
Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 182 (1997) 233-244

Note

Approximation algorithms for multiple sequence alignment

Vineet Bafna a~1, Eugene L. Lawler b,2, Pave1 A. Pevzner ‘,*

a Department of Computer Science and Engineering, The Pennsylvania State University,
University Park, PA 16802, USA

b Computer Science Division, University of California, Berkeley, CA 94720, USA
c Department of Mathematics ana’ Computer Science, University of Southern California, Los Angeles,

CA 90089-1113, USA

Received January 1995; revised February 1996
Communicated by M. Crochemore

Dedicated to the memory of Eugene Lawler

Abstract

We consider the problem of aligning of k sequences of length n. The cost function is sum

of pairs, and satisfies triangle inequality. Earlier results on finding approximation algorithms
for this problem are due to Gusfield (1991) who achieved an approximation ratio of 2 - 2/k,
and Pevzner (1992) who improved it to 2 - 3/k. We generalize this approach to assemble

an alignment of k sequences from optimally aligned subsets of 1 < k sequences to obtain an
improved performance guarantee. For arbitrary 1 < k, we devise deterministic and randomized
algorithms yielding performance guarantees of 2 - Z/k. For fixed I, the running times of these
algorithms are polynomial in n and k.

1. Introduction

Multiple sequence alignment is a fundamental problem in computational molecu-
lar biology. Alignments of multiple sequences are commonly computed for the pur-
pose of discovering ‘homologous’, i.e., evolutionarily or fknctionally related, regions
of the sequences. An optimal multiple alignment can be computed by dynamic

* Corresponding author.
’ The research was supported in part by the National Science Foundation Young Investigator Award, the

National Science Foundation under grant CCR-9308567, the National Institute of Health under grant ROl

HG00987 and the DOE grant DE-FG03-90ER60999.

2 Deceased.

0304-3975/97/$17.00 @ 1997 -Elsevier Science B.V. All rights reserved

PI1 SO304-3975(97)00023-6

234 V. Bafna et al. I Theoretical Computer Science I82 (1997) 233-244

programming. However, the running time of dynamic programming algorithms increases

rapidly with k, the number of sequences to be aligned. Accordingly, many heuristics

and approximation algorithms have been proposed [1, 6, 1 l-131.

Many objective functions have been suggested for the multiple sequence alignment

problem. One of the most widely used is the ‘sum-of-pairs’ (SP) criterion. The problem

of computing an optimal alignment with respect to the sum-of-pairs criterion is NP-hard

[20]. The advanced algorithms [121 allow one to construct optimal alignments of k < 6

sequences, each of length around 200, the length of an average protein. Many algo-

rithms for k sequences use optimal multiple alignment of 2 < k sequences with further

assembling of these “partial” alignments into an approximate alignment of k sequences.

Multiple alignment algorithms based on this heuristic are widely used un computational

molecular biology [19], and are known to produce meaningful biological results [8].

This approach requires an efficient “assembly” procedure providing an approximate

alignment of k sequences close to the optimal one. However, no ‘performance guaran-

tee’ algorithms for multiple alignment have been known until recently, although a num-

ber of heuristics for suboptimal multiple alignment have been developed (see the recent

review, [6]).

Gusfield [9, lo] achieved an approximation ratio of 2 - 2/k by assembling an

alignment of k sequences from optimal alignments of pairs of sequences. It is known

that models currently employed to align sequences are not quite adequate; thus, for

practical sequence alignment it is not always necessary to produce an optimal alignment

but only one that is plausible. The Gusfield algorithm produces plausible alignments;

a computational experiment with an alignment of 19 sequences gave a suboptimal so-

lution only 2% worse than the optimal one. An obvious direction for improvement

is to use optimal alignments of I > 2 sequences, and then assemble them to approx-

imately align k sequences. However, devising an efficient “assembling” procedure for

an arbitrary 1 remained an open problem.

Pevzner [151 improved the performance guarantee to 2 - 3/k by assembling optimal

alignments of triples of strings. This suggests the possibility of achieving a further

improvement in the performance guarantee to 2 - Z/k by assembling l-way alignments.

We investigate this possibility, and show that for arbitrary 1 < k it is possible to obtain

such a performance guarantee with a running time that is polynomial in n and k. This

result provides an evidence that “assembling of alignments” heuristics, commonly used

in computational molecular biology [19] might give “good” suboptimal alignment if

assembling is done carefully.

In Sections 2 and 3 we define SP-alignment formally, and outline a heuristic approach

to constructing SP-alignments of k sequences by combining alignments of 1 sequences.

In Section 4, we show that the problem of constructing SP-alignments within a desired

performance ratio reduces to constructing balanced sets of l-stars. In Section 5, we

use dynamic programming to get some improvement over the brute-force approach.

Section 6 deals with constructing small balanced sets to ensure small running time.

Finally, in Section 7, we show how to obtain an efficient randomized algorithm for

SP-alignment.

V. Bafna et al. I Theoretical Computer Science 182 (1997) 233-244 235

2. Definitions

Let & be a finite alphabet and al,. . .ak be k sequences (strings) over YQZ. For

convenience, we assume that each of these strings contains n characters. Let d’ denote

d U { -}, where “-” denotes “space”. An alignment of strings al,. . . , ak is specified

by a k x m matrix A, where man. Each element of the matrix is a member of d’,

and each row i contains the characters of ai in order, interspersed by m - n spaces.

Given an alignment A we denote Aij a pairwise alignment formed by the rows i
and j of A. The score of an alignment is determined with reference to a symmetric

matrix D specifiying the dissimilarity or distance between elements of d’. We assume

the metric properties for distance d, so that d(x,x) = 0 and d(x,z) < d(x, y) + d(y,z),

for all x, y,z in d’. For a given alignment A = [aih], the score for sequences ai,aj is

S(Aij)= 5 d(aih,ajh),
h=l

and the sum-of-pairs score (SP-score) for the alignment A is given by Ci,j s(Aij).

In this definition the score of alignment A is the sum of the scores of projections of

A onto all pairs of sequences ai and aj. Let C = [cij] be a k x k matrix of weights

where cij is the “weight” of the pairwise alignment between ai and aj. The weighted
sum-of-pairs score for the alignment A is

For notational convenience we use matrix dot product to denote scores of align-

ments. Thus, letting S(A) = [S(Aij)] be the matrix of scores of pairs of sequences, the

weighted sum-of-pairs score is CS(A). Letting E be the unit matrix consisting of all

l’s except the main diagonal consisting of all O’s, the (unweighted) sum-of-pairs score

of alignment A is ES(A).

Straightforward dynamic programming, with running time 0((2n)k), solves the

weighted sum of pairs alignment problem for k sequences. A number of different

variations, and some speedups of the basic algorithm have been devised [16, 17, 211.

Hereafter, we let g(k,n) denote the running time required to obtain an optimal solution

to the weighted sum-of-pairs problem for k sequences of length n.

3. Compatible alignments

Given an alignment A on sequences al , . . , ak and an alignment A’ on some subset

of the sequences, we say that A is compatible with A’ if A aligns the characters of the

sequences aligned by A’ in the same way that A’ aligns them. Feng and Doolittle [7]

observed that given any tree in which each vertex is labeled with a distinct sequence

ai, and pairwise alignments specified for each tree edge, there exists an alignment of

the k sequences that is compatible with each of the pairwise alignments. A similar

result holds for “Z-stars”, defined as follows:

236 V. Bafna et al. I Theoretical Computer Science 182 (1997) 233-244

Fig. 1. A S-star on 17 vertices.

Let V be the set {1,2,..., k} representing the sequences ut, a2,. . . , ak, and suppose
I- 1 (k - 1. An l-star G = (V, E) is defined by Y = (k - 1)/(I - 1) cliques of size 1 whose
vertex sets intersect in only one center vertex (Fig. 1). Let At . . . ,A,, be alignments
for the r cliques, with each Ai aligning 1 sequences. By a construction similar to Feng
and Doolittle [7] we have the following lemma:

Lemma 1. For any l-star and any specijied alignments Al,. . . , A, for its cliques, there

is an alignment A for the k sequences that is compatible with each of the alignments
Al,...,A,.

Proof. Assume that the alignment Ai (1 Q i <r) is specified by an 1 x mi matrix with
the first row corresponding to the center vertex (string) al. We transform matrices

AI,..., A, into 1 x m* matrices A* , , . . . , Af by “padding” m* -mi columns consisting of
spaces into Ai for 1 <i <r, as follows.

Let m dmi be the length of the center string al. Ai contains m symbols from al and
mi - m space symbols in the first row. Let ji, 1,. . . , ji,m be the positions of m symbols
from at in the first row of Ai. Denote zi,l= ji,/+t - ji, 1 the number of space symbols
between Ith and (l+ 1)th non-space symbols in the fkst row of Ai (we assume zi,o = 1
and zi,m+t = mi>. Cleah CoQ[qrnZi,l =mi - m.

Let zl = maxi GiGr zi, 1 be the maximum spacing between lth and (1 + 1)th non-
space symbols in the first row of the matrices Al,. . . ,A,. Denote m* = m + Cyzo z[
and transform 1 x mi matrix Ai into 1 x m* matrix A) by adding zl - zi,/ “space”
columns (i.e. columns consisting of space symbols) between the columns jr and jl+t
of Ai. Matrices AT,. . . , A,* have the same number of columns and union of their rows
generates an alignment A compatible with the alignments Al,. . . , A, (see [7] for more
details). 0

Assign weights to the edges of an l-star G, with center c, as follows.

k-(1- 1) i=c or j=c,
Cij = 1 i, j # c, i and j are contained in the same clique of G,

0 otherwise

V. Bafna et al. I Theoretical Computer Science 182 (1997) 233-244 231

and let C(G) = [cg] denote the k x k matrix of weights. Note that

C(G)E=(k-(l-l))(k-l)+(E) (‘;I)=(;) (2-f).
The pairwise scores of an alignment inherit the triangle inequality property from the
distance matrix D. That is, for any alignment A, s(Aii) <s(&) + s(Akj), for all i, j,k.
This fact was used by Pevzner [151 to prove the following:

Lemma 2. For any alignment A of the k sequences, and an l-star G, E S(A)<C(G)

S(A).

Let Ct , . . . , C, denote the submatrices of weights for the r cliques of an l-star G.
Let A* 1 , . . . , Af be optimal weighted sum-of-pairs alignments for the r cliques. From
Lemma 1 and the fact that d(-, -) = 0, we obtain the following.

Lemma 3. Given an l-star G, there is an optimal (weighted with respect to C(G))

alignment AG for the k sequences that is compatible with each of the alignments
A* , , . . . , A:. Moreover, C(G) S(AG) = Cl S(AT) + . . . + C, S(A:).

To summarize, for any Z-star G we can assemble an alignment AG, optimal with
respect to the weight matrix C(G) specified above, by computing optimal weighted
alignments for each clique of G. This can be done in O(kg(Z, n)) time.

4. Balanced sets of I-stars

Let 9 be a collection of Z-stars, and let C(G) denote the weight matrix for star G.
We say that the collection 9 is balanced if Co9 C(G) = pE for some scalar p > 1.

Lemma 4. If 9 is a balanced set of l-stars, then

T$C(G)S(AG)<&m$ES(A).

Proof. We use an averaging argument.

Here the inequality holds for an arbitrary alignment A, and in particular, it also holds
for the optimum alignment. 0

Lemmas 2 and 4 motivate the algorithm Align (Fig. 2).

238 V. Bafna et al. I Theoretical Computer Science 182 (1997) 233-244

Procedure Align
1. Construct a balanced set of Z-stars, $.
2. For each Z-star G in 9, assemble an alignment AG that is optimal with respect to

C(G) from alignments that are optimal for each of its cliques (Lemma 3).
3. Choose G with the corresponding alignment AG such that C(G) . S(AG) is the

minimum over all Z-stars in 9. Return AG.

Fig. 2. Deterministic algorithm for multiple alignment.

Theorem 1. Given a balanced collection of l-stars 3, Align returns an alignment with

a performance guarantee of 2 - I/k in O(kj’S~g(l,n)) time.

Proof. Note that

Now, Align returns the alignment AG which is optimal for Z-star G E 9, and for which
the smallest weighted score, mine@ C(G)S(AG) is achieved. Lemmas 2 and 4 imply
that ES(AG)<C(G)S(AG)<(~ - $) minA ES(A). •i

5. Optimizing over all I-stars

We have reduced our approximation problem to that of finding an optimal alignment
for each l-star in a balanced set. How hard is it to find a balanced set g? A trivial
candidate is simply the set of all Z-stars, which is clearly balanced by symmetry. Note
that for I = 2, there are only k Z-stars. This fact was exploited by Gusfield [9] to obtain
an approximation ratio of 2-2/k. This is really a special case, as for 1 > 2, the number
of Z-stars grows exponentially with k making the algorithm computationally infeasible.
Pevzner [151 solved the case of Z = 3, by mapping the problem to weighted matching
on graphs.

In this section, we show that it is not necessary to exhaustively compute alignments
for all possible Z-stars. Dynamic programming provides a shortcut. Specifically, we
prove the following:

Theorem 2. For all k, 1, it is possible to compute an alignment with a performance
guarantee of 2 - Z/k in O(k’+1(2k + kg(Z,n))) time.

Proof. For simplicity, consider at first the case when 1 - 1 Jk - 1. Fix a center vertex c.
Consider an arbitrary subset Q of 1- 1 sequences from V \ c. Denote opt(Q) to be the
optimum score of a weighted alignment of the sequences in Q along with c such that
the weight of all edges incident to c is k - Z + 1 and the weight of the remaining edges

V. Bafna et al. I Theoretical Computer Science 182 (1997) 233-244 239

is 1. For each choice of a center vertex c and for each of the (‘;I:) possible cliques

Q c V \ c, compute opt(Q). This computation can be done in time O(kk’g(l,n)).

Next, for all QG V\c, such that IQ] IS a multiple of I - 1, denote s(Q) as the

minimum alignment score among all Z-stars over the vertices in QUc with center vertex

c Now, let Qi, Q2 . . . , Qr be the cliques on an Z-star with the minimum alignment score.

Then, from Lemma 3, s(Q) = opt(Qi) + opt(Qz) + . . . + opt(Q,.). Clearly, s(Q) can

be computed by the following recurrence:

s(4) = 0

s(Q) = minQ' c Q,lQ’ I = I-I {dQ \ Q'> + o~t(Q')l

Q is a set of size at most k - 1. In order to compute s(Q), we need to look at most

(:I;) = O(k’) su b sets Q’. Therefore, computing s(Q) for each of at most 2k sets Q

takes O(k’) time, and repeating for each choice of a center vertex, the computation

takes O(k’ 2k k) time. Therefore, if I- l(k - 1, we can compute the optimum score in

0(k’(2k + kg(1, n))) time.

In the general case, when (1- 1) does not divide (k - 1), we need to consider hybrid
stars which contain cliques of size I as well as I+ 1. Therefore, we compute opt(Q)

for all cliques of size 1 or 1 + 1 in time O(k’+‘kg(l + 1, n)). The new recurrence for

s(Q) is as follows:

s(Q) = minpl c Q, IQ+L-~ or pl=r{s(Q\Q’> + opt).

The net running time increases to 0(k’+1(2k + kg(Z + 1,~))). 0

This approach may be computationally tractable for many problem instances. How-

ever, in order to obtain a time bound that is polynomial in n and k, for fixed 1, we

need to construct balanced sets of I-stars of small size.

Constructing a small balanced set of I-stars is not trivial, except for some specific

values of I and k. One way of constructing such a set $9 for specific values of 1 and k
is to consider a sharply doubZy transitive set of permutations, and combinatorial block

designs [2].

In the following section, we get around the difficulty of constructing small balanced

sets fur all I, k by constructing a balanced set that is exponentially large, but on which

we can quickly find a minimum score Z-star by solving matching problems.

6. Balanced sets of (2Z- 1)-stars

In this section, we prove the following theorem

Theorem 3. For all k, 1, it is possible to compute an alignment with a performance
guarantee qf 2 - l/k, in 0(k3g(21 + 5,n)) time.

240 V. Bafna et al. I Theoretical Computer Science 182 (1997) 233-244

Proof. For simplicity, let us first assume that 2fZ - 1) 1 k - 1. For each choice of a
center vertex c, let G be an arbitrary l-star with r cliques. Define a configuratiola G’
by combining the cliques of G in a pairwise fashion (to form (21 - 1)-cliques), and
assigning weights as follows:

I

k-(l- l)- l/2 i=c orj=c,

1 i, j # c, i and j are contained in the same clique
Cij =

of G’, but different cliques of G,

0 otherwise.

Note that, as in the case of l-stars,

C(G)E=(k- 1) k-(l- l)-; + 1 &(‘- 1)2= (:> (2 - ;>.

Trivially, Lemmas 2 and 3 hold for a configuration also.
For an arbitrary l-star G with center c, consider the set of all configurations obtained

by pairing up cliques in G. Consider an arbitrary edge (i, j) such that i, j # c, and i, j

do not belong to the same clique of G. By symmetry, each such edge will appear an
equal number of times, say X, in the set of all configurations.

Now, for each Z-star G in a set of k arbitrary l-stars, each with a different center
vertex, consider the set of all configurations obtained by pairing up cliques in G.
We assert that this set of configurations, along with x copies of each I-stars, forms a
balanced set 9. For an arbitrary entry in C(G), C(G)[i, j] = k - (I - 1) - l/2 exactly
(2/k)JS(times (when i or j is the center vertex of
(k - 2)/kx times. Therefore CGEg C(G) = pE, where

p = (CGEI C(G))E

(9

G), and c(G)[i, j] = 1 exactly

is a scalar. Furthermore, Ci,j C(G)[i, j] = (2 - l/k)(i) is the same for all GE 9,
implying that

Therefore, p = (2 - I/k)(BJ.

Next, we show that we can compute the optimal weighted cost configuration without
explicitly generating the set of all configurations. Fix k arbitrary I-stars, one for each
choice of a center vertex. For each I-star with center c, form a complete graph of
r vertices H,, with each node corresponding to a clique of the l-star and the weight
of an edge being the cost of an optimal weighted alignment on the corresponding
(22 - 1)-clique.

Note that each configuration of G with center c describes a matching in Hr. Further,
by Lemma 3 the cost of the configuration is equal to the sum of weights on the
matching edges. Therefore, a minimum cost matching on H, gives the cost of an

V. Bafna et al. ITheoretical Computer Science 182 (1997) 233-244 241

optimal weighted configuration of G with center c. In order to find the optimal weighted

cost configuration in $9, we solve the corresponding matching problem for each choice

of a center vertex and pick one with the minimum cost. Finally compare the optimal

configuration with each cost of the k Z-stars, and return one with the minimum cost.

From earlier arguments, the corresponding alignment achieves the desired performance

ratio.

For the running time, observe that in computing the graph H,, we need to solve

(;) alignments of 2Z- 1 sequences, which takes time O(r2g(2Z- 1, n)) = O(k2g(2Z -

1, n)). For typical values of n, k, this dominates the cost of computing a minimum cost

matching on a graph of size r. Repeating this for each choice of a center vertex takes

time O(k3g(2Z - 1,n)). Finally, computing the alignment for each of the k Z-stars takes

time O(kg(Z,n)). Therefore, if 2(Z - l)lk - 1, it is possible to compute an alignment

with performance guarantee of 2 - Z/k, in 0(k3g(2Z - 1,n)) time.

This method can be generalized for arbitrary Z with a slight increase in running time.

Consider a hybrid Z-star G with an even number of cliques of size Z and Z + 1. As

before, define a configuration G’ by combining cliques of G arbitrarily in a pairwise

fashion to form new cliques of sizes 21 - 1,2Z and 21 + 1. Assign weights exactly as

before. Note that Lemmas 2 and 3 still hold. Also, from symmetry, if we take the set

of all configurations of Z-star G, then each edge that does not belong to a clique of G

will appear an equal number of times, say x. Combining this with x copies of G, each

edge appears exactly x times. By earlier arguments, this set is also balanced. The only

thing that remains is to estimate the value of p. Note that,

C(G)E<(k- 1) k-(Z- I)-; +
I

Therefore, p < (2 - (I - 2)/k). Repeating earlier arguments, we see that the optimal

weighted cost configuration for each choice of a center can be computed in time

O(k2g(2Z + 1,n)). Therefore, in time O(k3g(2Z + l,n)), we can compute an align-

ment that will guarantee a performance of 2 - (I - 2)/k. For I’ = Z - 2, this im-

plies an algorithm that runs in time 0(k3g(2Z’ + 5,n)) and guarantees a performance

of 2 - Z’Jk. Cl

As an aside, a smaller balanced set can be explicitly constructed. Let

A perfect matching on Hzr corresponds to a configuration in the original graph.

It is easy to see that a set of configurations corresponding to a l-factorization of

Hzr (edge-disjoint decomposition of Hzr into perfect matchings), for each of the k
Z-stars, along with a single copy of each Z-star, forms a balanced set of

size 0(k2).

242 K Bafna et al. I Theoretical Computer Science 182 (1997) 233-244

7. Random sampling of l-stars

What is the performance bound if we choose an l-star at random? Gusfield stud-
ied this for 2-stars and gave a bound on the expected score of the alignment [121.
Assuming a uniform distribution on the set of all I-stars, we are interested in the ex-
pected value of the random variable C(G)S(&). As the set of all Z-stars is balanced,
Exp[C(G)S(Ao)] < (2 - I/k) minA ES(A). However, it is not clear if we can pick with
high probability, an Z-star that achieves the 2 - l/k performance.

Let $ be the set of all Z-stars, with a fixed center c. For G in 9c, let C(G) = Ci (G)+
Cs(G) be the partition of weight matrix into Border and Center weights, with Cl(G)
being the same as C(G) except for the cth row and column which are 0. Define
E = El + EZ in an identical manner. Observe the balancing property of Ci(G), i.e.

c cEY Cl(G)= p&, where

We have the following lemma:

Lemma 5. For G chosen uniformly at random from $?& and any alignment A,

Prob Cl(G)S(A) > 2 BEIS
2 I%‘,1 1 < f .

Proof. Let BAD={GE$‘,JC~(G)S(A)> ~#JE~S(A)}. Then,

;&ElS(A)IBAD\ < C Cl(G)S(A)< C Cl(G)S(A)
c GEBAD GE%

= PI&W)

which implies that [BAD] Q ~199~1. 0

Pick m l-stars randomly from $. It follows from the proof of Lemma 5 that the
I-star with the minimum weight alignment (among these m stars) is in BAD with
probability less than or equal to (f)“. Randomized-Alignment (Fig. 3) uses this fact
to construct a set of Z-stars which guarantees a good performance with high probability.

Theorem 4. Zf 1 - l(k - 1, then for an arbitrary E > 0, Randomized-Alignment runs
in time 0(k2[lg(k/&)jg(2Z,n)), and returns an alignment that, with probability 1 - E,

achieves a performance bound of 2 - I/k.

Proof. Consider the set of I-stars in 9 = {G,: 1 < c d k}, constructed by the outer
loop. To begin with, assume that none of the I-stars in 9 is in BAD. In other words,

for all GE Y, 3 PI C,(G)S(A) < ZMW(A)+

K Bafna et al. I Theoretical Computer Science 182 (1997) 233-244 243

Procedure RandomizedAlignment(I, k, E)

SC0
for cE{l,...,k}

repeat 2 [lg(k/a)l times
choose a random l-star G with center c
compute an alignment Ao with the minimum weighted score minA C(G)S(A)

G, t an l-star with minimum weighted score among the 2 [lg(k/&)J Z-stars,

S+Su{G,}.
G + an l-star with the minimum weighted score mine E 9 C(G)S(&)

Fig. 3. Randomized algorithm for multiple alignment.

Randomized-Alignment returns an Z-star G with the minimum weighted score from 9.
We give a bound on its score by a counting argument. For every alignment A,

E$ C(G)WG) G?& C(G)S(A) < i C C(G)S(A)
GE9

d ;(k - (I - l))ES(A) + k$; +(A)

= 2 - &
(1

ES(A).

Now, recall from Lemma 2 that ES(&) < C(G)!?(&), which implies that if none of
the Z-stars in 9 is in BAD, the algorithm achieves a performance bound of (2 - 1/2k).

Next, we show that none of the l-stars in B is in BAD with high probability. In
each iteration of the inner loop, we consider 2[lg(k/s)l random l-stars, and pick a G,
with the minimum weighted score. By definition, this l-star is in BAD only if each
Z-star picked in that iteration is in BAD. Therefore, for all 1 < c < k, the probability
that G, E B is in BAD is less than

<F
k’

The probabilty that none of the k G, E ‘3 are in BAD is greater than or equal to 1 - E.
Now, choose I’ = l/2. Note from Lemma 3 that computing each alignment AG takes

time O(kg(21’,n)). Therefore, Randomized-Alignment runs in time 0(k22[lg(k/c)j
g(21’, n)) and returns an alignment that, with probability 1 - E, achieves a performance
bound of 2 - II/k. 0

244 V. Bafna et al. I Theoretical Computer Science 182 (1997) 233-244

Acknowledgements

We are grateful to Piotr Berman, Dima Grigoriev, Jeanette Schmidt and Martin
Vingron for many useful comments and suggestions.

References

[l] S.F. Altschul, D.J. Lipman, Trees, stars, and multiple biological sequence alignment, SIAM J. Appl.

Math. 49 (1989) 197-209.

[2] V. Bafna, E.L. Lawler, P. Pevzner, Approximation Algorithms for Multiple Sequence Alignment, in:

Proc. of the 5th Ammal Symp. on Combin. Pattern Matching (CPM’94). Lecture Notes in Computer

Science, vol. 807, Springer, Berlin, 1994, pp. 43-53.

[3] Z. Baranyai, On the factorization of the complete uniform hypergraph, in: A. Hajnal, T. Rado, V.T. Sos

(Eds.), Infinite and Finite Sets, North-Holland, Amsterdam, 1975, pp. 91-108.

[4] J. Bosak, Decompositions of Graphs, Kluwer, Dordrecht, 1990.

[5] J.L. Carter, M.N. Wegman, Universal classes of hash functions, J. Comput. System Sci. 18 (1979)

143-154.

[6] S.C. Chan, A.K.C. Wong, D.K.Y. Chiu, A survey of multiple sequence comparison methods, Bull.

Math. Biol. 54 (1992) 563-598.

[7] D. Feng, R. Doolittle, Progressive sequence alignment as a prerequisite to correct phylogenetic trees, J.

Molec. Evol. 25 (1987) 351-360.

[8] A.E. Gorbalenya, V.M. Blinov, A.P. Donchenko, E.V. Koonin, An NTP-binding motif is the most

conserved sequence in a highly diverged monophyletic group of proteins involved in positive strand

RNA viral replication. J. Molec. Evol. 28 (1989) 256-68.

[9] D. Gusfield, Efficient methods for multiple sequence alignment with guaranteed error bounds, Tech.

Report, Computer Science Division, University of California, Davis, CSE-91-4, 1991.

[lo] D. Gusfield, Efficient methods for multiple sequence alignment with guaranteed error bounds, Bulletin

of Mathematical Biology 55 (1993) 141-154.

[ll] T. Jiang, E.L. Lawler, L. Wang, Aligning sequences via an evolutionary tree: complexity and

approximation, in: Proc. ACM STOC’94, 1994, pp. 760-769.

[12] J. Kececioglu, The maximum weight trace alignment problem in multiple sequence alignment,

in: A. Apostolico, M. Crochemore, Z. Galil, U. Manber (Eds.), Combinatorial Pattern Matching 93,

Padova, Italy, June 1993, Lecture Notes in Computer Science, vol. 684, Springer, Berlin, pp. 106-l 19.

[13] D.J. Lipman, SF. Altachul, J.D. Kececioglu, A tool for multiple sequence alignment, Proc. Nat. Acad.

Sci. U.S.A 86 (1989) 4412-4415.

[14] P. Lorimer, Finite projective planes and sharply 2-transitive subsets of finite groups, in: Proc. 2nd

Intemat. Conf. Theory of Groups, Canberra (1973) 432-436.

[15] P. Pevmer, Multiple alignment, communication cost, and graph matching, SIAM J. Appl. Math. 52

(1992) 1763-1779.

[16] D. Sankoff, Minimum mutation tree of sequences, SIAM J. Appl. Math. 28 (1975) 35-42.

[17] D. Sankoff, Simultaneous solution of the RNA folding, alignment and protosequence problems, SIAM

J. Appl. Math. 45 (1985) 810-825.

[18] J. Schmidt, A. Siegel, The analysis closed hashing under limited randomness, Proc. 22nd ACM Symp.

on Theory of Computing, 1990, pp. 224-234.

[19] W.R. Taylor, Hierarchical method to align large numbers of biological sequences. Methods Enzymol.

183 (1990) 456-474.

[20] L. Wang, T. Jiang, On the complexity of multiple sequence alignment, J. Comp. Biol. 1 (1994) 337-348.

[21] M.S. Waterman, T.F. Smith, W.A. Beyer, Some biological sequence metrics. Adv. in Math. 20 (1976)

367-387.

