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1. Introduction

The class of EXPTIME-complete problems is well known for containing problems of finding the optimal strategies for
chess [7], checkers [15], as well as some versions of go (comp. [12,4]). Another set of EXPTIME-complete problems consists
of problems derived from questions of smaller complexity, by means of succinct circuits which allow one to present an
input to the algorithms in exponentially smaller space (comp. [1]). Yet another EXPTIME-complete problem was found by
H. Friedman about 1985 and published by Bergman, Juedes and Slutzki in [2]: it is an EXPTIME-complete problem to decide
whether a function can be obtained as a composition of given functions.

The problem of composition of functions was studied for a number of reasons. Finding a constant function as a
composition of a given set of functions over a finite set is connected to Cerny’s Conjecture [5] and was proved to be solvable in
a polynomial time in [8]. On the other hand, Dexter Kozen had proved in [11] that for a finite family of unary functions (over
a finite set) with one distinguished member, it is a PSPACE-complete problem to decide whether the distinguished function
can be obtained as a composition of the others. The mentioned above result of H. Friedman shows that allowing non-unary
functions causes the problem to become EXPTIME-complete.

The problem of composition of functions has a very natural algebraic description. The result of H. Friedman describes the
computational complexity of the following problem.

INPUT a finite algebra A and a function f : A¥ — A
PROBLEM decide if f € Clo(A).

This problem splits into subproblems — for a fixed, finite algebra A we define

INPUT afunctionf : A — A
PROBLEM decide if f € Clo(A).
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None of the such defined subproblems is more complex then the original problem. The natural question is how much easier
are they. Does the complexity of the first problem rely on the fact that the algebra can vary? Can we find a fixed structure
such that the connected subproblem remains complex? How complex is the problem of a membership in a finitely generated
clone? This question follows the line of research devoted to describing the computational complexity of natural algebraic
problems generated by fixed, finite structures. Such problems are studied extensively, and a number of results is already
known (comp. [16,9,10]).

The main theorem of our paper answers this question. We construct a finite family of binary functions (over a finite set),
such that the problem whether a given function can be obtained as a composition of functions from this fixed family is
EXPTIME-complete. This proves that the membership problem for a finitely generated clone can be EXPTIME-complete i.e.
as complex as the general problem. Moreover our construction allows us also to restate the result of [2], considering the
computational complexity of the TERM-EQ problem in a more restrictive way.

In Section 4, we build a finite family of binary functions such that the question whether a given function can be obtained as
a composition of these binary functions is EXPTIME-complete. The construction is motivated by the work of McKenzie [13].
In Section 5 we briefly address the consequences of our result to the TERM-EQ problem studied in [2].

2. Definitions

The following definitions allow us to state the problems formally. We define a set of functions obtained as compositions
of unary functions in the following way.

Definition 1. For a given set U and functions fy, ..., f; : U — U we define the set of functions generated by fo, ..., f; to
be

{idyU{s: U —> U|s=fg 0 ofy wherea; <nforalli <kj}.
and denote it by Clo¥ (fy, - . . , fy)-
In such a case the problem of of composition of unary functions follows.

Composition of unary functions. Given a finite set U and a number of functions s, fo, ..., f, : U — U decide whether
s € Clo¥(fo, ..., fo)-

In the case of composition of functions of higher arity we follow a standard notation which can be found in [3]. We define
a composition of functions in the following way:

Definition 2. For a set of functions fy, ..., f, such that fi : U% — U the set of functions generated by fy, ..., f, is the
minimal set X such that

(1) for any number m and any i < m the function f : U™ — U defined to be f(ao, ..., an_1) = a; is a member of X, and
(2) foranyi < nand any g, . .., g —1 members of X the function

fi(go, - .., 8—1) is amember of X.

We denote this set by Clo%(fo, . . ., f).
The general problem of composition of functions is defined in the following way.

Composition of functions. Given a finite set U together with a number of functions s, fy, . .. , fn such that f; : U — U and
s: U¥ — U decide whether s € Clo%(fy, . . ., f,).

Note that, according to Definitions 1 and 2, projections are always members of the generated set. This assumption is
introduced for clarity of presentation, and does not influence the computational complexity of problems considered in this

paper.
3. Notation and preliminaries

We identify natural numbers with their binary representations of a fixed length. That is, for a fixed n, a number between
0 and 2" — 1 is a word of length n over the alphabet {0, 1}, and the set of all such words is denoted by {0, 1}". Thus addition
and substraction are partial functions on such words. We occasionally use regular expressions to denote a certain family of
numbers i.e. 10 is the set of all even numbers between 0 and 2" — 1.

For two words u and v we denote by u - v or simply uv a catenation of these two words. For a given word w we denote by
w (k) the k-th letter of w, where k is taken from the interval between 0 and |w|— 1 and |w| denotes the number of letters in w.

All of the constructions in this paper are based on Turing machines. We usually denote a Turing machine by T, its alphabet
by 4 and the set of internal states by 4. We will denote the states of the machine by lowercase Greek letters with the starting
state denoted by «, and the accepting state denoted by w. The instructions of the machine are five-tuples of the form SabDy,
for 8,y € 8,a,b € Aand D = Ror D = L meaning: “while in state 8 reading a, write b move in the direction D and change
the state to y".



332 M. Kozik / Theoretical Computer Science 407 (2008) 330-341

All the computations of the machine T will take place on a bounded tape, and we use two special symbols ¢ and ¢, taken
from 4, to denote the leftmost and the rightmost, respectively, position on a tape. A configuration of the machine T is a triple
(w, i, ) where w is the word of fixed length denoting the tape of the machine T, i is the number between 0 and |w| — 1
describing the position of the head on a tape and 8 is an internal state of the machine T.

We will use a particular type of a Turing machine in our reductions — an alternating Turing machines. Computations
of an alternating Turing machine are identical with the computations of the usual Turing machine, but the set of accepting
words can be different. The set of states of an alternating Turing machine splits into two parts: universal states and existential
states. The machine accepts an input if and only if the starting configuration is accepting and the definition of an accepting
configuration is recursive:

e any configuration in an accepting state w is accepting;

e the configuration in an existential state is accepting if there exists an operation of the Turing machine which can be
executed in this configuration and produces an accepting configuration and

e the configuration in an universal state is accepting if all the operations of the Turing machine which can be executed in
this configuration produce accepting configurations.

Alternating Turing machines compute “more efficiently” (comp. [6]) than the usual Turing machines. This efficiency allows
us to provide a tight bound on the composition problem.
We find it useful to work with the formal expressions defining functions, and we follow [3] in defining them.

Definition 3. For a set of functional symbols fy, . . ., f, of arities ko, . . ., k;, and a set of variables {x, y, . ..} we define a term
in a recursive way

(1) any variable is a term, and
(2) forany i < nand any terms g, . . ., 81 the formal expression

fi(&o, - .., &—1) is a term as well, and
(3) all the terms can be obtained in such a way.

Throughout the paper we often abuse the notation by identifying the functional symbols denoting the operations and the
functions themselves. The distinction is always clear from the context.

It is a trivial observation that, having a fixed set of generating functions and a corresponding set of terms, each term
defines a function, and each function that can be obtained as a composition is defined by a term. The notion of a subterm is
intuitive — if we consider a term to be a labelled tree, then each term being a labelled subtree of our term is its subterm. For
a more involved study of algebraic concepts we refer the reader to [3,14].

4. Afinite set of functions with an EXPTIME-complete composition problem

In this section we exhibit a finite family of functions, such that the membership in the set of functions generated by this
family is EXPTIME-complete. The family of functions is constructed, based on an alternating Turing machine T (working in
polynomial space) satisfying the following conditions:

(1) the language accepted by T is EXPTIME-complete;

(2) every accepted word is of length 2" — 2 for some n,

(3) for a given input word w, the computations of the machine T never leave ¢w+#, and at least one instruction is executed
on each position of such a tape for each computation branch,

(4) no instruction of T can be executed in the state w,

(5) for each universal state of the machine T there are at most two instructions that can be executed (for a head reading
some symbol on a tape).

We briefly argue an existence of such a machine. Note that we require that the machine accepts an EXPTIME-complete
language (condition (1)) and works on a tape restricted to the size of the input (condition (3)). By the result of [6] there exists
an alternating Turing machine recognizing an EXPTIME-complete language, and working in a polynomial space. Further,
by a reduction computed in a polynomial time, one can change this machine and the language it accepts to comply with
condition (3) — it suffices to extend each input by polynomially many blank symbols and enclose it by ¢ and ¢. The second
part of the condition is easily obtained, by modifying the machine to pre-read all the symbols between ¢ and ¢ before starting
its computations. Thus we obtain an alternating Turing machine satisfying conditions (1) and (3). The condition (2) can be
easily obtained by enlarging accepted input words to the smallest length of form 2" — 2, and is done in a polynomial time.
Finally, the condition (4) is pure technicality and the condition (5) can be achieved by introducing auxiliary internal states
of the machine. Thus an alternating Turing machine satisfying conditions (1) to (5) exists.

The remaining part of this section is devoted to a construction of a set of functions that would model (by their
compositions) a computation of the machine T satisfying the conditions above. More precisely, for a starting configuration
of the machine, and for any configuration that can be reached via a computation of the machine T, we will introduce terms
defining a function that “realizes” this computation. Further terms will define functions working, in a similar way, only for
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accepting configurations. Thus a starting configuration will be accepting if and only if there exists a composition witnessing
this fact. This will show that the language recognized by T can be encoded into the composition problem for the functions
we define, and prove the main result of the paper formulated in Theorem 4.7.1.

For every configuration, we will produce a term witnessing the computations starting from it. We achieve it by composing
terms “realizing” single steps of the machine. The term’s arguments will include a binary representation of a position on a
tape of the machine and the information about the symbol at this position in the initial configuration — the function will
compute the symbol at the same position after the computation which the term realizes. Roughly speaking, for an input of
size 2" and some computation of the machine, we will construct a (n + 1)-ary function such that:

» o«

f(“position on tape”, “tape symbol”) = “tape symbol after the computation”,

where the “position on tape” is represented as n arguments forming a binary representation of a number. An internal state
of the machine can be represented easily, and the current position of the head on a tape is encoded, together with the
appropriate tape symbol. Thus the whole configuration of the Turing machine can be stored as a set of tuples, which are
arguments of (n + 1)-ary functions and the computations on them can be realized by terms.

We introduce the set (denoted by U) and the functions on this set gradually while explaining their purpose. These
functions will model the computations of the machine T and define an EXPTIME-complete problem for a restricted
compositions of functions (comp. Proposition 4.6.1). Adding a little twist in a Section 4.7 will allow us to obtain the full
result stated in Theorem 4.7.1.

The functions split into three disjoin families £ U g U #. All the functions in sets & and J are binary, while the functions
in § are unary.

4.1. The garbage collector element and the position markers

The set U contains an absorbing element _L:
leu (1)
andforanyf € #,g € 4andh € #
f(L,a)=f(a,Ll)=g(L)=h(L,a) =h(a, L) =1 foralla e U.

This element plays a role of a “garbage collector”. Whenever a composition of functions produces, for an important
evaluation, a result equal to L we will discard such a composition.
The set U contains also

M={0,1} CU (2)
and, forany f € ¥,g € ¢ and h € #, the following implications are true
f@a,b) #L =— ae M ADb¢& M,
aeM = g(a) =h(a,b) =h(b,a) =1L forallbe U,

and the elements of the set .M are outside of the range of all the functions in U ¢ U #. These elements are used as a binary
representation of a number which is a position on a tape of a Turing machine. The definition implies the following corollary.

Corollary 4.1.1. If a function s : U" — U is not constantly equal to 1 and s € Clo“(F U § U J), then whenever f € F
appears in a term defining s then its appearance is of the form f (x;, t (X)) for some variable x; and term t ().

Which, in turn, leads to another definition.

Definition 4. A term f® (x;., ...f© (x;,, y)) (for f? € & for all j) is an F-factor of a term ¢ (x) if and only if f® (x;,, ...f©@
(xiy, t'(X))) is a subterm of t (X), for some term t'(x), and the operation applied to it in t(x) as well as the out-most operation
of t’(X) are not in F.

A F -factor of a term, under further conditions, will be responsible for “decoding” a sequence of elements of M into a position
on a tape. Moreover a ¥ -factor followed by the operation of the set § U # will be responsible for “realizing” a single
computing (or validating) step of the Turing machine T.

4.2. Decoding a postion

In order to model a computation, we need a uniform way of “decoding” a sequence of elements of .M into a position
on a tape. In other words, since ¥ -factors of a term are responsible for this “decoding”, we need to make sure that all the
F -factors recognize the same variable storing the first bit of a binary word, the same variable storing the second bit and so
on. We achieve it by introducing additional elements of U:

P =1{A,B,C,D} C U, 3)
and defining the functions of ¥ U ¢ U # on them in the following way.
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(B ® o

0,1, R

Fig. 1. Forcing the order of the variables.

Foranyf € #,g € gandh € # andanya € M, b,d € P we set:
f(a, b) = diff (b = d in Figs. 1 or 2)
g(b) = diff (b > din Figs. 1 or 2)

d ifb=cA (b-> dinFigs.10r2)

h(b,c) =
. ©) 1 ifb#c.

Moreover the above definitions are the only possibilities to obtain an element of # as a result of an application of a
function from & U ¢ U J#. Note that the conditions on the functions in # U ¢ U # fully define them on M U & U {_L}.

We are ready to characterize terms defining certain functions on U. All of the functions “realizing” the computations of
the Turing machine will satisfy Conditions [CI | and [CII ]. In the remaining part of the subsection we prove that such terms
have identical sequence of variables in # -factors. The first condition, for a function s : ™' — U, states:

CL. For any a € 1*0" C {0, 1}" we have s(a, A) = A.
The condition [CI | has an immediate corollary.

Corollary 4.2.1. If t(x, y) is a term defining a function satisfying [CI ], then each ¥ -factor of t(X,y) = t(Xo, ..., Xn_1,Y) —
fO i, .. fOxi, ) satisfiesig < - -+ < i

Proof. Let us fix f®(x;,...f@(x,, t'(x,y))) provided by Definition 4 for an #-factor f® (x;,, ...f®(x;,y)) of a term
t(x, y) defining a function satisfying [CI ]. Since t(a, A) = A we immediately get t'(a, A) € {A, B} and, using a definition
of F-factors, we infer that the term t’(x, y) is either equal to y or has the outmost operation coming from the set ¢ U #. In
both cases, by considering ranges of the operations, we immediately obtain t’(a, A) = A for all a’s from [CI ]. Now suppose,
for a contradiction, that ij < i; for some j < I; then for a = 15710""*! we have f9(0, ..., f@(a(ip), A)) € {B, L}. Thus
O, ..., f9(a(y), A)) =L which is a contradiction with [C] ]. O

We introduce the second condition.

CIL For any a € 1*01* C {0, 1}" we have s(a, C) = C.
The following corollary is proved in exactly the same way as Corollary 4.2.1 and we omit the proof of it.

Corollary 4.2.2. If t(x, y) is a term defining a function satisfying [CI | and [CII ], then all ¥ -factors of t(X,y) are of the form
FO V@, fO (%0, 1))

A straightforward analysis of domains and ranges of the operations implies the following corollary.

0

(© ® )

0

0,1,R

Fig. 2. Forcing the arity of the variables.
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Corollary 4.2.3. Ift(x, y) is a term defining a function satisfying [CI | and [CII ], then the operations of ¢ U # are never applied
directly after each other in t(x, y). Moreover the outmost operation of t (x, y) belongs to § U #.

Thus all the # -factors of interesting terms have the same order of variables — this provides a uniform way of encoding a
position on a tape.

4.3. Modeling the tape of the machine

We move to define a next part of the set U. Elements of this set store the symbols on a tape of the Turing machine (the
fourth coordinate), a relation to the position of the head of the machine (Left or Right or Head) and two auxiliary True/False
fields. We put

7 ={T,F}* x {L,H,R} x A C U. (4)

The first two coordinates are auxiliary symbols that are used by F -factors of the terms to identify the current and the future
position of the head of the machine in a computation.

The set F consists of the functions fo0 *x,y), fll *,y), flo *,y), fO‘ (x, y) and the # -factor appearing after a term computing
a configuration with the head at position i will, under certain conditions, have a sequence of superscripts of its elements
equal to i (comp. Proposition 4.3.1). The sequence of subscripts of such a #-factor will be a position of the head after the
next operation of the machine.

We introduce the functions of the set #. Their definitions are tailored with Proposition 4.3.1 in mind. For any b € .M and
any (I,], D, a) € 7 we put the functionfoo(x, y) to be

I | J | D | a]| b |[fbd]Da)
F F | any | any | any (F,F,D,a)
T T any | any 0 (T,T,D,a)

T T | any | any 1 (F,F,D,a)
else | else | else | else | else L

dually we define f}! (x, y)

I J D | a | b |[flb (] D, a)
F F | any | any | any (F,F,D,a)
T T any | any 0 (F,F,D,a)
T T | any | any 1 (T,T,D,a)
else | else | else | else | else L
and two more complicated functions f10 *x,5)
I J D a b | f2(b,1,],D,a))
F F any | any | any (F,F,D,a)
T T Horl | any 0 (T,F,D,a)
T T R any 1 (F,T,D,a)
F T L any 0 (F,F,D,a)
F T L any 1 (F,T,D,a)
T F RorH | any 0 (T,F,D,a)
T F RorH | any 1 (F,F,D,a)
else | else | else | else | else 1
and f (x, y)
I J D a b | fl(b,U],D,a)
F F any any | any (F,F,D,a)
T T L any | 0 (F,T,D,a)
T T | RorH | any 1 (T,F,D,a)
F T R any 0 (F,T,D,a)
F T R any 1 (F,F,D,a)
T F LorH | any 0 (F,F,D,a)
T F LorH | any 1 (T,F,D,a)
else | else | else | else | else 1

The following notation allows for an easier analysis of the # -factors of certain terms. Please note that the variables in these
terms are ordered in a fixed manner (i.e. changing subscripts of the variables appearing in a term will cause a term not to
comply with this definition).
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Definition 5. For any words u, v of equal length over the alphabet {0, 1} we define the following terms:

f&y) =y,

where ¢ denotes the empty word, and

b X, Y) = fy Kjua—1, 3 %, ¥))
recursively, where a, b € {0, 1} and f;(x, y) is one of the four functions in #.

According to Corollaries 4.2.1 and 4.2.2, each # -factor of the term defining function satisfying Condition [CI ] and [CII | is
of the form f;/(x, y) for some words u, v.

The following set consist of all possible tuples which can be associated with a configuration with a head at the position i
and, at the same time, the exact set on which the ¥ -factor recognizes the position of the head and the positions next to it.
Let P; C {0, 1}" x T be such that (b, (I, ], D, a)) € P;ifand only if| =] = T and

(b<inD=L)v(b=iAD=H)Vv(b>iAD=R).

The following proposition shows that the only # -factors that can be applied to P; without . among the results are either
trivial (u = v in a proposition below), or recognize the positionsi— 1 and i+ 1. This fact is a key ingredient of our proof. Once
these positions are identified, a unary function will compute (comp. Corollary 4.5.1) the next configuration of the machine.

Proposition 4.3.1. For any u, v, words of length n over the alphabet {0, 1}, the following conditions are equivalent:

1. f'(b, (,J, D, a)) #L forall (b, (I,], D, a)) € P,
2 u=vori=u=v—1lori=u=v+ 1

Proof. We begin with a proof of the implication from (2) to (1). The case when u = v is a trivial analysis of the definitions
of functions foo(x, y) and fll (x,y). Assume now, thati = u = v + 1 and that w is the longest common prefix of u and
v. Then u = w10™~1and v = wO1™!=1, Lets fix an arbitrary (b, (T, T, D, a)) € P. If w is not a prefix of b then
f2(b, (T, T,D,a)) = (F,F,D,a)and thus f'(b, (T, T, D, a)) #.L as required. Assume now that w is a prefix of b. The word
w0 is a prefix of v, and w1 is a prefix of u - basing on this fact we consider two cases:

e if b < i = u,then w0 is a prefix of b and by the definition of P; we obtain D = L and thus

wo (b, (T, T, L, @) = fy(0,f (b, (T, T, L, a)
=f0,(T,T,L, @) = (F,T, L a.
Since the function f1°(x, y) applied to any element of the form (F, T, L, a) produces either (F,T,L,a) or (F,F,L,a)
and (since f(c, (F, F, L, a)) = (F,F, L, a) forany ¢ € {0, 1}) we get f(b, (T, T, L, a)) #.L as required.
e if b > i = uthen w1 is a prefix of b and by the definition of P; we infer that D € {R, H}. In such a case
wo (b, (T, T,D,@) = fy' (1, (b, (T, T,D, @)
=fo(1,(T,T,D, ) = (T, F, D, a),
and exactly the same reasoning shows that f(b, (T, T, L, a)) #.L as required.

This finishes the case of i = u = v + 1 and the remaining case of the implication, i = u = v — 1, is an alphabetical variant
of the same proof. The implication from (2) to (1) is proved.

To start with the reverse implication, assume that u # v, and let w denote the maximal common prefix of u and v. First,
we assume that u > v, that is w1 is a prefix of u and w0 is a prefix of v. Thus, for each (b, (T, T, D, a)) € P; such that w is a
prefix of b, we have

wl(b, (T, T, D, @) = fy (b1, f (b, (T, T, D, a))) = fy (b1j-1, (T, T, D, @)) #L,

which, by the definition offo1 (x,y), implies that D = L whenever b),,;—1 = 0 and D € {R, H} whenever b;,,;—1 = 1. The

construction of P; immediately implies that i = w101l Let us fix an element of P; of the form (w01"~ !l (T, T, L, a)),
then

fi o1 (T, T, L, a)) = f (0, (T, T, L,a)) = (F, T,L,a),

and, since flo(x, y) is the only operation that does not produce L on (F, T, L, a), we imply that u = w10™ 1 and
v = w01™ "1 35 required. The case of u < v is an alphabetical variant of the same proof, and the proposition is proved. O

The following corollary is an easy consequence of the proposition.
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Corollary 4.3.2. Let u, v be members of {0, 1}" such that f'(b, (T, T, D, a)) #.L forall (b, (T,T,D, a)) € P. Then, for any
element (b, (T, T, D, a)) € P,

[f,'(b, (T, T, D, a)) = (T, ], D, a) for some ] € {T, F}] if and only if b = u;
and
(b, (T, T,D,a)) = (I, T,D,a) forsomel € {T, F}]ifand only ifb = v.

Proof. For any function j;i(x, y) € F,and any k € {0, 1} a straightforward analysis of the definitions of functions shows
thatif f/(k, (I,], D, a)) #L then

fji(lc, (I,],D,a)) =(T,J,D,a) ifandonlyif (I=Tandi=k).

This immediately implies the first equivalence of the corollary. The second equivalence is proved by the same reasoning for
the the second coordinate of the element of 7, and the pair j, k (instead of i, k). O

The operations of # are defined on the set 7 in such a way that the last coordinate of the element of 7 “carries over” to
the result (unless the result is L), and has no influence on the result being equal to _L. This implies the following corollary.

Corollary 4.3.3. For any u, v € {0, 1}" and any P C P; such that for any b € {0, 1}" there exists (T, T, D, a) € T such that
(b, (T, T, D, a)) € P, the following conditions are equivalent:

e forany (b, (T, T,D, a)) € P we havef,'(b, (T,T,D, a)) #1;
e forany (b, (T, T, D, a)) € Piwe havef'(b, (T, T, D, a)) #L.

We move on to define the operations of the set § U # on 7. The operations of the set § compute the steps of the Turing
machine, while the operations from # “reverse” the computation checking whether a configuration is accepting. Note that
backtracking a computation of a Turing machine is very similar to computing it, and thus operations of ¢ and # have a lot
in common.

For a #-factor acting on a set P; (using Proposition 4.3.1) we need to consider three cases (given by item (2) of the
proposition). The instruction of the set §, is constructed in such a way that only the F -factor identifying a new position for
a head of the machine is “compatible” with it (will not produce _L on any element of P;). The first coordinate of the result of
an application of the compatible # -factor to an element of P; is T, only for the position i (the current position of the head),
and the second is T on a coordinate with the future position of the head. The third coordinate of the element of 7~ allows us
to identify the direction into which the head of the Turing machine is moving. Therefore all the other # -factors will produce
1 on some element of P; when composed with the operation of the set §.

We set R = L and L = R, which allows us to present the definitions in a more compact way. We define the set § - the
instructions from this set generate the configurations of T following the computations of the machine. For each instruction
of T, denoted by BabDy, we put g#%P” to be, for any c € T,

(T,T,D,b) ifc=(T,F,H,a)

(T,T,H,d) ifc=(F,T,D,d)

(T,T,G,d) ifc=(F,F,G,d)forsomeG # H
1L else.

gﬁabDy (C) —

We move on to define the instructions of the set ¢ on 7. They allow us to check whether an alternating Turing
machine accepts a given configuration. Each of the instructions will provide an “accepted configuration” backtracking the
computations of T. Thus, for any pair of the instructions of T of the form SabDy, BacE$ such that:

e if B is a universal state then SabDy and BacE$ are the only two instructions that can be executed in a state 8 with the
head reading a;
e if B is an existential state then SabDy = SacEs;

we define hgeps ond, e € 7 to be

(T,T,H,a) ifd=(F,T,D,b)andc = (F,T,E,c)
(T,T,D,0) ifD=Eandd= (T,F,H,0),e=(T,F,H,o0)
(T,T,D,0) ifd=(T,F,H,0)ande = (F,F,D,o)
(T,T,E,o) ifd=(F,F,E,o)ande = (T,F,H,o)
(T,T,G,0) ifd=e=(F,F,G,o)forsomeG#H

1 else.

bi
Misaces (d, €) =

Note that the following corollary is a simple consequence of the definitions:
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Corollary 4.3.4. For each hgzlc’gg € Jt and forany (1,],G,d), (I',]',G",d") € T andany D" € {L, H, R}, d’ € A the following
conditions are equivalent

(1) heeet (0LJ.D.d), (I".J'. D', d) = (T, T, D", d"),
(2) gh®Pr((,1,D",d")) = (T, T, D, d) and
gﬁaCEé(U/’ 1/’ D”, d//)) — (T, T, D/, d/)

Thus the operations of the set # act as a “reverse” of the operations from 4, recreating the tape from before a step of a
Turing machine.

4.4. The states of the machine

We introduce the final part of the set U. It is responsible for representing the internal state of the Turing machine
and includes two copies of the set of the states (defined below). One copy is used for the computation (the functions of the
set) of the Turing machine T, and the other for backtracking and checking the accepting states (operations from #¢). Among
these sets one element is common — the accepting configuration w is the only possibility for switching from computing to
backtracking. More formally, we put

R=4Us CcU (5)

where the set 4’ consists of copies of elements from § with the elements w and «’ identified. There is a natural bijection
from & onto 8" mapping 8 — B’ for each state 8. For any f (x,y) € ¥ andanya € .M and 8 € R we put

f@a. p)=8.

For any g#%P” (x) € ¢ and any § € R we put

BabDy _ y ifg=34
& @ {J_ else.

For any hﬁgﬁgg € #andany 7, T € R we put

BabD ﬁ/ ifn:y/andr:(s/
hﬁZcEsy (r, 1) = {L else.

All the applications of the operations which were not defined explicitly are equal to _L.

4.5. Computation and checking functions

We are now in position to introduce a correspondence between the configurations of a Turing machine T, and tuples
of the elements of the set U. These tuples will be the arguments of functions modeling computations. The focus of this
subsection is to establish this correspondence, and prove that the computations of the Turing machine T are equivalent to
the applications of certain terms to such tuples. To prove an equivalence, we show that any application of functions which
is not producing L on a set of such tuples, corresponds to a computation step of the Turing machine. This will put the
computations on configurations in a direct correspondence with terms acting on these sets.

For any configuration of the machine T, denoted by (w, i, 8), where w € A2 i < 2" and B € 4, we define the
corresponding set Py ; gy. The first part of it is a subset of P;, and is responsible for maintaining the information about the
tape of the machine:

(b,,],D,a)) € Pw,ipy NP; ifandonlyif w(b) =a.

The second part of P i g, which is outside of P;, is equal to {0, 1}" x {8} and keeps track of the internal state of the
machine. Together they describe, in a natural way, a configuration of the machine. The next definition allows us to follow
the computations of the machine using these sets. For any configuration (w, i, 8) and an operation of the Turing machine
of the form yabD$, we put

Piw.i.yyabps = {(c, d) | (c, €) € Pw.ip and g7™P(fi(c, e)) = d}

wherev =i+ 1ifD=Randv=i—1ifD =L

The following corollary is the main part of the construction. It states that not having L in a range of a term on a set
associated with a configuration, is equivalent to the fact that the term models one step of the computation of the Turing
machine, and produces output modelling the resulting configuration.

Corollary 4.5.1. For any configuration (w, i, 8), any instruction of the machine T yabD§ and any pair of words u, v € {0, 1}"
the following conditions are equivalent.

(1) L¢ g7 PP (f(Piw,i ),
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(2) the set
Piw.i.g):yabps = Pow’ jr)
for some configuration (W', j, 7),andu =iandv =i+ 1ifD=Randv=i—1ifD =1,
(3) the instruction yabD§ can be executed in a configuration (w, i, 8) andu =iandv =i+ 1ifD=Randv =i— 1ifD =L

Moreover, if these conditions are satisfied, the configuration obtained from (w, i, B) after executing y abD§ is equal to (W', j, 7).

Proof. The implication from (2) to (1) is trivial. For the implication (1) to (3) we use Proposition 4.3.1 and Corollary 4.3.3

toobtainu = vori = uand |[v — u| < 1. Moreover Corollary 4.3.2 together with the definition of g”*" (x), implies that
u # v (since g"®P (T, T, E, ¢)) =L for any choice of E and c). Similarly, since g¥®P3((F, T, E, ¢)) #.L implies E = D, we
obtainv =i+ 1ifD = Rand v = i — 1if D = L. Finally, since g"®P((T, F, H, ¢)) #.L implies ¢ = a we infer that w(i) = a,

and similarly since g?9P? (", B)) #L, we imply that B = y and (3) is proved. It remains to show the implication
from (3) to (2). The arguments above applied to g¥*?°(f! | (X, y)) if D = R and to g” ™™ (f_| (X, y)) if D = L together with
Proposition 4.3.1, Corollary 4.3.2 and the definition of functions in ¢ proves the implication. A proof of this fact provides also
an argument that the configuration obtained from (w, i, 8) after execution of yabD§ is equal to (W', j, 7). O

Using the previous corollary together with Corollaries 4.2.1 and 4.2.2, we put the full correspondence between terms not
producing L on sets associated with configurations and the possible computations of the Turing machine.

Corollary 4.5.2. Let t(x, y) be a term using functional symbols from & U 4. If t(x, y) defines a function satisfying Conditions [CI]
and [CII | and such that L ¢ t(Pw, gy) for some configuration (w, i, B), then the set

{(c,d) | (c,e) e Pand t(c, e) = d} equals Py j )

for some configuration (W', j, y) which can be obtained by a Turing machine T, starting its computations on (w, i, 8). Moreover
for each such a configuration (W', j, y) there exists a term producing an appropriate set.

Thus, so far, the computations of the Turing machine are fully modelled by the terms with operations coming from the
set F U g. Unfortunately this is not sufficient for modelling the computation of an alternating Turing machine. In order
to decide whether an initial configuration of the Turing machine was accepting, we need to backtrack the computations
propagating accepting configurations up the computation tree. This is done using the functions of the set # in a way very
similar to modelling the computation using the elements of 4. To exhibit an analogue of Corollary 4.5.1 for the functions
from the set # we introduce, for each configuration, a new set Py, ; 4. The P; part of the set is the same as of Py, ; , i.e.

(b, d,],D,a)) € P(,w,i,ﬂ) N P; ifandonlyif w(b) =a

and the second part of Py ; g), from outside of P;, is equal to {0, 1}" x {8}. These sets allow us to backtrack the computations
of the machine in the same way the previous sets were used to model them. Note that Pi, ; 5y N Pi = Pw,i g N Pi and

P(Wla)) = Piw,iw) for any w, i and S.

We define P;;f; i W")' 1' P >> to consist of the pairs (c, d) such that
3(c. €) € Plyp)- (e, €) € Plyy s, such that BT (fi(c, e), fii(c. €)) = d
wherev =i—1ifD=Randv =i+ 1ifD=Landv =i —1ifE = Randv' = '+ 1if E = L. An analogue of Corollary 4.5.1
states

Corollary 4.5.3. For any configurations (w, i, 8), (W, i’, y) and any instructions of the machine T: §abDr, SacEt and any four
words u, v, ', v' € {0, 1}" the following conditions are equivalent.

(1) RS2 (fu(c, ), f¥ (c, €)) #.L, forany (c, e) € Ply,ip andany (c,e’) € P|

(Wi y)’
(2) the set
SabDm:(w,i,B)
PSacEr:(w/,i y) Pw” "o
for some configuration (w”, i’ ,a),andu =iu =iandv=vandv=u—1ifD=Randv =u+ 1ifD = Land

vVV=u —1ifE=Randv =u +1ifE=1L
(3) there exists a configuration (w”, i", o) such that the instructions §abDsr and SacEt can be executed in it producing (w, i, 8)
and (W', i, y) respectively. Moreover if § is a universal state, then SabDx and SacEt are the only two instructions that can
be executed in a state § with the head reading a, and if § is an existential state then SabDrr = SacE<. Finally, u = i,u’ =1

andv:v’andv=u—1ifD=Randv=u+1ifD=Landv’=u’—1ifE=Randv’=u’+1ifE=L
and the configurations denoted by (W’ o) in 2 and 3 are equal.

Proof of this corollary is a carbon copy of the proof of Corollary 4.5.1 using Corollary 4.3.4. Finally, using the corollary above
together Corollary 4.5.2, we establish the final result of the construction. This result puts into a correspondence accepting
computations of the Turing machine, and terms constructed from our functions.
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Corollary 4.5.4. Let t(x,y) be a term such that the outmost functional symbol is from F. If t(Xx,y) defines a function
satisfying Conditions [CI | and [CII | and such that 1. ¢ t(Pw i g)) for some configuration (w, i, 8), then the set

{(c,d) | (c,e) e Pand t(c, e) = d} equals P(/w’,i’.y)

for some configuration (W', i’, y) which is an accepting configuration of a Turing machine T. Moreover for each accepting
configuration which can be obtained working backwards from the accepting configurations obtained from (w, i, 8), there exists
a term producing the appropriate set.

4.6. The function for restricted problem

It remains to define, for each given input word w of length 2" — 2, a function which is going to be expressed by a term if
and only if, the starting configuration on the word w is accepted. We accomplish this goal in two steps. First we introduce a
partial function such that the w is accepted if and only if, there exists a term which, restricted to given set of tuples, defines
this function. Next we show that a problem of finding such a partial function is computationally equivalent to finding a full
composition for a slightly different set of functions.

The functions : U" xV — U is (n+1)-ary and as such the size of its description (approximately C-|U|"*!) is polynomial
with respect to the length on the input word which was equal to 2" — 2. The definition of the function implies immediately
that such a function can be constructed in a polynomial time, and thus the problem of accepting a word will reduce, in a
polynomial time, to the problem of composing functions.

Thus, for an input word w, we put (Qw+4, 0", «) to be the starting configuration of the machine T and defines : U" xV —
U to be

(b, a) if (b7 Cl) € P(OwQ.O”,a) N PO”

o ifa =«

s(b,a) = {A ifbe 10t anda=A
C ifbe 1"01*anda = C
1 else,

forv ={(,]J,D,a) € T |1 =] =T} U {a} U {A, C}. The Corollary 4.5.4 immediately implies that if the function s can be
found as a restriction of the element of Clo%(F U ¢ U #), then the word w is accepted by the machine T. If, on the other
hand, the word is accepted by T the same corollary provides us with an existence of a function, say s’, satisfying Conditions
[CI'] and [CII ] and coinciding with s on P4 07 «). It remains to show that

e s'(b,A) =1 wheneverb ¢ 1*07,
e s'(b, C) =1 whenever b ¢ 1*01%,
e s'(b, (T, T,D, a)) =1L whenever (b, (T, T, D, a)) & Piowe.0na)-

The first two points are obvious consequences of the definition of the functions on the set &. For the last one we remark

that for each (b, (T, T, D, a)) & Piywe,0n,«) there exists (b, (T, T, D', @’)) € Piywe,0m,q). and since the computation of T visits

each square of the tape and the term does not evaluate to L on (b, (T, T, D', @")) it has to evaluate to L on (b, (T, T, D, a)).
Thus we have proved the following, technical, proposition:

Proposition 4.6.1. There exists a set U and a finite set of at most binary functions on it such that, for a fixed subset 'V of U, it
is EXPTIME-complete to decide whether a given function's : U" x V — U can be obtained as a restriction of a composition of
these functions.

An example of such a set is the set U and the family of functions £ UgU ¢ which proves the hardness part of the proposition.
The completeness is obtained by the algorithm proving completeness for the usual composition of functions and presented
in e.g. [2]. It remains to show that a problem of finding a function, and not a restriction of the function, is as complex.

4.7. The general case

In this section we construct a set W = U U V' U {T}, which is a disjoint union of the three sets. Set 'V’ consists of copies
of the elements of 'V and there is a bijection b — b’ between V and V’. We define the functions:

fiao, ..., ay—1) ifaq € Uforallj <k

gi(ap, ..., A1) = {T else

for alli < n, and an additional function

b ifa=b eV
T else.

gnr1(a) = {
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Finally we put

. s(ag, ..., a,a) ifag,...,aqp— € Uanday_; =d €V’
s'(ag, .., 0r—1) = {T
else.

The construction immediately implies thats” € Clo%(go, . . ., g, g.+1) if and only if, the restricted composition problem for
sand fy, ..., f; had a positive solution. This proves the reduction of the restricted composition problem to the composition
problem.

It is a trivial observation that all of the unary operations in our construction can be substituted by binary (putting T,
as a result of an application to non-identical arguments). This allows us to state the main theorem of the paper in a more
uniform way.

Theorem 4.7.1. There exists a finite set ‘W, and a family of functions fy, ..., f, : ‘W? — ‘W such that the question whether a
given function can be found as a composition of fy, . . ., f; is EXPTIME-complete.

5. Consequences

The authors in [2] tackle the problem denoted by TERM-EQ, that is

INPUT a pair of finite algebras (A, B) over the same set
PROBLEM decide if Clo(B) = Clo(A).

and prove that this problem is EXPTIME-complete. Our reasoning implies that the algebra A can be fixed (to be the algebra
constructed in Section 4) and the computational complexity of the problem will not decrease (the reduction is obtained by
taking B’s identical to A with added various functions s ). This proves that there is a finite algebra A such that the problem

INPUT a finite algebra B
PROBLEM decide if Clo(B) = Clo(A).

is EXPTIME-complete.

Acknowledgement

The research was supported by Eduard Cech Center grant no. LC505.

References

[1] José L. Balcazar, The complexity of searching implicit graphs, Artificial Intelligence 86 (1) (1996) 171-188, MR1410132 (98a:68088).
[2] Clifford Bergman, David Juedes, Giora Slutzki, Computational complexity of term-equivalence, Internat. J. Algebra Comput. 9 (1) (1999) 113-128,
MR1695293 (2000b:68088).
[3] Stanley Burris, H. P. Sankappanavar, A course in universal algebra, in: Graduate Texts in Mathematics, vol. 78, Springer-Verlag, New York, 1981,
MR648287 (83k:08001).
[4] Elwyn Berlekamp, David Wolfe, Mathematical Go, A K Peters Ltd., Wellesley, MA, 1994, Chilling gets the last point, With a foreword by James Davies.
MR1274921 (95i:90131).
[5] Jan Cerny, A remark on homogeneous experiments with finite automata, Mat.-Fyz. Casopis Sloven. Akad. Vied 14 (1964) 208-216, MR0168429 (29
#5692).
[6] Ashok K. Chandra, Dexter C. Kozen, Larry J. Stockmeyer, Alternation, J. Assoc. Comput. Mach. 28 (1) (1981) 114-133, MR603186 (83g:68059).
[7] Aviezri S. Fraenkel, David Lichtenstein, Computing a perfect strategy for n x n chess requires time exponential in n, J. Combin. Theory Ser. A 31 (2)
(1981) 199-214, MR629595 (83b:68044).
[8] M.R. Garey, D.S. Johnson, Composing functions to minimize image size, SIAM ]. Comput. 14 (2) (1985) 500-503, MR784752 (86d:68031).
[9] Marcel Jackson, Ralph McKenzie, Interpreting graph colorability in finite semigroups, Internat. J. Algebra Comput. 16 (1) (2006) 119-140, MR2217645
(2006m:20081).
[10] Marcin Kozik, Gabor Kun, The subdirectly irreducible algebras in the variety generated by graph algebras, Algebra Universalis 58 (2) (2008) 229-242,
MR2386530 (08B26 (68Q17)).
[11] Dexter Kozen, Lower bounds for natural proof systems, in: 18th Annual Symposium on Foundations of Computer Science (Providence, R.I,, 1977), IEEE
Comput. Sci., Long Beach, Calif., 1977, pp. 254-266, MR0495200 (58 #13931).
[12] David Lichtenstein, Michael Sipser, GO is polynomial-space hard, . Assoc. Comput. Mach. 27 (2) (1980) 393-401, MR567056 (81b:68052).
[13] Ralph McKenzie, The residual bound of a finite algebra is not computable, Internat. J. Algebra Comput. 6 (1) (1996) 29-48.
[14] Ralph N. McKenzie, George F. McNulty, Walter F. Taylor, Algebras, lattices, varieties, in: The Wadsworth & Brooks/Cole Mathematics Series, Vol. I,
Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, CA, 1987, MR883644 (88e:08001).
[15] J. M. Robson, N by N checkers is Exptime complete, SIAM ]. Comput. 13 (2) (1984) 252-267, MR739988 (86f:90168).
[16] Zoltan Székely, Computational complexity of the finite algebra membership problem for varieties, Internat. J. Algebra Comput. 12 (6) (2002) 811-823,
MR1949698 (2003k:08009).



	A finite set of functions with an EXPTIME-complete  composition problem
	Introduction
	Definitions
	Notation and preliminaries
	A finite set of functions with an EXPTIME-complete composition problem
	The garbage collector element and the position markers
	Decoding a postion
	Modeling the tape of the machine
	The states of the machine
	Computation and checking functions
	The function for restricted problem
	The general case

	Consequences
	Acknowledgement
	References


