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Abstract

The motivation of decision makers who care for various emotions, intentions-based reciprocity, or the
opinions of others may depend directly on beliefs (about choices, beliefs, or information). Geanakoplos,
Pearce and Stacchetti [J. Geanakoplos, D. Pearce, E. Stacchetti, Psychological games and sequential ratio-
nality, Games Econ. Behav. 1 (1989) 60–79] point out that traditional game theory is ill-equipped to address
such matters, and they pioneer a new framework which does. However, their toolbox – psychological game
theory – incorporates several restrictions that rule out plausible forms of belief-dependent motivation. Build-
ing on recent work on dynamic interactive epistemology, we propose a more general framework. Updated
higher-order beliefs, beliefs of others, and plans of action may influence motivation, and we can capture
dynamic psychological effects (such as sequential reciprocity, psychological forward induction, and regret)
that were previously ruled out. We develop solution concepts, provide examples, explore properties, and
suggest avenues for future research.
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1. Introduction

We develop a framework for analyzing strategic interaction when players have ‘belief-
dependent’ motivations, generalizing the theory of extensive form psychological games pro-
posed by Geanakoplos, Pearce and Stacchetti [36] (hereafter GPS, see also Gilboa and Schmei-
dler [37]). The rest of this Introduction motivates in more detail.

Traditional game theory is not a rich enough toolbox to adequately describe many psycho-
logical or social aspects of motivation and behavior. The traditional approach assumes utilities
depend only on which actions are chosen, but if decision makers are emotional or care for the
intentions, opinions, or emotions of others utilities may depend also on which beliefs (about
choices, beliefs, or information) players harbor. The following examples illustrate:

1. When Abi takes a taxi ride she tips as much as she expects that the driver (Ben) expects to
get. She suffers from guilt if she tips less.

2. Cleo suddenly pushes Dan over. Should Dan splash a bucket of water over Cleo in return?
Maybe she actually tried to hug him? If so, Dan would rather forgive (maybe even hug) Cleo.

3. Eva is unemployed. Her neighbor, Fred, observes the effort with which she tries to get a job.
Fred’s taxes pay for Eva’s unemployment benefits, so Eva’s choice has externalities the size
of which depends on her talent translating effort to probability of getting a job (low effort
is costlier to Fred if Eva is talented and could have gotten a job had she tried harder). Eva’s
talent is known only to her, but Fred makes inferences observing her effort. This determines
the social respect he bestows on Eva, and since she cares about respect this influences her
effort.

4. Gwen is anxious about her health. Hal, her doctor, has diagnosed a serious illness. He is con-
cerned with Gwen’s health and anxiety. Should he prescribe the most appropriate treatment
and thus reveal to Gwen how bad is her situation?

Abi’s tip, Dan’s hug/soak choice, Eva’s effort, and Hal’s prescription each pins down an out-
come. Yet the preferred choice depends on a belief.1

The point that belief-dependent motivation may be important for strategic decision making
is made by GPS, who present several intriguing examples involving various emotions. They
show the inadequacy of traditional methods to represent the involved preferences, and develop
an extension (in the normal as well as in the extensive form) of traditional game theory to deal
with the matter. A literature has emerged which either draws on or which can be related to GPS’
framework. Contributions include applications to specific economic problems,2 models of certain
forms of belief-dependent preferences (like reciprocity or guilt),3 and experimental studies that

1 Abi’s preference depends on her belief of Ben’s belief about the tip; Dan’s on his assessment of Cleo’s intentions;
Eva’s on Fred’s inferences on her talent; Hal’s on his belief about Gwen’s anxiety – a belief-induced psychological state
– and on his belief about Gwen’s sensitivity to anxiety.

2 See Huang and Wu [42], Dufwenberg [24,25], Geanakoplos [35], Ruffle [71], Dufwenberg and Kirchsteiger [28],
Huck and Kübler [43], Caplin and Eliaz [20], Caplin and Leahy [22], Li [55], Kőszegi [48], Kőszegi and Rabin [49,50],
Sebald [72]. Bernheim [16] and Dufwenberg and Lundholm [30] also consider belief-dependent motivations although
the authors do not draw a connection to psychological games.

3 See Rabin [67], Dufwenberg and Kirchsteiger [29], Falk and Fischbacher [31], Battigalli and Dufwenberg [8], Segal
and Sobel [73]; see Sobel [75] for some related discussion.
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have provided support for such models.4 By now a quite large set of economists argue that belief-
dependent motivation is relevant to economic behavior.5

While GPS’ paper is a source of inspiration for all work on belief-dependent motivation,
and an applicable toolbox for some work, a careful scrutiny reveals that their approach is too
restrictive to handle many plausible forms of belief-dependent motivation (this is acknowledged
by GPS themselves; see pp. 70, 78–79). There are several reasons including the following four:

R1 (updated beliefs): GPS only allow initial beliefs to enter the domain of a player’s utility,
while many seemingly important forms of belief-dependent motivation require updated be-
liefs to matter.

R2 (others’ beliefs): GPS only allow a player’s own beliefs to enter the domain of his utility
function, while there are conceptual and technical reasons to let others’ beliefs matter.

R3 (dependence on plans): GPS follow the traditional extensive games approach of letting
strategies influence utilities only insofar as they influence terminal histories, but many forms
of belief-dependent motivation become compelling in particular in conjunction with prefer-
ences that depend on strategies in ways not captured by terminal histories.

R4 (non-equilibrium analysis): GPS restrict attention to equilibrium analysis, but in many strate-
gic situations there is little compelling reason to expect players to coordinate on an equilib-
rium and one may wish to explore alternative assumptions.

This list deserves backup by examples, but we postpone this until the next section. Here we
just note that items in the list have lead some researchers to deviate from GPS’ framework, in
developing specific examples or models with belief-dependent motivation. However almost no
papers are concerned with developing the overall framework of psychological game theory.6 We
attempt to fill this gap, using R1–R4 as guiding principles.

Our approach crucially draws on Battigalli and Siniscalchi’s [10] work on how to represent
hierarchies of conditional beliefs. This is essential for R1, and figures in the background of
R2–R4 which are all related to updated beliefs. We define a large class of psychological games,
which contains (in a particular sense) GPS’ games and traditional games as special cases. Our
main goal is to develop this basic framework, and to illustrate some solution concepts that can
be meaningfully developed for it. While one could imagine a variety of interesting solution con-
cepts, we choose to extend two basic concepts of classical game theory to our setting: sequential
equilibrium and (extensive form) rationalizability. We prove related theorems, and illustrate how
the concepts work in examples.

4 See Dufwenberg and Gneezy [27], Guerra and Zizzo [39], Bacharach, Guerra and Zizzo [5], Charness and Dufwen-
berg [23], Bouckaert and Dhaene [17], Dufwenberg, Gaechter and Hennig-Schmidt [26], Tadelis [77], as well as the
survey Attanasi and Nagel [3].

5 Add some (not many) decision-theorists to this list: Machina [58,59] presents examples which concern belief-
dependent forms of disappointment. Robin Pope has written extensively (since the early 80’s) about how conventional
decision theory excludes various forms of belief-dependent motivation; Pope [66] expounds her program and give further
references and Albers, Pope, Selten and Vogt [1] report on a related experiment. Bell [13], Loomes and Sugden [57],
Karni [44], Karni and Schlee [45], and Caplin and Leahy [21] develop single decision-maker models in which utility
may depend directly on beliefs.

6 Kolpin [47] explores an alternative route to GPS’ games, where players ‘choose beliefs.’ Segal and Sobel [73] analyze
simultaneous move games, and assume preferences over material consequences depend on the equilibrium probability
distribution over actions. They observe that their approach can be regarded as a reformulation of GPS’ normal form
games.
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R1–R4 do not exhaust the good reasons to generalize GPS, but in the name of pedagogical
clarity we only deal with R1–R4 in most sections of this paper (2–5). Section 2 surveys these con-
ceptual issues. Section 3 develops the general framework, up to the definition of a psychological
game. Section 4 concerns sequential equilibrium. Section 5 concerns interactive epistemology
and rationalizability. Section 6 contains a discussion as well as extensions beyond R1–R4. We
compare our approach to that of GPS in more depth, consider imperfect information, chance
moves, asymmetric information, own-plan dependence, dynamic inconsistency, and multi-self
utility, and finally offer remarks regarding solutions concept we did not develop. Appendix A
collects most of the proofs.

2. Overview of some conceptual issues

This section surveys the conceptual issues that motivate us. We first describe what GPS’ do,
and why this is ‘non-standard’ vis-a-vis traditional game theory (2.1). We then explain what is
our own contribution, going through R1–R4 in more detail (2.2). The style is ‘semi-technical,’
we introduce some notation, but postpone proper treatment of details for later.

2.1. What GPS do

The traditional approach to analyzing extensive games (with complete information) describes
a player’s preferences using a utility function of the form

ui : Z → R

where Z is the set of terminal histories (endnodes).
Psychological games capture richer motivations than traditional games, and the payoff func-

tions have richer domains. GPS define a set of i’s initial (pre-play) beliefs about others’ strategies
and initial beliefs, here referred to as Mi , which does not rule out any hierarchy of initial beliefs.
Each element of Mi is a sequence μi = (μ1

i ,μ
2
i , . . .) where μ1

i represents i’s beliefs about the
opponents’ strategies, or first-order beliefs, μ2

i represents i’s joint beliefs about the opponents’
strategies and first-order beliefs, and so on.7

GPS model preferences using utility functions of the form

ui : Z × Mi → R.

This structure bears some superficial similarities to games of incomplete information. It is worth
clarifying the differences. In a game of incomplete information some payoff-relevant exogenous
parameters (e.g. players’ abilities or tastes) are not commonly known. Let θ ∈ Θ denote the
vector of such parameters. Players’ payoffs are represented by parametrized utility functions
vi : Z × Θ → R. Note that θ does not specify strategic choices. A player has beliefs about θ

(comprising her private information about θ ), beliefs about the beliefs of others concerning θ ,
etc. Following Harsanyi [41], such first- and higher-order beliefs can be represented in an elegant,
albeit implicit, form by assuming that each player i is characterized by a ‘type’ ti ∈ Ti and
each ti corresponds to a probability measure pti over the set of payoff-relevant parameters and
opponents’ types, i.e. pti ∈ Δ(Θ × T−i ). It can be shown that pti corresponds to an infinite

7 More formally, first-order beliefs are elements of Δ(S−i ) (where S−i is the set of strategy profiles of i’s co-players),
second-order beliefs elements of Δ(S−i × ∏

j �=i Δ(S−j )), etc. (see [18] and [61]). Upper-bars distinguish initial beliefs
from systems of conditional beliefs, the main object of our analysis. We will be more precise in Section 3.
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hierarchy of beliefs (p1
ti
, p2

ti
, . . .) where p1

ti
∈ Δ(Θ) is the marginal of pti on Θ , p2

ti
is a joint

belief about θ and the opponents’ beliefs about θ , and so on. Taking conditional expectations, the
payoff functions of the incomplete information game can be represented as Vi : Z ×∏

j Tj → R,
where

Vi(z, ti , t−i ) =
∫

vi(z, θ)pti (dθ |t−i ).

Thus, both psychological games and incomplete information games can be described so that
payoffs depend not only on how the game is played (z ∈ Z) but also on hierarchical beliefs.
However, we are talking about different beliefs in the two cases. In psychological games payoffs
at endnodes depend on beliefs about strategies, beliefs about such beliefs, and so on. The modeler
explains/predicts, such beliefs via some solution concept. Hence payoffs at a given endnode are
endogenous. On the other hand, players’ hierarchical beliefs about the parameter vector θ are as
exogenous as θ itself. Hence payoffs at a given terminal history of an incomplete information
game are exogenous as well.

2.2. Extension of GPS

GPS’ approach can capture interesting forms of belief-dependent motivation. Example 1 of
the Introduction, e.g., could be handled by assuming that Abi’s utility equals w−m−2 max{μ−
m,0}, where w is her pre-tip wealth, m ∈ {0,1, . . . ,w} her tip, and μ her expectation of Ben’s
expectation of m, a function of her second-order belief. Abi maximizes her utility by choosing
m = μ.

However, the issues R1–R4 lead us to enrich the domain of utilities further. We consider
payoff functions of the form

ui : Z × Mi ×
∏
j �=i

(Mj × Sj ) → R

where Mj (with j = i or j �= i) is the set of j ’s possible conditional beliefs about others’ strate-
gies and conditional beliefs, Sj is the set of (pure) strategies of j . The conditioning in Mj is done
for every history, building on Battigalli and Siniscalchi [10] who show how to represent hierar-
chies of conditional beliefs without ruling out any hierarchy. Mj is (isomorphic to) a subspace
of Mj , so the payoff functions we consider are more general than those assumed by GPS.8

Issues R1–R4 will be related to different arguments of ui as we go.

R1: updated beliefs
Rabin’s [67] reciprocity theory, in which a player’s preferences over material payoff distribu-

tions depends on the co-players intentions, is perhaps the most well-known application of GPS’
theory. Rabin works in the normal form. His goal is to highlight key qualitative features of reci-
procity, and he does not address issues of dynamic decision making although he points out that
this is important for applied work (p. 1296).9 Dufwenberg and Kirchsteiger [29] pick up from
there, and develop a reciprocity theory for extensive games. In motivating their exercise, they
argue that it is necessary to deviate from GPS’ extensive form framework: GPS only allow ini-
tial beliefs to enter the domain of a player’s utility, while the modeling of reciprocal response at

8 For a more precise comparison between our framework and GPS see Subsection 6.1.
9 Rabin [68] (see p. 23 and footnote 16) also provides a hilarious autobiographical sequential-move example reminis-

cent of our Example 2 of the Introduction.
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Fig. 1. Trust game Γ1 with material payoffs.

Fig. 2. Psychological trust game Γ2.

various ventures of a game tree requires that (intentions-based) kindness be re-evaluated using
updated belief. The argument is an instance of R1.

Reciprocity theory does not provide the easiest route to illustrating the key issues involved
though. Instead, we consider the motivation of guilt aversion, applied to the trust game Γ1 in
Fig. 1.10 Payoffs are in dollars and do not necessarily represent preferences. Therefore, we call
them ‘material payoffs.’

We now modify Γ1 to incorporate a guilt sentiment of Bob’s: To make our point, let us first
specify what it means that ‘Bob lets Ann down.’ Ann is let down if the material payoff she gets is
less than what she expected. Let α be the probability that Ann (initially) assigns to Bob’s strategy
Share if Trust. Bob suffers from guilt to the extent that he believes he lets Ann down. The higher
is α the more let down she will be if he chooses Grab. Bob does not know what α is, as this
belief is in the mind of Ann. However, he has a belief about α. Let β be Bob’s expectation of α,
conditional on Ann choosing Trust. We can model guilt aversion assuming that Bob’s utility at the
terminal history (Trust, Grab) is decreasing in β . See Γ2 in Fig. 2. What appears at the terminal
histories should be thought of as utilities, not material payoffs although the notions coincide for
all but one terminal histories.11

Γ2 is not a psychological game in GPS’ class, because β (being an updated belief) is not
captured by any element of Mi . This in itself illustrates R1. However, in order to appreciate the

10 Battigalli and Dufwenberg [8] use the framework of the present paper to develop a general model of (two forms of)
guilt aversion for extensive game forms. For the specific context of trust games, related sentiments have previously been
considered by Huang and Wu [42], Dufwenberg [24,25], Dufwenberg and Gneezy [27], Guerra and Zizzo [39], Charness
and Dufwenberg [23], and Bacharach, Guerra and Zizzo [5].
11 There is no special significance to the “5” in Fig. 2; we could have chosen many other numbers to make the upcoming
point. Similar remarks apply to all examples below.
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Fig. 3. Psychological Trust Game Γ3.

significance of this issue, it is useful to note that one can draw compelling (we think) conclusions
about behavior that hinge crucially on the fact that β is an updated belief.

Following Dufwenberg [24,25], consider the following (for the time being intuitive) ‘psycho-
logical forward induction’ argument: Suppose Ann chooses Trust. If she is rational, she must
believes the probability that Bob would choose Share (after Trust) is at least 1

2 , i.e., α � 1
2 . Since

we can figure this out, presumably Bob can too. Even if he is uncertain regarding the value of α,
he infers it is at least 1

2 . Hence β � 1
2 . Since 4 − 5β < 2 if β � 1

2 , he prefers Share. Since we can
figure this out, presumably Ann can too. Hence she chooses Trust, fully expecting Bob to Share
(so α = 1). Bob figures this out (so that β = 1), which further reinforces his preference to Share.
The path (Trust, Share) is predicted!

The argument depends on belief β being conditional on Ann choosing Trust. It cannot be
recast using GPS’ theory, since Mi contains only initial beliefs, but it can be captured in our
framework, since Mi contains conditional beliefs.

R2: others’ beliefs
There are two independent justifications for letting a player’s utility depend on others’ beliefs.

First, this may be an adequate description of how certain social rewards operate. Refer back to
Example 3 from the Introduction, where Eva’s preferences over effort depends on Fred’s infer-
ences. It is taken from Dufwenberg and Lundholm [30]. A related example is Bernheim’s [16]
model of social conformity. Another example is Caplin and Leahy’s [22] story of an informa-
tion providing doctor concerned about the belief-dependent anxiety of a patient.12 These authors
develop models where a player’s utility depends on others’ beliefs (although only Caplin and
Leahy explicitly refer to psychological games).13

The second justification concerns convenience in modeling. Refer back to the discussion
of Γ2, including the definition of α and β . We modeled Bob’s guilt feelings by letting his psycho-
logical payoff depend on β , an updated second order belief. It turns out that there is an equivalent
modeling choice. One can assume that Bob’s utility at (�,L) depends directly on α, rather than
on β , although Bob is uncertain about the true value of α. He uses probability assessments to
weigh the different possibilities. We get Γ3 in Fig. 3.

12 For related work see Caplin [19], Caplin and Eliaz [20], and Kőszegi [48] from whom Example 4 of the Introduction
is taken.
13 The models can be interpreted as psychological games with asymmetric information where the utility of a player
depends on the terminal beliefs of another player (cf. Section 6.2).
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Fig. 4. Modified Trust Game Γ4 with material payoffs.

After Trust, when Bob has to make a choice he compares 2, the payoff of action Share, with
the conditional expected payoff of action Grab, that is E2[4−5α|Trust] = 4−5β; thus, we obtain
the same results as with Γ2.14

This illustrates an important point: some belief-dependent motivations can be modeled re-
placing a conditional own belief of a certain ‘order’ (meaning: how many layers of beliefs about
beliefs/choices are involved) with another object involving one degree lower order. This may
allow one to work with utilities ui : Z × ∏

j �=i (Mj × Sj ) → R, where Mi is not a factor of the
domain. This has two advantages. First, it may seem easier to represent preferences with lower
order beliefs (like α in Γ3 rather than β in Γ2). Second, and most importantly, one is lead to
clearly distinguish between the carriers of utility (i.e., elements of Z × ∏

j �=i (Mj × Sj )) and
how a player deals with uncertainty by making updated probabilistic predictions (described by
elements of Mi ). By contrast, when the domain of i’s utility is Z × Mi × ∏

j �=i (Mj × Sj ) ele-
ments of Mi serve both purposes.

R3: dependence on plans
Many forms of belief-dependent motivation require preferences to depend on overall strate-

gies, beyond how strategies cause terminal histories when they are carried out.15 Consider Γ4 in
Fig. 4, a variation of Γ1 where Ann may ‘dissipate’ some payoff. The payoffs of Γ4 are material,
not necessarily reflecting utilities.

Recall (from the discussion of R1) the terminology that ‘Ann is let down’ if the material
payoff she gets is less than what she expects. In Γ4 what she expects to get does not only depend
on her beliefs about Bob, but also on how she plans to play. Suppose Ann plans to trust Bob
and then keep the surplus. Then her subjectively expected material payoff is 2α, where α is the
probability Ann assigns to Bob’s strategy Share if Trust. But if she plans to trust Bob and then
dissipate the surplus, her expected material payoff is zero independently of α.

14 We do not suggest that Γ3 is interesting only in providing a convenient alternative way to analyzing Γ2; the emotion
modeled in Γ3 may make sense in its own right, as a primitive assumption about preferences (akin to Examples 3 and 4
of the Introduction).
15 This point has been anticipated by Caplin and Leahy [21]. Mariotti [60] also makes a similar point, but not in the
context of psychological games.
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Again assume that Bob suffers from guilt to the extent that he believes he lets Ann down.
A natural way to model this is to let his utility at (Trust, Grab) be 4 − 5α (as in Γ3) if Ann plans
to Keep, but 4 if she plans to Dissipate.16

This example illustrates that psychological motivations may exhibit a concern for other play-
ers’ intentions. Intentions depend on beliefs as well as plans, and the latter dependence goes
beyond the endnodes implied by implementing such plans. Therefore, the domain of ui includes
(conditional) beliefs and strategies of other players, on top of terminal histories and own beliefs.

R4: non-equilibrium analysis
R1–R3 concern features of players’ motivation one may wish to incorporate in a formal

framework. The next step is to predict play. We propose a generalization of Kreps and Wilson’s
[51] sequential equilibrium. We postpone illustrations until we formally introduce the concept in
Section 4.

While much of economic theory presumes that players coordinate on an equilibrium, it is
not always clear such an assumption is justified. For one thing, people may be quite rational,
and confident in others’ rationality, even if they fail to coordinate. In conventional game theory,
related matters have inspired work on the implications of common belief of rationality; see e.g.
Bernheim’s [15] and Pearce’s [65] work on rationalizability. This brings us to R4. There is little
reason to assume that equilibrium coordination is easier in psychological games than in standard
games. In fact, since psychological games often seem more complicated, and since problems
of equilibrium multiplicity may be enhanced, assuming equilibrium may be assuming too much
especially in psychological games.17

Giving up the equilibrium assumption does not necessarily mean giving up on predictive
power. Refer back to the psychological forward induction argument, presented for Γ2. Ann and
Bob perform deductive reasoning regarding one another’s behavior and beliefs, and a clear-cut
prediction results despite that no presumption of equilibrium is made. However, the story told
was informal, and specific to Γ2 (or, equivalently, Γ3). It is natural to wonder about generally
applicable formalizations. In Section 5, we develop a framework for analyzing interactive episte-
mology in psychological games, without postulating equilibrium play. This is a relatively small
step because our very definition of psychological game already provides the necessary ingredi-
ents. Building on an epistemic theme due to Battigalli and Siniscalchi [11], we extend Pearce’s
[65] classical notion of (extensive form) rationalizability to psychological games. The concept
captures psychological forward induction in simple games like Γ2 and Γ3, and in more compli-
cated games for which long chains of beliefs about beliefs are needed to get sharp predictions.

3. Psychological games

In this section we introduce notation on extensive-forms (3.1), model a universal belief space
that accounts for updated beliefs (3.2), and put forth and illustrate our general definition of a
psychological game (3.3).

16 Note also that Ann’s anticipation of feeling let down might affect her initial decision. This can be modeled by letting
Ann’s utility at (Trust, Grab) be affected by her initial beliefs and her own plan. We pursue this point and its ramifications
in Section 6.
17 For more on this, see Section 6.4.
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3.1. Extensive forms with observable actions

We first restrict attention to finite multi-stage games with observable actions, no chance
moves, and complete information. These restrictions can be removed, at the cost of additional
notational complexity (see Section 6). We assume players move simultaneously at every stage.
This is without loss of generality, because the set of feasible actions of a player may depend
on actions chosen in previous stages and may be singleton. Simultaneous moves games, perfect
information games, and repeated games are special cases (cf. Fudenberg and Tirole [34], §3.3,
Osborne and Rubinstein [63], ch. 6). We use the following notation/terminology:

An extensive form with observable actions is a tuple 〈N,H 〉 where N = {1, . . . , n} is the
player set, and H is the finite set of feasible histories. A history of length � is a sequence h =
(a1, . . . , a�) where each at = (at

1, . . . , a
t
n) represents the profile of actions chosen at stage t

(1 � t � �). We assume history h becomes public information as soon as it occurs. The empty
history (of length 0), denoted h0, is an element of H . The set of feasible actions for player i at
history h is denoted Ai(h) and may be singleton, meaning that i is not active at h. Ai(h) is empty
if and only if h is a terminal history. Z denotes the set of terminal histories.

For any given extensive form, we let Si denote the set of (pure) strategies of player i. A typical
strategy is denoted by si = (si,h)h∈H\Z , where si,h is the action that would be selected by si if
history h occurred. Define S = ∏

i∈N Si and S−i = ∏
j �=i Sj . The set of i’s strategies that allow

history h is denoted Si(h). Similar notation is used for strategy profiles: S(h) = ∏
i∈N Si(h);

S−i (h) = ∏
j∈N Sj (h). We let ζ(s) ∈ Z denote the terminal history induced by s = (si)i∈N .

3.2. Conditional beliefs and infinite hierarchies of beliefs

Here we summarize the theory of hierarchies of conditional beliefs due to Battigalli and Sinis-
calchi [10], which should be consulted for proofs, details, and further references. Consider a
decision maker DM who is uncertain about which element in a set X is true. Assume X is a
compact Polish space.18 DM assigns probabilities to events E,F, . . . in the Borel sigma-algebra
B of X according to some (countably additive) probability measure. Let Δ(X) denote the set
of all such probability measures.19 As events unfold DM updates her beliefs. The actual and/or
potential beliefs of DM are described by a conditional probability system (see Rênyi [70]). Let
C ⊆ B denote the collection of potentially observable events (or conditioning events). DM holds
probabilistic beliefs conditional on each event F ∈ C .

Definition 1. A conditional probability system (cps) on (X, B, C) is a function μ(·|·) : B × C →
[0,1] such that for all E ∈ B, F,F ′ ∈ C

(1) μ(·|F) ∈ Δ(X),
(2) μ(F |F) = 1,
(3) E ⊆ F ′ ⊆ F implies μ(E|F) = μ(E|F ′)μ(F ′|F).

18 A topological space X is Polish if it admits a compatible metric d such that (X,d) is a complete and separable metric
space (see, e.g., [46], p. 13).
19 Note that (X, B) is a standard Borel space (see, e.g., [46], Definition 12.5).
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We regard the set of cps’ on (X, B, C) as a subset of the topological space [Δ(X)]C , where
Δ(X) is endowed with the topology of weak convergence of measures and [Δ(X)]C is endowed
with the product topology.

From now on DM is a player i; (X, B, C) is either X = S−i (a finite set) or X = S−i × Y

where Y is a compact Polish space typically representing a set of opponents’ beliefs. The Borel
sigma-algebra B is implicitly understood,20 and conditioning events corresponds to histories,
i.e., C = {F ⊆ S−i × Y : F = S−i (h) × Y,h ∈ H } (or C = {F ⊆ S−i : F = S−i (h), h ∈ H } if
X = S−i ). The set of cps’ is denoted ΔH (S−i × Y) a subset of [Δ(S−i × Y)]H . If conditioning
event F corresponds to history h, then we abbreviate as μ(·|F) = μ(·|h). Note that our specifi-
cation of the conditioning events relies on interpreting sj as an objective description of how j

would behave at each decision node. However, we will also interpret sj as a plan in the mind of
player j . The implicit assumption underlying our analysis (as well as most papers on interactive
epistemology in games) is that each player has correct beliefs, given by his plan of action, about
how he would choose at different histories (and there is common certainty of this). This is the
reason why, like GPS (and Battigalli and Siniscalchi [11]), we do not explicitly model i’s beliefs
about his own behavior. We will come back to this in Section 6.

The following result shows that ΔH (S−i ×Y) is a compact Polish space, just like Y .21 It is key
in our construction of hierarchical beliefs, implying that the domains of higher- and lower-order
uncertainty have the same structural properties.

Lemma 2. ΔH (S−i ) is a compact Polish space. Furthermore, if Y is a compact Polish space,
also ΔH (S−i × Y) is a compact Polish space.

Hierarchies of cps’ are defined recursively as follows:

• X0−i = S−i (i ∈ N ),

• Xk
−i = Xk−1

−i × ∏
j �=i Δ

H (Xk−1
−j ) (i ∈ N ; k = 1,2, . . .).

By repeated applications of Lemma 2, each Xk
−i is a cross-product of compact Polish spaces,

hence compact Polish itself.22 A cps μk
i ∈ ΔH (Xk−1

−i ) is called k-order cps. For k > 1, μk
i is a

joint cps on the opponents’ strategies and (k − 1)-order cps’. A hierarchy of cps’ is a countably
infinite sequence of cps’ μi = (μ1

i ,μ
2
i , . . .) ∈ ∏

k>0 ΔH (Xk−1
−i ). μi is coherent if the cps’ of

distinct orders assign the same conditional probabilities to lower-order events:

μk
i (·|h) = marg

Xk−1
−i

μk+1
i (·|h) (k = 1,2, . . . ; h ∈ H).

It can be shown that a coherent hierarchy μi induces a cps νi on the cross-product of S−i with
the sets of hierarchies of cps’ of i’s opponents, a compact Polish space.

However, νi may assign positive probability (conditional on some h) to opponents’ incoher-
ence. To rule this out, say that a coherent hierarchy μi satisfies belief in coherency of order 1
if the induced cps νi is such that each νi(·|h) (h ∈ H ) assigns probability one to the opponents’

20 B obtains from the product of the discrete topology on S−i and the topology of Y .
21 This depends on two facts: (1) the collection of conditioning events for player i (corresponding to H ) is at most
countable (indeed finite), and (2) each conditioning event S−i (h) × Y (or S−i (h) if X = S−i ) is both closed and open,
as we consider the discrete topology on S−i .
22 The cross-product of countably many compact Polish spaces is also compact Polish.
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coherency; μi satisfies belief in coherency of order k if it satisfies belief in coherency of order
k − 1 and the induced cps νi is such that each νi(·|h) (h ∈ H ) assigns probability one the op-
ponents’ coherency of order k − 1; μi is collectively coherent if it satisfies belief in coherency
of order k for each positive integer k. The set of collectively coherent hierarchies of player i is
a compact Polish space, denoted by Mi . We let Mk

i denote the set of k-order beliefs consistent
with collective coherency, that is, the projection of Mi on ΔH (Xk−1

−i ), and let Mk
−i = ∏

j �=i M
k
j ,

M−i = ∏
j �=i Mj , M = ∏

j∈N Mj .
We have now defined all components of the domain of the utility functions. But is this enough

for the analysis of strategic reasoning? In order to decide on the best course of action, player i

may need to form (conditional) beliefs about the infinite hierarchies of (conditional) beliefs of
other players, either because they affect his payoff or because his assessment of the behavior and
finite-order beliefs of others is derived from assumptions, such as “common belief in rationality,”
involving beliefs of infinitely many orders. Does this mean that we need additional layers of
beliefs? No. The following result shows that the countably infinite hierarchies of cps’ defined
above are sufficient for the strategic analysis; Mi is isomorphic to ΔH (S−i × M−i ), so each
μi ∈ Mi corresponds to a cps on S−i × M−i :

Lemma 3. For each i ∈ N there is a 1-to-1 and onto continuous function

fi = (fi,h)h∈H : Mi → ΔH (S−i × M−i )

whose inverse is also continuous. Furthermore, each coordinate function fi,h is such that for all
μi = (μ1

i ,μ
2
i , . . .) ∈ Mi , k � 1,

μk
i (·|h) = marg

S−i×M1−i×···×Mk−1
−i

fi,h(μi ).

3.3. Psychological games

We are now ready to state our definition of a psychological game:

Definition 4. A psychological game based on extensive form 〈N,H 〉 is a structure Γ =
〈N,H, (ui)i∈N 〉 where ui : Z × M × S−i → R is i’s (measurable and bounded) psychological
payoff function.

The numerical examples examined in Section 2 fit this definition: in Γ2, u2 depends on z

and μ2
2(·|Trust); 23 in Γ3, u2 depends on z and 1’s initial first-order belief, μ1

1(·|h0); finally, the
psychological payoff function u2 proposed to analyze Γ4 (a game with material payoffs) depends
on z, μ1

1(·|h0), and s1.
In all these examples, a psychological game is obtained from a material payoff game

〈N,H, (πi : Z → R)i∈N 〉 according to some formula. We now illustrate a few such derivations,
focusing on two-player games.

23 μ2
2(·|Trust) is the conditional second-order belief of player 2 used to compute the expectation β of the probability α

initially assigned by 1 to the strategy ‘Share if Trust.’
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Player j is ‘let down’ if his actual material payoff, denoted π̂j , is lower than the payoff he
initially expected to get, Ej [π̃j ]. This disappointment can be measured by the following expres-
sion:24

max
{
0,

(
Ej [π̃j ] − π̂j

)}
.

Suppose that i likes his material payoff but dislikes disappointing j . A simple way to model such
“guilt” motivation is to assume that i wants to maximize the expected value of the following
expression:

π̂i − θi max
{
0,

(
Ej [π̃j ] − π̂j

)}
.

Taking explicitly into account the material payoff game, and that Ej [π̃j ] is a function of j ’s plan
and his initial beliefs about i’s plan, we obtain the following utility function:

ui(z,μ, sj ) = πi(z) − θi max

{
0,

[∑
s′
i

μ1
j

(
s′
i

∣∣h0)πj

(
ζ
(
sj , s

′
i

)) − πj (z)

]}
where θi � 0 is a psychological sensitivity parameter. For the special case of material payoff
game Γ1, we obtain psychological game Γ3 by letting θ1 = 0 and θ2 = 5

2 .25

Another motivation is the willingness to give up some material payoff to avoid feeling regret
ex post. The regret of i can be captured by the distance between the actual material payoff and
the maximal expected payoff that could have been obtained ‘with the benefit of hindsight,’ i.e.,
using the terminal beliefs. Formally, i’s regret when he gets material payoff π̂i and has terminal
belief τi ∈ Δ(Sj ) equals

max
si

∑
s′
j

τi

(
s′
j

)
πi

(
ζ
(
si , s

′
j

)) − π̂i .

Taking into account that the actual payoff obtains at a terminal history z, which is observed by
player i with first-order cps μ1

i , we obtain the utility function

ui(z,μ, sj ) = πi(z) − θi

[
max

si

∑
s′
j

μ1
i

(
s′
j

∣∣z)πi

(
ζ
(
si , s

′
j

)) − πi(z)

]

where θi � 0 is a psychological sensitivity parameter.26 This shows that it may be natural to let
utility depend on what players believe at the end of the game (for other examples of this kind see
Subsection 6.2).

Note that while we allow for a general functional form with very complex arguments,
ui(z,μ, sj ), the utility functions used in specific applications can be relatively simple.

24 Bell [13] and Loomes and Sugden [57] present decision-theoretic models of belief-dependent disappointment. What
we have here is a game-theoretic extension. In this section we use it as input to formulate guilt (see next paragraph).
Concern for own disappointment may naturally depend on one’s own plan, which is excluded under Definition 4 but
considered again in Section 6.3.
25 The modeling choices here reflect the discussion of R2 in Section 2 and are in line with Battigalli and Dufwenberg’s
[8] notion of simple guilt to whom we refer for more guilt examples (the mathematical formulation in that paper is
slightly more complex, but leads to a utility with the same best response correspondence).
26 Bell [12] and Loomes and Sugden [56] develop theories of regret, in which a decision maker’s experienced utility
depends on the post-choice revelation of a state-of-nature. Our formulation preserves that spirit, but extends it to belief-
dependent motivation. This is natural in a strategic setting, where players cannot perfectly observe ex post the state of the
world, which includes what another player would have chosen.
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So far we have illustrated three forms of belief-dependent motivation which all relied on
(different forms of) first-order beliefs (own initial, others’ initial, own and/or others’ terminal).
Of course, Definition 4 allows also for higher-order belief-dependence. One example is Bat-
tigalli and Dufwenberg’s [8] notion of “guilt from blame,” which involves dependence on the
co-player’s third-order beliefs.27 The rest of this section leads up to another class of examples,
which involve infinite-order beliefs.

As we noted in Section 2, letting beliefs and strategies of others in ui may yield simpler
functional forms and clarify the distinction between prediction and psychological motivation.
Yet, as reflected by Γ2 and Γ3 it is always possible to obtain an equivalent functional form where
a player’s utility depends only on the terminal history and his own conditional beliefs. Given
ui(z,μ, s−i ) let

ûi (z,μi ) := Eμi
[ui |z]

where Eμi
[ui |z] is the conditional expectation operator given cps fi(μi ) ∈ ΔH (S−i × M−i ) (see

Lemma 3). In words, ûi (z,μi ) is how much i values z after he has observed it. It can be shown
that ûi and ui yield the same (sequential) best responses.28

The functional form ûi has infinite hierarchy μi as an argument, but this is just because
we want an abstract and general expression. If ui depends only on beliefs of order k, then ûi

depends only on beliefs of order k+1. An example that necessarily involves infinite-order belief-
dependence arises if belief-dependent motivation appears together with ‘interactive altruism.’
Suppose that the utility of i is given by two terms as follows

ui = φi + θuj (0 < θ < 1),

φi = φi

(
z,μ1, sj

)
(φi could be a guilt or regret component). Then we can compute an explicit form for the expected
utility conditional on z by repeated substitution, where the term that depends on (k + 2)-order
beliefs has exponentially decreasing weight θk :

ûi (z,μi ) = Eμi
[φi + θuj |z]

= Eμ2
i
[φi |z] + θEμi

[uj |z]
= Eμ2

i
[φi |z] + θEμ3

i

[
Eμ̃2

j
[φj |z]

∣∣z] + θ2Eμi

[
Eμ̃j

[ui |z]
∣∣z]

= · · ·
(Eμk

i
[·|z] is the conditional expectation operator given cps μk

i ).

4. Equilibrium analysis

Kreps and Wilson’s sequential equilibrium has become a benchmark for the analysis of stan-
dard games. We extend this concept to the class of psychological games defined in Section 3.
(The restriction to multi-stage game forms with complete information simplifies but is not essen-
tial; cf. Section 6.) We next define and interpret mixed strategies and assessments (4.1), give the
main definition and provide an existence theorem (4.2), and consider examples (4.3).

27 To save space we refer to the original source for precise definitions and examples. The intuition is that i experiences
guilt (judging by his terminal beliefs) to the extent that j ’s terminal beliefs indicate that i intended to disappoint j .
28 See the first part of Appendix A and Lemma 17.
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4.1. Randomized strategies and consistent assessments

The equilibrium concept we develop refers to randomized choices. However, in our interpre-
tation, we exclude actual randomization. Rather, we interpret a randomized choice of a given
player i as the common first-order belief of i’s opponents about i (cf. Aumann and Branden-
burger [4]). This is akin to the following characterization of a Nash equilibrium in a standard
simultaneous-move game: (σ1, . . . , σn) ∈ Δ(A1) × · · · × Δ(An) is an equilibrium if, for each i,
each action in the support of σi is a best reply to σ−i .

We focus on behavior strategies σi = (σi(·|h))h∈H\Z ∈ ∏
h∈H\Z Δ(Ai(h)), interpreting σi as

an array of common conditional first-order beliefs held by i’s opponents. This interpretation is
part of the notion of ‘consistency’ of profiles of strategies and hierarchical beliefs defined below.

Kreps and Wilson [51] argue that an appropriate definition of equilibrium in extensive form
games must refer to ‘assessments’: profiles of (behavior) strategies and conditional (first-order)
beliefs. They proceed in two steps: first a ‘consistency’ condition for assessments is put for-
ward, and then sequential equilibrium is defined as a consistent assessment satisfying sequential
rationality. It turns out that consistency captures the assumptions that each player regards his
opponents’ choices at different histories as stochastically independent, and any two players have
the same (prior and conditional) beliefs about any third player. In our framework an assessment
is a profile (σ,μ) =(σi,μi )i∈N where σ is a behavioral strategy profile and μ ∈ M. We extend
the definition of consistency by adding a requirement concerning the higher-order beliefs that
need to be specified in psychological games.

Let Prσj
(·|ĥ) ∈ Δ(Sj (ĥ)) denote the probability measure over j ’s strategies conditional on ĥ

derived from behavior strategy σj under the assumption of independence across histories:

∀sj ∈ Sj (ĥ), Prσj
(sj |ĥ) :=

∏
h∈H\Z:h⊀ĥ

σj (sj,h|h)

(h ⊀ ĥ means that h is not a predecessor, or prefix, of ĥ).29

Definition 5. A profile of first-order cps’ μ1 = (μ1
i )i∈N is derived from a behavioral strategy

profile σ = (σi)i∈N if for all i ∈ N , s−i ∈ S−i , ĥ ∈ H ,

μ1
i (s−i |ĥ) =

∏
j �=i

Prσj
(sj |ĥ). (1)

Clearly, if μ1 is derived from σ then for any three players i, j , k, the beliefs of i and j about
k coincide:

∀ĥ ∈ H, margSk
μ1

i (·|ĥ) = Prσk
(·|ĥ) = margSk

μ1
j (·|ĥ).

We are now ready for the main definition of this subsection.

Definition 6. Assessment (σ,μ) is consistent if

(a) μ1 is derived from σ ,

29 Cf. Kuhn [53]: Prσj
(·|h) ∈ Δ(Sj (h)) is only one out of the many probability measures that induce the same out-

come probabilities starting from h, for all s−j ∈ S−j (h). But note that realization-equivalent beliefs may yield different
psychological utilities!
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(b) higher-order beliefs in μ assign probability 1 to the lower-order beliefs:

∀i ∈ N, ∀k > 1, ∀h ∈ H, μk
i (·|h) = μk−1

i (·|h) × δ
μk−1

−i

where × denotes the product of measures and δx is the Dirac measure assigning probability 1
to singleton {x}.

A justification of the (strong) condition (b) comes from (i) the classical interpretation of equi-
librium beliefs as the end-product of a transparent reasoning process by intelligent players, and
(ii) the trembling hand assumption underlying the sequential equilibrium concept.30 (i) implies
that any two players must share the same initial first-order beliefs about any other player, and
every player comes to a correct conclusion about the (hierarchical) beliefs of his opponents be-
cause he is able to replicate their reasoning. (ii) implies that unexpected moves are explained
as mistakes, not as the result of unexpected beliefs, therefore players never change their beliefs
about the conditional beliefs that the opponents would hold at each h. Of course, by observing
the actual play-path each player infers the current actual beliefs of his opponents, but interesting
forms of learning about others’ beliefs are ruled out. We offer further comments on consistency
and sequential equilibrium in Section 6.4.

We also note that (b) is analogous to a condition used by GPS to define psychological Nash
equilibrium, requiring that players hold common, correct beliefs about each others’ beliefs. In-
deed, (b) is equivalent to the requirement that, for each player i and each history h, the conditional
belief on S−i × M−i induced by hierarchy μi assigns probability one to μ−i .

31

4.2. Sequential equilibrium assessments

We now move to the section’s main definition: a consistent assessment is a sequential equi-
librium if it satisfies sequential rationality. Formally, fix a hierarchy of cps’ μi a (non-terminal)
history h and a strategy si consistent with h. The expectation of ui conditional on h, given si and
μi is

Esi ,μi
[ui |h] :=

∫
S−i×M−i

ui

(
ζ(si , s−i ),μi ,μ−i , s−i

)
fi,h(μi )(ds−i , dμ−i ). (2)

Definition 7. An assessment (σ,μ) is a sequential equilibrium (SE) if it is consistent and for all
i ∈ N , h ∈ H\Z, s∗

i ∈ Si(h),

Prσi

(
s∗
i |h)

> 0 ⇒ s∗
i ∈ arg max

si∈Si(h)
Esi ,μi

[ui |h]. (3)

Note that, by consistency, σi represents the first-order beliefs of i’s opponents about i, and
furthermore there is common certainty of the true belief profile μ at every history; therefore the
sequential rationality condition (3) can equivalently be written as

∀j �= i, supp margSi
μ1

j (·|h) ⊆ arg max
si∈Si(h)

∑
s−i∈S−i (h)

μ1
i (s−i |h)ui

(
ζ(si, s−i ),μ, s−i

)
. (4)

30 Kreps and Wilson [51] show that (in standard games) sequential equilibrium is generically equivalent to trembling
hand perfect equilibrium.
31 That is, (b) holds iff ∀i ∈ N , ∀h ∈ H , fi,h(μi )(S−i × {μ−i }) = 1.
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This clarifies that SE is a notion of equilibrium in beliefs. Indeed we could have given an equiv-
alent definition of SE with no reference to behavioral strategies.

We can also take the point of view of an ‘agent’ (i, h) of player i, in charge of the move at
history h, who seeks to maximize i’s conditional expected utility given the consistent assessment
(σ,μ). The expected utility of i conditional on h and ai ∈ Ai(h) given (σ,μ) can be expressed
as

Eσ,μ[ui |h,ai] :=
∑

s−i∈S−i (h)

∏
j �=i

Prσj
(sj |h)

∑
si∈Si(h,ai )

Prσi
(si |h,ai)ui

(
ζ(s),μ, s−i

)
, (5)

where Prσi
(si |h,ai) := ∏

h′∈H\Z:h′/�h σi(si,h′ |h′) (h′ /� h means that h′ is not h or a predecessor
of h). This specification presumes that (i, h) assesses the probabilities of actions by other agents
of player i in the same way as each player j �= i; that is using the behavioral strategy σi .32 It can
be shown that a version of the One-Shot-Deviation (or unimprovability) principle holds in our
framework33:

Proposition 8. A consistent assessment (σ,μ) satisfies (3) and hence is an SE if and only if for
all i ∈ N , h ∈ H\Z,

supp
(
σi(·|h)

) ⊆ arg max
ai∈Ai(h)

Eσ,μ[ui |h,ai]. (6)

Proof. Available on request. �
We obtain the following existence theorem:

Theorem 9. If the psychological payoff functions are continuous, there exists at least one se-
quential equilibrium assessment.

The proof relies on a “trembling hand” argument (cf. Selten [74]). We only provide
a sketch here (but details are available on request). Consider ε-perturbed games where
there is strictly positive minimal probability of choosing any action at any history, i.e. ε =
(εi,h(ai, h)ai∈Ai(h))i∈N,h∈H is a strictly positive vector such that

∑
ai∈Ai(h) ε(ai, h) < 1 for

each h. For each behavior strategy profile σ , let μ = β(σ) denote the unique profile of hierarchies
of cps’ such that (σ,μ) is consistent.34 Define an (agent-form, psychological) ε-equilibrium as
an ε-constrained behavior strategy profile σε such that for each h and each i, a pure action ai

that does not maximize the expectation of ui (given h and β(σε)) is assigned the minimal prob-
ability ε(ai, h) > 0. It can be shown by standard compactness-continuity arguments that each
ε-perturbed game has an ε-equilibrium (cf. the existence proof for psychological Nash equilibria
in GPS). Fix a sequence εk → 0 and a corresponding sequence σk of εk-equilibrium assess-
ments. By compactness, σk has an accumulation point σ ∗. By upper-hemicontinuity of the local

32 Suppose that ui depends only on terminal histories and beliefs, not on s−i . Then we obtain the more familiar formula

Eσ,μ[ui |h,ai ] =
∑
z

Prσ (z|h,ai )ui (z,μ),

where Prσ (z|h,ai ) is the probability of terminal history z conditional on (h, ai ) determined by σ .
33 See Section 6.3 for further discussion.
34 (μ1

i
)i∈N is derived from σ via formula (1) and the infinite hierarchies of cps’ are obtained by assuming correct higher

order beliefs.
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best response correspondences, for each (i, h), σ ∗
i (·|h) assigns positive probability only to ac-

tions that are best responses to (σ ∗, β(σ ∗)) at h. So, by Proposition 8 (σ ∗, β(σ ∗)) is a sequential
equilibrium assessment.

We next show that the SE concept generalizes subgame perfect equilibrium for standard games
with observable actions (recall: sequential and subgame perfect equilibrium coincide in games
with observable actions). This is a corollary of a more general result for games where psycho-
logical utilities depend only on terminal nodes and beliefs: ui : Z × M → R. For any such game
Γ = 〈N,H, (ui)i∈N 〉 and any profile of hierarchies of cps’ μ = (μi )i∈N , we can obtain a stan-
dard game Γ μ = 〈N,H, (v

μ
i )i∈N 〉 with payoff functions v

μ
i (z) = ui(z,μ).

Remark 10. Suppose ∀i ∈ N , ui : Z×M → R. Then an assessment (σ,μ) is a SE if and only if it
is consistent and σ is a subgame perfect (hence sequential) equilibrium of the standard game Γ μ.

4.3. Examples

We illustrate the SE concept with three examples, first a simultaneous move game illustrating
how we can reproduce the essence of a leading example of GPS, then two versions of the Trust
Game connecting back to some of the key notions previously highlighted in Section 2.

4.3.1. Equilibrium beliefs in the Bravery Game
The Bravery Game is a numerical example used in GPS (p. 66) to show that a psychological

game may have multiple, isolated mixed strategy equilibria even if there is only one active player,
which is impossible in standard games. We consider a modified version to illustrate our definition
of equilibrium in beliefs. Let A1 = {Wait}, A2 = {bold, timid}. Player 1 (Ann) is inactive so we
can ignore her payoffs, but her beliefs matter. Player 2 (Bob) is concerned about what Ann
thinks about him. Acting boldly is dangerous, but worthwhile if Ann expects Bob to act boldly.
GPS model the situation with a payoff function of the form u2 : A × M2 → R. Specifically, let
α := μ1

1(bold|h0) denote Ann’s first-order belief about Bob (a random variable from Bob’s point
of view), and let β := ∫

αμ2
2(dμ1

1) denote (a feature of) the Bob’s second-order beliefs. GPS’
payoff function is

u2(a2,μ2) =
{

2 − β, if a2 = bold,

3(1 − β), if a2 = timid.

We modify u2, considering instead u2 : A × M → R defined by

u2(a2,μ) =
{

2 − α, if a2 = bold,

3(1 − α), if a2 = timid.

Clearly, the expectation of u2 given a2 and Bob’s second-order belief β is u2. There are three
equilibria, with β = α = 1, β = α = 0 and β = α = 1

2 .35

4.3.2. Trust game with guilt aversion
Consider Γ3 in Fig. 3 (or equivalently Γ2). Recall that α (a function of μ1

1) is the probability
Ann assigns to strategy ‘Share if Trust’ at the beginning of the game, and β = ∫

αμ2
2(dμ1

1|Trust)

35 These are essentially the same equilibria as those obtained by GPS. But GPS allow for actual randomization; thus
the first-order beliefs of Bob are degenerate on the equilibrium (mixed) strategy of Ann, and higher-order beliefs of each
player are degenerate on the equilibrium lower-order beliefs of the other player.
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Fig. 5. Trust Game Γ5 with reciprocity payoffs.

is the relevant feature of the conditional second-order beliefs of Bob. We let τ = μ1
2(Trust|h0)

denote Bob’s initial first-order belief. An assessment is summarized by (τ,α,β), where (τ,α)

corresponds to a behavior strategy profile. The indifference condition for Bob is β = 2
5 , the

indifference condition for Ann is α = 1
2 ; consistency yields α = β . The game has three SEs:

τ = α = β = 1 (trust), τ = α = β = 0 (no trust), and τ = 0, α = β = 2
5 (insufficient trust). Note

that only the first equilibrium is consistent with forward induction reasoning (as described in
Section 2, and further elaborated on in Subsection 5.1 below).

4.3.3. Trust game with reciprocity
Our framework is adequate for modeling reciprocity in extensive games. To support this claim,

we show how the essence of Dufwenberg and Kirchsteiger’s theory can be captured in Γ1: Let
α,β and τ be defined as in the previous example. The key tenets of the theory concern player
i’s kindness to player j (Kij ), and i’s belief in j ’s kindness to i (K̂ij i ). At each history, player i

maximizes utility defined by the sum of material payoffs (as in Γ1) and reciprocity payoffs equal
to θi × Kij × K̂ij i , where θi is a constant measuring i’s sensitivity to reciprocity. Assume that
Ann’s and Bob’s sensitivities are θ1 = 0 and θ2 = 4

3 . One can show that Kij and K̂ij i can be
reproduced in our framework and notation; in particular we need the following:

– Bob’s kindness following Trust = −1 for Grab and = 1 for Share,
– Bob’s belief in Ann’s kindness following Trust = 3

2 − β .

Γ5 in Fig. 5 displays the relevant utilities as conceived by the players when they move (Bob is
not active at h0, so we put no utility for him following Don’t):36

Applying Definition 7, Γ5 has a unique SE with τ = 1, α = β = 3
4 . No ‘pure’ SE exists,37 just

like in Dufwenberg and Kirchsteiger’s theory (cf. 6.3 below).

5. Interactive epistemology

We argued in Section 2 that alternatives to equilibrium analysis are worth exploring. The
definition of Mi provides us with all the ingredients to analyze strategic reasoning by means of

36 As with Γ2 vs. Γ3, we can replace Bob’s conditional second-order belief β with Ann’s initial first-order belief α in
Bob’s payoffs, and get analogous conclusions.
37 In any SE we have α = β . With θ2 = 4

3 , the indifference condition for Bob yields β = 3
4 . If α = β < 3

4 then K̂212

shoots up, so Bob prefers Share to Grab, which in SE would imply α = β = 1, . . . a contradiction. If α = β > 3
4 then

K̂212 goes down, so Bob prefers Grab to Share, implying α = β = 0, . . . another contradiction.
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interactive epistemology, i.e., assumptions about players’ rationality and what they believe about
each other at any node. We show how to express such assumptions in the language of events and
belief operators (5.1), and then analyze a notion of extensive form rationalizability (5.2).

5.1. States of the world, events, and belief operators

A state of the world specifies, for each player i and history h, what i would do and believe if
h were reached. Note the subjunctive conditional: game-theoretic analysis does not only concern
the actual path of actions and beliefs, but also considers how players would react (in terms of
choices and beliefs) to histories that do not actually occur at the true state. The state of a player is
therefore given by his strategy and his hierarchy of cps’, (si ,μi ) (as explained in Subsection 3.2
we interpret si both as an objective description of i’s contingent behavior and as i’s plan of
action). The set of states for player i is denoted by Ωi = Si × Mi , and the set of states of the
world is Ω = ∏n

i=1 Ωi . We let Ω−i = ∏
j �=i Ωj denote the set of possible states of i’s opponents.

With a slight abuse of notation we often write Ω = Ωi ×Ω−i with typical element ω = (ωi,ω−i ).
An event is a (Borel) subset E ⊆ Ω ; its complement is denoted ¬E = Ω\E. An event about i

is any set of states E = Ei × Ω−i , where Ei is a Borel subset of Ωi . We let Ei denote the family
of events about i. Events about the opponents of i are similarly defined; the collection of such
events is denoted E−i .

We often use brackets to denote specific events. In particular, for any function (random vari-
able) x : Ω → X and value x∗ ∈ X, we use the notation [x = x∗]: = {ω: x(ω) = x∗}. When x is
understood, we simply write [x∗]. For example, [s∗

i ] = {(si ,μi ,ω−i ): si = s∗
i } ∈ Ei is the event

“i plays s∗
i ”; here it is understood that x is the projection function x(si,μi ,ω−i ) = si . Similarly,

[h] = ∏
i∈N Si(h) × Mi is the event that history h occurs.

Recall that we follow both GPS and Battigalli and Siniscalchi [11] in disregarding play-
ers’ beliefs about themselves. At state ω = (si ,μi ,ω−i ), player i would believe event E =
Ωi × E−i ∈ E−i conditional on history h with probability fi,h(μi )(E−i ) (cf. Section 3.2). Thus
{(si ,μi ,ω−i ): fi,h(μi )(E−i ) = 1} is the event “i would believe E conditional on h.” E may
concern the beliefs of i’s opponents.

We use belief operators to represent events about interactive beliefs: a belief operator for
player i is a mapping with domain E−i and range Ei . For any given history h ∈ H , the h-
conditional belief operator for i is defined as follows:

∀E = Ωi × E−i ∈ E−i , Bi,h(E) = {
(si ,μi ,ω−i ): fi,h(μi )(E−i ) = 1

}
.

h may be counterfactual at ω, because strategies played at ω may not induce h; in this case “i
would believe E conditional on h” is a counterfactual statement about i’s beliefs at ω. Clearly,
Bi,h(E) ∈ Ei .38 Bi,h(·) satisfies monotonicity [E ⊆ F implies Bi,h(E) ⊆ Bi,h(F )] and conjunc-
tion [Bi,h(E ∩ F) = Bi,h(E) ∩ Bi,h(F )]. Furthermore Bi,h(E) = Bi,h(E ∩ [h]) because i always
believes what he observes.

The basic event we are interested in is players’ rationality. We focus on a condition that
does not distinguish between realization-equivalent strategies. Say that i is rational at state
(s∗

i ,μi ,ω−i ) iff s∗
i maximizes i’s conditional expected utility Esi ,μi

[ui |h] (defined in (2)) con-

38 For any Borel set Ωi × E−i , Bi,h(Ωi × E−i ) is also a Borel set because the h-coordinate belief function fi,h is
continuous (see Lemma 3).
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ditional on each history h allowed by s∗
i . More formally, let Hi(s

∗
i ) = {h ∈ H\Z: s∗

i ∈ Si(h)}
denote the set of non-terminal histories allowed by s∗

i ; we require si ∈ r(μi ) where

ri(μi ) :=
{
s∗
i : ∀h ∈ H(s∗

i ), s∗
i ∈ arg max

si∈Si(h)
Esi ,μi

[ui |h]
}
. (7)

The event “player i is rational” is Ri = {(si ,μi ,ω−i ): si ∈ ri(μi )}. It can be shown that ri(μi )

can be obtained via a backward induction algorithm and that Ri is a well-defined nonempty event
(cf. proof of Lemma 14 in Appendix A).

To illustrate how these concepts can be used, we re-examine two psychological versions of
the Trust Game. As regards notation, we have to distinguish the event “Bob shares,” which in the
extensive form implies that “Ann trusts Bob,” from the event “Bob would share if Ann trusted
Bob” which is a subjunctive conditional, logically independent on whether Ann trusts Bob or
not. Similar considerations hold for the action Grab. We use bold letters to denote subjunctive
conditionals (which in this case correspond to strategies of Bob), as in [Share] and [Grab].

Consider the Trust Game with guilt aversion Γ3 in Fig. 3. The game can be solved by forward
induction reasoning: it is rational for Ann to trust Bob only if she assigns at least 50% probability
to strategy Share, i.e. only if α � 1

2 , where α : M1 → R is the random variable defined by
α(μ1) = μ1

1(Share|h0).39 If Bob believes in Ann’s rationality when he has to move (even if he is
‘surprised’), he infers from Ann’s action Trust that α � 1

2 . Therefore β � 1
2 , where β : M2 → R

is the random variable defined by β(μ2) = ∫
α(μ1)f2,Trust(μ2)(dμ1). His rational response is to

share. If Ann anticipates Bob’s reasoning she trusts him.
The formal counterpart of this argument is as follows (the events listed are nonempty; we rely

on the monotonicity of the belief operators):

R1 =
{
(s1,μ1,ω2): α(μ1) >

1

2
⇒ s1 = Trust, α(μ1) <

1

2
⇒ s1 = Don’t

}
,

R2 =
{
(ω1, s2,μ2): β(μ2) >

2

5
⇒ s2 = Share, β(μ2) <

2

5
⇒ s2 = Grab

}
,

R1 ∩ [Trust] ⊆
[
α � 1

2

]
,

B2,Trust(R1) = B2,Trust
(
R1 ∩ [Trust]) ⊆ B2,Trust

([
α � 1

2

])
⊆

[
β � 1

2

]
,

R2 ∩ B2,Trust(R1) ⊆ R2 ∩
[
β � 1

2

]
⊆ [Share],

R1 ∩ B1,h0

(
R2 ∩ B2,Trust(R1)

) ⊆ R1 ∩ [α = 1] ⊆ [Trust].
Now consider the Trust Game with Reciprocity Γ5 in Fig. 5. Without an equilibrium suppo-

sition, one is at loss for predictive power: if θ2 = 4
3 , Bob’s best response depends on whether β

is below or above ( 3
2 − 1

θ2
) = 3

4 . This cannot be resolved by forward induction reasoning, which

yields (as explained above) β � 1
2 .

However, if one uses other values of θ2 one can draw clear conclusions merely using back-
ward induction: if θ2 < 2

3 , Bob’s best response (given Trust) is Grab independently of β ,

39 In some formulas, we have to make explicit the dependence of random variable α on the state of the world. The same
holds for random variable β .
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thus R2 ⊆ [Grab] and R1 ∩ B1,h0(R2) ⊆ [Don’t]; on the other hand, if θ2 > 2, R2 ⊆ [Share]
and R1 ∩ B1,h0(R2) ⊆ [Trust]. Furthermore, a subtle issue arises when 2

3 < θ2 < 1: back-
ward induction cannot pin down Bob’s best response, which is Grab only if β � ( 3

2 − 1
θ2

),

while forward induction yields β � 1
2 . This puts an upper bound on how kind Bob believes

Ann is.40 With 2
3 < θ2 < 1 the best response is Grab (formally, R2 ∩ B2,Trust(R1) ⊆ [Grab],

B1,h0(R2 ∩ B1,Trust(R1)) ⊆ [α = 0] and R1 ∩ B1,h0(R2 ∩ B1,Trust(R1)) ⊆ [Don’t]).
One can show that the SE prediction implies 0 < α = β = ( 3

2 − 1
θ2

) < 1
2 , τ = 0. Thus, SE and

forward induction reasoning yield the same path, but very different predictions about how Bob
would revise his beliefs off that path.41

5.2. Rationalizability

The basic rationalizability concept for standard games is equivalent to iterated strict domi-
nance and is motivated by the assumption that players are rational and there is common belief
in rationality. Several modifications of rationalizability have been proposed, to handle sequen-
tial rationality and to reflect alternative epistemological assumptions.42 In psychological games
payoffs are affected by hierarchical beliefs, so rationalizability has to be defined as a property
of a whole state of the world rather than of strategies. One could, e.g., stipulate that a state
ω = (si ,μi )i∈N is rationalizable if at ω players are rational and there is common belief in ratio-
nality at the beginning of the game.43

One could go on to examine an array of modifications. That is not our goal. Rather, we wish
to indicate that the class of psychological games we have defined is amenable to interactive epis-
temology analysis in principle, and to illustrate the potential cutting power of such an approach.
We provide tools to perform a particular forward-induction analysis. Following Battigalli and
Siniscalchi [11], we first define a ‘strong belief operator’ SBi as follows: SBi (∅) = ∅ and

∀E ∈ E−i\{∅}, SBi (E) =
⋂

[h]∩E �=∅
Bi,h(E).

In words, SBi (E) is the event “player i would believe E conditional on every history that does
not contradict E”44; e.g., SBi ([sj ]) is the event “player i would believe player j plays sj at each
history h allowed by sj .”

We are interested in events of the form SBi (R−i ∩E), where R−i = ⋂
j �=i Rj is the event that

i’s opponents are rational and E is either Ω or some event concerning beliefs, and we consider
assumptions like “everybody strongly believes that the opponents are rational.” To write this
concisely, we define a mutual strong belief operator. Let E denote the collection of events of the
form E = ⋂

i∈N Ei (Ei ∈ Ei ). For example, R = ⋂
i∈N Ri ∈ E . For each E = ⋂

i∈N Ei ∈ E , the
event “mutual strong belief in E” is SB(E) = ⋂

i∈N SBi (
⋂

j �=i Ej ). Note that SB(E) ∈ E .

40 The higher β , the more Bob believes that Ann’s choice to trust him is self-interested.
41 This can happen in standard games too, but for different reasons and with more complex extensive forms (see, e.g.,
Reny, 1992, [69]). Furthermore, we will show in Section 6 that in some psychological games SE and forward induction
yield different paths!
42 See, e.g., Battigalli and Bonanno [6], Asheim [2], and references therein.
43 Here is an exact definition: for every event E = ⋂

i∈N Ei , Ei ∈ Ei , let B(E) = ⋂
i∈N B

i,h0 (
⋂

j �=i Ej ). Require that

ω ∈ R ∩ (
⋂

k�1 Bk(E)), where Bk(E) = Bk−1(E).
44 SBi (·) is not a monotone operator, and satisfies only a weak form of conjunctiveness [SBi (E) ∩ SBi (F ) ⊆
SBi (E ∩ F)]. For more on this, see [11].



P. Battigalli, M. Dufwenberg / Journal of Economic Theory 144 (2009) 1–35 23
We explore the consequences of the following assumptions:

(0) each player is rational [ = R],
(1) mutual strong belief in (0) [ = SB(R)],
(2) mutual strong belief in (0) & (1) [ = SB(R ∩ SB(R))],
(3) mutual strong belief in (0), (1) & (2) [ = SB(R ∩ SB(R ∩ SB(R)))],

and so on. . . . Such assumptions are more easily expressed with formulas if we introduce an
auxiliary ‘correct strong belief’ operator:

∀E ∈ E , CSB(E) = E ∩ SB(E).

The conjunction of assumptions (0)–(k) corresponds to the event CSBk(R), where for any E ∈ E ,
CSB0(E) = E and CSBk(E) = CSB(CSBk−1(E)).45 Rationalizability is defined by considering
the limit as k → ∞:

Definition 11. A state of the world ω is rationalizable if ω ∈ ⋂
k�0 CSBk(R).

Battigalli and Siniscalchi [11] show that the strategies consistent with event CSBk(R) in
standard games are those surviving the first k + 1 steps of Pearce’s [65] extensive-form ratio-
nalizability procedure. This explains the terminology of Definition 11. To illustrate the concept,
we note that it captures the forward induction solution of the Trust Game with guilt aversion
(either Γ2 or Γ3). However, that conclusion requires only two layers of mutual correct strong
belief: the solution obtains at all states ω ∈ CSB2(R).

To illustrate the full power of Definition 11, we analyze a Generalized Trust Game with
guilt aversion, reminiscent of Ben-Porath and Dekel’s [14] money-burning game: Ann can ei-
ther (evenly) distribute the total surplus of $2 (action D), or reinvest it in one out of L projects.
Project � = 1, . . . ,L yields 2(1 + �

L
). Bob controls surplus distribution. He can either Grab

or (evenly) Share. Trust� denotes the action of investing in project �, and Share� denotes
the conditional choice of sharing if Ann invests in project �. Let α�(μ1) = μ1

1(Share�|h0)

and β�(μ2) = ∫
α�(μ

1
1)μ

2
2(dα�(μ

1
1)|Trust�). Assume that Ann’s utility is her material payoff,

whereas Bob is averse to guilt. Applying the guilt formula of Subsection 3.3, the players’ utili-
ties are given by

ui(D) = 1, i = 1,2,

ui(Trust�,Share) =
(

1 + �

L

)
, i = 1,2,

u1(Trust�,Grab) = 0,

u2(Trust�,Grab) = 2

(
1 + �

L

)
− θ2α�

(
1 + �

L

)
,

Bob (strictly) prefers to share the yield of project � if and only if θ2β� > 1. For L = 1 and θ2 = 5
2

we obtain Γ3, and the forward induction argument works if and only if θ2 > 2. When L > 1
rationalizability yields the efficient sharing outcome also for much lower values of θ2:

45 For example, (0) & (1) & (2) is R ∩ SB(R) ∩ SB(R ∩ SB(R)) = CSB2(R).
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Proposition 12. In the Generalized Trust Game with guilt aversion, if θ2 > 1 + 1
L

then, for
every rationalizable state (s1,μ1, s2,μ2), s1 = TrustL, s2 = (Share�)

L
�=1, α�(μ1) = β�(μ2) = 1

(� = 1, . . . ,L).

Proof. Available on request. �
Our extension of Pearce’s solution concept is well behaved:

Theorem 13. If psychological utilities are continuous the set
⋂

k�0 CSBk(R) of rationalizable
states is nonempty and compact.

Proof. By definition

CSBk+1(R) = CSB
(
CSBk(R)

) = CSBk(R) ∩ SB
(
CSBk(R)

) ⊆ CSBk(R).

We prove by induction that each element CSBk(R) = ⋂k
�=0 CSB�(R) of the nested sequence

{CSBk(R)}k�0 is closed and nonempty. Lemma 3 implies Ω is compact; thus, the closed sub-
set

⋂
k�0 CSBk(R) is compact. Furthermore, the finite intersection property of compact spaces

implies
⋂

k�0 CSBk(R) �= ∅.
The argument relies on three preliminary results, proved in Appendix A:

Lemma 14. Correspondence ri : Mi � Si is nonempty valued. If ui is continuous, ri has a closed
graph and Ri is a nonempty closed set.

Lemma 15. For every closed event E ∈ E , SB(E) is closed.

Lemma 16. Let {E�}�=k
�=0 be a decreasing sequence of nonempty events in E (∅ �= Ek ⊆ Ek−1 ⊆

· · · ⊆ E0), then
⋂�=k

�=0 SB(E�) is also nonempty.

For notational convenience let CSB−1(E) = Ω . We prove by induction that, for each k � 0,
CSBk(R) is nonempty closed and can be expressed as

CSBk(R) = R ∩
(

k−1⋂
�=−1

SB
(
CSB�(R)

))
.

Basis step. The statement is true for k = 0 because by Lemma 14 CSB0(R) = R is nonempty
closed, and R can be expressed as

R = R ∩ Ω = R ∩ CSB−1(R).

Inductive step. Suppose the statement is true for each � = 0, . . . , k, then

CSBk+1(R) = CSB
(
CSBk(R)

) = CSBk(R) ∩ SB
(
CSBk(R)

)
= R ∩

(
k−1⋂

�=−1

SB
(
CSB�(R)

)) ∩ SB
(
CSBk(R)

)
= R ∩

(
k⋂

SB
(
CSB�(R)

))
.

�=−1
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By the inductive hypothesis each CSB�(R) is nonempty and closed (� = 0, . . . , k). By Lemma 15
also SB(CSB�(R)) is closed (� = 0, . . . , k). R is also closed (Lemma 14). Hence CSBk+1(R) is
closed. {CSB�(R)}�=k

�=0 is a decreasing sequence of nonempty events in E . Therefore Lemma 16

implies that
⋂k

�=−1 SB(CSB�(R)) �= ∅. Pick any ω = (si ,μi )i∈N ∈ ⋂k
�=−1 SB(CSB�(R)). Since

the latter is just an event about beliefs, modifying the strategies in ω we obtain another state in
the same event. By definition of R,

∏
i∈N ri(μi ) × {μi} ⊆ R. By Lemma 14, ri(μi ) �= ∅. We get

∅ �=
∏
i∈N

ri(μi ) × {μi} ⊆ R ∩
(

k⋂
�=−1

SB
(
CSB�(R)

))
.

Hence CSBk+1(R) �= ∅. This proves the inductive step, and the theorem. �
6. Discussion and extensions

We compare our approach with that of GPS (6.1), consider imperfect information, chance
moves, and asymmetric information (6.2), own-plan dependence, dynamic inconsistency, and
multi-self utility (6.3), and finally discuss assumptions, solution concepts, and avenues for further
research (6).

6.1. Comparison with GPS

In Section 2 we presented our framework as a generalization of GPS. This is not literally true.
The reason is twofold. First, GPS allow for imperfect information and chance moves. As we show
below, these complications can be included in our framework. Second, GPS allow for actual
randomization whereas we exclude it. Prima facie, this difference may seem immaterial. GPS
assume players maximize expected (psychological) utility given beliefs, and in their framework
there is no incentive to randomize. It might seem that the only role played by randomization is
to guarantee the existence of equilibrium, a result we obtain by looking at equilibrium in beliefs.
However, unlike standard games, in psychological games there may be a difference (to a player’s
utility) between a belief assigning probability one to a randomized choice that, say, picks a or b

with probability 1
2 , and the belief that assigns probability 1

2 to each of a and b. These beliefs are
equivalent if psychological utility functions satisfy a linearity property, which is not satisfied in
all applications (see e.g. Sebald [72]). Note, however, that one can deal with this by adding to the
game explicit moves whereby a player chooses a lottery over elementary actions (which is what
Sebald does).

Now look at the version of GPS that is a special case of our framework: psychological games
with utilities of the form ui : Z × Mi → R, where Mi is the space of infinite hierarchies of
initial beliefs of i, and first-order beliefs are probability measures over pure strategies of i’s
opponents. How much is lost by restricting the analysis to such games? We have argued that
many interesting phenomena such as sequential reciprocity, psychological forward induction, and
regret cannot be analyzed. However, we can prove a partial equivalence result. Suppose the initial
beliefs of others enter the utility, that is, ui : Z × ∏

j∈N Mj → R. Then there is a psychological

game with utilities ui : Z × Mi → R that has the same sequential equilibrium assessments as the
former game.46 This does not mean that in this class of games conditional higher-order beliefs are

46 The intuition is relatively simple: each initial belief hierarchy μi induces a probability measure f i(μi ) ∈ Δ(S−i ×
M−i ) which can be used to compute an expectation ui(z,μi ) of ui(z,μi , ·). Since in a consistent assessment there
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irrelevant. First, the equivalence result only concerns sequential equilibria, and we argued that the
non-equilibrium analysis of psychological games is important (as exemplified by psychological
forward induction). Second, our very definition of sequential equilibrium makes essential use
of conditional beliefs. Having such beliefs in the framework is conceptually useful as it helps
understanding the epistemic assumptions underlying the SE concept.

GPS define a ‘psychological subgame perfect equilibrium’ concept (p-SPE) in two steps. First,
they define a ‘psychological Nash equilibrium’ as a situation in which each player’s (randomized)
strategy is an ex ante best reply to his hierarchy of beliefs and beliefs of all orders are correct.
Then, they define a p-SPE as a psychological equilibrium profile (σi,μi )i∈N such that (σi)i∈N

is a subgame perfect equilibrium of the standard game with utility functions ui(·,μi ) : Z → R

(i ∈ N ). Remark 10 shows that our SE coincides with p-SPE for games with utility functions à la
GPS. This result can be extended to games with imperfect information (replacing p-SPE with a
similarly defined ‘psychological sequential equilibrium’ concept).

GPS also define a ‘psychological trembling-hand perfect equilibrium’ (p-TPE): (σi,μi )i∈N is
a p-TPE if it is a psychological equilibrium and (σi)i∈N is a trembling-hand perfect equilibrium
of the standard game with utility functions ui(·,μi ) : Z → R (i ∈ N ). They show that some
games with continuous utility functions have no p-TPE. Yet, our argument to prove existence
of SE (see the sketch in Subsection 4.2) shows that continuous games always have equilibria
that can be obtained as the limit of ε-equilibria with trembles. These two results are mutually
consistent because, even for the special case of games à la GPS, they concern different notions
of trembling-hand perfection. GPS perturb the strategies, but not the beliefs; we perturb both, as
equilibrium beliefs are determined by the strategies via the consistency condition.47

6.2. Imperfectly observable actions, chance moves, and asymmetric information

We chose to focus on games with observable actions and no chance moves for the sake of
simplicity. But our concepts and results carry over to the more general case of games where
past actions need not be perfectly observed and chance may play a role (as in GPS). Let N =
{c,1, . . . , n} where index c denotes the chance player, and let Hi be the partition of the finite
set of histories H into information sets of player i (i �= c). Assume perfect recall holds. Then
the set of strategy profiles consistent with any information set h of player i must have the form
S(h) = Si(h) × S−i (h) [where Si(h) := ⋃

h∈h Si(h), S−i (h) := ⋃
h∈h S−i (h)]. Consider, for the

first-order beliefs of player i, the collection of conditioning events {Fi : Fi = S−i (h),h ∈ Hi}.
Let Xk−1

−i be the space of (k − 1)-order uncertainty for player i; we obtain the set of k-order cps’

ΔHi (Xk−1
−i ), and the k-order uncertainty space Xk

−i = Xk−1
−i ×∏

j �=i,0 ΔHj (Xk−1
−j ). The resulting

set of infinite hierarchies of cps’ Mi is homeomorphic to ΔHi (S−i × M−i ) via a belief mapping
fi = (fi,h)h∈Hi

.
Note that Hi specifies i’s information at each node/history, including those where i is inactive

and in particular including the terminal nodes. This would be redundant in standard games, but is

is ‘common knowledge’ of the hierarchical beliefs, no observation will make the players change their mind about the
initial beliefs of the opponents, hence for any consistent assessment ui and ui have the same set of maximizing actions
at each history. (If the game has only one stage ui and ui are fully equivalent, i.e., they have the same best response
correspondences.)
47 Kolpin [47] makes a related point.
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crucial to model some belief-dependent motivations, such as regret or blame avoidance, whereby
players’ conditional beliefs matter even if they are inactive.48

Let σc = σc(·|h) ∈ ∏
h∈H\Z Δo(Ac(h)) denote the strictly positive ‘objective’ probabilities of

chance moves. It is routine to define closed and compact subsets of hierarchies M̂i (i = 1, . . . , n)
reflecting the assumption that each players’s beliefs about the chance player c are determined by
σc and there is common certainty of this. The analysis of rationalizability is easily adapted to this
environment. The definition of sequential equilibrium requires some care.

An assessment (σ,μ) = (σi,μi )
n
i=1 is consistent if there is a sequence of strictly positive

behavioral strategy profiles σk → σ such that for all i = 1, . . . , n, h ∈ Hi , s−i ∈ S−i (h),

μ1
i (s−i |h) = lim

k→∞

Prσc (sc)
∏

j �=i,c Prσk
j
(sj )∑

s′−i∈S−i (h) Prσc (s
′
c)

∏
j �=i,c Prσk

j
(s′

j )

(since σc is strictly positive, the denominator is positive),49 and furthermore for all � > 1, μ�
i as-

signs probability 1 to μ�−1
−i (cf. Definition 6). (σ,μ) is a sequential equilibrium if it is consistent

and for all i = 1, . . . , n, h ∈ Hi , s∗
i ∈ Si(h),

Prσi

(
s∗
i

∣∣h)
> 0 ⇒ s∗

i ∈ arg max
si∈Si(h)

Esi ,μi
[ui |h],

where Esi ,μi
[ui |h] is given by the obvious modification of formula (2). A straightforward adap-

tation of the trembling-hand argument used to prove Theorem 1 shows that if the utility functions
are continuous a sequential equilibrium exists.

This extended framework also allows to analyze situations with incomplete information, mod-
eling them as games with asymmetric information about an initial chance move: at the empty
history h0 the only active player is c (chance), Ac(h

0) = Θ , where Θ ⊆ Θ0 × Θ1 × · · · × Θn,
each player i observes only coordinate θi of θ = (θ0, θ1, . . . , θn); θ may affect payoffs, or actions
sets, or the probabilities of future chance moves.50 This extension is important for applications.
Unless one models interaction within a family or amongst friends, it is probably not realistic to
assume that players know one another’s psychological propensities. For example, in the analysis
of Γ2 (or Γ3) we assumed that Ann knows that Bob’s sensitivity to guilt is θ2 = 5

2 , which may
be a stretch.51 Another example comes up in Caplin and Leahy’s [22] model of doctor-patient
interaction: the patient’s well-being depends on his anxiety and on whether or not he likes early
resolution of uncertainty; the concerned doctor wants to help the patient but is uninformed of the
nature of patient’s preferences regarding resolution of uncertainty. Yet another reason to allow
for incomplete information is that a player may care about the ex post beliefs of others about
some of his characteristics, which are not common knowledge, as in the models of Bernheim

48 For example, the terminal information partition is crucial in Battigalli and Dufwenberg’s [8] model of guilt from
blame and Tadelis’ [77] analysis of shame in a Trust Game.
49 Kreps and Wilson [51] have a similar condition that refers to conditional probabilities of histories/nodes.
50 We do not present a more direct formalization of incomplete information psychological games for reasons of space.
A word of caution is in order. When incomplete information is represented as imperfect, asymmetric information about
an initial chance move one introduces fictitious ex ante beliefs (the initial beliefs in the imperfect information extensive
game). This does not affect the equilibrium analysis of standard games, but it is known to affect the rationalizable
outcomes (see Battigalli et al. [7] for a discussion), and it may as well affect the analysis when players have belief-
dependent preferences.
51 Ample evidence in psychology suggests emotional sensitivities differ among people. See Krohne [52] for a general
discussion, and Tangney [78] on guilt specifically.
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and Dufwenberg and Lundholm and several other economic models where agents are assumed
to have an intrinsic concern about their reputation.52

One final reflection relating to imperfect and asymmetric information before we proceed.
Standard games of incomplete information can be regarded as a special case of our framework.
We have already clarified in Section 2.1 how psychological games are different from games of
incomplete information. But one may wonder whether our framework is “too general” in the
following sense: Is it possible that the same qualitative behavior explained by psychological
game models can be explained using standard games of incomplete information? The answer is
No, although it is possible in some cases (see, for example, Levine [54], and Gul and Pesendorfer
[40] who put forward models of reciprocity featuring incomplete information about “behavioral
types”). 53 The best way to see this is to remember that psychological preferences may be affected
by players’ beliefs at information sets where they are inactive, such as their terminal information
sets. Changing this information typically alters predicted behavior. This comparative statics effect
(which has been demonstrated experimentally by Tadelis [77]) is impossible in standard games,
because behavior predicted by sequential equilibrium or rationalizability in such games depends
only on the information of players when they are active.54

6.3. Own-plan dependence, dynamic (in)consistency, and multi-self utility

We have argued that it is natural to let a player’s utility depend directly on other players’
plans, but have so far assumed it does not depend directly on his own plan. This allowed us
to apply standard dynamic programming techniques and prove Theorem 13. We next show that
allowing for own-plan dependence is natural and gives rise to an interesting form of dynamic
inconsistency.

Consider the following version of the Trust Game: Ann can either trust Bob or opt out. If she
opts out no surplus is created; if she trusts Bob the total surplus is $4 and Bob can either grab
$3 or let Ann allocate the surplus (action Leave). If Bob let Ann choose the allocation, she can
either split the surplus or reward Bob, giving him the $3 he could have grabbed.

Now assume that if Ann gets less money than she expected she feels disappointed and that
the anticipation of this negative feeling affects her decisions. This is captured by the following
utility function:

u1(z,μ, s1) = π1(z) − θ

[∑
s2

μ1
1

(
s2

∣∣h0)π1
(
ζ(s1, s2)

) − π1(z)

]
where θ is a sensitivity parameter and the term in brackets in the Ann’s disappointment at z.
Γ6 in Fig. 6 builds on u1, and thereby turns out to exhibit own-plan dependent utility for Ann.
We let u2(z,μ, s) = π2(z).

The utility assigned by Ann to terminal history (Trust,Grab) depends on her initial belief
α = μ1

1(Leave|h0), and on how she plans to behave if Bob leaves for her to allocate the surplus.
The own-plan dependence arises because Ann cannot feel disappointed if she plans to reward Bob

52 Models with an intrinsic concern for reputation are sometimes presented as a reduced forms of repeated interaction
models. See, for example, Morris [62] and Ottaviani and Sorensen [64].
53 Gul and Pesendorfer offer a recursive construction of a canonical space of behavioral types.
54 Battigalli and Guaitoli [9] put forward a notion of conjectural (or self-confirming) equilibrium that crucially depends
on the terminal information structure. But such an equilibrium concept does not apply to one-shot interactions, as it is
meant to capture, with a “static” definition, stable patterns of behavior in situations of recurrent interaction.



P. Battigalli, M. Dufwenberg / Journal of Economic Theory 144 (2009) 1–35 29
Fig. 6. Psychological game Γ6: aversion to disappointment.

(column R), since in this case the resulting material payoff is 1 regardless of what Bob chooses.
For Ann to be disappointed at terminal history (Trust,Grab) requires that she plans to split and
that α > 0. In this case she (initially) expects a material payoff which is larger than her material
payoff at history (Trust,Grab) [(1 − α) × 1 + α × 2 > 1]. The disappointment yields utility
(1−θα) (column S). The expected utility of plan (Trust,Split) is thus (1−α)×(1−θα)+α×2,
which could be lower than 1 (in fact, even lower than 0) if θ is large enough. In this case, the
ex ante expected utility maximizing plan is (Trust,Reward) (which prevents disappointment and
yields 1). However, (Trust,Reward) is not dynamically consistent because the best choice after
history (Trust,Leave) is to split. As a result there is no strategy that maximizes Ann’s expected
utility at the beginning of the game and also at history (Trust,Leave). Ann cannot commit to
rewarding Bob, so she should initially maximize under the constraint that she would split in
the endgame; the resulting outcome is Out. Such ‘consistent planning’ (Strotz [76]) implies that
Ann’s strategy be immune to one-shot deviations. Therefore, the example shows that the One-
Shot-Deviation principle (cf. Proposition 8) fails with own-plan dependence. A similar kind of
dynamic inconsistency arises in Caplin and Leahy’s [21] theory of psychological expected utility,
in work by Kőszegi and Rabin [49,50] on reference dependent preferences, and in Mariotti’s
[60] abstract analysis of generalized extensive form games. These papers can be shown to be
consistent with our extended framework allowing own-plan dependence.

We now present an example where even the multi-self equilibrium fails to exist unless we
allow for uncertainty about one’s own strategy.

In game Γ7 of Fig. 7 a pure strategy of Bob is immune to one-shot deviations if and only if it
corresponds to a pure Nash equilibrium of the following game between two selves of Bob:

Bob�\Bobr L′′ R′′

L′ 3,0 1,1
R′ 2,3 2,1

This companion game has no pure equilibrium. The unique mixed equilibrium is ( 2
3L′ +

1
3R′, 1

2L′′ + 1
2R′′). Working backwards, Ann’s best reply is �. This is the unique multi-self SE

of Γ7.
This example suggests that in order to make rationality possible in psychological games with

own strategy dependence we have to allow a player to be uncertain about her own strategy. This
can be done, at the cost of additional complexity, within a richer framework where player i’s
first-order beliefs are defined over S rather than S−i (cf. Battigalli and Siniscalchi [10]).
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Fig. 7. Psychological game Γ7.

Besides own-strategy dependence, a more direct way to allow for dynamic inconsistencies is
to adopt a multi-self approach and model a player’s preferences with an array of ‘local’ utility
functions (ui,h : Z×M×S → R)h∈H\Z . The sequential equilibrium analysis of Section 4 applies
to this extended framework almost verbatim.

This formulation is relevant to reciprocity theory. We have already seen how our basic frame-
work could reproduce Dufwenberg and Kirchsteiger’s theory in an example (Γ5). However, to
handle general games one needs a multi-selves approach, and it is then possible to (essentially)
reformulate Dufwenberg and Kirchsteiger’s model (details are available on request).

6.4. Discussion of solution concepts

We have explained in Section 4 that SE relies on the assumption that players never change
their beliefs about the (conditional) beliefs of their opponents. This assumption is questionable
in standard games, and becomes even more questionable in psychological games where players’
perceptions of opponents’ intentions (“What is my co-player trying to achieve?”) are key.

One way to assess the opponent’s intention is to draw inferences about his unobservable be-
liefs from his observable actions via forward induction (FI) reasoning. It is well known that FI
reasoning yields beliefs inconsistent with backward induction reasoning and, more generally,
with sequential equilibrium (see, e.g., Reny [69]). Yet in (generic) standard games at least one
sequential equilibrium outcome is consistent with FI reasoning.55 The following simultaneous-
move example shows that this need not be true in games with belief-dependent preferences.

Let A1 = {U,M,D}, A2 = {�, r}. Player 1 (row) only cares about his material payoff,
whereas the preferences of 2 (column) also depend on his terminal second-order beliefs. Let
α1 := μ1

1(�|h0), β2(a1) := Eμ2[α1|a1]. The game is described by the following table.

� r

U 3,4[β2(U) − β2(D)] 0,1
M 2,4[β2(U) − β2(D)] 2,1
D 0,4[β2(U) − β2(D)] 3,1

55 For example, in generic finite games with complete and perfect information the backward induction terminal node is
the same as the terminal node implied by extensive form rationalizability and the iterated deletion of weakly dominated
strategies, even though the implied conditional beliefs about continuation strategies may well be very different, as shown
by Reny [69]. For finite games with imperfect information see Govindan and Wilson [38].
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In a sequential equilibrium β2(U) − β2(D) = 0, because all conditional second order beliefs
assign probability one to the true value of α1. Therefore the SE outcome must be (D, r).

Forward induction implies that 2 would believe whenever possible that 1 is rational (see Sec-
tion 5). Note that U (D) is a best reply to α1 iff α1 � 2

3 (α1 � 1
3 ). Therefore FI implies that

β2(U) − β2(D) � 1
3 . Hence 4[β2(U) − β2(D)] > 1, player 2 chooses �, and anticipating this 1

chooses U . The FI outcome is (U, �).
This example suggests that it is reasonable to relax the consistency condition of SE to allow

players to change their higher order beliefs at least when they observe unexpected moves by
the opponents. Other conditions on updated beliefs (such as strong belief in rationality) may be
imposed to obtain sharp predictions.

Another reason to relax consistency is the following. Suppose that, as suggested at the end
of Section 6.3, we explicitly model a player’s plan as a (possibly false or uncertain) belief about
his own contingent behavior. Then a player’s intentions are fully determined by his beliefs about
himself and others, and the consistency condition of SE implies that (in games with complete
information) players never change their beliefs about the co-players’ intentions, no matter what
they do. This trivializes the analysis of extensive form psychological games. For example, Bob
can respond unkindly to an unexpectedly generous action by Ann simply because he initially
believed, and continues to believe, that Ann meant to be unkind to him.

Finally, we note that it would be interesting to approach psychological games from a learn-
ing point-of-view. Here is the main issue to be aware of if this task is addressed: It is often
argued that players learn to play some equilibrium because through recurrent play they come
to hold correct beliefs about the opponents’ actions (see, e.g., Fudenberg and Levine [33] and
references therein). This may not be enough for psychological games; since payoffs depend on
hierarchical beliefs, players would have to be able to learn others’ beliefs, but unlike actions
beliefs are typically not observable ex post. This suggests that a different notion of equilibrium
is worth exploring, whereby beliefs are required to be consistent with observed outcomes, as in
the conjectural/self-confirming equilibrium concept.56 The interactive epistemology analysis of
self-confirming equilibrium in (standard) signaling games by Battigalli and Siniscalchi [11] may
provide a useful starting point.
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Appendix A

We start with some preliminaries about rationality and backward induction on belief-induced
decision trees, and then prove Lemmata 14, 15 and 16. For any fixed hierarchy of cps’ μi , we ob-

56 See, for example, Battigalli and Guaitoli [9] and Fudenberg and Levine [32].
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tain a well-defined decision tree that can be solved by backward induction: define value functions
Vμi

: H → R and V μi
: (H\Z) × Ai → R as follows

• For terminal histories z ∈ Z, let

Vμi
(z) :=

∫
S−i×M−i

ui(z,μi ,μ−i , s−i )fi,z(μi )(ds−i ,dμ−i ).

• Assuming that Vμi
(h, a) has been defined for the immediate successors (h, a) of history h,

let

V μi
(h, ai) :=

∑
a−i∈A−i (h)

μ1
i

(
S−i (h, a−i )

∣∣h)
Vμi

(
h, (ai, a−i )

);
for each ai ∈ Ai(h); then Vμi

(h) is defined as

Vμi
(h) := max

ai∈Ai(h)
V μi

(h, ai).

Recall that, for any strategy si ∈ Si , Hi(si) = {h ∈ H\Z: si ∈ Si(h)} denotes the set of histo-
ries allowed by si . The proof of the following result is available by request:

Lemma 17. The sequential best reply correspondence ri : Mi � Si can be characterized as
follows

ri(μi ) =
{
si : ∀h ∈ H(si), si,h ∈ arg max

ai∈Ai(h)
V μi

(h, ai)
}
.

Proof of Lemma 14. By Lemma 17 ri(μi) = {si : ∀h ∈ H(si), si,h ∈ arg maxai∈Ai(h) V μi
(h, ai)}.

Clearly, the RHS is nonempty. Therefore ri(·) is nonempty-valued and Ri is nonempty. The be-
lief function fi is continuous (Lemma 3). If ui is also continuous, then Esi,μi

[ui |h] is continuous
(in μi ), which implies that Ri is closed. �
Proof of Lemma 15. We must show that for every closed event E ∈ E−i , SBi (E) is closed.
SBi (∅) = ∅, a closed set, by definition. Suppose that E = Ωi × E−i where E−i is nonempty and
closed. Recall that SBi (E) = ⋂

h:[h]∩E �=∅ Bi,h(E). For each h,

Bi,h(E) = Si × f −1
i,h

(
Δ

(
E−i ∩ (

S−i (h) × M−i

))) × Ω−i ,

where for any measurable space X and any F ⊆ X we let Δ(F) denote the set of probability
measures on X that assign probability one to F . Note that if F is closed, Δ(F) is also closed.
The coordinate function fi,h : Mi → Δ(Ω−i ) is continuous and M−i is closed (Lemma 3); hence
E−i ∩ (S−i (h) × M−i ), Δ(E−i ∩ (S−i (h) × M−i )) and f −1

i,h (Δ(E−i ∩ (S−i (h) × M−i ))) are
closed. It follows that Bi,h(E) (h ∈ H ) and SBi (E) are closed. �
Proof of Lemma 16. Let {E�}�=k

�=0 be a decreasing sequence of nonempty events in E (∅ �= Ek ⊆
Ek−1 ⊆ · · · ⊆ E0); we show that

⋂�=k
�=0 SB(E�) is also nonempty. For each � and i, E� ∈ E can

be written E� = E�
i × E�−i , where E�−i ⊆ Ω−i , and by definition of SB(·)

�=k⋂
SB

(
E�

) =
⋂ �=k⋂

SBi

(
Ωi × E�−i

)
.

�=0 i∈N �=0
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Therefore we must show that
⋂�=k

�=0 SBi (Ωi × E�−i ) �= ∅ (i ∈ N ). Let ΔH (Ω−i;E�−i ) denote the
set of cps’ μ ∈ ΔH (Ω−i ) such that μ(E�−i |h) = 1 for each h such that E�−i ∩(S−i (h)×M−i ) �= ∅.
Note that

�=k⋂
�=0

SBi

(
Ωi × E�−i

) = Si × f −1
i

(
�=k⋂
�=0

ΔH
(
Ω−i;E�−i

)) × Ω−i .

We show below that
⋂�=k

�=0 ΔH (Ω−i;E�−i ) �= ∅. Since fi is onto (Lemma 3), it follows that

f −1
i (

⋂�=k
�=0 ΔH (Ω−i;E�

−i )) �= ∅. Hence
⋂�=k

�=0 SBi (Ωi × E�
−i ) �= ∅.

We show that
⋂�=k

�=0 ΔH (Ω−i;E�−i ) �= ∅ with a recursive construction. Say that h is ‘reached’
by probability measure ν ∈ Δ(Ω−i ) if ν(S−i (h)×M−i ) > 0. Note that if h is reached by ν, every
predecessor of h is also reached by ν. Say that μ(·|h) is ‘derived’ from ν, where ν reaches h, if
for every Borel set F−i ⊆ Ω−i

μ(F−i |h) = ν(F−i ∩ (S−i (h) × M−i ))

ν(S−i (h) × M−i )
.

Pick any probability measure ν in the (nonempty) set Δ(Ek
−i ). For each h reached by ν let

μ(·|h) be derived from ν. Thus, μ(·|h) has been defined for a nonempty set of histories closed
w.r.t. precedence (that is, if h is in the set every predecessor of h is in the set), the set is nonempty
because it contains the initial history h0. Now suppose that μ(·|h) has been defined for some set
of histories Ĥ closed w.r.t. precedence. If Ĥ �= H , for each h ∈ H\Ĥ such that the immediate
predecessor of h belongs to Ĥ , pick a probability measure νh in the set Δ(E

�(h)
−i ∩ (S−i (h) ×

M−i )), where �(h) is the highest index � ∈ {−1,0, . . . , k} such that E�−i ∩ (S−i (h) × M−i ) �= ∅,
and by convention we let E−1 = Ω−i . Let μ(·|h′) be derived from νh whenever h′ weakly follows
h and is reached by νh. Now μ(·|h) is defined for a set of histories Ĥ ′ closed under the precedence
relation and strictly larger than Ĥ . Proceed in this way until the whole H is covered. We claim
that the resulting vector of probability measures (μ(·|h))h∈H is a cps μ ∈ ⋂�=k

�=0 ΔH (Ω−i;E�−i ).
To see that (μ(·|h))h∈H is a cps we only have to check that the ‘chain rule’ (3) in Definition 1

holds. Suppose that h precedes h′. To write formulas more transparently, let C = S−i (h) × M−i ,
C′−i = S−i (h

′) × M−i , μ(·|h) = μ(·|C−i ), μ(·|h′) = μ(·|C′−i ). Since h precedes h′, S−i (h
′) ⊆

S−i (h), hence C′−i ⊆ C−i . If h′ is not reached by μ(·|C−i ) then (3) holds trivially as 0 = 0. If h′
is reached by μ(·|C−i ), then μ(·|C−i ) and μ(·|C′−i ) are both derived from the same measure –
say ν ∈ Δ(Ω−i ) – reaching both h and h′; thus, for every Borel set F−i ⊆ C′−i

μ(F−i |C−i ) = ν(F−i )

ν(C−i )
= ν(F−i )

ν(C′−i )

ν(C′−i )

ν(C−i )
= μ

(
F−i

∣∣C′−i

)
μ

(
C′−i

∣∣C−i

)
.

To see that μ ∈ ⋂�=k
�=0 ΔH (Ω−i;E�−i ), note that by construction μ(E�(h)|h) = 1 for all h ∈ H .

Suppose that, for any index � ∈ {0, . . . , k} and any h ∈ H , E�−i ∩ (S−i (h) × M−i ) �= ∅. Then
�(h) � � and μ(E�|h) � μ(E�(h)|h) = 1; hence μ(E�|h) = 1 as desired. �
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