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Abstract 

The 3-stage Clos network C(n,m,r) in the multirate environment has recently been studied 
for strictly nonblocking and rearrangeably nonblocking, but not much is known for wide-sense 
nonblocking. This is not really surprising since very little is known about wide-sense nonblocking 

even for the classical circuit switching environment. In this paper, we propose a class of “quota” 
algorithms and show that by using such an algorithm the number m of center switches required 
is always less than that for strictly nonblocking. In particular, when no bound is set for the rate 
(except it is greater than zero and not exceeding the link capacity), then m required for strictly 
nonblocking is unbounded, while 5.75n suffice for our algorithm. Better results for the 2-rate 
and 3-rate environments are also obtained. 

1. Introduction 

The 3-stage Clos network C(n,m, I) is generally considered the most basic multi- 

stage interconnection network (MZN). A result obtained for C(n, m, r) is often ex- 

tendible to MIN with more than three stages. C(n,m, P) is symmetric with respect to 

the center stage. The first stage, or the input stage (hence the third stage or the out- 
put stage), has r n x m (crossbar) switches; the center stage has m r x r (crossbar) 

switches. The n inlets (outlets) on each input (output) switch are the inputs (outputs) 
of the network. There exists exactly one link between every center switch and every 

input (output) switch. We will refer to the inputs and outputs as external links and 

the network links as internal links. 

In classical circuit switching, three types of nonblocking properties have been ex- 

tensively studied [l]. A call between an idle pair (input, output) is routable if there 
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exists a path connecting them such that no link on the path is used by any other 
connection paths. A network is strictly nonblocking if regardless of the routing of 
existing connections in the network, a new call is always routable. A network is wide- 
sense nonblocking (WSNB) if a new call is always routable as long as all previous 
requests were routed according to a given routing algorithm. A network is rearrange- 

ably nonblocking, or simply rearrangeable, if a new call is always routable given 
that we can reroute existing connections. Clearly, strictly nonblocking implies WSNB 
implies rearrangeable. 

In the multirate environment, a call is a triple (u, U,W) where u is an inlet, v an 
outlet and w a weight which can be thought of as the bandwidth requirement (rate) 
of that call. We normalize the weights such that 1 >w > 0. In the weakly uniform 

capacity model, each internal link has a capacity one; namely, it can carry any number 
of calls as along as the sum of weights of these calls does not exceed one. We also 
require that a call (u, v, w) can be generated only if the sum of weights of calls (u,z, w) 
over all z, and the sum of weights of all calls (y, v, w) over all y, currently carried 
in the network are both at most /I - w. This is equivalent to setting the capacity of 
an external link to be p. For the special case p = 1, the weakly uniform capacity 
model becomes simply the uniform capacity model. When a 3-stage Clos network is 
expanded to 5-stage (which can be further expanded to (2s + I)-stage) by replacing 
each r x r crossbar switch in the center stage with a C(n’, m’, r/n’), then external links 
of C(n’, m’, r/n’) become internal links of the 5-stage network and the uniform capacity 
model is preserved. 

Some important results have been given [3,5-71, for the strictly nonblocking and 
rearrangeable multirate 3-stage Clos network, but almost nothing on WSNB except 
Melen and Turner [6] showed that C(n, 8n, r) is multirate WSNB. This is not surpris- 
ing since there are very few WSNB results even for the classical circuit switching 
environment [ 1,2,4,8]. The purpose of this paper is to fill such a void. We show that 
in the multirate environment, only 5.75n center switches are required for WSNB. 

2. Some preliminary remarks 

Since strictly nonblocking implies WSNB, we first review what is known for strictly 
nonblocking multirate 3-stage Clos network as a starting point for WSNB networks. 
Let B denote an upper bound of the weight and b a lower bound. Melen and Turner 
[6] proved 

Theorem 2.1. C(n,m,r) is multirate strictly nonblocking if w E [b, I] and m 2 

2[(n - 1)/b] + 3. 

Chung and Ross [3] improved to 

Theorem 2.2. C(n,m, r) is multirate strictly nonblocking if w E [b, I] and m B 
2[l/bJ(n - 1) + 1. 
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They also showed 

Theorem 2.3. C(n,m,r) is multirate strictly nonblocking if w E (O,B] and 

ma lim2 
n-B I J l-B+& 

+ 1. 
E/O 

Niestegge [7] gave the following result for finite number of weights. 

Theorem 2.4. C(n, m, r) is multirate strictly nonblocking if w E [b,B], b divides all 

weights and 1, and m>2[(n - B)/(l -B + b)j + 1. 

A multirate environment is called a k-rate environment if there are only k different 
rates. 

Corollary 2.5. C(n,2n - 1,r) is l-rate strictly nonblocking if the rate divides 1. 

Note that when B -+ 1 and b + 0, the number of center switches required is un- 
bounded in all the above theorems. Niestegge was the first to notice that WSNEI may 
help. He gave an example for n = 4 and w is either 1 or a. From Theorem 2.4, 
m > 2.5 is required. But if all calls with weight 1 are routed through one group of cen- 
ter switches, and all calls with weight a are routed through another group, then seven 
center switches suffices for each group by using Corollary 2.5. Hence the necessary m 
is reduced from 25 to 14. 

We now generalize Corollary 2.5. We first introduce some terminology. A call 
(u, v, w) will also be referred to as a (U, V, w) call if u is in the input switch U, 
and v in the output switch V. The U-load (resp., Pload) of a center switch s is the 
sum of weights of all calls from U (resp., to V) carried by s. The (U, V)-load is the 
sum of the U-load and the V-load. 

Lemma 2.6. Suppose that p/p b B > b > /?/( p + 1) f or some positive integers p. Then 

C(n,2n - 1,r) is strictly nonblocking. 

Proof. Suppose the call (U, V, w) is blocked. Then this call cannot be routed through 
a center switch s if and only ifs carries p calls from U. At most L(pn - 1)/p] centers 
switches can carry p calls from U. Similarly, at most [(pn - l)/pJ center switches 
can carry p calls to V; hence 2 [(pn - 1)/p] + 1 = 2n - 1 center switches suffice. 0 

We can now generalize Theorem 2.4. 

Theorem 2.7. Suppose that the rates can be partitioned into k classes such that all 
rates in class i satisfy pfpi 2 w > p/(pi + 1) f or some integer pi. Then C(n,k(2n - 

1 ), r) is WSNB. 

Proof. Use 2n - 1 center switches for each class of calls. q 
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Corollary 2.8. C(n,k(2n - l),r) is k-rate WSNB. 

Again, the number of center switches required is unbounded if the number of weight- 
classes is unbounded. 

In this paper we propose a new type of routing algorithm using the “quota” scheme. 
Weights (or calls) are classified into large and small. P(x, y) denotes the algorithm 
that x center switches are designated as restricted switches each is allowed to carry no 
more than y small calls, but can carry as many large calls as capacity allows. Thus, 
P&O) is a reservation algorithm where x switches are reserved only for large calls, 
and P(O,O) is an algorithm where every call can be routed through any switch with 
capacity. The quota scheme can also be extended to more than two types of calls, or 
used recursively. We show that using the quota schemes, C(n, 5.75n,r) is WSNB for 
any set of rates. We also give better results when w can be bounded and when the 
environment is 2-rate or 3-rate. 

3. The general multirate case 

Define p = 11/B]. Label a call large if w > l/(p + 1 ), and small otherwise. For 
easier presentation, we ignore the integrality of m and we use 2n, instead of the correct 
2(n - w), as the maximum (U, V)-load before a call (U, V, w) is to be routed. We call 
this the ideal assumption. 

Theorem 3.1. C(n,m,r) is WSNB under P(x,O) where 

2S(p+l)(Bp+B-1)P forB<22=071875 

P2 
32 ’ ’ 

x= 

if WE(O,B] and m>m* E min{5.75@,2P(p + l)(Bp+ B + p - l)n/p2}. 

Proof. 
Case (i): B < $. Suppose a large call (U, V, w) is blocked. Then each of the xn 

restricted switches must carry p calls either from U or to V, hence a (U, V)-load 
exceeding p/(p + 1). Furthermore, each of the 2B(p + 1 )n/p nonrestricted switches 
must carry a load exceeding (1 - w) > (1 - B). Therefore, the total (U, V)-load carried 
exceeds 

2P(p+ l)Pp+B- l)n P 

P2 p+l 
+2P(p+1)n(l-B)=2pn, 

P 

contradicting the fact that both the U-load and the V-load are upper bounded by Bn 
(hence the (U, V)-load upper bounded by 2/3n). 
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B 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
n 0.022 0.096 0.17 0.3 0.75 0.8 1.6 2 2 2 

me/n 2.222 2.496 2.84 3.3 3.75 4.85 5.6 5.75 5.75 5.75 

m”jn 2.2 2.5 2.857 3.3 4 5 6.6 10 20 03 

Next suppose a small call (U, V, w) is blocked. Then each nonrestricted switch must 

carry a (U, V)-load exceeding (1 - w) b p/( p + 1). Thus, the total (U, V)-load carried 

exceeds 

2P(p+ l)n P - = 2/S, 
P P+l 

again, a contradiction. 

Note that for B = 0.5, m* = 3.75fin. 

Case (ii): BB g. By Lemma 2.6, 2n - 1 center switches can carry all large calls. 

By the result in Case (i), 3.75j3n additional center switches can carry all small 

calls. 0 

We compare m* with m” E 2n/( 1 -B) which is the m-value given in Theorem 2.3 for 

strictly nonblocking except under the ideal assumption (j is omitted) (see Table 1). 

Thus, we see that m* < m” always, and the difference increases with B and is un- 

bounded. 

In many practical applications, the environment is k-rate with small k. We show that 

we can do better than Corollary 2.8 and Theorem 3.1 for 2-rate and 3-rate in the next 

section. 

4. The 2-rate and 3-rate cases for the uniform capacity model 

First consider the 2-rate environment. Let B and b, 12 B > b > 0 be the two rates. 

Theorem 4.1. C(n, 3n, r) is WSNB if B < i. 

Proof. If f LB > b, then Theorem 4.1 follows from Theorem 3.1 by setting p = 3, 
B = f and noting 

2(p+l)(Bp+B+p- 1)n = 2(4)($‘k 80n 
=- 

P2 9 27 . 

If i >B > b > f, then Theorem 4.1 follows from Lemma 2.6. Therefore, it suffices 

to consider the case i B B > i 3 b. Define qo, 41, q2 in 

qobdl < (qo + 1% 

B+qlbdl <B+(q, + l)b, 

2B+qzb<l <2B+(qz+l)b. 



176 B. Gao, EK. Hwangl Theoretical Computer Science 182 (1997) 171-182 

Since 

and 

qob+2B+qzb<2<2[B+(q* + I)b], 

we have 

-1<6Eqo+q2-2ql<l. 

We also have 

q2 

40 + 1 
<q2b<1 -2B< f. 

Hence, 

3q2 Gqo = 2q1 - 92 + 6, 

2q2 Gq1 + v, 

which implies (by the integrality of q1 and q2) 

242 Gq1 if 6=0 or 1. 

and 

2q2+l<ql if 6=-l. 

Suppose P(x, q2) is the algorithm, where x is to be defined later. Consider the 2n exter- 
nal links of U and V. Assuming the worst scenario, every such external link generates 
a maximal set of calls, i.e., it generates q2 b-calls, or 1 B-call and q1 b-calls, or 
2 B-calls and q2 b-calls. Let con, qn,c2n denote the numbers on external links of U 
and V generating these sets of calls, respectively. 

Chh. SUPPOE that zo + ~1 + z2 = z. Then 

(Zl + 2z2)(41 - q2) + zoqo + zlql + z2q2 = z(2q1 - 92) + zrJs. 

Proof. 

h + 2zz)(q1 - 92) f zoqo + z1q1 + z2q2 

= (z - zo + z2)(41 - q2) + zoqo + z1q1 + z2q2 

= 441 - q2) + zoqo - (zo - Zl - z2)q1 + zoq2 

= z(q1 - q2) + zoqo + (z - 2zo)q1 + zoq2 

= @q1 - q2) + zocqo - 2% + q2) 

= z(2q1 - 92) + zo6. 
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Let yn denote the number of nonrestricted switches. We consider four cases. 
Case (i): 6 = 1. Let 

x= gq: - 12qtq2 + 4q; - zq2 - 2 

88 - 14qtq2 + 4q; f 6ql - 6q2 + 1’ 

Y= 
1%: - 32qlq2 + 12q; + 16ql - 16q2 + 4 

gq: - 14qlq2 + 44; + 6ql - 6q2 + 1 ’ 

Suppose a call (U, V,B) is blocked. Then each restricted switch must carry 2 B-calls 
and each nonrestricted switch a load exceeding 1 -B, the minimal such loads are q1 + 1 
b-calls, 1 B-call and q2-t 1 b-calls, 2 B-calls. Let ya, yt and y2(yafyt +y2 = y) denote 
the numbers of nonrestricted switches carrying these loads, respectively. Counting the 
number of b-calls and B-calls generated and carried (recall one B-call is generated but 
not carried), we have 

YO(41$- l)+Yl(qz+ 1)~~oqo+clql +c2q2, 

2.x + y1 + 2y2 <Cl + 2c2. 

Multiplying the second inequality by (41 - q2) and adding the first, then the left-hand 
side of the new inequality is 

(2x + Yl + 2y2)(q1 - q2) + Yo(41 + 1) + y1(q2 + 1) 

= wq1 - q2) + (Yl + 2y2)(q1 - q2) + y(ql + 1) 

-(Yl+Y2)(ql+l)+yl(q2+1) 

=%ql-q2)+Y(ql+l)+y2(ql-2q2-1), 

while the right-hand side is 2(2ql - q2) + co by the claim. Therefore, 

~(ql-q2)+Y(ql+1)<wql-q2)+~o-Y2(ql-2q2-1) 

6 2&l - 42) + 2 - (Cl/Q + c2) + y2 

< wq1 - q2) + 2 - P + Yl + 2Y2 )/2 + y2 

d2(2q1-q2+1)-x, 

which is false by a straightforward verification (substituting in the specified x and y 
values). 

Now suppose a call (U, V, 6) is blocked. Let ye, yl, ~2, yo + y1 + y2 = y be the 
numbers of nonrestricted switches carrying q. b-calls, 1 B-call and q1 b-calls, 2 B- 
calls and q2 b-calls, respectively. Then we have 

yoqo + Y141 + Y292 + xq2 < coq’o + ciq1 + c2q2, 
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Again, multiplying the second inequality by (41 - q2) and adding the first, we obtain 
(by the claim) 

YG%l - q2) + yo + qzx < 2(2q1 - q2) + co 

or 

Y(2@ - q2) + xq2 < 2(2q1 - q2) + 2 - cr - c2 - JIo 

< 2(2q1 -q2 + 1) - (JIr + 2y2)/2_Yod2(2ql _ q2 + 1) _ y,2, 

which is also false by a straightforward verification. 

The analyses of the other three cases are similar to Case (i) except slightly differ- 
ent conditions induce different values for x and y. We will merely list the implied 
inequalities which can be verified to be false. 

Case (ii): 6 = 0, q1>2q2 + 1. Let 

x = 4q: - 6qlq2 + 24; - 4ql + 2q2 8q: - 16qlq2 + 6q; 
4q: - kq2 + 4q; - q2 ’ Y= 4q: - 7q1qz + 4q; - q2. 

Then 

2x(ql-q2)+Y(ql + 1) <2(2q*-q2) - JQ(q1-2q2 - 1)<2(2ql-q2) for &call, 

Y(2ql - q2) + xq2 < 2(2ql - 92) for b-call. 

Case (iii): 6 = 0, q1 = 2q2. Let 

x= 
4q: - 6qlq2 + 2q; 8q: - 1% q2 + 6q; + 4ql - 442 

4q: - 7q1 q2 + 24; + 2q1 - 2q2 ’ 
Y’ 

4q: - 7q1q2 + 2q; + 2q1 - 2q2 . 

Then 

2(q1 -q2) + y(q1 + I) 

< wq1 -q2)+y2 < 2(2q1 -q2)+(c,+2c2-2x--1)/2 

<2(2qI - q2) + (4 - 2n)/2 = 2(2ql - q2) + 2 - x for B-call, 

Y(2qi - 92) + xq2 < 2(2ql - 92) for b-call. 

Case (iv): 6 = - 1, which implies ql a2q2 + 1. Let 

X= 

‘904: - 6qown + 2qoq; - 4qoql + 2qoq2 - 2q: - 2ql 

4qoq: - 7qoq142 + 2qoq; - qoq2 - q1q2 ’ - q2 

Y= 
gqoq: - 16qoqlq2 + 6qoq; + 4q; - 8q,q2 + 2q$ 

4qoq: - 7404142 + 2qoq; . - qoq2 - q1q2 - q2 
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Then 

WC71 - 42) + Y(91 + 1) < 2(2q, - q2) - co - y*(q, - 2q2 - 1) 

< 2(2qi - q2) for B-call; 

Y(29 - 92) +xq2 < 2(2q1 - q2) + yo - co < 2(2q, - q2) 

+ (Cl% + c2q2 - y1q1 - y2q2 - xqz)/qo 

<2(2qI - 92) + (2gi - xq2)/qo for &call. 0 

Remark. In each of the four cases considered in the proof, we actually gave the 

(x, y) pair which minimizes x + y. 

Theorem 4.2. Consider the 2-rate environment where 3 > $ >/b, B + ql b,c 1 < B+ 

(41 + l)b, q&d 1 < (qo + 1)b. Then C(n,m,r) is WSNB if 

2+2(qo-q1)(qo-ql-l) 

m>m*s I q;-4041 -q:-41 
for q0>2ql + 1, 

2q1 
2+- 

41 + 1 
for q0<2ql. 

Proof. Consider the algorithm P(x, q1 ) where 

{ 

240(40 - 41 - 1) 
for 4092ql + 1, 

x= 4; - 4041 - 4: - 41 

0 for q0<:2ql. 

Suppose a call from input switch U to output switch V is blocked. In the worst 

scenario, each external link of U and V generates a maximal set of calls. Assume that 

among the 2n external links, con of them generate qo b-calls each and c1n 1 B-call 

and ql B-calls each, where CO + cl = 2 (note that the blocked call is also counted). 

Define y = m* - x, so yn is the number of nonrestricted switches. 

(i) The blocked call is a B-call. Then each switch must carry a load exceeding 1 -B, 
which means, at least (ql + 1)b or B. In the worst scenario, all switches carry either 

ql+ I b-calls or 1 B-call. L e ysn and y1n denote the numbers of nonrestricted switches t 

carrying these two types of load respectively, where yc + y1 = y. By comparing the 

numbers of b-calls and B-calls generated by (U, V) and carried by the center switches, 

we obtain 

Yo(41 + 1)Gcoqo + clql 

and 

x + y1 < cl (since the blocked call is not carried). 

The first inequality can be written as 

y. < (2 - 4140 + Cl% = 2qo - (co - c1)q1 . 
41 + 1 41 + 1 
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Adding the two inequalities, we obtain 

m*=x+y< 
240 - (40 - 2q1 - 1)Cl 

q1+1 . 

Suppose 40 82% + 1. Then q0 - 2ql - 12 0. Since cl > X, 

,*<2q0-(40-2q1-1)x= 240 - (40 - 2ql - l)(m* - 2)q0/(q0 - ql) 

41 + 1 41 + 1 

= 2C10(2q0 - 39 - 1) - qo(qo - 2ql - l)m* 

(41 + INgo - 41) ’ 

or 
m* < 2qo(2qo %I1 - - 1) 

4; - 4041 - 4: 

= - m* 

’ - 41 

a contradiction. 

Suppose 40 Q2qi. Then q0 - 2ql - 1 < 0. Since cl <2, 

m*=x+y< 
2qo-qqo-2q1 - 1) 

41 + 1 

-2ql-_* 

41+1 ’ 

a contradiction. 
(ii) The blocked call is a b-call. Then each switch must carry a load exceeding 

1 - b, which means, either qob or B + qlb in the worst scenario. By the definition of 
P(x, ql ), each restricted switch carries q1 b-calls. Assume that YO nonrestricted switches 
carry qo b-calls each and yr carry 1 B-call and q1 b-calls each, where ya + yr = y. 
Again, comparing the numbers of b-calls and B-calls generated by (U, V) and carried 
by center switches, we obtain 

coqo + Cl% > yoqo + (x + y1)41 

and 

Cl 2Yl. 

This implies 

(2 - YlhO + y1q1 acclq’o + c1q1 > yoqo + (x + yl)ql 

or 

2qo > yqo + xq1. 

Suppose qo >2ql + 1. Then we have 

Go > mq0 - n(q0 - ql) 

=2qo+~(qo-ql)-x(qo-ql)=2qo, 

a contradiction. 
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Suppose qo <2q1. Then we have 

again, a contradiction. 0 

Clearly, m* < 4n for qo 62ql. If qo > 2ql, then 

9~-404~-4:-4~-~40-9~~~40-9~-~~=~40-~41~~41+~~~~. 

Hence, m* < 4n also for qo > 2ql. 

When b divides B and 1, then we can also use Theorem 2.4. We now show that 

Theorem 4.2 requires a smaller m. Note that q. - 2ql = l/b - 2( 1 - B)/b = (2B - I)/ 

b > 0. Therefore, qo >2ql + 1. We show that the m* never exceeds 2n/( 1 - B + b), 
which is the m in Theorem 2.4 under the ideal assumption: 

2 2(qo-q1)(qo-41 - 1) _ 

I-B+b 

2+ 

4; - - 4: - 9041 41 

240 =--- 2_ 2(qo-q1xqo-q1- 1) 

41 + 1 4; - - 4: - 4091 41 

aqo - -41 1) - x40 - 41 2(qo 41 - 1) 

= - 41fl 4; - - 4: - 4041 41 

= ~~~0-~1-~~~~~-~04~-4:-4~-~41+~~~q0-41~1 

(41 + wj - - 4: 4041 - 41) 

= vqo-q1- l)qo(qo-2q1- l)>. 

(41+l)(q~-qo41-q:-ql) ’ . 

Theorem 4.3. Consider the 3-rate environment with three weights B > w > b. Then 
C(n, 5n, r) is WSNB. 

Proof. (i) b > i. By Lemma 2.6, 2n center switches suffice for all calls. 

(ii) w > i 2 b. By Lemma 2.6, 2n center switches suffice for all B-calls and w-calls; 

another 2n suffice for all b-calls. 

(iii) B > i Zw. By Lemma 2.6, 2n center switches suffice for all B-calls. By 

Theorem 4.1, another 3n suffice for all w-calls and b-calls. 

(iv) i >B. By Theorem 3.1, 3.75n center switches suffice for all calls. 0 

5. Conclusion 

We proposed a new class of algorithms using the quota scheme. We show that 

C(n, 5.7&r) is WSNB for any set of rates under the uniform model. The required 
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m-value can be reduced if the upper bound B < g. Furthermore, C(n, 4n, r) is WSNB 
for any two rates, and C(n, 3~2,~) is 2-rate WSNB if B~0.5. Finally, C(n, 5n, r) is 
WSNB for any three rates. 
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