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Stability versus speed in a computable algebraic model
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Abstract

Algebraic models of real computation and their induced notions of time complexity neglect stability issues of numerical algorithms.
RecursiveAnalysis on the other hand appropriately describes stable numerical computations while, based on Turing Machines, usually
lacks significant lower complexity bounds.

We propose a synthesis of the two models, namely a restriction of algebraic algorithms to computable primitives. These are
thus inherently stable and allow for nontrivial complexity considerations. In this model, one can prove on a sound mathematical
foundation the empirically well-known observation that stability and speed may be contradictory goals in algorithm design.

More precisely we show that solving the geometric point location problem among hyperplanes by means of a total computable
decision tree (i.e., one behaving numerically stable for all possible input points) has in general complexity exponentially larger than
when permitting the tree to be partial, that is, to diverge (behave in an instable way) on a ‘small’ set of arguments.

The trade-off between the extremes is investigated quantitatively for the planar case. Proofs involve both topological and combi-
natorial arguments.
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1. Motivation

Stability is a crucial issue in numerical programming. In fact, straightforward implementations of algorithms often
lead to numerical difficulties as they are usually devised for idealized computers capable of exact real arithmetic.
Adapting such an algorithm to stably execute on actual systems can turn out to require painstaking re-design and
in the end result in considerable slow-down in running times. In practice, Filtering [13] can often help to use fast
hardware-floats whenever possible and automatically switch to more precise but expensive calculations (double,
exact rational arithmetic) only when necessary, hoping the latter case to occur rarely. However, concerning worst-case
complexity, the present work will prove in a sound model of computation that a significant decrease in performance is
generally unavoidable in order to achieve stability.

Formally, we restrict usual algebraic models to primitives that are computable in the sense of Recursive Analysis (cf.
Section 2.2). Such a synthesis is natural since the latter framework ensures stability while the algebraic one allows for a
rich variety of techniques yielding lower complexity bounds [6]. More precisely consider the Point Location problem
(cf. Section 2.4). Well-known in Computational Geometry, it consists in determining the position of some input point
�x w.r.t. a fixed arrangement of hyperplanes {H1, . . . , Hn} in Euclidean space. This problem is usually solved with
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Linear Decision Tree algorithms (cf. Section 2.1), that is, by repeatedly evaluating some affine linear function f at �x
and proceeding adaptively according to the sign of the result: +, 0, −. For arbitrary arrangements of n hyperplanes in
fixed dimension d, such trees of depth as shallow as O(log n) are known.

However, they are in generally not totally computable. First, the linear function f might involve uncomputable

coefficients; and second, the middle branch f (�x)
?= 0 of the primitive ternary test is numerically instable and, in the

sense of Recursive Analysis, undecidable.
On the other hand, inputs �x lying on one of the hyperplanes of the arrangement are always points of discontinuity

and therefore give rise to numerical instabilities inherent to the problem in the sense of Yap [8, Section 2]. For Linear
Decision Trees compliant with Recursive Analysis where computability requires stability, the maximum domain is thus
Rd\ ⋃n

j=1 Hj .
Yet, some algorithms might have domains even smaller, that is, diverge at further arguments in addition to those

above. Yap calls the latter instabilities induced.
The first result of the present work now reveals that relaxing totality in this sense in general does pay off in terms of

complexity: for certain arrangements, the feasible depth of a computable Linear Decision Tree ‘as total as possible’ is
exponentially larger than of one whose domain lacks a further set of measure zero. We then investigate quantitatively
the trade-off between complexity and totality.

For the convenience of readers unfamiliar with either Recursive Analysis or Computational Geometry, Section 2
formally introduces the relevant models of computation as well as the problem under consideration.

2. Introduction

Given two algorithms for some problem, there are many criteria upon which to prefer one over the other, speed,
size, and stability being the major ones. The first two are put onto a quantitative basis for comparing algorithms by
considering their worst-case running times and memory consumption, respectively; see for example [10].

Stability on the other hand is a property and thus, in the original sense, either present or not. However a quantitative
measure is desirable also for stability in order to compare algorithms, calling one more stable than some other. One means
to this end are condition numbers introduced in [22]. Other works measure (in-)stability of an algebraic algorithm by
counting the real tests (such as “f(x)==0’’) it performs [16]. The present paper proposes a further way of quantifying
stability: (lack of) totality of a recursive real function.

Indeed in the model of computation used in Recursive Analysis, any correct algorithm is by definition inherently
stable on its domain anyway. But given two stable algorithms (say, A1 and A2) for the same certain problem, there is
still a way of comparing them: If dom(A1)� dom(A2), then one may justly call A2 ‘more’ stable than A1.

A first qualitative result in Section 3 reveals that requiring totality may infer an exponential increase in time complexity
compared to when divergence is allowed on a ‘small’ subset of inputs. More precisely, we consider the Point Location
problem among n distinct computable hyperplanes H1, . . . , Hn in Rd and show that, for each n,

• a computable Linear Decision Tree can always solve this problem within depth O(log n) but may diverge for
arguments �x ∈ ⋃m

j=1 H ′
j from a finite union of m additional hyperplanes;

• there exists an arrangement of n hyperplanes for which any computable Linear Decision Tree, which does not diverge
for inputs other than x ∈ ⋃

Hi , has necessarily depth �(n).

Section 4 then investigates quantitatively the trade-off between these two extremes in terms of the ‘size’ of (formally:
the number of hyperplanes covering) this set of diverging inputs. It turns out that in 2D,

• m = O(n2) additional hyperplanes of divergence suffice to guarantee logarithmic depth;
• m = O(n) additional hyperplanes can always achieve depth O( 3

√
n · log n);

• m additional hyperplanes in general require depth �( n
m·�(m)

) where �(m) denotes the slowly increasing Inverse
Ackermann Function.

The proofs use two tools which may be of interest on their own:

• To any planar arrangement of n distinct lines, one can add linearly many further lines such that in the thus enhanced
resulting arrangement, any cell has at most O( 3

√
n) walls. (Proposition 4.3)

• In any finite arrangement of distinct hyperplanes, there is one having roughly as many cells to its left as to its right.
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The imbalance can be bounded in terms of the maximum number of walls, taken over all cells of the arrangement.
(Proposition 4.5)

We now recall models of computation and the problem under consideration.

2.1. Linear decision tree

Syntactically, a Linear Decision Tree (LDT) for dimension d is a finite rooted binary tree T such that

• each leaf v is labeled arbitrarily
• to each internal node u is assigned some affine linear functional

fu : Rd → R, �x �→ a0 +
d∑

i=1
xiai . (1)

The semantics goes as follows: upon input of x ∈ Rd , recursively proceed to either the left or to the right subtree of T
depending on whether, for the linear functional associated with T’s root w, it holds fw(�x) < 0 or fw(�x)�0. If w is a
leaf, then report its label and stop.

This model, although rather simple, turns out to encompass a lot of known algorithms. In Computational Geometry
for instance, one can easily test by means of an LDT the position of a point �x ∈ Rd relative to an oriented hyperplane
H+ = {y : f (y) > 0}; Section 2.4 will later consider that application in more detail.

Another example, quicksort is based on repeatedly comparing certain input elements xk with xl and proceeding
according to whether the linear functional f (�x) := xk − xl is <0 or �0. The leafs of an according Tqsort are then
labeled with order types, i.e., a permutation � ∈ Sd such that x�(1) � · · · �x�(d). This in particular shows that any LDT
for sorting n reals has necessarily at least n! many leafs and thus depth �(n · log n).

In fact, LDTs have proven useful not only in devising algorithms (i.e., upper complexity bounds) but also for proving
lower bounds: any LDT for a problem in Rd with b0 many connected components must have depth at least �(log b0).
Pairwise distinctness of n given reals is an example where this method yields the exact asymptotic complexity
�(n · log n) in the LDT-model; whereas a realRAM lacks such lower bounds. Even more astonishingly, the real
Knapsack problem can be lower-bounded by �(n2) while upper bounds, that is, LDT-algorithms for fixed n, run as
fast as O(n5 · log2 n); cf. Sections 11.2 and 11.3 in [6].

Observe that in LDTs, evaluation of (1) is counted as one step while on actual digital computers it may take up to
O(d) operations if all ai are non-zero. However, this possible discrepancy between model and reality will not transcend
polynomial-time complexity. More serious is its crossing of the computability boundary; in fact from the viewpoint

of Recursive Analysis, tests on real numbers like ‘f (�x)
?= 0’ are provably undecidable. Section 2.3 proposes a more

realistic variant of the LDT-model.

2.2. Recursive analysis

Historically, computability questions for real numbers were treated before and even only initiated what is nowadays
called ‘classical’ recursion theory, i.e., discrete computability. In fact, the title of Turing’s seminal work [21] refers to
real numbers. According to his definition, x ∈ R is computable iff some Turing Machine without input is capable of
generating (the binary encodings of respective nominators and denominators of) a sequence of rationals

(q1, ε1, q2, ε2, . . . , qn, εn, . . .) s.t. |qn − x|�εn → 0 as n → ∞. (2)

Extending Turing’s work, [15] and many others call a real function f : R → R computable iff some Turing Machine
is able to, upon input of a sequence of rationals (qn, εn) for x ∈ R as in (2), output a corresponding sequence (pn, �n)

for y = f (x). Observe how this formalizes Interval Arithmetic as a way of operating on approximations of real
numbers. Here, inaccuracies are taken into account not only for intermediate computations but also to the input itself;
this contrasts a quite common (yet doubtful) presumption in Numerical Analysis. Consequently, stability is inherent to
that model: any computable function is necessarily continuous and thus, small perturbations of the argument may not
lead to unbounded changes on the result; cf., e.g., [5, p. 23] and [24, Theorem 4.3.1]. It is therefore generally agreed
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that this theoretical notion 2 captures quite well the principal capabilities of actual digital computers in connection
with real numbers. For instance using this model it was proven formally that diagonalization of symmetric matrices
is in general uncomputable (just as numerical experience suggests) while it becomes computable when restricted to
matrices having no multiple eigenvalues [27].

Lacking continuity, characteristic functions

1{0}, 1(−∞,0], 1(−∞,0), 1[0,∞), 1(0,∞)

are not computable and hence tests like

= 0, �0, < 0, �0, > 0, �= 0

are undecidable. On the other hand, “<0’’and “>0’’both turn out to be decidable when restricted to non-zero arguments
x while diverging for x = 0. We shall exploit that in Section 2.3 to design a computable LDT with only such partial
predicates.

So continuity is necessary for computability but not sufficient: as there are uncountably many reals a ∈ R but only
countably many Turing Machines, even most constant functions f (x) ≡ a follow to be uncomputable. In fact to every
(classically) non-recursive subset A ⊆ N, there corresponds a non-computable real a = ∑

n∈A 2−n. Usual ‘practical’
continuous functions however turn out to be computable, such as

+, −, ·, /, | · |, √·, sin, cos, exp, ln, . . .

Further literature on computable real functions is vast [19] and also investigates, although more scarcely, their complexity
[17,24, Section 7]. However being based on Turing Machines, lower bounds for concrete problems are notoriously
difficult whereas in algebraic models like the LDT, a rich variety of methods provide the latter [6].

The following subsection thus introduces a synthesis of LDT and Computable Analysis with the goal to gather the
advantages of both into one single model. In fact, Brattka and Hertling [3] already did similarly for the realRAM and
ComputableAnalysis. However for complexity considerations in Computational Geometry, LDTs are more appropriate;
the synthesis we propose is thus the

2.3. Computable LDT

Consider the primitive of a LDT: testing, for input �x ∈ Rd and according to (1), whether fu(�x) < 0 or fu(�x)�0.
In order to make this predicate computable, we shall impose two natural conditions:
(i) All coefficients ai appearing in functional fu must be computable reals in the sense of Recursive Analysis.

(ii) For fu(�x) = 0, the test diverges.
Property (ii) reflects that tests “x < 0’’ and “x > 0’’ become decidable only when restricting to non-zero arguments.
Property (i) is obviously equivalent to fu : Rd → R being a computable function. Here, a vector �x = (x1, . . . , xd)

gets fed into the Turing Machine by means of an interleaved sequence of rationals

q1,1, ε1,1, q1,2, ε1,2, . . . , q1,d , ε1,d , q2,1, ε2,1, q2,2, ε2,2, . . . , q2,d , ε2,d , q3,1, . . .

. . . . . . , εn−1,d , qn,1, εn,1, qn,2, εn,2, . . . , qn,d , εn,d , qn+1,1, . . . . . . . . . . . . ,

where |qn,i − xi |�εn,i → 0 for each i = 1, . . . , d.

Definition 2.1. A computable LDT T is a LDT in which to each internal node u is assigned a linear functional fu

with only computable coefficients. Similarly, the leafs’ labels have to be computable. 3 Furthermore, T ’s semantics
gets slightly modified as follows:

For any input �x ∈ Rd which, during traversal of T, encounters an internal node u with fu(�x) = 0, this test diverges
and we thus set T (�x) := ⊥.

In contrast to general LDTs, the domain {�x : T (�x) �= ⊥} of a computable one is thus a proper subset of Rd . Also
observe that any computable LDT T induces a computable function FT on dom(T ), namely mapping �x to the label of

2 See [24, Section 4.1] for a survey on equivalent ones.
3 Which is trivially the case for integers or finite strings.
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the (unique) leaf of T which the above traversal semantics ends in. Borrowing from usual LDTs, we call T’s depth its
running time. For a fixed computable function F on dom(F ) ⊆ Rd , the question about its complexity thus asks for the
minimum depth of a computable LDT T with F ⊆ FT . For the Point Location problem introduced now, this turns out
to be of worst-case order �(n), n the number of hyperplanes involved.

2.4. Point location

The problem is well-known in Computational Geometry [2]: fix a family H = {H1, . . . , Hn} of n oriented hyperplanes
in Rd ; given �x ∈ Rd\ ⋃ H, determine which component of Rd\ ⋃ H �x belongs to. Formally

Definition 2.2. For j = 1, . . . , n, let

gj : Rd → R, �x �→ aj0 + ∑
i

xi · aji, (aj1, . . . , ajd) �= 0

denote an affine linear function and Hj = g−1
j (0) its induced oriented hyperplane, H+

j = g−1
j (0, ∞) the positive

halfspace and H−
j = g−1

j (−∞, 0) the negative one. For �x ∈ Rd ,

�(�x) = (sign gj (�x))j=1,...,n ∈ {−1, 0, +1}n

is called its position vector. A cell of H = {H1, . . . , Hn} is a subset �−1(�) of Rd for some � ∈ {−1, +1}n. Point
Location is the problem of computing, to fixed H and upon input of some point �x the cell that �x lies in, i.e., the
function

F : Rd
∖⋃H → {−1, +1}n, �x �→ �(�x). (3)

Keep in mind that H is regarded as fixed and one asks for the mere existence of an algorithm solving Point Location
for this specific arrangement; see also Remark 3.6. This corresponds to non-uniform lower and upper bounds prevalent
in Algebraic Complexity Theory [6]. As common in Computational Geometry, issues related to the actual construction
of an according data structure (pre-processing H, so to speak) are treated separately.

The complexity of Point Location in the LDT-model is very well understood. For fixed d, a variety of techniques
[11,7] yield according (algorithms giving rise to) trees of depth O(log n) whose leafs are labeled with position vectors
� ∈ {−1, +1}n. Conversely, since arrangements can induce up to

b0 =
d∑

i=0

(
n

i

)
= �(nd) (4)

many cells (i.e., connected components) [14], depth �(log n) is also necessary.
However when querying hyperplanes not belonging to the original arrangement H, the equality tests in these algo-

rithms when considered as computable LDTs will in general lead to a domain strictly contained in Rd\ ⋃ H. The next
section reveals that and to what extend this is unavoidable.

3. Total versus partial point location

Before addressing the complexity of Point Location in the new model from Section 2.3, better make sure that it is at
all computable:
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Lemma 3.1. For a hyperplane H ⊆ Rd , the following are equivalent:

(a) H’s Euclidean distance function Rd � �x �→ min�y∈H ‖�x − �y‖2 is computable;
(b) H = g−1(0) for some g(�x) = a0 + ∑

i xiai with all coefficients ai, a0 computable;
(c) the Point Location problem for H = {H } (i.e., with n = 1) is computable w.r.t. arbitrary orientation of H.

Proof. See Corollaries 10, 13, and 15 in [4] plus Corollary 4.13 in [26]. �

So from now on consider only arrangements H of computable hyperplanes in the sense of either (a) or (b) from the
above lemma. For these, one can easily upper bound the complexity:

Observation 3.2. For any arrangement H of n computable hyperplanes in Rd , Point Location can be solved by a
computable LDT of depth n.

Proof. Upon input of �x, sequentially query for each j = 1, . . . , n whether �x ∈ H+
j or �x ∈ H−

j : this determines the
entire position vector. It is easy to see that this ‘algorithm’ can be formulated as a computable LDT T. �

Observe that this T queries only hyperplanes H∈H and thus attains domain Rd\ ⋃ H=dom(F ) according to
Eq. (3). Since F ‘jumps’ at any �x ∈ ⋃ H, there is also no way of further enlarging dom(T ) without loosing com-
putability. It turns out that for computable LDTs which are ‘maximally total’ in this sense, depth n is in general best
possible:

Theorem 3.3. There exist arrangements H of n computable hyperplanes such that any computable LDT with dom(T ) =
Rd\ ⋃ H solving the corresponding Point Location problem has depth at least n.

Proof. Imagine a computable arrangement of n hyperplanes all touching one common cell C; these hyperplanes may
even be chosen to have rational coefficients and in particular be computable. Then a LDT for this arrangement will
have depth at least n. �

More generally, an argument due to E. Ukkonen from a different context [23] implies here that the number of walls
of any cell in the arrangement lower bounds the depth of a ‘total’ computable LDT:

Proposition 3.4. For a finite arrangement H of n hyperplanes in Rd and a cell C of H, let w(C) denote its number of
‘walls’, i.e.,

w(C) = #{H ∈ H | H ∩ C �= ∅, dim(H ∩ C) = d − 1}

and w(H) = maxC w(C), the maximum taken over all cells C of H. Then any LDT for Point Location among the
hyperplane arrangement induced by H querying no hyperplanes other than those from H has depth at least w(H).

Proof. See Section 5.1. �

On the other hand a slight relaxation of the requirement “dom(T ) = Rd\ ⋃ H’’ does permit a computable LDT of
depth O(log n) for any computable arrangement of n hyperplanes:
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Lemma 3.5. To any arrangement H of n computable hyperplanes in Rd , there exists another finite arrangement H′
of computable hyperplanes and a computable LDT of depth O(log n) with dom(T ) = (Rd\ ⋃ H)\ ⋃ H′ for Point
Location among H.

Observe that this domain is still dense in Rd .

Proof. Many algorithms in Computational Geometry attain logarithmic time for Point Location by querying a finite
number of additional hyperplanes. For instance, the following rather simple construction of Dobkin and Lipton [11]
immediately leads to a computable LDT. 4

In 2D, draw a vertical line through each vertex (=crossing point of two lines).

This will add at most m�n · (n − 1)/2 new lines H ′. Within the enhanced arrangement H ∪ H′, proceed as follows:

• use binary search to locate the vertical stripe that input �x lies in;
• within a stripe, again use binary search to locate the cell that �x lies in.

The latter is possible since, within each stripe, lines do not intersect and its cells thus can be ordered totally. Knowing
the (sub-)cell of H ∪ H′ that �x lies in obviously includes knowledge about the cell of H containing �x.

It is easy to confirm that both steps can be realized by LDTs; in fact, by computable LDTs since each vertical line
through the intersection point of two computable lines is again a computable one. First step takes depth O(log m) =
O(log n), second adds another O(log n).

For higher dimensions, we proceed inductively similar to [11]. Let H for instance denote a 3D arrangement. Then
consider, for each pair (Hi, Hj ) of distinct planes from H, their intersection Hi ∩ Hj . This is either empty (trivial
case) or a line in space. Let H̃ denote the arrangement obtained by projecting those lines onto the plane z = 0 : H
is a computable 2D arrangement of size at most ñ = O(n2). By induction hypothesis, it allows Point Location by a
computable LDT within depth O(log ñ) = O(log n). Let C̃ denote the 2D cell of H̃ that the (accordingly projected)
input x̃ lies in; thus �x ∈ C̃ × R, and it remains to determine which of the cells C towering over C̃ contains �x. As, again,
the planes H do not intersect within C̃ × R, this is possible by binary search within time O(log n). �

Remark 3.6 (Degenerate arrangements). Constructions like the one used in the above proof are in Computational
Geometry usually preceded by some sort of non-degeneracy presumption. In 2D this might require for instance that no
three lines intersect in a common point or that all n · (n − 1)/2 intersection points have distinct x-coordinates.

On the other hand such cases can be dealt with by considering, out of several coinciding verticals, only one instance
or by slightly rotating the entire setting, respectively. One can easily check that this does yield a LDT with the claimed
properties.

It should be emphasized that Lemma 3.5 as well as the other upper complexity bounds in the present work claim
just the existence of a computable LDT T for an arbitrary but fixed H. Accordingly, effectivity of mappings H �→ T

constructed in our proofs is neither claimed nor true with respect to varying, possibly degenerate arrangements regarded
as input given by approximations to their coefficients in the sense of Recursive Analysis.

Anyway, the lower bounds presented in Theorems 3.3 and 4.6 do not rely on degenerate arrangements.

4 Also note that the more sophisticated algorithm presented in [7] is no Linear Decision Tree. Indeed already a LDT that merely decides whether
input �x belongs to

⋃ H must have size at least �(nd )—compare Eq. (4) and Observation 5.1(b)—as opposed to Theorem 4.2 in [7].
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4. Trading totality for speed

Recall that in order to achieve the exponential speedup of the LDT T in Lemma 3.5 compared to Theorem 3.3,
it sufficed to reduce T’s domain by a finite union of hyperplanes

⋃ H′, i.e., a nowhere dense set of measure zero.
In the present section, we quantify in dimension d = 2 the trade-off between both extremes by counting how many
hyperplanes (= lines, here) are to be removed from dom(T ) in dependence of the aimed running time.

Corollary 4.1. To any arrangement H of n computable lines in R2, there exists another arrangement H′ of m =
|H′|�n · (n− 1)/2 = O(n2) computable lines and a computable LDT of depth O(log n) with dom(T ) = (R2\ ⋃ H)\⋃ H′ for Point Location among H.

Proof. See the proof of Lemma 3.5. �

When reducing dom(T ) by querying only linearly rather than quadratically many further lines, significantly sublinear
running time can still be attained:

Theorem 4.2. To any arrangement H of n computable lines in R2, there exists 5 another arrangement H′ of m =
|H′| = O(n) computable lines and a computable LDT T of depth O( 3

√
n · log n) with dom(T ) = (R2\ ⋃ H)\ ⋃ H′

for Point Location among H.

Proof. Apply Proposition 4.5 for d = 2 to H̃ := H ∪ H′ from Proposition 4.3. �

Proposition 4.3. Let H denote an arrangement of n computable lines in the plane. There exist m = O(n) computable
lines H′ such that each cell of H̃ := H ∪ H′ has at most O( 3

√
n) walls.

Proof. See Section 5.2. �

Remark 4.4. We wonder whether the O( 3
√

n) cell size obtained in Proposition 4.3 by a linear number of additional
lines is optimal or not.

This tool reveals the lower bound in Proposition 3.4 to be close to optimal:

Proposition 4.5. To any arrangement H̃ of n computable hyperplanes in Rd , each cell of which has at most w walls,
there exists a computable total LDT T of depth O(w · d · log n) for Point Location within H̃.

Proof. See Section 5.3. �

The following result complements the upper bounds in Corollary 4.1 and Theorem 4.2 by lower bounding the
worst-case running time in terms of the number of lines removed from dom(T ).

Theorem 4.6. There are 2D arrangements H of n computable lines such that, for any arrangement H′ of m further lines,
a computable LDT T for Point Location among H with dom(T ) ⊇ (R2\ ⋃ H)\ ⋃ H′ has depth at least �(n/m ·�(m)).

Here, � denotes the very, very slowly increasing Inverse Ackermann function; �(m)�4 for all practical values
of m.

The proof of Theorem 4.6 requires some additional notation:

Definition 4.7. For any LDT T—computable or not—and some node u of T, let Tu denote the subset of inputs �x ∈ Rd

which, according to T’s semantics from Section 2.1, passes through u on its way from the root.

5 Formally: there exist functions f, g : N → N with f (n) = O(n) and g(n) = O( 3√n · log n) such that to any computable arrangement H there
exists a computable arrangement H′ of size |H′|�f (|H|) and a computable LDT T of depth �g(|H|).
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Fig. 1. Left: arrangement (thin + bold) refining a super-cell (gray); Right: Cell C (bold) has n = 12, each sub-cell at most t = 5 walls.

Thus Tr = Rd for the root r of T. If T is computable, then induction on the depth of u within T reveals that every Tu is
an open convex polyhedron. Moreover for any two nodes u �= v in T, none being a descendant of the other, Tu ∩Tv = ∅.

Definition 4.8. Consider a finite collection H of hyperplanes in Rd . Let A(H) denote the family of cells C it induces;
A(∅) := {Rd}.

An arrangement A′ of pairwise disjoint convex open polyhedra C′ ⊆ Rd partially refines A(H) if each C′ ∈ A′ is
contained in some C ∈ A. A super-cell of A(H) is a cell of A(H′) for some H′ ⊆ H.

A LDT T solves A′ if each non-empty open Tv is contained in some C′ ∈ A′. T is total for A′ if C′ ∈ A′ is covered
by appropriate Tv . T decides an open convex polyhedron C if it solves A′ := {C, Rd\C}.
Proof (Theorem 4.6). Like in the proof to Theorem 3.3, take a computable arrangement H of n lines, all forming
walls of one common cell C. Consider a computable LDT deciding C and let v1, . . . , vn denote those of its leafs with
non-empty open Tvi

⊆ C. According to Proposition 3.4, each Ci := Tvi
has at most t walls where t denotes the depth

of T. As
⋃

Ci = C, the Ci induce a partition of the n walls of C. In particular, at least n/t many Ci meet the boundary
line � := �C of C; see Fig. 1.

Now suppose some arrangement H′ of m lines covers (R2\ ⋃ H)\dom(T ). Then the arrangement A(H∪H′) refines
the collection {Tv �= ∅ : v leaf of T }. In particular, at least n/t many cells C′ of A(H′) meet �. The lemma below then
implies n/t = O(m · �(m)). �

Lemma 4.9. Let � denote a convex planar curve and H′ an arrangement of m lines in the plane. Then, � meets at most
O(m · �(m)) cells from H′.

Proof. See Remark 4 on p. 334 of [12]; alternatively, see Corollary 2.16 plus Theorem 5.11 in [20] and observe that
any two distinct lines intersect in at most one point (s = 1) while convex � meets any line at most twice (t = 2). �

5. Proofs

The present section collects the proofs to some technical propositions in Sections 3 and 4 which there would have
interrupted the train of thoughts.

5.1. Proof of Proposition 3.4

Observation 5.1. Fix some finite arrangement H of hyperplanes in Rd .

(a) Any LDT T computing the position vector �x �→ F(�x) w.r.t. H according to Equation (3) in Section 2.4 solves A(H)

in the sense of Definition 4.7. T is total iff dom(T ) ⊇ Rd\ ⋃ H.
(b) Conversely, any LDT T solving A(H) can compute �x �→ F(�x) on dom(T )\ ⋂ H by labeling each leaf v having

non-empty open Tv with the (common!) position vector of all �x ∈ Tw.
(c) If A′ partially refines A and LDT T solves A′, then T also solves 6 A. Furthermore a LDT that decides C for each

C ∈ A also solves A.
(d) Conversely for C ∈ A, each LDT T solving A also decides C. If T is in addition computable and total, then C = Tv

for some unique leaf v of T.

6 We have already used that implicitly in the proof of Theorem 4.2.
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Fig. 2. Three ‘large’ cells, independently cut into smaller pieces by vertical lines through any 4th of their respective vertices: in the thus refined
arrangement, each cell has at most 6 walls.

Indeed according to Definition 4.7, C′ is a disjoint finite union of non-empty open sets Tv for certain leafs v1, . . . , vn

of T. But if n > 1, then this union cannot be connected [25, Definition 26.1] contradicting C′ being even convex.
Proposition 3.4 now follows from Claims (a + c) combined with the following

Lemma 5.2. Let C be an open convex polyhedron with w walls. Then any computable total LDT T deciding C has
depth at least w.

Proof. Let H1, . . . , Hw denote the hyperplanes that form the walls of C. Consider some point �x ∈ C and its way
through T from the root to the leaf v with Tv = C. So any �x ∈ C takes the same path though T. Now move �x
continuously towards one of the walls C ∩ Hj of C. Immediately after �x has crossed Hj , its position vector changes.
Therefore, �x must now end up in a different leaf v′ �= v of T. The least common ancestor u of v and v′ thus is a query
of hyperplane Hj . Since this argument holds for any of C’s walls H1, . . . , Hw, v has at least w different ancestors
u1, . . . , uw and in particular depth �w within T. �

5.2. Proof of Proposition 4.3

This section proves the already announced.

Proposition 4.3. Let H denote an arrangement of n computable lines in the plane. There exist m = O(n) computable
lines H′ such that each cell of H ∪ H′ has at most O( 3

√
n) walls.

Proof. Let w := � 3
√

n�. Consider some cell C of H having more than w walls, i.e., a ‘large’ one. Take its vertices
ordered w.r.t. increasing x-coordinates; draw a vertical line H ′ through every wth vertex. These lines cut the large cells
into smaller pieces, each having at most w + 2 vertices. Being in 2D this also means that each one has at most w + 2
walls. Cells that used to be ‘small’ (i.e., having at most w walls) might be intersected by these new lines; but here, too,
the number of walls of any piece will not grow beyond w + 2.

We apply the above procedure not only to one but simultaneously to all cells that initially used to be ‘large’; cf.
Fig. 2. Let H′ denote the collection of newly introduced vertical lines; then any cell in the arrangement H ∪ H′ has at
most w + 2�O( 3

√
n) walls. As the vertices of an arrangement of computable lines are computable, H′ is computable

as well. Of course, the crucial question is for the size of H′.
So let A′ denote the collection of cells that used to be large and N their number. Each C ∈ A′ having by definition

more than w = n1/3 walls, this induces a total of at least �(N · n1/3) many walls. On the other hand, by virtue of
Lemma 5.3 below, it can give rise to a total of at most O(N2/3 · n2/3 + n) many walls. Therefore, N = O(n), and
A′ contains at most O(n4/3) many walls/vertices. Having introduced additional lines only through every wth of these
vertices, we arrive at m = |H′| = O(n). �

The following tool, applied in the above proof, is actually a deep result in combinatorial geometry taken from
[9, Section 3].
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Fig. 3. Total computable Point Location within A(H).

Lemma 5.3. For a family A(H) of cells induced in 2D by n = |H| lines, consider a sub-collection A′ ⊆ A(H) of size
N = |A′|. Then, the cells of A′ have a total of at most O(N2/3 · n2/3 + n) walls.

It makes no difference whether, for two cells c1, c2 ∈ A′ sharing a wall, this wall is counted once or twice: a factor
of 2 is neglected by the O-notation anyway. For similar reasons, the O(N2/3 · n2/3 + n) bound also holds for the total
number of vertices rather than walls in 2D.

5.3. Proof of Proposition 4.5

For reader’s convenience, we repeat the claim:

Proposition 4.5. To any arrangement H of n computable hyperplanes in Rd , each cell of which has at most w walls,
there exists a computable total LDT T of depth O(w · d · log n) for Point Location within H.

Proof. The idea is to adopt Theorem 5 from [10] to our setting of computable LDTs. Consider the meta-algorithm
in Fig. 3 for Point Location within A(H). This obviously terminates after at most O(n) steps and, for �x ∈ Rd\ ⋃ H,
correctly locates �x within A(H). Unrolling it with respect to all possible outcomes of these finitely many queries 7

yields a LDT T. Moreover, as H was presumed computable and only semi-decidable queries “�x ∈ H+
i ’’ or “�x ∈ H−

i ’’
are made, this T is a total computable LDT.

It remains to perform the choice in (b) adaptively in such a way that the loop is executed only O(w · d · log n)

times rather than O(n). Optimally, each query in (c) reduces the number of cells from A(H) that �x might lie in by a
factor of two. In other words: Hi ∈ H should be such as to have, for those cells from A(H) contained within C, about
as many on its positive as on its negative side. Starting with a total of at most O(nd) many cells according to Equation
(4) this would lead to a running time O(d · log n).

However, neither this nor a strict fifty–fifty divide-and-conquer is in general feasible for large w. Instead, Lemma 5.4
below yields that Hi in (b) may always be chosen such as to at least reduce the number of cells from A(H) lying in C
by a factor of roughly 1−1/w. In other words, the running time can be bounded by O(logb(n

d)) = O(d · log n/ log b),
the logarithm taken to base b = 1/(1 − 1/w) rather than base 2. As 1/ log(b) = O(w), this proves the claim. �

Lemma 5.4. Fix some collection H of n hyperplanes in Rd and a supercell C of A(H). Let A|C denote the sub-
arrangement of cells in A(H) lying within C, N := #A|C their number. Suppose that any such cell has at most w walls.
Then there exists some hyperplane H ∈ H such that (for appropriate orientation of H) the numbers N+ of those cells
from A|C lying on the positive side of H satisfies

N − 1

w
�N+ � N

2
. (5)

The following argument is due to Finschi, confer [10]:

7 For degenerate arrangements, provisions similar to Remark 3.6 are to be made.
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Proof. For H ∈ H, let N+(H) denote the number of cells from A|C on the positive side of H. W.l.o.g. (re-)orient each
hyperplane such that N+(H)�N/2. We will prove by contradiction that some H ∈ H satisfies (5). So suppose that

w · N+(H) < N − 1 ∀H ∈ H. (6)

Now let H′ ⊆ H denote some arbitrary subset of the given hyperplanes. 8 For each such H′ ⊆ H consider the
sub-collection

{c ∈ A(H) | c ⊆ C, ∀H ∈ H′ : c ⊆ H−} ⊆ A(H) (7)

of those cells from A|C which are on the negative side H− of each H ∈ H′ (rather than of all H ∈ H). Among those
H′ ⊆ H for which this sub-collection (7) is non-empty (i.e., consists of at least one cell), choose some H′ that is
maximal w.r.t. set inclusion.

Claim. Then, this sub-collection (7) consists of exactly one cell (say, c) which is furthermore a member (see footnote
8) of A(H′).

In other words: c is the unique cell from A(H) contained in the super-cell C lying on the negative side of each
H ∈ H′ ⊆ H; and each H ∈ H′ forms a wall of c. According to the prerequisite, these are at most w many.

So how many cells from A|C have the property of lying on the positive side of some H ∈ H′? As |H′|�w (see
above), these are strictly less than N −1 many because, by presumption (6), each such H has strictly less than (N −1)/w

many cells on its positive side. On the other hand, A|C consists of N cells and c from the above claim is the only one
not lying on the positive side of any H ∈ H′; so at least N − 1 cells from A|C lie on the positive side of some H ∈ H′
while we just saw that strictly less than N − 1 have this property: contradiction. �

Proof (of the Claim). C := C ∩ ⋂
H∈H′ H− is a super-cell of A(H) and in particular convex. It consists of several

(ordinary) cells, namely exactly the ones given by (7).
Now suppose that these are more than one. Choose an adjacent pair c1, c2 and some hyperplane H ∈ H\H′ separating

them; w.l.o.g. c1 ∈ H+ and c2 ∈ H−. Then c2 lies on the negative sides not only of all H ′ ∈ H′ but also of this new
H which thus can be added to H′: a contradiction to H′ having been chosen maximal w.r.t. set inclusion.

Hence C, the cell from A(H′), consists of only one cell from A(H); in particular, this ordinary cell also belongs to
A(H′). �

6. Conclusion

Models of computation are thought to formally describe what actual PCs could do in principle. The present work
proceeded along these lines by putting a very practical observation onto a sound mathematical basis: that numerical
stability of algorithms in general can be achieved only at the expense of significant loss in performance. To this end,
we proposed a joint algebraic-computable model and considered the Point Location problem.

This turned out to reveal an interesting quantitative trade-off between speed and stability: the faster an according
algorithm has to run, the more additional tests on affine real functions (i.e., further possible sources of instability) have
to be employed.

Our proofs combine techniques from areas as distant as Recursive Analysis and Combinatorial Geometry. Indeed
from the latter, two deep results [9,12] enter in the respective proofs of Theorems 4.2 and 4.6.

It looks promising to extend the above synthesis of Computable Analysis with algebraic models of computation
to, say, algebraic computation trees—cf. Section 4.4 of [6]—and thus obtain a new kind of Algebraic Complexity
Theory for stable algorithms. In fact, the construction applied in Lemma 3.5 is the special (linear) case of a ‘Cylindrical
Algebraic Decomposition’ well-known in Computational Algebraic Geometry [1].

8 Keep in mind that a cell of A(H) is in general only part of a cell from A(H′).
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