
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 156 (2015) 1–13

www.elsevier.com/locate/jet

Introduction to computer science and economic theory ✩

Lawrence Blume a,b,c,∗, David Easley a, Jon Kleinberg a, 
Robert Kleinberg a, Éva Tardos a

a Cornell University, United States
b IHS, Vienna, Austria

c Santa Fe Institute, United States

Received 3 November 2014; final version received 8 November 2014; accepted 8 November 2014

Available online 18 November 2014

Abstract
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1. Introduction

Computer scientists and economists share interests in several areas of economic theory, and 
individuals from both groups have been working together and in parallel for approximately three 
decades. Interest in the interaction of computer science and economics has intensified in the last 
15 years, fueled in large part by the development of large computer networks such as the Web 
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and the Internet. The emergence of these new systems has caused a profound expansion of the 
questions that computer science has had to address, since these networks operate through the 
cooperation and competition of many participants, leading inevitably to underlying social and 
economic issues. At the same time, the Internet has also made possible the development of more 
overtly economic structures, through the creation of new kinds of markets.

The purpose of this symposium is to introduce economists to recent work in these areas. The 
interaction of computer science and economics has had an impact on economic theory in three 
ways. It has introduced new problems — novel kinds of markets including those arising in the 
search industry, and new applications including network management and routing, on-line social 
systems, and platforms for the production and sharing of content. It has raised new issues in 
areas already popular in economics, including learning, decision theory, market design, network-
structured interaction, the analysis of equilibrium quality, and the computational complexity of 
equilibria. And it has brought new methods to existing problems, including efficient algorithms, 
lower bounds based on computational hardness, and techniques from discrete mathematics and 
graph theory.

We focus in this introduction on the topic of market design as it provides compelling exam-
ples of new problems, methods, and techniques in a fundamental economic context, and because 
mechanism design is at the moment the most active area of joint interest. The next section dis-
cusses mechanism design. Subsequent sections provide brief introductions to other aspects of 
algorithmic game theory, learning in games, and networks.

2. Mechanisms and market design

Marshallian and Walrasian equilibrium analysis are not theories of how markets function. 
Their institution-free approach to predicting market outcomes precludes them from asking ques-
tions such as: When do market institutions fail? How do they behave when they fail? How should 
markets be designed to minimize failure, and what tradeoffs with market efficiency arise in do-
ing so? Research in economics arising from general equilibrium and welfare economics has been 
concentrated on market imperfections. Computer scientists have paid relatively more attention to 
the nuts and bolts of market mechanisms and the robustness of market institutions.

These two distinct approaches to the challenges of modeling markets at a detailed level meet 
in the field of mechanism design. Leo Hurwicz’s research program was a response to the Lange–
Lerner–Hayek debate about the virtues of markets versus central planning. To clarify Hayek’s 
claim that the virtue of the market is its ability to harness widely dispersed information to achieve 
social goals, Hurwicz [1] defined a mechanism to be a communication system in which partici-
pants send messages to a center, and a function (or correspondence) which assigns to each profile 
of messages an allocation of commodities (or a set thereof). Modern mechanism design began 
with Hurwicz’s [2] introduction of incentive compatibility, and with Gibbard’s [3] introduction of 
the revelation principle for dominant strategy equilibria and its subsequent extension to Bayes–
Nash equilibria. Subsequent work has addressed two general questions. The Implementation 
problem is concerned with objectives: Can a particular social choice function be implemented 
over some rich class of environments? The Design problem is concerned with perhaps more 
practical institutional questions, including: How do particular mechanisms (e.g. first- and second-
price auctions) behave? Which auction mechanisms are optimal from a welfare-maximizing 
point of view, or from a revenue maximizing point of view, or some other point of view? These 
two questions are not distinct. Although the early implementation theorists (e.g. Hurwicz [4], 
Mount and Reiter [5]) concluded that markets perform well in “neoclassical” environments, 
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their abstract description of markets did not enable the analysis of particular methods of mar-
ket organization, and they had little to say about non-neoclassical environments. These questions 
are the locus of most mechanism design today. Outside of neoclassical environments, there is yet 
no general theory of implementation failure, and so the theory develops one problem at a time.

In extending received implementation theory, computer scientists have raised the issue of 
complexity in mechanism design in two different ways: Computational complexity, the difficulty 
of computing the function that maps message profiles to allocations and of finding an equilib-
rium, and communication complexity, the amount of information that must be communicated by 
the mechanism’s participants. In practical mechanism design both are clear concerns; one needs 
to have confidence that the algorithm employed in an online market will reach its conclusion 
in a reasonable amount of time, and market participants need to be able to participate without 
extensive communication with the mechanism.1

Computer science has developed a range of ways to measure the efficiency of a procedure 
or algorithm to solve a problem, based on the resources used by the algorithm; these include 
the running time, the space or memory required, and the amount of communication required. 
This also leads to natural measures for the inherent computational complexity of an underlying 
problem, by considering the minimum resources required by any algorithm to solve the problem. 
These requirements can be evaluated in either the worst case over all possible initial conditions, 
or in the average case in a Bayesian environment; for some well-known algorithms, such as the 
simplex method for linear programming, the difference between worst case and natural measures 
of average-case performance can be very large.

In a completely analogous way, one can study the amount of computational or communication 
resources required by a mechanism, and one can define the inherent computational complexity 
of implementing a social choice function or correspondence as the minimum resources required 
by any mechanism to implement that function or correspondence. Of particular interest is the 
question — first raised by Nisan and Ronen [9] — of whether a social choice correspondence 
which is efficiently computable can always be implemented by a mechanism whose outcome is 
efficiently computable.2 Such a result, if true, would imply that the only obstacles to achieving 
computational efficiency of mechanisms stem from the inherent computational complexity of 
the problem being solved, not from the game-theoretic challenge of implementing the solution 
in equilibrium. Unfortunately, the result is false, as can be seen by considering the problem of 
implementing social welfare maximization with quasi-linear utility in dominant-strategy equilib-
rium. The Vickrey–Clarke–Groves (VCG) mechanism is unique for implementing social welfare 
maximization, and requires solving an NP-hard problem (a widely adopted criterion for compu-
tational intractability) in settings with an exponentially large discrete set of alternatives, as was 
observed by Kfir-Dahav, Monderer, and Tennenholtz [10].

In light of this negative result, attention naturally turned to implementing outcomes that 
achieve close to maximal welfare. The answer to whether the computational complexity of im-
plementing this social choice correspondence differs significantly from the complexity of merely 
computing it depends on the details of the problem. In some cases there exist computationally 
efficient algorithms implementing an outcome whose efficiency is within a small constant fac-
tor of the maximal social welfare. In other cases, computational constraints can be arbitrarily 

1 The issue of computational complexity has been raised in economic contexts, motivated by CS research; for example, 
by [6–8].

2 Here, as in many contexts in computer science, efficient computability is defined by stipulating that the quantity of 
resources required for a computation must be bounded above by a polynomial function of its input size.
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costly for the efficiency of outcome. An example of this latter case is the work of Papadim-
itriou, Schapira and Singer [11] on “combinatorial public projects”, that is, selecting k out of n
potential public projects to maximize the combined utility of n bidders with submodular valua-
tions over sets of projects. Selecting an outcome that achieves fraction 1 − 1/e of the maximal 
social welfare can be achieved quite easily by polynomial-time algorithms, but they show that 
mechanisms implementing this social choice correspondence in dominant-strategy equilibrium 
cannot be computationally efficient. The same phenomenon, whereby incentive-compatibility 
constraints lead to an exponential blow-up in the computational resources required to solve a 
problem, occurs even for the seemingly innocuous problem of allocating identical, indivisible 
goods to a set of bidders, as shown by Dobzinski and Nisan [12].

This strand of research illustrates a methodological innovation of computer scientists. If utility 
is ordinal or cardinal but not interpersonally comparable, then implementation results are of 
the form, “mechanism x does (does not) achieve a pareto optimum”. If utility is cardinal and 
interpersonally comparable, then aggregate welfare is cardinal, and it becomes meaningful to say 
things like, “mechanism x achieves at least 1 −1/e of maximal social welfare”. This allows for a 
much finer gradation of mechanisms that are not socially optimal — and since most problems do 
not admit optimal mechanisms with a tractable structure, the ability to discuss aggregate welfare 
opens up many new and interesting questions.

Communication complexity asks the question, “How much information needs to be exchanged 
between a set of parties who are collectively carrying out a computation?” This question has its 
origins in computer science [13,14]. The following example comes from Nisan and Segal [15], 
a collaboration between a computer scientist and an economist. Combinatorial auctions are 
mechanisms designed to allocate L heterogeneous items among N bidders whose valuations 
for the different objects are not necessarily additive across the items. The revelation principle 
reduces this problem to that of studying revelation games, but full revelation of a bidder’s pref-
erences requires transmission of a willingness to pay for each of 2L − 1 bundles of items. That 
is over 1 billion numbers for L = 30. Nisan and Segal provide results both for bits and, for 
those cases involving continuous information, dimension. Dobzinski and Nisan provide a useful 
illustration of the types of methods that enable analyzing the communication requirements of 
mechanism design problems.

This issue of communication complexity was at the heart of the Hayek–Lange–Lerner de-
bate, and for that reason, among many others, it should be familiar to the economics community. 
Hayek [16, p. 519] argued that: “. . . the ‘data’ from which the economic calculus starts are never 
for the whole society ‘given’ to a single mind which could work out the implications and can 
never be so given”. The “economic problem of society” is “a problem of the utilization of knowl-
edge which is not given to anyone in its totality”. Subsequently, Hurwicz [4] and Mount and 
Reiter [5] demonstrated that Hayek was correct for neoclassical environments, that is, resource 
allocation problems with no externalities and diffuse market power. Markets are “information-
ally efficient”, that is, they minimize the amount of communication needed to support an optimal 
allocation of resources, where the quantity of communication is measured by the dimensionality 
of the space of signals needed to convey all necessary information. Saari and Simon [17] showed 
that the amount of information needed to find Walrasian prices is nonetheless large. Global New-
ton methods will (generically) find zeros of excess demand functions. For an n + 1-commodity 
economy they require at least n2 + n pieces of information: the n independent values of excess 
demand and their n2 derivatives with respect to normalized prices. No method (in the sense that 
the global Newton method is a method) that works on any excess demand function can do better 
when n ≥ 3.
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Early on in the mechanisms literature it was recognized that dominant strategy implementabil-
ity was too strong — little could be implemented. The economics mechanism-design community 
quickly took up Bayesian implementation, following [18], Harris and Townsend [19], Holm-
ström [20], and Myerson [21]. Computer science has considered Bayesian implementations that 
achieve approximately some design criteria (like maximizing welfare or revenue). But they also 
have been more aggressive in looking for other, non-Bayesian alternatives to dominant strategies. 
Lavi and Nisan [60] is an example of this work. They investigate a dynamic mechanism design 
problem using what they call “set-Nash equilibrium”: Each player is given a recommended set of 
strategies and may play an arbitrary element of the recommended set, but the n-tuple of recom-
mended strategy sets has the stability property that if every other player chooses an element of 
their recommended set, then the left-over player must have a best response in her recommended 
set. Chen and Micali [61] propose an alternate approach to weakening underlying assumptions 
in auctions, using a purely set-theoretic model of beliefs.

More broadly, a perspective that guides a lot of work in computer science is to achieve ap-
proximately desired outcomes under minimal assumptions about the state of the world. This 
perspective leads naturally to questions about alternatives to Bayesian analysis, which makes 
strong assumptions about distributions of problem inputs (e.g. valuations in an auction) and 
looks to maximize average social welfare or average seller revenue. Robustness aside, Bayesian 
games are limited in application to the degree they rely on common knowledge assumptions. 
Robert Wilson [22] has famously written, “I foresee the progress of game theory as depending 
on successive reductions in the base of common knowledge required to conduct useful analysis 
of practical problems. Only by repeated weakening of common knowledge assumptions will the 
theory approximate reality”. Computer science perspectives can thus be viewed by economists 
as working in alignment with what has come to be called Wilson’s Doctrine.

One approach to mechanism design with reduced assumptions is a “prior-independent mech-
anism”, that is, a detail-free mechanism whose designer does not need to know things like type 
distributions. Such results are situated halfway between average-case and worst-case analysis: 
For any given distribution of types, the mechanism’s performance is evaluated in the average 
case (that is, expected performance with respect to the a priori type distribution) but the theo-
rem that provides the performance guarantee for the mechanism holds in the worst case over all 
distributions. One sees this type of goal in early examples such as Bulow and Klemperer’s [23]
result that a second-price auction with n + 1 i.i.d. bidders will get at least as much revenue, in 
expectation, as an optimal auction with n bidders from the same distribution. (Note that running 
a second-price auction doesn’t require any knowledge of bid distributions, so this is an exam-
ple of a detail-free result.) Results in this style have been given broad generalizations by work in 
computer science, including results of Hartline and Roughgarden [24], and new results of Dhang-
watnotai, Roughgarden and Yan [25] who consider a class of environments including single-unit 
auctions, k-unit auctions and more, with private and independent bidder valuations drawn from 
monotone hazard rate distributions which are common knowledge among the bidders, but not 
necessarily the same. They construct a mechanism that, regardless of the prior, guarantees an 
expected revenue to the seller of at least 1/2 the expected revenue achievable by the optimal 
mechanism for that environment.

An even more aggressive weakening of Bayesian assumptions takes place in the “prior-free” 
approach to mechanism design, which aims to provide meaningful worst-case revenue guaran-
tees for mechanisms, i.e. non-trivial lower bounds on a mechanism’s revenue that hold for every
profile of bids and not just in expectation. This approach is exemplified by the paper of De-
vanur et al. [62] that develops a framework for prior-free mechanism design and analysis in 
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single-dimensional settings. They provide meaningful and non-trivial revenue lower bounds for 
a natural random-sampling-based mechanism by comparing its revenue on every bid profile to a 
benchmark value defined by optimizing over outcomes that are “envy-free” with respect to the 
same bid profile.

Computer science research has also studied these weakenings of assumptions to ask questions 
about “what is” rather than about “what is optimal”. Myerson’s optimal mechanism is beau-
tiful, and it is indeed simple when agents have identical type distributions. For non-identical 
distributions, it differs from the simple auction formats seen in reality (which use anonymous 
reserve prices, for example). Hartline and Roughgarden [24] and subsequent work have pro-
posed an appealing quantitative argument for the prevalence of simple auctions, showing that they 
achieve a bounded approximation factor with respect to the revenue of optimal auctions when 
bidders’ types are single-dimensional and drawn from distributions satisfying a natural regular-
ity condition. Briest et al. [63] provide a contrasting result in a domain with multi-dimensional 
preferences. They focus on one aspect of simple auctions — that their outcome is a determinis-
tic function of the bid profile — and show how the use of randomization in certain settings can 
achieve unbounded gains in revenue relative to the best deterministic mechanisms. This research 
program, and subsequent work of Haghpanah and Hartline [26] are inverse results to the classical 
implementation problem, whereas implementation theorists (e.g. Maskin [27]) ask for which so-
cial choice functions do there exist mechanisms which can implement them,3 this program asks 
for which environments a given mechanism implements or approximately implements a given 
social choice function, in this case revenue maximization.

Although the analysis of market institutions is associated with the mechanism design of the 
1960s and 1970s, there has been independent interest in institutional analysis almost since the 
invention of game theory.4 Neoclassical analysis analyzes market outcomes by looking at the 
consequences of small (marginal deviations) and making assumptions (such as convexity) that 
allow for the inference of global properties from local properties. Theorists such as Gale, Shapley, 
Shubik and Scarf, on the other hand, foresaw that indivisibilities are not just a technical problem. 
Distinct from the marginal tradition of neoclassical economics, they saw the problem of opti-
mal resource allocation as a matching problem. Gale and Shapley [29], Shapley and Scarf [30], 
and Shapley and Shubik [31] introduced one- and two-sided matching. This distinction becomes 
particularly important in two-sided matching markets, such as matching students to schools and 
workers to firms, and represents an area of mechanism design that has had a significant influ-
ence on empirical economics. Matching markets and related design problems such as kidney 
exchanges are an active area of current research; a formulation of matching problems involving 
multiparty contracts is considered by the paper of Hatfield and Kominers [64], who show welfare 
and stability results for such multilateral interactions.

3. Computation in games

Moving beyond mechanism design, computational complexity is important more generally for 
game theory. Recent computational work [32,33] has identified fundamental limits on the ability 
of efficient algorithms to compute equilibria. These results show how to take very hard instances 
of computational problems and embed them in a set of strategies and payoffs for players in a 

3 Strongly, in the sense that all equilibria achieve social choice-function outcomes.
4 In fact, even earlier: the first formal analysis of a game was Beccaria’s [28] optimal tariff problem.
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game — with the consequence that if the players are able to reach an equilibrium, they would 
collectively produce a solution to problems that we believe to be computationally infeasible.

This suggests some inherent limits on the power of equilibrium notions — that for certain 
difficult games, we should not expect players to be able to find an equilibrium. However, the 
kinds of games used to establish these results have a fragile, pathological flavor to them — based 
on all-or-nothing situations in which one must essentially find the “secret combination” to solve 
a puzzle. In contrast, games at the heart of market behavior and other forms of real-world strate-
gic interaction seem to be smoother and more robust — despite the abundance of sub-optimal 
outcomes, the system tends to contain cues that guide the behavior of the participants, and forms 
of feedback that can select for better behavior. A broad research question is to quantify the fea-
tures of games in real settings that lead to more tractable behavior. In a related direction, one 
can ask which natural classes of games do not suffer from the difficulty of computing equilibria. 
For example, Daskalakis and Papadimitriou [65] identify the class of anonymous games where 
they show that a minimal relaxation of equilibrium conditions eases the difficulty of computing 
equilibria.

Complexity also has implications for the modeling of boundedly rational agents. One source 
of bounded rationality is limited computational resources. Neyman [34] and Rubinstein [35]
modeled bounded rationality in finitely repeated prisoners’ dilemmas by requiring agents to em-
ploy strategies that could be implemented by finite state automata. If the size of the automata (the 
number of states) is sufficiently constrained, Nash equilibria in automata strategies can support 
cooperation. With enough states, though, Papadimitriou and Yannakakis [36] showed that finite 
automata can compute best responses to every partial history, and so the only Nash equilibrium 
in such automata strategies is to always defect. Halpern and Pass [66] provide new results on 
the use of costly computation as a model of bounded rationality. Rather than limiting players 
to computations that can be implemented using finite automata, they model fully general com-
putation using Turing machines, and this motivates alternative ways of quantifying the cost of 
a computation, such as the number of random bits consumed.

4. The price of anarchy and quality of learning outcomes

The Lange–Lerner–Hayek debate had to do with the relative advantages and disadvantages of 
decentralized mechanisms. Although the market proves to be efficient for neoclassical environ-
ments, this is not necessarily the case in other environments. But the issue is broader than just 
the consequences of decentralized information — for games in general one can ask how well an 
equilibrium outcome does relative to the social optimum. Koutsoupias and Papadimitriou (1999) 
first formalized this idea in the context of Nash equilibria by computing the price of anarchy, the 
ratio of the welfare of the socially optimal outcome of a game to the minimum welfare of any 
Nash equilibrium outcome. Note that this line of research again illustrates the types of questions 
that can be asked when one views utilities as cardinal and interpersonally comparable, allowing 
aggregate measures of welfare to be evaluated.

The price of anarchy has proven to be a useful framework for analyzing a number of settings 
where self-interested behavior leads to sub-optimal outcomes. An early influential result comes 
from the work of Roughgarden and Tardos [37] on network congestion. Suppose that travel time 
on a road increases with the degree of congestion. How would one allocate drivers to different 
routes on the network so as to minimize average travel time? A centralized solution would as-
sign a particular route to each driver. A decentralized solution has each individual choosing the 
time-minimizing route given the route choices of others. Among other results, Roughgarden and 
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Tardos show that the total welfare of a decentralized solution with strategic participants is no 
worse than a centralized optimal solution with twice the level of traffic.

An important limitation of the price of anarchy is that it assumes that the players have suc-
cessfully coordinated on a Nash equilibrium, which can be a strong assumption. However, many 
results on the price of anarchy turn out to be rather robust in that they extend to a form of equi-
librium that players reach via learning. Many situations give rise to repeated series of strategic 
interactions, that is, repeated games. Routing is such a game, as are many “small stakes” auctions, 
such as sponsored search auctions. In these situations it is interesting to study not only the set 
of equilibria, but how they are achieved when players refine their play as they learn more about 
other participants and even the rules of the game. In contrast to “high-stakes games” where it 
makes sense to invest significant resources in learning to play well up front, such investments are 
not worthwhile if the stakes in any single interaction are sufficiently low. Nonetheless we expect 
players to learn, and the long-run consequences of learning are significant when the volume of 
interactions is high. Learning in games has a long history, going back to early work on fictitious 
play [38].5 Much of this work models Bayesian learning, in which case the relevant solution con-
cept, Markov perfect equilibrium, is notoriously complex. Adlakha et al. [67] explore the use of 
an alternative stationary equilibrium solution concept; they provide conditions guaranteeing that 
stationary equilibria exist and closely approximate Markov perfect equilibria, and they explore 
the consequences for the phenomenon of “learning by doing” in an oligopoly model.

An alternative to Bayesian learning that plays an important role in the computer science liter-
ature is “no-regret learning”. In a repeated game we suppose that in each stage a player observes 
the consequences of all his possible actions given the actual play of his opponents. The regret of 
the action sequence a1, . . . , aT of length T is the excess of the payoff from the best fixed action 
in hindsight to the payoff realized by the sequence. A learning algorithm is just a strategy for 
the repeated game — a function mapping histories of play into actions. A learning algorithm is 
no-regret if regret is guaranteed to grow sublinearly in T , no matter how opponents play. No-
regret algorithms exist, and they must necessarily randomize. Furthermore, no-regret learning 
converges to an equilibrium in zero-sum games, and more generally to a weakening of correlated 
equilibrium called coarse correlated equilibrium, a correlated distribution of actions such that no 
player would prefer to switch to any fixed action rather than play the given correlated distribution. 
All correlated equilibria (and hence all Nash equilibria) are coarse correlated equilibria.

An interesting recent development using the idea of learning as a model of game outcomes 
is that in many games the known price of anarchy results extends to learning outcomes, i.e., the 
welfare guarantee provided by the price of anarchy result applies even when no-regret-learning 
players have not converged to a Nash equilibrium. A compelling result on this theme is due 
to Roughgarden [40], who demonstrates that if a game satisfies a particular payoff condition 
which he calls a “smoothness condition”, then price-of-anarchy results for that game extend to 
coarse correlated equilibria, the limits of no-regret learning. The proposed smoothness condition 
is satisfied by most games with known price of anarchy bounds, including the routing game and 
games arising in sponsored search auctions. The paper of Roughgarden and Schoppmann [68]
weakens the smoothness condition to extend it to a class of games with convex strategy sets, 
while the weaker condition still implies that the price-of-anarchy results for that game extend to 
correlated equilibria (though not to coarse correlated equilibria).

5 A recent survey is Hart and Mas-Colell [39].
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5. Applied market design

Economists and computer scientists have also collaborated productively in actually designing 
markets and in analyzing these designed markets. A leading example is the sponsored search 
market. Web search companies such as Google and Yahoo! raise billions of dollars annually by 
selling space beside particular search queries. Current on-line advertising markets look very dif-
ferent from the advertising markets of earlier eras; whereas sales in these earlier forms of the 
market were determined by individual negotiations, the on-line versions involve an extremely 
rich structure for the items being sold, based on the attention of individual users as they seek to 
accomplish specific search tasks. In analyzing and designing such markets, there are opportu-
nities to exploit connections to some of the fundamental models of matching markets that have 
been the subject of extensive study in both computer science and economics.

The first papers to propose and analyze a model of sponsored search were Edelman et al. [41], 
Varian [42], and Mehta et al. [43]. Edelman et al. and Varian show that an efficient equi-
librium for basic models of sponsored search always exists in the full information setting. 
The paper of Caragiannis et al. [69] considers this framework for a Bayesian model of spon-
sored search auctions (specifically, generalized second-price auctions with uncertain quality 
scores), and shows a small constant bound on the price of anarchy that is robust enough to 
extend to the incomplete information game even with correlated types (and correlated quality 
scores).

Prediction markets form another broad class of markets that have become much more preva-
lent with powerful computational resources and the growth of the Internet [44]. A prediction 
market is one that is designed for the purpose of inducing a collective prediction from the set of 
participants — for example, awarding a dollar if a particular candidate is elected, or a particular 
team wins a sporting event (e.g. [45–47]). The notion draws on an idea with a long history in 
economics, that prices reveal beliefs; with greater computational power and lightweight access 
to large groups of potential participants through the Internet, prediction markets have become 
correspondingly more expressive, with award conditions that now extend to complex Boolean 
predicates on the basic outcomes. A central goal of a prediction market is to be able to sell 
and buy securities guaranteeing good prediction while limiting the cost to the market maker, 
and developing computationally efficient pricing mechanisms has been an active focus of re-
search in the computer science community. Running prediction markets online gives rise to 
some other novel issues as well. For example, good online mechanisms need to be sybilproof, 
meaning that individuals should not be able to benefit from submitting several reports under 
different pseudonyms, as such sybils are easy to generate online. Lambert et al. [70] gives an ax-
iomatic characterization of mechanisms for prediction markets satisfying a number of desirable 
criteria.

6. Networks

Networks have been a basic object in computer science since its initial stages, as the formal-
ism of graph theory has proved to be a powerful language for modeling many of the field’s core 
applications beginning with some of the earliest: wiring diagrams of circuits, control flow in pro-
grams, the structure of communication and transportation networks, and then more recently the 
topology of the World Wide Web and large social media and on-line commerce sites. These more 
recent networks have increasingly consisted of interacting strategic agents, rather than compo-
nents that were centrally designed by a single entity, and so it became natural for economic and 
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game-theoretic considerations to merge increasingly with the computational considerations. Eco-
nomics also began to investigate graphs as the underlying models for some of its core questions; 
these include the interactions of participants in a market, and questions concerning the diffusion 
of information, innovations, and behavior in an underlying social network.

Both fields have considered how a network’s topology can arise as the result of strategic 
interactions among the nodes; Shenker [48] asked how such considerations would affect the 
structure of the growing Internet topology, and work beginning with Jackson and Wolinsky [49]
in economic theory and Fabrikant et al. [50] and [51] in the theory of computing studied the 
consequences of self-interested behavior in the formation of network structure.

In addition to the structure of the network itself, there has been significant interest in both 
computer science and economics on the processes that take place on the underlying network. 
The routing of traffic on networks is one such process, which as noted earlier formed one of the 
core settings for analyzing the price of anarchy [37]. Other active lines of work include analyses 
of the diffusion of information, innovations, and behaviors on social networks (Rogers [52], 
Blume [53], and Ellison [54]); and the outcome of buyer–seller interaction and bargaining on 
network structures (Kranton and Minehart [55], Corominas-Bosch [56], and Kakade et al. [57]).

The perspective of computer science is evident in recent approaches to both of these two lat-
ter issues. In the diffusion of innovations, one is led to an interesting algorithmic variation on 
the underlying question by considering how to intervene in it — in particular, how a centralized 
agent could optimally “seed” an innovation through careful selection of the starting nodes. This 
was asked by Domingos and Richardson [58]; since the optimal choice of seeds is computa-
tionally difficult, and lacking in any apparent tractable structure, subsequent work identified rich 
structural properties of near-optimal solutions that can be found through greedy optimization, by 
establishing a submodular property of the process (Kempe, Kleinberg, and Tardos [59]). In the 
context of trading and bargaining on networks, where participants in the network may repeat-
edly update their offers to others, there are deep connections to distributed updating algorithms 
related to belief propagation; Bayati et al. [71] develop this connection to provide new results on 
networked bargaining.

7. Conclusion

There is something natural in the broadening interface between computer science and eco-
nomics — each can be viewed as a field focused on the design and analysis of extremely complex 
synthetic systems that are governed by phenomena we only partially understand and only par-
tially know how to control. And each field increasingly needs knowledge that resides in the other, 
as computer scientists seek to design and understand systems containing ever-increasing num-
bers of strategic agents, and economists seek to model the complex networks of interactions that 
lie between small-group environments and population-scale economic activity.

This introduction has been designed to serve as a roadmap to some of the central themes in 
the papers that follow. The questions that these papers address in turn point to important issues 
that will continue to shape the interface between computer science and economics: establishing
guarantees for economic processes under increasingly general assumptions; developing methods 
to evaluate the performance of algorithms and mechanisms even in cases when they may not be 
the optimal choice; delineating the ways in which computational efficiency serves both to make 
certain outcomes feasible and to provide evidence for the infeasibility of others; and identifying 
design principles for the complex environments that arise when strategic agents come together, 
make decisions, and interact.
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