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The axis compensation is a procedure in which the sender and the receiver compensate 
the axes of their transmitter and detector so that the bit sequence can be transmitted 
more reliably. We show the optimal axis compensations maximizing the key generation 
rate for unital channels. We consider the case in which only Bob is allowed to compensate 
his axis, and the case in which both Alice and Bob are allowed to compensate their axes. In 
the former case, we show that we should utilize the mismatched measurement outcomes 
in the channel estimation phase. In the latter case, we show that we do not have to utilize 
the mismatched measurement outcomes in the channel estimation phase.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Quantum key distribution (QKD) has attracted great attention as a technology to realize the information theoretically 
secure key agreement. In this paper, we investigate the Bennett–Brassard 1984 (BB84) protocol [1] and the six-state proto-
col [5], and the QKD protocols indicate the BB84 protocol and the six-state protocol.

Typically in theoretical studies on the QKD protocols, the protocols roughly consist of three phases: the bit transmission 
phase, the channel estimation phase, and the postprocessing phase. In the bit transmission phase, the legitimate sender, 
usually referred to as Alice, sends a bit sequence to the legitimate receiver, usually referred to as Bob, by encoding them 
into qubits. After this phase, Alice and Bob publicly announce the bases they used for each qubit. In this paper, those bits 
that are transmitted and received by the same bases are called the matched measurement outcomes, and those bits that 
are transmitted and received by different bases are called the mismatched measurement outcomes. In the standard QKD 
protocols, the mismatched measurement outcomes are discarded, and the matched measurement outcomes are called the 
sifted key. In the channel estimation phase, Alice and Bob estimate the channel and the amount of information gained by 
an eavesdropper, usually referred to as Eve. For the channel estimation, we sacrifice a part of the sifted key, which is usu-
ally called the test bits. Finally in the postprocessing phase, Alice and Bob share a secret key based on their bit sequences 
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Table 1
Summary of the optimized key generation rates for various settings.

Channel estimation Accurate Conventional

Six-state
One-side F1(E) F̃1(E)

Two-side F2(E) F̃2 (E)

BB84

z–x plane One-side G1(E) G̃1(E)

Two-side G2(E) G̃2(E)

Any direction One-side J1(E) J̃1(E)

Two-side J2(E) J̃2 (E)

obtained in the bit transmission phase. Usually, the postprocessing phase consists of two procedures: the information rec-
onciliation, which is also known as the error correction, and the privacy amplification. In the following, we sometimes call 
these three phases the key agreement phase as a whole.

On the other hand, in the practical QKD protocols, Alice and Bob conduct the axis compensation (before the bit trans-
mission phase), in which Alice and Bob compensate the axes of their transmitter and detector so that the bit sequence 
can be transmitted more reliably in the bit transmission phase. This axis compensation is considered to be indispensable 
in the QKD protocols, and it has been extensively studied from the experimental point of view [7,10,18,28,29,31,24,30,6,16]
(see also [13]). However, it has not been theoretically clarified how Alice and Bob should compensate the axes in the axis 
compensation.

In this paper, we investigate the optimal axis compensation in the sense that the key generation rate is maximized, 
where the key generation rate is defined as the ratio between the length of the shared secret key and that of the sequences 
initially possessed by Alice and Bob in the postprocessing phase.

We consider the following various settings. In the channel estimation phase, we consider two kinds of channel estima-
tion: the accurate channel estimation and the conventional channel estimation (see [26]). In the accurate channel estimation, 
we use the mismatched measurement outcomes in addition to the matched measurement outcomes to estimate the chan-
nel. On the other hand, in the conventional channel estimation, we discard the mismatched measurement outcomes and 
only use the matched measurement outcomes. The reason why we consider two kind of channel estimation is that the 
authors recently clarified that the key generation rate is increased if we use the accurate channel estimation instead of the 
conventional channel estimation [26]. It is worthwhile to clarify whether we should use the accurate channel estimation 
instead of the conventional channel estimation when the QKD protocols involve the axis compensation.

In the postprocessing phase, we employ the standard postprocessing. We do not use the noisy preprocessing [22,15] nor 
the two-way classical communication [14,27].

In the axis compensation phase, we consider two kinds of compensations:

(i) (one-side compensation) Only Bob is allowed to compensate his axis.
(ii) (two-side compensation) Both Alice and Bob are allowed to compensate their axes.

Furthermore in the BB84 protocol, we subdivide each compensation into two kinds. In the first kind, Bob (or both Alice 
and Bob) is (are) allowed to compensate his (their) axis within the z–x plane of the Bloch sphere. In the second kind, Bob 
(or both Alice and Bob) is (are) allowed to compensate his (their) axis within any direction. The reason why we consider 
these two kind of compensations in the BB84 protocol is as follows. Since we only use the z-basis and x-basis in the 
BB84 protocol, it is natural to consider the axis compensation within the z–x plane. On the other hand, we might use 
the axis compensation within any direction if we are allowed to enhance the device for the compensation. Indeed, several 
researchers employ the compensation within any direction in the literature [7,10,18,28,29,31,24,30,6,16]. Therefore, we also 
investigate the compensation within any direction.

The optimized key generation rates (of the standard postprocessing) F1(E), F̃1(E), F2(E), F̃2(E), G1(E), G̃1(E), G2(E), 
G̃2(E), J1(E), J̃1(E), J2(E), J̃2(E) for above described 12 settings are summarized in Table 1. These quantities are formally 
defined in Sections 2.2 and 2.3 respectively.

In this paper, we investigate the above described optimized key generation rates, and derive closed-form expression of 
F1(E), F2(E), G1(E), G2(E), J1(E), and J2(E) for unital channels. The reason why we concentrate on the unital channel 
is as follows. The Pauli channel is one of the most important class of channels in the study of the QKD protocols and 
is well investigated in the literatures. When the channel is a Pauli channel and the axes of Alice’s transmitter and Bob’s 
detector are misaligned, then the resulting channel can be regarded as a unital channel. Thus the unital channel deserves 
consideration in the QKD research as well as the Pauli channel. There is also a technical reason why we deal with unital 
channels. For unital channels, we have closed-form expressions of key generation rates of the QKD protocols. The existence 
of such closed-form expressions enables us to identify optimal compensation procedures. Without them identification is 
difficult. Although the main results in this paper are stated under the assumption that the channel is unital, it should be 
noted that our protocol is secure for any channel (see Remark 5).

There are also other assumptions that should be noted. In this paper, we assume that the channel is constant over the 
time, i.e., the so-called collective attack, and we also assume that the channel is unchanged in the compensation phase 
and the key agreement phase. However, our protocol is secure even if these assumptions are not satisfied, because the key 
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agreement phase itself is just an existing secure QKD protocol1 [21,26]. If the channel changes arbitrarily, we cannot discuss 
the optimality of the compensation procedures. Thus, these assumptions are needed for our problem to be meaningful.

By using the closed-form expressions of the optimized key generation rates, we also derive the following relationships:

F2(E) = F̃2(E) = F1(E) ≥ F̃1(E),

G2(E) = G̃2(E) = G1(E) ≥ G̃1(E),

J2(E) = J̃2(E) ≥ J1(E) ≥ J̃1(E)

hold for any unital channel, and

F1(E) > F̃1(E),

G1(E) > G̃1(E),

J1(E) > J̃1(E)

hold for general cases of unital channels.
Our results provide the following important insight. In the literatures [7,10,18,28,29,31,24,30,6,16], they employ the one-

side compensation for the axis compensation phase and the conventional channel estimation for the channel estimation 
phase. However, when we employ the one-side compensation, above mentioned relationships imply that we should use the 
accurate channel estimation. On the other hand, when we employ the two-side compensation, above mentioned relation-
ships imply that we do not have to use the accurate channel estimation.

It should be noted that the axis compensation is not the only method to combat asynchronous axes, but there are some 
other methods. One method is to encode a bit into a decoherence-free subspace of multiple qubits so that Bob can detect 
the transmitted qubits reliably without synchronization of the axes [25,4]. This method has a drawback such that encoding 
a bit into multiple qubits is not practical by the present day technology.

Recently, another method that does not use the axis compensation was also proposed in [17]. In this method, a bit is 
encoded into a single qubit, and the transmitted qubit is detected without synchronization of the axes. After the agreement 
of bit sequence, Alice and Bob estimate the channel by using only statistics that are independent of the angle between the 
axes. Since this methods only uses a part of the statistics, the key generation rate might be smaller than that of the method 
using the axis compensation.

The two methods that do not use the axis compensation can be used even if the variation of the angle between the 
axes is fast as in the free space QKD. On the other hand, if the variation of the angle between the axes is slow as in the 
optical fibre QKD, the method using the axis compensation seems more eligible than the other two because of the above 
mentioned reasons.

The rest of this paper is organized as follows: In Section 2, we formally describe the problem mentioned above for the 
six-state protocol and the BB84 protocol. In Section 3, we provide closed-form expressions of the optimized key genera-
tion rates, and also clarify the relationships among the optimized key generation rates for various settings. We state the 
conclusion in Section 4. Proofs of main theorems are shown in Appendices A–F.

2. Problem formulation

In this section, we formally describe the problem we investigate in this paper. Suppose that Alice and Bob are connected 
by a qubit channel EB from the set of all qubit density operators to themselves. As is usual in QKD literatures, we assume 
that Eve can access all the environment of channel EB ; the channel to the environment is denoted by EE . In the rest of this 
paper, we omit the subscripts B and E if they are obvious from the context.

It should be noted that E can be any qubit channel throughout the paper, unless we specify the channel to be a Pauli 
channel or a unital channel.

2.1. Stokes parameterization and Choi operator

For convenience, we introduce the Stokes parameterization and the Choi operator for the qubit channel. The qubit chan-
nel E can be described by the affine map parameterized by 12 real parameters [12,11] as follows:⎡

⎣ θz

θx

θy

⎤
⎦ �→

⎡
⎣ Rzz Rzx Rzy

Rxz Rxx Rxy

Ryz Ryx Ryy

⎤
⎦

⎡
⎣ θz

θx

θy

⎤
⎦ +

⎡
⎣ tz

tx

ty

⎤
⎦ , (1)

1 In the usual security proof, the security of the QKD protocol is proved under the assumption that all information that can be obtained outside the QKD 
protocol is known to Eve. Thus, Eve cannot get any advantage even if we conduct the compensation procedure.
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where (θz, θx, θy) describes a vector in the Bloch sphere [19]. The pair (R, t) of the matrix and the vector in Eq. (1) is 
called the Stokes parameterization of the channel E . In the rest of this paper, we identify the channel E and its Stokes 
parameterization, and occasionally write E = (R, t).

For the channel E and each pair of bases (a, b) ∈ {z, x, y}2, define the biases of the outputs as

Q ab0 := 〈0b|EB
(|0a〉〈0a|

)|0b〉 − 〈1b|EB
(|0a〉〈0a|

)|1b〉,
Q ab1 := 〈1b|EB

(|1a〉〈1a|
)|1b〉 − 〈0b|EB

(|1a〉〈1a|
)|0b〉,

where |0a〉, |1a〉 are eigenstate of the Pauli operator σa for a ∈ {x, y, z} respectively. Then, a straight forward calculation 
shows the relations

Rba = 1

2
(Q ab0 + Q ab1), tb = 1

2
(Q ab0 − Q ab1). (2)

A unital channel is a channel that maps the completely mixed state I/2 to itself. For a unital channel, the vector part 
(tz, tx, ty) of the Stokes parameterization is the zero vector. Furthermore, the channel is called a Pauli channel if the matrix 
part R of the Stokes parameterization is a diagonal matrix in addition to that the vector part is the zero vector.

We can also describe the qubit channel E by the Choi operator

ρAB := (id ⊗ EB)
(|ψ〉〈ψ |),

where |ψ〉 = |00〉+|11〉√
2

is a maximally entangled state. For the unital channel, the Choi operator satisfies Tr A[ρAB ] = I/2. 
Furthermore, the channel is a Pauli channel if and only if the Choi operator is a Bell diagonal operator, i.e.,

ρAB =
∑

a∈{i,z,x,y}
qa|ψa〉〈ψa|

for Bell states |ψa〉 := (I ⊗ σa)|ψ〉 and the probability distribution (qi, qz, qx, qy) on {i, z, x, y}, where σi is the identity oper-
ator. Throughout this paper, we omit the subscript AB if it is obvious from the context.

2.2. Six-state protocol

At the preparation phase of the six-state protocol, Alice and Bob conduct the following axis compensation procedure. 
Alice randomly sends bit 0 or 1 to Bob by modulating it into a transmission basis that is randomly chosen from the z-basis 
{|0z〉, |1z〉}, the x-basis {|0x〉, |1x〉}, or the y-basis {|0y〉, |1y〉}. Then Bob randomly chooses one of measurement observables 
σx , σy , and σz , and converts a measurement result +1 or −1 into a bit 0 or 1 respectively. After a sufficient number of 
transmissions, Alice and Bob publicly announce their transmission bases and measurement observables. They also announce 
all of their bit sequences for estimating channel E . Note that Alice and Bob do not discard mismatched measurement 
outcomes, which are transmitted and received by different bases, and they also use the mismatched measurement outcomes 
to estimate the channel. From Eq. (2), we find that Alice and Bob can estimate all parameters (R, t) of the channel in the 
six-state protocol [8,20]. Note that the use of the mismatched measurement outcomes for channel estimation is also known 
as the process tomography.

We consider two kinds of compensations:

(i) Only Bob is allowed to compensate his axis, i.e., the channel after the compensation is

E ′
B = UB ◦ EB , (3)

where UB is a unitary channel that represents Bob’s compensation.
(ii) Both Alice and Bob are allowed to compensate their axes, i.e., the channel after the compensation is

E ′
B = UB ◦ EB ◦ UA, (4)

where UA and UB are unitary channels that represent Alice and Bob’s compensations.

Based on the estimate of the parameters (R, t), Bob (or both Alice and Bob) decides UB (or UA and UB ), and he (they) 
compensates the channel. The choice of UB (or UA and UB ) can be decided according to Theorem 4 and Corollary 6 of 
Section 3.1.

Remark 1. Throughout this paper, the prime represents that it is after the compensation. �

After the compensation procedure, Alice and Bob conduct the above bit transmission and reception procedure again. This 
time, they only announce a part of their bit sequence for estimating the channel E ′ , and they conduct the postprocessing 
to generate a secret key from the remaining (unannounced) bit sequences.
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Henceforth, we focus on the postprocessing procedure for Alice’s bit sequence x ∈ F
n
2 that is transmitted in z-basis and 

corresponding Bob’s bit sequence y ∈ F
n
2 that is received in σz measurement, where F2 is the finite field of order 2. We 

employ the standard postprocessing procedure that consists of the information reconciliation procedure and the privacy 
amplification procedure (e.g. see [26, Section 2]). Note that we do not use the so-called noisy preprocessing [22,15] nor the 
postprocessing with two-way classical communication [14,27].

Let

HE ′(X |E) := H
(
ρ ′

X E

) − H
(
ρ ′

E

)
be the conditional von Neumann entropy with respect to the density operator

ρ ′
X E :=

∑
x∈F2

1

2
|xz〉〈xz| ⊗ E ′

E

(|xz〉〈xz|
)

on the joint system HX ⊗HE , where H(ρ) is the von Neumann entropy [19] for a density matrix ρ , and we take the base 
of the logarithm to be 2 throughout the paper. For the compensated channel E ′ , we define the joint probability distribution

P ′
XY (x, y) := 1

2
〈yz|E ′

B

(|xz〉〈xz|
)|yz〉

of the joint random variable (X, Y ) on F2 × F2. Then, let

HE ′(X |Y ) := −
∑

x,y∈F2

P ′
XY (x, y) log P ′

X |Y (x|y) (5)

be the conditional Shannon entropy of X given Y .
In the six-state protocol, since Alice and Bob can estimate the channel E ′ exactly if they use the accurate channel 

estimation, they can asymptotically share a secure key if the length � of the key satisfies

�

n
< HE ′(X |E) − HE ′(X |Y )

(see [21,26]). Therefore, we consider the following two optimization problems:

(i) Find a closed-form expression of

F1(E) := max
UB

[
HE ′(X |E) − HE ′(X |Y )

]
, (6)

and also find UB that achieves the maximum in Eq. (6).
(ii) Find a closed-form expression of

F2(E) := max
UA ,UB

[
HE ′(X |E) − HE ′(X |Y )

]
, (7)

and also find (UA , UB) that achieve the maximum in Eq. (7).

Eqs. (6) and (7) are the key generation rates optimized within the one-side compensation and the two-side compensation 
respectively.

Next, we consider the case in which Alice and Bob use the conventional channel estimation (see [26] for the detail of 
the conventional estimation). From Eq. (2), we find that Alice and Bob can only estimate the parameters γ ′ = (R ′

zz, R ′
xx, R ′

yy), 
and they cannot estimate the parameters κ ′ = (R ′

zx, R ′
zy, R ′

xz, R ′
xy, R ′

yz, R ′
yx, t′

z, t′
x, t′

y). Since we have to consider the worst case 
with respect to the parameters κ ′ that cannot be estimated, we consider the following two quantities:

F̃1(E) := max
UB

min
Ẽ∈Ps(γ ′)

[
HẼ (X |E) − HẼ (X |Y )

]
(8)

and

F̃2(E) := max
UA ,UB

min
Ẽ∈Ps(γ ′)

[
HẼ (X |E) − HẼ (X |Y )

]
, (9)

where Ps(γ
′) is the set of all channel for given γ ′ , i.e.,

Ps
(
γ ′) := {

Ẽ = (γ̃ , κ̃) : γ̃ = γ ′}.
Since the definition of F̃1(E) and F̃2(E) involve the minimization, we have F1(E) ≥ F̃1(E) and F2(E) ≥ F̃2(E) [26].
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2.3. BB84 protocol

2.3.1. Compensation within z–x plane
The BB84 protocol is almost the same as the six-state protocol. However in the BB84 protocol with the axis compensation 

within the z–x plane, Alice uses only z basis and x basis to transmit the bit sequence, and Bob uses only observable σz

and σx to receive the bit sequence. Therefore, from Eq. (2), we find that Alice and Bob can only estimate the parameters 
ω = (Rzz, Rzx, Rxz, Rxx, tz, tx), and that they cannot estimate the parameters τ = (Rzy, Rxy, Ryz, Ryx, Ryy, ty). We consider the 
following two kinds of compensations:

(i) Only Bob is allowed to compensate his axis within the z–x plane, i.e., the channel after the compensation is given by 
Eq. (3), where UB is a unitary channel that rotate the Bloch sphere within the z–x plane.

(ii) Both Alice and Bob are allowed to compensate their axes within the z–x plane, i.e., the channel after the compensation 
is given by Eq. (4), where UA and UB are unitary channels that rotate the Bloch sphere within the z–x plane.

Based on the estimate of the parameters ω, Bob (or both Alice and Bob) decides UB (or UA and UB ), and he (they) com-
pensates the channel. The choice of UB (or UA and UB ) can be decided according to Theorem 10 and Corollary 11 of 
Section 3.2.1.

As in the six-state protocol, we also employ the standard postprocessing. We first consider the case in which Al-
ice and Bob use the accurate channel estimation. Note that Alice and Bob can only estimate the parameters ω′ =
(R ′

zz, R ′
zx, R ′

xz, R ′
xx, t′

z, t′
x), and that they cannot estimate the parameters τ ′ = (R ′

zy, R ′
xy, R ′

yz, R ′
yx, R ′

yy, t′
y).

Let Pba(ω
′) be the set of all channels for given ω′ , i.e.,

Pba
(
ω′) := {

Ẽ = (ω̃, τ̃ ) : ω̃ = ω′}.
In the BB84 protocol, Alice and Bob can asymptotically share a secure key if the length � of the key satisfies

�

n
< min

Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
(see [21,26]). Therefore, we consider the following two optimization problems:

(i) Find a closed-form expression of

G1(E) := max
UB

min
Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
, (10)

and also find UB that achieves the maximum in Eq. (10), where UB is a unitary channel that rotates the Bloch sphere 
within the z–x plane.

(ii) Find a closed-form expression of

G2(E) := max
UA ,UB

min
Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
, (11)

and also find (UA , UB) that achieve the maximum in Eq. (11), where UA and UB are unitary channels that rotate the 
Bloch sphere within the z–x plane.

Next, we consider the case in which Alice and Bob use the conventional channel estimation. From Eq. (2), we 
find that Alice and Bob can only estimate the parameters μ′ = (R ′

zz, R ′
xx), and they cannot estimate the parameters 

ν ′ = (R ′
zx, R ′

zy, R ′
xz, R ′

xy, R ′
yz, R ′

yx, R ′
yy, t′

z, t′
x, t′

y). Since we have to consider the worst case with respect to the parameters 
ν ′ that cannot be estimated, we consider the following two quantities:

G̃1(E) := max
UB

min
Ẽ∈Pbc(μ′)

[
HẼ (X |E) − HẼ (X |Y )

]
, (12)

and

G̃2(E) := max
UA ,UB

min
Ẽ∈Pbc(μ′)

[
HẼ (X |E) − HẼ (X |Y )

]
, (13)

where Pbc(μ
′) is the set of all channel for given μ′ , i.e.,

Pbc
(
μ′) := {

Ẽ = (μ̃, ν̃) : μ̃ = μ′}.
Since the range of the minimizations in the definitions of G1(E), G2(E), G̃1(E), and G̃2(E) satisfy Pba(ω

′) ⊂ Pbc(μ
′), we 

have G1(E) ≥ G̃1(E) and G2(E) ≥ G̃2(E) [26].



S. Watanabe et al. / Theoretical Computer Science 560 (2014) 91–106 97
Remark 2. Although G1(E), G2(E), G̃1(E), and G̃2(E) are defined as functions of E , it should be noted that their values 
on the right hand side only depend of the parameters ω, which can be estimated in the compensation procedure of this 
section, and do not depend on the parameters τ , which cannot be estimated. More precisely, since UB is a unitary that 
rotates the Bloch sphere within the z–x plane, ω′ only depends on ω, and we have

G1
(
(ω, τ )

) = G1
(
(ω, τ̂ )

)
for any (ω, τ̂ ) ∈Pba(ω). Similar equations also hold for G2(E), G̃1(E), and G̃1(E). Thus, Alice and Bob can actually calculate 
these functions from their estimated parameters in the compensation procedure of the protocol.

2.3.2. Compensation within any direction
In this section, we consider the BB84 protocol with the axis compensation within any direction. We consider this problem 

because several researchers employ the compensation within any direction in the literatures [7,10,18,28,29,31,24,30,6,16].
When we employ the one-side compensation, Alice randomly sends 0 or 1 to Bob by modulating it into a transmission 

basis that is randomly chosen from the z-basis or the x-basis. Since Alice does not rotate the axis of the transmitter in the 
one-side compensation and the one-side compensation might be used to simplify the device, it seems natural that Alice 
only uses the z-basis and the x-basis. Bob measures received qubits by randomly using observables σz , σx or σy . Note that 
Bob can use σy in addition to σz and σx because he is allowed to rotate the axis of the receiver in the axis compensation 
phase. In this case, from Eq. (2), we find that Alice and Bob can estimate the parameters (Rzz, Rxz, Ryz, Rzx, Rxx, Ryx, tz, tx, ty), 
and they cannot estimate the parameters (Rzy, Rxy, Ryy). Since Bob can use σy , Alice and Bob can estimate (Ryz, Ryx, ty) in 
addition to (Rzz, Rxz, Rzx, Rxx, tz, tx), which can be estimated in the compensation scheme of Section 2.3.1. Based on the 
estimate of the parameters (Rzz, Rxz, Ryz, Rzx, Rxx, Ryx, tz, tx, ty), Bob decide UB and compensate the channel. The choice of 
UB can be decided according to Theorem 15 of Section 3.2.2.

On the other hand, when we employ the two-side compensation, we allow both Alice and Bob to use z-basis, x-basis, 
and y-basis in the axis compensation phase. In this case, from Eq. (2), we find that Alice and Bob can estimate all of the 
parameters (R, t). Based on the estimate of the parameters (R, t), Alice and Bob decide UA and UB , and they compensate 
the channel. The choice of UA and UB can be decided according to Theorem 14 of Section 3.2.2.

In the bit transmission phase (after the axis compensation phase), we allow Alice and Bob to use only z-basis and x-basis. 
The channel estimation phase and the postprocessing phase are exactly the same as in Section 2.3.1. Note that Alice and 
Bob can estimate (R ′

zz, R ′
xz, R ′

zx, R ′
xx, t′

z, t′
x), but they cannot estimate the other parameters, because we do not allow neither 

Alice nor Bob to use y-basis in the bit transmission phase. Therefore, we consider the following two optimization problems:

(i) Find a closed-form expression of

J1(E) := max
UB

min
Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
, (14)

and also find UB that achieve the maximum in Eq. (14), where UB is any unitary channel.
(ii) Find a closed-form expression of

J2(E) := max
UA ,UB

min
Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
, (15)

and also find (UA , UB) that achieve the maximum in Eq. (15), where UA and UB are any unitary channels.

We also treat the case in which Alice and Bob use the conventional channel estimation. In this case, we consider the 
following two quantities:

J̃1(E) := max
UB

min
Ẽ∈Pbc(μ′)

[
HẼ (X |E) − HẼ (X |Y )

]
, (16)

and

J̃2(E) := max
UA ,UB

min
Ẽ∈Pbc(μ′)

[
HẼ (X |E) − HẼ (X |Y )

]
, (17)

where UA and UB are any unitary channels. Since the range of the minimizations in the definitions of J1(E), J2(E), J̃1(E), 
and J̃2(E) satisfy Pba(ω

′) ⊂Pbc(μ
′), we have J1(E) ≥ J̃1(E) and J2(E) ≥ J̃2(E) [26].

Remark 3. Although J1(E) and J̃1(E) are defined as functions of E , it should be noted that their values on the right hand 
side only depend of the parameters (Rzz, Rxz, Ryz, Rzx, Rxx, Ryx, tz, tx, ty), which can be estimated in the one-side compen-
sation procedure of this section, and do not depend on the parameters (Rzy, Rxy, Ryy), which cannot be estimated. Thus, 
Alice and Bob can actually calculate these functions from their estimated parameters in the compensation procedure of the 
protocol.
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3. Optimal compensation for unital channels

In this section, we solve the problems formulated in Sections 2.2, 2.3.1, and 2.3.2 respectively for unital channels.

3.1. Six-state protocol

For any channel E = (R, t), by the singular value decomposition, we can decompose2 the matrix R as

R = B diag[ez, ex, ey] A

=
⎡
⎣ 〈Bz|

〈Bx|
〈By|

⎤
⎦

⎡
⎣ ez 0 0

0 ex 0
0 0 ey

⎤
⎦[ |Az〉 |Ax〉 |Ay〉

]

=
⎡
⎣ 〈Bz| Ãz〉 〈Bz| Ãx〉 〈Bz| Ãy〉

〈Bx| Ãz〉 〈Bx| Ãx〉 〈Bx| Ãy〉
〈By| Ãz〉 〈By| Ãx〉 〈By| Ãy〉

⎤
⎦ , (18)

where A and B are the rotation matrices3, |Az〉, |Ax〉, and |Ay〉 are the column vectors of A with norm 1, 〈Bz|, 〈Bx|, and 〈By|
are the row vectors of B with norm 1, |ez|, |ex|, and |ey| are the singular values of R , and we set 〈 Ãz| = (ez Azz, ex Azx, ey Azy), 
〈 Ãx| = (ez Axz, ex Axx, ey Axy), and 〈 Ãy| = (ez Ayz, ex Ayx, ey Ayy).

Henceforth, we identify Alice’s compensation UA and Bob’s compensation UB with the 3 × 3 rotation matrices O A

and O B . Then, the matrix part of the Stokes parameterization of the compensated channel E ′ = (R ′, t′) is given by 
R ′ = O B R O A .

The following theorem gives a closed-form expression of the key generation rate optimized by the two-side compensa-
tion.

Theorem 4. Suppose that E is a unital channel. Let O ∗
A = A−1 and O ∗

B = B−1 , and let U∗
A and U∗

B be the unitary channels correspond-
ing to O ∗

A and O ∗
B respectively. Then, the compensated channel E∗ = U∗

B ◦ E ◦ U∗
A is the Pauli channel such that the matrix part of the 

Stokes parameterization is given by R∗ = diag[ez, ex, ey], and E∗ satisfies

F2(E) = max
UA ,UB

[
HE ′(X |E) − HE ′(X |Y )

]
(19)

= HE∗(X |E) − HE∗(X |Y ) (20)

= 1 − H[qi,qz,qx,qy], (21)

where H[qi, qz, qx, qy] is the Shannon entropy [9] of the distribution

qi = 1 + ez + ex + ey

4
, (22)

qz = 1 + ez − ex − ey

4
, (23)

qx = 1 − ez + ex − ey

4
, (24)

qy = 1 − ez − ex + ey

4
. (25)

Furthermore, the maximum in Eq. (19) is achieved without any compensation, i.e.,

HE (X |E) − HE (X |Y ) = HE∗(X |E) − HE∗(X |Y )

if and only if the vectors | Ãz〉 and |Bz〉 are scalar multiple of each other. �

The first statement implies that an optimal compensation procedure is to compensate the channel to a Pauli channel. 
The second statement implies that (UA , UB) achieving the maximum are not unique.

2 The decomposition is not unique because we can change the order of (ez, ex, ey) or the sign of them by adjusting the rotation matrices A and B . 
However, the result in this paper does not depends on a choice of the decomposition.

3 The rotation matrix is the real orthogonal matrix with determinant 1.
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Remark 5. Although the channel E is assumed to be a unital channel in Theorem 4, it should be noted that our protocol 
is secure for any channel. Theorem 4 is just saying that the compensation (O ∗

A, O ∗
B) given in this theorem is optimal if

the channel is a unital channel. Similar remarks are also applied for the other theorems and corollaries throughout the 
paper. �

The following corollary gives a closed-form expression of the key generation rate optimized by the one-side compensa-
tion.

Corollary 6. Suppose that E is a unital channel. Let

O ∗
B =

⎡
⎢⎣

〈O ∗
B,z|

〈O ∗
B,x|

〈O ∗
B,y|

⎤
⎥⎦

be a rotation matrix such that 〈O ∗
B,z| is a scalar multiple of (Rzz, Rxz, Ryz), where 〈O B,x∗ | and 〈O ∗

B,y| can be arbitrary as long as they 
constitute a rotation matrix, and let U∗

B the unitary channel corresponding to O ∗
B . Then, the compensated channel E∗ = U∗

B ◦E satisfies

F1(E) = HE∗(X |E) − HE∗(X |Y )

= F2(E). �

Note that Corollary 6 follows from the second statement of Theorem 4.
Surprisingly, we do not lose any optimality even if we only allow Bob to compensate his axis (one-side compensation). 

This fact is useful to simplify the implementation of the optimal compensation procedure.
Since HE (X |Y ) = h((1 + Rzz)/2) for any unital channel and Rzz = 〈Bz| Ãz〉, we find that an optimal one-side compensation 

procedure is to compensate the channel so that Bob can detect Alice’s transmitted state most reliably, i.e., HE ′(X |Y ) is 
minimized, where h(·) is the binary entropy function. Note that the fact that | Ãz〉 and |B ′

z〉 are scalar multiple of each other 
does not necessarily mean the compensated channel E ′ is a Pauli channel.

Next, we consider the case in which Alice and Bob use the conventional channel estimation. The following theorem states 
that the optimized key generation rate with the accurate channel estimation coincides with that with the conventional 
channel estimation if we use the two-side compensation. The following theorem also gives the necessary and sufficient 
condition such that the optimized key generation rates with the accurate channel estimation and the conventional channel 
estimation coincide when we use the one-side compensation.

Theorem 7. Suppose that E is a unital channel. Then, we have

F2(E) = F̃2(E),

where F̃2(E) is achieved by O ∗
A and O ∗

B specified in Theorem 4. Furthermore, we have

F1(E) = F̃1(E)

if and only if | Ãz〉, | Ãx〉, and | Ãy〉 are orthogonal to each other. If this condition is satisfied, then F̃1(E) is achieved by O ∗
B such that 

〈O ∗
B,z| and 〈O ∗

B,x| and 〈O ∗
B,y| are scalar multiple of (Rzz, Rxz, Ryz), (Rzx, Rxx, Ryx), and (Rzy, Rxy, Ryy) respectively. �

Corollary 8. Suppose that E is a unital channel. Then, we have

F̃1(E) = F̃2(E)

if and only if | Ãz〉, | Ãx〉, and | Ãy〉 are orthogonal to each other. �

3.2. BB84 protocol

3.2.1. Compensation within z–x plane
For any channel E = (R, t), by the singular value decomposition, we can decompose the left upper 2 × 2 sub-matrix S of 

the matrix R as

S = V diag[dz,dx] U

=
[ 〈V z|

〈V x|
][

dz 0
0 dx

][ |Uz〉 |Ux〉
]

=
[ 〈V z|Ũz〉 〈V z|Ũx〉

〈V |Ũ 〉 〈V |Ũ 〉
]

,

x z x x
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where U and V are the rotation matrices, |dz| and |dx| are the singular values of S , and we set 〈Ũz| = (dzUzz, dxUzx) and 
〈Ũx| = (dzUxz, dxUxx).

Henceforth, we identify Alice’s compensation UA and Bob’s compensation UB with the 2 × 2 rotation matrices Q A and 
Q B , because their compensation are restricted within the z–x plane. Note that the left upper 2 × 2 sub-matrix S ′ of the 
matrix R ′ of the compensated channel is given by S ′ = Q B S Q A .

The following lemma provides a closed-form expression of the key generation rate with the accurate channel estimation 
for unital channels, and it will be used several times in the rest of this paper.

Lemma 9. For any unital channel E = (ω, τ ), we have

min
Ẽ∈Pba(ω)

[
HẼ (X |E) − HẼ (X |Y )

]

= 1 − h

(
1 + dz

2

)
− h

(
1 + dx

2

)
+ h

(
1 + √

R2
zz + R2

xz

2

)
− h

(
1 + Rzz

2

)
.

Proof of Lemma 9. This lemma follows from [26, Proposition 2] and the fact HE (X |Y ) = h((1 + Rzz)/2) for any unital 
channel. �

The following theorem gives a closed-form expression of the key generation rate optimized by the two-side compensa-
tion.

Theorem 10. Suppose that E is a unital channel. Let Q ∗
A = U−1 and Q ∗

B = V −1 , and let U∗
A and U∗

B be the unitary channels corre-
sponding to Q ∗

A and Q ∗
B respectively. Then, the compensated channel U∗

B ◦ E ◦ U∗
A =: E∗ = (ω∗, τ ∗) satisfies

G2(E) = max
UA ,UB

min
Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
(26)

= min
Ẽ∈Pba(ω∗)

[
HẼ (X |E) − HẼ (X |Y )

]
(27)

= 1 − h

(
1 + dz

2

)
− h

(
1 + dx

2

)
. (28)

Furthermore, the maximum is achieved without any compensation, i.e.,

min
Ẽ∈Pba(ω)

[
HẼ (X |E) − HẼ (X |Y )

] = min
Ẽ∈Pba(ω∗)

[
HẼ (X |E) − HẼ (X |Y )

]
if and only if the vectors |Ũz〉 and |V z〉 are scalar multiple of each other. �

The first statement implies that an optimal compensation procedure is to compensate the channel to a channel such that 
the left upper sub-matrix S ′ of the Stokes parameterization of the compensated channel is a diagonal matrix. The latter 
statement implies that (UA, UB) achieving the maximum is not unique.

By using Theorem 10, we can derive the following corollary, which gives the key generation rate optimized by the 
one-side compensation.

Corollary 11. Suppose that E is a unital channel. Let

Q ∗
B =

[ 〈Q ∗
B,z|

〈Q ∗
B,x|

]

be a rotation matrix such that 〈Q ∗
B,z| is a scalar multiple of (Rzz, Rxz),4 and let U∗

B be the unitary channel corresponding to O ∗
B . Then, 

the compensated channel U∗
B ◦ E =: E∗ = (ω∗, τ ∗) satisfies

G1(E) = min
Ẽ∈Pba(ω∗)

[
HẼ (X |E) − HẼ (X |Y )

]
(29)

= G2(E). � (30)

4 Note that 〈Q B,x| is uniquely determined from 〈Q B,z| because they constitute a rotation matrix.



S. Watanabe et al. / Theoretical Computer Science 560 (2014) 91–106 101
Note that Corollary 11 follows from the latter statement of Theorem 10.
Surprisingly, we do not lose any optimality even if we only allow Bob to compensate his axis (one-side compensation). 

This fact is useful to simplify the implementation of the optimal compensation procedure.
Since HE (X |Y ) = h((1 + Rzz)/2) for any unital channel and Rzz = 〈V z|Ũz〉, we find that an optimal one-side compensation 

procedure is to compensate the channel so that Bob can detect Alice’s transmitted state most reliably, i.e., HE ′(X |Y ) is 
minimized. Note that the fact that |Ũz〉 and |V ′

z〉 are scalar multiple of each other does not necessarily mean that the left 
upper sub-matrix S ′ of the Stokes parameterization of the compensated channel is a diagonal matrix.

Next, we consider the case in which Alice and Bob use the conventional channel estimation. The following theorem states 
that the optimized key generation rate with the accurate channel estimation coincides with that with the conventional 
channel estimation if we use the two-side compensation. The following theorem also gives the necessary and sufficient 
condition such that the optimized key generation rates with the accurate channel estimation and the conventional channel 
estimation coincide when we use the one-side compensation.

Theorem 12. Suppose that E is a unital channel. Then, we have

G2(E) = G̃2(E),

where G̃2(E) is achieved by Q ∗
A and Q ∗

B specified in Theorem 10. Furthermore, we have

G1(E) = G̃1(E)

if and only if |Ũz〉 and |Ũx〉 are orthogonal to each other. If this condition is satisfied, G̃1(E) is achieved by Q ∗
B such that 〈Q ∗

B,z| and 
〈Q ∗

B,x| are scalar multiple of (Rzz, Rxz) and (Rzx, Rxx) respectively. �

Corollary 13. Suppose that E is a unital channel. Then, we have

G̃1(E) = G̃2(E)

if and only if |Ũz〉 and |Ũx〉 are orthogonal to each other. �

3.2.2. Compensation within any direction
In this section, we consider the case in which either Alice or Bob are allowed to compensate their axes within any 

direction [7,10,18,28,29,31,24,30,6,16]. For any channel E = (R, t), by the singular value decomposition, we can decompose 
the matrix R as in Eq. (18). Furthermore, we identify Alice’s compensation UA and Bob’s compensation UB with the 3 × 3
rotation matrices O A and O B as in Section 3.1. When we consider the compensation within any direction, it should be 
noted that we can estimate all the parameters in the two-side compensation and only a part of the parameters in the 
one-side compensation (see also Section 2.3.2).

The following theorem gives the key generation rate optimized by the two-side compensation.

Theorem 14. Suppose that E is a unital channel. Let U∗
A and U∗

B be unitary channels such that the compensated channel U∗
B ◦E ◦U∗

A =:
E∗ = (ω∗, τ ∗) is a Pauli channel and the singular values |e∗

z |, |e∗
x |, and |e∗

y | of R∗ = diag[e∗
z , e∗

x , e∗
y ] satisfy

|e∗
z | ≥ |e∗

x | ≥ |e∗
y |.

Then, we have

J2(E) = max
UA ,UB

min
Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
(31)

= min
Ẽ∈Pba(ω∗)

[
HẼ (X |E) − HẼ (X |Y )

]
(32)

= 1 − h

(
1 + e∗

z

2

)
s − h

(
1 + e∗

x

2

)
. � (33)

The following theorem gives the key generation rate optimized by the one-side compensation.

Theorem 15. Suppose that E is a unital channel. Let

O ∗
B =

⎡
⎢⎣

〈O ∗
B,z|

〈O ∗
B,x|

〈O ∗ |

⎤
⎥⎦
B,y
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be a rotation matrix such that 〈O ∗
B,z| and 〈O ∗

B,x| span the same subspace as that spanned by (Rzz, Rxz, Ryz) and (Rzx, Rxx, Ryx), and 
that 〈O ∗

B,z| is a scalar multiple of (Rzz, Rxz, Ryz),5 and let U∗
B be the unitary channel corresponding to O ∗

B . Then, the compensated 
channel U∗

B ◦ E =: E∗ = (ω∗, τ ∗) satisfies

J1(E) = max
UB

min
Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
(34)

= min
Ẽ∈Pba(ω∗)

[
HẼ (X |E) − HẼ (X |Y )

]
(35)

= 1 − h

(
1 + s∗

1

2

)
− h

(
1 + s∗

2

2

)
, (36)

where s∗
1 and s∗

2 are the singular values of the upper left 2 × 2 sub-matrix matrix

S∗ =
[

〈B∗
z | Ãz〉 〈B∗

z | Ãx〉
〈B∗

x | Ãz〉 〈B∗
x | Ãx〉

]

of R∗ = O ∗
B R such that s∗

1 ≥ s∗
2 . �

Remark 16. The equality

J1(E) = J2(E)

does not hold in general. For example, J1(E) �= J2(E) if R = diag[ez, ex, ey] and |ez| < |ex| < |ey|. �

Next, we consider the case in which Alice and Bob use the conventional channel estimation. The following theorem states 
that the optimized key generation rate with the accurate channel estimation coincides with that with the conventional 
channel estimation if we use the two-side compensation. The following theorem also gives the necessary and sufficient 
condition such that the optimized key generation rates with the accurate channel estimation and the conventional channel 
estimation coincide.

Theorem 17. Suppose that E is a unital channel. Then, we have

J2(E) = J̃2(E),

where J̃2(E) is achieved by O ∗
A and O ∗

B specified in Theorem 14. Furthermore, we have

J1(E) = J̃1(E)

if and only if | Ãz〉 and | Ãx〉 are orthogonal to each other. If this condition is satisfied, then J̃1(E) is achieved by O ∗
B such that 〈O ∗

B,z|
and 〈O ∗

B,x| are scalar multiple of (Rzz, Rxz, Ryz) and (Rzx, Rxx, Ryx) respectively. �

Proof of Theorem 17. This theorem can be proved almost in a similar manner to Theorem 12. Therefore, we omit the 
proof. �
Corollary 18. Suppose that E is a unital channel. Then, we have

J̃1(E) < J̃2(E)

if | Ãz〉 and | Ãx〉 are not orthogonal to each other. �

4. Conclusion

In this paper, we investigated the axis compensation in the QKD protocols in various settings. We clarified optimal 
compensation procedures over unital channels for one-side compensation with the accurate channel estimation and for 
two-side compensation with both estimations, i.e., the conventional channel estimation and the accurate channel estimation, 
while we could not identify an optimal compensation procedure for one-side compensation with the conventional channel 
estimation. Although our proposed compensation procedures are optimal for unital channels, it is not clear whether those 
compensation procedures are optimal or not for general channels. We also clarified that the optimized key generation rates 
with the conventional channel estimation are strictly smaller than the optimized key generation rates with the accurate 

5 Note that 〈O B,y| is uniquely determined from 〈O B,z| and 〈O B,x| because they constitute a rotation matrix.
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channel estimation for the one-side compensation. Our results imply that we should use the accurate channel estimation 
when we employ the one-side compensation. On the other hand, we do not have to use the accurate channel estimation 
when we employ the two-side compensation.

Although we clarified the optimal compensation procedures for the standard postprocessing, it is an important future 
research agenda to clarify the optimal compensation procedures when we employ more complicated postprocessing (e.g. the 
postprocessing with the noisy preprocessing [22,15] or the two-way classical communication [14,27]).
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Appendix A. Proof of Theorem 4

The equality between Eqs. (20) and (21) is well known (e.g. see [22] or [26, Eq. (20)]). Since Eq. (19) is obviously larger 
than or equals to Eq. (20), it suffices to show that Eq. (19) is smaller than or equals to Eq. (21) for any UA and UB . For any 
fixed UA and UB , by using [26, Eq. (20)] and the discussions right before it, Eq. (19) can be rewritten as

1 − H[qi,qz,qx,qy] + h

(
1 + ‖| Ã′

z〉‖
2

)
− h

(
1 + 〈B ′

z| Ã′
z〉

2

)
.

From the form of h(·), Cauchy’s inequality |〈B ′
z| Ã′

z〉| ≤ ‖| Ã′
z〉‖ implies that Eq. (19) is smaller than or equals to Eq. (21). 

The equality holds if and only if the vectors | Ã′
z〉 and |B ′

z〉 are scalar multiple of each other, which is exactly the second 
statement of the theorem. �
Appendix B. Proof of Theorem 7

Let E∗ be the Pauli channel defined in Theorem 4. Then, we have

F2(E) ≥ F̃2(E)

≥ min
Ẽ∈Ps(γ ∗)

[
HẼ (X |E) − HẼ (X |Y )

]
= 1 − H[qi,qz,qx,qy]
= F2(E),

which implies the first statement of the theorem.
To prove the “if” part of the second statement, assume that | Ãz〉, | Ãx〉, and | Ãy〉 are orthogonal to each other. Then, we 

can take a rotation matrix O ∗
B so that 〈O ∗

B,z| and 〈O ∗
B,x| and 〈O ∗

B,y| are scalar multiple of (Rzz, Rxz, Ryz), (Rzx, Rxx, Ryx), and 
(Rzy, Rxy, Ryy) respectively, and we have R ′ = O ∗

B R = diag[ez, ex, ey]. Thus, we have

F1(E) ≥ F̃1(E) ≥ 1 − H[qi,qz,qx,qy] = F1(E).

Next, we show the “only if” part of the second statement. Suppose that at least one pair of | Ãz〉, | Ãx〉, and | Ãy〉 is not 
orthogonal to each other. Then, for arbitrarily fixed UB , the compensated channel E ′ is not a Pauli channel, i.e., the Choi 
operator ρ ′ is not a Bell diagonal state. Let ρ ′

a := (σ̄a ⊗ σa)ρ
′(σ̄a ⊗ σa) for a ∈ {i, z, x, y}, where σ̄a is the complex conjugate 

of σa . Since ρ ′ is not Bell diagonal state, at least one of ρ ′
z , ρ ′

x , and ρ ′
y is different from ρ ′

i . Let

ρt w :=
∑

a∈{i,z,x,y}

1

4
ρ ′

a

be the partially twirled state [2]. Then, since the von Neumann entropy is a strict concave function [19], we have

F̃1(E) = max
UB

[
1 − H

(
ρt w)]

< max
UB

[
1 −

∑
a∈{i,z,x,y}

1

4
H

(
ρ ′

a

)]

= max
UB

[
1 − H

(
ρ ′)]

= F1(E). �
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Appendix C. Proof of Theorem 10

By using Lemma 9, we have the equality between Eqs. (27) and (28). Since Eq. (26) is obviously larger than or equals to 
Eq. (27), it suffices to show that Eq. (26) is smaller than or equals to Eq. (28). For any fixed UA and UB , by using Lemma 9
again, Eq. (26) can be rewritten as

1 − h

(
1 + dz

2

)
− h

(
1 + dx

2

)
+ h

(
1 + ‖|Ũ ′

z〉‖
2

)
− h

(
1 + 〈V ′

z|Ũ ′
z〉

2

)
.

From the form of h(·), Cauchy’s inequality |〈V ′
z|Ũ ′

z〉| ≤ ‖|Ũ ′
z〉‖ implies that Eq. (26) is smaller than or equals to Eq. (28). 

The equality holds if and only if the vectors |Ũ ′
z〉 and |V ′

z〉 are scalar multiple of each other, which is exactly the second 
statement of the theorem. �
Appendix D. Proof of Theorem 12

Let E∗ be the channel defined in Theorem 10. Then, we have

G2(E) ≥ G̃2(E)

≥ min
Ẽ∈Pbc(μ∗)

[
HẼ (X |E) − HẼ (X |Y )

]

= 1 − h

(
1 + dz

2

)
− h

(
1 + dx

2

)
= G2(E),

which implies the first statement of the theorem.
To prove the “if” part of the second statement, assume that |Ũz〉 and |Ũx〉 are orthogonal to each other. Then, we can 

take a rotation matrix Q ∗
B so that 〈Q ∗

B,z| and 〈Q ∗
B,x| are scalar multiple of (Rzz, Rxz) and (Rzx, Rxx) respectively, and we 

have S ′ = Q ∗
B S = diag[dz, dx]. Then, we have

G1(E) ≥ G̃1(E) ≥ 1 − h

(
1 + dz

2

)
− h

(
1 + dx

2

)
= G1(E).

Next, we show the “only if” part. Suppose that |Ũz〉 and |Ũx〉 are not orthogonal to each other. Then, for an arbitrarily 
fixed UB , either 〈V ′

z|Ũx〉 �= 0 or 〈V ′
x|Ũz〉 �= 0 holds. Then, we have

G̃1(E) = max
UB

[
1 − h

(
1 + 〈V ′

z|Ũz〉
2

)
− h

(
1 + 〈V ′

x|Ũx〉
2

)]

< 1 − h

(
1 + ‖|Ũz〉‖

2

)
− h

(
1 + ‖|Ũx〉‖

2

)

= 1 − h

(
1 + √

d2
z U 2

zz + d2
x U 2

zx

2

)
− h

(
1 + √

d2
z U 2

xz + d2
x U 2

xx

2

)

≤ 1 − U 2
zzh

(
1 + √

d2
z

2

)
− U 2

zxh

(
1 + √

d2
x

2

)

− U 2
xzh

(
1 + √

d2
z

2

)
− U 2

xxh

(
1 + √

d2
x

2

)

= 1 − (
U 2

zz + U 2
xz

)
h

(
1 + dz

2

)
− (

U 2
zx + U 2

xx

)
h

(
1 + dx

2

)

= 1 − h

(
1 + dz

2

)
− h

(
1 + dx

2

)
= G1(E), (D.1)

where we used the concavity of the function

h

(
1 + √

x

2

)
(D.2)

in the inequality of Eq. (D.1). We can show the concavity of Eq. (D.2) by showing that the second derivative is non-
positive. �



S. Watanabe et al. / Theoretical Computer Science 560 (2014) 91–106 105
Appendix E. Proof of Theorem 14

By using Lemma 9, we have the equality between Eqs. (32) and (33). Since Eq. (31) is obviously larger than or equals to 
Eq. (32), it suffices to show that Eq. (31) is smaller than or equals to Eq. (33).

For any fixed UA and UB , Theorem 10 implies

min
Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
≤ G2

(
E ′)

= 1 − h

(
1 + d′

z

2

)
− h

(
1 + d′

x

2

)
, (E.1)

where |d′
z| and |d′

x| are the singular values of the left upper 2 × 2 sub-matrices S ′ of R ′ of the compensated channel E ′ .
Note that the singular values of R ′ are equal to those of R∗ . By using the interlacing inequalities for singular values of 

sub-matrices [23], we have

|e∗
z | ≥ max

[|d′
z|, |d′

x|
]

and

|e∗
x | ≥ min

[|d′
z|, |d′

x|
]
.

These inequalities imply that Eq. (E.1) is smaller than or equals to Eq. (33), which completes the proof. �
Appendix F. Proof of Theorem 15

The second statement of Theorem 10 implies that the equality between Eqs. (35) and (36). Since Eq. (34) is obviously 
larger than or equals to Eq. (35), we show that Eq. (34) is smaller than or equals to Eq. (36).

For arbitrarily fixed O B , let s′
1 and s′

2 be the singular values of the upper left 2 × 2 matrix

S ′ =
[

〈B ′
z| Ãz〉 〈B ′

z| Ãx〉
〈B ′

x| Ãz〉 〈B ′
x| Ãx〉

]

of R ′ = O B R such that s′
1 ≥ s′

2. Then, by using Corollary 11, we have

min
Ẽ∈Pba(ω′)

[
HẼ (X |E) − HẼ (X |Y )

]
≤ G1

(
E ′)

= 1 − h

(
1 + s′

1

2

)
− h

(
1 + s′

2

2

)
. (F.1)

By using the minimax principle for singular values [3, Problem 3.6.1], we have

s′
1 = max

x∈R2:‖x‖=1
‖S ′x‖

= max
α,β∈R

α2+β2=1

∥∥∥∥
[ 〈B ′

z| Ãz〉 〈B ′
z| Ãx〉

〈B ′
x| Ãz〉 〈B ′

x| Ãx〉
][

α
β

]∥∥∥∥
= max

α,β∈R
α2+β2=1

∥∥∥∥
[ 〈B ′

z|(α| Ãz〉 + β| Ãx〉)
〈B ′

x|(α| Ãz〉 + β| Ãx〉)
]∥∥∥∥

= max
α,β∈R

α2+β2=1

√
〈B ′

z|Γα,β〉2 + 〈B ′
x|Γα,β〉2

≤ max
α,β∈R

α2+β2=1

√
〈B∗

z |Γα,β〉2 + 〈B∗
x |Γα,β〉2 (F.2)

= s∗
1, (F.3)



106 S. Watanabe et al. / Theoretical Computer Science 560 (2014) 91–106
where we set |Γα,β〉 := α| Ãz〉 + β| Ãx〉, and the equality in Eq. (F.2) holds if |B ′
z〉 and |B ′

x〉 span the same subspace as that 
spanned by | Ãz〉 and | Ãx〉. By using the minimax principle for singular values in a similar manner, we also have

s′
2 = min

x∈R2:‖x‖=1
‖S ′x‖ ≤ s∗

2. (F.4)

Combining Eqs. (F.1), (F.3), and (F.4), we have shown that Eq. (34) is smaller than or equals to Eq. (36). �
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