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This article examines a principal-agent model of financial contracting in which a 
risk-neutral entrepreneur (agent) makes an unobservable ex-ante effort choice whiie 
employing the investment funds of a risk-neutral investor (principal). The key 
innovation is that the investment contract is subject to statutory habihty limits. 
Given these liability limits. two settings are considered, one in which the investor 
payoff function is also constrained to be monotonically nondecreasing in firm 
profit, and another in which no such “monotonic contract” constraint is imposed. 
In the former case, a standard debt contract is shown to emerge and a “first best” 
effort choice is not achieved. In the latter setting, the optimum is characterized by 
a “live-or-die” payoff function, and a “first best” effort Level may or may not be 
realized. Journal of Economic Literature Classification numbers: 026, 022, 521. 
c 1990 Academic Press, Inc. 

1. INTR~~xJOT~ON 

A firm’s liability to its security-holders is limited to firm assets and 
profits. Likewise, security-holders are not liable for firm losses over and 
above their investment. These liability rules restrict the types of 
securities/contracts which firms can write. Two recent papers, Sappington 
[19] and Demski, Sappington, and Spiller 133, have investigated the 
implications of these liability constraints for optimal incentive contracts. 
However, both papers specify models in which the agents choose their 
actions a_fter observing the state of nature. This paper evaluates the effects 
of liability constraints in a different incentive contracting problem, namely, 
one in which an agent’s “effort” choice is made before the state of nature 
is realized (as in Ross [lS], Shave11 [20], Holmstrom [7], and Grossman 
and Hart [S], among many others)” 

* I am deeply indebted to the referee and the Associate Editor for sets of detailed comments 
and suggestions that benefited This paper tremendously. 1 also thank Peter Berck and Richard 
Sexton for helpful comments on an earlier draft. The usual disclaimer applies. 

’ Hoimstrom [7] and Lewis [13], among others, have noted the prospective importance of 
liability limits in principal-agent models of the kind examined here, However, to my 
knowledge, prior research on these models has not investigated the effects of liability Pimits on 
qualitative properties of optimal incentive contracts, which is the objective of this paper. 

45 
22-0531/90 ElotJ 

Copyright 0 1990 by Academic Press, Inc 
All rights of reproducwn in any form reserved 



46 ROBERT D. INNES 

TO focus the analysis on effects of liability rules (rather than risk-sharing 
issues), I assume that both the principal and the agent are risk-neutral. In 
the absence of liability limits, it is well known that this setting will yield a 
contract that gives the principal a fixed payment, thereby inducing the 
agent to choose his “first-best” effort level (see, for example, Shave11 [20] 
and Harris and Raviv [6]). However, with limited liability, this contract is 
not feasible unless there is no possibility that ex-post firm profits will be 
less than the fixed payment. 

Motivated by the infeasibility of a fixed payment, the following analysis 
develops an entrepreneur’s financial contract choice problem wherein 
(1) investors (c.f., principals) are competitive, simply requiring that they 
receive a market-determined “fair” return on their investment; (2) given the 
financial contract, the entrepreneur (c.f., the agent) makes an effort choice 
that the investors cannot observe and, thus, that cannot be specified in the 
contract; and (3) the entrepreneur chooses the investor payoff function (c.f., 
fee schedule) to maximize his expected utility (of profit and effort) subject 
to (i) limited liability restrictions, (ii) the investor expected payoff require- 
ment, and (iii) his own effort choice responses.* Given this construction, 
two cases are considered, one in which no constraints are placed on the 
form of the financial contract (other than limited liability), and another in 
which the investor’s payoff function is constrained to be nondecreasing in 
firm profit. The latter “monotonic contract” constraint can be motivated 
either by a requirement that investors never have an incentive to sabotage 
the firm or by an ability of entrepreneurs to costlessly revise their profit 
reports upward (with hidden borrowing, for example). This restriction is 
deemed to be interesting not only because observed financial contract 
forms (including debt, equity, convertible bonds, and stock options) are all 
nondecreasing, but also because this constraint elicits an optimal contract 
that is pervasive in practice. Specifically, the optimal monotonic contract is 
shown to take a standard debt form. Without the nondecreasing payoff 
restriction, limited liability instead leads to a contract of the following 
“live-or-die” form: The investor takes a constant share of firm profit when 
this profit is less than some critical level and nothing when the profit is 
higher. 

On an intuitive level, the debt-contracting result can be explained as 
follows: With any monotonic contract that is strictly increasing in some 
region, some of the benefits of marginal effort are shared with investors; 
thus, since the entrepreneur still bears the total cost of effort, he will choose 

‘The most natural specification of this contracting problem entails the agent choosing the 
contract rather than the principal. In contrast, most principal-agent models have the principal 
choosing the contract, subject to the agent receiving a prespecified reservation utility level. 
Since solutions to both problems characterize points on the same utility-possibility-frontier, 
qualitative properties of these solutions are also the same. 
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an effort level that is less than his “first best” choice.3 The latter observa- 
tion implies that the entrepreneur will select a contract form that irn~~~c~t~y 
commits him to the highest possible effort level, thereby ~ermjtting him to 
reap as much of the “first best” surplus as possible. Now note that higher 
effort increases probability weight placed on high-profit outcomes. T 
with a contract that gives the entrepreneur maximal payoffs in high-frost 
states, the entrepreneur is induced to choose maximal effort. Am 
monotonic contracts subject to liability limits, the debt contract has 
“maximal high-profit-state payoF property and, hence, will be sel 

With a debt contract, the entrepreneur still works “too little” (r-e 
a first best). This inefficiency gives rise to a positive value for investor 
mformation on effort. However, the absence of a “monotonic contract” 
constraint often leads to a “first best” effort choice, implying no value to 
information (as in principal-agent analyses without Piability limits ). The 
intuition for the latter result is roughly as follows: Without the 
monotonicity constraint, the entrepreneur must still share profits with the 
investor in some states. However, by giving the entrepreneur a 100% share 
of profits in some high-profit states, the share of marginal-e 
captured by investors in lower-profit states is offset by investo 
a higher probability of zero payoff. By appropriate choice of the critical 
profit level above which investors get nothing, the entrepreneur will lo 
none of the marginal effort benefits (at the “first best” effort choice) an 
‘“first best” efficiency will prevail. 

There are many analyses of capital structure choices in the finance 
literature that have also noted the importance of agency issues for financial 
contracting4 By endogenizing the contract choice and allowing for almost 
any contract form, this analysis formalizes and generalizes much of t 
intuition developed in the famous Jensen and Heckling [IO] paper, from 
which most of this literature springs. 53 In doing so, the analysis provides 
an alternative explanation for use of standard debt instruments (in a 
general contract setting) to those provided in recent models of costly state 

3 Note that the only monotonic contract that (i) satisfies liability constraints and (ii) is rrol 
strictly increasing in some region, is one with zero investor payoff in all states of nature. The 
latter contract cannot meet any positive investor expected return requirement and, thus, is 
ruled cut here. 

’ See, For example, Darrough and Stoughton [ i], Williams 1211. and the references therein. 
’ Darrough and Stoughton [l J point out the prospective importance of the investigation 

undertaken in this paper by noting (p. 503) that general results in the principal-agent 
literature do “not extend trivially to the corporate finance environment because limited 
liability does impose some restrictions on the effective contract space.” 

6 Another notable distinction between this paper and the specification of Jensen and 
Meckling [IO] (as well as Williams [21]) is the latter authors’ use of an ex post perquisite 
choice variable rather than the ex-ante effort choice variable of interest here. 

64232; i-4 
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verification (e.g., Gale and Hellwig [4J and Williamson [22 J) and adverse 
selection (e.g., DeMeza and Webb [2], Myers and Majluf [16], and 
Innes [9]). 

2. THE MODEL 

Consider the following two-date model. A risk-neutral entrepreneur is 
endowed with a technology that produces a stochastic time 1 dollar payoff 
of 7~ E [O, oo), which I will call “profit.” This payoff is produced with two 
time 0 inputs: (I) investment funds, and (2) entrepreneurial effort.7 Since 
the concern here is not with scale choice, the input of time 0 investment 
funds is assumed to be fixed, as is the portion of these funds that the 
entrepreneur must obtain from investors8 The latter amount, the funds 
needed from outsiders, will be denoted by I> 0. Suppressing the 
dependence of profits on time 0 investment, let g(n 1 e) and G(n ) e) denote, 
respectively, the twice continuously differentiable profit density and 
distribution functions, where e represents the entrepreneur’s effort level and 
g(n(e)>O V(x,e)eR:. Higher effort levels produce “better” profit 
distributions in the sense of the monotone likelihood ratio property 
(MLRP) (Miigrom l143); formally, 

WI 

for all e > 0 and z > 0.9 In addition, E{ 7c ) e = 0) = 0. 
Investors in the entrepreneurial firm are risk-neutral and competitive. 

Competitive behavior implies that investors require an expected return 
equal to that available on a risk-free bond. The latter risk-free return will 
be denoted by p. While investors cannot observe effort e, they can infer the 
entrepreneur’s effort choice from his utility maximization problem. Thus, 
they require an expected return of p on their investment 1, considering the 
inferred effort choice effects of contract terms. 

With a possible caveat to be discussed shortly, investors observe the 
entrepreneur’s ex-post profit, z Therefore, the financial contract specifies 
an investor payoff function, B(X). For convenience, admissible B(Z) 

7 As defined here, the term “profit” represents gross payoffs to the firm before the opportunity 
cost of invested funds is subtracted. 

’ Effectively, this analysis assumes that the investment funds required by the entrepreneur 
exceed his available wealth, a11 of which the entrepreneur will invest in his entreprise. 

9 The MLRP condition, (2.1), implies first order stochastic dominance (FOSD), G,(nje) < 0 
VVZ > 0. However, the MLRP is a stronger condition than FOSD; hence, the converse is not 
true. 
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functions are assumed to be integrable. In addition, liability limits 
constrain this function in two ways: (1) B(n) < 7r; the entrepreneur cannot 
be required to pay more than the profits available to him; and (2) B(n) b 0: 
the investor’s liability is limited to his investment in the firm. 

Subject to these constraints, the entrepreneur will choose the cont&ct 
that gives him maximal utility. Formally, let V(W, e) denote the 
entrepreneur’s twice continuously differentiable utility function in his time 
1 dollar payoff, w = n - B(n), and effort, Due ho the assumption of risk 
neutrality, this utility function takes the form 

V(w, e) = a(e)w - v(e), t2.29 

where a( ) > 0 insures a positive utility dependence on 
Given (2.2) and a fixed B(n) function, the entrepreneur will choose effort 

to solve the following problem: 

~~~E{V(n-B(ri),e)le)=rr(e)jm(?r-B!s))g(r;le)dri-~iie). (2.3) 
0 

At this point, neither existence nor uniqueness of a solution to (2.3) can 
be ensured. However, the following assumption (and associated corollary) 
resolve some of this ambiguity: 

Assumption 1 (Al). There exists a finite emax such that 

lim E{V(71,e)(e)<E{y~lr,O)(O). 
e -+ emax 

Assumption 1 implicitly required that there be some entrepreneurial 
&utility of effort and that this disutility grow large as effort approaches 
e max. Given this assumption, the entrepreneur’s effort choice opportunities 
can be limited to the interval [0, emax] without loss of generality. 

CQR~LLARY 1. For all B(z) functions satisfying the liability constraints 
O~B(n),<nb”n, (a)E{V(rr-B( 9, )I 3 b rc e e 1s oun e a eve and below on the d d b 
&main e c [0, emax], and therefore, (b) there exists at feast oBe solutioon to 
(2.3). 

Proof. For all B(n) satisfying liability constraints, E{ V(n - B(n), e> j ) d 
E( V(n, e) j e ) and, for e E CO, e ,,,I, E{V(n-B(n),e)/ej$E(V~O,e)(e)~ 
E(V/(n-k*, e)le}, where k* 3 E(x\e,,,j. Since E(V(rr,e)\e} and 
E(vt~-k*, )I > e e are continuous, they are bounded on the compact set 
e E LO, emax], implying result (a). Result (b) follows from result (a) and the 
Weierstrass Theorem. ED. 
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Corollary 1 implies the existence of optimal effort choices with eligible 
payoff functions. Given this result, the entrepreneur’s contract choice 
problem can be stated as follows: 

mBa,x a(e) Iorn (n -B(n)) g(n I e) dx - u(e) (2.41 

s.t. s m B(n)g(nIe)dz>(l +p)l 
0 

(2.4a) 

e solves (2.3) (2.4b) 

O<B(n)d72 v’n. (2.4~) 

Conditions (2.4a)-(2.4c) represent investor return requirement, entre- 
preneurial effort choice, and limited liability constraints, respectively. 

As noted in the introduction, I will also consider the implications of a 
futher constraint on contract forms, namely, that B(z) be nondecreasing in 
firm profit. This constraint can be written as follows: 

B(n + E) > B(7r) V(TC, E) E R:. (2.4d) 

There are two possible rationales for the “monotonic contract” 
constraint given in (2.4d): 

(1) After observing a perfect signal of firm profits, investors may be 
in a position to sabotage the firm, essentially burning as much of these 
profits as they choose. In this case, investors would choose to burn profits 
in any decreasing segment of their payoff function and a nonmonotonic 
contract would never be chosen. 

(2) Alternately, the entrepreneur may observe a perfect signal of firm 
profits slightly before they are realized, although investors can only observe 
total net cash flows of the firm on the date profits are realized. In this case, 
the entrepreneur could not alter firm profits (except, perhaps, by sabotage), 
but he could supplement these inflows with costless borrowings, MS 0, 
revealing an apparent profit of n* = 7c+ M to investors. Thus, the 
entrepreneur would borrow in any decreasing segment of the payoff 
function, implying an equivalent nondecreasing payoff function, B*(z) = 
minir*,z) B(rc*).‘O 

Note that if the entrepreneur could sabotage the firm, then B(n) would 
also be subject to the constraint that the entrepreneur’s payoff, 7~ -B(n)), be 
nondecreasing. However, the latter requirement turns out to be satisfied at 

“Since the entrepreneur cannot be compelled to borrow ex-post, the limited liability 
constraint, B(z),<n, still applies here. Indeed, given a bankruptcy option, the entrepreneur 
would never choose to borrow to pay an investor more than his available profits. 
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any optimum, even when it is not imposed. Therefore, this constraint 
neither alters nor drives any of the results in this paper and will be ignored 
throughout. 

The next two sections characterize solutions to (2.4) with and without 
the “monotonic contract” constraint (2.4d). In both cases, a useful 
benchmark for comparison is the solution to poblem (2.4)‘s “first-best” 
analog, namely, (2.4) subject only to constraint (2.4a). Trivially, (2.4a) will 
bind at any solution to this “first-best” problem, ~rn~lyi~g the equivalent 
maximization 

where is set in any way which satisfies E(BjzJI)I e> = (I+ p)l. For 
convenience, I will impose the following regularity conditions on 
problem (2.5): 

Assumption 2 (A2). E{ V(n - (1 + p)l, e)l e> is strictly concave in e,l’ 
Further, 3e>O:E(V(7c-(l+~)I,e)Je}>E(V(~,O)jO}. 

The second condition in Assumption 2 states that the entrepreneur 
would choose to undertake the investment project ilm a “first best” world. 
Since E{ V(n, 0) ( 01 > E( V(x - (1 + p)l, 0) / 0), this condition also implies 
that any solution to the “first best” choice problem contains a positive 
effort level which is defined by the first order condition 

dE(Vn-(l+~)Je)le) 
de 

=a,(e)(E(7cIe)-(1 Cp)I) 

The first statement in (A2) ensures that (2.6) has a unique solution, e*, the 
“first best” effort level. 

3. THE OPTIMAL MONOTONIC CONTRACT 

To prove the emerge&e of debt contracts in the presence of a rno~~to~~~ 
contract constraint, this section first posits the optimality of so 
monotonic nondebt contract, BND(~). It then shows that by moving to a 

‘I The requirements of Assumption 2 are quite weak by standards of the principal agent 
literature. For example, the following conditions are suffkient (though not necessary) l‘or 
concavity of E{ V(z - (1 + p)Z, e) j e) in e: (i) a,(e) = 0 V/e, (ii) &u(e)/de’ > 0 Ye (i.e., increasing 
disutility of effort), and (iii) concavity of E(n 1 e) ‘Ye (which is implied by, but does not require. 
cocvexity of G(a 1 e) in e). 
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debt contract that yields investors the same expected return as BND(z), the 
entrepreneur will commit himself to a higher effort level, Finally, since the 
debt-contract effort level is still less than the “first best” choice, it is shown 
that the entrepreneur will prefer the debt contract to the nondebt contract, 
contradicting the supposition that BND(n) was optimali 

Before proceeding, one further assumption and associated corollary are 
required: 

Assumption 3. When B(n) takes a standard debt form, B(n) = 
B”(n, z) z min(z, z), z > 0, there is a unique solution to the entrepreneur’s 
effort choice problem, (2.3). This solution will be denoted eD( 

COROLLARY 2. e”(z) is a continuous function. 

ProoJ: The Corollary follows directly from Assumption 3, continuity of 
E{ V(n - min(n, z), e) 1 ej in e and z, and the Theorem of the Maximum. 

Q.E.D. 

Now consider a proposed non-debt solution to the monotonicity- 
constrained version of (2.4), namely BND(n) and eND > 0.14 As a nondebt 
contract, BND(n) must differ from any debt contract on nondegenerate sets 
of profit levels. Formally, Vz, (rc: BND(n) # BD(q z)} is of positive measure. 
Further, as a proposed solution to (2.4), BND(n) and eND must satisfy 
constraints (2.4a)-(2.4d). 

To compare BND(n) to a possible debt alternative, define 

Q z E{BND(x) IeND), (3.1) 

and construct BD(q zO) = min(n, zO) such that 

E{BD(n; .q,) ( eND) = Q. (3.2) 

In words, BD(z; zO) is a debt contract that gives investors exactly the same 
expected return as BND(n) when the entrepreneur chooses his nondebt 

rz An alternative derivation of this paper’s debt contracting result employs the “first order 
condition” (FOC) approach to principal-agent problems. Although the FOC-based proof is 
somewhat simpler than the argument presented here, it is also less general. Specifically, it 
requires (i) that Assumption 3 above be strengthened to specify strict concavity of 
E{ V(rc -min(s, z)e) le} in e, and (ii) that B(n) be constrained (a priori) to be piecewise 
smooth with a right-hand derivative, B’(a), no greater than one. Copies of the alternative 
proof are available from the author. 

r3 The following conditions are sufficient for Assumption 3 to hold: (i) a,(e)=0 Ve; 
(ii) d2u(e)/8ez > 0 Ve, and (iii) convexity of j: G(nle) dn in e V(e, 2). These conditions 
are slightly stronger than those given in footnote 11 as suffkient for concavity of 
E{V(n-(1 +p)I,e)le} ine. 

I4 Since E{ 71) e = 0) = 0, eND must be positive to permit satisfaction of constraint (2.4a). 
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contract effort level, eND. Note that, since BND(n) is monotonic, there is a 
critical profit level, rcB>O, such that BND(z) <BD(rr; zO) V’n < rcB (with 
strict inequality on sets of positive measure) and PD(n) 3 BD(n; zO) 
Vn > 5rB (again with strict inequality on sets of positive measure). Fig. I 
depicts this relationship. The following key lemma characterizes the effects 
of this property on relative effort choice incentives. This ~haracte~~at~~~ 
leads into another lemma which relates the entrepreneur’s effort choice 
under BD(n; z,,) to that under BND(x) # BD(n; zO)~ An intuitive discussion 
follows the lemmas. 

LEMMA 1. Suppose two payoff functions, B,(x) and B,(x), satis]) the 
following inequalities for some rc8 > 0: (i) B,(n) < B,(n) Q;n < zg (with strict 
inequality on a set of positive measure), and (ii) B,(n) > ISI ‘v’n: B 7tg (x&h 
strict inequality on a set ofpositive measure). Then BE(Bl(n) - &(7c) j e)/& < 

if either 

(a) E{h(n) - h(n) I e) = 0, 0~ 
(b) E(B,(n) - B0(7c)\ ej < 0 and B,(n) - BO(z) is monotone nonin- 

creasing in 7~ VTC > 7~~. 

Proof See Appendix. 

Lemma 1 compares the extent to which marginal effort benefits are 
captured by investors under two different payoff function regimes: I&(n) 
and a replacement, B,(n), which has higher payments in low profit states 
and lower payments in high profit states. Under the ~ircumsta~~~s 
indicated in the lemma, the replacement function, BI(n), tends to yield 
imvestors fewer benefits from marginal effort and, hence, ~orresp~~di~~~~ 
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greater benefits for the entrepreneur. Since the move from a monotonic 
nondebt contract achieves exactly the type of shift represented by the 
replacement of &(rc) wth B,(n), Lemma 1 is crucial to the following 
derivation: 

LEMMA 2. eD(zo) > eND. 

Proof. Define 

$(Tc) - BD(q q,) - BND(x). 

From the definition of V(w, e) in (2.2) 

(3.3) 

E(V(n-BD(n;zO),e)le}-EE(V(n-BND(n),e)le}= -a(e)E(~(x)~e}. 

(3.4) 

(3.4) gives the difference between the entrepreneur’s expected utility with 
the contract BD(n; z,,) and that with BND(n), for a given effort level e. Since 
eND maximizes E( V(rr- BND(n), e)le> by choice of e, the following 
relationship (together with (3.4)) are sufficient to prove the lemma. 

Property (1). E{@(n) / e} = 0 at e = eND. 

Property (2). E{ d(n) 1 e > < 0 at e = eND + s, some E > 0. 

Property (3). E(cj(n) [ e} > 0 Ve < eND. 

Property (1) follows directly from (3.1), (3.2), and (3.3). To establish 
Properties (2) and (3), let B,(n)= BD(n;zO) and B,(n)- BND(n). NOW 
note that the prior conditions of Lemma 1 are satisfied. Thus, since 
-w(n) I e ND) = 0 from Property (l), Lemma l(a) implies IX{ d(n) 1 eND I/& 
< 0 and Property (2) holds. Finally, to verify Property (3), suppose the 

contrary, so that E{&z) ) eO} < 0 for some e, < eND. Then Lemma l(b) can 
be invoked since #(rc) = z0 - BND(n) V7t> rtg and, therefore, d(n) is non- 
increasing in rc Vn > IZ, (due to the monotonicity of BND(n)). From 
Lemma l(b), E{+(n)/e,) ~0 implies E{$(rt)le) -CO Ve>e, and, in 
particular, E{f$(rc) I eND I< 0. But the last inequality violates Property (l), 
a contradiction. Q.E.D. 

Lemma 2 indicates that the BD(n; z,,) contract yields higher effort than 
BND(n). The intuition underlying this result is quite simple. A move from 
the monotonic nondebt contract, BND(n), to the debt contract, BD(n; zO), 
increases the entrepreneur’s obligations in low profit states and decreases 
them in high profit states (recall Fig. 1). Loosely speaking, increased effort 
shifts probability weight to the high profit states, implying that the debt 
contract gives the entrepreneur more of the benefit from increased effort 
than does the nondebt contract. 
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In making this argument, the importance of the MERP (condition (2.1)) 
should be recognized. The MLRP implies that, for any given profit level, 
increased effort leads to relatively greater probability weight on all higher 
profit levels. For example, suppose that higher effort does not alter the 
probability weights on profit levels n > z, but shifts probability weight fro 
the interval (0, z/2) to the interval (z/2, z). In this case, BND(n) would yield 
the entrepreneur a greater benefit from increased effort, rather than 
BD(~; z). However, since higher effort leads to relatively Iess 
weight on profits above z than on profits in the interval (z/2, z), 
relationship between effort and the profit distribution is inconsistent 

P.Under the MLRP, if higher effort leads to greater prob 
weight on some profit leveis below zg (where 7cB is as indicated in F 
it must also induce a proportionally greater increase in probability weight 
on the profit interval, [ne, co ). An appropriate matching of these changes 
implies greater marginal effort benefits with a contract which concentrates 
payments as much as possible in the lowest profit states. Among 
monotonic limited liability contracts, debt functions have this maximal 
low-profit-state payment property, implying Lemma 2. 

Note now (from Eq. (2.1)) that E(min(n, Z) / e> is increasing in e7 that is, 

aE(min(n, z) \ e) 
ik =Oo s ‘G,(n/e)d?t>O, (3.5) 

where the equality is obtained with integration by parts. Given (X5), 
Lemma 2 implies that investors’ expected return on the BD(n; zO) contract, 
E(BD(z; zO) / eD(zO) >, is greater than Q, the expecte investor payoff on 
B”“(n). Therefore, the pair (BD(n; z,), eD(zo)) tisfies all of the 
constraints, (2.4a)-(2.4d). Moreover, since eD(aO) is chosen optimally, the 
entrepreneur prefers (B”(n; z,), eD(zO)) to (BD(x; zO), eND 
entrepreneur is indifferent between (BD(n; z,), eND) an 
nondebt solution, (BND(7r), eND), the following lemma holds: 

LEMMA 3. Any solution to (2.4) (subject to const~~~~t§ (2.~a~-(2.4~~) 
contains a debt contract. 

Given Lemma 3, the, following assumption is necessary ( 
for the existence of a solution to (2.4), leading into the 
proposition: 

Assumption 4 (A4). 3~: E(BD(x; z) I eD(z)) 3 (I+ p)b. 

PROPOSITION 1. Subject to the monotonic contract ~o~~~r~~~t (2.4d) a 
solution to problem (2.4) exists and has the following properties: 
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(i) B(7c) = BD(rc; 2) - min(n, z), z > 0 (from Lemma 3); 
(ii) E(B(n) j e} = (1 + p)l; and 

(iii) e <e* rfirst best effort choice. 

ProoJ: Existence: By Lemma 3, (2.4) has a solution if and only if the 
following problem has a solution: 

~2; E( V(/(n. - BD(n; z), e”(z)) 1 eD( (3.6) 

s.t. E(BD(7c; z) 1 e”(z)} 3 (1 + p)l. (3.6a) 

Further, z can be bounded above without loss of generality. Given this 
bound, the choice set in (3.6) is compact and, by (A4), nonempty. 
Moreover, the objective function is continuous in z by continuity of V( ), 
BD( ), g( ) and e”( ) (Corollary 2). Thus, (3.6) has a solution by the 
Weierstrass Theorem. 

Properties: (ii) Suppose not, so that E(BD(n; z) 1 eD(z)} > (i+ p)l. Then, 
by continuity of eD(z), there is a sufficiently small positive E so that 
BD(n; Z-E) meets the investor’s return requirement (2.4a). Further, from 
the definitions of V( ) and eD(z), the following inequalities hold: 

E( V(n - BD(n; z), e”(z)) 1 eD(z)} < E( V(n - BD(7t; z - E), e”(z)) 1 e”(z)} 

< E( V(K - BD(n; z - E), eD(z - E)) ( e”(z - E)}. (3.7) 

Inequalities (3.7) establish that the entrepeneur prefers BD(rc; z-e) to 
BD(n; z), implying that BD(n; z) cannot solve (2.4) 

(iii) Given results (i) and (ii), the first order necessary condition for the 
entrepreneur’s effort choice will be 

dE{ Vn - (1 + PM e) I e) _ a(e) aE{min(n, 2) I e> = o 
de de (3.8) 

The first term in (3.6) represents the “first best” effort choice first-order- 
condition derivative (see Eq. (2.6)). Due to Assumption 2, this derivative is 
nonpositive for all e > e* 5 “first best” effort choice. Thus, given the 
inequality in (3.5), the left side of (3.8) is strictly negative for all e > e* and 
any solution to (3.8) must be less than e*. Q.E.D. 

In summary, the entrepreneur expends too little effort when there is a 
“monotonic contract” constraint. A debt contract, by achieving maximal 
effort among available monotonic payoff functions, enables the entre- 
preneur to get closer to the ‘first best.” 
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4. THE OPTIMAL NONMONOTONIC CONTRACT 

Without a “monotonic contract” constraint, the ~~trg~re~eu~ can 
commit himself to higher effort levels by shifting more ~~gb-frost-state 
payment obligations to lower-profit-states than is possible with any 
monotonic contract. In the extreme, the entrepreneur can maximize his 
incentives to exert effort by signing a “live-or-die” contract of the form 

If this contract yields an effort level which is still less than e*, the first best 
level, then it will enable the entrepreneur to get as close to the first 
is possible given liability limits. However, if this contract yields an effort 
level greater than e*, then one can surmise that a contract with less 
extreme effort incentives will elicit a first best. 

To develop these thoughts formally, this section will analyze 
[I’71 ‘“relaxed first order condition” (RFOC) analog to pro 
(without constraint (2.4d)).15 Specifically, consider the RFOC max~m~~a- 
tion 

mBa,x q vn - B(n), e) I e> (4.2) 

s.t. E{B(7r) ) e> 2 (1 + p)P (4.2a) 

dlq Y(n - B(n), e) 1 @)/de > 0 (42%) 

O<B(n)<7L Q’iz. (4.2cj 

As is well known, the solution to the RFOC problem, (4.2), need not 
coincide with that for the underlying incentive contracting problem, (2.4). 
The reason is that constraint (4.2b) may permit the entrepreneur a la 
opportunity set than does the true effort choice constraint, (2. 
Therefore, in principle, the solution to (4.2) may lie outside of the 
opportunity set available to the entrepreneur (e.g., see Jewitt [II ]$ 
Grossman and Hart [5], and Mirrlees [IS] for discussion 
However, if a solution to the RFOC problem, (4.2) satisfies 
choice constraint (2.4b) and, therefore, lies within the entrepreneur’s true 
opportunity set, then it must also solve the original problem, (2.4). 

Drawing upon this last observation, the following assumption will p 
to be sufficient for the coincidence of solutions to problems (2.4) and ( 

Assumption 5 (A5). If B(Z) = aBLD(rc; z), with CI E (0, I] and z 3 0, then 
d2E( V(TT - B(n), e) j e j/d e2 < 0 Me and, therefore, there is a unique solution 

IS I am indebted to the referee for suggesting this approach. 
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to the entrepreneur’s effort choice problem, (2.3). This solution will be 
denoted eLD(z, a). 

The next corollary is a direct implication of (A.5): 

COROLLARY 3. If a solution to (4.2) satisfies constraint (4.2b) with 
equality and takes the form B(n) = aBLD(z; z), a E (0 l] and z > 0, then it 
also solves (2.4). 

Bearing this result in mind, consider the following Lagrangean function 
for problem (4.2): 

+ ,u(dE( V(z - B(n), e)l e}/de) + jam 0(7t)B(z) dz 

+ jm v(n>(n -B(n)) & 
0 

where A, p, 0( ) and q( ) are multipliers for constraints (4.2a)-(4.2c). Using 
(4.3), necessary conditions for a solution to (4.2) include 

g(n I e). i 
g,(n: I4 2 -a(e) - we(e) - Pa(e) - 
g(n I e) 1 + (tq7.c) -q(n)) = 0 (4.4) 

dE(V~-B(~),e)le} 
de + 1 sd; B(z) g,(n I e) dn 

+~d2E(V(rr-B(71!,e)le}=0 
de2 (4.5) 

Due to nonnegativity and complementary slackness conditions for e(n) and 
I, condition (4.4) yields 

d(n,e)-i-a(e)-aa.(ua(e)~>O * B(E) = TC (4.6a) 

&qe)=O * B(n) E [0, TC] (4.6b) 

4(7be)<O 3 B(n) = 0. (4.6c) 

From (4.6) and nonnegativity of p, it is evident that there are two impor- 
tant cases to consider: Case 1: p > 0 and Case 2: ,G = 0. 

For Case 1, the above conditions lead to the following characterization 
of a solution to (4.2): 

PROPOSITION 2. If the effort choice constraint (4.2b) strictly binds at a 
solution to (4.2) (i.e., p > 0), then this solution has the following properties: 
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(i) B(n) = BLD(z; z), for some z >O; 
(ii) E(B(n)je) = (I+ p)l; 
(iii) e < e* Efirst best effort level; and 

(iv) B and e solue (2.4). 

ProoJ (ij pu>O and the MLRP (condition (2.lj) imply that (6(z; ej is 
decreasing m 7~. Thus, result (i) follows from (4.6) and constraint (4.2aj~ 

(iv) ,B > 0 implies dE{ V( ) ( e )/de = 0 (from complementary slackness ). 
The latter equality, together with result (i) and Corollary 3, establis 
(iv). 

(ii and iii) From result (i) and Assumption 5, d’E( V( ) j e)/de” ~0. 
Thus, given p > 0 and dE( V( ) ) e)/de = 0, the second term in (4.5) must be 
strictly positive. Therefore, since ,I 20, I must he positive and so too must 
be (0” B(n) g,(n I el d rc. I.> 0 implies result (ii) (from ~orn~~erne~tar~ 
slackness). Given result (ii), constraint (4.2b) can be written 

Since l; B(n) g,(7t j e) & >O, the first term in (4.7) is strictly positive. 
Given Assumption 2, this last inequality implies result (iii ). ED. 

For Case 2 (1-1 = 0), similar reasoning leads to the following characteriza- 
tion of a solution to (4.2): 

LEMMA 4. Zf p =0 at a solution to (4.2), then this solution has t&e 
fo2lowing properties: 

(i) e = e* E first best effort level; and 

(ii) E(B(n)l e} = (1 f p)l. 

BPOOJ: To prove the lemma, it is useful to show first that ;1= u(e) w 
p=O. Suppose not. Then either ,I> a(e) or ka(e). If il>a(e) (when 
p=O), then B(n)= V f 7t 7~ rom (4.6) and the last two terms in (4.5) equal 
IdE{n / e j/se > 0; but this last inequality, together with constraint (4,2b), 
implies that (4.5) is violated, a contradiction. If .I. < a(e), then B(x) = 0 Vn 
from (4.6) and constraint (4.2a) is violated, a contradiction. 

Iti = a(e) > 0 implies result (ii) from complementary slackness. Further 
substituting ,I = a(e) and dE{ V( ) / e )/d e f rom (4.7) into (4.5) yiel 
PLO83 

d~{V(11-(l+p)4.e)lel=0 
de 

I) (4.5) 

which implies result (i). 
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Lemma 4 describes two key properties of a solution to (4.2) when the 
effort choice constraint, (4.2b), is slack (i.e., ,U = 0). But it remains to relate 
this solution to the original problem, (2.4), and also to determine if and 
when h will be zero. The following lemma lays the groundwork necessary 
to address these issues: 

LEMMA 5. There is a unique z* > 0 such that 

aE{BLD(z; z*) 1 e} 
de e=e* 

= 0, (4.9) 

where e* is the first best effort level defined in (2.6). 

Prooj If the derivative in (4.9) is written out, the lemma is seen to be 
a direct consequence of the MLRP (Eq. (2.1)). Formally, 

ngng,(n ] e*) dn = J:” ng,(n 1 e*) dn 

(4.10) 

where, due to Eq. (2.1), 7cg can be defined such that g,(rc]e*) ~0 %r<7cn, 
and gJrc/ e*) >O V’n > 7~~. The first right-hand term in (4.10) has a fixed 
negative value. The second right-hand term is continuous and increasing in 
z, and zero at z = 7~~. Further, since JF g,(z(e*) dz =O, this second term 
is greater in absolute value than the first right-hand term at z = co. Thus, 
by the Intermediate Value Theorem, there is a z* E (z,, co) at which (4.9) 
is satisfied. Fixing this z*, the derivative in (4.10) is negative for all z: 
o<z<z* and positive for all z z=- z *. Hence, the z* > 0 that solves (4.9) is 
also unique. Q.E.D. 

To appreciate the significance of Lemma 5, define a* such that 

a*E{BLD(n;z*)(e*}=(l+p)I, (4.11) 

and suppose that this LX* is in the unit interval, (0, 13. Now consider the 
entrepreneur’s effort choice first order condition derivative, (4.7), with 
B(n) = a*BLD(n; z*). Given (4.9), the derivative vanishes at e = e*. Thus, 
since E( V( )I } e is concave in e (from (A5)), this contract will support a 
first best effort choice, as well as satisfying investor return requirement and 
liability constraints. In summary, 

PROPOSITION 3. If 31x* E (0, 13 such that (4.11) is satisfied, then 
(ol*BLD(n; z*), e*) solves problems (4.2) and (2.4). 
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The following proposition will now close the circle between problems 
(2.4) and (4.2), thereby permitting a complete cbaracter~~atio~ of the 
optima: 

PROPOSITION 4. p = 0 at a solution to (4.2) if arzd only if 3x* E (0, 11 
such that (4.11) is satisfied. 

Proof. See Appendix. 

From Propositions 2, 3, and 4 and Corollary 3, problem (2.4) has two 
types of possible solutions, depending upon whether or not there is an 
01* E (0, I] satisfying (4.11). If there is such an IX*, the solutions to (2.4) will 

e first best and will include the contract a LD(7c; z*). If not, the only 
ossible solution to (2.4) is a pure live-or-d contract which yields an 

effort level that is less than first best.“j It is clear from Eq. (4.11) that the 
first best outcome is more likely to be possible as the required external 
investment I is lower and as the value E{ BLD(rc; z*) / e* > is higher. 

One final corollary is a direct implication of Propositions I-4 an 
concludes the analysis: 

COROLLARY 4. If (B, e) solves (2.4) without constraint (2.4 
nonmonotonic. 

5. SUMMARY AND CONCLUSION 

The purpose of this article was to deduce the effects of liability limits 
the optimal financial contract between a risk-neutral investor and a ri 
neutral entrepreneur who makes an unobservable ex-ante effort choice. 
Principal conclusions included the following: 

I6 For the sake of brevity, the foregoing analysis does not prove the necessary existence of 
a solution to problem (2.4) (without constraint (2.4d)). However, an expanded version of this 
paper shows that a solution to problem (2.4) always exists. Paralleling the existence proof in 
Section 3, the expanded paper first shows that any feasible “non-live-or-die” contract is weakly 
dominated by a corresponding feasible “live-or-die” contract (i.e., a B(n) of the form 
c&o(n; z), where c( E (0, 11 and z 3 0). Therefore, the entrepreneur’s opportunity set can be 
restricted to “live-or-die” contracts without loss in generality, and (2.4) will have a solution 
if and o&y if the following problem has a solution: 

max E{ V(7t - ~tB~o(7r; z). t+o(z, CL)) 1 eLD(2, a) 1 
r.a 

s.t. E{GtBLD(7r; z)leLD(z, a)) > (1 +p)P, of (0, 11, i>,o. 

From Section 3, the opportunity set defined by (2.4a)-(2.4c) contains the contract charac- 
terized in Proposition 1, (BD(n; z), C?(Z)). Therefore, the restricted choice problem, (2.4Rf. 
also has a nonempty opportunity set. Given (AS) and a nonempty opportunity set, it is easily 
shown that (2.4R) satisfies the requirements of the Weierstrass theorem. 
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(1) When the investor payoff function is constrained to be monotone 
nondecreasing in firm profits, a standard debt contract is optimal, eliciting 
less effort than in a perfect information setting. 

(2) Without a “monotonic contract” constraint, a “live-or-die” payoff 
function is optimal, giving the investor nothing in high-profit states of 
nature and a constant share of firm profits in low-profit states of nature. 
Depending upon the technology and the extent of external investment, the 
induced effort choice may or may not be “first best” in this case. 

In closing, four limitations of the analysis merit mention: (1) Both the 
entrepreneur and the investor were assumed to be risk-neutral, eliminating 
any risk-sharing considerations from the analysis. (2) The investors and the 
entrepreneur were assumed to have symmetric beliefs about the profit 
distribution and its relationship to the effort choice. (3) The investor was 
assumed to have complete information about the entrepreneur’s preferen- 
ces, and hence his effort choice response to contract terms. (4) The 
entrepreneur’s choices of an investment level and investment policy were 
assumed to be fixed and known by all agents. 

With respect to the first of these limitations, entrepreneurial risk aversion 
will lead to nontrivial conflicts between risk-sharing and incentive objec- 
tives of the contract choice, just as in Shave11 [20] and Harris and Raviv 
[6].” However, the beneficial incentive properties of the contract forms 
derived here are likely to withstand such a generalization. 

With respect to the second and third limitations, preliminary research by 
the author (Innes [9]) indicates that asymmetric information about 
attributes of the entrepreneur and his investment project is unlikely to alter 
this paper’s conclusions on equilibrium payoff functions. For example, 
suppose entrepreneurs can be ordered such that, given any specified 
investor payoff function, “higher quality” types have preferences and effort- 
contingent profit functions that always yield a “better” firm-level profit 
distribution (in the sense of the MLRP). Then any informational 
equilibrium (in a risk-neutral setting) can be shown to have the same 
payoff function properties as derived here. 

Of course, the informational asymmetry may not be amenable to such a 
simple characterization and may even be such that the investor has no 
basis for probability assignment (as in Hurwicz and Shapiro [S]). Both of 
these possibilities suggest scope for further work. 

“Without an incentive problem, entrepreneurial risk aversion and liability limits can be 
shown to lead to an optimal financial contract that gives the investor max(n - K, 0) for some 
positive constant K. In other words, the entrepreneur becomes the debt holder and the 
investor the residual claimant. With an incentive problem, it would be interesting to know the 
extent to which risk-sharing considerations lead an optimal contract to deviate from the forms 
derived here, as well as the parametric determinants of this deviation. 
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Finally, the most provocative of the limitations mentioned above is 
probably the fourth, which suggests a number of interesting complications 
to the foregoing analysis. One such complication, with potentially 
important implications for this paper, is as follows. Suppose that the 
entrepreneur could commit to investing $I of the investor’s money in his 
firm and another $x of the investor’s money in a riskless bond, with x now 
representing an added contractual choice variable. The right-hand side of 
the investor return constraint, (2.4a), would then become (It p)(l+ x), 
and the limited liability restriction, (2.4c), would be as follows: 0 6 
x + x( I+ p). Further, the entrepreneur’s objective function would 
E( V(n + x( I+ p) - B(n), e) 1 e >. Now, without loss of generality, consider 
replacing B(E) with B(z) 2 B(X) - ( 1+ p)x. The original choice problem, 
(2.4), would then be recovered, with two modifications: (i) the addition of 
the choice variable x, and (ii) a modified liability constraint, - x( I+ p) f 
i(n) < 71. Thus, x would serve to relax the lower bound liability limit. 

Since none of the derivations in Section 3 relied upon the lower bound 
constraint, B(K) > 0, all of the results from the rnonoto~~e~ty-constrained 
choice problem would persist in this altered setting. But the same ca 
be said for the results in Section 4. In fact, it can be shown that, wit 
a monotonicity constraint and with the choice variab x, a ‘“first best” ca6a 
always be achieved by setting x sufficiently high.“,” n an intuitive Bevel, 
relaxation of the lower bound constraint permits ontracts with even 
greater incentives for entrepreneurial effort than are provided by a “live-or- 
die” contract. With a positive X, these enhanced effort incentives can be 
obtained by making the investor’s high-profit-state payoffs negative. Thus, 

e best “live-or-die” contract elicits too little effort (as in roposi- 
tion 2), a positive x can be chosen to raise the effort level to the “first best,” 
e+. 

This simple treatment of the choice variable x does have some problems, 
however. For exampfe, the investor may not be able to compel the 
entrepreneur’s adherence to his agreed-upon level of riskless investment 

I8 The anaiysis above found that a “first best” would not be achieved when the contract 
BLD(n: z*) (where z* was selected to elicit the “first best” effort choice e*) failed to meet the 
investor return requirement. But with x r 0, another contract, BLD’(z; x), can be defined such 
that 

LP*(n; x) E 
i 

x VII =s z*(x) 

-41 +p1 Vrc>z’(x) 

with z*(x) selected to elicit the “first best” effort level e. Since the investor’s expected payon 
on BLD( ) can be shown to be increasing in x (proof available from the author), x can always 
be set sutliciently high for BLD’( ) to meet the investor return requirement and thereby 
achieve a “first best.” 

I9 I am indebted to the Associate Editor for these observations. 

642,‘52:1-5 
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(i.e., x), perhaps due to the investor’s inability to observe this entre- 
preneurial choice. In this case, the entrepreneur would have an incentive to 
invest the x dollars in risky firm projects, so long as the expected return on 
these projects is not too low. The latter incentive derives from the increased 
probability of large high-profit-state entrepreneurial payoffs that higher 
risk levels elicit. Of course, these additional moral hazard concerns merit a 
much more complete analysis than can be given here. They implicitly raise 
the broader question of optimal contracting when investment policy 
choices, as well as effort, are made privately by the entrepreneur (e.g., see 
Lambert [12]). This topic, as well as the implications of incentive 
problems for optimal scale choices, merits more thought. 

APPENDIX 

Proof of Lemma 1. Define 

#f~)=B,(~)-~o(~) 

As E(b(n) I e> d 0, th ere is a profit level rc* > ni such that the the following 
condition holds: 

JiB d(n) g(n 1 e) dn + Jz* d(n) g(7c ( e) dn = 0. (A-2) ZB 
Now consider the derivative 8E{ b(z) ( e)/&: 

aE~~tn)Iej/ae=J=*~(n)g.(‘IIe)d~+ J~ti(~)~(~Ie)d~. (A.31 
0 

To evaluate the first term on the right-hand side of (A.3), define 

where the second equality follows from (A.2). By construction, 
Jy 6(x,) d7tl = 1. Using this fact and substituting for +(E~) from (A.4), the 
first term in (A.3) can be rewritten as 
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x dn, dnL < 0, 

where rrH denotes the variable of integration over the interval [zB, rc*] a 
n, denotes the variable at integration over [0, rcg). The inequality in (A 
follows from 6(x,) 3 0 Vn, < rcB (with strict inequality on a set of positive 
measure in the interval [0, zB)), #(nu) < 0 Vrc, > rcg (with strict inequality 
on a set of positive measure in the interval (zs, cc )), and Eq. (2.1) (since 
7tH > rcL). Since 7r* = co when E{$(n)le) =O, (A.5) establishes part (a) of 
the lemma. 

To establish part (b), the second term in (A.3) must be si 
nonpositive under the indicated circumstances. To this end, note the 
following: 

(I) j? g,(nIe)dn=O; and 
(II) due to (I) and condition (2.1), 3n, for any given e such that 

g,(nie)>O V7c<zg andg,(n(e)>O VTC>~C~. 

Hf 7t* > rcg, then the second term in (A.3) is non-positive (due to ( 
$(n) < 0 Vn 3 rc* > 7~~). If n* < 7tg, then 3x** such that J$* g,(n 1 e) dn = 0 
and, if #(n) is nonincreasing in z for 7t E [k*, n** J, the second term in 
(A.3) satisfies the inequalities 

The first inequality in (A.6) follows from 4(x) ~0 and g,(znje) >Q for 
n. > rc** > 7cg. The second inequality follows from a nonincreasing & ) (so 
that d(nn,) < d(n) for rc E [rc*, rcg) and d(rc,) > #(rr) for n E (Y-c~, rt** 
the definition of rcg in (II). 

Proof of Proposition 4. The “if” direction follows directly from Proposi- 
tions 2 and 3. To prove the “only if” direction, the following claim must 
first be verified: 

Claims. Suppose (B*, e*) solves (4.2) and z0 satisfies E( 
(I -I- p)l. Then (BLD(z; z,), e*) also solves (4.2). 

ProoJ of Claim. Since E(B*(n)) e* > = (1 + P)H (Proposition 2 and 
Lemma 4 ), 

E( V(n - B*(n), e*)) e*} = E( V(n - LD(7r; z,), e*) 1 e* >. 
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Given (A.7), it is sufficient to show that (BLD(n;z,), e*) satisfy 
(4.2ab(4.2c). (4.2a) and (4.2~) are satisfied by construction. Further, if 
B,(n) = B*(n) and B,(n) z BLD(n; z,,), the prior conditions of Lemma l(a) 
will be met at e= e*, implying that dE{BLD(q q,) - B*(n) 1 e*)/de d 0 
(with strict inequality when B*(n) # BLD(z; zO)). Using this last inequality 
(and Eq. (4.7)), 

aE{ V(n - BLD(n; zo), e*) I e*} , aE( V(n - B*(n), e*) (e* > > o 
de 

, 
i3e , . 

Thus (BLD(z; zO), e*) also satisfies (4.2b). Q.E.D. Claim 

Given p = 0, Lemma 4, and the foregoing claim, (BLD(q zO), e*) solves 
(4.2). Thus, since E(BLD(n; z) 1 e*} is increasing in z, Proposition 4 will 
follow from the condition z0 <z*, where z* is as defined in Lemma 5. To 
derive this condition, suppose the contrary, z0 > z*. Then 

aE{BLD(n; zO) 1 e*} = aE(BLD(n; z*) 1 e*} 
de de 

+~zo~gJt[/e*)d~>0,(A.8) 
i* 

where the inequality follows from Lemma 5 and g,(n 1 e*) > 0 Vx > z* > z~. 
(xg is defined in the proof of Lemma 5, where it is shown that z* > zng.) But 
with p =0 and 1> 0 (see the proof of Lemma 4), conditions (4.2b) and 
(4.5) imply that BE(B(n) 1 e),& ~0 at a solution to (4.2), contradicting 
(AS). Q.E.D. 
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