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Abstract

A real number x is said to be effective if there exists an algorithm which, given a required tolerance ε ∈ Z2Z, returns a binary
approximation x̃ ∈ Z2Z for x with |x̃ −x| < ε. Effective real numbers are interesting in areas of numerical analysis where numerical
instability is a major problem.

One key problem with effective real numbers is to perform intermediate computations at the smallest precision which is sufficient
to guarantee an exact end-result. In this paper we first review two classical techniques to achieve this: a priori error estimates and
interval analysis. We next present two new techniques: “relaxed evaluations” reduce the amount of re-evaluations at larger precisions
and “balanced error estimates” automatically provide good tolerances for intermediate computations.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A dyadic number is a number of the form x = k2p with k, p ∈ Z. We denote by D = Z2Z the set of dyadic numbers
and D> = {x ∈ D : x > 0}. Given x ∈ R and ε ∈ D>, an ε-approximation for x is a number x̃ ∈ D with |x̃ − x| < ε.
An approximation algorithm for x ∈ R is an algorithm which takes a tolerance ε ∈ D on input and which returns an
ε-approximation for x. A real number x ∈ R is said to be effective, if it admits an approximation algorithm. The aim
of this paper is to review several recent techniques for computations with effective real numbers and to present a few
new ones.

Effective real numbers can be useful in areas of numerical analysis where numerical instability is a major problem,
like singularity theory. In such areas, multiple precision arithmetic is often necessary and the required precisions
for auxiliary computations may heavily vary. We hope that the development of an adequate computational theory for
effective real numbers will both allow us to automatically perform the error analysis and compute the required precisions
at which computations have to take place.

We recall that there exists no general zero-test for effective real numbers. Nevertheless, exact or heuristically reliable
zero-tests do exist for interesting subfields, which contain transcendental constants. However, this topic will not be
studied in this paper and we refer to [14,9] for some recent work on this matter.

In an object-oriented language like C++, a natural way to represent an effective real number is by an abstract
object with a method which corresponds to the approximation algorithm. When using this representation, which will
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be discussed in more detail in Section 2, it is natural to perform a priori error estimations for common operations
on real numbers. In other words, if we want to compute y = f (x1, . . . , xr ) with precision ε, then we determine
tolerances ε1, . . . , εr such that the multiple precision evaluation of f at any εi-approximations for the xi always yields
an ε-approximation for y.

In some cases, a priori error estimates are quite pessimistic. An alternative technique for computing with effective
real numbers is interval arithmetic. In this case, we approximate an effective real number x by an interval [x, x] which
contains x. Then the evaluation of y = f (x1, . . . , xr ) comes down to the determination of an interval [y, y] with

f ([x1, x1], . . . , [xr , xr ]) ⊆ [y, y].

For continuous functions f, when starting with a very precise approximation of x (i.e. x − x is very small), the obtained
a posteriori error estimate for y will also become as small as desired. In Section 3, this technique of a posteriori error
estimates will be reviewed in more detail, as well as an efficient representation for high-precision intervals.

Unfortunately, in some cases, both a priori and a posteriori error estimates are quite pessimistic. In Sections 4 and 5, we
will therefore present two new techniques for the computation of “adaptive error estimates”. These techniques combine
the advantages of a priori and a posteriori error estimates, while eliminating their major disadvantages. Moreover, this
new technique remains reasonably easy to implement in a general purpose system for computations with effective real
numbers. Under certain restrictions, the new techniques are also close to being optimal. This point will be discussed in
Section 6.

The approaches presented in Sections 2 and 3 have been proposed, often independently, by several authors [2,1,4]
and we notice the existence of several similarities with the theory of effective power series [6,10]. In the past, we
experimentally implemented the approaches of Sections 2 and 3 in the case of power series (not officially distributed)
resp. real numbers [8]. We are currently working on a more robust C++ library based on the ideas in this paper [11].
Currently, this library contains the basic arithmetic operations. Some other implementations with similar objectives are
currently known to the author [12,13]. All these implementations are free software and they are mainly based on the
Gmp and Mpfr libraries [3,5].

2. A priori error estimates

A natural way to represent an effective real number x is by its approximation algorithm. Conceptually speaking, this
means that we view x as a black box which can be asked for approximations up to any desired precision:

tolerance ε −→ x −→ ε-approximation x̃ for x.

In an object oriented language like C++, this can be implemented using an abstract base class real_repwith a virtual
method for the approximation algorithm. Effective real numbers will then be pointers to real_rep. For instance,

class real_rep {
public:

virtual dyadic approx (const dyadic& tol) = 0;
};
typedef real_rep* real;

Here dyadic stands for the class of dyadic numbers. In practice, these may be taken to be arbitrary precision floating
point numbers. For simplicity, we also do not care about memory management. In a real implementation, one would
need a mechanism for reference counting or conservative garbage collection.

Now assume that we want to evaluate y = f (x1, . . . , xr ) for a given tolerance ε ∈ D>, where x1, . . . , xr are effective
real numbers and f is an operation like +, × or exp. In order to make f effective, we need to construct an approximation
algorithm for y as a function of x1, . . . , xr . This both involves the dyadic approximation of the evaluation of f in
dyadic approximations of the xi and the determination of tolerances ε1, . . . , εr for the dyadic approximations of the xi .
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More precisely, ε1, . . . , εr should be such that for any x̃1, . . . , x̃r ∈ D with |x̃i − xi | < εi (i = 1, . . . , r), we have

|f̃ε(x̃1, . . . , x̃r ) − f (x1, . . . , xr )| < ε,

where f̃ε stands for a dyadic approximation algorithm for f which depends on the tolerance ε. For instance, in the case
when f is the addition, we may use exact arithmetic on D (so that f̃ε = f for all ε) and take ε1 = ε2 = ε/2. This yields
the following class for representing sums of real numbers:

class add_real_rep: public real_rep {
real x, y;

public:
add_real_rep (const real& x2, const real& y2):

x (x2), y (y2) {}
dyadic approx (const dyadic& tol) {

return x->approx (tol >> 1) + y->approx (tol >> 1); }
};

The addition can now be implemented as follows:

inline real operator + (const real& x, const real& y) {
return new add_real_rep (x, y); }

Notice that, in a sense, we have really represented the sum of x and y by the expression x + y (more generally, such
expressions are dags (directed acyclic graphs)). Nevertheless, the representation using an abstract class real_rep
provides additional flexibility. For instance, we may attach additional information to the class real_rep, like the
best currently known approximation for the number (thereby avoiding unnecessary recomputations). In practice, it is
also good to provide an additional abstract method for computing a rough upper bound for the number. This gives a
fine-grained control over potential cancellations.

The above approach heavily relies on the computation of a priori error estimates (i.e. the computation of the εi). If
no additional techniques are used, then this leads to the following disadvantages:

(P1) We do not take advantage of the fact that the numeric evaluation of f̃ε(x̃1, . . . , x̃r ) may lead to an approximation
of y which is far better than the required tolerance ε. Indeed, multiple precision computations are usually done with a
precision which is a multiple of the number of bits W in a machine word. “On average”, we therefore gain something
like W/2 bits of precision. In Section 4, we will show that it may actually be profitable to systematically compute more
than necessary.

(P2) The error estimates may be pessimistic, due to badly balanced expressions. For instance consider the
ε-approximation of a sum x1 + (x2 + (x3 + · · · + (xr))), which corresponds to a tree

Then the above technique would lead to the computation of an (ε/2i )-approximation of xi for i < r and an (ε/2r−1)-
approximation of xr . If r is large, then ε/2r−1 is unnecessarily small, since a mere (ε/r)-approximation for each xi

would do. In Section 5 we will consider a general technique for computing “balanced error estimates”. Badly balanced
expressions naturally occur when evaluating polynomials using Horner’s rule.
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3. A posteriori error estimates

An alternative technique for computing with effective real numbers is interval arithmetic. The idea is to systematically
compute intervals approximations instead of floating point approximations. These intervals must be such that the real
numbers we are interested in are certified to lie in their respective interval approximations.

More precisely, given x ∈ R and ε ∈ D>, an ε-interval for x is a closed interval [x, x] with x, x ∈ D> and x−x < 2ε.
Concretely speaking, we may represent such intervals by their endpoints x and x. Alternatively, if the precisions of x

and x are large, then it may be more efficient to represent the interval by its center (x + x)/2 and its radius (x − x)/2.
Indeed, the exact endpoints of the interval are not that important. Hence, modulo a slight increase of the radius, we
may always assume that the radius can be stored in a “single precision dyadic number” r ∈ {0, . . . , 2W − 1}2Z, where
W is the number of bits in a machine word. This trick allows to reduce the number of multiple precision computations
by a factor of two.

Now assume that we want to compute an ε-approximation for y = f (x1, . . . , xr ), where x1, . . . , xr are effective
real numbers and where f is a continuous function. Assume also that we have reasonable initial �i-intervals for the xi .
Then, starting with a low precision p = W , we first compute (�i/2p)-intervals [xi, xi] for the xi . We next evaluate f
using interval arithmetic. This yields an interval [y, y] with

f ([x1, x1], . . . , [xr , xr ]) ⊆ [y, y].
If y − y < 2ε, then (y + y)/2 is an ε-approximation for y. Otherwise, we increase the precisions p and repeat the
computations. Under relatively mild assumptions on the way we evaluate f, this procedure will eventually stop, since f
is continuous.

Although this technique of a posteriori error estimates does solve the problems (P1) and (P2) raised in the previous
section, it also induces some new problems. Most importantly, we have lost the fine-grained control over the precisions
in intermediate computations during the evaluation of f (x1, . . . , xr ). Indeed, we have only control over the overall
starting precision p. This disadvantage is reflected in two ways:

(P3) It is not clear how to increase p. Ideally speaking, p should be increased in such a way that the computation
time of [y, y] is doubled at each iteration. In that case (see Section 4), the overall computation time is bounded by a
constant time the computation time w.r.t. the least precision p which leads to an ε-computation for x. Now the problem
is that this “overall computation time” of f can be estimated well by hand for elementary operations like +, ×, exp,
etc., but not necessarily for more complicated functions.

(P4) Consider the case when, somewhere during the evaluation of f, we need to compute the sum u+v of a very large
number u and a very small number v. Assume moreover that u can be approximated very fast, but that the approximation
of v requires a lot of time. Since v is very small w.r.t. u, it will then be possible to skip the computation of v, by setting
u + v ≈ u, unless p is very large. However, the above technique of a posteriori error estimates does not allow for this
optimization.

4. Relaxed evaluation

The purpose of relaxed evaluation is to “combine the good ideas” of Sections 2 and 3. The idea is to endow
real_rep with an extra field interval best which corresponds to the best currently known interval approxi-
mation of the real number. Moreover, when requesting for a better approximation, we will actually compute a much
better approximation, so as to avoid expensive recomputations when we repeatedly ask for slightly better approx-
imations. This anticipating strategy was first introduced in the case of power series, where it leads to important
algorithmic gains [7,10]. In our context, the proposed method is quite different though, because of the problem with
carries.

More precisely, assume that we have an r-ary operation f, such that the n-digit approximation of f (x1, . . . , xr ) at
dyadic numbers with �n digits has time complexity T (n). The complexity T (n) for an elementary operation is usually
a well-understood, regular function (in general, T (n)/n is increasing, etc.). For instance, we have T (n) ∼ �n for
addition and T (n) ∼ �n�n for multiplication, where 2��n > 1 and �n decreases slowly from 2 to 1.

Now assume that we have an n-digit approximation of y = f (x1, . . . , xr ) and that we request a slightly better
approximation. Then we let n′ > n be such that T (n′) ≈ 2T (n) and we replace our n-digit approximation by an
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n′-digit approximation. This strategy has the property that the successive evaluation of f (x1, . . . , xr ) at 1, . . . , n digits
requires a time T ′(n) ≈ T (n1) + · · · + T (nk) where n1 < · · · < nk are such that nk �n and T (ni+1) ≈ 2T (ni) for
i = 1, . . . , k − 1. Consequently

T ′(n) ≈ T (nk) + 1
2T (nk) + 1

4T (nk) + · · · ≈ 2T (nk) ≈ 4T (nk−1)�4T (n).

More generally, the evaluation of f (x1, . . . , xr ) at different precisions n1, . . . , nk requires at most four times as much
time as the evaluation of f (x1, . . . , xr ) at precision max{n1, . . . , nk}.

The combination of a priori and a posteriori error estimates in the relaxed strategy clearly solves problems (P1)
and (P4). Furthermore, at the level of the class real_rep, we have a fine-grained control over how to increase the
computational precision. Moreover, we have shown how to perform this increase in an efficient way, as a function
of T (n). This will avoid expensive recomputations when y occurs many times in a dag. In other words, the relaxed
technique also partially solves problem (P3) (see Remark 1).

Let us illustrate the relaxed strategy on the concrete example of the computation of the sine function. We assume that
we have implemented a suitable class interval for certified arbitrary precision computations with intervals. First of
all, real_rep now becomes:

class real_rep {
protected:

interval best;
public:

inline real_rep (): best (interval::fuzzy) {}
virtual interval approx (const dyadic& tol) = 0;

};

Here interval::fuzzy stands for the interval (−∞, ∞). Sines of numbers are represented by instances of the
following class:

class sin_real_rep: public real_rep {
real x;

public:
inline sin_real_rep (const real& x2): x (x2) {

best= interval (-1, 1); }
interval approx (const dyadic& tol);

};

The approximation algorithm is given by

interval sin_real_rep::approx (const dyadic& tol) {
if (tol < radius (best)) {

interval xa= x->approx (tol * (1 - DELTA));
int required_prec= 2 - expo (tol);
int proposed_prec= next_prec (-expo (radius (best)));
xa= truncate (xa, max (required_prec, proposed_prec));
best= sin (xa);

}
return best;

}

This algorithm requires some explanations. First of all, DELTA stands for a small number like 24−W , where W is the
machine word size. We use DELTA for countering the effect of rounding errors in the subsequent computations. Next,
expo stands for the function which gives the exponent of a dyadic number. We have 2expo(x) > x�2expo(x)−1 for
all x ∈ D. The function next_prec (see below) applied to a precision n computes the precision n′ > n such that
T (n′) ≈ 2T (n), where T (n) stands for the complexity of the evaluation of the sine function. Now we recall that xa
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may contain an approximation for x which is much better than the approximation we need (this is typically the case
if a more precise value for the argument is needed in another part of the global computation). We therefore truncate
the precision of xa at the precision we need, before computing the next approximation for the sine of x. The function
next_prec may for instance be implemented as follows:

int next_prec (int prec) {
if (prec <= (16 * WORD_SIZE)) return 1.41 * prec + WORD_SIZE;
else if (prec <= 256 * WORD_SIZE) return 1.55 * prec;
else if (prec <= 4096 * WORD_SIZE) return 1.71 * prec;
else return 2 * prec;

}

The different thresholds correspond to the precisions where we use naive multiplication, Karatsuba multiplication and
two ranges of F.F.T. multiplication. We finally have the following algorithm for computing sines:

inline real sin (const real& x) {
return new sin_real_rep (x); }

Remark 1. A current limitation of the above approach is that it only takes into account the local computational
complexity at each node and not the global complexity of all induced computations. For instance, in the routine
sin_real_rep::approx of the computation of y = sin x, it may happen that the precision nx of xa is only
slightly higher than the precision ny of best.

In that case, the next approximation of y is only computed at precision nx = ny + O(1) and not at a precision
(like 2ny) which doubles the computation time.

When the above problem occurs repeatedly, we thereby lose the principal advantage of the relaxed approach.
Nevertheless, it should be noticed that the slight redundancy in the precision nx can only occur if this higher precision
was requested by another computation than y = sin x (except when x has an exponential computational complexity).
In fact, the author currently does not know of any natural example of a computation where the above problem occurs
systematically (so as to make the computation time increase by more than a constant factor).

One remedy to the above problem is to delay the re-evaluation best=sin(xa) until the very end and first
gradually increase precisions until we are sure that the cumulated re-evaluation cost is about twice as large as the
previous cumulated evaluation cost (considering only those nodes which are re-evaluated). However, this is only
possible if we do not need the actual result of a re-evaluation during the “prospective phase” when we increase the
precisions.

Yet another approach would be to systematically use the real number analogue of relaxed power series evaluations
[10]. However, this requires the re-implementation of all basic operations on floating pointer numbers in a relaxed way.
It also involves an additional O(log n) overhead.

5. Balanced error estimates

One of the main problems with a priori error estimates that we have mentioned in Section 2 are badly balanced
expressions, which lead to overly pessimistic bounds. In this section we introduce the general technique of “balanced
error estimates” which solve this problem as well as possible in a general purpose system. The idea behind balanced error
estimates is to “distribute the required tolerance over the subexpressions in a way which is proportional to their weights”.
Here leaves have weight 1 and the wt y of an expression y = f (x1, . . . , xn) is given by wt y = wt x1 + · · · + wt xn.

Remark 2. We recall that expressions are really dags, so the size of an expression may be exponentially smaller than
its weight. Indeed, this can be seen by constructing an expression using repeated squarings x=x*x. It is therefore
important to represent the weight by a dyadic number with exponent �W , where W is the size of a machine word.

Let us first illustrate the strategy of balanced error estimates in the case of addition. So assume that we want to
compute an ε-interval for a sum x +y, where x has weight p as an expression and y has weight q. Then we will compute
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a pε
p+q

-interval for x and a qε
p+q

-interval for x. For example, in case of the expression 1 + ((2 + 3) + (4 + (5 + 6))), a

tolerance of ε is distributed as follows:

Subtraction is treated in a similar way as addition.

Remark 3. Consider a dag of weight w with one root and only additions and subtractions. If a tolerance ε is specified
at the root, then the above algorithm requires a tolerance wnodeε/w at each node of weight wnode. Notice that any correct
algorithm should require a tolerance of at most ε instead of wnodeε/w. In other words, the precision with respect to
which we compute never exceeds the absolutely necessary precision by more than O(log w).

Remark 4. Unfortunately, log w can be linear in the size s of the dag, as we saw in the case of repeated squarings
(and more generally in the case of loops or recursive functions). Nevertheless, if w is exponential in the size, then the
O(log w) precision loss generally only causes the overall complexity to increase by a constant factor. Let us illustrate
this point by an example: consider the computation of a 1-approximation of xn, where

xi = f (f (
i×· · ·(f (1)))),

f (x) = x + (x + 0).

Then our algorithm requires the computation of a 3i−n-approximation of each xi , which takes a time O(1 + log 3 +
2 log 3 + · · · + n log 3) = O(n2). The optimal algorithm would only require a 2i−n-approximation of each xi , which
again leads to a global complexity of O(n2). This example should be compared to the computation of a 1-approximation
of

1 + (1 + (
n×· · · +1)).

Our balanced algorithm only requires a time O(n log n), which is optimal in this case, whereas a non-balanced algorithm
would yield a quadratic complexity O(n2).

In the case of multiplication, the above additive distribution of tolerances cannot longer be used and one has to resort
to “relative tolerances”. Here a relative tolerance � for x corresponds to an absolute tolerance of ε = �|x|. Now let x and
y be effective real numbers of sizes p and q. Assume for simplicity that we are in the regular case when we have good
starting approximations x̃, ỹ ∈ D for x and y, say of relative tolerances < 2−W , where W is the machine word size.
Then, in order to compute an ε-interval for xy, we first distribute � = ε

|x̃ỹ| (1 − 24−W) over �x = p�
p+q

and �y = q�
p+q

,
and then compute a (�x |x|)-interval for x and a (�y |y|)-interval for y. The product of these approximations yields an
ε-interval for xy.

More generally, assume that x1, . . . , xr are effective real numbers of weights p1, . . . , pr and that we want to compute
an ε-interval for y = f (x1, . . . , xr ), where f is a differentiable r-ary operation for which we are given an arbitrary
precision evaluation algorithm at dyadic intervals. Before balancing tolerances as above, we first have to determine the
numbers which have to be subdivided (i.e. ε in the case of addition and � (really �|x| and �|y| as we will see below)
in the case of multiplication).



J. van der Hoeven / Theoretical Computer Science 351 (2006) 52 –60 59

We define the optimal tolerances for x1, . . . , xr to be the minimal numbers �1, . . . , �r , such that for any intervals
[x1, x1], . . . , [xr , xr ] with

f ([x1, x1], . . . , [xr , xr ]) ⊆ [y − ε, y + ε], (1)

we have xi −xi ��i (i = 1, . . . , r). Let us for simplicity that we are in the regular case when there exist (computable)
bounds

0 <
Bi

2
�

∣
∣
∣
∣

�f

�xi

(x̃1, . . . , x̃r )

∣
∣
∣
∣
�2Bi,

which are valid for x̃i ∈ [xi − 2ε
Bi

, xi + 2ε
Bi

] (i = 1, . . . , r). Then (1) implies in particular that xi − xi � 4ε
Bi

for

i = 1, . . . , r . Conversely, xi − xi � ε
rBi

(i = 1, . . . , r) implies (1). This proves that ε
2rBi

��i � 2ε
Bi

. For instance, in
the case of addition, we may take B1 = B2 = 1 and we obtain �1 ≈ �2 ≈ 1. In the case of multiplication, we may take
B1 = |ỹ| and B2 = |x̃| and obtain �1 ≈ ε

|ỹ| and �2 ≈ ε
|x̃| .

Now, assuming that we have sharp lower bounds �̃i for the �i (like �̃i = ε
2rBi

), we compute a �̃ipi

p1+···+pr
-interval for

each xi . Then we obtain the requested ε-interval for y by evaluating f at these intervals at a sufficient precision.

Remark 5. It can be checked by structural induction that the generalized scheme for the distribution of tolerances has
the same essential property as in Remark 3: given a dag of weight w, the precision with respect to which we compute
never exceeds the absolutely necessary precision by more than O(log w).

The approach of balanced error estimates is more delicate in the irregular case. It is instructive to well understand
the case of multiplication first; the other operations can probably be treated in a similar way.

So assume that we want to compute a product xy. Let us first consider the semi-regular case when we still have a good
initial approximation for one of the arguments, say x, but not for the other. Then we first compute a ( ε

|x̃| (1 − 24−W))-
interval for y. In case when this yields an approximation ỹ for y with a good relative tolerance, then we may proceed
as in the regular case. Otherwise, we obtain at least an upper bound for |y| and we let this upper bound play the role
of |ỹ|.

This leaves us with the purely irregular case when we neither have strictly positive lower bounds for |x| nor |y|.
In this case, we have the choice between computing a more precise approximation for x or for y, but it is not clear a
priori which choice is optimal from the complexity point of view. One solution to this problem may be to continuously
improve the precisions of the approximations for both x and y, while distributing the available computation time equally
over x and y. It is not clear yet to us how to estimate the complexity of such an algorithm. Another solution, which is
easier to implement, is to use rough upper bounds for |x| and |y| instead of |x̃| and |ỹ|, while increasing the precision
continuously. However, this strategy is certainly not optimal in some cases.

6. Conclusion and notes on optimality

We have presented two new “adaptive error estimating techniques” for computing with effective real numbers. We
believe these techniques to be optimal in virtually all situations which occur in practice. It remains interesting to study
the theoretical optimality in more detail. This first requires the introduction of a suitable notion of optimality.

Assume that we have a library of effective real functions f1, . . . , fl , some of which have arity 0. Then any computation
using this library involves only a finite number �1, . . . ,�p of expressions constructed using the fi . These expressions
actually correspond to a directed acyclic graph, since they may share common subexpressions.

Assume that the aim of the computation is to obtain an εi-approximation for each �i with i ∈ S for some
S ⊆ {1, . . . , p}. A certified solution to this problem consists of assigning a dyadic interval to each node of the dag,
such that

• The interval [�i , �i] associated to each �i with i ∈ S satisfies �i − �i < 2εi .
• For each subexpression fi(�1, . . . ,�r ) with r > 0, the interval associated to fi is obtained by evaluating fi at the

intervals associated to �1, . . . ,�r .
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The certified solution is said to be optimal, if the time needed to compute all interval labels is minimal. Modulo rounding
errors, finding such an optimal solution corresponds to determining optimal tolerances for the leaves of the dag (which
is equivalent to determining the lengths of the intervals associated to the leaves).

Remark 6. The above modeling does simplify reality a bit: in practice, some of the expressions �1, . . . ,�p may
themselves depend on the way we compute things. Also, we may require ε-approximations for the �i during the
intermediate computations, and in an arbitrary order. A more elaborate model would therefore consider a sequence of
problems of the above type, with growing dags, growing sets S and decreasing εi .

Clearly, it is difficult to efficiently find optimal certified solutions. In many cases, it should nevertheless be possible
to find almost optimal solutions for which the cost of the εi-approximations exceeds the optimal cost by at most a
constant factor.

We have already pointed out that our strategies are non-optimal in general: see Remarks 1 and 4, and the discussion
on the irregular case in Section 5. In (exceptional) circumstances when the relaxed strategy from Section 4 does not
work, we may lose a linear factor O(n), although some approaches were proposed to avoid that. In the regular case,
balanced error estimates may account for an O(log w) precision loss, where w is the weight of the dag. Nevertheless,
if we essentially spend our time in high precision arithmetic, then this usually only slows down the algorithms by
a constant factor. Indeed, if all approximation algorithms for the �i have polynomial time complexities Ti(n), then
Ti(n + O(log w)) = O(Ti(n)) for log w = O(n).
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luth.se/∼jens/ >, 2002.

[2] J. Blanck, V. Brattka, P. Hertling (Eds.), Computability and Complexity in Analysis, Lecture Notes in Computer Science, Vol. 2064, Springer,
Berlin, 2001.

[3] T. Granlund, et al. GMP, the GNU multiple precision arithmetic library, <http://www.swox.com/gmp>, 1991–2004.
[4] M. Grimmer, K. Petras, N. Revol, Multiple precision interval packages: comparing different approaches, Technical Report RR 2003-32, LIP,

École Normale Supérieure de Lyon, 2003.
[5] G. Hanrot, V. Lefèvre, K. Ryde, P. Zimmermann, MPFR, a c library for multiple-precision floating-point computations with exact rounding,

<http://www.mpfr.org>, 2000–2004.
[6] J. van der Hoeven, Automatic asymptotics, Ph.D. Thesis, École polytechnique, France, 1997.
[7] J. van der Hoeven, Lazy multiplication of formal power series, in: W.W. Küchlin (Ed.), Proc. ISSAC ’97, Maui, Hawaii, 1997, pp. 17–20.
[8] J. van der Hoeven, GMPX, a C-extension library for gmp, <http://www.math.u-psud.fr/∼vdhoeven/>, no longer maintained,

1999.
[9] J. van der Hoeven, Zero-testing, witness conjectures and differential diophantine approximation, Technical Report 2001-62, Prépublications

d’Orsay, 2001.
[10] J. van der Hoeven, Relax, but don’t be too lazy, J. Symbolic Comput. 34 (2002) 479–542.
[11] J. van der Hoeven, Mmxlib, a C++ core library for Mathemagix, <http://www.math.u-psud.fr/∼vdhoeven/>, 2003–2004.
[12] N. Müller, iRRAM, exact arithmetic in C + +, <http://www.informatik.uni-trier.de/iRRAM/>, 2000–2004.
[13] N. Revol, MPFI, a multiple precision interval arithmetic library, < http://perso.ens-lyon.fr/nathalie.revol/software.

html >, 2001–2004.
[14] D. Richardson, How to recognize zero, J. Symbolic Comput. 24 (1997) 627–645.

http://www.sm.luth.se/~jens/
http://www.sm.luth.se/~jens/
http://www.swox.com/gmp
http://www.mpfr.org
http://www.math.u-psud.fr/~vdhoeven/
http://www.math.u-psud.fr/~vdhoeven/
http://www.informatik.uni-trier.de/iRRAM/
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://perso.ens-lyon.fr/nathalie.revol/software.html

