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Quadrature using 64-bit IEEE arithmetic for integrands over [0,1]
with a singularity at 1

M. Hill∗, I. Robinson
Department of Computer Science and Computer Engineering, La Trobe University, Victoria 3086, Australia

Abstract

We present a detailed study of some problems encountered when quadrature over [0, 1] is attempted with integrands that have
a singularity at 1. Methods designed to increase the accuracy of such quadratures, for example, the application of periodising
transformations, are examined in the context of the representational limitations of 64-bit IEEE arithmetic near 1 in [0, 1]. A heuristic
is proposed for the forecasting of a lower bound on the irremovable error due to these limitations. We conclude by affirming the
commonly accepted procedure that where possible, integrals should be symbolically transformed so that any remaining singularity
occurs at 0.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Automatic quadrature; Periodising transformations; 64-bit IEEE arithmetic; Extrapolation

1. Introduction

The problems encountered when performing numerical quadrature over a finite interval with an integrand exhibiting
endpoint singularities are many and varied. Methods to overcome these problems, both general and specific to particular
classes of integrands, have been extensively researched. Comprehensive surveys of such methods appear in [1,2]. In
this paper, we discuss the special problems encountered in a 64-bit IEEE arithmetic environment [4] when a quadrature
algorithm is used to compute an integral over [0, 1] with the integrand having a singularity at 1 or when the algorithm
transforms an integral onto [0, 1] in such a fashion as to result in a singularity at 1. In all cases, we presume that the
integral exists.

It is well known that for integrands belonging to certain specified classes, the theoretical quadrature error can be
reduced significantly through the use of a periodising transformation before application of the quadrature algorithm
or with the use of extrapolation after (and during) generation of a sequence of quadratures based on geometrically
increasing numbers of points. We examine whether these methods, applied separately or in combination, are likely to be
successful in also alleviating the rounding error problems near 1. We also examine the effect on the rounding error near
1 of applying general, non-periodising transformations. The investigation leads to the creation of a potentially useful
heuristic that estimates the maximum relative accuracy a quadrature algorithm can obtain in determining

∫ b

a
g(x) dx,

where [a, b] is a finite interval.
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In the Conclusion, we draw together the threads from the previous sections and offer some general advice on how
to approach integrals over finite domains [a, b], where the integrand has a singularity at x = b.

2. Preliminary theory, definitions and notation

Let Ig(a, b) = ∫ b

a
g(x) dx and Ig(0, 1) = Ig. Let QN(g; a, b) be the result of applying the quadrature rule Q to the

integrand g over the interval [a, b] using N abscissae, and let QNg = QN(g; 0, 1).

2.1. Simple quadrature rules

Let XN = {a = x0, x1, . . . , xN−1, xN = b}, where xj−1 < xj , j = 1, . . . , N . A simple quadrature rule to estimate
Ig(a, b) is given by the Riemann sum SN(g; a, b) = ∑N

j=1(xj − xj−1)g(�j ), �j ∈ [xj−1, xj ]. The following two
quadrature rules are special cases of SN(g; a, b).

Definition 1. The compound rectangle rule is given by

Ig(a, b)�RN(g; a, b) = b − a

N

N−1∑
j=0

g

(
a + j

b − a

N

)
. (1)

RN(g; 0, 1) is the N-point one-dimensional form of a lattice rule. These otherwise multi-dimensional rules are defined
on the domain [0, 1]s , and perform best when the integrand has a smooth 1-periodic extension in all dimensions.

Definition 2. The compound trapezoidal rule is given by

Ig(a, b)�TN(g; a, b) = b − a

N

[
g(a)

2
+

N−1∑
j=1

g

(
a + j

b − a

N

)
+ g(b)

2

]
. (2)

The quadrature points of RN(g; a, b) and TN(g; a, b) are equally spaced in [a, b]. SNg, RNg and TNg will denote
the special case of [a, b] ≡ [0, 1], using N points.

2.2. Quadrature error

If g(x) and g′(x) exist in [0, 1], the error expansions associated with TNg and RNg are given by

TNg − Ig =
m∑

j=1

B2j

(2j)!N2j

(
g(2j−1)(1) − g(2j−1)(0)

)
+ 1

N2m+1

∫ 1

0
P2m+1(Nx)g(2m+1)(x) dx, (3)

which is the Euler–Maclaurin-type error expansion for [0, 1], and

RNg − Ig = − 1

2N
(g(1) − g(0)) +

m∑
j=1

B2j

(2j)!N2j

(
g(2j−1)(1) − g(2j−1)(0)

)

+ 1

N2m+1

∫ 1

0
P2m+1(Nx)g(2m+1)(x) dx, (4)

where

(1) B2m = 2(−1)m−1(2m)!(2�)−2m
∑∞

k=1k
−2m, m = 1, 2, . . . , are the Bernoulli numbers, and

(2) P2k+1(x) = (−1)k−1∑∞
j=12(2kj�)−2j−1 sin(2�kjx).

(3) and (4) indicate that there are significant advantages to be gained in terms of low quadrature error if an integrand
g(x) has a smooth, 1-periodic extension beyond [0, 1]; i.e. g(x) and at least some of its initial successive derivatives
are zero at the endpoints of [0, 1]. The fewer the number of these non-zero leading summation terms, the smaller the
quadrature error is expected to be. One method to achieve this end is to apply a periodising transformation.
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2.3. Periodising transformations

Definition 3. �(t) is a periodising transformation on [0, 1] ⇒
1. �(0) = 0, �(1) = 1,
2. �(t) is monotonically increasing on [0, 1],
3. �′(t) is continuous on [0, 1], and
4. �′(0) = �′(1) = 0. We will assume in this paper that the transformation is symmetrical on [0, 1], with
5. �(t) + �(1 − t) = 1, and
6. �′(t) = �′(1 − t).

As a means of classification, and a measure of the potential effectiveness of a periodising transformation, we will
use the notion of a damping factor [7].

Definition 4. �(t) has a damping factor of n if in the neighbourhood of t = 0, �′(t) ∼ Atn, where A is a non-zero
constant.

Thus, using the symmetry of �(t),

n is the damping factor of �(t) ⇒ �(j)(0) = �(j)(1) = 0, j = 1, . . . , n + 1. (5)

If g(x) is continuous on (0, 1), and �(t) is a periodising transformation with a sufficiently high damping factor, then
there exists r ∈ Z+ such that for the integrand f (t) = �′(t)g(�(t)),

∫ 1

0
g(x) dx =

∫ 1

0
f (x) dx and

dj

dtj
f (t)

∣∣∣∣
t=0,1

= 0, j = 0, . . . , r. (6)

Example 5. �(t) = t5(70t4 − 315t3 + 540t2 − 420t + 126).

�(t) is one of the Korobov periodising transformations [5] and has a damping factor of 4. Let g1(x) = x1/2. g1(x)

has a singularity in the derivative at x = 0, and
∫ 1

0 g1(x) dx = 2. If f1(t) = �′(t)g1(�(t)), then by (6), we also have∫ 1
0 f1(t) dt = 2. However, f1(t) does not have a singularity in the derivative at t = 0. Indeed, for r = 0, . . . , 3, we

have f
(r)
1 (0) = f

(r)
1 (1) = 0.

Example 6. Let g2(x) = x−1/2 and f2(t) = �′(t)g2(�(t)), where �(t) is the transformation used in Example 5.

In this case, f
(r)
2 (0) = f

(r)
2 (1) = 0 for r = 0, 1, indicating that the 1-periodic extension of f2(t) is notably less

smooth than that for f1(t). Thus, we would expect that RNg applied to f2(t) would return a less accurate quadrature
than for f1(t). This is indeed the case, as illustrated in Table 1.

Our purpose is to demonstrate how measures can be taken to minimise the effects that the numerical limitations of
64-bit IEEE arithmetic can have on the quadrature of periodised integrands. The periodising transformations we will
employ to illustrate certain behaviours and limitations inherent in working in a 64-bit IEEE environment will be the
Tanh transformation [9], given by

�(x) = 1

2

[
1 + tanh

(
1

1 − x
− 1

x

)]

and

�′(x) = 1

2

[
1

(1 − x)2 + 1

x2

]
sech−2

(
1

1 − x
− 1

x

)
,
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Table 1
Examples 5 and 6 using QCR , with and without the Korobov transformation

N g1 f1 g2 f2

Rel. error Rel. error Rel. error Rel. error

1 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00
2 4.70E − 01 3.05E − 01 6.46E − 01 1.30E − 01
4 2.23E − 01 1.91E − 03 4.29E − 01 2.51E − 02
8 1.07E − 01 5.59E − 05 2.90E − 01 4.30E − 03

16 5.15E − 02 9.04E − 07 1.98E − 01 7.32E − 04
32 2.51E − 02 1.41E − 08 1.37E − 01 1.26E − 04
64 1.23E − 02 2.19E − 10 9.52E − 02 2.21E − 05

128 6.07E − 03 3.41E − 12 6.65E − 02 3.88E − 06
256 3.00E − 03 5.34E − 14 4.66E − 02 6.84E − 07
512 1.49E − 03 7.77E − 16 3.28E − 02 1.21E − 07

1024 7.42E − 04 5.55E − 17 2.31E − 02 2.13E − 08
2048 3.70E − 04 5.55E − 17 1.63E − 02 3.77E − 09

and three of the Sidi transformations [10], which we denote as Sidi6, Sidi8 and Sidi10, where for Sidin,

�(x) = 1

C

∫ x

0
sinn(�t) dt and �′(x) = 1

C
sinn (�x) with C =

∫ 1

0
sinn(�t) dt,

n = 1, 2, 3, . . . . The Sidin transformations have a damping factor of n, whereas the Tanh transformation is a member
of a class of periodising transformations that exhibits (effectively) no upper bound for the damping factor. In the context
of real-world applications (and specifically 64-bit IEEE arithmetic), members from this latter class of transformations
do not necessarily perform any better than transformations with finite damping factors, as will be demonstrated in
subsequent numerical examples.

2.4. Notation

We adopt the hat notation to indicate when reference is made to the value of a variable, function or result of a process
performed in 64-bit IEEE arithmetic. For example, ĝ and x̂ will denote the machine arithmetic representations of g
and x, respectively, and R̂N (g; a, b) is the result of evaluating RN(g; a, b) in 64-bit IEEE arithmetic. ĝ(x̂) and ĝ(x)

are treated as equivalent expressions.
For integrand g(x), we define g∗(x), where

g∗(x) =
{

g(x), g(x) �= ±∞,

0, g(x) = ±∞.

In a 64-bit IEEE arithmetic environment, let � be such that

x ∈ [1 − �, 1 − �/2) ⇒ x̂ = 1 − � and x ∈ [1 − �/2, 1] ⇒ x̂ = 1.

This � has the value 2−53 and 1 − � is the closest number to 1 in [0, 1) that can be represented in IEEE 64-bit
arithmetic. Note that 1 − �̂ = 1 − �. 64-bit IEEE arithmetic permits 253 representable numbers in

[ 1
2 , 1

]
, and the

representational density (points per unit) for this interval is 254. In a similar fashion, there are 253 representable numbers
in [( 1

2 )5, ( 1
2 )4], with a corresponding representational density of 258. As we shall see, many of the problems that are

encountered in performing quadratures on integrands with an endpoint singularity stem from the decreasing point
density of representable numbers at the endpoint with the singularity, when this endpoint increasingly differs from 0.

2.5. Schema for the numerical examples

In our comparisons of the relative performances of various quadrature rules and periodising transformations when
applied to sample integrals, we will use the sequence of quadratures {RNg}, where N = 2k , k = 0, 1, 2, . . . , 11,



86 M. Hill, I. Robinson / Theoretical Computer Science 351 (2006) 82 –100

unless specifically stated otherwise. The schema ensures that the values of any un-transformed abscissae can be exactly
represented in 64-bit IEEE arithmetic.

3. Extracting integrand information

We commence this section with an example taken from [8].

Example 7. g(x) = (1 − x)−2/3,
∫ 1

0 g(x) dx = 3, and g(x) has a singularity at x = 1.

Table 2 contains data generated using 64-bit IEEE arithmetic, with g∗(x) used in place of g(x). The 2048 quadrature
points of the compound rectangle rule are indexed j : xj = j/2048, j = 0, . . . , 2047 as per the schema in Section
2.5. Weights and abscissae corresponding to each transformation were pre-calculated and stored to the full accuracy
that 64-bit IEEE arithmetic permits.

We observe that the quadratures in Table 2 are of relatively low accuracy and, with the exception of those produced
when no transformation is applied, become contaminated by rounding error. That these poor results cannot be explained
solely by the transformations being of insufficient power is evidenced by Example 8.

Example 8. g(x) = x−2/3,
∫ 1

0 g(x) dx = 3, and g(x) has a singularity at x = 0.

The integrand in Example 8 is the integrand in Example 7 reflected in x = 1
2 , so that the singularity has been

moved from x = 1 to x = 0. Again, using pre-calculated weights and abscissae and all subsequent calculations
being performed in 64-bit IEEE arithmetic, the resulting quadratures are displayed in Table 3. We observe in the data of
Table 3

(a) a notable increase in quadrature accuracy for all transformations, and
(b) that rounding error contamination is negligible.

The differences between the data in Tables 2 and 3 are a direct consequence of 64-bit IEEE arithmetic’s incapacity to
distinctly represent numbers close to 1 in [0, 1] with the same point density that it can near 0. (Even the quadratures
determined without any transformation show minor differences between their respective relative errors.)

That such differences exist is well known. However, in the next section, we will examine in detail the mechanisms
that operate to produce these quadratures of diminished accuracy. The mathematics of the analysis does not need to
reflect some of the slightly more subtle aspects of machine arithmetic. For instance, simplifications such as �a + �b =
�(a + b) will be permitted, without unduly compromising any conclusions we draw. Much of Section 3 concentrates

Table 2
RNg after applying different periodising transformations. g(x) = (1 − x)−2/3

N None Sidi6 Sidi8 Sidi10 Tanh

Rel. error Rel. error Rel. error Rel. error Rel. error

1 6.7E − 01 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00
2 5.7E − 01 1.5E − 01 3.2E − 02 7.5E − 02 5.8E − 02
4 4.7E − 01 3.0E − 02 1.0E − 03 1.3E − 02 4.1E − 02
8 3.9E − 01 5.6E − 03 1.0E − 07 5.6E − 04 1.1E − 04

16 3.1E − 01 1.1E − 03 1.8E − 12 4.2E − 05 4.7E − 05
32 2.5E − 01 2.2E − 04 3.1E − 10 3.3E − 06 1.8E − 06
64 2.0E − 01 4.3E − 05 1.4E − 08 2.8E − 05 6.4E − 06

128 1.6E − 01 8.6E − 06 2.2E − 05 1.6E − 05 2.1E − 05
256 1.3E − 01 4.4E − 05 1.4E − 05 2.5E − 05 3.3E − 05
512 1.0E − 01 3.0E − 05 1.9E − 05 2.1E − 05 2.8E − 05

1024 8.1E − 02 2.4E − 05 2.2E − 05 2.3E − 05 2.6E − 05
2048 6.4E − 02 2.7E − 05 2.4E − 05 2.4E − 05 2.4E − 05
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Table 3
RNg after applying different periodising transformations. g(x) = x−2/3

N None Sidi6 Sidi8 Sidi10 Tanh

Rel. error Rel. error Rel. error Rel. error Rel. error

1 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00
2 7.4E − 01 1.5E − 01 3.2E − 02 7.5E − 02 5.8E − 02
4 5.6E − 01 3.0E − 02 1.0E − 03 1.3E − 02 4.1E − 02
8 4.3E − 01 5.6E − 03 1.0E − 07 5.6E − 04 1.1E − 04

16 3.3E − 01 1.1E − 03 6.2E − 14 4.2E − 05 4.7E − 05
32 2.6E − 01 2.2E − 04 0.0E + 00 3.3E − 06 1.8E − 06
64 2.1E − 01 4.3E − 05 0.0E + 00 2.6E − 07 1.8E − 09

128 1.6E − 01 8.6E − 06 0.0E + 00 2.1E − 08 1.2E − 13
256 1.3E − 01 1.7E − 06 0.0E + 00 1.6E − 09 0.0E + 00
512 1.0E − 01 3.4E − 07 0.0E + 00 1.3E − 10 0.0E + 00

1024 8.1E − 02 6.7E − 08 0.0E + 00 1.0E − 11 0.0E + 00
2048 6.4E − 02 1.3E − 08 0.0E + 00 7.9E − 13 0.0E + 00

on matters relating to the interval [1 − �, 1]. The context for this is the evaluation of RNg, where N is sufficiently
large that the m points (of this N) that fall within [1 − �, 1] can be regarded as the m points used in the evaluation of
Rm(g; 1 − �, 1).

3.1. Applying Sm near 1 in [0,1].

Let g(x) be continuous and bounded on [0, 1]. Formally, we estimate
∫ 1

1−� g(x) dx by Sm(g; 1 − �, 1) using the

points {x0, x1, . . . , xm}, where ∀j , xj−1 < xj , x0 = 1− �, and xm = 1. Specifically,
∫ 1

1−� g(x) dx�
∑m

j=1(xj −xj−1)

g(xj−1). We know nothing of the distribution of the quadrature points beyond their ordering. In the context of 64-bit
IEEE arithmetic, we proceed as follows:

∃a : x̂j =
{

1 − �, 0�j < a,

1, a�j �m

⇒
m∑

j=1
(xj − xj−1)g(xj−1) �

a−1∑
j=1

(x̂j − x̂j−1)g(x̂j−1) + (x̂a − x̂a−1)g(x̂a−1)

+
m∑

j=a+1
(x̂j − x̂j−1)g(x̂j−1) = �ĝ(1 − �),

which is R̂1(g; 1 − �, 1). So, effectively, Sm(g; 1 − �, 1) uses only a single integrand value and is therefore independent
of m.

3.2. Applying Rm near 1 in [0,1].

Let g(x) be continuous and bounded on [0, 1]. We wish to estimate
∫ 1

1−� g(x) dx using Rm and 64-bit arithmetic.
Unlike the circumstances in Section 3.1, the use of Rm implies that we know that the quadrature points are equally
spaced in [1 − �, 1], with x0 = 1 − �.

∫ 1

1−�
g(x) dx �

�

m

m−1∑
j=0

g(xj ) where xj = 1 − � + j
�

m
.

There are two cases to consider.
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m even: x̂j = 1 − �, for j = 1, . . . , m/2 − 1 and x̂j = 1 for j = m/2, . . . , m

⇒ �

m

m−1∑
j=0

g(x̂j ) = �

m

(m

2
ĝ(1 − �) + m

2
ĝ(1)

)
= R̂2(g; 1 − �, 1).

m odd: x̂j = 1 − � for j = 1, . . . , (m − 1)/2 and x̂j = 1 for j = (m − 1)/2 + 1, . . . , m − 1. Thus,

�

m

m−1∑
j=0

g(x̂j ) = �

m

(
m + 1

2
ĝ(1 − �) + m − 1

2
ĝ(1)

)
,

which approaches R̂2(g; 1 − �, 1) as m → ∞. In the limit, the number of required integrand values (in this case, two)
is independent of m. Neither here, nor in Section 3.1, does the value of m play any substantial part in determining the
quadrature for [1 − �, 1].

3.3. What is the effect of applying a linear transformation?

Is it possible to use a linear transformation [1 − �, 1] → [0, 1], applied automatically via coding (i.e. not “by hand”,
where it is possible to perform symbolic simplifications) to obtain a more accurate estimate of

∫ 1
1−� g(x) dx using 64-bit

IEEE arithmetic? Proceeding formally, the transformation∫ 1

1−�
g(x) dx =

∫ 1

0
�g(�y + 1 − �) dy, (7)

and (for instance) RNg with (for the sake of simplicity) an even number N of quadrature points, allows us to estimate
the right side of (7)∫ 1

0
�g(�y + 1 − �) dy �

�

N

N−1∑
j=0

g

(
�
j

N
+ 1 − �

)

= �

N

N/2−1∑
j=0

g

(
�
j

N
+ 1 − �

)
+ �

N

N−1∑
j=N/2

g

(
�
j

N
+ 1 − �

)

= �

2
(ĝ(1 − �) + ĝ(1)),

which is R̂2(g; 1 − �, 1). Similar results follow from applying RNg (with N odd) or SNg. Thus, it is readily seen
that using a simple linear transformation [1 − �, 1] → [0, 1] does not improve upon the results in Section 3.1 or 3.2.
Moreover, we have in fact not changed the set of points at which g is actually evaluated. Such a change would only be
possible if �g(�y + 1 − �) were simplified symbolically before the quadrature is performed.

3.4. What is the effect of applying a non-linear transformation?

Consider the transformations �(y) such that∫ 1

0
g(x) dx =

∫ 1

0
�′(y)g(�(y)) dy. (8)

These transformations form a superset of the periodising transformations of Definition 3. Focusing on the inter-
val [1 − �, 1], can the application of a non-linear transformation before using a quadrature rule result in a more
accurate estimate of

∫ 1
1−� g(x) dx within a 64-bit IEEE environment? The short answer is “No”. A longer answer

is “No, mostly”. Clearly,
∫ 1

1−� g(x) dx = ∫ 1
�−1(1−�) �′(y)g(�(y)) dy. We assume that the values of � and �′ have

been precomputed, and are correct to the accuracy that 64-bit IEEE representation permits. In evaluating RNg, sup-
pose that the m quadrature points closest to 1 (where for the sake of simplicity, m is assumed even) are used to
estimate

∫ 1
�−1(1−�) �′(y)g(�(y)) dy.
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Assume that �−1(1 − �) and �−1(1 − �/2) are determined to full 64-bit IEEE precision before any quadrature is
undertaken. By the construction of Rm(g; 1 − �, 1), ∃q : �(yq−1) < 1 − �/2 and �(yq)�1 − �/2, and so (proceeding
formally), we have

1 − �−1(1 − �)

m

m−1∑
j=0

�′(yj )g(�(yj )) = 1 − �−1(1 − �)

m

×
[

q−1∑
j=0

�′(yj )g(�(yj )) +
m−1∑
j=q

�′(yj )g(�(yj ))

]
(9)

= 1 − �−1(1 − �)

m

[
ĝ(1 − �)

q−1∑
j=0

�′(yj ) + ĝ(1)
m−1∑
j=q

�′(yj )

]
. (10)

Have we extracted any information about g(x) when x ∈ [1−�, 1] that results in a more accurate estimate of
∫ 1

1−� g(x) dx

than the simple expression �[ĝ(1) + ĝ(1 − �)]/2? Unfortunately, no. 64-bit IEEE arithmetic reduces the integrand in
[1 − �, 1] to

ĝ(x) =
{

ĝ(1 − �), 1 − ��x < 1 − �/2,

ĝ(1), 1 − �/2�x�1,
(11)

which carries with it certain consequences. Presume the impossibly best-case scenario wherein the only 64-bit IEEE
representational error occurs as in (11). Then

1 − �−1(1 − �)

m

[
ĝ(1 − �)

q−1∑
j=0

�′(yj ) + ĝ(1)
m−1∑
j=q

�′(yj )

]

= ĝ(1 − �)

(
1 − �−1(1 − �)

�−1(1 − �/2) − �−1(1 − �)

)( q

m

)(�−1(1 − �/2) − �−1(1 − �)

q

q−1∑
j=0

�′(yj )

)

+ĝ(1)

(
1 − �−1(1 − �)

�−1(1) − �−1(1 − �/2)

)(
m − q

m

)(
�−1(1) − �−1 (1 − �/2)

m − q

m−1∑
j=q

�′(yj )

)
. (12)

Consider the first summand in the right hand side of (12). (Arguments and observations similar to those that follow are
also true for the second summand.) For large m (and hence, large q),

(�−1(1 − �/2) − �−1(1 − �))

q

q−1∑
j=0

�′(yj )

is approximately Rq(�′; �−1(1 − �), �−1(1 − �/2)) for
∫ �−1(1−�/2)

�−1(1−�)
�′(y) dy. Since for increasing m, the ratio m : q

approaches the ratio[
�−1(1 − �), 1

]
:
[
�−1(1 − �), �−1(1 − �/2)

]
,

the product(
1 − �−1(1 − �)

�−1(1 − �/2) − �−1(1 − �)

)
·
( q

m

)
→ 1.

Taking the limit m → ∞, (10) becomes

lim
m→∞

1 − �−1(1 − �)

m

[
ĝ(1 − �)

q−1∑
j=0

�′(yj ) + ĝ(1)
m−1∑
j=q

�′(yj )

]

= ĝ(1 − �)
∫ �−1(1−�/2)

�−1(1−�)
�′(y) dy + ĝ(1)

∫ 1

�−1(1−�/2)

�′(y) dy

= · · · = �

2
[ĝ(1 − �) + ĝ(1)], (13)
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Fig. 1. The meanings of a1 and a2 in Table 4. (a) [1/2, (a1 − 1)/2048]: all abscissae distinctly represented. (b) [a1/2048, (a2 − 1)/2048]: rounding
down to 1 − �. (c) [a2/2048, 1]: rounding up to 1.

Table 4
Values of a1 and a2 (see Fig. 1) with IEEE 64-bit arithmetic � = 2−53

� �−1(1 − 2−53) a1 �−1(1 − 2−54) a2

Sidi6 1 − 2−8.8275 2044 1 − 2−8.9685 2044
Sidi8 1 − 2−7.2125 2035 1 − 2−7.3236 2036
Sidi10 1 − 2−6.1886 2020 1 − 2−6.2795 2022
Tanh 1 − 2−4.2793 1943 1 − 2−4.3051 1945

Table 5
Values of N = 2k for which weights and abscissae of RNg near 1 lose all significant figures in 64-bit IEEE arithmetic

Transformation Sidi6 Sidi8 Sidi10 Tanh

N �512 = 29 N �256 = 28 N �128 = 27 N �32 = 25

which is still R̂2(g; 1 − �, 1), suggesting that the application of a generic non-linear transformation as in (8) normally
cannot be expected to improve the estimate of

∫ 1
1−� g(x) dx.

In a sense, this is a worst case result. The analysis does not take into consideration any special characteristics that a
particular transformation may possess. For instance, we have not specifically considered periodising transformations
that, when applied to an integrand, can remove some or all of the non-remainder terms in (3) and (4). However, the data
in Tables 2 and 3 have already suggested that even some very powerful periodising transformations do not overcome
the problems that 64-bit IEEE arithmetic encounters with singular values at x = 1 rather than x = 0, an observation
that will be reinforced by data presented later in this paper. Exceptional cases will be dealt with in Section 3.7; thus the
answer “No, mostly” at the beginning of this section. As an observation foreshadowing the discussion in Section 3.7,
note that in Tables 2 and 3, the performance of the Sidi8 transformation is unexpectedly better than that of both Sidi10
and Tanh.

3.5. Numerical data for the chosen periodising transformations

The results in Sections 3.1–3.4 are consistent with the data in Table 2. Except for Sidi8 (see Section 3.7), none of
the transformations can extract any more than about five significant figures of accuracy, even though the respective
damping factors of these transformations are markedly different.

To see what is happening near 1 to the values of the weights and abscissae for the transformations chosen, we will
again concentrate on the interval [1 − �, 1]. Keeping in mind that 1 − � ≡ 1 − 2−53 and that the 64-bit IEEE rounding
behaviour is as described in Section 2.4.3, the data in Table 4 was collected, where the display format for the values
of �−1(1 − �) = �−1(1 − 2−53) and �−1(1 − �/2) = �−1(1 − 2−54) has been chosen so that comparisons with the
value of 1 − � = 1 − 2−53 are made easier. The meanings of a1 and a2 used in Table 4 are given in Fig. 1.

From Table 4, we can infer (see Table 5) when a complete loss of accuracy in [1 − �, 1] first occurs as a result of the
limitations of 64-bit IEEE numerical representation.
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The situation near 0 is completely different. Of the chosen Sidi transformations, no weights and abscissae values
underflow to 0 if these values are pre-calculated using extended precision arithmetic. In the case of Tanh, the values
of the weights and abscissae succumb to 64-bit IEEE underflow only for j = 1, . . . , 5. Thus, in the case of Tanh,
we lose (as a result of 64-bit IEEE rounding) only about 0.25% of points to underflow near 0, but 5% of points near
1, rendering integrand evaluation at these latter points a non-productive exercise. If the integrand happens to have an
unbounded singularity at 1 (as in Example 7), then this 5% constitutes a significant loss of information in relation to
the behaviour of the integrand in a region where such a loss is likely to do the most damage to the accuracy of the
quadrature.

Using numbers of abscissae greater than those in Table 5 may result in improvements in the accuracies of some
quadratures. The point is that for such quadratures, the improvements in accuracy could well be significantly compro-
mised by the problems associated with [1 − �, 1]. To emphasize this point we will build upon Example 7, and use for
illustration the following family of integrands:

h(x) = (1 − x)�, x ∈ [0, 1], 0 < |�| < 1, (14)

with the corresponding symbolic results∫ 1

0
h(x) dx = 1

1 + �
and

∫ 1

1−�
h(x) dx = �1+�

1 + �
.

When h(x) is coded as h∗(x), (13) becomes �1+�/2, which is an underestimate of
∫ 1

1−� h(x) dx. The relative quadrature
error associated with the integral on [1 − �, 1] is given by

� = (1 + �)

(
�1+�

1 + �
− �1+�

2

)
= · · · = �1+�(1 − �)

2
.

As � → −1, � → 1, indicating that in the limit, the relative error associated with [1 − �, 1] accounts (as expected) for
100% of the total relative error in the quadrature of

∫ 1
0 h(x) dx.

3.6. The minimum relative error for RN(g; a, b): a heuristic estimate

Consider a quadrature algorithm for the general integral
∫ b

a
g(x) dx, a, b finite, that automatically maps [a, b] onto

[0, 1] before implementing its core algorithm. It would be useful if we had a safe, efficient, and transformation-
independent method of estimating a lower bound for the relative error that can be achieved by the quadrature algorithm
operating in a 64-bit IEEE environment. If, for instance, a user requests a high quadrature accuracy, and a simple
calculation involving a small number of integrand evaluations indicates that this accuracy cannot or is very unlikely to
be achieved, the algorithm can be automatically terminated.

In working towards such an estimate, we again consider the case of h(x) as in (14), and let

�h = �(h∗(1 − �) + h∗(1))

2
∫ 1

0 h(x) dx
= · · · = �1+�(1 + �)

2
. (15)

�h is the quadrature over [1 − �, 1] expressed as a proportion of the value of the integral over the entire interval [0, 1].
Values of �h for � = −0.9, −0.7, . . . , 0.9 are found in Table 6. Although 64-bit IEEE arithmetic has been used
to generate these values, the evaluation has been of closed-form symbolic expressions and not the results of actual
quadratures being performed. Since in a 64-bit IEEE environment, relative quadrature error is essentially limited to
no more than 16 significant figures, we note that the relative quadrature error associated with the interval [1 − �, 1]
becomes a significant factor only when � < 0, approximately.

Of course, for a numerical computation, the value of Ih = ∫ 1
0 h(x) dx in (15) would not be known. The values �̂h

in Table 7 were calculated using values of Î h that were determined by applying the rectangle rule, where the relative
error has been estimated by the simple expression

|(Rn(g) − Rn/2(g))/Rn(g)|, (16)
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Table 6
Closed-form error estimate �h associated with h(x) and the interval [1 − �, 1]
� −0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9

�h 1.3E − 03 2.5E − 06 2.6E − 09 2.4E − 12 2.0E − 15 1.5E − 18 1.2E − 21 8.8E − 25 6.4E − 28 4.6E − 31

Table 7
Quadrature-based relative error estimates associated with h(x) = (1 − x)� and the interval [1 − �, 1]
� −0.9 −0.7 −0.5 −0.3 −0.1 0.1 0.3 0.5 0.7 0.9

�̂h 1.4E − 03 2.5E − 06 2.6E − 09 2.4E − 12 2.0E − 15 1.5E − 18 1.2E − 21 8.8E − 25 6.4E − 31 4.6E − 31
n 16 8 8 8 8 8 8 8 8 8
	 4.0E − 02 6.9E − 05 2.6E − 08 1.3E − 11 2.7E − 13 5.2E − 16 8.9E − 17 5.6E − 17 1.6E − 16 1.6E − 16

with g(x) = �′(x)h(�(x)), �(x) is the Sidi6 transformation, and n is sufficiently large to provide Î h to 1 significant
figure. Using the schema of Section 2.5, the highest relative quadrature accuracy achieved before the onset of rounding
error is given in Table 7 by 	. The observed values of 	 reflect the limitations of 64-bit IEEE arithmetic.

Clearly, for h(x) = (1 − x)�,

(a) �̂h can be evaluated using relatively few points.
(b) �̂h provides a sound estimate of �h.
(c) For � < 0, we have �̂h < 	, with this difference being about one or two orders of magnitude.

Observation (c) suggests a heuristic for estimating the maximum relative accuracy that can be obtained by a quadrature
method. Assume

(a) f (x) and f ′(x) are continuous in (a, b).
(b) [a, b] is a finite interval.
(c) IEEE 64-bit arithmetic is being used, � = 2−53.
(d) The quadrature rule is a weighted sum of f (x) evaluated in [a, b].
(e) The quadrature algorithm performs the mapping x ∈ [a, b] → y ∈ [0, 1], x = (b − a)y + a.
(f) f (x) is coded as f ∗(x).

Then an estimate of the maximum relative accuracy obtained by a quadrature method is

�̂ = �(f ∗(1 − �) + f ∗(1))

2Î f
, (17)

where Î f is the value of If computed to one significant figure using the error estimate within the quadrature method.
It is understood that when �̂ < 10−16, the heuristic implies that full 64-bit IEEE accuracy is possible.

The rationale for this heuristic is readily explained. For the purposes of this argument, the result (13) establishes
an estimate of

∫ 1
1−� f (x) dx. If f (x) has a singularity at x = 1 such that f ′(x) is one-signed on [1 − �, 1], then f (x)

is coded as f ∗(x) and (13) becomes �f ∗(1 − �)/2. Without loss of generality, let f (x) → +∞ as x → 1. Since
|∫ 1

1−� f (x) dx − �f ∗(1 − �)/2| > |�f ∗(1 − �)/2| (see Fig. 2), let

� =
∣∣∣∣∣ �f ∗(1 − �)

2
∫ 1

0 f (x) dx

∣∣∣∣∣ <

∣∣∣∣∣
∫ 1

1−� f (x) dx − (�/2)f ∗(1 − �)∫ 1
0 f (x) dx

∣∣∣∣∣ = E. (18)

It is reasonable to expect, and observed to be the case, that when f (x) has a singularity at x = 1 of the type described,
E is sufficiently large so as to make a major contribution to the overall relative error in the quadrature. On the other
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1 - � 1

2 f* (1 - �)

f (x)

1 - �/2

�

Fig. 2. f (x) → +∞ as x → 1.

hand, if f (x) is finite and not extremely large at x = 1, the contribution of E to the overall relative error is greatly
diminished, most often to the point where it is at or below the inherent “noise” level of 64-bit IEEE arithmetic.

In the case of h(x) = (1 − x)�, (18) expressed symbolically becomes �1+�(1 + �)/2 < �1+�(1 − �)/2, which is
satisfied when � < 0. When ��0, the contribution to the relative quadrature error from [1 − �, 1] is sufficiently small
as to be insignificant in the context of 64-bit IEEE rounding error.

To illustrate the effectiveness of the heuristic, consider Example 7 for which �̂ = 8.0e−07. If, in Table 2, we exclude
the Sidi8 data (see Section 3.7), then �̂ is indeed a safe upper bound for the cubature accuracy. Integrals T8(1)–T8(8)
(see Tables 8 and 9) provide further demonstration of the effectiveness, efficiency and safety of this heuristic. The
transformation x ∈ [a, b] → y ∈ [0, 1], x = (b − a)y + a has been used with integral T8(2). It should be noted that
although data associated with only one transformation has been supplied in each case, the degree of accuracy of the
error bound �̂ for the integrals was seen to be independent of the transformation employed.

We point out that for the integrals T8(1)–T8(8), the integrands f (x) are suitably scaled. In [3], the authors illustrate
with several numerical examples, the adverse effects on the accuracy of two-dimensional cubatures that can result from
the integrand having consistently large values in the domain, as compared to an integrand having moderately sized
values except close to a singularity. The advise in [3] is, where possible, to symbolically alter the integrand so as to
avoid these consistently large values. This advice is also relevant to the one-dimensional case. There are a number of
things to note in the Table 9 data.

• The heuristic is effective, efficient, and but for the case of integral T8(3), accurate.
• Integral T8(3). When N = 512, �̂ misses as an upper bound for the relative accuracy by about an order of magnitude.

However, in practice, it is unlikely that a quadrature algorithm’s error estimate could recognise and report this extra
accuracy.

• With integrals T8(1)–T8(4) and T8(7), we note the presence of accumulating rounding error that presumably would
also be detected by an automatic quadrature algorithm, resulting in the termination of the calculations.

• With integrals T8(5) and T8(8), full machine accuracy is achieved.
• With integral T8(7), the heuristic significantly overestimates the achievable accuracy, at least within the schema of

Section 2.5. This is a “safe” error: time is wasted in pursuing the user’s requested relative error until the algorithm’s
internal test for the presence of rounding error terminates the calculations. In such a case, at least the quadrature
obtaining the maximum achievable accuracy will most likely be returned.

3.7. When the heuristic fails: an example

There is a serendipitous combination of integrand and transformation that occurs in Examples 7 and 8, as illustrated in
Tables 2 and 3. Studying the data therein, one sees that the Sidi8 transformation performs unexpectedly well, particularly
when compared to Sidi10 and Tanh. The difference is even more pronounced when the quadratures for Example 7 are
performed using 32-figure precision (Table 10). To what can this behaviour be ascribed?
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Table 8
Integrals T8(1)–T8(8)

Integral [a, b] g(x)
∫ b
a g(x) dx

T8(1) [0, 1] (1 − x)−1/2 2
T8(2) [0, 3] (3 − x)−9/10 10 × 31/10

T8(3) [0, 1] sin3(10�x) + (x + 2)4 cos(20�x) (3800�2 − 3)/(20000�4)

T8(4) [0, 1] �(1 − x2)−1/2/2 �2/4

T8(5) [0, 1] sin(x) + x2 − ex−2 4/3 + e−2 − e−1 − cos(1)

T8(6) [0, 1] x−2/3 log(x) −9

T8(7) [0, 1] (1 − x)−2/3 log(1 − x) −9
T8(8) [0, 1] (1 − x)−1/2 log(1 − x) − 2

5

Table 9
Relative quadrature error for RN(g; a, b). n is the number of points required to determine �̂

N T8(1) T8(2) T8(3) T8(4) T8(5) T8(6) T8(7) T8(8)
Sidi6 Tanh Sidi6 Sidi8 Sidi6 Sidi10 Tanh Sidi6

�̂
2.6E − 09 1.3E − 03 4.7E − 13 2.4E − 09 2.9E − 16 0.0 8.1E − 06 0.0

n
8 16 128 8 8 8 8 8

1 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00
2 1.3E − 01 6.3E − 01 3.2E + 03 3.4E − 01 4.5E − 01 7.5E − 01 7.6E − 01 7.6E − 01
4 4.5E − 03 2.9E − 01 1.9E + 03 6.5E − 03 4.2E − 02 3.1E − 03 7.7E − 03 4.7E − 03
8 4.5E − 04 3.3E − 02 1.3E + 02 1.0E − 04 1.5E − 05 2.0E − 03 1.9E − 02 1.1E − 05

16 3.8E − 05 1.5E − 02 3.7E + 02 4.3E − 06 5.8E − 12 2.6E − 04 8.4E − 04 5.4E − 09
32 3.4E − 06 1.4E − 02 8.0E + 02 1.9E − 07 3.7E − 16 2.9E − 05 2.0E − 05 4.1E − 12
64 3.0E − 07 3.1E − 02 8.2E − 08 8.2E − 09 2.2E − 17 2.9E − 06 8.6E − 05 3.2E − 15

128 2.6E − 08 4.1E − 02 1.2E − 12 8.2E − 08 2.2E − 17 2.8E − 07 2.5E − 04 5.6E − 17
256 2.7E − 07 4.5E − 02 7.3E − 13 4.5E − 08 2.2E − 17 2.6E − 08 3.7E − 04 5.6E − 17
512 1.6E − 07 4.3E − 02 2.2E − 14 7.6E − 08 2.2E − 17 2.4E − 09 3.2E − 04 5.6E − 17

1024 1.2E − 07 4.2E − 02 1.3E − 13 9.4E − 08 2.2E − 17 2.1E − 10 3.0E − 04 5.6E − 17
2048 1.4E − 07 4.1E − 02 1.8E − 13 1.0E − 07 2.2E − 17 1.9E − 11 2.8E − 04 5.6E − 17

Table 10
Example 7.

∫ 1
0 (1 − x)−2/3 dx = 3. 32-figure precision. QCR

N None Sidi6 Sidi8 Sidi10 Tanh

Rel. error Rel. error Rel. error Rel. error Rel. error

1 6.67E − 01 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00
2 5.69E − 01 1.53E − 01 3.24E − 02 7.51E − 02 5.83E − 02
4 4.73E − 01 3.02E − 02 1.02E − 03 1.29E − 02 4.09E − 02
8 3.87E − 01 5.61E − 03 1.02E − 07 5.61E − 04 1.08E − 04

16 3.13E − 01 1.10E − 03 6.16E − 14 4.24E − 05 4.73E − 05
32 2.52E − 01 2.19E − 04 9.02E − 20 3.31E − 06 1.80E − 06
64 2.01E − 01 4.34E − 05 2.94E − 25 2.60E − 07 1.76E − 09

128 1.61E − 01 8.61E − 06 1.08E − 30 2.05E − 08 8.21E − 12
256 1.28E − 01 1.71E − 06 5.35E − 32 1.61E − 09 1.83E − 10
512 1.02E − 01 3.39E − 07 1.60E − 30 1.27E − 10 1.07E − 10

1024 8.08E − 02 6.72E − 08 2.09E − 28 1.00E − 11 7.64E − 11
2048 6.42E − 02 1.33E − 08 1.23E − 26 8.55E − 11 9.61E − 11
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The answer lies in the expansion of g(x) = �′
n(x)f (�n(x)), where �n(x) is Sidin, n = 2, 3, . . . , and f (x) =

(1 − x)−2/3. Following [10], it is straightforward to derive
Near 1:

x → 0+ ⇒ g(1 − x)�
∞∑
i=0

aix
2i+(n−2)/3, (19)

Near 0:

x → 0+ ⇒ g(x)�

⎧⎪⎪⎨
⎪⎪⎩

∞∑
i=0

bix
n+2i , n odd,

∞∑
i=0

cix
n+2i +

∞∑
i=0

dix
2n+1+2i , n even,

(20)

where n = 2, 3, 4, 5, . . . , and the ai , bi , ci and di are constants.
Assuming that we are permitted to study the behaviour of g(m)(x) at the endpoints of [0, 1] by differentiating (19)

and (20) term-by term m times, we proceed in the context of (4) by treating g(2j−1)(x) (i.e. odd-numbered derivatives)
at the endpoints of [0, 1] as separate cases.

Near 1:

g(2j−1)(1 − x) =
∞∑
i=0

ai

d2j−1

dx2j−1 x2i+(n−2)/3 = a0
d2j−1

dx2j−1 x(n−2)/3 +
∞∑
i=1

ai

d2j−1

dx2j−1 x2i+(n−2)/3. (21)

Clearly, for 2j − 1 < (n − 2)/3, g(2j−1)(1) = 0. However, if n ≡ 2 mod 6, then (19) is a summation of even integer
powers of x, and thus ∀j , g(2j−1)(1) = 0. Note that this includes the case n = 8.

Near 0, n odd:
g(x) = ∑∞

i=0bix
n+2i = b0x

n +∑∞
i=1bix

n+2i , and thus

g(2j−1)(x) = (−1)2j−1b0
d2j−1

dx2j−1 xn + (−1)2j−1
∞∑
i=1

bi

d2j−1

dx2j−1 xn+2i , (22)

indicating that g(2j−1)(x) near 0 can be expressed as a sum of even powers of x. Additionally, when 2j − 1 < n, we
have g(2j−1)(0) = 0.

Near 0, n even:
g(x) = ∑∞

i=0cix
n+2i +∑∞

i=0dix
2n+1+2i .

The first sum is of even powers of x, and the second sum is of odd powers of x. So,

g(2j−1)(x) = (−1)2j−1
[ ∞∑

i=0
ci

d2j−1

dx2j−1 xn+2i + d0x
2n+1 +

∞∑
i=1

dix
2n+1+2i

]
. (23)

The first summation in (23) is of odd powers of x and thus

∀j,
∞∑
i=0

ci

d2j−1

dx2j−1 xn+2i

∣∣∣∣
x0

= 0.

The second summation in (23) is of even powers of x. Clearly, g(2j−1)(0) = 0 when 2j − 1 < 2n. This suggests
that in the case at hand, even-order Sidi transformations will perform better than odd-order ones, a result proved more
generally in [10]. Combining all these results, we see that the Sidi transformations of order n will perform optimally
for f (x) = (1 − x)−2/3 and f (x) = x−2/3 when n ∈ {2, 8, 14, 20, . . . }, which is consistent with the data in Tables 2
and 3.

Example 9.
∫ 1

0 (1 − x)−6/7 dx = 7.

This example (see Table 11) is contrived so that when using the Sidi6 transformation, all the fractional indices in
the expansions at x = 0 and x = 1 vanish, as was the case with f (x) = (1 − x)−2/3 and Sidi8. Thus, it is reasonable
to expect that the quadratures determined using the Sidi6 transformation would benefit in accuracy. However, it does
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Table 11
Example 9.

∫ 1
0 (1 − x)−6/7 dx = 7. 16-figure precision. RNf

N None Sidi6 Sidi8 Sidi10 Tanh

Rel. error Rel. error Rel. error Rel. error Rel. error

1 8.57E − 01 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00
2 7.99E − 01 5.86E − 01 5.27E − 01 4.74E − 01 4.82E − 01
4 7.37E − 01 2.99E − 01 2.13E − 01 1.46E − 01 1.46E − 01
8 6.74E − 01 1.49E − 01 8.70E − 02 4.91E − 02 1.61E − 02

16 6.14E − 01 7.45E − 02 3.57E − 02 1.65E − 02 3.26E − 03
32 5.58E − 01 3.73E − 02 1.46E − 02 5.54E − 03 1.49E − 03
64 5.06E − 01 1.86E − 02 6.00E − 03 1.20E − 02 6.85E − 03

128 4.59E − 01 9.32E − 03 1.06E − 02 9.10E − 03 1.02E − 02
256 4.16E − 01 1.40E − 02 8.46E − 03 1.06E − 02 1.21E − 02
512 3.77E − 01 1.16E − 02 9.57E − 03 9.88E − 03 1.12E − 02

1024 3.41E − 01 1.05E − 02 1.01E − 02 1.03E − 02 1.08E − 02
2048 3.09E − 01 1.11E − 02 1.04E − 02 1.05E − 02 1.05E − 02

Table 12
Example 9.

∫ 1
0 (1 − x)−6/7 dx = 7. 32-figure precision. RNf

N None Sidi6 Sidi8 Sidi10 Tanh

Rel. error Rel. error Rel. error Rel. error Rel. error

1 8.57E − 01 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00
2 7.99E − 01 5.86E − 01 5.27E − 01 4.74E − 01 4.82E − 01
4 7.37E − 01 2.99E − 01 2.13E − 01 1.46E − 01 1.46E − 01
8 6.74E − 01 1.49E − 01 8.70E − 02 4.91E − 02 1.61E − 02

16 6.14E − 01 7.45E − 02 3.57E − 02 1.65E − 02 3.25E − 03
32 5.58E − 01 3.73E − 02 1.46E − 02 5.54E − 03 1.79E − 04
64 5.06E − 01 1.86E − 02 6.00E − 03 1.86E − 03 2.76E − 06

128 4.59E − 01 9.32E − 03 2.46E − 03 6.27E − 04 2.78E − 05
256 4.16E − 01 4.66E − 03 1.01E − 03 2.11E − 04 7.37E − 05
512 3.77E − 01 2.33E − 03 4.14E − 04 7.10E − 05 5.48E − 05

1024 3.41E − 01 1.16E − 03 1.70E − 04 2.39E − 05 4.65E − 05
2048 3.09E − 01 5.82E − 04 6.96E − 05 5.18E − 05 5.10E − 05

not appear that the supposed suitability of the Sidi6 transformation has manifested itself in the collected data. Neither
the 64-bit IEEE environment (Table 11) nor 32-digit accuracy (Table 12) reveal any obvious advantages in using the
combination. It is not until Section 4, where we broadly discuss extrapolation methods, that the effectiveness of the
Sidi6 transformation and Example 9 can be seen. As an observation to conclude this subsection, we note that in a similar
fashion to the relationship between Example 7 and Example 8, there is an alternative form of Example 9.

Example 10.
∫ 1

0 x−6/7 dx = 7.

The resulting data (Table 13) demonstrate that an appropriately chosen periodising transformation will deliver full
16-figure accuracy. In this case, Tanh performs significantly better than Sidi6, indicating that there are far more powerful
factors at work here than the subtle interplay between transformation and integrand that characterised Example 10 and
Sidi8. Although there are cases where one might predict on purely theoretical grounds that a particular integral and
periodising transformation pairing will perform very well, the first step should be to ensure that the integral is expressed
in a form that is likely to be most conducive to evaluation by numerical algorithm in an IEEE 64-bit environment.
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Table 13
Example 10.

∫ 1
0 x−6/7 dx = 7. 16-figure precision. RNf

N None Sidi6 Sidi8 Sidi10 Tanh

Rel. error Rel. error Rel. error Rel. error Rel. error

1 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00
2 8.71E − 01 5.86E − 01 5.27E − 01 4.74E − 01 4.82E − 01
4 7.72E − 01 2.99E − 01 2.13E − 01 1.46E − 01 1.46E − 01
8 6.92E − 01 1.49E − 01 8.70E − 02 4.91E − 02 1.61E − 02

16 6.23E − 01 7.45E − 02 3.57E − 02 1.65E − 02 3.25E − 03
32 5.62E − 01 3.73E − 02 1.46E − 02 5.54E − 03 1.79E − 04
64 5.08E − 01 1.86E − 02 6.00E − 03 1.86E − 03 2.48E − 06

128 4.60E − 01 9.32E − 03 2.46E − 03 6.27E − 04 5.42E − 09
256 4.16E − 01 4.66E − 03 1.01E − 03 2.11E − 04 1.33E − 13
512 3.77E − 01 2.33E − 03 4.14E − 04 7.10E − 05 0.00E + 00

1024 3.41E − 01 1.16E − 03 1.70E − 04 2.39E − 05 0.00E + 00
2048 3.09E − 01 5.82E − 04 6.96E − 05 8.04E − 06 0.00E + 00

Table 14
Extrapolated relative error using the �-algorithm. No transformations applied. TN (g; a, b). 64-bit IEEE arithmetic

N T8(1) T8(2) T8(3) T8(4) T8(5) T8(6) T8(7) T8(8)

1 7.5E − 01 9.5E − 01 2.5E + 03 6.8E − 01 1.9E − 01 1.0E + 00 1.0E + 00 1.0E + 00
4 3.9E − 02 3.7E − 01 2.6E + 03 3.1E − 02 3.9E − 05 2.5E + 00 2.5E + 00 2.3E − 02

16 2.9E − 04 5.2E − 03 2.5E + 00 1.1E − 04 9.0E − 09 3.9E + 00 3.9E + 00 3.1E − 04
64 4.2E − 07 8.8E − 06 5.9E − 03 4.7E − 06 2.3E − 14 9.3E − 03 9.3E − 03 6.1E − 07

256 8.4E − 11 2.0E − 09 8.5E − 03 1.0E − 09 2.7E − 16 1.9E − 05 1.9E − 05 7.4E − 09
1024 8.5E − 11 2.0E − 09 4.7E − 06 9.3E − 10 9.2E − 11 4.2E − 09 4.2E − 09 8.6E − 13


k 2.3E − 02 4.7E − 01 3.1E − 04 2.1E − 02 1.9E − 07 2.9E − 01 2.9E − 01 1.2E − 04
2k 1024 1024 1024 1024 1024 1024 1024 1024

Table 15
Extrapolated relative error using the �-algorithm. RN(g; a, b). 64-bit IEEE arithmetic

N T8(1) T8(2) T8(3) T8(4) T8(5) T8(6) T8(7) T8(8)

Sidi6 Tanh Sidi6 Sidi8 Sidi6 Sidi10 Tanh Sidi6

1 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00 1.0E + 00
4 1.7E − 02 2.8E + 00 2.4E + 03 7.4E − 02 8.1E − 02 1.1E + 00 1.1E + 00 2.3E − 01

16 1.0E − 05 8.0E + 00 1.0E + 03 2.9E − 06 3.9E − 04 2.7E − 04 1.1E − 03 3.1E − 07
64 2.5E − 09 2.7E − 02 3.1E + 03 1.7E − 09 2.0E − 12 1.7E − 07 4.5E − 05 1.3E − 13

256 2.5E − 09 4.3E − 02 1.1E + 02 6.0E − 08 2.0E − 12 1.2E − 14 6.2E − 04 1.3E − 13
1024 1.7E − 07 4.2E − 02 1.7E + 02 5.9E − 08 2.0E − 12 4.6E − 12 2.9E − 04 5.9E − 11


k 2.6E − 09 1.4E − 02 2.2E − 14 8.2E − 09 2.2E − 17 2.1E − 10 2.0E − 05 5.6E − 17
2k 128 32 512 64 64 1024 32 128

4. Extrapolation

Heretofore, we have not discussed the role that extrapolation techniques can play in extracting results of high
accuracy from sequences of quadratures. As seen from the data in Tables 14 and 15 (using integrals T8(1)–T8(8)), even
an unsophisticated application of an extrapolation method, in this case the �-algorithm (e.g. see [6]), can significantly
improve quadrature accuracy in a number of cases. For this simple implementation, errors along the diagonal are
reported.
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The �-algorithm presupposes that the quadrature rule gives equal weights to the endpoints of the interval, some-
thing that is not true of RN(g; a, b). Thus, TN(g; a, b) was employed to generate the contents of Table 14, wherein
no periodising transformations were applied. However, in the context of the types of integrals discussed in this
section, and the characteristics of the periodising transformations illustrated with these examples, there is no ef-
fective difference between RN(g; a, b) and TN(g; a, b). As a result, RN(g; a, b) has been used to generate the data in
Table 15.

The simplified implementation of the �-algorithm employed in these examples delivers an extrapolated quadrature
at 1024 points, the next extrapolant requiring 4096 points: outside the parameters of the data schema Section 2.5. As
a result, the last lines of Tables 14 and 15 contain the relative errors 
k , k ∈ {0, 2, . . . , 10}, for the most accurate
non-extrapolated quadratures observed using up to and including a maximum of 1024 points.

The sequences of quadratures {Q2k g}, k = 0, 1, . . . , 10, used as examples in Section 4 have (with one exception)
been calculated using 64-bit IEEE arithmetic. Thus, when no periodising transformation has been applied, the relative
error in a given quadrature arises from two sources:

(a) the error inherent in the quadrature rule itself, and
(b) the additional error introduced when 64-bit IEEE arithmetic is used in the application of the quadrature rule.

When a periodising transformation has been applied, there is an additional source of error:

(c) the error in the representation of the true abscissae values.

For extrapolation to be most effective, quadrature errors whose sources are (b) and (c) must be avoided if at all
possible. However, we have already seen that there are circumstances where this is not possible. Extrapolation pre-
sumes that the expansion of Q2k (g; a, b) − I (g; a, b) has one of a small number of very specific forms. Yet if
g is the result of the application of a periodising transformation, then the expansion of Q2k (g; a, b) − I (g; a, b)

may not conform to one of these forms or may become rather complicated when it does. The Sidi transformations
generally leave the error expansion in a state where extrapolation is theoretically justified. On the other hand, the
Tanh transformation most often removes all but the remainder terms in (3) and (4), so extrapolation on whatever is
left is somewhat problematic. Moreover, if the numerical instantiation of the expansion form, whatever that form
might be, is corrupted by errors originating from (b) and (c), then the theoretical benefits that extrapolation offers
can be lost.

Table 14 is based on data collected using our simple implementation of the �-algorithm applied to the quadra-
tures generated by the compound trapezoidal rule, where no periodising transformation has been applied to the inte-
grands. Although not displayed, it should be noted that the quadrature sequences for all these examples contain no
overt evidence for the presence of rounding error. Extrapolation improves the accuracy of the original quadratures in
all cases.

Table 15 is based on data collected using our simple implementation of the �-algorithm applied to quadratures
generated by the compound rectangle rule, where the specified transformations have been applied to the integrands.
The quadrature sequences are the same as those used to generate the data in Table 9, where the presence of rounding
error was evident in a number of cases.

In Table 15, accumulating rounding error is evident in all but one example. There is only a single case where
an extrapolated result provides more accuracy than does some member of the corresponding quadrature sequence.
In this limited note, it is not possible to delineate what proportions of the observed errors can be attributed to the
increased complexity of the error expansions on the one hand, and the representational limitations of 64-bit IEEE
arithmetic on the other. However, some insight can be gained by returning to the quadrature of Example 9, cre-
ated to illustrate the theoretical prediction that this integral paired with the Sidi6 has the potential to return accurate
quadratures.

Clearly from Table 16, although Sidi6 delivers the most accurate results of the transformations used, the best results
are achieved with extrapolation when no transformation is involved. In addition, there is evident rounding error in all
cases where a periodising transformation has been applied.

Table 17 contains data extrapolated from quadrature sequences that were calculated using arithmetic carrying 32
significant figures of accuracy. Except in the case of the Tanh transformation (as mentioned earlier, not a transformation
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Table 16
Example 9.

∫ 1
0 (1 − x)−6/7 dx = 7. Extrapolated relative error using the �-algorithm and 64-bit IEEE arithmetic. RN(g; a, b) used with the specified

transformations and TN (g; a, b) with no transformation

N None Sidi6 Sidi8 Sidi10 Tanh

Rel. error Rel. error Rel. error Rel. error Rel. error

1 8.57E − 01 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00
4 1.60E + 00 3.53E − 01 4.07E − 01 4.01E − 01 4.82E − 01

16 1.81E − 01 1.65E − 03 2.37E − 04 5.85E − 04 6.01E + 00
64 2.97E − 03 3.87E − 07 5.93E − 06 5.71E − 04 6.24E − 03

256 5.46E − 06 3.86E − 07 2.33E − 04 1.09E − 02 1.43E − 02
1024 1.24E − 09 2.80E − 05 1.04E − 02 1.01E − 02 1.09E − 02

Table 17
Example 9.

∫ 1
0 (1 − x)−6/7 dx = 7. Extrapolated relative error using the �-algorithm and 32-figure accuracy. RN(g; a, b) used with the specified

transformations and TN (g; a, b) with no transformation

N None Sidi6 Sidi8 Sidi10 Tanh

Rel. error Rel. error Rel. error Rel. error Rel. error

1 8.57E − 01 1.00E + 00 1.00E + 00 1.00E + 00 1.00E + 00
4 1.60E + 00 3.53E − 01 4.07E − 01 4.01E − 01 4.82E − 01

16 1.81E − 01 1.65E − 03 2.37E − 04 5.85E − 04 6.01E + 00
64 2.97E − 03 3.51E − 07 1.99E − 06 1.97E − 06 7.62E − 05

256 5.46E − 06 5.36E − 20 1.40E − 09 6.36E − 09 1.07E − 04
1024 1.24E − 09 5.83E − 28 3.68E − 14 1.32E − 14 5.01E − 05

likely to produce good extrapolated results), there is no evidence of accumulating rounding error amongst those
quadratures where a transformation was employed. Moreover, the predicted advantage of the Sidi6 transformation with
this particular integrand is now abundantly evident in the data. The theoretical prediction is correct, but 64-bit IEEE
arithmetic does not retain sufficient accuracy over the course of performing the quadratures to reveal the advantages of
this integrand-transformation pairing.

5. Conclusion

It is commonly known that the representational limitations of 64-bit IEEE arithmetic significantly affect the accuracy
of quadratures for integrands on [0,1] with a singularity at 1. This paper has looked in some detail at two methods used
to improve the accuracy of such quadratures: periodising transformations and extrapolation.

Periodising transformations act before quadrature. Extrapolation acts after quadrature. In the middle is 64-bit IEEE
arithmetic. Transformations are generally not effective in circumventing the 64-bit IEEE representation problems near
1 and 64-bit IEEE arithmetic introduces a sufficient number of errors (for these types of integrals) into the quadratures
that the effectiveness of extrapolation is compromised.

As illustrated in the numerical examples throughout the paper, the choice seems to be between

(a) no transformation + extrapolation, or
(b) transformation + no extrapolation.

In practical situations, the heuristic developed in Section 3.7 is accurate, efficient and effective. It can be used to
detect when the user-requested relative error is unlikely to be attained. This heuristic, coupled with a test (which most
algorithms have) for the existence of accumulating rounding error, can save execution time by halting the algorithm
before large numbers of integrand evaluations have been performed.

Several examples have demonstrated that where possible, the best strategy is to symbolically alter the integral so
that any singularity in the domain occurs closest to the point of highest representational density. The success of this
strategy will depend on exactly how the automatic algorithm handles the internal mappings from one domain to another.
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For integrals over [0, 1] that have a singularity at 1, symbolic alteration of the integral prior to use of the quadrature
algorithm remains the preferred option.
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