
Theoretical Computer Science 351 (2006) 27–38
www.elsevier.com/locate/tcs

Divergence bounded computable real numbers�

Xizhong Zhenga,c,∗, Dianchen Lub, Kejin Baoa

aDepartment of Computer Science, Jiangsu University, Zhenjiang 212013, China
bDepartment of Mathematics, Jiangsu University, Zhenjiang 212013, China

cBTU Cottbus, 03044 Cottbus, Germany

Abstract

A real x is called h-bounded computable, for some function h : N → N, if there is a computable sequence (xs) of rational numbers
which converges to x such that, for any n ∈ N, at most h(n) non-overlapping pairs of its members are separated by a distance
larger than 2−n. In this paper we discuss properties of h-bounded computable reals for various functions h. We will show a simple
sufficient condition for a class of functions h such that the corresponding h-bounded computable reals form an algebraic field. A
hierarchy theorem for h-bounded computable reals is also shown. Besides we compare semi-computability and weak computability
with the h-bounded computability for special functions h.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Computability of reals; Divergence bounded computability; Weakly computable real; Semi-computable real

1. Introduction

In computable analysis, we often consider a computable sequence (xs) of rational numbers which converges to a real
x in order to discuss the effectiveness of x (see, e.g., [12,14,15]). In the optimal situation, the sequence (xs) converges
to x effectively in the sense that |xs −xs+1|�2−s for all s ∈ N. In this case, the limit x can be effectively approximated
with an effective error estimation. According to Alan Turing [13], such kind of reals are called computable. We denote
by EC (for Effectively Computable) the class of all computable reals. As shown by Robinson [8], x is computable iff
its Dedekind cut Lx := {r ∈ Q : r < x} is a computable set and iff its binary expansion 1 xA := ∑

i∈A 2−(i+1) is
computable (i.e., A is a computable set). Of course, not every real is computable, because there are only countably
many computable sequences of rational numbers and hence there are only countably many computable reals, while the
set of reals is uncountable. Actually, as shown by Ernst Specker [12], there is an increasing computable sequence which
converges to a non-computable real. The limit of an increasing computable sequence of rational numbers is called left
computable (or computably enumerable, c.e., for short, see [2,4]) and LC denotes the class of all left computable reals.
Thus, we have EC�LC. Similarly, the limit of a decreasing computable sequence of rational numbers is called right
computable. Left and right computable reals are called semi-computable. The classes of right and semi-computable

� This work is supported by DFG (446 CHV 113/240/0-1) and NSFC (10420130638).
∗ Corresponding author. Theoretische Informatik, BTU Cottbus, D-03044 Cottbus, Germany.

E-mail address: zheng@informatik.tu-cottbus.de (X. Zheng).
1 In this case we consider only the reals from the unit interval [0; 1]. For other reals y, there are an n ∈ N and an x ∈ [0; 1] such that y = x ± n.

x and y have obviously the same effectiveness in any reasonable sense.

0304-3975/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2005.09.054

http://www.elsevier.com/locate/tcs
mailto:zheng@informatik.tu-cottbus.de

28 X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38

reals are denoted by RC and SC, respectively. The arithmetical closure of LC is denoted by WC, the class of weakly
computable reals. It is shown by Ambos-Spies et al. [1], that x is weakly computable iff there is a computable sequence
(xs) of rational numbers which converges to x weakly effectively in the sense that

∑
s∈N |xs − xs+1|�c for some

constant c. More generally, we call a real computably approximable if there is a computable sequence of rational
numbers which converges to it and denote by CA the class of all computably approximable reals.

Non-computable reals can be classified further by, say, Turing reduction which can be defined by means of binary
expansion (see e.g. [5,16]). Namely, for any A, B ⊆ N, xA �T xB iff A�T B, i.e. A is Turing reducible to B. In
computability theory, the Turing degree deg(A) of a set A is defined as the class of all subsets of N which are Turing
equivalent to A. For a real xA, we can define its Turing degree simply by degT (xA) := degT (A). However, the
classification of reals by Turing degrees is very rough and is not related to the analytical property of reals very well.
For example, Zheng [16] has shown that there are reals x, y of c.e. Turing degrees such that their difference x − y does
not have even an �-c.e. Turing degree. Here, a Turing degree is �-c.e. if it contains an �-c.e. set which is the limit of
a computable sequence (As) of finite sets such that |{s : n ∈ (As \ As+1) ∪ (As+1 \ As)}|�f (n) for all n and some
computable function f .

A much finer classification of non-computable reals is introduced by so-called “Solovay reduction” [11] which can be
applied to the class LC. Here, for any c.e. reals x, y, we say that x is Solovay reducible to y (denoted by x�Sy) if there
are a constant c and a partial computable function f :⊆ Q → Q such that (∀r ∈ Q)(r < y �⇒ c ·(y −r) > x −f (r)).
Very interestingly, Solovay reduction gives a natural description of the c.e. random reals. Namely, a real x is c.e. random
iff it is Solovay complete in the sense that y�Sx for any c.e. real y (see [2] for the details about this result).

Equivalently, a c.e. real x is Solovay reducible to another c.e. real y if and only if there are two computable increasing
sequences (xs) and (ys) of rational numbers which converge to x and y, respectively, and such that c(y − yn)�x − xn

for some constant c and all n. In other words, Solovay reduction compares essentially the speed of convergence of
the (increasing) approximations to different c.e. reals. Based on the approximation speed, Calude and Hertling [3]
discussed the c-monotone computability of reals which is extended further to the h-monotonic computability of reals
by Rettinger et al. [7,6] as follows. For any function h : N → Q, a real x is called h-monotonically computable (h-mc,
for short) if there is a computable sequence (xs) of rational numbers which converges to x h-monotonically in the
sense that h(n)|x − xn|� |x − xm| for all n < m. Obviously, if h(n)�c < 1, then h-mc reals are computable. For the
constant function h ≡ c�1, a dense hierarchy theorem is shown in [6]. Unfortunately, the classes of h-monotonically
computable reals usually do not have nice analytic property. For example, even the class of �-monotonically computable
reals, i.e., the h-mc reals for some computable function h, is not closed under addition and subtraction.

The speed of convergence of an approximation (xs) to x can also be described by counting jumps of certain distance.
In [17], a real is called h-Cauchy computable (h-cec, for short) if there is a computable sequence (xs) of rational
numbers which converges to x such that, for any n ∈ N, there are at most h(n) pairs of indices (i, j) with n� i < j and
2−n � |xi − xj | < 2−n+1. Denote by h-cEC the class of all h-cec reals. Then, we have obviously that EC = 0-cEC.
Furthermore, a hierarchy theorem of [17] shows that g-cEC�f -cEC for any computable functions f, g such that
(∃∞n)(f (n) < g(n)). Intuitively, if f (n) < g(n) for all n ∈ N, then an f -cec real is easier to approximate than a g-cec
number. Thus, h-Cauchy computability introduces a series of classes of non-computable reals which have different
levels of (non)computability.

In this paper, we explore another approach to describe the approximation speed. For any sequence (xs) which
converges to x, if the number of non-overlapping index pairs (i, j) such that |xi − xj |�2−n is bounded by h(n), then
we say that (xs) converges to x h-bounded effectively. A real x is h-bounded computable (h-bc, for short) if there is a
computable sequence of rational numbers which converges to x h-bounded effectively. Comparing with the h-Cauchy
computability, h-bounded effective convergence consider all jumps which are larger than 2−n instead of only jumps
between 2−n and 2−n+1 which appear after stage n. This tolerance introduces much better analytic properties of h-
bounded computable reals. For example, a quite simple property about the class C of functions guarantees that the class
of all C-bc reals is a field, where a real is C-bc if it is h-bc for some h ∈ C. Obviously, a hierarchy theorem similar to
that on h-cec reals does not hold any more. For example, for any constant function h ≡ c, only rational numbers are
h-bc. Nevertheless, we can show another natural hierarchy theorem saying that there is a g-bc real which is not f -bc,
if for any constant c, there exists an n ∈ N such that f (n) + c < g(n). Also the weak computability of [1] can be well
located in the hierarchy of h-bounded computable reals.

In the next section, we give the precise definition of h-bounded computability and discuss some of its basic properties.
Especially, we show a simple condition on the class of functions such that corresponding h-bc reals form a field.

X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38 29

In Section 3 we prove the hierarchy theorem for the h-bounded computable reals. In Section 4, we compare the
h-bounded computability with semi-computability and weak computability.

2. Divergence bounded computability

In this section, we introduce the definition of the h-bounded computability of reals and investigate the basic prop-
erties of h-bounded computable reals. Especially, we show a simple condition on the function class C such that the
corresponding h-bounded real class is closed under the arithmetical operations. In the following, two pairs (i1, j1) and
(i2, j2) of indices are called non-overlapping if either i1 < j1 � i2 < j2 or i2 < j2 � i1 < j1.

Definition 2.1. Let h : N → N be a total function, x be a real and let C be a class of total functions f : N → N.
(1) A sequence (xs) converges to x h-bounded effectively if there are at most h(n) non-overlapping pairs (i, j) of

indices such that |xi − xj |�2−n for all n ∈ N.
(2) x is h-bounded computable (h-bc, for short) if there is a computable sequence (xs) of rational numbers which

converges to x h-bounded effectively.
(3) x is C-bounded computable (C-bc, for short) if it is h-bc for some function h ∈ C.

The classes of all h-bc and C-bc reals are denoted by h-BC and C-BC, respectively. Especially, if C is the class
of all computable total functions, then C-BC is denoted also by �-BC. Notice that, if x is h-bc, then it is also h1-
bc for the increasing function h1 defined by h1(n) := max{h(i) : i�n}. Reasonably, we often consider only the
h-bounded computability for non-decreasing functions h : N → N. The next lemma is straightforward from the
definition.

Lemma 2.2. Let x be a real and let f, g : N → N be total functions.
(1) x is rational iff x is f -bc and lim infn→∞ f (n) < ∞.
(2) If x is computable, then x is id-bc for the identity function id(n) := n.
(3) If f (n)�g(n) for almost all n ∈ N, then f -BC ⊆ g-BC.

The next lemma shows that a constant distance between two functions f and h does not suffice to separate the class
f -BC from h-BC.

Lemma 2.3. Let h : N → N be a function and c ∈ N a constant. Then we have (h + c)-BC = h-BC.

Proof. By a simple induction, it suffices to show that (h+1)-BC = h-BC. Suppose that x is an (h+1)-bc real and (xs)

is a computable sequence of rational numbers which converges to x (h+ 1)-bounded effectively. If for all n ∈ N, there
are at most h(n) non-overlapping index pairs (i, j) such that |xi − xj |�2−n, then x is in fact h-bc and we are done.
Otherwise, choose a least n ∈ N such that there are h(n) + 1 pairs of indices (i, j) with |xi − xj |�2−n. Let (i0, j0)

be the first of such kind of pairs and i0 < j0. Define a computable sequence (ys) of rational numbers by ys := xs+j0

for any s. The sequence (ys) has at least one jump of size �2−m less than the sequence (xs) for all m�n. Then (ys)

converges to x h-bounded effectively and hence x ∈ h-BC. �

The next theorem gives a sufficient condition for a class C of functions such that C-BC is closed under the arithmetical
operations.

Theorem 2.4. Let C be a class of total functions. If, for any f, g ∈ C and c ∈ N, there is a function h ∈ C such that
h(n)�f (n + c) + g(n + c) for all n, then the class C-BC is an algebraic field.

Proof. Let f, g ∈ C. If (xs) and (ys) are computable sequences of rational numbers which converge to x and y f - and g-
bounded effectively, respectively, then by triangle inequalities the computable sequences (xs+ys) and (xs−ys) converge
to x + y and x − y h1-bounded effectively, respectively, for the function h1 defined by h1(n) := f (n + 1) + g(n + 1).

30 X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38

For the multiplication, choose a natural number N such that |xn|, |yn|�2N and define h2(n) := f (N + n + 1) +
g(N + n + 1) for any n ∈ N. If |xi − xj |�2−n and |yi − yj |�2−n, then we have

|xiyi − xjyj |� |xi ||yi − yj | + |yj ||xi − xj |�2N · 2−n+1 = 2−(n−N−1).

This means that (xsys) converges to xy h2-bounded effectively.
Now suppose that y �= 0 and w.l.o.g. that ys �= 0 for all s. Let N be a natural number such that |xs |, |ys |�2N and

|ys |�2−N for all s ∈ N. If |xi − xj |�2−n and |yi − yj |�2−n, then we have∣∣∣∣xi

yi

− xj

yj

∣∣∣∣ =
∣∣∣∣xiyj − xjyi

yiyj

∣∣∣∣ � |xi ||yi − yj | + |yj ||xi − xj |
|yiyj |

� 23N · 2−n+1 = 2−(n−3N−1).

That is, the sequence (xs/ys) converges to (x/y) h3-bounded effectively for h3(n) := f (3N +n+1)+g(3N +n+1).
Since the functions h1, h2, h3 are bounded by some functions of C, the class C-BC is closed under arithmetical
operations +, −, × and ÷. �

As a simple example, let C be the class of all constant functions fc(n) = c for c ∈ N. Then C-BC is a field. Actually,
C-BC is the class of rational numbers in this case. Some other examples are listed in the following corollary.

Corollary 2.5. The classes C-BC are fields for any classes C of functions defined in the following:
(1) Lin := {f : f (n) = c · n + d for some c, d ∈ N};
(2) Log(k) := {f : f (n) = c · logk(n) + d for some c, d ∈ N};
(3) Poly := {f : f (n) = c · nd for some c, d ∈ N};
(4) Exp1 := {f : f (n) = c · 2n for some c ∈ N}.

3. Hierarchy theorem

In this section we will prove a hierarchy theorem for the h-bounded computable reals. By definition, the inclusion
f -BC ⊆ g-BC holds obviously, if f (n)�g(n) for almost all n. On the other hand, as shown in Lemma 2.3, it does
not suffice to separate the class f -BC from g-BC if the functions f and g are at most at a constant distance from each
other. The next hierarchy theorem shows that more than a constant distance suffices for the separation.

Theorem 3.1. Let f, g : N → N be two computable functions such that

(∀c ∈ N)(∃m ∈ N)(c + f (m) < g(m)).

Then there exists a g-bc real which is not f -bc, i.e., g-BC�f -BC.

Proof. We will construct a computable sequence (xs) of rational numbers which converges g-bounded effectively to
a non-f -bc real x. That is, x satisfies, for all e ∈ N, the following requirements:

Re: (�e(s))s∈N convergesf -bounded effectively to ye �⇒ ye �= x,

where (�e) is an effective enumeration of the partial computable functions �e :⊆ N → Q. The idea to satisfy a single
requirement Re is easy. We choose an interval I and a natural number m such that f (m) < g(m). Choose further two
subintervals Ie, Je ⊂ I such that Ie and Je are at least at a distance 2−m apart. Then we can find a real x either from
Ie or Je to avoid the limit ye of the sequence (�e(s)). To satisfy all requirements simultaneously, we use a finite injury
priority construction. In the following construction, we use a second index s to denote the parameters constructed up
to stage s. For example, Ie,s denotes the current value of Ie at stage s; and �e,s(n) = m means that the Turing machine
Me which computes �e outputs m in s steps with the input n. However, if it is clear from the context, we often drop
the extra index s.

Formal construction of the sequence (xs):
Stage s = 0: We take the unit interval [0; 1] as the base interval for R0 and let I0 := [2−(m0+1); 2 · 2−(m0+1)],

J0 := [4 · 2−(m0+1); 5 · 2−(m0+1)] where m0 := min{m : m�3 & f (m) < g(m)}. Then define x0 := 3 · 2−(m0+2).

X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38 31

Notice that the intervals I0 and J0 have the same length 2−(m0+1) and the distance between them is 2−m0 . The rational
number x0 is the middle point of I0. We need another parameter te to denote that �e(te) is already used for our strategy.
At this stage, let te,0 := −1 for all e ∈ N.

Stage s + 1: Given te,s , xs and the rational intervals I0, I1, . . . , Iks and J0, . . . , Jks for some ks �0 such that
Ie, Je�Ie−1, l(Ie) = l(Je) = 2−(me+1) and the distance between the intervals Ie and Je is also 2−me , for all 0�e�ks .
We say that a requirement Re requires attention if e�ks and there is a natural number t > te,s such that �e,s(t) ∈ Ie,s

and �e does not make more than f (me) jumps of distance larger than 2−me so far. That is, max Ge,s(me, t)�f (me),
where Ge,s(n, t) denotes the following finite set

{m: (∃v0 < · · · < vm � t)(∀i < m)(|�e,s(vi) − �e,s(vi+1)|�2−n)}.
Let Re be the requirement of highest priority (i.e., of minimal index) which requires attention and let t be the

corresponding natural number. Then we exchange the intervals Ie and Je, that is, define Ie,s+1 := Je,s and Je,s+1 :=
Ie,s . All intervals Ii and Ji for i > e are set to be undefined. Besides, define xs+1 := mid(Ie,s+1), te,s+1 := t and
ks+1 := e. In this case, we say that Re receives attention and the requirements Ri for e < i�ks are injured at
this stage.

Otherwise, suppose that no requirement requires attention at this stage. Let e := ks and let ns be the maximal mi,t

which were defined so far for some i ∈ N and t �s. Denote by j (s) the number of non-overlapping index pairs (i, j)

such that i < j �s and |xi − xj |�2−ns . Then define

me+1 := (�m)(m�ns + 3 & j (s) + f (m) < g(m)). (1)

Choose five rational numbers ai (for i�4) by a0 := xs − 2−(me+1+2) and ai := a0 + i · 2−(me+1+1) for i := 1, 2, 3, 4.
Then define the intervals Ie+1,s+1 := [a0; a1], Je+1,s+1 := [a3; a4] and let xs+1 := xs . Notice that the intervals Ie+1
and Je+1 have length 2−(me+1+1) and the distance between them is 2−me+1 . Furthermore, xs+1 is the middle point of
both intervals Ie and Ie+1.

This ends the formal construction. To show that our construction succeeds, it suffices to prove the following claims.

Claim 3.1.1. For any e ∈ N, the requirement Re requires and receives attention only finitely many times.

Proof. By induction hypothesis we suppose that there is a stage s0 such that no requirement Ri for i < e receives
attention after stage s0. Then me,s = me,s0 for all s�s0. The intervals Ie and Je may be exchanged after stage s0
if Re receives attention. Notice that, if Re receives attention at stages s2 > s1(> s0) successively, then we have
|�e(te,s1) − �e(te,s2)|�2−me,s0 , because the distance between the intervals Ie and Je is 2−me,s0 . This implies that Re

can receive attention after stage s0 at most f (me,s0) + 1 times because of the condition max Ge,s(me, t)�f (me) and
hence Re receives attention finitely often totally. �

Claim 3.1.2. The sequence (xs) converges g-bounded effectively to some x and hence x is g-bounded computable.

Proof. By construction, if xs �= xs+1, then there is an e such that Re receives attention at stage s + 1. In this case, we
have 2−me,s < |xs − xs+1| < 2−me,s+1. In addition, if Re receives attention according to the same me,s at stage s + 1
and t + 1(> s + 1) consecutively, then we have |xs − xt+1|�2−(me,s+1) again because of l(Ie,s) = 2−(me,s+1). This
means that, if a natural number n has never been chosen as me,s for some e at some stage s, then there are no stages
s1, s2 such that 2−n � |xs1 − xs2 |�2−n+1. Therefore, it suffices to show that, for any me,s , there are at most g(me,s)

non-overlapping index pairs (i, j) such that |xi − xj |�2−me,s .
Given any me,s , suppose that it is defined for the first time at stage s according to condition (1). Then, there are only

j (s) non-overlapping index pairs (i, j) such that |xi − xj |�2−me,s up to stage s. After stage s, each of such jumps
corresponds to a stage at which Re receives attention according to me,s . However, Re can receive attention at most
f (me,s) + 1 times according to this same me,s and j (s) + f (me,s) < g(me,s). Therefore, there are at most g(me,s)

non-overlapping jumps of (xs) which are larger than 2−me,s . Thus, the computable sequence (xs) converges g-bounded
effectively to a g-bc real x. �

Claim 3.1.3. The real x satisfies all requirements Re. Therefore, x is not f -bounded computable.

32 X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38

Proof. For any e ∈ N, suppose that �e is a total function and (�e(s)) converges f -bounded effectively. By Claim
3.1.1, we can choose an s0 such that ks0 �e and no requirement Ri for i�e requires attention after stage s0. This means
that Ie := Ie,s0 = Ie,s and te := te,s0 = te,s for any s�s0. By definition of the sequence (xs), we have xs ∈ Ie for all
s�s0 and hence x ∈ Ie.

Assume by contradiction that x = lims→∞ �e(s). Then there is a stage s and a t > te such that �e(v) is defined for
all v� t and �e(t) ∈ Ie. Since (�e(v)) converges f -bounded effectively, max Ge,s(me, t)�f (me). That is, Re requires
attention and will receive attention at stage s + 1. This contradicts the choice of s0. �

By Claims 3.1.2 and 3.1.3, the real x is g-bounded computable but not f -bounded computable. This completes the
proof of the theorem. �

Corollary 3.2. If f, g : N → N are computable functions such that f ∈ o(g), then f -BC�g-BC.

4. Semi-computability and weakly computability

This section discusses the relationship between h-bounded computability and other known computability notions of
reals. Our first result shows that the classical computability notion of reals cannot be described directly by h-bounded
computability for any monotone function h.

Theorem 4.1. Let h : N → N be an unbounded non-decreasing computable function. Then EC�h-BC.

Proof. Suppose that the computable function h is non-decreasing and unbounded. Then we can define a strictly
increasing computable function g : N → N inductively by{

g(0) := 0,

g(n + 1) := (�t)(t > g(n) & h(t) > h(g(n))).
(2)

This implies that, for any natural numbers n, m, if g(n)�m < g(n + 1), then n�h(g(n)) = h(m) < h(g(n + 1)).
If x is a computable real, then there is a computable sequence (xs) of rational numbers which converges to x such that

|xt − xs | < 2−(s+1) for all t �s. Suppose without loss of generality that |x0 − x| < 1. Define a computable sequence
(ys) by ys := xg(s) for any s ∈ N.

For any natural number n, we can choose an i0 ∈ N such that g(i0)�n < g(i0 +1). Then we have i0 �hg(i0) = h(n)

by definition (2). If (i, j) is a pair of indices such that i < j and |yi −yj | = |xg(i)−xg(j)|�2−n, then, by the assumption
on (xs), this implies that g(i) < n and hence i < i0. This means that there are at most i0 non-overlapping pairs of
indices (i, j) such that |yi − yj |�2−n. Therefore, the sequence (ys) converges to x h-bounded effectively and hence
x is an h-bc real.

To show the inequality, we can construct a computable sequence (xs) of rational numbers which converges h-bounded
effectively to a non-computable real x, i.e., x satisfies, for all e ∈ N, the following requirements:

Re: (∀s)(∀t �s)(|�e(s) − �e(t)|�2−s) �⇒ x �= lim
s→∞ �e(s),

where (�e) is an effective enumeration of partial computable functions �e :⊆ N → Q. This construction can be easily
implemented by a finite injury priority technique. We omit the details here because this result can also be deduced
directly from a more general result that h-BC�SC of Theorem 4.3. �

To prove h-BC�SC, we use a necessary condition of semi-computability as follows. Here A ⊕ B := {2n : n ∈
A} ∪ {2n + 1 : n ∈ B} is the join of two sets A and B.

Theorem 4.2 (Ambos-Spies et al. [1]). If A, B ⊆ N are Turing incomparable c.e. sets, then the real xA⊕B is not
semi-computable.

Let h : N → N be a function. A set A ⊆ N is called h-sparse if, for any n ∈ N, A contains at most h(n)

elements which are less than n, namely, |A�n|�h(n). Applying a finite injury priority construction similar to the

X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38 33

original proof of the classical Friedberg-Muchnik Theorem (cf. [10, p. 118]) we can show that, if h : N → N is an
unbounded and non-decreasing computable function, then there are Turing incomparable h-sparse c.e. sets A, B ⊆ N,
i.e., A�

T
B & B�

T
A. Using this observation we can show that h-BC�SC for any unbounded and non-decreasing

computable h.

Theorem 4.3. Let h : N → N be an unbounded non-decreasing computable function. Then there exists an h-bc real
which is not semi-computable.

Proof. For any unbounded non-decreasing computable function h, there are c.e. sets A, B ⊆ N such that A and B

are Turing incomparable and both 2A and 2B + 1 are h-sparse. Then xA⊕B is not semi-computable. Furthermore,
let (As) and (Bs) be the effective enumerations of A and B, respectively. We define xs := xAs⊕Bs

. Then (xs) is a
computable sequence of rational numbers which converges to xA⊕B . If i < j are two indices such that |xi − xj |�2−n,
then there is some m�n such that either m/2 enters A or (m − 1)/2 enters B between stages i and j . Because both
A and B are h-sparse, there are at most h(n) such non-overlapping index pairs (i, j). Therefore, xA⊕B is h-bounded
computable. �

Theorem 4.3 shows that the class SC does not contain all h-bc reals if h is unbounded no matter how slowly the
function h increases. However, as observed by Soare [9], the set A must be �n(2n)-c.e. if xA is a semi-computable
real. Here, when a set A ⊆ N is called h-c.e. for some function h, this means that there is a computable sequence (As)

of finite sets such that lims→∞ As = A and, for any n ∈ N, there are at most h(n) stages s with n ∈ As+1 \ As or
n ∈ As \ As+1. This implies immediately that SC ⊆ �n(2n)-BC.

On the other hand, the next result shows that if f is a computable function such that f ∈ o(2n), then SC is not
contained completely in the class f -BC any more.

Theorem 4.4. Let oe(2n) be the class of all computable functions h : N → N such that h∈o(2n). Then SC�oe(2n)-BC.

Proof. We will construct an increasing computable sequence (xs) of rational numbers which converges to some real
x and x satisfies, for all natural numbers e = 〈i, j〉, the following requirements:

Re : �i and �j are total functions and �j ∈ o(2n)

(�i (s)) converges �j -bounded effectively

}
�⇒ x �= lim

s→∞ �i (s),

where (�e) and (�e) are effective enumerations of all partial computable functions �e :⊆ N → Q and �e :⊆ N → N,
respectively.

To satisfy a single requirement Re (e = 〈i, j〉), we choose a rational interval Ie−1 of length 2−me−1 for some natural
number me−1 and look for a “witness” interval Ie ⊆ Ie−1 such that every element of Ie satisfies Re.

Firstly, the interval Ie−1 is divided into four equidistant subintervals J t
e for t < 4 and let Ie := J 1

e as the (default)
candidate of witness interval of Re. If the function �j is not a total function such that �j ∈ o(2n), then Re is satisfied
trivially and Ie is already a correct witness interval. Otherwise, there exists a natural number me > me−1 + 2 such
that 2(�j (me) + 2) · 2−me �2−(me−1+2). In this case, we divide the interval J 3

e (which is of length 2−(me−1+2)) into
subintervals I t

e of length 2−me for t < 2me−(me−1+2) and let Ie := I 1
e as the new candidate of witness interval of Re. If

the sequence (�i (s)) does not enter the interval I 1
e at all, then we are done. Otherwise, suppose that �i (s0) ∈ I 1

e for
some s0 ∈ N. Then we change the witness interval to be I 3

e . If �i (s1) ∈ I 3
e for some s1 > s0, then let Ie := I 5

e , and so
on. This can happen at most �j (me) times if the sequence (�i (s)) converges �j -bounded effectively. This means that
a correct witness interval of Re can be eventually found in finitely many steps.

To satisfy all requirements Re simultaneously, we apply a finite injury priority construction described precisely
as follows.

Formal construction of the sequence (xs):
Stage s = 0: Let m0 := 2, J k

0 := [k/4; (k + 1)/4] for k < 4, I0 := J 1
0 and x0 := 1

4 . Set the requirement R0 into the
“default” state and all other requirements Re for e > 0 into the “waiting” state.

Stage s + 1: Given a natural number es such that, for all e�es , the natural number me, the rational intervals Ie and
J k

e for k < 4 (if Re is in the “default” state) or I t
e for some t’s (if Re is in the “waiting” or “satisfied” state) are defined.

A requirement Re for e = 〈i, j〉 requires attention if e�es and one of the following situations appears.

34 X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38

(R1) Re is in the “default” state and there is an m ∈ N such that

m > me,s + 2 & (�j,s(m) + 2) · 2−m+1 �2−me,s . (3)

(R2) Re is in the “ready” state and there is a t ∈ N such that �i,s(t) ∈ Ie.
If no requirement requires attention, then we define es+1 := es + 1 and mes+1 := mes + 2. Then divide the interval

Ies into four equidistant subintervals J k
es+1

for k < 4 and let Ies+1 := J 1
es+1

. Finally, set Res+1 into the “default” state.
Otherwise, let Re (e = 〈i, j〉) be the requirement of highest priority (i.e., of minimal index e) which requires attention

and consider the following cases.
Case 1: The requirement Re is in the “default” state at stage s. Define me,s+1 as the minimal natural number m which

satisfies condition (3). Then we divide the interval J 3
e into subintervals I t

e of length 2−me,s+1 for t < 2me,s+1−me,s . Let
Ie,s+1 := I 1

e be the new witness interval of Re. The requirement Re is set into the “ready” state and all requirements
Re′ for e′ > e are set back into the “waiting” state.

Case 2: The requirement Re is in the “ready” state. If Ie,s = I t
e,s for some t ∈ N and I t+1

e,s is also defined, then let
es+1 := e and Ie,s+1 := I t+1

e,s and set all requirements Re′ for e′ > e into the “waiting” state. Otherwise, if Ie,s = I t
e,s

and I t+1
e,s is not defined any more, then set simply the requirement Re into the “satisfied” state and go directly to the

next stage.
In both cases, we say that the requirement Re receives attention.
At the end of stage s + 1, we define xs+1 as the left endpoint of the rational interval Ies+1 . This ends the construction.

To show that our construction succeeds, it suffices to prove the following claims.

Claim 4.4.1. Each requirement requires and receives attention only finitely many times and hence the limits Ie :=
lims→∞ Ie,s exist.

Proof. For any e ∈ N, suppose by induction hypothesis that there is an s0 such that no requirement Ri for i < e

requires and receives attention after stage s0. Assume w.l.o.g. that e�es0 , i.e., the natural number me,s0 and an interval
Ie,s0 of the length 2−me,s0 are defined.

Case A: Re is in the “default” state at stage s0. Then the intervals J t
e,s0

for t < 4 are defined too. Suppose that the
function �j is total and �j ∈ o(2n) (otherwise Re is satisfied trivially). Then there is a (minimal) s1 > s0 and a natural
number m which satisfy condition (3). This means that Re requires, receives attention and is set into the “ready” state
at stage s1 + 1. It goes into case B.

Case B: Re is in the “ready” state at stage s0. In this case, the intervals I t
e are already defined, say, at stage s′ +1�s0.

Namely, at stage s′ + 1, the interval J 3
e is divided into subintervals I t

e of length 2−me,s′+1 for t < T := 2me,s′+1−me,s′ .
Suppose that Ie,s0 = I

t0
e,s0 for some t0 = 2k + 1 < T . After stage s0, if Re receives attention at stage s + 1 with

Ie,s = I t
e,s0

and t + 2 < T , then interval Ie will be moved from some I t
e,s0

to I t+2
e,s0

and Re remains in the “ready” state.
Of course, this can happen at most T/2 times. Namely, either Re will remain in the “ready” state after some stage and
never require attention again, or it will be set into the “satisfied” state.

Case C: Re is in the “satisfied” state at stage s0. Then Re will remain in this state and never require attention after
stage s0 any more.

In all above cases, the requirement Re requires and receives attention only finitely often totally. �

Claim 4.4.2. The sequence (xs) is non-decreasing and the limit x := lims→∞ xs satisfies all requirements Re.

Proof. By construction, the sequence (xs) is obviously non-decreasing and hence the limit x := lims→∞ xs exists.
Now we are going to show that x satisfies all requirements Re.

For any e ∈ N, by Claim 4.4.1, there is an s0 such that Re does not require attention after stage s0. Suppose w.l.o.g.
that Ie,s0 is defined, i.e., Re is not in the “waiting” state. Then we have Ie,s = Ie,s0 and me,s = me,s0 for all s�s0.
Suppose that the assumptions on Re hold. Let us consider the following situations.

Case I: Re is in the “default” state. Since �j ∈ o(2n), there must be some s > s0 and m ∈ N which sat-
isfy condition (3). Then Re requires attention at stage s + 1 and this contradicts the choice of s0. Thus, this case
cannot occur.

X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38 35

Case II: Re is in the “ready” state. From the construction it is easy to see that x is an inner point of the interval Ie,s0 .
Because Re never requires attention, the sequence (�i (s)) does not enter the interval Ie,s0 and hence, lims→∞ �i (s) �= x.
Hence Re is satisfied at this case.

Case III: Re is in the “satisfied” state. Let s1 be the last stage before stage s0 at which the requirement Re is set
into the “default” state. At stage s1, we define a natural number me,s1 and four intervals J k

e,s1
of length 2−me,s1 for

k < 4 and finally define Ie,s1 := J 1
e,s1

. Between stages s1 and s0, the requirement Re is set into the “ready” state
at, say, stage s2 + 1. At this stage, we define me,s2+1 as the minimal natural number m which satisfies condition (3)
and divide the interval J 3

e,s2
into subintervals I t

e,s2+1 for t < T := 2me,s2+1−me,s2 . Since me,s2+1 satisfies the condition
that 2(�j (me,s2+1) + 2) · 2−me,s2+1 �2−me,s2 , the number of subintervals I t

e,s2+1 is at least 2�j (me,s2+1) + 2 and
hence �j (me,s2+1) < T/2 − 1. After stage s2 + 1, Re will never be reset into “waiting” state, these intervals remain
unchanged after stage s2 + 1. Thus, we can denote them simply by I t

e := I t
e,s2+1. At stage s2 + 1, we define also

Ie,s2+1 := I 1
e . Between stages s2 + 1 and s0, Re receives attention at, say, stages v0 + 1 < v1 + 1 < · · · < vN + 1�s0.

Notice that Ie,v0 = I 1
e . At any stage vt + 1 for t < N , we define Ie,vt+1 = I k+2

e if Ie,vt = I k
e and k + 2 < T .

However, at stage vN + 1, Re should be set into the “satisfied” state. This means that Ie,vN
= I k

e for some k such
that k < T �k + 2. Then, by a simple induction, we can show that Ie,vt = I 2t+1

e for any t < N and N = T/2 − 1.
Because of the requiring condition (R2), there are natural numbers nt , for t < N , such that �i (nt) ∈ Ie,vt = I 2t+1

e

and hence |�i (nt) − �i (nt+1)|� l(I 2t
e) = 2−me,s2+1 . Since N = T/2 − 1 > (�j (me,s2+1)), the sequence (�i (s)) does

not converge �j -bounded effectively. This contradicts the hypothesis on Re and implies that this case does not occur
actually either.

Therefore, x satisfies all requirements Re. �

By Claim 4.4.2, x is left computable but not oe(2n)-bounded computable. �

It is worth noting that the class oe(2n) is only the part of o(2n) where only the computable functions are considered.
For the class o(2n) the situation is different as shown in the next results.

Lemma 4.5. Ifx is a semi-computable real, then there is a functionh ∈ o(2n) such thatx ish-bc.Thus, SC ⊆ o(2n)-BC.

Proof. We consider only the left computable x. For right computable reals the proof is similar. Let (xs) be a strictly
increasing computable sequence of rational numbers which converges to x. Define a function g : N → N by

g(n) := |{s ∈ N : 2−n �(xs+1 − xs) < 2−n+1}|.
Then we have

∑
n∈N g(n) · 2−n �

∑
s∈N |xs − xs+1| = x0 − x. This implies that g ∈ o(2n). Especially, there is an

N0 ∈ N such that g(n)�2n for all n�N0. Let c1 := ∑
i �N0

g(i).
Let h(n) := ∑n

i=0 g(i). Then the sequence (xs) converges h-bounded effectively. It remains to show that h ∈ o(2n).
Given any constant c > 0, there is an N1 �N0 such that g(n)�c/4 · 2n for all n�N1. Thus, for any n large enough
such that 2n �2(c1 + 2N1+1)/c, we have

h(n) =
n∑

i=0
g(i) = ∑

i �N0

g(i) +
N1∑

i=N0+1
g(i) +

n∑
i=N1+1

g(i)

� c1 +
N1∑

i=N0+1
2i +

n∑
i=N1

c/4 · 2i �c1 + 2N1+1 + c/4 · 2n+1

= 2n(c1 · 2−n + 2(N1+1)−n + c/2)�c · 2n.

Thus, h ∈ o(2n) and the sequence (xs) converges h-bounded effectively. Hence x is a h-bc real. �

By Theorem 2.4, class o(2n)-BC is a field which contains all semi-computable reals. But WC is the arithmetic
closure of SC. Therefore, we have

Corollary 4.6. Any weakly computable real is h-bounded computable for some function h ∈ o(2n). Namely,
WC ⊆ o(2n)-BC.

36 X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38

Our next result shows that the inclusion WC ⊆ o(2n)-BC is proper.

Theorem 4.7. There is an o(2n)-bc real which is not weakly computable. That is, WC�o(2n)-BC.

Proof. We construct a computable sequence (xs) of rational numbers and a (not necessarily computable) function
h : N → N such that the sequence (xs) converges h-bounded effectively to a non-weakly computable real x. That is,
x satisfies all the following requirements:

Re:
�e is a total function, and∑
s∈N |�e(s) − �e(s + 1)|�1

}
�⇒ lim

s→∞ �e(s) �= x,

where (�e) is an effective enumeration of all partial computable functions �e :⊆ N → Q.
The strategy to satisfy a single requirement Re is quite simple. Namely, we choose two rational intervals Ie and Je

such that their distance is 2−me for some natural number me. Then we choose the middle point of Ie as x whenever
the sequence (�e(s)) does not enter the interval Ie. Otherwise, we choose the middle of Je. If the sequence (�e(s))

enters the interval Je at a later stage, then define x as the middle point of Ie again, and so on. Because of the condition∑
s∈N |�e(s) − �e(s + 1)|�1, we need at most 2me changes. By a finite injury priority construction, this works for

all requirements simultaneously. However, the real x constructed in this way is only a 2n-bounded computable real. To
guarantee the o(2n)-bounded computability of x, we need several me’s instead of just one. That is, we choose at first
a natural number me > e, two rational intervals Ie and Je and implement the above strategy, but at most 2me−e times.
Then we look for a new m′

e > me and apply the same procedure up to 2m′
e−e times, and so on. This means that, in worst

case, we need 2e different me’s to satisfy a single requirement Re. We can see that the finite injury priority technique
can still be applied. More precisely, we have the following formal construction.

Stage s = 0: Set k0 := 0, I0 := [7/16; 9/16], J0 := [13/16; 15/16], m0 := 2, m−1 := −1, c0 := 0 and
x0 := mid(I0) = 1

2 . Furthermore, we define te := 0 for all natural numbers e. Here, we use the counter ce to denote
how many times the current parameter me is used for Re, and te denotes that �e(te) is just considered.

Stage s + 1: Given a natural number ks �0 such that, for all i�ks , the rational intervals Ii, Ji , the natural numbers
mi, ti and ci are defined. The lengths l(Ii) = l(Ji) = 2−(mi+1) and the distance between the intervals Ii and Ji is 2−mi .

A requirement Re requires attention if e�ks and there is a natural number t > te such that

(∀v� t)(�e,s(v) ↓) & �e,s(t) ∈ Ie &
∑
v<t

|�e,s(v) − �e,s(v + 1)|�1. (4)

Let Re be the requirement of highest priority which requires attention and t the least natural number which satisfies
condition (4). We consider the following cases.

Case 1: ce < 2me−e. We define ks+1 := e, exchange the intervals Ie and Je, i.e., define Ie,s+1 := Je,s and Je,s+1 :=
Ie,s and, furthermore, let te,s+1 := t , and ce,s+1 := ce,s + 1.

Case 2: ce = 2me−e. In this case, we have exchanged intervals Ie and Je already 2me−e times. Another exchange
is not allowed in order to guarantee the sequence (xs) converges o(2n)-bounded effectively. Therefore, we have to
define a new me. Thus, let ks+1 := e. We define me,s+1 := mks + e + 3, divide the interval Iks = [a; b] equally
by a = a0 < a1 < · · · < a16 = b and then define two new rational intervals Ie and Je by Ie := [a7; a9] and
Je := [a13; a15] if �e,s(t) /∈ [a7; a9] and Je := [a7; a9] and Ie := [a13; a15] otherwise. Finally, define te,s+1 := t , and
reset the counter ce,s+1 := 0.

In both cases, we say that the requirement Re receives attention, or more precisely, receives me,s+1-attention. For all
i > e, we initialize the requirements Ri by setting the intervals Ii, Ji and parameters mi, ti , ci to be undefined. These
requirements Ri are said to be injured by Re if e < i < ks .

If no requirement requires attention at this stage, then we define ks+1 := ks + 1 and act similarly to case 2 above.
Namely, for e = ks+1, we define ce,s+1 := 0 and me,s+1 := ns + e + 3 where ns is the maximal natural number which
is used as mi,v for some i and v�s. Then we define two rational intervals Ie := [a7; a9] and Je := [a13; a15] where
a = a0 < a1 < · · · < a16 = b is an equidistant division of the interval Iks = [a; b]. In this case, we say that the
requirement Re receives default attention.

In all cases, we define xs+1 := mid(Iks+1) and all other parameters which are not explicitly defined remain the same
as in stage s. This ends the construction. To show that our construction succeeds, we prove the following claims.

X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38 37

Claim 4.7.1. For any e ∈ N, the requirement Re requires and receives attention only finitely many times.

Proof. We prove the claim by induction on e ∈ N. Suppose by induction hypothesis that, for all i < e, the requirement
Ri requires and receives attention only finitely many often. Then there is a minimal stage s0 such that no requirement
Ri for i < e requires and receives (normal or default) attention after stage s0. By the minimality of s0, we have either
s0 = 0 or ks0 = e − 1. Thus, at stage s0 + 1, the requirement Re receives default attention. Namely, we define a new
me, and two intervals Ie and Je of length 2−(me+1) such that they are separated by a distance d (Ie, Je) = 2−me . In
this case, the counter ce is set to be 0. Every time, if Re receives attention with this me, then the counter ce increases
by 1 until ce = 2me−e. This means that the requirement Re can receive attention with this me at most 2me−e times
according to case 1. After that, if it is necessary, a new me will be defined according to case 2 and the counter is set
to be 0 again. However, if Re receives attention for the same me at stages v0 < v1 < · · · < vl for l = 2me−e, then we
have

∑vl

t=0 |�e(t)−�e(t +1)|� ∑l−1
i=0 |�e(te,vi

)−�e(te,vi+1)|�2−me · l = 2−e. This implies that at most 2e different
me’s can be chosen after stage s0 and hence Re requires and receives attention finitely many times totally. �

Claim 4.7.2. For any e, the limits m∗
e := lims→∞ me,s and I ∗

e := lims→∞ Ie,s exist and they satisfy the following
conditions:

l(I ∗
e) = 2−(m∗

e+1) & I ∗
e+1�I ∗

e & m∗
e + e + 3�m∗

e+1. (5)

Proof. It follows immediately from Claim 4.7.1 and the definition of me,s+1 in the construction. �

By Claim 4.7.2, (me) is a strictly increasing sequence of natural numbers. Thus, we define a function h : N → N by
h(n) := 2m∗

e−e+1 for any m∗
e−1 < n�m∗

e . Thus, h ∈ o(2n). Of course, the function h is not necessarily computable.

Claim 4.7.3. The sequence (xs) converges h-bounded effectively to some x, hence x is o(2n)-bounded computable.

Proof. For any natural number n, there exists a minimal e ∈ N such that n�m∗
e . Let me0,s0 < me1,s1 < · · · < mek,sk

be all natural numbers less than m∗
e which are defined in the construction. Remember that we have m∗

e �mek,sk + e+ 3.
By construction, if a requirement Ri requires mi,s-attention at stage s + 1, then we have either xs = xs+1 (in case 2
for �i (t) ∈ [a7; a9] or Ri receives default attention) or 2−mi,s < |xs − xs+1| < 2−mi,s+1. This means that the jumps
of the sequence (xs) which are greater than 2−m∗

e can only be caused when Re receives m∗
e -attention or Rei

receives
mei,si -attention for some i�k. Since for any fixed mei,si , the requirement Rei

can receive mei,si -attention at most
2mei ,si

−ei times, the number of jumps of distance larger than 2n is bounded by
k∑

i=0
2mei ,si

−ei + 2m∗
e−e �

k∑
i=0

2mei ,si + 2m∗
e−e

� 2mek,sk
+1 + 2m∗

e−e �2m∗
e−e+1 = h(n).

That is, the sequence (xs) converges h-bounded effectively and the limit x := lims→∞ xs is h-bounded computable.
Because h ∈ o(2n), x is also o(2n)-bounded computable. �

Claim 4.7.4. The limit x := lims→∞ xs satisfies all requirements Re and hence it is not weakly computable.

Proof. By construction we have xs ∈ Iks �Ie,s for any e�ks . This implies that x ∈ I ∗
e for any e ∈ N. For any

fixed e ∈ N, by Claim 4.7.1, there is an s0 such that the requirement Re does not require and receive attention after
stage s0. Therefore, Ie,s = I ∗

e for any s�s0. If �e is a total function such that
∑

s∈N |�e(s) − �e(s + 1)|�1, then
there is no t > te,s0 such that �e(t) ∈ I ∗

e . Otherwise, there is a stage s1 > s0 such that �e,s1
(v) is defined for all

v� t and
∑

s � t |�e(s) − �e(s + 1)|�1. That is, condition (4) is satisfied and Re requires attention at stage s1. This
contradicts the choice of s0. This means that the sequence (�e(s)) does not enter the interval I ∗

e and hence the limit
ye = lims→∞ �e(s), if it exists, is not an inner point of I ∗

e . On the other hand, x ∈ I ∗
e+1 ⊂ I ∗

e and I ∗
e+1 consists only

of the inner points of I ∗
e . Therefore, x �= ye and Re is satisfied. This implies that x is not weakly computable. �

By Claims 4.7.3 and 4.7.4, the limit x is an o(2n)-bounded computable but not weakly computable real. This
completes the proof of the theorem. �

38 X. Zheng et al. / Theoretical Computer Science 351 (2006) 27 –38

Since the function h constructed in the above proof is not necessarily computable, it is not clear whether the class
oe(2n) is contained properly in WC or incomparable with WC.

References

[1] K. Ambos-Spies, K. Weihrauch, X. Zheng, Weakly computable real numbers, J. Complexity 16 (4) (2000) 676–690.
[2] C.S. Calude, A characterization of c. e. random reals, Theoret. Comput. Sci. 271 (1–2) (2002) 3–14.
[3] C.S. Calude, P.H. Hertling, Computable approximations of reals: an information-theoretic analysis, Fund. Inform. 33 (2) (1998) 105–120.
[4] R.G. Downey, Some computability-theoretical aspects of real and randomness, preprint of Victoria University, Wellington, New Zealand,

September 2001, <http://www.mcs.vuw.ac.nz/math/papers/notredame.ps>.
[5] A.J. Dunlop, M.B. Pour-El, The degree of unsolvability of a real number, in: J. Blanck, V. Brattka, P. Hertling (Eds.), Computability and

Complexity inAnalysis, Lecture Notes in Computer Science, Vol. 2064, Springer, Berlin, 2001, pp. 16–29, CCA 2000, Swansea, UK, September
2000.

[6] R. Rettinger, X. Zheng, On the hierarchy and extension of monotonically computable real numbers, J. Complexity 19 (5) (2003) 672–691.
[7] R. Rettinger, X. Zheng, R. Gengler, B. von Braunmühl, Monotonically computable real numbers, Math. Log. Quart. 48 (3) (2002) 459–479.
[8] R.M. Robinson, Review of “Peter, R., Rekursive Funktionen”, J. Symbolic Logic 16 (1951) 280–282.
[9] R.I. Soare, Cohesive sets and recursively enumerable Dedekind cuts, Pacific J. Math. 31 (1969) 215–231.

[10] R.I. Soare, Recursively enumerable sets and degrees. A study of computable functions and computably generated sets, Perspectives in
Mathematical Logic, Springer, Berlin, 1987.

[11] R.M. Solovay, Draft of a paper (or a series of papers) on Chaitin’s work manuscript, IBM Thomas J. Watson Research Center, Yorktown
Heights, NY, 1975, p. 215.

[12] E. Specker, Nicht konstruktiv beweisbare Sätze der Analysis, J. Symbolic Logic 14 (3) (1949) 145–158.
[13] A.M. Turing, On computable numbers, with an application to the “Entscheidungsproblem”, Proc. London Math. Soc. 42 (2) (1936) 230–265.
[14] K. Weihrauch, Computable Analysis, An Introduction, Springer, Berlin, Heidelberg, 2000.
[15] X. Zheng, Recursive approximability of real numbers, Math. Logic Quart. 48 (Suppl. 1) (2002) 131–156.
[16] X. Zheng, On the Turing degrees of weakly computable real numbers, J. Logic Comput. 13 (2) (2003) 159–172.
[17] X. Zheng, R. Rettinger, R. Gengler, Ershov’s hierarchy of real numbers, in: B. Rovan, P. Vojtas (Eds.), Mathematical Foundations of Computer

Science 2003, Lecture Notes in Computer Science,Vol. 2747, Springer, Berlin, 2003, pp. 681–690, MFCS 2003,August 25–29, 2003, Bratislava,
Slovakia.

http://www.mcs.vuw.ac.nz/math/papers/notredame.ps

