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We review a quantum key distribution protocol, recently proposed by us, that makes use 
of a two-way quantum channel. We provide a characterization of such a protocol from 
a practical perspective, and consider the most relevant individual-particle eavesdropping 
strategies against it. This allows us to compare its potentialities with those of the standard 
BB84 protocol which uses a one-way quantum channel.
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1. Introduction

Since the seminal works by Bennett and Brassard [1] and by Ekert [2] Quantum Key Distribution (QKD) has made 
impressive progresses [3], which can be roughly grouped into two main categories: on the one side there are theoretical 
progresses, among which the unconditional security of QKD is the most relevant one [4–8]; on the other side there are 
experimental progresses, almost exclusively in the field of quantum optics, which recently led to long-haul and high-rate 
QKD experiments [9–12]. The relevance of these advances promoted QKD as the most applicative research of quantum 
information, and also triggered the start-up of companies based on this technology [13].

Recent research on QKD is mainly focused on closing the existing gap between the perfect theory of the unconditional 
security proofs and the imperfect application of such a theory in the real world. This originated the definition of practical 
QKD [14,15] which deals with the proper modeling of devices like photon sources, light modulators and single-photon 
detectors [16,17]. By consequence, any new proposal relevant to the field of QKD can not set aside the practicality issue. 
This is even truer if one looks at the quantum hacking strategies based on practical imperfections recently accomplished by 
the group of Trondheim [18].

In this paper we want to characterize from a practical point of view a novel form of QKD based on a two-way quantum 
channel. Two-way channels are already used in QKD either in those setups based on a Plug-and-Play configuration [19]
or in those using the Cascade error correction procedure [20]. However these two examples do not represent a two-way 
quantum channel: in the first case only the backward channel ought to be considered quantum; in the second case neither 
the forward nor the backward channel are quantum.

The first input to two-way QKD came from Boström and Felbinger’s Ping–Pong protocol [21], where the question of 
the security of Quantum Dense Coding [22] was posed in terms of “deterministic and secure direct communication in 
presence of entanglement”. The Ping–Pong protocol was demonstrated insecure [23,24] but revised, more secure, versions 
were proposed later on [25–28], until the recent achievement of absolute security [29].
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Fig. 1. Schematics of the practical LM05 protocol. Bob randomly prepares qubits of X̂ and Ẑ bases. With probability (1-c) Alice encodes data on the qubits 
(Encoding Mode, EM) and with probability (c) she measures the qubits (Control Mode, CM). Bob measures the returning qubits in the same bases they were 
prepared and finally decodes Alice’s information. The noise check on the backward path, present in the original protocol [32], is removed in the present 
version.

Moving from these initial steps novel two-way schemes without entanglement were presented in [30], in [31] and then 
by us in [32]. This last scheme, named “LM05”, had the merit of being more feasible and secure than the protocol in [21]
and it came with the first security proof against non-trivial individual-particle attacks. As a matter of fact its experimental 
realization was proposed [33], proved in principle [34] and recently realized in the third telecom window [35]. Also, the 
protocol was generalized to a higher number of states [36,37] and to higher-dimensional Hilbert spaces [38–40].

Despite these improvements, a complete realization of the LM05 still remains an experimental challenge. The main 
problem is that in the original protocol both the forward and the backward channels are tested by the users to guarantee 
the security of the protocol. In particular the test of the backward channel requires that with a certain probability one of 
the users (Alice) prepares a qubit in exactly the same physical state as the one prepared by the other user (Bob) [32]. This 
is difficult in practice because all the relevant degrees of freedom of the qubit (wavelength, timing, bandwidth, etc.) must 
be accurately controlled by Alice.

In this work we modify the original LM05 protocol by removing the test of the backward channel and show that the 
resulting protocol is still secure against several single-particle attacks by the eavesdropper (Eve).

We also provide the state-of-the-art of the so called “deterministic QKD” [41] with a two-way quantum channel, together 
with a set of tools which can be used and further improved towards a final security proof of the scheme.

Throughout the work we compare our deterministic protocol with the standard non-deterministic BB84 [43].

2. The protocol

The practical rendering of the LM05 protocol (see Fig. 1) can be obtained from the original protocol [32] by removing 
the test performed by the users on the backward channel. Bob prepares a qubit in one of the four states |0〉, |1〉 (the Pauli 
Ẑ eigenstates), |+〉, |−〉 (the Pauli X̂ eigenstates), and sends it to his counterpart Alice. With probability c Alice switches to 
Control Mode (CM) and uses the qubit to test the channel noise or, with probability 1 − c, she switches to Encoding Mode 
(EM) and uses the qubit to encode a bit of information. The CM consists in a projective measurement of the qubit along a 
basis randomly chosen between Ẑ and X̂ , in a way equal to the protocol BB84 [1]. In the original protocol [32] this step 
was followed by the preparation of a new qubit in the same state as the outcome of the measurement; however this step is 
removed from the present protocol as it is not practical to implement. In fact, to conceal the chosen modality to Eve, Alice 
should prepare a qubit in exactly the same physical state as the one prepared by Bob, i.e. same wavelength, bandwidth, 
time-width and intensity. This is not possible without a sophisticated control of the experimental devices. The lack of a 
direct test of the backward channel thus represents the fundamental difference respect to the protocol described in [32]. 
The EM is a modification of the qubit state according to one of the following transformations: the identity operation Î , 
which leaves the qubit unchanged and encodes the logical ‘0’, or iŶ ≡ Ẑ X̂ operation, which flips any of the qubits prepared 
by Bob and encodes the logical ‘1’. After the encoding step Alice sends the qubit back to Bob who measures it in the same 
basis he prepared it; in case of an EM run this feature allows Bob to deterministically infer Alice’s operation, without any 
need of a basis reconciliation procedure, typical of a non-deterministic setup like BB84 [47]. Notice that Bob’s measurement 
does not depend on the modality chosen by Alice (EM or CM): Bob will perform in any case his measurement, with a 
nonzero probability to detect a vacuum pulse due either to the natural losses of the channel or to a CM run by Alice or 
to a specific attack by Eve. After the quantum communication, Alice will tell on the classical channel which runs were CM 
and which were EM. We also point out that the direct test of at least one of the two channels is a necessary procedure 
for any two-way quantum protocol. In fact there exist attacks, like Trojan-horse [48], Quantum Man-in-the-Middle [49] and 
Double-CNOT [49,36], described in next Section 3.3, which can not be detected by Alice and Bob using only the EM runs.

Even if the bases are not revealed for the EM runs, they are revealed for comparing the data acquired during the CM 
runs. This, in complete analogy with the BB84, will provide the users with an estimate of the noise present on the forward 
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channel in terms of the QBER (Quantum Bit Error Rate) q1, defined as the ratio of the number of wrong bits over the 
number of total bits coming from CM runs. Beside q1, the users can also estimate a second QBER Q AB which comes from a 
fraction of the EM runs, in which Alice reveals on the public channel her encoding.

While q1 is used to give an upper bound on Eve’s information, Q AB is used to provide an estimate of Alice and Bob 
mutual information, I AB , with I AB = H(A) − H(A|B) and H the usual Shannon entropy [50]. In case A is a random binary 
variable we have:

I AB(Q AB) = 1 − H(Q AB). (1)

Note that there is no definite relation between the two QBERs q1 and Q AB . A precise relation can only be found by assuming 
a particular strategy by Eve, as done in [32] or by adopting a particular noise model, as we shall do in the following.

Eve’s information is given in terms of mutual information between Eve and Alice, I AE , or Eve and Bob, I B E . Then the 
Csiszár–Körner (CK) theorem [51] is used to decide whether the QKD session is secure or not: Alice and Bob can establish 
a secret key (using Forward Error Correction and Privacy Amplification) if and only if I AB ≥ I AE or I AB ≥ I B E . Depending 
on the use of the I AE or I B E in the CK theorem, it is possible to define respectively the secrecy capacity of the Direct 
Reconciliation (DR), C D R

s , and of the Reverse Reconciliation (RR), C R R
s , as follows:

C D R
s (Q AB ,q1) = I AB(Q AB) − I AE(q1), (2)

C R R
s (Q AB ,q1) = I AB(Q AB) − I B E(q1), (3)

where I AE , I B E are the upper bounds to Eve’s mutual information with Alice and Bob respectively, which as said are 
functions of q1 only. Notice that according to the CK theorem is sufficient that only one of the secrecy capacities is greater 
than zero to have a secure communication. In order to accomplish a DR, the users must execute the Forward Error Correction 
in the direction that goes from Alice to Bob; in other terms it will be Alice to transmit to Bob the parity bits to correct the 
errors, and it will be Bob to correct the errors in his string to match Alice’s string. For the RR the roles of the users are 
the opposite. We remark that to have a tentatively deterministic Direct Communication [21], it must be Alice to lead the 
reconciliation procedure, because only her knows the random choice between CM and EM. This means that the security of 
a deterministic communication closely depends on the mutual information I AE and on the DR procedure.

The LM05 protocol has already been tested in free-space at the wavelength of 800 nm using the photon polarization as 
a quantum carrier of the information [34,52]. However this choice is not ideal in optical fibers because birefringence makes 
the polarization change randomly. The optimal implementation is to use an encoding based on the relative phase between 
two pulses separated in time. In this way the channel noise seen by the two pulses is the same, and their relative phase 
remains stable. The only left noise is the one coming from a misalignment between Alice’s and Bob’s apparatuses. To elim-
inate this source of noise one can adopt the mechanism of passive compensation, invented in [53] and employed for QKD 
in the Plug-and-Play system [54–57]. This technique fits very natural with the EM of LM05, thus letting the implementation 
reported in [35].

In the next sections we consider the most relevant individual attacks against LM05. Following the approach given in [58]
we group the attacks into two main categories: zero-loss and zero-QBER attacks. The former, analyzed in Section 3, do not 
introduce any loss in the channel but introduce noise; the latter, treated in Section 4, introduce losses, but no noise. This 
description allows to a certain extent a fair comparison between one-way and two-way deterministic QKD.

3. Zero-loss eavesdropping

3.1. Intercept and resend attack – IR

The simplest attack in which Eve acquires information from the communication channel, thus unavoidably introducing 
noise in the same channel, is the Intercept and Resend (IR), which follows for the LM05 protocol the same steps as for the 
BB84 protocol [1,58].

In the IR against LM05 Eve measures the photon coming out from Bob along one basis chosen at random between the 
two bases used by Bob, i.e. Ẑ and X̂ [59]. Then she takes note of the outcome and forwards to Alice the qubit projected by 
her measurement in a certain state |ψ〉. Alice, in EM, will flip or not-flip this state, and sends it back to Bob. Eve measures 
on the backward path the state emerging from Alice box, using the same basis previously used in the forward path, thus 
learning the information; finally she forwards the qubit to Bob.

This attack can be detected through the QBER q1 while running the CM. It is easy to see that when Eve perchance 
measures in the same basis of Alice and Bob, she creates no error in the forward channel; on the contrary, for different 
basis, she creates an error with probability 1/2. In both cases she acquires full information about Alice’s encoding, causing 
an average value of q1 equal to 1/4.

While IR provides Eve with full knowledge about Alice’s encoding it does not provide her with full knowledge about the 
result of Bob’s measurement. In fact the first measurement by Eve destroys the initial state prepared by Bob; furthermore 
the basis used by Bob is never revealed in LM05. This entails that Eve can foresees Bob’s result only three times over four, 
that is when she perchance measures along the same basis as Bob and when she measures along the wrong basis but 
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Fig. 2. Mutual information versus q1 in LM05 and BB84 in case of IR attack by Eve. I AB : solid line; I LM05
AE : dot–dashed line; I LM05

B E : dotted line; I B B84
AE = I B B84

B E : 
dashed line. The security thresholds are reported at the top of the frame.

accidentally guesses the correct final result. This argument, together with the previous one, implies the following relations 
for the IR:

q1 = 0.25,

Q AE = 0 ⇒ I AE = 1,

Q B E = 0.25 ⇒ I B E = 1 − H(Q B E) � 0.19. (4)

In the above equations Q AE and Q B E are defined in a way similar to Q AB . For example Q AE can be thought as the QBER 
that Alice and Eve would find if they compare their classical strings which are composed, respectively, by all the encodings 
transmitted to Bob and by all the data acquired by Eve by means of the IR. Recall that the above equations are connected 
with the direct (DR) and reverse (RR) reconciliation of the LM05 and provide the direct and reverse secrecy capacity of 
the protocol. The situation described by Eq. (4) can be compared with that of BB84, where for q1 = 0.25 the information 
acquired by Eve is I AE = I B E = 1/2 [3].

Of course Eve can decide to effect or not to effect IR in a certain run. In other terms she can effect IR only on a fraction 
ξ ∈ [0, 1] of the runs. This modifies Eqs. (4) into the new ones:

q1 = 0.25ξ,

I AE = ξ,

I B E � 0.19ξ. (5)

As said above, the mutual information between Alice and Bob is a simple function of the QBER Q AB , which is measured 
by the users by sacrificing a part of the data collected during the EM. It is straightforward to realize that for IR the two 
QBERs of the LM05 are equal:

Q AB = q1. (6)

Eq. (6) defines a first relation between the two QBERs measured in the LM05 protocol. Although this relation is not 
general, it deserves attention for it describes quite accurately the noise model pertaining to an experimental fiber-based 
setup like the one in Ref. [35], where the phase-drift noise arising in the optical fiber can be compensated both at the 
end of the forward channel and at the end of the backward channel through the passive Plug-and-Play auto-compensation 
technique [54–57].

Hence, we will use again the noise model of Eq. (6) to settle a homogeneous comparison between the various attacks 
put forward by Eve against the LM05 protocol. Of course, other models of noise are possible (see e.g. Ref. [34]).

In Fig. 2 we summarize what obtained thus far with the curves pertaining to the mutual information between Alice, Bob 
and Eve in LM05. In the same figure we also plot the curve pertaining to the analogous IR attack against BB84 (Section VI.D 
of [3]), for which I AE = I B E .

It can be seen that the curve I AE in LM05 is always above the curve of BB84, while the curve I B E is always below 
it. This, according to the CK theorem, Eq. (2), implies that the reverse (direct) secrecy capacity of LM05 is always higher 
(lower) than that of BB84 for the IR attack. The security thresholds obtained from the CK theorem against the IR attack for 
LM05 in DR and RR and for BB84, in the noise model of Eq. (6), are given by the intersection points of the plotted curves, 
and are explicitly written below:
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LM05D R : secure against IR if q1 < 11.9%

LM05R R : secure against IR if q1 < 25.0%

B B84 : secure against IR if q1 < 17.1%

Note that the BB84 security threshold of 17.1% is higher than the one pertaining to the optimal individual eavesdrop-
ping [60] which amounts to 14.6%. In fact the simple-minded IR attack just described is not optimal either for BB84 or for 
LM05. However they have been used in [58] and later in [35] to provide direct measurable quantities easily applicable in 
the experimental situation.

3.2. Non-orthogonal attack – NORT

The IR analyzed above can give Eve an information linearly varying with the QBER q1, as synthesized by Eqs. (5) and 
Fig. 2. It is possible for Eve to increase her information as a function of q1 by performing non-orthogonal measurements [3]
on both the forward and the backward paths. This strategy has been initially described in [32] by considering the mutual 
information as function of the “detection probability”. Now we use the same approach but in terms of QBER.

Given the four states prepared by Bob, and Eve’s ancillary states |ε〉, we can write the most general operation Eve can 
do on traveling qubit at point E1 of Fig. 1 as:

|0〉|ε〉 → |0〉|ε00〉 + |1〉|ε01〉 = √
F |0〉|̃ε00〉 + √

D|1〉|̃ε01〉,
|1〉|ε〉 → |0〉|ε10〉 + |1〉|ε11〉 = √

D|0〉|̃ε10〉 + √
F |1〉|̃ε11〉,

|+〉|ε〉 → 1√
2

[|0〉(|ε00〉 + |ε10〉
) + |1〉(|ε01〉 + |ε11〉

)] ≡ |+〉|ε++〉 + |−〉|ε+−〉,

|−〉|ε〉 → 1√
2

[|0〉(|ε00〉 − |ε10〉
) + |1〉(|ε01〉 − |ε11〉

)] ≡ |+〉|ε−+〉 + |−〉|ε−−〉, (7)

where the states |εi j〉 belong to the four-dimensional Hilbert space of Eve’s probe. Ancillary states with tilde are intended 
to be normalized. The following conditions make transformations (7) unitary:

〈ε00|ε00〉 + 〈ε01|ε01〉 ≡ F + D = 1, (8)

〈ε10|ε10〉 + 〈ε11|ε11〉 ≡ D + F = 1, (9)

〈ε00|ε10〉 + 〈ε01|ε11〉 = 0. (10)

Within condition (10) we can set 〈ε00|ε10〉 = 〈ε01|ε11〉 = 0 if we assume that the attack brought about by Eve is symmet-
ric [3]. A symmetric attack is obtained when the disturbance introduced by Eve results to be the same in the two bases 
measured by the users. Alice and Bob can test the occurrence of a symmetric attack by measuring the noise levels in the 
two bases separately and verifying that they are equal. Intuitively, a symmetric attack corresponds to the symmetric struc-
ture of the states prepared by the transmitter, both in the LM05 and in the BB84 protocol. In fact, for the BB84, it has been 
shown to be optimal (see Section VI.E of [3]). Our results are then limited to this class of individual symmetric attacks. We 
specify the angles between non-orthogonal vectors as:

〈̃ε00 |̃ε11〉 = cos x, 〈̃ε01 |̃ε10〉 = cos y, (11)

with 0 ≤ x, y ≤ π/2. In this sense the present strategy represents a non-orthogonal attack. Here, we do not fix values of the 
parameters we introduced.

At point E2 of Fig. 1 Eve performs an attack similar to that at point E1, but with fresh ancillae |η〉 (hence new parameters 
F ′ and D ′ are in order), to gain information about Alice’s encoding:

|0〉|η〉 → √
F ′|0〉|η̃00〉 + √

D ′|1〉|η̃01〉,
|1〉|η〉 → √

D ′|0〉|η̃10〉 + √
F ′|1〉|η̃11〉,

|+〉|η〉 → |+〉|η++〉 + |−〉|η+−〉,
|−〉|η〉 → |+〉|η−+〉 + |−〉|η−−〉. (12)

At the end of the transmission Eve will measure ε and η ancillae and she will gain information. Our next task is to recover 
the optimal eavesdropping strategy by Eve, i.e. determine parameters’ values that maximize Alice–Eve and Bob–Eve mutual 
information (I AE , I B E ) minimizing the QBERs q1 and Q AB .
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From transformations (7) and conditions (8)–(10) we can easily evaluate q1 for each basis prepared by Bob:

q1( Ẑ) = 〈ε01|ε01〉 = 〈ε10|ε10〉 = D, (13)

q1( X̂) = 〈ε+−|ε+−〉 = 〈ε−+|ε−+〉
= [1 − F cos x − D cos y]/2. (14)

A good choice for Eve to minimize the QBER q1 is to align her measuring apparatus with Ẑ and X̂ at random. If she 
aligns along Ẑ then q1( Ẑ) = D = 0, otherwise it will be q1( X̂) to be zero. On average, after setting D = 0 (and so F = 1), 
we will have:

qav
1 = 1 − cos x

4
, (15)

and Eqs. (7) become:

|0〉|ε〉 → |0〉|ε00〉,
|1〉|ε〉 → |1〉|ε11〉,
|+〉|ε〉 → 1√

2

(|0〉|ε00〉 + |1〉|ε11〉
)
,

|−〉|ε〉 → 1√
2

(|0〉|ε00〉 − |1〉|ε11〉
)
. (16)

From the above equations it is clear that the only relevant parameter is x: if it is zero then Eve’s ancillae are parallel and 
do not provide any information to her, nor do they cause any error on the channel since any evolved state remains equal to 
the initial one. On the contrary, if x = π/2 Eve’s ancillae are maximally informative to Eve, but maximum is also the noise 
created on the channel, according to Eq. (15). Similar arguments hold for the backward path, after E2-attack, with primed 
parameters replacing not-primed ones.

In order to evaluate the mutual information I AE let us write Bob’s initial states as:

|Ψ 〉 =
∑

α=0,1

cα |α〉, (17)

where we made the following ansatze correspondingly to the initial states:

|0〉 → cα = δα,0,

|1〉 → cα = δα,1,

|+〉 → cα = 1√
2
,

|−〉 → cα = (−1)α
1√
2
. (18)

Then we can rewrite transformations (7) as

|Ψ 〉|ε〉 =
∑

α=0,1

cα |α〉|ε〉 →
∑
α

cα

∑
β

|εαβ〉|β〉, (19)

and transformations (12) as

|Ψ 〉|η〉 =
∑

α=0,1

cα |α〉|η〉 →
∑
α

cα

∑
β

|ηαβ〉|β〉. (20)

Now suppose that Alice performs the identity Î between the two Eve’s attacks. The following sequence describes the 
state transformations:

|Ψ 〉|ε〉|η〉 E1−→
∑
α

cα

∑
β

|β〉|εαβ〉|η〉

I−→
∑
α

cα

∑
β

|β〉|εαβ〉|η〉

E2−→
∑
α

cα

∑
β,γ

|γ 〉|εαβ〉|ηβγ 〉. (21)
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The ancillary states involved in this operation are:

|ε00, η00〉, |ε00, η01〉, |ε01, η10〉, |ε01, η11〉,
|ε10, η00〉, |ε10, η01〉, |ε11, η10〉, |ε11, η11〉. (22)

If, instead of the identity Î , Alice performs the iŶ operation we have:

|Ψ 〉|ε〉|η〉 E1−→
∑
α

cα

∑
β

|β〉|εαβ〉|η〉

iY−→
∑
α

cα

∑
β

(−1)β+1|β ⊕ 1〉|εαβ〉|η〉

E2−→
∑
α

cα

∑
β,γ

(−1)β+1|γ 〉|εαβ〉|η(β⊕1)γ 〉, (23)

and the involved ancillary states are:

|ε00, η10〉, |ε00, η11〉, |ε01, η00〉, |ε01, η01〉,
|ε10, η10〉, |ε10, η11〉, |ε11, η00〉, |ε11, η01〉. (24)

In order to acquire information from states (21) and (23) Eve must measure both her ancillae. Keeping in mind orthog-
onality relations (10) and following, we see that the best way to do that is to distinguish orthogonal subspaces before, and 
then non-orthogonal states. The probability to make an error in distinguishing between two states with scalar product cos x
is (1 − sin x)/2 [61]. Observing states (21) and (23) we can notice that if Eve mistakes to identify her first ancilla (ε states) 
then she guesses the wrong Alice’s operation, since she flips from states (21) and (23) or viceversa. The same is true if she 
guesses right ε state but mistakes η state. Nevertheless, if she mistakes twice, then with the first error she misinterprets 
(21) and (23) and with the second error she compensates the first one, eventually guessing right Alice’s operation. This 
leads to estimate the probability Eve wrongly guesses Alice’s operation, i.e. the QBER Q AE between Alice and Eve, and from 
it, considering F = F ′ = 1, we find the following expression for I AE :

I AE =
{

1 − H

[(
1 + sin x

2

)(
1 + sin x′

2

)
+

(
1 − sin x

2

)(
1 − sin x′

2

)]}
. (25)

Then, to upper bound Eve’s information without affecting q1, we can simply use orthogonal ancillae on the backward path, 
that means to set x′ = π/2. In this case we obtain:

I AE = 1 − H

(
1 − sin x

2

)
. (26)

The last question concerns the mutual information between Bob and Eve. This is limited by the fact that Bob does 
not reveal any basis in LM05. So if Eve guesses the right basis in transformations (7) (probability equal to 1/2) then she 
has a probability of error equal to her capability to discriminate her ancillae, given then by (1 − sin x)/2. Otherwise, with 
probability 1/2, she guesses the wrong basis and she has a probability of 1/2 to be wrong with the qubit also. In the whole:

Q B E = 2 − sin x

4
. (27)

The security of the protocol now depends on the relation between Q AB and q1. For the purpose of comparison we 
assume here the same model as per Eq. (6), obtained for IR attacks: Q AB = q1. This is reasonable as the present strategy is 
a generalization of IR to nonorthogonal Eve’s ancillae. With such an assumption it is possible to draw the curves in Fig. 3.

The increased information acquired by Eve using NORT rather than IR is apparent. The security threshold for BB84 is 
now 14.6%, equal to the one obtained in [60] for the optimal single-particle eavesdropping. On the contrary, the thresholds 
for LM05 are 10.0% and 25.0% for DR and RR respectively. Hence LM05 used in RR is more tolerant to noise than BB84, 
provided that Eve’s action is limited to a NORT attack.

3.3. Double CNOT attack – DCNOT

So far we have analyzed attacks in which Eve measures the qubit coming out from Bob’s station. As we have seen this 
kind of attack can provide Eve with a high mutual information with Alice. However the mutual information between Eve 
and Bob is poor, as illustrated by Figs. 2 and 3. The reason is that Eve’s initial measurement modifies the state prepared by 
Bob, and prevents her from knowing the outcome of Bob’s final measurement. It is then natural to ask whether is possible 
for Eve to perform her attack without altering Bob’s state, thus maximizing her mutual information with Bob. This attack 
exists and has been introduced for the first time in [49]. It is composed by a sequence of two CNOT gates from Eve, one for 
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Fig. 3. Mutual information vs q1 in NORT attack. The curves are: I LM05
AE (dot–dashed line), I LM05

B E (dotted line), I B B84
AE = I B B84

B E (dashed line). The security 
thresholds are reported at the top of the frame.

each path of the LM05; hence we call it Double CNOT attack, in short “DCNOT”. We will show that DCNOT can make I B E , 
distilled in the RR modality, equal to its maximum and to I AE , thus reducing the LM05 security to the security obtained in 
the DR modality.

Let us study the evolution of the states prepared by Bob under the action of the first CNOT gate by Eve. Eve appends 
an ancilla in the state |0〉e to the initial states prepared by Bob; then she performs a first CNOT gate before Alice’s station 
using the traveling qubit as control and her ancilla as target. The states become:

|0〉|0〉e → |0〉|0〉e,

|1〉|0〉e → |1〉|1〉e,

|+〉|0〉e → |0〉|0〉e + |1〉|1〉e√
2

,

|−〉|0〉e → |0〉|0〉e − |1〉|1〉e√
2

. (28)

We can notice that when Bob prepares states in the basis X̂ the CNOT gate creates an entangled state with the traveling 
qubit and Eve’s ancilla. After that Eve forwards the control qubit to Alice, who performs her encoding Âi ( Â0 = Î and 
Â1 = iŶ ) on it and then sends it back to Bob. Eve, on the backward path, executes a second CNOT gate on the whole 
system. We report Alice’s and Eve’s actions as:(

Âi|0〉)|0〉e → (
Âi|0〉)|i〉e,(

Âi|1〉)|1〉e → (
Âi|1〉)|i〉e,

( Âi |0〉)|0〉e + ( Âi |1〉)|1〉e√
2

→ (
Âi|+〉)|i〉e,

( Âi |0〉)|0〉e − ( Âi |1〉)|1〉e√
2

→ −(
Âi|−〉)|i〉e. (29)

From these equations we can recognize that the entanglement created by Eve in the first CNOT gate disappears with the 
second CNOT. Furthermore, Eve’s ancillae take exactly the information encoded by Alice; hence it is sufficient for Eve to 
measure them in the basis Ẑ to find out Alice’s encoding: |0〉e indicates that Alice performed the identity, while |1〉e

indicates the spin-flip operation. Finally, after the second CNOT the state arriving to Bob is just the right state he expected 
to receive! This entails two consequences:

i) in the DCNOT Q AB = 0. If Alice and Bob use only Q AB as a security parameter, they will never detect this kind of 
attack by Eve. However, for the same reason, the mutual information between Alice and Bob, which is a function of Q AB , is 
always equal to 1.

ii) Eve acquires full information about both Alice (I AE ) and Bob (I B E ). In fact she knows perfectly the encoded transfor-
mation and the result that is going to be obtained by Bob.

The DCNOT attack can be detected in CM. If the qubit is prepared in the basis Ẑ Eve does not perturb the state at all 
while if it was prepared in the basis X̂ the QBER q1 is equal to 1/2. Hence the overall QBERs and information situation for 
this attack is:
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Fig. 4. Mutual information I AB (solid line) and I LM05
AE = I LM05

B E (dot–dashed line) versus q1 in the DCNOT attack against LM05. The security threshold is 
reported at the top of the frame.

q1 = 0.25, (30)

Q AB = 0 ⇒ I AB = 1, (31)

I AE = I B E = 1. (32)

These equations are quite similar to Eqs. (5) obtained for the IR attack, with the important difference that Q AB is now zero 
and, by consequence, I AB is always equal to 1, as per Eq. (32). Hence, by making use of the CK theorem, Eq. (2), we can 
conclude that the LM05 provides a secure rate against DCNOT over the whole interval of q1.

Likewise IR, if Eve performs the DCNOT in a partial way, her information will be a linear function of the QBER q1; then 
the corresponding curve would be exactly the same as the one depicting I LM05

AE in Fig. 2. We report such a curve in Fig. 4.
An important modification to the DCNOT is the following. Eve executes a random flip/no-flip unitary operation, analogous 

to the one effected by Alice, after the second CNOT, on the backward path. In this way Eve increases Q AB , from its minimum 
value 0 to any desired value χ and decreases the mutual information between Alice and Bob from its maximum value 1
to any other value imposed by her. Furthermore, with this kind of modified DCNOT attack, which we term DCNOT∗ , Eve 
still maintains the control about Bob’s final measurement outcome, as in the non-modified DCNOT. The situation for the 
DCNOT∗ attack is then summarized by the following equations:

q1 = 0.25ξ,

Q AB = χ ⇒ I AB = 1 − H(χ),

I AE = I B E = ξ, (33)

with χ ∈ [0, 0.5] a parameter controlled by Eve and ξ the fraction of attacked qubits, as already defined for IR attacks. 
We can again assume the noise model of Eq. (6) to compare this new attack with the previous ones, i.e. Q AB = q1. The 
corresponding curves are plotted in Fig. 4.

The LM05 protocol results secure, both in DR and in RR, if q1 < 11.9%. Hence, by comparing with Figs. 2 and 3, it is seen 
that this attack is less dangerous than NORT as far as I AE is concerned, but is far more dangerous for what concerns the 
security threshold pertaining to I B E , which decreases from 25.0% to 11.9%.

3.4. Generic individual attack

In this section we provide an upper bound to Eve’s information in case of single-particle attack. We adapt to LM05 an 
argument recently introduced in [25], which in turn is based on the main argument of [5] limited to the case of an individual 
attack. We remark that such a proof holds when LM05 is used for QKD, not for a deterministic Direct Communication [21]. 
We also stress that the proof given in [25] and repeated here for LM05 does not represent a security proof against the most 
general attack by Eve, i.e. a coherent attack of a two-way deterministic protocol. In fact, the argument does not include any 
multi-particle distillation of quantum states performed by the users, nor multi-particle attacks by Eve [62].

As a first step of the generic individual attack by Eve suppose that the users are provided by Eve with a state which is 
claimed to be a perfect singlet:

|ψAB〉 = (|0〉A |1〉B − |1〉A |0〉B
)
/
√

2, (34)

where the states |0〉 and |1〉 are the eigenstates of the basis Z , the computational basis. If the state (34) was a truly singlet, 
the users would perform LM05 as follows. Bob measures his particle in one of the two bases Z or X chosen at random, thus 
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preparing Alice’s particle’s state in a state orthogonal to his state. In EM, Alice performs on her particle the desired operation 
Î or iY , exactly as she would do in the standard prepare-and-measure LM05. All the same, in CM, Alice measures her particle 
in a basis randomly chosen between Z or X . This reduces the entanglement-based LM05 to a prepare-and-measure protocol. 
Once the security is shown for the former it is automatically true for the latter.

The next task is for the users to verify that they actually have been given by Eve the claimed state. In practice they must 
verify that the fidelity F (|ψAB 〉, ρAB) between the claimed state and the state ρAB in their hands is very close to 1. Hence 
consider a tripartite state |Φ〉AB E which is a purification of ρAB and which is in Eve’s hands:

ρAB = trE
(|Φ〉AB E 〈Φ|) (35)

ρE = trAB
(|Φ〉AB E 〈Φ|). (36)

Then S(ρAB) = S(ρE), where S is the Von Neumann entropy [50], because |Φ〉AB E is pure and then ρAB and ρE have the 
same spectrum. Hence Alice and Bob can calculate Eve’s maximum information from the relation S(ρAB ) = S(ρE) provided 
they can estimate S(ρAB). To this aim the users perform the CM. In particular they measure the QBER q1 which is equal to 
the infidelity δ of Ref. [5], which is defined by the relation

F
(|ψAB〉,ρAB

)2 ≥ 1 − δ. (37)

As a result, if q1 is not too large, the state ρAB is acknowledged to be very similar to |ψAB 〉 by the users. In particular, since 
they verify that F (|ψAB〉, ρAB)2 ≥ 1 − q1 then from the Lemma “High fidelity implies low entropy” of Ref. [5] one has:

S(ρAB) = S(ρE) ≤ −(1 − q1) log2(1 − q1) − q1 log2

(
q1

3

)
. (38)

This represents an upper bound to Eve’s absolute information at the end of the forward path, in full analogy with what 
happens in the BB84 protocol. What we need now is a connection with the backward path. Between the two paths, Alice 
encodes information on her particle. So let us make a step back and focus on the mutual information between Alice and 
Eve, I AE .

It is known that the Holevo information is an upper bound to the mutual information [50]:

I AE ≤ χ(ρAE), (39)

with ρAE = trB(|Φ〉AB E 〈Φ|) and χ(ρ) = S(ρ) − ∑
k S(ρk). Furthermore the following relations trivially hold:

χ(ρAE) ≤ S(ρAE) ≤ S(ρE), (40)

with ρE = trA(ρAE). The last equation is an intuitive corollary to the Holevo theorem cited as “Lemma 2” in Ref. [5]. So, it 
turns out that the upper bound S(ρE ) available to Alice and Bob is an upper bound both to the mutual information I AE and 
to the Holevo quantity χ(ρAE ). As stated in Ref. [25] the Holevo quantity does not increase under quantum operations. In 
particular Alice’s encoding operations cannot increase χ(ρAE ). By consequence one has:

χ(ρAE)after ≤ χ(ρAE)before ≤ S(ρE) (41)

where the labels “before” and “after” refer to Alice’s encoding. So S(ρE ) represents a bound to Eve’s information even after 
Alice’s encoding.

To conclude the proof it suffices to note that even if Eve can increase S(ρE ) on the backward path, e.g. by attaching new 
ancillae to the traveling states, the increase in information does not concern Alice’s encoding. So it would be the same for 
Eve if she increases her information since the beginning on the forward path; but in that case the users already have the 
bound of Eq. (41).

Now it is possible to use the CK theorem, Eq. (2), and the noise model of Eq. (6) to make a guess about how tight the 
given bound is. In this model the mutual information I AB is given by 1 − H(q1) while from Eq. (38) we get an upper bound 
to Eve’s average information. The curves pertaining to the mutual information are plotted in Fig. 5. They are compatible with 
the previous results since the found threshold, q1 ≤ 8.8%, is lower than all previous single-particle attacks, both in DR and 
in RR. Note however that the given bound is meaningful only for LM05 in DR since it is based on the Holevo information 
bound Eq. (41) which makes explicit reference to Alice’s encoding and none to Bob’s measurement. However although the 
security threshold pertaining to RR could be higher than that for DR, it cannot be too much different because we provided 
an explicit attack, the DCNOT∗ , which gives a security threshold of 11.9% for LM05 in RR, only 35% higher than the above 
threshold. Moreover, limiting the analysis to DR, it turns out that the security bound just given is quite tight. In fact, with 
the NORT attack we found a security threshold of 10.0%, which is only 13.6% higher than the given bound.

Finally let us note that the above bound holds trivially for BB84 as well, where Alice does not encode information on the 
received state. In this case however the bound is not tight as 8.8% is far smaller than the 14.6% pertaining to the optimal 
individual attack against BB84 [60].

Before moving to the next section and study the zero-QBER attacks, we summarize the results found for the zero-loss 
individual eavesdropping in Table 1.
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Fig. 5. General attack security for LM05 in DR. The security threshold amounts to q1 = 8.8%. For q1 > 18.9% Eve gets full information about Alice’s encoding.

Table 1
security thresholds for single-particle attacks against LM05 in DR, LM05 in RR and 
BB84.

Eve’s strategy LM05-DR (%) LM05-RR (%) BB84 (%)

IR 11.9 25.0 17.1
NORT 10.0 25.0 14.6
DCNOT∗ 11.9 11.9 –
Generic 8.8 – 8.8

4. Zero-QBER eavesdropping

We now consider attacks that introduce losses, but no noise. If Alice uses a perfect single-photon source the single 
photon can only be detected either by Eve or by Bob. However in practice Alice uses an approximated single-photon source 
i.e. an attenuated laser beam. For this source the number of photon per pulse follows a Poisson statistics. It is then possible 
that a single pulse contains more than one photon in the same quantum state, and that both Eve and Bob detect the same 
qubit. In this case Eve steals one bit of information without introducing any noise in Bob’s measurement; however she 
introduces losses. Alice and Bob, from the knowledge of the loss rate, should be able to infer how much information has 
been stolen and remove it by means of Privacy Amplification [63,64]. It is worth noting that in the hypothesis of zero-QBER 
attacks the mutual information between Alice and Bob is always maximum and no Error Correction is needed to reconcile 
users’ keys. Another obvious consequence of this assumption is that Eve does not acquire any further information from the 
Error Correction procedure. So her knowledge will derive entirely from her attack to the quantum channel.

4.1. Beam splitting attack – BS

In the Beam Splitting attack (BS) Eve uses a beam-splitter of transmissivity T = 1 − R to deviate a fraction R of the main 
beam towards her detectors, which are supposed to be ideal (100% quantum efficiency, no dark counts). The approach for BS 
is very similar to the one adopted for the IR attack: we first evaluate the probability of success for Eve eavesdropping one 
bit of information; then we relate the photon emitted by the source to the eavesdropped bits via the Binomial distribution.

Let us first analyze the BB84 [58].
Define μ as the average number of photons contained in each pulse prepared by Alice. With her beam-splitter Eve splits 

a fraction Rμ from the main beam towards her (ideal) detectors, so that the probability to successfully detect a photon is 
given by:

P = 1 − e−Rμ ≈ Rμ. (42)

The above approximation holds when μ � 1. Usually in the experiments on BB84 μ = 0.1. It is reasonable to assume that 
R � 1 because usually the attenuation rate measured by Alice and Bob is very close to the unity at wavelength of 1550 
nm. Hence Eve’s probability to successfully detect a photon is about μ. We also conservatively assume that Eve possesses a 
perfect quantum memory to store the bits until the moment in which the basis is revealed by Alice and Bob, so that every 
stored photon is detected by Eve in the right basis. This means that μ represents the average information collected by Eve 
against BB84 through the BS attack in the asymptotic limit of a large number N of pulses traveling on the channel:

I B B84 = μ. (43)
E
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This expression can be used to provide a secure gain similar to that obtained for IR attack. Specifically the secure gain G B B84

is:

G B B84 = G B B84
raw × (

1 − I B B84
E

)
, (44)

where:

G B B84
raw = 1 − exp

[−μ × ηd × Γ B B84(L)
]
, (45)

Γ B B84(L) = ΓQ C (L) × ΓB (total transmission), (46)

ΓQ C (L) = 10−0.02×L (transmission of the quantum channel), (47)

with parameters ηd = 0.12 (efficiency of Bob’s detectors), ΓB = 0.4 (transmission of Bob’s box), and μ is optimized for every 
distance L in order to give the maximum secure gain.

In analogy with BB84 one can calculate the amount of Privacy Amplification [63,64] necessary to cope with BS in LM05. 
Being LM05 a two-way protocol the BS must be accomplished using two beam-splitters rather than one, positioned in the 
two paths of the communication channel. In this way it may happen that Eve measures two photons, one from the forward 
path and one from the backward one; then, by comparing her outcomes, Eve can ascertain the encoded information. Let 
R1 and R2 be the reflectivity of the two beam-splitters. After the first beam-splitter Eve has a probability of successful 
detection

P1 = 1 − e−R1μ. (48)

The fraction of the beam transmitted through the first beam-splitter is T1μ = (1 − R1)μ. Then the fraction of the beam 
deviated by the second beam-splitter is R2(1 − R1)μ, and Eve’s probability to detect a photon in the second path is:

P2 = 1 − e−R2(1−R1)μ. (49)

A successful eavesdropping is given by two successful detection events in the same run:

P B S12 = P1 · P2 = (
1 − e−R1μ

)(
1 − e−R2(1−R1)μ

)
. (50)

From this expression it is straightforward to check that the value of R1 = 1/2 maximizes P B S12 for any μ. An intuitive way 
to understand this is to take R2 � 1, to let Eve read as much information as possible from the backward path, and to realize 
that in this case Eve’s best choice is to analyze half of the beam from the forward path and half from the backward one, i.e. 
to set R1 = 1/2. Inserting these values into Eq. (50) we have:

P B S12 ≤ (
1 − e−μ/2)2 ≡ P∗ = 1 − 2e−μ/2 + e−μ, (51)

which represents the average information acquired by Eve through the BS attack against the LM05 protocol, both in DR and 
RR, in the asymptotic limit of an infinite number of pulses traveling on the two-way quantum channel [35]:

I LM05
E = P∗. (52)

This expression can be used to provide a secure gain similar to that previously obtained for BB84. Specifically the secure 
gain G LM05 is:

G LM05 = G LM05
raw × (

1 − I LM05
E

)
, (53)

where:

G LM05
raw = 1 − exp

[−μ × ηd × Γ LM05(L)
]
, (54)

Γ LM05(L) = Γ 2
Q C (L) × ΓB × Γ 2

A (total transmission), (55)

ΓQ C (L) = 10−0.02×L (transmission of the quantum channel), (56)

with parameters ηd = 0.12 (efficiency of Bob’s detectors), ΓB = 0.4 (transmission of Bob’s box), ΓA = 0.45 (transmission 
of Alice’s box) and μ is optimized for every distance L. Note that the crucial equation is that defining Γ LM05(L) which, 
with respect to BB84, contains the square of ΓQ C (L), because the channel is two-way, and the term Γ 2

A , which represents 
the double-transmission of Alice’s setup because the photon passes twice in it before going back to Bob. The values of the 
parameters reported after Eq. (56) are similar to those experimentally measured in Ref. [35].

In Fig. 6 we plot log10 G B B84 and log10 G LM05. It can be noted that the secure rate pertaining to LM05 is far smaller than 
that pertaining to BB84. This crucially depends on the higher loss-rate of the two-way channel of LM05.

However in the next section we show that the difference between the two protocols in the frame of zero-QBER attacks 
can be dramatically reduced when the Photon-Number Splitting (PNS) attack by Eve is considered. This is due to the higher 
resistance offered by LM05 against this kind of attacks.
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Fig. 6. Plot of the secure gain of BB84 (G B B84, Eq. (44), dashed line) and LM05 (G LM05, Eq. (53), solid line) versus the length of the communication channel, 
in case of BS attack by Eve. The BB84 is superior to LM05 for all the distances. This is due to the double loss-rate of the two-way LM05 protocol.

4.2. Photon-number splitting attack – PNS

In the following we describe the Photon-Number Splitting (PNS) attack [65,66,15,67,68] against the present version of 
the LM05 protocol. This attack has been previously described in [52] for the original LM05 protocol. The removal of the test 
on the backward channel does not present any major subtleties: it is simply replaced by the test of the QBER Q AB , which 
obliges Eve to perform an attack on at least three photons (see the following explanation) to not introduce any disturbance 
on the channel.

As mentioned in the previous Section 4.1, when the photon source is a laser attenuated with an average photon number 
per pulse μ, the probability to have n photons in a single pulse is given by a Poisson distribution:

Pn(μ) = μn

n! e−μ. (57)

This means that with a probability Pn(μ) Bob prepares the state |ψ〉⊗n rather than the desired state |ψ〉 (ψ indicates one 
of the four states prepared by Bob in BB84 and LM05). This accidental redundancy can be exploited by Eve to perform a 
perfect zero-QBER attack.

It is known [69] that when n = 3 it exists a measurement M that provides a conclusive result about the absolute 
polarization ψ with (optimal) probability 1/2. Eve can exploit this fact to eavesdrop on LM05 protocol in the following way. 
She performs a quantum nondemolition measurement (QND) on the pulses as soon as they exit Bob’s station; this can be 
done without perturbing the state ψ : when she finds n < 3 she blocks the pulses; on the pulses with at least three photons 
she executes M and if the outcome is not conclusive she blocks these pulses as well; when n ≥ 3 and the outcome of M
is conclusive she prepares a new photon in the right state ψ and forwards it to Alice. Until here this attack is completely 
analogous to the ‘IRUD-attack’ described in [69]. The only variant is that Eve measures again the photon on the backward 
path after Alice’s encoding, to capture the information. Since Eve did know the state entering Alice’s box she can extract the 
information without perturbing the state. After that she forwards the photon in the correct state to Bob. We call this first 
PNS attack PNSM .

A second attack is more peculiar to LM05. Suppose that n = 2 and call the two photons in the pulse p1 and p2. As before 
Eve can know the number of photons per pulse through a QND measure. When n < 2 Eve blocks the pulses. When n = 2
she stores p1 and forwards p2 to Alice; this let her remain undetected during a possible CM on the forward path. On the 
way back Eve captures again p2. To gain Alice’s information she must decide whether the polarizations of p1 and p2 are 
parallel or antiparallel: in the first case she would deduce the logical value ‘0’; in the second case she would deduce ‘1’. 
However, the discrimination between parallel and antiparallel spins is not as simple as it appears at a first glimpse: while 
the parallel-spin-state |P 〉 = |ψ〉p1 |ψ〉p2 is symmetric, the antiparallel-spin-state |A P 〉 = |ψ〉p1 |ψ⊥〉p2 is neither symmetric 
nor antisymmetric. Upon symmetrizing |A P 〉 we can realize that it is not orthogonal to |P 〉, and by consequence it is not 
perfectly distinguishable from it (we remand to [70,71] for a complete treatment of this problem). Actually an optimal 
measurement M′ is a nonlocal one and gives Eve a conclusive result (between |P 〉 and |A P 〉) with a probability 1/4 [70]. 
Hence Eve can block all the “inconclusive” pulses to gain full information and still remain undetected. However it remains 
open the question of which photon must Eve forward to Bob: upon obtaining this result, Eve does not know whether to 
give Bob the state |ψ〉 or the state |ψ⊥〉, because she ignores the absolute value of ψ prepared by Bob. This shows that 
two photons are not sufficient for a perfect eavesdropping with M′ . Yet the complete attack can be accomplished with an 
additional photon p3: Eve should store p3, execute M′ , and eventually encode p3 according to the conclusive outcome of 
M′; the photon prepared in this way can be forwarded to Bob without risk of detection.

The above analysis establishes that a perfect eavesdropping can be realized with at least three photons in a pulse. It 
also establishes that the measurement M represents a more powerful resource for Eve than M′, for a number of reasons: 
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Fig. 7. Plot of the security regions of BB84 (D B B84, Eq. (58), from the dashed line to the axis of abscissae) and LM05 (DLM05, Eq. (59), from the solid line 
to the axis of abscissae) versus the length of the communication channel, in case of PNS attack by Eve. The BB84 is superior to LM05 for longer distances, 
but LM05 is superior on shorter distances. This is due to the higher resistance of LM05 to PNS-like attacks.

it gives information on the complete state ψ of the photons, not only on Alice’s operation; the probability of conclusive 
results is 1/2 rather than 1/4; Eve knows about the conclusiveness of her measurement immediately, rather than after 
Alice’s encoding, and can use this information to improve her strategy. For these reasons we only consider the robustness 
of LM05 against the PNSM attack following [52].

In case of PNS attacks it was shown in [67] that a communication is secure until the signal sent by Alice arrives at Bob’s 
with a probability higher than the probability to generate a multi-photon. In our present case the signal is the raw gain 
Graw , previously introduced for BB84, Eq. (45), and LM05, Eq. (54), where we have neglected the contribution of the dark 
counts. Hence, for BB84, the transmission is secure when the following condition is fulfilled:

D B B84 = G B B84
raw − P B B84

P N S > 0, (58)

with G B B84
raw defined by Eq. (45) and

P B B84
P N S =

∞∑
i=2

e−μ μi

i! = 1 − e−μ(1 + μ)

the probability that Alice accidentally emits 2 or more photons in a single pulse.
All the same, for the LM05 we have:

D LM05 = G LM05
raw − P LM05

P N S > 0, (59)

with G LM05
raw defined by Eq. (54) and

P LM05
P N S =

( ∞∑
i=3

e−μ μi

i!

)
− 1

2

μ3

6
e−μ = 1 − e−μ

(
1 + μ + μ2

2
+ 1

2

μ3

6

)
the probability that Alice emits a number of photons dangerous for LM05, as discussed above.

Then we plot in Fig. 7 log10 D B B84 and log10 D LM05 and obtain a comparison of the security regions pertaining to BB84 
and LM05. Differently from the BS attack, for the PNS attacks the BB84 is more performant than LM05 on longer distances, 
higher than 2.55 km with our parameters, but LM05 is more performant on shorter distances. Hence, while losses remain 
an important limiting factor for any two-way quantum communication, the higher protection from PNS attacks of the LM05 
with respect to BB84 could enable an advantage in terms of the secure rate for small-range setups like the one in [72].

5. Conclusion

In the present work we have described and characterized a practical version of the two-way QKD protocol LM05 by 
considering the most relevant single-particle eavesdropping strategies against it.

The security of the scheme is guaranteed by two QBERs, q1 and Q AB , which are not trivially related one to each other. 
By assuming a noise model where q1 = Q AB it turns out that the most powerful attack against LM05 in direct reconciliation
is the NORT, which provides an upper bound to secure QKD equal to q1 = Q AB = 10.0%, while the most powerful attack in 
reverse reconciliation is the DCNOT∗ , which provides a threshold of q1 = Q AB = 11.9%. The adopted noise model is based on 
the experimental evidence that one-way and two-way channels can be controlled with the same level of precision. However 
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other noise models can be considered as well, for instance one in which q1 = 15% and Q AB = 0. In this case, if Eve performs 
individual attacks only, it is not possible to distill a secure key with the BB84 protocol, while it is possible with the LM05. 
This in our opinion underlines the intrinsic difference between the two ways of performing QKD and encourages further 
research in this area. Moreover it is worth recalling that in the present version of LM05 we did not include a QBER test 
on the backward path of the communication channel; such an option, though not very practical, can improve the obtained 
secrecy capacities.

In the limited scenario of single-particle attacks, we have compared the two-way LM05 protocol with the standard BB84, 
which uses a one-way quantum channel. We have found that the main limitation of two-way QKD is the high loss-rate, 
even if it is partially counter-balanced by the higher resistance to PNS-like attacks. This entails that the field of application 
of two-way QKD shall be limited to short communication channels, like those typical of a QKD network, where the optimal 
average distance is about 17 km [73]. Even so a conclusive answer about the two modes of performing QKD can come only 
from a quantitative unconditional security proof for two-way QKD, which is still lacking at present. In this respect, it is our 
opinion that specific tools should be developed for this task, e.g. an entanglement-based description specific to two-way 
QKD. In fact, any argument too closely related to one-way QKD fails to capture all the peculiarities of two-way QKD, like 
the encoding on operators rather than on states and the reverse reconciliation of the key.

While we are aware that further studies are needed to make the LM05 protocol and two-way QKD in general viable for 
applications, we are also confident that the multi-way use of a quantum channel could play an important role in future 
developments of quantum cryptography.
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