

t , f� i
t+1 , f &i

t+1)=ui (ht , a i
t $, a&i

t , f� i
t+1 $, f &i

t+1 $). (A.6)

Now, from (A.5), the strategies of players &i are measurable with respect
to H }*( } ) if they play f &i

t+1 after (ht , a i
t , a&i

t ) and f &i
t+1 $ after (ht , a i

t $, a&i
t ).

Hence because h$t # Ht*(ht), player i 's ranking of (a i
t , f� i

t+1) and (a i
t $, f� i

t+1 $)
should not depend on whether ht or h$t occurred. But from (A6), player i
is indifferent between these choices after ht , yet, from (A3) and (A4), player
i is not indifferent between them after h$t , a contradiction. We conclude that
(A4) cannot hold after all.
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