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Abstract

We study a research and development race by extending the standard investment under uncertainty frame-
work. Each firm observes the stochastic evolution of a new product’s expected profitability and chooses the 
optimal time to release it. Firms are imperfectly informed about the state of their opponents, who could 
move first and capture the market. We characterize a family of priors for which the game admits a station-
ary equilibrium. In this case, the equilibrium is unique and can be explicitly constructed. Across games 
with priors in this family, there is a maximal intensity of competition that can be supported, which is a 
simple function of the environment’s parameters. Away from this family, we offer sufficient conditions for 
convergence of a non-stationary equilibrium. When these hold, the intensity of competition tends to the 
maximal possible value. Furthermore, we develop methods that can be useful for other applications, includ-
ing a modified Kolmogorov forward equation for tracking posterior beliefs and an algorithm for computing 
non-stationary equilibria.
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1. Introduction

Real options, such as the option to interrupt a product’s development and schedule its release, 
lack clear contractual terms. For instance, they typically do not expire on a proper deadline, but 
lose a significant part of their value if a competitor moves first.

Consider a race between several firms to develop, produce, and market an autonomous car. 
The first marketed product gets the possibility to set-up a new industry standard, lock in key sup-
pliers, and obtain significantly higher profits than any follower. Although technical knowledge 
can only accumulate and contribute to a better product, the same unambiguous evolution does 
not apply to expected profits. Prototyping often evidences problems in implementation. Market-
ing studies convey a combination of good and bad news about consumer perceptions. Suppliers 
might be lost and financing dry up. These issues can be addressed with additional expenses and 
further delay. But waiting is risky, as a competitor might move first.

The conditions of these competitors are typically only imperfectly known to each other. First, 
a firm does not observe the private technological achievements of opponents. Second, even for 
shocks that are publicly observed, as when new regulatory standards are applied to the industry, 
a given firm does not know how badly compromised the specific designs of competitors are. 
Moreover, the final decision to produce and market a product depends on several other financial 
assessments which are, at best, imperfectly anticipated by opponents, such as projections of the 
marginal impact of the new product on previous business lines.

We study this situation by extending the continuous-time real option framework. Our model 
features both competition and incomplete information. Each player is privately informed about 
the evolution of his or her expected payoffs. He or she also continuously faces the choice between 
exercising the option (entry) or delaying this decision. The benefit of delay originates from in-
crements to expected profits, which involve some randomness.1 In addition to deferred revenues, 
the cost of delay includes the possibility that an opponent might enter the market first and wipe 
out the player’s profit opportunities. Beliefs about the likelihood of an opponent’s entry in the 
future are central determinants of optimal exercise strategies.

Our main results are the following. First, we characterize the class of prior beliefs for which 
a stationary equilibrium exists. For each prior within this class, we show that the associated 
stationary equilibrium is unique and explicitly construct it. Moreover, a particular, canonical 
prior leads to the stationary equilibrium with the highest sustainable intensity of competition. 
We provide an explicit formula for this maximal equilibrium intensity in terms of primitives, 
namely the drift and volatility of each opponent’s expected payoff of entry.

Second, we track the evolution of beliefs about opponents’ states for priors that lead to 
non-stationary equilibria and provide a partial analytical characterization of these equilibria. In 
particular, we give conditions for convergence toward the stationary equilibrium of the game as-
sociated with the canonical prior. The analytic methods we use to obtain these results are likely 
to be of interest beyond competitive real options.

Last, we compute non-stationary equilibria. The algorithm we develop for this purpose jointly 
iterates on the forward-looking differential equations that characterize value functions and a 
backward-looking integral equations for beliefs. This approach allows the study of asymmet-
ric competition and comparative dynamics across different industries, but it can also be useful in 
other contexts. In our setting, we illustrate how meaningful changes in the competitive environ-

1 See Dixit and Pindyck (1994) for a canonical reference.
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ment, such as providing a firm with an initial advantage, have both mechanical effects (that firm is 
closer to any exercise threshold) and strategic ones (opponents initially see stronger competition 
and respond more aggressively).

The strategic effects vary over time, often non-monotonically. The intuition is that if one’s op-
ponent is more aggressive in the initial months, one should respond more aggressively during that 
period because the risk of preemption is higher; however, once that initial phase passes without 
any entry, this constitutes evidence that the opponent was never in a particularly strong position. 
As such, competition weakens. Transitions can be extremely long-lived and have meaningful 
effects on firm value and optimal strategies. We conclude that accounting for the time varying 
nature of competition can be important for applied researchers and financial managers alike.

To introduce some of the main ideas in this paper, we start with an important particular case 
of the model. Two symmetric players compete in a race to develop a product and first enter a 
market. We seek to construct a symmetric stationary equilibrium. In the recursive formulation 
below, two objects are key for the equilibrium characterization: the value function and the beliefs 
about opponents’ conditions.

For clarity, we look at the problem from the perspective of Player 1, who does not observe the 
actual level of development of Player 2 and only holds a prior F about it.

At the same time, Player 1 privately observes the evolution of his or her own expected prof-
itability, summarized by a payoff state X1(t), and discounts the future at a rate r > 0. The cost 
of the product’s introduction into the market is K > 0, so that Xn(t) − K is the net payoff from 
exercise at time t , for n = 1, 2. If Player 2 enters the market first, the game ends and Player 1 
obtains a payoff of zero. This winner-take-all feature of the game simplifies the exposition.

The state Xn(t) follows

dXn(t) = μdt + σdZn(t),

where Zn(t) for n = 1, 2 are two standard independent Brownian motions. We assume that μ > 0, 
focusing on the case in which longer product development processes generate, on average, higher 
profits. Actual increments to profitability, however, are random and can be negative, with σ > 0
representing their volatility.

In a stationary equilibrium, Player 1 conjectures a constant defeat rate, λ ≥ 0. A simple 
extension of well-known results2 implies that the value function, V (x), satisfies the following 
stationary Hamilton-Jacobi-Bellman (HJB) equation:

rV (x) = max

{
μ

dV (x)

dx
+ 1

2
σ 2 d2V (x)

dx2 − λV (x), r (x − K)

}
. (1)

The maximization above is between continuation or immediate exercise, in this order. The 
evolution of the continuation value is the combination of the instantaneous deterministic product 
improvement, uncertain innovations to profitability, and the possible arrival of a defeat.

The solution features a constant threshold, β > K , so that exercise is optimal if and only if 
X1(t) ≥ β .3

Static net present value (NPV) maximization would lead to investment whenever X1(t) ≥ K . 
The optimal threshold β displays a positive wedge relative to this static criterion, due to the 

2 See, for example, Mcdonald and Siegel (1986) and Dixit and Pindyck (1994). For a recent and formal treatment of 
one-dimensional stochastic control and optimal stopping problems in economics, see Strulovici and Szydlowski (2015).

3 This threshold satisfies β = K + 1/ξ , where ξ = σ−2
(√

μ2 + 2σ 2 (r + λ) − μ
)

is the positive root associated with 
the characteristic polynomial of Equation (1) when continuation is optimal.
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option value of delayed entry. The defeat and the discount rates play analogous roles: an increase 
in either decreases the wedge by the same amount. This is consistent with a literature devoted 
to investment practitioners that suggests the use of an increased discount rate to account for 
competition.4 By varying λ from zero to infinity, one can span degrees of competition between 
monopoly and full profit dissipation. One of this paper’s contributions is to offer a game-theoretic 
foundation for that rate. Another contribution is to show that optimal exercise thresholds, even 
non-stationary ones, are bounded by the monopolist’s and zero-NPV policies.

In equilibrium, exercise thresholds and perceived defeat rates must be mutually consistent. In 
particular, in a stationary equilibrium, the belief distribution about Player 2’s payoff state needs 
to satisfy

−μ
dF(x)

dx
+ 1

2
σ 2 d2F(x)

dx2 + λF (x) = 0, (2)

with support in (−∞, β) and boundary conditions F (β) = 1 and dF (x) /dx|x=β = 0.5

We derive this modified Kolmogorov forward equation for (stationary) conditional beliefs in 
Section 3.2 and offer for now only a preview of its intuition. The interpretation of the first two 
terms is standard: a positive drift makes it less likely that the state is below any given value as 
time passes, while the diffusion component leads to a smoothing of the distribution over time. 
The novelty lies in the last term, which originates from conditioning on the absence of defeat. 
As time passes and Player 2 is expected to cross the exercise threshold at a rate λ, the condi-
tional probability of his or her state being below any x < β (given that defeat was not observed) 
increases proportionately at that same rate. Intuitively, the absence of defeat is good news for 
Player 1: had Player 2 been close to the threshold, he or she would have been relatively more 
likely to enter the market. In this game, survival is indicative of a relatively weaker opponent 
than previously thought.

We show that Equation (2) admits a single (prior) probability distribution as a solution for 

any λ ∈ (0, λ∗], where λ∗ ≡ 1
2

μ2

σ 2 is the highest level of perceived competition that can occur in 
a stationary equilibrium. A key consequence is that, for each λ ∈ (0, λ∗], the game in which the 
prior marginal distribution about the opponent’s condition satisfies Equation (2) has a stationary 
equilibrium with the value function determined by Equation (1). Also, if the prior marginal dis-
tribution does not satisfy Equation (2) for any λ ∈ (0, λ∗], no stationary equilibrium exists and a 
more general approach is required.

In the rest of the paper, we go beyond the stationary case and consider a flexible model, which 
allows for multiple asymmetric players and arbitrary priors.

2. Model

2.1. Description of the game

Time is continuous and the horizon is infinite. Players are indexed by n ∈ N ≡ {1,2, ...,N}. 
The discount rate is r > 0 for every player. Each player, n ∈ N , privately observes the evolution 

4 It is also well known that the wedge increases in the volatility of the state (Dixit and Pindyck, 1994). For an application 
featuring an ad hoc discount rate increase, see Trigeorgis (1995, Chapter 9).

5 The boundary conditions reflect the fact that stationarity is inconsistent with any positive mass above (or a non-
vanishing density at) the exercise threshold (see Sections 3.2 and 3.4).
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of a position Xn(t), where Xn ≡ {Xn(t)}t≥0 is a stochastic process with initial condition Xn (0) =
x0
n . We denote by F 0 the (common) prior distribution over the players’ initial conditions. We 

assume that initial conditions are independent across players and denote by F 0
n the prior marginal 

distribution for Player n. The evolution of the stochastic process Xn satisfies

dXn(t) = μndt + σndZn(t),

where Zn is a Wiener process and μn > 0 and σn > 0 represent constant player-specific drift and 
volatility. The processes Z1, ..., ZN are independent and all parameters are common knowledge.6

The positions X1(t), ..., XN(t) represent the development state of different projects, measured 
as a gross expected payoff from current exercise. Their evolution is private information, so each 
player knows his or her own progress, but does not know the progress of the opponents. While we 
are restricting attention to stochastic increments in the states that are independent across agents, 
the drift term can incorporate common deterministic trends in the exercise payoffs.

Each player decides at every instant whether to exercise the option or wait for more infor-
mation. If Player n exercises when Xn(t) = xn, the game ends at time t and the player obtains 
a payoff of xn − Kn, while the opponents get 0. We assume that the exercise cost is positive, 
common knowledge and that there is no running cost for staying in the game, so that waiting is 
optimal whenever xn is sufficiently low. To rule out situations in which the game ends at date 
t = 0 with probability one, we introduce the following condition, which we assume throughout 
the paper.

Assumption. For all n ∈ N , the prior marginal distribution satisfies limxn↑Kn F 0
n (xn) > 0.

2.2. Information, strategies, and payoffs

For each n ∈ N , let Fn ≡ {Fn(t)}t≥0 be the filtration generated by Xn. A strategy for Player 
n is a Fn−stopping time, generically denoted τn. We allow stopping times to be infinite when a 
player never exercises (receiving a payoff of 0).

Let F be the product filtration jointly generated by X1, ..., XN . Notice that F contains more 
information than observed by each player individually. The game ends as soon as any player 
exercises, that is, at the F−stopping time minn∈N τn. Player n can only observe the passage of 
time, the absence of any opponent’s exercise, and the evolution of their own position {Xn(t)}t≥0. 
If a strategy for Player n is the first-passage time of Xn through a lower-semicontinuous thresh-
old, we call it a threshold strategy. We say that τn is a stationary strategy if it is a time-invariant 
threshold strategy and satisfies Pr {τn = 0} = 0. That is, stationary strategies are first-passage 
times through some constant threshold.

Let Sn and Tn be the set of strategies and threshold strategies, respectively, for Player n. We 
also define τ[−n] ≡ minm∈N\{n} τm, the minimal stopping time among Player n’s opponents. As 
usual, the subscript −n denotes strategy or strategy set profiles for the opponents of Player n. 

6 We choose an arithmetic Brownian process for both analytical tractability and the assumption that each firm’s research 
and development (R&D) efforts generate a constant flow of expected profit innovations. The geometric Brownian case 
requires a simple change of variables and is discussed in Section C.1 of the appendix. Under that specification, profit 
innovations from further delay are proportional to current expected profits, an assumption that we find less appealing for 
R&D applications.
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Player n’s expected discounted payoff at time t ≥ 0 of using strategy τn ≥ t when opponents use 
τ−n is given by

Jn(τn, τ−n|t) ≡
{
E
{
e−r(τn−t)1τn<τ[−n] (Xn (τn) − Kn)

∣∣Fn(t), τ[−n] ≥ t
}

if τ[−n] ≥ t,

0 if τ[−n] < t.

There are three features of the expected discounted payoffs worthy of attention. First, if two 
players ever exercise at exactly the same time, they both collect a payoff of zero. The implicit 
assumption is that Xn (τn) − Kn represents the payoff that a monopolist would obtain and any 
other arrangement, with multiple players competing to sell their products, leads to complete 
dissipation of market power.

Second, notice that, besides the information from the filtration generated by Xn, Player n at 
any particular moment also knows whether the game has not yet ended with her defeat.

Third, notice that, for any profile of strategies of opponents, the value process

sup
τn∈Sn|τn≥t

Jn(τn, τ−n|t)

is a Markov process with a private state that contains both Xn (t) and the knowledge of whether 
any of the opponents has stopped before the current date t .

2.3. Equilibrium

The following definition introduces the equilibrium notions employed in the rest of the paper.

Definition 1. A (Nash) equilibrium is a strategy profile τ̂ = (τ̂1, ..., τ̂N ) ∈∏N
n=1 Sn such that 

Jn(τ̂n, τ̂−n|0) ≥ Jn(τn, τ̂−n|0) for all τn ∈ Sn and n ∈ N . A stationary equilibrium is an equilib-
rium in stationary strategies.

In equilibrium, each strategy τ̂n maximizes the expected discounted payoffs of Player n, hold-
ing strategies τ̂−n fixed for all other players.

Note that, from the viewpoint of Player n, the behavior of all opponents is effectively summa-
rized by the distribution of the time of Player n’s defeat, which is determined by τ[−n]. Moreover, 
the optimal stopping problem arising from any such distribution is solved by a threshold strat-
egy. This means that threshold strategies are enough for each player to best respond, even to 
opponents playing in arbitrary ways. More formally, despite the strict inclusion Tn ⊂ Sn, we 
have

max
τn∈Tn

Jn(τn, τ−n|0) = sup
τn∈Sn

Jn(τn, τ−n|0)

for all τ−n ∈ S−n and n ∈ N .7 The bottom line is that, for the purposes of equilibrium analysis, 
we can restrict attention to threshold strategies without loss of generality.

7 For details, please refer to Section S4 (Lemma 31, in particular) in the supplementary material.
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2.4. A recursive representation

Fix an equilibrium τ̂ ≡ (τ̂1, ..., τ̂N

)
. Let Vn(xn, t) be the equilibrium payoff of Player n at 

state Xn(t) = xn conditional on the knowledge that opponents have not stopped before t ≥ 0, 
that is,

Vn(xn, t) ≡ sup
τn∈Sn|τn≥t

E
{
e−r(τn−t)1τn<τ̂[−n] (Xn(τn) − Kn)

∣∣∣Xn(t) = xn, τ̂[−n] ≥ t
}

. (3)

Standard arguments show that Vn(xn, t) is increasing and convex in xn. Moreover, since the 
option to stop is always available, the value function must satisfy Vn(xn, t) ≥ xn − Kn for all 
xn ∈ R. These properties imply that the value function induces an optimal exercise threshold

βn(t) ≡ sup {xn ∈R|Vn(xn, t) > xn − Kn} . (4)

For notation simplicity, let us leave implicit the dependence on the state (xn, t) and write Vn to 
represent Vn(xn, t). Whenever the distribution of τ̂[−n] is absolutely continuous, its hazard rate, 
λn, defines the equilibrium defeat rate of Player n and the associated Hamilton-Jacobi-Bellman 
(HJB) equation is

rVn = max

{
μn

∂Vn

∂xn

+ 1

2
σ 2

n

∂2Vn

∂x2
n

+ ∂Vn

∂t
+ λn(t) (0 − Vn) , r(xn − Kn)

}
. (5)

In other words, λn(t) is the arrival rate of the end of the game induced by the equilibrium exercise 
from any of the opponents of Player n, conditional on the game not having ended. The first term 
inside the maximization is the value of continuation and the second one represents the value 
from current exercise. On the former, one can notice, in order, the effects from the drift in the 
process Xn(t), the volatility, the time dependence, and the possibility of the game ending with 
defeat, which induces a instantaneous jump to zero in the continuation value. Notice that all the 
information about opponents that is necessary to solve one’s optimization problem is summarized 
by the function λn. Also, the time dependence of the value function originates exclusively from 
the defeat rate: whenever λn is constant, the value function is stationary.

Note that, in order for the HJB to be well-defined in a classic sense, the value function Vn

must be smooth enough. If these conditions hold, the HJB equation is solved as a free-boundary 
problem of the partial differential equation (PDE)

[r + λn(t)]Vn = μn

∂Vn

∂x
+ 1

2
σ 2

n

∂2Vn

∂x2 + ∂Vn

∂t
, (6)

on the region xn < βn(t), with free-boundary conditions given by

Vn(βn(t), t) = βn(t) − Kn (7)

and

∂Vn(xn, t)

∂xn

∣∣∣∣
xn=βn(t)

= 1, (8)

where βn(t) is a free-boundary, which might depend on t . Equation (7) represents the value-
matching condition at the boundary, and Equation (8) is the smooth-pasting condition. To pro-
vide a formal representation result, let us say that a value-threshold pair (Vn, βn) is smooth if 
Vn : R × [0, ∞) → R and βn : [0, ∞) → R are continuously differentiable functions every-
where, and Vn is twice continuously differentiable in space whenever xn 
= βn(t). Then, we have 
the following:
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Proposition 1. For each n ∈ N , let (Vn, βn) be a smooth value-threshold pair and let τ̂n be a 
Fn−stopping time.

i) Suppose that (τ̂1, ..., τ̂N ) is an equilibrium that induces (Vn, βn)n∈N through Equations (3)
and (4). Then, for each n ∈ N , the distribution of τ̂[−n] has a continuous hazard rate λn, and 
(Vn, βn) solves the free-boundary problem posed by Equations (6), (7), and (8) given λn.

ii) Suppose that τ̂n is the first-passage time of Xn through βn. Then, the random time τ̂[−n]
has a continuous hazard rate λn. Moreover, if the pair (Vn, βn) solves the free-boundary 
problem posed by Equations (6), (7), and (8) given λn, for each n ∈ N , then (τ̂1, ..., τ̂N ) is 
an equilibrium.

Note that Proposition 1 only concerns equilibria displaying enough smoothness. As we will 
see in Section 3.4, the class of such equilibria includes all stationary equilibria. It is currently 
an open question whether there exists an equilibrium that induces a value-threshold pair that 
fails to be smooth. The key step to establish the second part of the proposition is the verification 
argument provided by Lemma 2 in the appendix.

3. Main results

3.1. Bounds on exercise thresholds

It is natural to expect the optimal behavior of a competitive player to lie somewhere between 
the behavior of a monopolist, who does not face the threat of any possible preemption, and 
the behavior under the most extreme form of competition, in which any positive NPV option 
is instantly exercised. These intuitive bounds imply direct restrictions on equilibrium exercise 
thresholds and exercise times. Proposition 2 below establishes these bounds in any equilibrium 
in threshold strategies by eliminating dominated strategies.

To formally state the result, define individual specific constant thresholds β
n

≡ Kn and βn ≡
Kn + 1/ξn, where

ξn ≡ 1

σ 2
n

(√
μ2

n + 2σ 2
n r − μn

)
.

Here, β
n

represents the perfectly competitive zero NPV threshold and βn the stationary threshold 
that prevails for the optimal exercise of a monopolist. The number ξn is the positive root of 
(1/2)σ 2

n ξ2 +μnξ − r = 0, the characteristic polynomial associated with the ordinary differential 
equation that describes the monopolist’s value function in the continuation region.

Using these thresholds, we define stopping times τn ≡ inf
{
t > 0

∣∣∣Xn(t) ≥ β
n

}
and τn ≡

inf
{
t > 0

∣∣Xn(t) ≥ βn

}
, which represent the random times for the first crossing of the lowest 

(most aggressive) zero-NPV threshold and the (least aggressive) monopolistic threshold. The 
next result shows that the ranking of the two constant thresholds is translated to these stopping 
times and, more importantly, that these stopping times bound threshold strategies.

Proposition 2. Let (τ̂1, ..., τ̂N ) be an equilibrium with associated exercise thresholds (β1, ..., βN), 
following Equation (4). Then, τn ≤ τ̂n ≤ τn and β

n
≤ βn ≤ βn for every player n ∈ N .

Proposition 2 is important for constraining possible equilibrium exercise thresholds and stop-
ping times. It is especially useful in describing the long-run properties of the game, as the limited 
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amount of rationality imposed by the bounds above is sufficient to pin down the asymptotic be-
havior of the rate of arrival of defeat. In fact, we provide a convergence result in Section 3.5. 
However, before focusing on the limit, we study how conditional belief distributions and the 
dynamics of competition evolve in this setting.

3.2. Equilibrium exercise densities and belief evolution

To characterize equilibria, we first resort to an intermediate result that describes the evolution 
of a Brownian motion density when subject to a given absorbing boundary, βn. This result is 
directly related to the distribution of players’ stopping times and is important for characterizing 
equilibrium beliefs about conditions of opponents and the likelihood of their exercise.

We denote the density of the current state for paths that have not previously hit the boundary 
by fn :R ×R+ → R+, so that fn(xn, t) is the density at payoff state xn and time t . The evolution 
of this density is described by the following standard Kolmogorov forward equation

∂fn

∂t
= −μn

∂fn

∂xn

+ 1

2
σ 2

n

∂2fn

∂x2
n

, f or xn < βn(t). (9)

On the left-hand side, we have the time evolution of the density at a state (xn, t). The first 
term on the right-hand side describes how a drift imposes a lateral shift in the density: whenever 
∂fn/∂xn > 0 (∂fn/∂xn < 0), a given state xn loses (gains) density in proportion to the drift 
μn. The second term originates from the volatility in process Xn, which diffuses mass over 
neighboring payoff states as time passes.

Importantly, this density does not integrate to one, but only to the probability that the state has 
not yet crossed the boundary βn up to time t . That is,

βn(t)∫
−∞

fn(xn, t)dxn = Pr {Xn(s) < βn(s),∀s ≤ t} = 1 − �n(t),

where �n(t) ≡ Pr {∃s ≤ t, Xn(s) ≥ βn(s)} is the cumulative distribution of the exercise by Player 
n, that is, the distribution of the first-passage time of Xn through the boundary βn. Additionally, 
let γn be the exercise density of Player n (i.e. the density of the first-arrival time of the pro-
cess Xn at the boundary βn). It is well-known that this density exists whenever the boundary is 
continuously differentiable.8

Agents share independent common priors over their initial conditions. Let f 0
n (xn) denote the 

prior’s generalized density over the starting point of player n (accommodating any mass points 
using Dirac’s delta function). This density serves as the initial condition for Equation (9), so

fn(xn,0) = f 0
n (xn). (10)

Given that βn works as an absorbing boundary, the density vanishes at that boundary, implying 
the following boundary condition for the PDE in Equation (9):

fn(βn(t), t) = 0. (11)

8 See Lehmann (2002) for general results relating the degree of smoothness of the absorbing boundary, βn , with that 
of the absorbing density, γn .
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We use Equations (9) through (11) to characterize the probability distribution of the state, 
Xn(t), and the exercise density γn. Indeed, Equations (9) and (11) imply that the following 
auxiliary condition is satisfied9 at the boundary,

γn(t) = −1

2
σ 2

n

∂fn(βn(t), t)

∂xn

. (12)

This shows that the instantaneous absorption intensity at time t is governed by the strength of the 
diffusion effect and also by the slope of the density at the boundary. The intuition for this is the 
following: The more mass is present near the boundary (which increases with the absolute value 
of the slope of the density), the more mass hits it in the immediate future; also, the more random-
ness (higher σ 2

n ) in the environment, the more movement this mass experiences and the larger 
is the induced absorption. In Appendix B.1, we obtain and interpret an integral representation 
to this backward-looking system. We use it later in the algorithm that computes non-stationary 
equilibria in Section 4.

Before proceeding, let us use this system for characterizing the evolution of beliefs about a 
player’s state, conditional on absence of exercise by this player. These conditional beliefs are 
central to the construction of stationary equilibria of Section 3.4.

For that purpose, notice first that, while opponents do not observe the private information of 
Player n, they learn something from the absence of previous exercise. For instance, had a path 
ever been close to the boundary in the past, it would have been likely to cross it. So, the absence 
of a previous defeat conveys information about the relative likelihood of different paths and, 
consequently, about current positions.

Formally, let f̂n :R ×R+ → R+, defined as

f̂n(xn, t) ≡ fn(xn, t)

1 − �n(t)
,

represent the conditional belief density that opponents hold over Player n’s position, Xn(t) ≤
βn(t). We call F̂n(·, t) its cumulative distribution function.

From the evolution of the unconditional belief distribution (Equation (10) and (11)), it follows 
that

∂f̂n

∂t
= −μn

∂f̂n

∂xn

+ 1

2
σ 2

n

∂2f̂n

∂x2
n

+ ηn(t)f̂n, f or xn < βn(t), (13)

with boundary condition f̂n(βn(t), t) = 0 and probability preservation condition 
∫ βn(t)

−∞ f̂n(x, t)dx

= 1.
Here, the rescaling coefficient ηn(t) is the instantaneous arrival rate of Player n’s state to his 

or her boundary βn, the exercise rate of that player, that can be written as

ηn(t) ≡ γn(t)

1 − �n(t)
= −1

2
σ 2

n

∂f̂n(βn(t), t)

∂xn

. (14)

9 A heuristic derivation is the following. Integrate Equation (9) over xn in the region below the boundary. Then, use 
Fn(βn(t), t) = 1 − �n(t) and fn(βn(t), t) = 0 to obtain

d (1 − �n(t))

dt
= 1

2
σ 2
n

∂fn(βn(t), t)

∂xn
.

.
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Equation (14) illustrates an important linkage between the conditional belief distribution and 
the exercise rate.10 The behavior of this conditional belief near the boundary explains the per-
ceived threat of entry. The intuition for the effects of the density’s slope and the volatility of the 
innovations are the same as before. Also importantly, while the unconditional exercise density, 
γn, tends to vanish as time passes, we show in Section 3.5 that ηn tends to a strictly positive limit. 
As a consequence, perceived competition does not vanish.

The evolution of these conditional beliefs is common knowledge. At any moment in time, as 
long as no option has been exercised, one can define a new game, starting from a common prior 

defined over initial positions, 
{
x0
n

}
n∈N

, given by 
{
F 0

n = F̂n (·, t)
}

n∈N
. The equilibrium of this 

game coincides with the continuation equilibrium of the original game. That is, the environment 
is time homogeneous once these conditional beliefs are explicitly accounted for. We refrain from 
this time-homogeneous formulation, since it requires an infinite dimensional state-space encod-
ing players’ beliefs. We work instead with the non-stationary problem, by either bounding or 
fully characterizing the effect of time on player’s payoffs and strategies.

In the next section, we relate the local intensity of defeat every player induces on his or 
her opponents back to the overall intensity of competition perceived by each player, which is 
the single input necessary for the characterization of the value function and optimal exercise 
strategies.

3.3. Defeat rates and optimal policy

A key ingredient in the decision problem of Player n is the perceived arrival rate of his or 
her defeat. In equilibrium, this perception must coincide with the conditional arrival rate of the 
end of the game effectively induced by the opponents of Player n. Note that, since the game 
is over the first time a player exercises an option, we need to find the distribution of the earliest 
stopping time among the opponents of Player n, that is, τ̂[−n] ≡ minm 
=n τ̂m. This random variable 
is characterized by the cumulative distribution function

G[−n](t) ≡ Pr
{
τ̂[−n] ≤ t

}= 1 −
∏
m 
=n

(1 − �m(t)) ,

with the associated density function given by g[−n](t). The equilibrium arrival rate to the defeat 
of Player n, which is essential for the description of Player n’s HJB equation, is

λn(t) ≡ g[−n](t)
1 − G[−n](t)

.

Given independence of the innovations across opponents, the defeat rate of Player n is the sum 
of the hazard rates associated with the conditional distributions of the exercise times of Player 
n’s opponents, that is,11

λn(t) =
∑
m 
=n

ηm(t). (15)

10 Exactly as in Proposition 6, we can solve (13) and obtain an integral representation for the conditional belief and the 
associated arrival rate to the boundary.
11 Notice that λn(t) = − d ln

(
1 − G[−n](t)

)= − d ln
(∏

m
=n (1 − �m(t))
)

=∑m
=n

(
γm(t)

)
.

dt dt 1−�m(t)
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In loose terms, keeping strategies fixed, if one doubles the number of players, the defeat rate of 
any of those would double. In equilibrium, however, players’ strategies respond to a potential 
increased competition. Section 3.5 shows that despite that strategic response, a linearity of the 
defeat rate in the total number of opponents is still true in the limit.

In Appendix B.2, we provide integral expressions for the threshold and the value function. In 
these formulations, all influence from opponents on each individual problem is summarized by 
an effective discount factor, which increments the discount rate (r) with the equilibrium defeat 
rate, following equations (14) and (15).

3.4. Stationary equilibria

In this section, we fully characterize the set of games that admit a stationary equilibrium. As 
we shall see, the existence of a stationary equilibrium requires very specific priors, which we 
explicitly parameterize using the exercise rates of the players.

Moreover, we prove uniqueness: each given game (with a fixed prior) may admit at most one 
stationary equilibrium. The combination of these results allows us to establish a one-to-one cor-
respondence between the set of stationary equilibria (across different games with appropriately 
parametrized priors) and the set of equilibrium exercise rate profiles.

Proposition 3 below, offers the existence result.

Proposition 3. For each vector η ∈ RN , satisfying ηn ∈
(

0, 1
2

μ2
n

σ 2
n

]
for all n ∈ N , there exists a 

prior F 0 and a strategy profile τ = (τ1, ...τN ) such that:

i) The profile τ is a stationary equilibrium of the game under the prior F 0.
ii) For each n ∈ N , ηn is the (constant) hazard rate of the distribution of τn.

The proof of the result is constructive and calls attention to the shape of the prior, F 0, that 
supports this stationary equilibrium and the strategy profile, τ , that implements it. First, given 
constant exercise rates and Equation (15), defeat rates are also constant and satisfy

λn (t) = λn ≡
∑
m 
=n

ηm. (16)

Second, with constant defeat rates, each player faces a textbook optimal stopping problem 
under a modified discount rate of r + λn. The optimal exercise threshold of Player n ensures 
value matching and smooth pasting and is given by

βn(t) = βn ≡ Kn + 1

ξn

, (17)

while the associated value function is

Vn (xn, t) = V n (xn) ≡
{

xn − Kn , forxn ≥ βn

eξn
(
xn−βn

)
, forxn < β

, (18)

ξn n
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where ξn ≡
(√

μ2
n + 2σ 2

n

(
r + λn

)− μn

)
/σ 2

n .12

Constant exercise rates impose that the cumulative distribution of exercise is of the particular 
form �n (t) = 1 − e−ηnt . In the stationary equilibrium, �n is also the distribution of the first-
passage time of Player n’s state through the constant threshold from Equation (17). These two 
pieces together impose restrictions on F 0

n and lead to the following question: given the exercise 
threshold βn, is there a prior marginal distribution over the initial state of Player n that sus-
tains the particular first-passage distribution �n? We provide an explicit positive answer in the 
following lemma.

Lemma 1. For each ηn ∈
(

0, 1
2

μ2
n

σ 2
n

]
and βn there exists a unique prior marginal distribution F 0

n

(over the initial state Xn (0)) that induces 1 − �n (t) = e−ηnt . The support of F 0
n is (−∞, βn], 

with its density given by

f 0
n (x) = f n (x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2ηne
− μn(βn−x)

σ2
n

sinh

(
(βn−x)

√
μ2

n−2ηnσ2
n

σ2
n

)
√

μ2
n−2ηnσ 2

n

, if ηn < 1
2

μ2
n

σ 2
n
,

2ηne
− μn(βn−x)

σ2
n

βn−x

σ 2
n

, if ηn = 1
2

μ2
n

σ 2
n

(19)

and is the unique solution of the differential equation

0 = −μn

df n

dxn

+ 1

2
σ 2

n

d2f n

dx2
n

+ ηnf n, (20)

that satisfies the boundary condition f n

(
βn

) = 0 and the probability preservation constraint ∫ βn−∞ f n (x) dx = 1.

Lemma 1 consists of two parts. Its first part shows that there is a unique distribution that 
ensures a given constant exercise rate against the constant threshold. Furthermore, its density is 
given in Equation (19).

The second part proves a modified Kolmogorov forward equation that has a straightforward 
economic interpretation and can be useful in other contexts. Equation (20) shows that the distri-
bution characterized in Equation (19), for a given exercise rate ηn, is also the stationary solution 
of the evolution of conditional beliefs (Eq. (13), holding that rate fixed).

There are two consequences. First, the shape of the distribution F 0
n is such that the uninformed 

opponents expect Player n to exercise exactly at the constant rate ηn. Second, after any interval 
of time for which exercise does not occur, the posterior opponents hold over the private state of 
Player n is identical to the prior. Equation (20) offers an alternative characterization of F 0

n that 
sustains the constant exercise rate: one can solve the ordinary differential equation in Eq. (20), 
with the appropriate boundary conditions, and obtain the density of that unique distribution.

So far, our characterization of games admitting stationary equilibria is partial: given an ad-
missible profile of exercise rates, we can specify a game and a stationary equilibrium of this 

12 It is easy to check that the (stationary) HJB equation, rV n = μn
dV n
dxn

+ 1
2 σ 2

n
d2V n

dx2
n

−λnV n , holds in the continuation 

region and that ξn is the single positive root of its characteristic polynomial. Since V n is continuously differentiable, by 
standard verification arguments (or the more general Proposition 1), Equation (18) is the value function for Player n.
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game that implements the prescribed rates. To obtain a complete characterization, we need to 
determine whether there are any games that have stationary equilibria with exercise rates outside 
the range studied. Moreover, ruling out multiple stationary equilibria (for a given game) can also 
strengthen the characterization. The following proposition accomplishes both tasks.

Proposition 4. Suppose that the strategy profile τ is a stationary equilibrium of a game (with a 
fixed prior F 0). Then,

i) τ is the unique stationary equilibrium of the game.

ii) The hazard rate of the distribution of each τn is a constant ηn ∈
(

0, 1
2

μ2
n

σ 2
n

]
.

iii) Each defeat rate is a constant λn, given by Equation (16) for η[−n] above.
iv) Each exercise threshold, βn, and value function, V n, follows Equations (17) and (18), for λn

above.
v) Each prior marginal F 0

n admits density in Eq. (19) with ηn and βn given above.

Proposition 4 concludes our characterization. There is a limited range of exercise rates that 
can occur in a stationary equilibrium of some game. Additionally, stationarity imposes a severe 
consistency requirement on priors. Since priors are predetermined and part of the description 
of any game, only a narrow set of games admits a stationary equilibrium. Uniqueness of the 
stationary equilibrium in any particular game is ensured.

It is possible to take instead an alternative perspective on the previous results. Consider an 
outside observer who knows all the environment of the game, except the prior. From this ob-
server’s perspective, the parameters η can be used to index exercise thresholds in Equation (17), 
then priors with Equation (19) and, as a consequence, fully describe a family of games and their 
associated stationary equilibria. Without knowledge of the prior, multiple equilibrium exercise 
rates can be rationalized for each player.

In this sense, the strongest prediction this observer can make is the existence of an upper bound 

on possible stationary exercise rates of Player n, given by η∗
n = 1

2
μ2

n

σ 2
n

. We call these maximal rates 
canonical. In the next section, we show that the significance of canonical exercise rates extends 
beyond stationary equilibria: they are the long-run limit equilibrium exercise rates of a large and 
economically relevant set of games.

3.5. The long-run equilibrium behavior

In this section, we analytically characterize the long-run properties of equilibrium dynam-
ics. Our main result shows that, under a differentiability assumption, equilibrium behavior and 
underlying beliefs converge toward a very particular steady state.

We say that the distribution of a random variable is canonical (for Player n) if it satisfies Equa-

tion (19) for the canonical rate (η∗
n = 1

2
μ2

n

σ 2
n

) and the location β∗
n that characterizes the best reply to 

opponents’ canonical exercise rates (according to Eqs. (16) and (17)). We denote this distribution 
by F ∗

n . The canonical prior F ∗ is the joint distribution of the N independent random variables 
defined in this way, each describing the initial position of a player. Let also 

{
V ∗

n ,β∗
n, λ∗

n

}
n∈N

de-
note the recursive representation of the unique stationary equilibrium associated with this prior. 
Notice that among all stationary equilibria (across different games, induced by the particular pri-
ors characterized in the previous section), this equilibrium features the highest possible exercise 
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rates. Also, among all distributions consistent with stationary beliefs (i.e., distributions that sat-
isfy that Eq. (19) for some ηn ∈ (0, η∗

n

]
), the canonical distribution for Player n has the fastest 

decay in its left tail.
In what follows, we define a distribution H :R → [0,1] to have fast decay (for Player n), if

0∫
−∞

e

μn

σ2
n

|x| |x|H (dx) < +∞.

Every distribution with a left tail that vanishes strictly faster than the canonical distribution (of 
Player n) satisfies this requirement. Important examples include degenerate distributions repre-
senting mass points (i.e., a commonly known initial conditional Xn (0) = x0

n), any distribution 
with bounded support, and normal distributions.

To obtain our main convergence result, we restrict the prior beliefs in the following way:

Assumption 1. For every n ∈ N , the prior marginal distribution F 0
n is a (not necessarily strict) 

convex combination of the canonical and some fast-decay distribution.

We also impose the following smoothness requirement on equilibrium defeat rates.

Assumption 2. For every n ∈ N , the defeat rate λn is continuously differentiable on (0, +∞)

with a uniformly bounded derivative.

This assumption is trivially satisfied for stationary equilibria. The simulations in the next 
section suggest a wider validity. However, formally establishing sufficient smoothness of the 
distribution of equilibrium stopping times or finding a weaker alternative are open issues for 
future research.13

We are then able to provide an explicit description of asymptotic equilibrium behavior in 
terms of the exogenous parameters of the model.

Proposition 5. Let {Vn,βn,λn}n∈N be a recursive representation of an equilibrium satisfying 
Assumptions 1 and 2. Then, for every player n ∈ N , we have

i) Values converge uniformly: limt→+∞ supx∈R |Vn(x, t) − V ∗
n (x)| = 0.

ii) Exercise thresholds converge: limt→+∞ βn(t) = β∗
n .

iii) Defeat rates converge: limt→+∞ λn(t) = λ∗
n.

iv) Conditional beliefs converge: limt→+∞ F̂n(x, t) = F ∗
n (x) for all x ∈ R and n ∈ N .

Proposition 5 establishes convergence and reveals the long-run determinants of equilibrium 
strategies and beliefs. It shows that, for a large set of priors, the importance of initial conditions 
vanishes and the equilibrium of the game converges to the stationary equilibrium associated 
with the canonical prior. Importantly, given that conditional beliefs fully summarize all public 

13 On the one hand, the distribution of any equilibrium stopping time is continuous (this result is available upon request). 
On the other hand, the key difficulty for a general smoothness proof is that the best reply induces distributions that fail 
Assumption 2. This is the case, for example, when an opponent exercises with positive probability at a given t > 0, a 
behavior that is itself inconsistent with equilibrium.
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information about the past, we can say that their convergence is driving the convergence of the 
exercise rates and value functions.14

Proposition 5 has three important consequences. First, it illustrates the particular importance 
of the canonical prior. In the previous section, we characterized a large family of games and their 
stationary equilibria. The priors that supported each of these equilibria were all very particular 
and there was no guidance on their relative importance. Proposition 5 shows that the canonical 
case is the attractor of a large class of economically important games. This class plausibly ex-
hausts all cases of interest for applied work, since priors that do not satisfy Assumption 1 require 
large probabilities of extremely negative initial conditions.

Second, numerical approaches to equilibrium characterization, as we implement in the next 
section, typically require a finite grid and the use of an artificial boundary condition after a 
sufficiently large horizon. Proposition 5 obtains the infinite horizon limit, which offers a natural 
terminal condition for an approximation.15

Last, given that the steady state admits a closed form, we can establish the following set of 
comparative statics.

Corollary 1. An increase in μn or a decrease in σn leads to:

i) A decrease in limit values for all opponents m ∈ N \ {n} and a corresponding decrease in 
their limit optimal exercise thresholds β∗

m.
ii) A first-order stochastic dominance increase in the limit conditional beliefs about position 

Xn(t).
iii) No change in the shape of limit beliefs about any Xm (t) for m 
= n, but a first-order stochas-

tic dominance decrease, due to the location change of β∗
m.

iv) An increase in the limit arrival rate of the end of the game, with an increase in the relative 
likelihood of exercise by player n.

Additionally, either an increase in μn or in σn leads to an increase in Player n’s own limit value 
function and exercise threshold, without any change in defeat rate.

Corollary 2. The inclusion of an opponent N +1, with payoff drift μN+1 > 0 and volatility σN+1
leads to

i) A decrease in limit values for all players n ∈ {1, ...,N} and a corresponding decrease in 
their limit optimal exercise thresholds.

ii) An increase in the limit hazard rate for the end of the game of 1
2

(
μN+1
σN+1

)2
.

These results have consequences for the industry-wide limit dynamics. Consider, for instance, 
two industries with different innovation processes. The industry defined by the faster innovation 
processes is represented by a higher μn for all players. This industry becomes more competitive 

14 As discussed previously, conditional beliefs can be used as the public state in a time-independent recursive represen-
tation of equilibria.
15 The quality of the numerical approximation depends on the choice of the artificial terminal horizon and the speed of 
convergence. Our results in the next section illustrate the importance of the use of a long horizon, as transitional dynamics 
are slow.
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in the long run, effective discount rates are higher, and products are brought to market under 
lower profit expectations. As the value functions are forward looking, that increased competition 
is also propagated toward the transition phase, as we will study in the next section. A similar 
conclusion follows from comparing industries with different number of participants, as identified 
in Corollary 2.

The consequences of increased volatility of a given player n are more subtle. Higher volatil-
ity increases the option value of waiting, raising exercise thresholds and payoffs for that player. 
The consequences over opponents tend to be ambiguous. In principle, payoff innovation is less 
predictable. From the interior of the region in which player n is willing to wait, larger volatility 
makes him or her more likely to obtain a large sudden improvement in expected profits, lead-
ing to exercise. More formally, Equation (14) shows that for a given conditional belief about 
the state of this player and boundary, exercise rates increase when volatility increases. On the 
other hand, however, there are two forces. First, the agent becomes less aggressive in exercise 
thresholds. Second, the belief updating process changes. Absence of exercise informs opponents 
that high payoff states were unlikely, as they could have easily led to the counterfactual end 
of competition. In the limit, the dominant force is this, as more volatility decreases the station-
ary belief that opponents hold about Player n’s position in a first-order stochastic dominance 
sense.

Indeed, increases in the uncertainty about payoff innovations tend to stir competition in the 
short run, while discouraging it in the long run. This is due to the offsetting nature of the effects 
of the increased likelihood of breakthroughs, in one direction, dominating in the short run, and 
information updating about the state of opponents, in the opposing direction, which dominates 
in the long run. We further extend this analysis and study with additional dynamic aspects of 
competition in the next section.

4. Simulations

In this section, we present results from simulations and comparative dynamics. First, we com-
pute the equilibrium for a simple symmetric two-player set-up. We normalize the payoff units to 
set the exercise cost to unity, that is, Kn = 1, and the initial condition to x0

n = 0 for all players. 
To provide a clear meaning to time, we set the reference time unit to a year and the interest rate 
r = 2%. We then choose the values of the drift and volatility parameters of the stochastic payoff 
process to match two moment conditions. The first condition is that in half of the possible histo-
ries, the firm should cross the zero NPV threshold (Xn(t) = Kn) within the first two years. The 
second condition is that out of the remaining histories, half should cross it within the next four 
years. We obtain μn = 0.04 and σn = 0.96.16

Fig. 1 plots the symmetric equilibrium exercise thresholds and the exercise rates. The dotted 
lines indicate the asymptotic limit of the variable on display, while the arrow on the right-hand 
axis marks the distance to that limit at a long eighty-year horizon. A few features are noticeable.

First, both objects display economically meaningful dynamics. At its peak, competition in-
duces a defeat rate of almost 2.5%, which means that the effective instantaneous discount rate 
can be more than doubled relative to the baseline case in which competition is absent. Notice that 
this magnitude should get significantly larger in the presence of more opponents, a fact we ex-

16 The evolution of the logarithm of the value function, which is comparable to an asset return, has an exposure to 
innovations of ∂Vn(x,t)/∂x

σndZn(t). Near the exercise threshold, that value is approximately 1 σn .

Vn(x,t) 4
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Fig. 1. Baseline Equilibrium Characterization. Symmetric parameters set to Kn = 1, x0
n = 0, μn = 0.04, and σn = 0.96. 

The arrows and dotted lines mark asymptotic limits.

plore soon. The limit value of the defeat rate is to the order of 10−3, so a pure study of the steady 
state would have concluded that competition is irrelevant quantitatively. While this depends on 
the drift and volatility of the calibration, it holds true for any choice that delivers projects with a 
significant probability of not succeeding within a window of 5 or 10 years.

Second, as the value function is forward-looking, the exercise threshold anticipates changes 
in the defeat rate, hitting its most aggressive point of approximately βn(t) = 4.8 before the defeat 
rate reaches its peak. It then recedes toward the steady-state value of limt→+∞ β(t) = 6.75. For 
these baseline parameter values, the zero-NPV threshold is given by β = 1, while the monopoly 
boundary is β = 6.9. We can see then that the variation in the equilibrium exercise thresholds over 
time covers almost a third of that range. Therefore, while it is well-known that uncertainty can 
create a large distance between zero-NPV rules and optimal exercise, this simulation exercise 
shows this gap can be greatly reduced in the presence of short-term competition, while still 
converging close to its maximum in the long run.

Third, another striking feature of the simulation is that convergence toward the steady state is 
very slow. In the later phase, defeat rates display half-lives that are more than decades long. While 
the speed of convergence varies with parameters of the environment, this conclusion appears 
robust in additional explorations. There is still a meaningful effect of competition decades after 
its peak of intensity.

Next, we investigate and discuss comparative statics on the simulated model, with particular 
emphasis on heterogeneity and distinctions between partial effects, when opponents strategies 
are kept fixed, and the full equilibrium characterization.
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Fig. 2. Equilibrium comparison with an initial lead for Player 1. The arrows and dotted lines indicate asymptotic limits.

4.1. An initial lead

We now study the case in which Player 1 has a technological lead. She starts at x0
1 = 0.5, half 

the original distance from zero net present value. The opponent, Player 2, still starts at x0
2 = 0. 

The initial lead of Player 1 is common knowledge to both players, and all other parameters are 
kept the same as in the previous section. Fig. 2 plots the results.

A lead for Player 1 would, all else held constant, increase the defeat rate imposed on Player 
2. If Player 2 did not change his or her exercise threshold, Player 1 would still be subject to the 
same defeat rates and would not have any incentives to change her exercise threshold, which 
does not depend on the initial condition. Nevertheless, as a consequence of the improved initial 
condition, he or she would still be more likely to hit that same threshold earlier. In the presence 
of a more likely early defeat, Player 2 has incentives to become more aggressive in the short 
run, increasing the likelihood of an early exercise. Player 1 replies to this with a more aggressive 
(lower) exercise threshold.

The overall consequences for the equilibrium under the new initial conditions can be seen 
in Fig. 2. In the equilibrium with a initial lead for Player 1, both agents behave more aggres-
sively early on. Exercise rates increase and make the immediate end of the game more likely. 
Interestingly, most of the quantitative response of the equilibrium thresholds is concentrated on 
Player 2, since his or her defeat rate respond more strongly. The effects of the initial lead even-
tually vanish for both players, since the steady state does not depend on this particular initial 
condition.
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Fig. 3. Equilibrium comparison when Player 1 is subject to larger expected payoff increments. The arrows and dotted 
lines indicate asymptotic limits.

4.2. Faster product development

We now suppose that one player, Player 1, has faster payoff improvements than Player 2. In 
particular, μ1 = 0.08 is twice the benchmark rate, while μ2 = 0.04. This represents the case in 
which a leader is expected to reach any given level of development faster.

Given that Player 1 is subject to faster payoff improvements, he or she always has weakly 
higher incentives to wait instead of exercising earlier. As a consequence, we can see in the top-left 
panel of Fig. 3 that his or her optimal exercise threshold becomes uniformly less aggressive 
(higher). Two opposing forces are at play: Faster improvements increase the option value and 
induce the firm to be more conservative in the entry decision, but they also make sure any possible 
exercise trigger is reached earlier. Which of the two forces dominates depends on the horizon 
which is studied. As the top-right panel in Fig. 3 illustrates, in the short run, the consequences of 
a less aggressive exercise behavior dominate. The exercise rate lies below the symmetric original 
equilibrium for about the first ten years. In the long run, however, the effect of faster technological 
progress dominates and Player 1 imposes a more intense competition on Player 2, despite the less 
aggressive exercise policy.

Given this, Player 2 has incentives to behave less aggressively in the short run and more 
aggressively in the future. The first effect is quantitatively very small, while the second is more 
pronounced, as seen in Fig. 3. The equilibrium reduction of his or her threshold, after around year 
7, helps partially offset the weaker deterrence incentives that a higher drift creates for Player 1.
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Fig. 4. Consequences of symmetric doubling of drift in the payoff process, from μn = 0.04 (original equilibrium) to 
μn = 0.08 (new equilibrium). Partial equilibrium refers to a situation in which beliefs about opponents exercise rates are 
kept fixed at the original equilibrium, but the new level for one’s own drift is taken into account. The arrows and dotted 
lines indicate asymptotic limits.

In this case, unlike in the case of a simple initial lead, there are asymptotic effects. The higher 
drift means that, in the limit, Player 1 is more intensely pushed against her threshold. Although 
Player 2 replies with a threshold that converges to a higher value as a response, that has no 
consequences on the defeat rate that she imposes on Player 1 in the limit, which only depends on 
Player 2’s own drift and volatility, not on the level of the asymptotic threshold, as indicated by 
Equation (16).

A similar logic follows if we analyze a situation in which both players have higher drifts. 
This comparative exercise can be used to contrast industries with different innovation dynam-
ics. Fig. 4 illustrates this. The line labeled as partial equilibrium on the left panel studies the 
consequences on a firm’s behavior from taking into account its own higher drift, while not 
internalizing the change in competition. That is, for Player 1, it keeps λ1 (the defeat rate im-
posed by Player 2) fixed. Notice that an increased drift would make this firm less aggressive, 
as illustrated by the upward displacement of the threshold relative to the baseline (lower drift) 
situation.

In equilibrium, however, despite this less aggressive threshold, the higher rate of innovation 
increases the perceived intensity of competition. This effect, also present in the previous exercise, 
dampens the tendency for less aggressive behavior. The line labeled new equilibrium illustrates 
that industries with higher rates of innovation face higher entry cutoffs.

Section S5, in the Online Supplement, compares industries where product development is 
subject to different levels of risk. Again, the dynamics of competition respond in nontrivial ways: 
a riskier environment corresponds to an enhanced entry threat in the short run, which partially 
offsets the increase in option values generated by the additional uncertainty, but also to a concern 
for preemption that vanishes faster in the long run.
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Fig. 5. The consequences from the increased number of competing players from N = 2 to N = 3. Partial equilibrium 
refers to a situation in which beliefs about the opponent’s exercise policies are kept fixed at the original equilibrium, but 
the increase in the number of competitors is taken into account. The arrows and dotted lines indicate asymptotic limits.

4.3. Increase in number of opponents

Here, we study the consequences of increasing the number of competitors from N = 2 to 
N = 3.

The dashed line in the left panel of Fig. 5 illustrates a myopic approach. In this artificial sit-
uation, a player disregards the change in the strategic exercise behavior of his or her opponents, 
but takes into account that the presence of more players directly implies that the first passage 
through this fixed exercise threshold occurs earlier. Given the independence assumption regard-
ing the payoff increments, the defeat rate for this counterfactual exercise is simply twice the 
original one, as each player now faces twice as many individual opponents. The best reply to that 
belief is to decrease exercise thresholds. Its magnitude is much larger in the long run than in the 
short run, as defeat rates are initially low.

The full equilibrium response is illustrated by the solid lines in Fig. 5. Notice that two effects 
come into play during the transition phase: amplification and anticipation. As players expect 
more intense competition in the future, they respond more aggressively in the present. This ef-
fect in itself increases further current exercise rates, but also propagates back to the previous 
dates. Amplification is noticeable from the fact that the new equilibrium threshold lies below 
the myopic approach, while defeat rates always lie above. Anticipation can be better noticed 
by looking at the troughs in the thresholds and the peaks in the new equilibrium, which occur 
significantly earlier than their myopic counterparts.

5. Additional discussion

In this section, we discuss important extensions and the paper’s connection with a broad liter-
ature on investment in the presence of uncertainty and competition.
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5.1. Relationship with the literature

This paper is related to a growing literature on dynamic contests, competitive real options, 
and R&D studies. In particular, the game we study belongs to the class of optimal-stopping 
games, as initially laid out by Dutta and Rustichini (1993), and the subclass of preemption games, 
notably studied in Fudenberg and Tirole (1985). Our approach can be also applied to closely 
related war-of-attrition and other exit games, once private information is introduced. Laraki et al. 
(2005) contains both a review of applications and equilibrium existence results under complete 
information and continuous time.

Another strand of literature applies game-theoretical insights into a real options framework. 
An early example is Grenadier (1996), who studies real estate market dynamics in a model with 
a single state variable, which all players observe.17 We introduce two novel features into that 
framework. First, each firm is subject to a particular state describing its payoffs if the option 
is exercised. This is a natural assumption for the study of research and product development 
processes, but makes the problem multidimensional. Second, each firm is privately informed 
about the evolution of its own expected payoff, while other firms can only draw some noisy 
inference about that variable.18

The closest paper to this set-up is Hopenhayn and Squintani (2011). As ours, the model they 
study has both private information and one state variable for the payoff of each firm. The key dis-
tinction lies in the stochastic process driving payoffs. Hopenhayn and Squintani (2011) assume 
a nondecreasing process, so that exercise can only become more valuable and, due to increasing 
perceived competition, also more likely as time passes. Our paper is a more direct descendant of 
the traditional investment under uncertainty framework (Mcdonald and Siegel, 1986; Dixit and 
Pindyck, 1994): Payoffs follow a Brownian motion with drift, allowing also for reductions in 
expected profitability.

Importantly, the choice of the stochastic process driving the exercise payoffs is critical for 
the results and has intrinsic economic content. Hopenhayn and Squintani (2011) obtain a degree 
of competition that monotonically increases toward an implicit limit. Intuitively, in a set-up in 
which opponents constantly accumulate discrete breakthroughs, it becomes increasingly more 
likely that the next innovation (even if only marginal) is sufficient to lead to exercise. In the 
setting we study, the equilibrium threat of a competitor’s entry is typically time varying and 
non-monotonic.

As we discussed in the introduction, allowing for bad news about profitability is natural for 
many economic applications. It is also essential for this non-monotonicity. The differences be-
tween the two models are particularly clear when we examine their long-run limits. In Hopenhayn 
and Squintani (2011), a firm that has been engaged in R&D for a sufficiently long period of time 
without releasing a product tends to be perceived by its competitors to be in the strongest possi-
ble position: any new breakthrough leads to an immediate launch. In the set-up we have studied, 
such significant delays are instead rationally interpreted as the consequence of a combination 

17 Similar environments are present in Grenadier (2002) and Weeds (2002). Grenadier (2000) provides a good review 
of prior work.
18 Thijssen (2010) considers multidimensionality without private information. Lambrecht and Perraudin (2003) study 
an environment with a common randomly evolving payoff state and private information regarding a static exercise cost. 
Quah and Strulovici (2013) study an individual optimal stopping problem in the presence of non-stationary discounting. 
Seel and Strack (2013) consider competition in an optimal stopping problem under private information without strategic 
deterrence, i.e., the timing of exercise is not relevant.
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of negative shocks. As a result, firms entertain the possibility that competing products long in 
development are actually far away from profitable release in the near future.

While we contribute to a growing literature on R&D competition, there is a complementary 
literature that focuses on R&D efforts within firms. For instance, Bonatti and Hörner (2011)
study moral hazard in teams, with belief updates about a project’s profitability, while Guo and 
Roesler (2018) introduce endogenous exit and the associated threat of an informed collaborator 
leaving the firm.19

Methodologically, our approach relies on a coupled system of differential equations: a 
forward-looking value function (or equivalently an exercise threshold) and a backward-looking 
evolution of beliefs about opponents. Similar coupled systems, with forward-looking value func-
tions and backward-looking population dynamics, are studied in the growing mean-field games 
literature.20 In particular, Bayraktar et al. (2018) study a R&D tournament with a continuum of 
players and costly efforts. The payoffs depend on the order of completion of a project, where 
completion occurs when the state reaches a fixed level. We see our approach as complementary, 
since we allow firms to choose when to market a product, creating a tension between option val-
ues and deterrence, while Bayraktar et al. (2018) focus on the intensive margin of R&D efforts.

5.2. Extensions

In Appendix C, we briefly cover multiple extensions of the model. We start by formalizing 
how a simple change of variable can be used to deal with an innovation process that follows a ge-
ometric Brownian motion, common in many real option applications. We also discuss how some 
results continue to hold for alternative payoff structures, including a less extreme assumption 
that followers receive some residual payoff and another assumption in which competitors face 
running costs. Last, we discuss the technical challenges in dealing with correlated innovations in 
profitability, which are left for future work.

5.3. Existence, uniqueness, and regularity for arbitrary initial conditions

In Section 3.4, we fully characterize the set of priors which are consistent with stationar-
ity. For each prior in this class, we prove existence and uniqueness of a stationary equilibrium. 
Section 3.5 builds on these results. We show that, for a large class of priors, equilibria that dis-
play differentiable exercise rates converge over time to the stationary equilibrium displaying the 
highest possible intensity of competition. Some open questions remain.

First, existence, uniqueness, and regularity of equilibria remain to be established for arbitrary 
initial conditions.21 Second, it is plausible that each initial condition that does not belong to 

19 Bobtcheff and Mariotti (2012) and Bobtcheff et al. (2016) study environments in which opponents come into play at 
random times, after they are enabled by a seminal technological breakthrough. Whenever active, players decide whether 
to release or delay a new product. Exercise payoffs evolve deterministically at that stage (“maturation”). Hopenhayn 
and Squintani (2015) study optimal policy in a related set up, while Dosis and Muthoo (2019) study competitive exper-
imentation in a two-stage R&D race. By bridging the gap between this growing literature and the standard real option 
approach, where both good and bad news about profitability can be revealed, we facilitate the exploration of a new set of 
interactions between pricing, competition, information, and policy.
20 See, for instance, Lasry and Lions (2007) and Bensoussan et al. (2013). For macroeconomic applications, relying on 
general equilibrium theory interactions, see Achdou et al. (2014).
21 The main difficulty lies in proving the continuity of the distribution of the optimal stopping times with respect 
to opponents’ strategies. One of the reasons is that establishing enough regularity of the optimal stopping threshold 
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the class we have considered (of distributions with bounded support) still converges to a given 
stationary equilibrium within the set we have exhaustively characterized. There is an active liter-
ature in applied probability, including Martinez and San Martin (1994); Martinez et al. (1998), 
that studies this question in non-strategic settings. The complete characterization of the map-
ping from priors to limit behavior in strategic settings, as ours, is a challenging topic for future 
research.

5.4. Conclusion

Our model naturally extends the canonical investment under uncertainty setting, incorporating 
private information and strategic preemption. We explicitly characterize stationary equilibria, 
with a particular focus on the intensity of competition that players perceive, given by a defeat rate. 
We also develop methods for describing the dynamics of conditional beliefs about opponents’ 
conditions, optimal exercise strategies, and market-entry rates.

Due to their generality, these methods promise to shed light on a large class of games com-
bining evolving information and belief dynamics. We keep the main set-up particularly simple, 
abstracting from important issues like price competition, the optimal intensity of R&D efforts, 
and strategic information revelation. We believe some extensions can fruitfully address questions 
related to optimal technological development policies and the value of information in technolog-
ical competition.22

We also develop an algorithm and illustrate the applied potential from this framework by 
performing equilibrium computation and comparative dynamics exercises. For example, from a 
simple project valuation perspective, as the intensity of competition significantly changes over 
time and transition dynamics are very long lived, any analysis based on ad hoc effective discount 
rates can lead to large valuation errors.

Appendix A. Proofs omitted from the main text

The following verification argument is used in the proof of Proposition 1:

Lemma 2. If (Vn, βn) is a smooth value-threshold pair that solves the free-boundary problem 
given by Equations (6), (7), and (8), then

Vn(xn, t) = sup
τn∈Sn

Jn(τn, τ−n|t)

for all τ−n ∈ S−n that induce the defeat rate λn(t). Moreover, the first-passage time through βn

is an optimal stopping time.

for a general non-stationary problem is hard, if not impossible. If, to tackle that issue, restrictions are imposed on the 
distribution of players’ optimal stopping times, then the difficulty lies in establishing that the best reply is consistent with 
these additional restrictions.
22 More generally, our model is a particular case in a larger class, where population dynamics and optimal stopping 
interact. Other instances involve equilibrium price resetting under menu costs, optimal contracting with a population of 
agents, and industry dynamic models with costly entry and exit. The out-of-steady-state behavior of most of these models 
remains largely to be explored, for instance.
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Proof. The proof is an application of Theorem 1 in Brekke and Øksendall (1991). To apply the 
result, define hn(xn, t) ≡ e−rt−∫ t

0 λn(s)dsVn(xn, t). Adopting the shorthand hn ≡ hn(xn, t), it is 
easy to verify that

μn

∂hn

∂xn

+ 1

2
σ 2

n

∂2hn

∂x2
n

+ ∂hn

∂t

= e−rt−∫ t
0 λn(s)ds

(
μn

∂Vn

∂xn

+ 1

2
σ 2

n

∂2Vn

∂x2
n

+ ∂Vn

∂t
− [r + λn(t)]Vn

)
= 0,

for all xn < βn(t) and t > 0. Moreover, hn(βn(t), t) = e−rt−∫ t
0 λn(s)ds(βn(t) − Kn) and 

∂hn(xn,t)
∂x

|x=βn(t) = e−rt−∫ t
0 λn(s)ds . Condition 2 for Lemma 1 in Brekke and Øksendall (1991)

holds, as Xn is uniformly elliptic and the open set D ≡ {(xn, t) ∈ R× [0,∞]|xn < βn(t), t > 0}
has a continuously differentiable boundary in R × (0, ∞) with a zero Lebesgue measure spa-
tial boundary for each fixed t . Moreover, since μn > 0 and τ̂n ≤ τn by Proposition 2, the 
first-exit time from D is a.s. finite. It thus follows from Theorem 1 in Brekke and Øksendall 
(1991) that hn(xn, t) = supτn∈Sn

e−rt−∫ t
0 λn(s)dsJn(τn, τ−n|t) and that this value is obtained 

by the first-passage time through βn. We conclude that Vn(xn, t) = ert+∫ t
0 λn(s)dshn(xn, t) =

supτn∈Sn
Jn(τn, τ−n|t). �

Proof of Proposition 1. For Part 1, Theorem 5 in Lehmann (2002) implies that the distribution 
of τ̂n has a continuous density for each n ∈ N . The existence of continuous hazard rates thus 
follows from Equation (15). The smoothness assumption on Vn directly implies the boundary 
conditions given by Equations (7) and (8). The validity of the HJB equation in the continuation 
region is a standard application of Itô’s lemma.

As for Part 2, existence and continuity of the hazard rates (λ1, ...λN) follow from the argument 
in Part 1. By Lemma 2, each first-passage time τ̂n is a best-response to τ̂−n for player n ∈ N after 
any of his or her private histories. This means that 

(
τ̂1, ..., τ̂N

)
is an equilibrium. �

Proof of Proposition 2. In the supplementary material, we prove that equilibrium value func-
tions are increasing and convex in the state. These basic properties imply that a value matching 
condition holds, so that Vn and βn satisfy Vn(βn, t) = βn − Kn and

βn(t) = inf {xn ∈ R|Vn(xn, t) ≤ xn − Kn}
It follows that βn(t) ≤ βn. Suppose, seeking a contradiction, that βn(t0) < β

n
for some t0 ∈

R+. Then, Vn(βn(t0), t0) = βn(t0) − Kn by value matching. Because Kn = β
n

> βn, we have 
V (βn(t0), t0) < 0. This cannot happen in equilibrium since never exercising (i.e. τ̂n = +∞) is a 
feasible strategy which guarantees a zero payoff. Once we have β

n
≤ βn ≤ βn, the inequalities 

for the stopping times are immediate. �
Proof of Proposition 3. The proof is constructive. Given, η = (η1, ..., ηN), Equation (17) de-
fines exercise thresholds β = (β1, ..., βN). For each n ∈ N , Lemma 1 provides the unique 
prior marginal distribution F 0

n that induces ηn as the hazard rate of the first-passage time of 
Xn through β . Fix the prior at F 0 = (F 0

1 , ..., F 0
N) and let τn be the first-passage time of Xn

through βn (using F 0
n as the distribution of Xn(0)). It remains to verify that τ ≡ (τ1, ..., τN)

is a stationary equilibrium. For each n ∈ N , using the value function defined in Equation (18), 
we can construct a value-threshold pair (Vn, βn) satisfying Equations (6), (7), and (8) given the 
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(constant) defeat rate λn defined in Equation (16). By the second part of Proposition 1, τ is an 
equilibrium in threshold strategies. In fact, since the exercise thresholds used in the construction 
are constant, τ is a stationary equilibrium. �
Proof of Lemma 1. It is easy to show that the proposed prior marginal distribution, Fn, induces 
the desired absorption ηn and that its density, f n, satisfies Equation (20) as well as the boundary 
condition f n(βn) = 0. It is also relatively straightforward (albeit a bit tedious) to show that no 
other probability density over 

(−∞, βn

]
solves Equation (20) as well as the boundary condition 

f n(βn) = 0.
It remains to establish that no other prior marginal distribution induces the desired absorp-

tion. For this, we adapt Proposition 1 in Jackson et al. (2009). We are interested in a distribution 
over 

(−∞, βn

]
, with density g, such that the absorption probability over the interval [0, t] is 

�n (t) = 1 − e−ηnt . This is equivalent to the absorption density satisfying γn (t) = ηne
−ηnt . 

Notice that the Laplace transform of γn is Lγn (s) ≡ ∫∞
0 e−st γn (t) dt = (ηn + s)−1ηn. With 

a constant absorption boundary at βn, drift μn, and volatility σ 2
n , the first-passage time for a 

fixed initial condition x0
n has density
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)
=
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n

)
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and moment generating function
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The first-passage time, given the initial density g, satisfies

γn (t) =
βn∫

−∞
γn

(
t |x0

n

)
g
(
x0
n

)
dx0

n.

Applying the Laplace transform to the RHS, we obtain
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We change spatial variables, taking y ≡ σ−1
n

(
βn − x0

n

)
and defining ν (y) ≡ σ−1

n g
(
βn − σny

)
, 

so that
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Lγn (s) = σ 2
n
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0

e
−
(√

μ2
n

σ2
n

+2s− μn
σn

)
y
ν (y) dy ≡ σ 2

nLν (w) ,

where Lν is the Laplace transform of ν and w ≡ √
μ2

n/σ
2
n + 2s − μn/σn. Solving for s

to invert this last change of variables, we obtain s = 1
2w2 + μn

σn
w. Thus, we can write 

Lγn

(
1
2w2 + μn

σn
w
)

= σ 2
nLν (w) and, therefore, we have

Lν (w) = 1

σ 2
n

(
ηn

ηn + 1
2w2 + μn

σn
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)
. (22)

Note that, using f n as our g and defining ν (y) ≡ σ−1
n f n

(
βn − σny

)
, we obtain the transform

Lν (w) ≡
∞∫

0

e−wyν (y) dy = 1

σ 2
n

(
ηn

ηn + 1
2w2 + μn

σn
w

)
= Lν(w).

By the invertibility of the Laplace transform, this implies that ν = ν. Undoing the spatial change 
of variables, we obtain g = f n, proving the claim. �

It is easy to verify that, if the defeat rate perceived by a player is constant, then his or her 
optimal exercise threshold is constant. The following lemma establishes that the converse is also 
true.

Lemma 3. If the optimal exercise threshold for Player n is a constant βn when the defeat rate is 

λn, then λn(t) = λn ≡ μn

(
βn − Kn

)−1 + 1
2σ 2

n

(
βn − Kn

)−2 − r for all t ≥ 0.

Proof. Assume that the constant βn is the optimal exercise threshold for Player n when his or her 
perceived defeat rate is λn. We claim that λn (t) = λn for all t ≥ 0. Since the exercise threshold 
is constant, the value function can be written as:

Vn (xn, t) = (βn − Kn
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)
ds,

where we define the effective discount factor ρn(t + s, t) ≡ ∫ t+s

t
[r + λn(h)]dh and γn(s|xn,

0, βn) is the density of the first-passage time through βn at time s starting from state xn at 
time 0. This implies that
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Furthermore, the exercise threshold needs to be optimal against uniform perturbations on βn. 
Using the translation invariance γn

(
s|xn,0, βn

)= γn

(
s|xn − βn,0,0

)
, we obtain
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− (βn − Kn

) ∞∫
0

e−ρn(t+s,s)
∂γn

(
s|xn,0, βn

)
∂xn

ds = 0.

It follows that Vn (xn, t) = (βn − Kn

)
∂Vn(xn, t)/∂xn for all xn < βn. Differentiating further and 

substituting, we obtain Vn (xn, t) = (βn − Kn

)2
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n . The HJB equation then yields
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Solving for λn(t), we obtain λn (t) = λn + ∂Vn(xn,t)
∂t

1
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, which is valid for all xn < βn. Taking 

the limit as xn ↑ βn, we obtain
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as claimed. �
Proof of Proposition 4. We will first establish Properties ii to v, and then Property i. Let τ be a 
stationary equilibrium. Then, by definition, each τn is the first-passage time through some con-
stant exercise threshold, βn. By Lemma 3, the defeat rate of Player n must be the constant λn ≡
μn

(
βn − Kn

)−1 + 1
2σ 2

n

(
βn − Kn

)−2 − r . Recall that, in equilibrium, λn(t) =∑m 
=n ηm(t) for 
n ∈ N . Independently of whether the equilibrium is stationary or not, this system of linear equa-

tions can be explicitly inverted to yield ηn(t) = (N −1)−1
[∑
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]
. It follows that 

the equilibrium exercise rates must also be constant: ηn(t) = ηn ≡ (N − 1)−1
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]
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To establish ηn ∈
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]
, note that Equation (22) in the proof of Lemma 1 can be formally 

obtained for any ηn ∈ R. Inverting the Laplace transform in this expression, we obtain
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where y ∈ [0, +∞). Note that ηn < 0 is inconsistent with equilibrium, as there is no mass infu-
sion in this model, only absorption. Also, if ηn = 0, we have g
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(
σ−1

n (βn − x0
n)
)= 0

for all x0
n ∈ (−∞, βn], which is not a proper probability density. Moreover, if ηn > 1

2
μ2

n

σ 2
n

, we 

can define A(y) ≡ 2ηne
− μn

σn
y

σn

√
2ηnσ 2

n −μ2
n

∈ [0, +∞), B ≡
√

2ηnσ 2
n −μ2

n

σn
∈ [0, +∞) and write the expres-

sion above as ν (y) = A(y)(1/i) sinh (Byi) = A(y) sin(By). It follows that ν (y) is negative 
whenever sin(By) is negative. As a result, g

(
x0
n

)= σnν
(
σ−1

n (βn − x0
n)
)

is negative over a set of 
x0
n ∈ (−∞, βn] that has positive Lebesgue measure and, thus, cannot be a probability density. We 
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conclude that, if ηn ≤ 0 or ηn > 1
2

μ2
n

σ 2
n

, there exists no prior marginal distribution F 0
n that induces 

1 − �n (t) = e−ηnt . Together with Lemma 1, this observation implies Property ii.
Given that defeat rates are constant, Equations (16), (17), and (18) must hold in any station-

ary equilibrium, so Properties iii and iv are necessarily satisfied. Property v is an immediate 
consequence of Lemma 1.

Finally, to show that Property i holds, suppose, seeking a contradiction, that there exists an-
other stationary equilibrium τ ′ 
= τ . Clearly, there must be at least one player for whom the 
exercise threshold in equilibrium τ ′ must differ from the one in equilibrium τ , say β ′

n 
= βn. Fol-
lowing the steps of the argument we used to prove Property ii, we can determine the equilibrium 

exercise rate η′
n ∈
(

0, 1
2

μ2
n

σ 2
n

]
. In equilibrium, the prior marginal distribution for Player n should 

be consistent with inducing a constant first-passage rate η′
n through the threshold β ′

n. Using 
Lemma 1, it is easy to see such prior marginal distribution should have support (−∞, β ′

n], while 
F 0

n has support (−∞, βn] 
= (−∞, β ′
n]. We conclude that τ ′ cannot be a stationary equilibrium 

under F 0. �
The following definition and lemma will be used in the proof of Proposition 5. Let

ϒn(t, h) ≡ log

(
1 − �n(t + h)

1 − �n(t)

)
.

Lemma 4. Assume that the prior is degenerate at some arbitrary x0 and consider an equilibrium 
such that β(0) > x0. Then, for every n ∈ N and h ∈R+, we have

lim
t→+∞

(
ϒn(t, h)

h

)
= η∗

n.

Proof. According to Proposition 2, equilibrium exercise thresholds must satisfy β
n

≤ βn ≤ βn

with β
n

< βn for every n = 1, ..., N . Let �n and �n be the absorption probabilities associated 

with constant exercise thresholds β
n

and βn. Clearly, �n(t) ≤ �n(t) ≤ �n(t) for all t ∈ R+. We 
will start showing that there exists a constant A ∈ [0, +∞) such that, for all h ∈ [0, +∞), we 
have

lim sup
t→+∞

ϒn(t, h) ≤ η∗
nh + A. (23)

Clearly, �n(t) < �n(t) for all t > 0. Hence, for every t > 0 and h ∈R+, we have 1−�n(t+h)
1−�n(t)

>

1−�n(t+h)

1−�n(t)
. Thus, ϒn(t, h) < − ln

(
1−�K

n (t+h)

1−�M
n (t)

)
. Using L’Hôpital’s rule, we can explicitly com-

pute:

lim
t→+∞

(
1 − �n(t + h)

1 − �n(t)

)
= e

− μn

σ2
n

(
βn−β

n
+ 1

2 μnh
) (

β
n
− x0

n

βn − x0
n

)
.

It follows that

lim sup
t→+∞

ϒn(t, h) ≤ lim
t→+∞

[
− ln

(
1 − �n(t + h)

1 − �n(t)

)]

= − ln

[
lim

t→+∞

(
1 − �n(t + h)

)]
= η∗

nh + A

1 − �n(t)
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where we define A ≡ μn

σ 2
n

(
βn − β

n

)
+ ln

(
βn−x0

n

β
n
−x0

n

)
. Running a symmetric argument, we can 

obtain a lower bound for the limit inferior: lim inft→+∞ ϒn(t, h) ≥ η∗
nh −A. Next, we will show 

that, for all h ∈R+, we actually have

lim
t→+∞ϒn(t, h) = η∗

nh.

Fix h ∈ R+ and an arbitrary increasing and unbounded sequence of times {tj }j∈N . The claim 
will be proven if we can show limj→+∞ ϒn(tj , h) = η∗

nh. Since {ϒn(tj , h)}j∈N is eventually 
confined to the compact interval [0, η∗

nh + A + 1], there is no loss in assuming that the whole 
sequence lies in a compact interval. Moreover, it is well-known that a sequence in a compact 
space X converges to x ∈ X if and only if every convergent subsequence converges to x. As a 
result, it suffices to show that limj→+∞ ϒn(tj , h) = η∗

nh whenever the limit exists. So, assuming 
that the limit limj→+∞ ϒn(tj , h) exists, for every m ∈N , we have

ϒn(tj ,mh) = − ln

(
1 − �n(tj + mh)

1 − �n(tj )

)
= − ln

[
m∏

l=1

(
1 − �n(tj + lh)

1 − �n(tj + (l − 1)h)

)]

=
m∑

l=1

[
− ln

(
1 − �n(tj + lh)

1 − �n(tj + (l − 1)h)

)]
=

m∑
l=1

ϒn(tj + lh,h).

This formally implies that

lim
j→+∞ϒn(tj ,mh) = lim

j→+∞

m∑
l=1

ϒn(tj + lh,h) =
m∑

l=1

lim
j→+∞ϒn(tj + lh,h)

= m lim
j→+∞ϒn(tj , h).

Reversing the derivation proves that the limit in the left-hand-side must also exist. It follows that

lim
j→+∞ϒn(tj ,mh) = lim inf

j→+∞ϒn(tj ,mh) = lim sup
j→+∞

ϒn(tj ,mh).

Then, using the inequalities for the limit inferior and superior, we get

η∗
nmh − A ≤ lim

j→+∞ϒn(tj ,mh) ≤ η∗
nmh + A.

Combined with the additivity obtained above, this implies that η∗
nh − 1

m
A ≤ limj→+∞ ϒn(tj , h) ≤

η∗
nh + 1

m
A. Since this inequality holds for every m ∈N , we must have η∗

nh ≤ limj→+∞ ϒn(tj , h)

≤ η∗
nh, establishing the desired result. �

Now we can proceed to prove Proposition 5.

Proof of Proposition 5. Since the proof is relatively long, we only sketch the key steps here. 
A complete proof is available in Part S2 of the supplementary material.

Fix an equilibrium satisfying Assumptions 1 and 2. By Assumption 1, there is positive proba-
bility of the game continuing after t = 0 (and, in fact, after any t ≥ 0). As a result, we can safely 
ignore those paths of play along which the game is stopped at t = 0, as they are irrelevant for 
future equilibrium behavior (and, thus, for asymptotics).

The equilibrium exercise threshold of Player n is constrained between β
n

and βn. Moreover, 
Lemma 4 implies that, in the case of a degenerate prior, we have limt→+∞ ϒn(t, h) = η∗

nh for 
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every h ∈ R+. A technical argument (see S2.1) shows that this limit also holds when the prior 
satisfies Assumption 1. This result is important because it pins down the asymptotic behavior of 
the effective discount factors players use to compute their optimal strategies. More specifically, 
if we define

�n(t, h) ≡ log

(
1 − G[−n](t + h)

1 − G[−n](t)

)

the effective discount factor of Player n is e−rh−�n(t,h). It is easy to check that �n(t, h) =∑
m 
=n ϒm(t, h), so the limit limt→+∞ ϒn(t, h) = η∗

nh in fact implies that

lim
t→+∞�n(t, h) = lim

t→+∞
∑
m 
=n

ϒm(t, h) =
∑
m 
=n

lim
t→+∞ϒm(t, h) =

∑
m 
=n

η∗
nh = λ∗

nh,

which obviously leads to the convergence of the effective discount factor.
The convergence of effective discount factors implies the uniform convergence of values 

(Property i). To see this, let Un(xn, t, βn) be the payoff that Player n obtains by playing an 
arbitrary continuation boundary βn : [0, +∞) → R when he or she is at state xn at time t and has 
a discount factor e−rh−�n(t,h) ≥ 0 from time t to time t + h. Let U∗

n (xn, βn) be the payoff that 
a monopolist with discount rate r + λ∗

n would obtain at state xn by playing the same continua-
tion boundary βn. Define Vn(xn, t) ≡ supβn

Un(xn, t, βn) and V ∗
n (xn) ≡ supβn

U∗
n (xn, βn). Both 

suprema are attained by thresholds taking values in [β
n
, βn]. Using limt→+∞ �n(t, h) = λ∗

nh, 

we prove that, for every x ∈R and βn : [0, +∞) → [β
n
, βn], we have limt→+∞ Un(xn, t, βn) =

U∗
n (xn, βn) (see S2.2). Let β̂n be a threshold that attains Vn(xn, t) and let β∗

n be the constant 
threshold that attains V ∗

n (xn). On the one hand, Vn(xn, t) = U(xn, t, β̂n(t)) ≥ U(xn, t, β∗
n) for all 

t ≥ 0. Since limt→+∞ U(xn, t, β∗
n) = U∗(xn, β∗

n) by the argument above, we have

lim inf t→+∞Vn(xn, t) ≥ lim
t→+∞U(xn, t, β

∗
n) = U∗(xn,β

∗
n) = V ∗

n (xn).

On the other hand, dominated convergence can be used to show lim supt→+∞ Vn(xn, t) ≤
V ∗

n (xn). This gives pointwise convergence of the value functions. Uniform convergence follows 
from combining pointwise convergence with the following properties of the value functions: they 
are non-negative, increasing, continuous, agree on [βn, +∞) and vanish when x → −∞.

To establish Property iii, note that, under Assumption 2, we have

lim
t→+∞λn(t) = lim

t→+∞ lim
h↓0

(
�n(t, h)

h

)
= lim

h↓0
lim

t→+∞

(
�n(t, h)

h

)
= λ∗

n,

where the possibility of exchanging limits can be deduced from the assumption that the derivative 
dλ(t)/dt is uniformly bounded and the Moore-Osgood theorem.

To obtain Property ii, we define λL
n (t) ≡ infh≥0 λn(t + h) and λH

n (t) ≡ suph≥0 λn(t + h). 
By construction, λL

n (t) ≤ λ(t + h) ≤ λH
n (t) for all t, h ≥ 0. Let βL

n (t) and βH
n (t) be the opti-

mal exercise threshold of a monopolist with constant discount rates r + λL
n (t) and r + λH

n (t), 
respectively. A simple argument shows that βL

n (t) ≥ βn(t) ≥ βH
n (t). Property iii implies that 

limt→∞ λL
n (t) = lim inft→∞ λn(t) = λ∗

n and limt→∞ λH
n (t) = lim supt→∞ λn(t) = λ∗

n. Thus, by 
definition, limt→+∞ βL

n (t) = limt→+∞ βH
n (t) = β∗

n , as desired.
Finally, it remains to establish convergence of beliefs. The argument proceeds as follows. The 

characteristic function of the conditional belief F̂n(·, t) has the following integral representation:
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ψn(ω, t) = ψn(ω,0) − ∫ t

0 eMn(ω)s+iωβn(s)�n(ds)

eMn(ω)t [1 − �n(t)]
,

where Mn(ω) ≡ (1/2)σ 2
nω2 − μnωi, while the characteristic function of F̂ ∗

n satisfies

ζn(ω) = eωβ∗
n iλ∗

n

λ∗
n − Mn(ω)

.

The application of an extension of L’Hôpital’s rule to the complex function ψn proves that 
there exists ω0 > 0 such that ψn(ω, t) converges to ζn(ω) for all ω ∈ (−ω0, ω0). Conver-
gence of characteristic functions in a fixed neighborhood of 0 is enough to guarantee con-
vergence in distribution of the state conditional on the absence of exercise. More precisely, 
limt→+∞ F̂n(xn, t) = F̂ ∗

n (xn) for all xn at which F̂ ∗
n (·) is continuous (that is, everywhere). The 

proof of this last claim combines the fact that F̂n(βn, t) = 1 for all t ≥ 0 with a modification 
of Lévy’s continuity theorem for sequences of random variables uniformly bounded above (or 
below) due to Zygmund (1951). �
Appendix B. Integral representations of beliefs, absorption rates, and value functions

B.1. Integral representation of the distribution over payoff states and the absorption density

In this section, we offer an integral representation of the backward-looking system in Equa-
tions (9)-(12). To simplify the exposition, we focus on the case in which the prior marginal 
distribution for Player n ∈ N is a point mass at x0

n , so Equation (10) specializes to fn (xn,0) =
δ
(
xn − x0

n

)
, where δ is the Dirac delta function.

Proposition 6. Whenever the absorption boundary βn is continuously differentiable on (0, +∞), 
the survival density fn(xn, t |x0

n) admits the following integral representation:

fn(xn, t |x0
n) =

φ
(

xn−x0
n−μnt

σn

√
t

)
σn

√
t

−
t∫

0

φ
(

xn−βn(h)−μn(t−h)

σn

√
t−h

)
σn

√
t − h

γn(h|x0
n)dh. (24)

In turn, the exercise density γn is the unique bounded solution to

γn(t |x0
n) = φ

(
An(t |x0

n)
)
An(t |x0

n)

t
−

t∫
0

φ (Bn(t, h))Bn(t, h)

t − h
γn(h|x0

n)dh, (25)

where

An(t |x0
n) ≡ βn(t) − x0

n − μnt

σn

√
t

and Bn(t, h) ≡ βn(t) − βn(h) − μn(t − h)

σn

√
t − h

.

Proof. In Part S3 of the supplementary material. �
The interpretation of Equation (24) is as follows. The first term on the right-hand side is 

always positive and describes the density of a Brownian motion without taking absorption into 
account. However, some paths that would have reached Xn(t) = xn have crossed the boundary 
previously at some time h < t and need to be subtracted. At instant h < t , a density γn(h|x0

n) of 
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paths is absorbed at state Xn(h) = βn(h). Conditional on being at that state at time h, they would 
have reached xn at time t with a probability density given by

φ
(

xn−βn(h)−μn(t−h)

σn

√
t−h

)
σn

√
t − h

.

Therefore, the last term in Equation (24) integrates over 0 ≤ h < t , thereby effectively subtracting 
all previously absorbed paths.

Notice, however, that the characterization of the density fn is incomplete without a descrip-
tion of the absorption density γn(t |x0

n). That absorption rate can be obtained as a function of the 
mass that is near the boundary, βn, at time t , as indicated by Equation (12). It is also worth noting 
that Equation (25) is quite convenient for computational purposes,23 because it has a recursive 
backward-looking structure and can be easily approximated by a finite sum. We also define the 
distribution associated with density γn(t), which is particularly important for describing the ar-
rival rate of the end of the game.

Together, Equations (24) and (25) fully characterize the dynamics of the individual state con-
ditional on any arbitrary boundary. Whenever we restrict attention to the equilibrium threshold, 
βn, these equations describe the equilibrium beliefs of the opponents of Player n. As previously 
discussed, that includes more information than strictly necessary to compute the optimal policies 
of those players. For that, it is sufficient to describe the defeat rate as perceived by them, which 
is a sufficient statistic for the individual problem.

So far, Equations (24) and (25) compute the survival and absorption densities when the initial 
position x0

n is commonly known. To generalize them toward any prior marginal distribution F 0
n , 

one simply needs to integrate these two functions against that distribution.

B.2. Optimal policy

In this section, we provide analytic expressions for optimal exercise thresholds and value 
functions in smooth equilibria. First, we define Player n’s effective discount factor between dates 
t and h > t , e−ρn(h,t), by setting

ρn(h, t) ≡
h∫

t

[r + λn(s)]ds. (26)

This effective discount factor summarizes all the strategic information about Player n’s competi-
tors and allows us to state the following result.

Proposition 7. Suppose that, for each n ∈ N , (Vn,βn) is an equilibrium smooth value-threshold 
pair and limt→∞ Vn(xn, t) exists for every xn ∈ R. Then, βn satisfies the following integro-
differential equation:

βn(t) − Kn =
∞∫
t

e−ρn(h,t)
φ
(

βn(h)−βn(t)−μn(h−t)

σn

√
h−t

)
σn

√
h − t

×
[
σ 2

n +
(

βn(h) − βn(t)

h − t
− 2

dβn(h)

dh
+ μn

)
(βn(h) − Kn)

]
dh, (27)

23 Equation (25) belongs to the class of Volterra integral equations of the second kind.
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while the corresponding value function Vn is described, in the continuation region, by

Vn(xn, t) = 1

2

∞∫
t

e−ρn(h,t)
φ
(

βn(h)−xn−μn(h−t)

σn

√
h−t

)
σn

√
h − t

×
[
σ 2

n +
(

βn(h) − xn

h − t
− 2

dβn(h)

dh
+ μn

)
(βn(h) − Kn)

]
dh. (28)

Proof. In the supplementary material. �
Proposition 7 shows that the equilibrium exercise threshold is a fixed point of the operator 

on the right-hand side of Equation (27). The existence of the limit for the value function is 
guaranteed under Assumption 1 by Lemma 10.

Notice that Equation (27) does not require the separate computation of the evolution of the 
exercise density over future exercise times, which is embedded in the operator. This feature is 
common to some analytic representations of the value of American call-options, as derived by 
McKean (1965), Kim (1990), and Jamshidian (1992).24 Moreover, the value function is fully 
determined by the behavior of the exercise threshold.

Appendix C. Extensions

In this section, we briefly discuss possible extensions of the model.

C.1. Geometric Brownian motion and alternative stochastic processes for payoffs

The model we have studied assumes that payoff innovations are additive, identically dis-
tributed, and independent. In the investment under uncertainty literature, another process is 
frequently used, the geometric Brownian motion, which features multiplicative innovations. It 
can be represented by

dX̂n(t)

X̂n(t)
= μ̂ndt + σ̂ ndZn(t),

where μ̂n represents a geometric drift term and σ̂n a exposure of the growth rate to the innovation 
in the standard Brownian Zn(t).

We can do the change of variables Xn(t) ≡ log X̂n(t) and obtain

Xn(t) = μndt + σndZn(t),

where μn = μ̂n − σ̂ 2
n

2 and σn = σ̂n. In terms of these new variables, we write

Vn(xn, t) = sup
τn≥t

E
{
e−r(τn−t)1τn<τ̂[−n]

(
eXn(τn) − Kn

)∣∣∣Xn(t) = xn, τ̂[−n] ≥ t
}

.

The HJB equation in the continuation region is still given by Equation (6). The only relevant 
changes are in the value-matching and smooth-pasting conditions, which become, respectively,

24 The integral equation approach to free-boundary problems was pioneered by Kolodner (1956). Peskir and Shiryaev 
(2006) provide a detailed treatment of the free-boundary approach to optimal stopping. See Chiarella et al. (2004) for a 
survey of the integral representations for American financial options.
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Vn (βn(t), t) = eβn(t) − Kn and
∂Vn (βn(t), t)

∂xn

= eβn(t).

In this case, the monopolist problem has a solution as long as μ̂n < r . Under this assumption 
and the change in boundary conditions for the value function, the characterization we have in 
the previous sections applies. In particular, the limit results are valid for the implied arithmetic 
Brownian motion. Interestingly, the threat of entry by Player n perceived by his or her opponents 
vanishes in the limit for some cases in which μ̂n > 0, as it becomes possible that μn = μ̂n −
1
2σ 2

n ≤ 0.25

The same reasoning, following a change of variables, allows generalizations of all results for 
processes and terminal payoffs that are increasing functions of an arithmetic Brownian motion. 
For more general Itô processes, generalizations of the results derived in Section 3.2 can be ob-
tained. The key modification is that probability densities specific to those processes, as opposed 
to the normal distribution, emerge in the specific version of Proposition 6. Stationary equilibria 
can be constructed for more general cases following the insights from the literature on Brown-
ian mortality models. However, the corresponding convergence results remain a topic for future 
research.

C.2. Beyond the winner-take-all case

For simplicity, we have assumed that all players that fail to be the first to exercise obtain a 
payoff of zero. More generally, we could have assumed that, in the event of defeat, Player n
obtains a payoff of 0 ≤ Ln(xn, t) ≤ V M

n (xn), which is convex, smooth, and nondecreasing in xn, 
and bounded by the monopolist value function V M

n . Additionally, let it have a well-defined limit, 
limt→∞ Ln(xn, t) = L∗

n (xn), which also satisfies these assumptions. In this more general case, 
Ln(xn, t) could be motivated by another stage of a game, in which late entrants still have actions 
available.

The HJB would then be given by

rVn = max

{
μn

∂Vn

∂xn

+ 1

2
σ 2

n

∂2Vn

∂x2
n

+ λn(t) [Ln(xn, t) − Vn] + ∂Vn

∂t
, r (xn − Kn)

}
.

In the continuation region, we can rewrite it as

[r + λn(t)]Vn = λn(t)Ln(xn, t) + μn

∂Vn

∂xn

+ 1

2
σ 2

n

∂2Vn

∂x2
n

+ ∂Vn

∂t
.

Notice that, beyond generating a modified discount rate of r + λn(t), the threat of an opponent’s 
entry generates a flow payoff externality of λn(t)Ln(xn, t) on the value of Player n. This flow 
is now positive, but it was previously normalized to zero. As a consequence, the value function 
would always be larger than in the case of Ln(xn, t) = 0.

After accounting for this change in the HJB equation, there are no major departures in the 
characterization. The exercise thresholds are still bounded between a monopolist and perfect 
competition, and limit behavior is analogous to what has been derived.

25 In this case, we can characterize a degenerate limit, in which generalized beliefs assign mass points at minus infinity 
for the position of every opponent.
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C.3. Running costs, abandonment options

Again, for simplicity, we have assumed that firms face negligible running costs and a single 
decision, involving the time of entry. In some applications, researchers can be interested in the 
case in which running costs are significant and endogenous abandonment occurs.

These setups allow a few variations. Suppose first that exit cannot occur, but a running cost of 
cn > 0 is present. Then, the HJB equation satisfies

rVn = max

{
−cn + μn

∂Vn

∂xn

+ 1

2
σ 2

n

∂2Vn

∂x2
n

− λn(t)Vn + ∂Vn

∂t
, r (xn − Kn)

}

= max

{
μn

∂Vn

∂xn

+ 1

2
σ 2

n

∂2Vn

∂x2
n

− λn(t)Vn + ∂Vn

∂t
, r
(
xn − Kn + cn

r

)}
− cn.

If we define an auxiliary function, V n(xn, t) ≡ Vn(xn, t) + cn/r , the HJB in the continuation 
region can be written as

[r + λn(t)]V n = λn(t)
cn

r
+ μn

∂V n

∂xn

+ 1

2
σ 2

n

∂2V n

∂x2
n

+ ∂V n

∂t
.

Value matching and smooth pasting then require V n (βn(t), t) = βn(t) − Kn + cn/r and 
∂V n (βn(t), t) /∂xn = 1. Under this new formulation, the optimal stopping problem is analogous 
to the previous version, but has a flow payoff externality of λn(t)cn/r , which has the interpre-
tation of a possible saving of the net present value of all future running costs that occurs with 
time-varying intensity λn(t). One can then show that βn(t) ∈

[
Kn − cn/r,βM

n (t)
]
, where βM

n (t)

is the optimal threshold for Player n in the absence of any competition. The asymptotic results 
would follow, again, after accounting for the change in the HJB and boundary conditions.

Once an abandonment option is introduced, another endogenous threshold needs to be derived. 
For sufficiently low states, a player finds it optimal to drop out. Because of the non-stationarity in 
the intensity of competition, this additional threshold is time varying in general, in the same way 
as the optimal exercise threshold. Again, we can construct the stationary limit for beliefs, condi-
tional on both no previous exercise and no abandonment by each active player.26 The methods 
to study the transitions developed in Sections 3 and 4 can be extended as well. In particular, the 
equilibrium would again be characterized by a coupled system of differential equations. In this 
system, backward-looking conditional beliefs take into account the absence of either exercise or 
abandonment by each of the active players. At the same time, forward-looking value functions 
take into account the defeat and abandonment rates by each opponent. The key difference in 
this case is that the list of still-active opponents needs to be incorporated as an additional state 
variable.

C.4. Correlation and public states

Unlike the previous extensions, allowing for correlation in the evolution of the individual 
payoffs introduces major difficulties. In the original setting, the defeat rate is a simple function of 

26 Notice that we assume players would observe the abandonment by any opponent. In contrast, if abandonment was 
not observable and players solely conditioned in the absence of exercise, perceived competition would vanish in the long 
run. A non-degenerate limit distribution would be recovered if new opponents also entered the competition without being 
observed. This last feature is present in Bobtcheff and Mariotti (2012).
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time. A player’s own payoff position and its previous path are not informative about the intensity 
of opposition she will face in the future. In contrast, correlation creates a linkage between one’s 
own payoff evolution and the expected future competition. In principle, the defeat rate at time 
t becomes a function of the whole past trajectory of X(s), for s ≤ t . Extending the current 
techniques to deal with this non-Markov structure is a challenge left for future work.

Appendix D. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /
j .jet .2019 .104945.
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