
Theoretical Computer Science 351 (2006) 101–110
www.elsevier.com/locate/tcs

Choosing starting values for certain Newton–Raphson iterations

Peter Kornerupa, Jean-Michel Mullerb,∗
aUniversity of Southern Denmark, Odense, Denmark

bCNRS-LIP-Arénaire, Lyon, France

Abstract

We aim at finding the best possible seed values when computing a1/p using the Newton–Raphson iteration in a given interval.
A natural choice of the seed value would be the one that best approximates the expected result. It turns out that in most cases, the
best seed value can be quite far from this natural choice. When we evaluate a monotone function f (a) in the interval [amin, amax],
by building the sequence xn defined by the Newton–Raphson iteration, the natural choice consists in choosing x0 equal to the
arithmetic mean of the endpoint values. This minimizes the maximum possible distance between x0 and f (a). And yet, if we
perform n iterations, what matters is to minimize the maximum possible distance between xn and f (a). In several examples, the
value of the best starting point varies rather significantly with the number of iterations.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Computer arithmetic; Newton–Raphson iteration; Division; Square-root; Square-root reciprocal; Root extraction

1. Introduction

Newton–Raphson (NR) iteration is a well-known and useful technique for finding zeros of functions. It was first
introduced by Newton around 1669 [12], to solve polynomial equations (without explicit use of the derivative), and
generalized by Raphson a few years later [17]. NR-based division and/or square-root have been implemented on many
recent processors [14,8,15,13,9].

As a matter of fact, the classical “Newton–Raphson” iteration for evaluating square-roots (deduced from the general
iteration by looking for the zeros of function x2 − a) goes back to much earlier. Al-Khwarizmi mentions this method
in his arithmetic book [2]. Moreover, it was already used by Heron of Alexandria (this is why it is frequently quoted
as “Heron iteration”), and seems to have been known by the Babylonians 2000 years before Heron [6].

Let us now turn to the modern NR iteration. Assume we want to compute a root � of some function �. The NR
iteration consists in building a sequence

xn+1 = xn − �(xn)

�′(xn)
. (1)

If � has a continuous derivative and if � is a single root (i.e., �′(�) �= 0), then the sequence converges quadratically to
�, provided that x0 is close enough to �.

∗ Corresponding author.
E-mail address: jean-michel.muller@ens-lyon.fr (J.-M. Muller).

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.09.056

http://www.elsevier.com/locate/tcs
mailto:jean-michel.muller@ens-lyon.fr

102 P. Kornerup, J.-M. Muller / Theoretical Computer Science 351 (2006) 101 –110

The choice of a good starting value for the square-root iteration has been the subject of some research since the
1960s. An early reference is [7] and later [1] also attempted to minimize the maximal error expressed as

max
x∈[a,b]

∣∣∣∣log
G(x)√

x

∣∣∣∣ ,
using a polynomial or rational function G(x) of some prescribed degree. Similarly [4,11] minimized the relative error:

max
x∈[a,b]

∣∣∣∣
√

x − G(x)√
x

∣∣∣∣ ,
where the latter reference showed, that for such functions the optimal starting value is independent of the number of
iterations to be performed, except when the approximation is chosen to be a constant. Ref. [5] provided nine different
such approximating functions. Ref. [18] showed some simple relations between several of these optimization criteria.
Ref. [19] investigated similarly the alternative iteration for the square-root reciprocal

xn+1 = xn(3 − ax2
n)/2,

which avoids division, also minimizing the relative error.
More recently [10] discuss using absolute instead of relative error for the classical square-root iteration, attempting

to minimize the absolute error after a predetermined number of iterations. They concentrate on approximations in the
form of linear functions, and a very small number of iterations (n = 1, 2).

Due to the increased interest in speeding up division, algorithms based on obtaining good reciprocals has spurred a
lot of activity in also obtaining good initial values for the NR reciprocal iteration

xn+1 = xn(2 − axn).

In 1994 [16] developed explicit formulas for the optimal starting values for this iteration, as functions of the number n

of iterations, and the interval (a, b)

�n = a2−n + b2−n

a2−n
b + b2−n

a
, (2)

and [3] discuss the construction of initial value tables for reciprocation.
Here we shall develop similar optimal starting values for obtaining roots of the function

�(x) = xp − a,

i.e., for use in NR iterations to approximate f (a) = a1/p.
In general we find the following iteration:

xn+1 = xn

p

(
p − 1 + a

x
p
n

)
,

which specializes into
p = −1

�(x) = 1

x
− a and iteration xn+1 = xn(2 − axn).

This sequence goes to 1/a: hence it can be used for computing reciprocals.
p = 2

�(x) = x2 − a and iteration xn+1 = 1

2

(
xn + a

xn

)
.

P. Kornerup, J.-M. Muller / Theoretical Computer Science 351 (2006) 101 –110 103

This sequence goes to
√

a. Note that this iteration requires a division, usually a fairly “expensive” operation, and
thus often avoided.

p = −2

�(x) = 1

x2
− a and iteration xn+1 = xn

2
(3 − ax2

n).

This sequence goes to 1/
√

a. It is also frequently used to compute
√

a, obtained by multiplying the final result by a.
To make the iterations converge quickly, we have to make sure that x0 is close enough to the wanted result. It is also

important to make sure that the number of required iterations is a small constant. This is frequently done by using the
first, say k, bits of the input value a to address a table of suitable initial values. Hence, for all the input values with the
same first k bits (they constitute some interval [amin, amax]), the iterations will be started with the same x0. A natural
choice consists in choosing the value of x0 that minimizes

max
a∈[amin,amax] |f (a) − x0|.

If f is monotone, this is traditionally done (e.g., [3]) by taking x0 equal to the arithmetic mean

1
2 (f (amin) + f (amax)).

As said above, this minimizes the maximum possible distance between x0 and f (a). And yet, if we perform n

iterations, what really matters is to minimize the maximum possible distance between xn and f (a). In the following,
we develop expressions for starting values for a specific number of iterations. These choices turn out to be much better
than the natural choice. In the case of reciprocation, we actually find again the optimal choice of Eq. (2) from [16].

2. Estimating the error

We wish to compute

� = a1/p,

where p is a nonzero integer (p can be either positive or negative). This will be done by computing the zero of

�(x) = xp − a,

using the NR iteration. The obtained iteration is

xn+1 = xn

p
(p − 1 + ax

−p
n). (3)

We wish to find the best starting point for a ∈ [amin, amax], assuming we will perform n iterations. To do that, we
want to estimate |xn − �| from |x0 − �|.

Since the NR iteration has a quadratic convergence (that is, if x0 is close to �, then |xn+1 −�| is roughly proportional
to the square of xn − �), we shall try to estimate the coefficient of proportionality.

From (3), we get

xn+1 − �

(xn − �)2
= 1

2

p − 1

�
− 1

6

p2 − 1

�2
(xn − �) + 1

24

(p + 2)(p2 − 1)

�3
(xn − �)2

− 1

120

(p + 2)(p + 3)(p2 − 1)

�4
(xn − �)3 + O((x − �)4). (4)

The formula shows that ifp = −1 (i.e., in the case of the computation of a reciprocal), the coefficient of proportionality
is a constant (it does not depend on xn). In that particular case, the solutions given later will be exact, not approximate.

104 P. Kornerup, J.-M. Muller / Theoretical Computer Science 351 (2006) 101 –110

For p �= −1 we have not succeeded in getting from (4) a direct expression for xn − � in terms of x0 − �. And yet,
since we assume that the interval [amin, amax] is small, it makes sense to assume that, as soon as n�1, the terms

−1

6

p2 − 1

�2
(xn − �) + 1

24

(p + 2)(p2 − 1)

�3
(xn − �)2

− 1

120

(p + 2)(p + 3)(p2 − 1)

�4
(xn − �)3 + O((xn − �)4) (5)

become negligible compared to (p − 1)/(2�). Also, we may assume that for n = 0, the terms

1

24

(p + 2)(p2 − 1)

�3
(x0 − �)2 − 1

120

(p + 2)(p + 3)(p2 − 1)

�4
(x0 − �)3

+ O((x0 − �)4) (6)

can be neglected compared to

−1

6

p2 − 1

�2
(x0 − �).

Thus we have

x1 − � ≈
(

p − 1

2�
− p2 − 1

6�2
(x0 − �)

)
(x0 − �)2 (7)

and, for n�1:

xn+1 − � ≈ p − 1

2�
(xn − �)2. (8)

From (7) and (8), we find

xn − � ≈
(

p − 1

2�

)2n−1−1 (
p − 1

2�
− p2 − 1

6�2
(x0 − �)

)2n−1

(x0 − �)2n

. (9)

Now, we have to find a starting point x0 that minimizes the maximum absolute value of |xn −�| (the maximum is taken
for all a ∈ [amin, amax], i.e., for all � ∈ [a1/p

min , a
1/p
max]—by convention, if y < x, then [x, y] is the interval [y, x]).

It can be shown that the maximum value is attained for � = a
1/p

min or � = a
1/p
max, hence it will be minimized when the

values for � = a
1/p

min and � = a
1/p
max are equal. Denoting �min = a

1/p

min and �max = a
1/p

min we get the following equation:
(

p − 1

2�min

)2n−1−1 (
p − 1

2�min
− p2 − 1

6�min
2
(x0 − �min)

)2n−1

=
(

p − 1

2�max

)2n−1−1 (
p − 1

2�max
− p2 − 1

6�max
2
(x0 − �max)

)2n−1

. (10)

After some simplifications, this equation becomes

�1−1/2n−1

max

(
3

�min
− (x0 − �min)

p + 1

�min
2

)
(x0 − �min)

2

= ±�1−1/2n−1

min

(
3

�max
− (x0 − �max)

p + 1

�max
2

)
(x0 − �max)

2. (11)

This new equation is a 3rd degree polynomial equation in x0 (or more precisely, a set of two 3rd degree equations,
depending on the “±”). It is therefore very easily solvable numerically, obtaining the root located in the interval
[a1/p

min , a
1/p
max].

Now, let us as an example focus on the case of reciprocation. This is what we do in practice, and we call �n the
obtained starting point for n iterations.

P. Kornerup, J.-M. Muller / Theoretical Computer Science 351 (2006) 101 –110 105

-25

-20

-15

-10

-5

0.5 0.6 0.7 0.8 0.9 1
x

Fig. 1. Radix-2 logarithm of the maximum distance (for all a in [1, 2]) between iterate x4 and 1/a, depending on the choice of x0 in [1/2, 1].

3. Example, p = −1, Newton–Raphson reciprocation

As mentioned above, NR iteration for computing the reciprocal of a number a consists in performing the iteration

xn+1 = xn(2 − axn). (12)

In practice, when we wish to compute the reciprocal of a number a that will be assumed to be between 1 and 2, the
first k bits of the binary representation of a − 1 (the “implicit one” being omitted) are used as address bits to find in a
table an adequate value of the seed x0. This means that the same x0 will be used for all values of a in an interval

[amin, amax],
with amax − amin of the form 2−k in the most frequent cases. Fig. 1 shows that the choice of the starting point can have
a huge influence on the final approximation error (for other values of p, we may get very similar figures).

As said in the introduction, it is frequently suggested to choose the arithmetic mean, e.g., as used in [3],

�0 = 1

2

(
1

amin
+ 1

amax

)
.

Let us try to minimize the distance between xn and 1/a. First, let us compute that distance. From (12), we get

xn+1 − 1

a
= 2xn − ax2

n − 1

a
= −a

(
xn − 1

a

)2

,

which is the very same equation as we would obtain with p = −1 from (4).
Hence, by induction

xn − 1

a
= −a2n−1

(
x0 − 1

a

)2n

. (13)

What we now have to find is the value x0 (between 1/amin and 1/amax) such that the maximum value (for a between
amin and amax) of |xn − 1/a| is as small as possible. By examining the derivative of function:

g(a) = a2n−1
(

x0 − 1

a

)2n

one immediately deduces that, for a given x0, the maximum value of |xn − 1/a| is obtained for a = amin or a = amax.

106 P. Kornerup, J.-M. Muller / Theoretical Computer Science 351 (2006) 101 –110

That is, the maximum error is either

E1 = a2n−1
min

(
x0 − 1

amin

)2n

or

E2 = a2n−1
max

(
x0 − 1

amax

)2n

.

As before, this maximum value will be minimized when E1 = E2. This gives an equation that x0 must satisfy to be
the best starting point for n iterations

a2n−1
min

(
x0 − 1

amin

)2n

= a2n−1
max

(
x0 − 1

amax

)2n

. (14)

To solve this equation define

�n = a1−2−n

min and �n = a1−2−n

max .

From (14) we get
[
�nx0 − �n

amin

]2n

=
[
�nx0 − �n

amax

]2n

.

And, since

1

amax
�x0 � 1

amin

this gives

�nx0 − �n

amin
= �n

amax
− �nx0.

This is now very easily solved, and gives

x0 = (�n/amax) + (�n/amin)

�n + �n

.

From this we deduce the following result, which is identical to the result quoted above from [16].

Theorem 1. The maximum possible distance between xn and 1/a is smallest when x0 is equal to the number

�n = a2−n

max + a2−n

min

a2−n

maxamin + a2−n

min amax
. (15)

Some values of �n are of particular interest:
• �0 is the arithmetic mean of 1/amin and 1/amax: we find again (which is not surprising) the value that minimizes the

maximum distance between 1/a and x0;
• �1 is the geometric mean of 1/amin and 1/amax, that is,

�1 = 1√
aminamax

.

• the limit value (when n → ∞) of �n is

�∞ = 2

amin + amax

P. Kornerup, J.-M. Muller / Theoretical Computer Science 351 (2006) 101 –110 107

that is, the reciprocal of the midpoint of the interval [amin, amax]. This shows (and this will be confirmed below by
the experiments) that this “naive” choice for x0 is far from being naive, and turns out to be a much better choice than
the sophisticated value �0 that minimizes the maximum distance between 1/a and x0.

3.1. First example: amin = 1 and amax = 2

This example corresponds to the direct computations of reciprocals of mantissas of floating-point numbers without
any tabulation. By (15) we find the following starting values:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�0 = 3/4,

�1 = 1/
√

2,

�2 = 0.68644 . . .

�3 = 0.67642 . . .

�∞ = 2/3

We get, depending on the choice of x0, the following approximation errors:

x0 max |x1 − 1/a| max |x2 − 1/a| max |x3 − 1/a| max |x4 − 1/a| max |x5 − 1/a|
�0 1.25 × 10−1 3.12 × 10−2 1.95 × 10−3 7.63 × 10−6 1.16 × 10−10

�1 8.56 × 10−2 1.47 × 10−2 4.33 × 10−4 3.75 × 10−7 2.82 × 10−13

�2 9.83 × 10−2 9.67 × 10−3 1.87 × 10−4 6.98 × 10−8 9.76 × 10−15

�3 1.05 × 10−1 1.10 × 10−2 1.20 × 10−4 2.89 × 10−8 1.67 × 10−15

�4 1.08 × 10−1 1.16 × 10−2 1.36 × 10−4 1.83 × 10−8 6.75 × 10−16

�5 1.10 × 10−1 1.20 × 10−2 1.44 × 10−4 2.07 × 10−8 4.28 × 10−16

�∞ 1.11 × 10−1 1.23 × 10−2 1.52 × 10−4 2.32 × 10−8 5.40 × 10−16

Observe that the minimal values of the maximum errors occur after n iterations, when �n is used as the starting value
(emphasized in bold face).

For performing five iterations, choosing �5 is 272245 times more accurate than choosing �0. This corresponds to
more than 18 bits of difference in accuracy.

3.2. Second example: amin = 3/2 and amax = 7/4

Of course, when amax − amin decreases, the difference tends to be reduced (since the interval where x0 can lie
shrinks). This is shown in the following table:

x0 max |x1 − 1/a| max |x2 − 1/a| max |x3 − 1/a| max |x4 − 1/a| max |x5 − 1/a|
�0 3.97 × 10−3 2.76 × 10−5 1.33 × 10−9 3.09 × 10−18 1.67 × 10−35

�1 3.67 × 10−3 2.36 × 10−5 9.71 × 10−10 1.65 × 10−18 4.76 × 10−36

�2 3.81 × 10−3 2.17 × 10−5 8.26 × 10−10 1.19 × 10−18 2.49 × 10−36

�3 3.87 × 10−3 2.25 × 10−5 7.61 × 10−10 1.01 × 10−18 1.80 × 10−36

�4 3.91 × 10−3 2.29 × 10−5 7.89 × 10−10 9.33 × 10−19 1.52 × 10−36

�5 3.93 × 10−3 2.31 × 10−5 8.03 × 10−10 9.67 × 10−19 1.40 × 10−36

�∞ 3.94 × 10−3 2.33 × 10−5 8.17 × 10−10 1.00 × 10−18 1.51 × 10−36

4. The general case of other roots

In the following we shall now look at other cases of finding roots of equations of the form:

�(x) = xp − a

108 P. Kornerup, J.-M. Muller / Theoretical Computer Science 351 (2006) 101 –110

for alternative values of p. For p�2 or p < −1 recall that we can solve the 3rd degree polynomials (11) numerically,
but that the starting values obtained this way are only approximations, as the error estimates of (9) are solutions to
slightly perturbed problems.

The table below shows some starting values �n for amin = 1 and amax = 2 for various values of p and 0�n�5,
together with the limiting values �∞.

p = −3 p = −2 p = −1 p = 2 p = 3

�0 0.89685026 0.85355339 3/4 1.20710678 1.12996052
�1 0.88695734 0.83671927 0.70710678 1.20829381 1.13288765
�2 0.88401897 0.83051406 0.68644244 1.19901822 1.12904943
�3 0.88255736 0.82744145 0.67642857 1.19439264 1.12713081
�4 0.88182871 0.82591381 0.67151443 1.19208497 1.12617201
�5 0.88146495 0.82515229 0.66908205 1.19093267 1.12569277
�∞ 0.88110158 0.82439236 2/3 1.18978149 1.12521367

4.1. Case p = −2, square-root reciprocal

The conventional iteration xn+1 = 1
2 (xn + a

xn
) for square-root is not frequently used, since it requires a division

at each step, and division is significantly slower than multiplication on almost all systems. Hence one may prefer the
following iteration:

xn+1 = xn

2
(3 − ax2

n), (16)

converging to 1/
√

a. To get
√

a it suffices to multiply the final result by a.
We have performed the NR iteration with the starting values obtained above, and found the following maximum

errors, with amin = 1 and amax = 2 we obtain

x0 max |x1 − 1√
a
| max |x2 − 1√

a
| max |x3 − 1√

a
| max |x4 − 1√

a
| max |x5 − 1√

a
|

�0 4.86 × 10−2 4.90 × 10−3 5.09 × 10−5 5.49 × 10−9 6.39 × 10−17

�1 3.78 × 10−2 2.98 × 10−3 1.88 × 10−5 7.50 × 10−10 1.19 × 10−18

�2 4.07 × 10−2 2.45 × 10−3 1.26 × 10−5 3.37 × 10−10 2.41 × 10−19

�3 4.21 × 10−2 2.62 × 10−3 1.03 × 10−5 2.24 × 10−10 1.06 × 10−19

�4 4.28 × 10−2 2.71 × 10−3 1.10 × 10−5 1.82 × 10−10 6.99 × 10−20

�5 4.32 × 10−2 2.75 × 10−3 1.14 × 10−5 1.95 × 10−10 5.68 × 10−20

�∞ 4.35 × 10−2 2.80 × 10−3 1.18 × 10−5 2.08 × 10−10 6.50 × 10−20

Repeating the computations, but now for a smaller interval, amin = 1 and amax = 1 + 2−4 we find the following
much smaller maximal errors.

x0 max |x1 − 1√
a
| max |x2 − 1√

a
| max |x3 − 1√

a
| max |x4 − 1√

a
| max |x5 − 1√

a
|

�0 3.46 × 10−4 1.85 × 10−7 8.96 × 10−19 4.37 × 10−27 2.96 × 10−53

�1 3.39 × 10−4 1.78 × 10−7 8.77 × 10−19 3.72 × 10−27 2.13 × 10−53

�2 3.42 × 10−4 1.75 × 10−7 8.70 × 10−19 3.49 × 10−27 1.89 × 10−53

�3 3.43 × 10−4 1.77 × 10−7 8.67 × 10−19 3.39 × 10−27 1.77 × 10−53

�4 3.44 × 10−4 1.77 × 10−7 8.69 × 10−19 3.34 × 10−27 1.72 × 10−53

�5 3.44 × 10−4 1.78 × 10−7 8.70 × 10−19 3.36 × 10−27 1.69 × 10−53

�∞ 3.44 × 10−4 1.78 × 10−7 8.70 × 10−19 3.39 × 10−27 1.72 × 10−53

P. Kornerup, J.-M. Muller / Theoretical Computer Science 351 (2006) 101 –110 109

Although the effect of using the optimal starting value is much less significant here over a narrower interval, again
we find the minimal values occurring after n iterations when using �n as the starting point.

4.2. Cube root reciprocal

With amin = 1 and amax = 2 for p = −3 we obtain

x0 max |x1 − 1
3√a

| max |x2 − 1
3√a

| max |x3 − 1
3√a

| max |x4 − 1
3√a

| max |x5 − 1
3√a

|
�0 2.92 × 10−2 2.10 × 10−3 1.11 × 10−5 3.09 × 10−10 2.41 × 10−19

�1 2.37 × 10−2 1.39 × 10−3 4.83 × 10−6 5.88 × 10−11 8.71 × 10−21

�2 2.49 × 10−2 1.22 × 10−3 3.71 × 10−6 3.47 × 10−11 3.04 × 10−21

�3 2.55 × 10−2 1.28 × 10−3 3.26 × 10−6 2.65 × 10−11 1.78 × 10−21

�4 2.58 × 10−2 1.31 × 10−3 3.42 × 10−6 2.34 × 10−11 1.36 × 10−21

�5 2.59 × 10−2 1.32 × 10−3 3.50 × 10−6 2.45 × 10−11 1.20 × 10−21

�∞ 2.61 × 10−2 1.34 × 10−3 3.58 × 10−6 2.57 × 10−11 1.32 × 10−21

In this case, if we perform five iterations, starting the iterations from �5 leads to a result that is 201 times more
accurate than starting with �0.

4.3. Square-root

With amin = 1 and amax = 2 for p = 2 we obtain

x0 max |x1 − √
a| max |x2 − √

a| max |x3 − √
a| max |x4 − √

a| max |x5 − √
a|

�0 1.78 × 10−2 1.55 × 10−4 1.20 × 10−8 7.23 × 10−17 2.61 × 10−33

�1 1.80 × 10−2 1.58 × 10−4 1.25 × 10−8 7.85 × 10−17 3.08 × 10−33

�2 1.93 × 10−2 1.34 × 10−4 9.00 × 10−9 4.05 × 10−17 8.21 × 10−34

�3 2.02 × 10−2 1.43 × 10−4 7.58 × 10−9 2.88 × 10−17 4.14 × 10−34

�4 2.07 × 10−2 1.49 × 10−4 7.87 × 10−9 2.42 × 10−17 2.92 × 10−34

�5 2.09 × 10−2 1.53 × 10−4 8.24 × 10−9 2.40 × 10−17 2.45 × 10−34

�∞ 2.12 × 10−2 1.56 × 10−4 8.61 × 10−9 2.62 × 10−17 2.43 × 10−34

Notice that in this case �5 is slightly better than �4 for four iterations, and that �∞ (and �6 but it is not shown in the
table) is slightly better than �5 for five iterations. The same phenomenon occurs for �1 where �0 is a slightly better
starting point. This is obviously an effect of solving a slightly perturbed problem.

4.4. Fifth roots

With amin = 1 and amax = 2 we obtain

x0 max |x1 − 5
√

a| max |x2 − 5
√

a| max |x3 − 5
√

a| max |x4 − 5
√

a| max |x5 − 5
√

a|
�0 1.10 × 10−2 2.08 × 10−4 7.51 × 10−8 9.82 × 10−15 1.68 × 10−28

�1 1.03 × 10−2 2.07 × 10−4 8.53 × 10−8 1.46 × 10−14 4.24 × 10−28

�2 1.06 × 10−2 1.94 × 10−4 7.52 × 10−8 1.13 × 10−14 2.56 × 10−28

�3 1.08 × 10−2 1.99 × 10−4 7.05 × 10−8 9.95 × 10−15 1.98 × 10−28

�4 1.09 × 10−2 2.03 × 10−4 7.15 × 10−8 9.33 × 10−15 1.74 × 10−28

�5 1.09 × 10−2 2.05 × 10−4 7.29 × 10−8 9.24 × 10−15 1.63 × 10−28

�∞ 1.10 × 10−2 2.07 × 10−4 7.42 × 10−8 9.59 × 10−15 1.60 × 10−28

In this case, although �n is always a better starting point than �0 for n iterations, the difference is negligible.

110 P. Kornerup, J.-M. Muller / Theoretical Computer Science 351 (2006) 101 –110

5. Conclusion

We have suggested a strategy for getting optimal starting points for Newton–Raphson-based iterations for approxi-
mating a1/p . In many cases choosing these values, results in much smaller approximation errors, than using traditional
seed values.

References

[1] W.J. Cody, Double precision square root for the CDC-3600, Comm. ACM 7 (12) (1964) 715–718.
[2] A. Dahan-Dalmedico, J. Peiffer, Histoire des Mathématiques, Editions du Seuil, Paris, 1986 (in French).
[3] D. DasSarma, D.W. Matula, Measuring the accuracy of ROM reciprocal tables, IEEE Trans. Comput. 43 (8) (1994) 932–940.
[4] J. Eve, Starting approximations for the iterative calculation of square roots, Comput. J. 6 (1963) 274–276.
[5] C.T. Fike, Starting approximations for square root calculation on IBM system/360, Comm. ACM 9 (4) (1966) 297–299.
[6] D. Fowler, E. Robson, Square root approximations in old Babylonian mathematics: YBC 7289 in context, Historia Math. 25 (1998) 366–378.
[7] H.J. Maehly, Approximations for the CDC 1604, Technical Report, Control Data Corp., 1960.
[8] P.W. Markstein, Computation of elementary functions on the IBM RISC System/6000 Processor, IBM J. Res. Develop. 34 (1) (1990) 111–119.
[9] P.W. Markstein, IA-64 and Elementary Functions: Speed and Precision, Hewlett–Packard Professional Books, Prentice-Hall, Englewood Cliffs,

NJ, 2000 ISBN: 0130183482.
[10] P. Montuschi, M. Mezzalama, Optimal absolute error starting values for Newton–Raphson calculation of square root, Computing 46 (1991)

67–86.
[11] D.G. Moursund, Optimal starting values for Newton–Raphson calculation of

√
x, Comm. ACM 10 (7) (1967) 430–432.

[12] I. Newton, Methodus Fluxionem et Serierum Infinitarum, 1664–1671.
[13] S.F. Oberman, Floating-point division and square root algorithms and implementation in the AMD-k7 microprocessor, in: I. Koren, P. Kornerup

(Eds.), Proc. 14th IEEE Symp. Computer Arithmetic (Adelaide, Australia), Los Alamitos, CA, April 1999, IEEE Computer Society Press,
Silverspring, MD, pp. 106–115.

[14] C.V. Ramamoorthy, J.R. Goodman, K.H. Kim, Some properties of iterative square-rooting methods using high-speed multiplication, IEEE
Trans. Comput. C-21 (1972) 837–847 Reprinted in E.E. Swartzlander, Computer Arithmetic, Vol. 1, IEEE Computer Society Press Tutorial,
Los Alamitos, CA, 1990.

[15] D. Russinoff, A mechanically checked proof of IEEE compliance of a register-transfer-level specification of the AMD-k7 floating-point
multiplication, division, and square root instructions, LMS J. Comput. Math. 1 (1998) 148–200.

[16] M.J. Schulte, J. Omar, E.E. Swartzlander, Optimal initial approximation for the Newton–Raphson division algorithm, Computing 53 (1994)
233–242.

[17] P. Sebah, X. Gourdon, Newton’s method and high order iterations, Technical Report, 2001. <http://numbers.computation.free.fr/Constants/
Algorithms/newton.html>.

[18] P.H. Sterbenz, C.T. Fike, Optimal starting approximations for Newtons method, Math. Comp. 23 (1969) 313–318.
[19] M. Wayne Wilson, Optimal starting approximations for generating square root for slow or no divide, Comm. ACM 13 (9) (1970) 559–560.

http://numbers.computation.free.fr/Constants/Algorithms/newton.html
http://numbers.computation.free.fr/Constants/Algorithms/newton.html

