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Abstract 

Freivalds, R., E.B. Kinber and R. Wiehagen, On the power of inductive inference from good 

examples, Theoretical Computer Science 110 (1993) 131-144. 

The usual information in inductive inference available for the purposes of identifying an unknown 

recursive functionfis the set of all input/output examples (x, f(x)). neN. In contrast to this approach 

we show that it is considerably more powerful to work withjfinite sets of “good” examples even when 

these good examples are required to be effectively computable. The influence of the underlying 

numberings, with respect to which the identification has to be realized, to the capabilities of inference 

from good examples is also investigated. It turns out that nonstandard numberings can be much 

more powerful than Gijdel numberings. 

1. Introduction 

The main problem in recursion-theoretic inductive inference is the following. Let 

f be any recursive function, and let $ be any numbering of some class of partial 

recursive functions containingj Then the task is to synthesize an index (a “program”) 

off with respect to Ic/ solely from the sequence ((n,f(n)),,,. Thus, an inductive 

inference strategy can use the sequence of all input/output examples of the unknown 

function. In the sequel we refer to this approach as inductive inference from all 

examples (abbreviated: aex-inference). For an overview of aex-inference the reader is 

referred to the surveys Cl, 141 and to the monographs [16, 31. 
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In the following we investigate inductive inference from (afinite number of) “good” 

examples (abbreviated: gex-inference). Our results show that gex-inference is consider- 

ably more powerful than aex-inference. 

We will need the following definitions. 

Let P, R, P’, RZ denote the set of all partial recursive and recursive functions of one 

and two arguments, respectively. Let E denote the set of all functions from N into 

N with finite domain. 

A function $EP’ is called a numbering. We write pi instead of E,x[ll/(i, x)]. Let 

P,={$iliEN} and R,=P, nR. cp~P’ is called a Code1 numbering (cf. [18]) iff, for 

any tjeP2, there is CER such that, for any i, pi= (PC(i). Note that this definition implies 

P,+,=P. Let G denote the set of all Giidel numberings. 

For a functionfeR and nE N, let f” = cod(f(O), f(l), . . , f(n)), where cod denotes an 

effective and bijective mapping from the set of all finite sequences of natural numbers 

onto N. 

For functions L gEP and neN, let f= n g iff ((x, f(x)) 1 x d II and f(x) is de- 

fined} = {(x, g(x)) 1 x < n and g(x) is defined}; otherwisef# n g. Sometimes we identify 

a functionfeR with the sequence of its values; so 0” 1 m denotes the functionfsuch that 

f(x)=0 if x<m, andf(x)= 1 if x2m. 

For GEE and&R, we write 6 cfinstead of “6 is a proper subfunction off”. By 

init(6) we denote the subfunction {(x, a(x))1 xdm} of 6, where m is the maximal 

argument such that 6(x) is defined for all x<m. By max(b) we denote the maximal 

argument of the domain of 6. 

For any set A, by pA we denote the set of all subsets of A. 

Definition 1.1. Let U E R and let $ be any numbering. U is called finitely identifiable 

with respect to $ iff there is a strategy SEP such that, for any functionfeU, there is 

PEN such that 

(1) for all x<n, S(r)=?, 

(2) ti so”) - -f: 

Here ? is a special symbol, the output of which can be interpreted as saying by the 

strategy “I don’t know yet.“. It is required that the first “real” hypothesis be a correct 

$-program for the functionf: 

Finite identification was introduced in [12]. The reader is also referred to 

[S, 13,211. Let us define 

FIN, = {U 1 U is finitely identifiable with respect to $}, 

FIN= u FIN,. 
JI.PZ 

Definition 1.2 (Barzdin [2], Blum and Blum [4], Gold [12]). Let U c R and let $ be 

any numbering. U is called limit identifiable with respect to II/ iff there is a strategy 
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SEP such that, for any functionfEU, there is iEN such that 

(l) *i=f, 

(2) S(f”)=i for almost all n. 

Thus, the sequence of hypotheses produced by the strategy S on the function 

f converges to a correct $-program ofJ: We note that no restriction is made that we 

should be able to algorithmically determine whether the sequence of hypotheses has 

already stabilized. It is easy to see that such a restriction would lead to the concept of 

finite identification. 

We define 

LIM, = { U ) U is limit identifiable with respect to $}, 

LIM= u LIM,. 
lp.Ep* 

Definition 1.3 (Barzdin [2], Case and Smith [S], Feldman [7]). Let U c R and let 

# be any numbering. U is called behaviorally correct identifiable with respect to $ iff 

there is a strategy SEP such that, for any functionfEU and for almost all HEN, 

Thus, on the functionfthe strategy S produces a sequence of $-programs almost 

all of which compute f: 

Define 

BC, = (U 1 U is behaviorally correct identifiable with respect to $}, 

BC= u BC,. 
tltLEp* 

The following theorem gives an insight into the possibilities of finite, limit and 

behaviorally correct aex-inference. 

Theorem 1.4 (Barzdin [2], Case and Smith [S], Podnieks [17]). FIN cLIM c 

BC c pR. 

Another remarkable fact about aex-inference is pointed out by the following 

obvious lemma. 

Lemma 1.5. Let IE{FIN, LIM, BC}. Then,fir any cp~G, Z=I,. 

Hence, if a function class is aex-inferable at all, then it is always aex-inferable with 

respect to an arbitrary Godel numbering. In this sense Godel numberings are the most 

“powerful” numberings for aex-inference. Moreover, this seems to imply that the only 
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kind of numberings which are “interesting” for inductive inference are just the Giidel 

numberings. However, we are convinced that in this strong sense this implication is 

not justified even for aex-inference. In [9] it is shown that one-one numberings, 

a special kind of non-Giidel numberings, are very helpful in characterizing the 

identifiable function classes from FIN and LIM in terms of pure numbering theory. 

In [lo] it is shown that probabilistic inference strategies may have extreme advant- 

ages over deterministic ones for FIN-, LIM-, BC-identification just with respect to 

suitable non-Godel numberings. Below we show that also for gex-inference, which we 

will define now, non-Giidel numberings can be more “powerful” than Gbdel 

numberings. 

2. Inductive inference from good examples - the approach 

The idea of inductive inference from good examples is to use jnite sets of “well- 

chosen” examples instead of the infinite sets of all examples to identify the unknown 

functions. 

Definition 2.1. Let U E R and let $ be any numbering. U is called finitely identifiable 

from good examples with respect to $ iff there is a numbering ex, a strategy SEP, and 

a function ZEP such that U c P, and, for any iEN with $iEU, 

(1) exi is a finite subfunction of Ii/i, z(i) is defined, and z(i)=card exi, 

(2) for any finite subfunction E of Icli, $S(exivsJ=$i. 

Let us neglect the E for a moment, i.e. take the special case E = 0. Then it follows from 

condition (2) above that, for any function rl/i from the class U, the strategy S “finitely” 

produces a correct $-program of tii (which may be different from i) solely from 

exi - the finite set of good examples. 

Furthermore, it follows from condition (1) that, for any i such that $iEU, exi is 

effectively computable from i. 

The E we need in order to avoid “unfair coding tricks” such as exi = {(i, $i(i))} which 

would lead to trivial identification of the whole class R. On the other hand, in “real 

life” it seems to be seldom to get such a pure set exi of good examples. Often one gets 

additional correct, but nonnecessary information (just the E) and then one has to deal 

with the union of all the information, yielding another interpretation of the E in the 

definition above. 

A possible scenario of inference from good examples is the relationship between 

teacher and pupil. As a rule the teacher will not tell the pupil only the correct and final 

answer - say i -, she/he will not present the pupil all she/he knows about the 

phenomenon to be learned - say $i(O), pi, $i(2), . . . . Actually, she/he will offer some 

typical information, just “good examples”, in order to enable the pupil to learn the 

unknown phenomenon by processing the good examples. 
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We will use the following abbreviations: 

GEX-FIN, = (U 1 U is finitely identifiable from good examples 

with respect to II/>, 

GEX-FIN = u GEX-FIN,. 
l/lEP2 

Definition 2.2. Let U E R and $ be any numbering. U is called limit identifiable from 

good examples with respect to II/ iff there is a numbering ex, a strategy SEP*, and 

a function ZEP such that U E P, and, for any icN with $iECJ, 
(1) exi is a finite subfunction of Ii/i, z(i) is defined, and z(i)=card exi, 

(2) for any finite subfunction E of $i, there is j such that $j= $i and, for almost all 

nE N, S(exi u E, n) = j. 

Thus, for any function lieu, on any finite function 6 such that exi s 6 c $i the 

strategy S produces an infinite sequence of hypotheses converging to a correct 

$-number of the function $i. 

Of course, the question arises whether this additional “degree of freedom”, namely 

allowing the strategy of a finite number of mind changes, can really increase its power, 

since the information processed is always the same, namely 6. In Section 4 we will 

answer this question affirmatively. We set 

GEX-LIM, = {CT 1 U is limit identifiable from good examples 

with respect to $1, 

GEX-LIM = u GEX-LIM,. 
@EP2 

Finally, if Ic/ and ex are numberings and U E R, then ex is said to be an effective 

U-subnumbering of II/ iff there is ZEP, such that, for any iEN with $iEU, exi is a finite 

subfunction of pi, z(i) is defined and z(i)=card exi. 

3. Finite gex-inference 

Our first result shows that all enumerable classes of recursive functions are finitely 

identifiable from good examples with respect to suitably chosen numberings. 

Therefore, let 

denote the family of all enumerable classes of recursive functions. It is well-known that 

NUM is not contained in FIN (more exactly, NUM and FIN are set-theoretically 

incomparable, cf. [14]), whereas it follows from Theorem 3.1 that NUM is contained 

in GEX-FIN. In order to formulate Theorem 3.1, let R? denote the set of all 

numberings $ER’ such that {(i, j) 1 ccli=~j} is decidable. 



136 R. Freiualds, E.B. Kinber, R. Wiehagen 

Theorem 3.1. For any rl/~R?=, R,EGEX-FIN,. 

Proof. Let $ E R% . For any i, je N such that lcli # ~j, let Xij denote the least argument 

x such that $i(x) # $j(X). 

Define 

and, for i>O, 

i 

{(xij,$i(xij))IO<j<i} if ll/i#$j for all j<i, 

eXi= exj if j< i is the least number 

such that I,+~=$~. 

Obviously, ex is an effective R*-subnumbering of $. 

Furthermore, for any GEE, let 

S(6) = the least iEN such that 6 c Icli. 

Clearly, R,EGEX-FIN, by S, since, for any ieN and any finite subfunction E of pi, 

S(exiu c) is equal to the least j such that ~j= ll/i. 0 

Thus, we learn from Theorem 3.1 that good examples for finitely identifying 

NUM-classes can be effectively computed with respect to arbitrary numberings from 

Rt . Moreover, we see that the “goodness” of these examples consists in the strategy’s 

ability to distinguish the function ll/i (without knowing a priori the index i, of course) 

from all the different previous ones in the numbering $, i.e. from any $j, where j< i 
and Il/j# pi. This leads naturally to identification strategies which work enumer- 

atively. On the other hand, the question whether or not there is “another type” of 

good examples leading to strategies which construct the hypotheses “directly” from 

the good examples, i.e. without enumerative search through the “space” II/ of hypothe- 

ses, has been answered affirmatively for finite identification of pattern languages 

recently (cf. [ 151). 

Since it is well-known that for any class UENUM there is a numbering $ER% such 

that R,= U (cf. [6]), we get immediately the following corollary from Theorem 3.1. 

Corollary 3.2. NUM s GEX-FIN. 

This already contrasts to the NUM$FIN result for finite aex-inference. 

However, our next result shows that finite gex-inference is even more powerful than 

finite aex-inference by “two orders of magnitude” corresponding to the inclusions 

FIN c LIM c BC. 

Theorem 3.3. GEX-FIN = BC. 
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Proof. GEX-FIN & BC. 

Let UEGEX-FIN. By definition there is a numbering II/, an effective U-sub- 

numbering ex of II/, and a strategy S such that, for any i with ll/iE U and any GEE with 

exi C 6 C $i, It/s(6) = ll/i. 

Then define a strategy TEP as follows: 

T(f”)=S({(x,f(x))lx<n)). 

NOW let feU and i be such that ail U. Then, obviously, for any namax(exJ, we 

have 

exi C {(X, f(X)) I X d n} C $i. 

Consequently, 

$r( / “) =f for any II 3 max (eXi). 

Hence, UEBC~ by T. 
To show BC c GEX-FIN we need two lemmas. 

Lemma 3.4. For any UEBC and any cp~G, there is a strategy SEP such that 
(1) UEBC, by S, 

(2) for any fEU and any nEN, ifcpsCfn,=f, then, for any m>n, (pscrm,=f: 

Proof. Let U c R, cp~G, and UEBC,,, by T. Without loss of generality let TER. Define 

a strategy S as follows: 

S(f”)=“A q-number of the function g, where g is defined as follows 

(let i := T(f”)): 

i 

Vitx) if xbn or, for all n<y<x and O<x’<x, 

s(x)= Cpi(x’) and qTcSYj(x’) are both defined and equal, 

undefined otherwise.” 

Now 1etfE U and let m be the least number such that, for any n > m, qTCJ. “) =f: Then, 

for any n<m, cpscf”, #f: Indeed, let n <m and qs,,,, =f: Then g=jY Hence, by the 

definition of g, cprc IYJ =ffor all y > n. But this is a contradiction to the definition of m. 
On the other hand, for any n>m, obviously cpscfnJ =f: Consequently, (1) and (2) 

hold. 0 

Lemma 3.5. If UEBC, then there is a numbering $ and a function rER such that 

(1) UCP,, 
(2) for any i, ncN, if ail U and n>r(i), then there is jEN such that r( j)=n and 

*j=n Ii/i> 

(3) for any i,jEN, if$ieU, IC/j=rcj)ll/i, and r(j)>r(i), then ll/j=Il/i. 
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Proof. Let UEBC, by a strategy SER, where cp~G and S has the property of Lemma 

3.4(2). 

Let {f”l&R, HEN, and (Pi=. f} be enumerated by eER without repetition. 

Then, for any i~iV, where e(i)=f”, define pi= ‘psc,-“) and r(i)=n. 
Letfg U and let m be the least number such that cpscfn, =ffor any n > m. Let ieN be 

such that e(i)=f”. Then lCli=f; hence, (1) holds. 

Now let i, neN be such thatf= tii~ U and n >r(i). Then, by Lemma 3.4(2), cpsc,+, =f: 

Hence, there is a jeN such that e(j) =f”. Consequently, r(j) = n and $j=n $i. Thus, (2) 

holds, too. Moreover, since qscrn,=f, we have even $j=ll/i; hence, (3). 0 

Remark. The converse of Lemma 3.5 is also true. However, there is a more “polished” 

characterization of BC, namely, Lemma BC. 

Lemma BC (Wiehagen [20]). UEBC iffthere is a numbering t+b~P’ and afunction reR 
such that 

(1) UCP,, 
(2) for any ~CZ U and almost all i, ll/i = r(i) f implies $i =f: 

Proof of Theorem 3.3 (continued). Now in order to prove BC E GEX-FIN let UEBC 

and let a numbering $ and a function r be chosen according to Lemma 3.5. 

Then, for any i, we define 

Clearly, ex is an effective U-subnumbering of $. 

Now, for any SEE, let a strategy S be defined as follows: 

S(6) = “Search for a j such that 

r( j)=max(init(h)) and $j=l(j,init(d). 

output j.” 

Let& U, $i =f; and do E be such that exi E 6 cJ: Then it follows from conditions (1) 

and (2) of Lemma 3.5 that S(6) is defined. Furthermore, max(init(G))ar(i). But then 

condition (3) of Lemma 3.5 yields tist6)=f: q 

We have proved that even using the “strongest” way to get the good examples, 

namely to compute them effectively, and the “strongest” way of inference, namely 

finite identification, it is possible to identify all the classes from the aex-type BC. In 

order to achieve this result the underlying numberings had to be chosen carefully. Our 

next results point out that this is necessary in some sense. Theorem 3.6 shows that the 

goal of Theorem 3.3 cannot be achieved if we confine ourselves to Godel numberings. 

Theorem 3.6. For any cp~G, GEX-FIN, c GEX-FIN. 
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Proof. Let U=(O”l”~m~l}u{O”‘} b e a subset of the step functions containing the 

“accumulation point” 0”. (Note that U can be used to prove that NUM \ FIN #8, cf. 

[14].) Clearly, UENUM. Hence, by Corollary 3.2, UEGEX-FIN. 

Now let cp~G. Assume that UEGEX-FIN,. Then there are an effective U-subnum- 

bering ex of c~ and a strategy S such that, for any i with Cpi~U and any GEE with 

esi c 6 c qi, S(6) is defined and qsca, = vi. 

Hence, there is some partial recursive function e mapping N into E such that, for 

any i with cpigUu, e(i)=exi. 

By applying an analogue of Smullyan’s double recursion theorem (cf. [19]) there 

are i, jsN such that 

0 if x <max (e(i), e(j), s}, where s is the number of 

cPjtx)= 

steps needed to discover that e(i) and e(j) are both 

subfunctions of O”, 

1 otherwise. 

Assume that e(i) or e(j) is not a subfunction of 0”. Then there exists no s, and 

‘pj=O”. But then Cpi= qj=O”EU; hence, e(i) and e(j) are both subfunctions of O”, 

a contradiction. Consequently, e(i) and e(j) are both subfunctions of 0” and, there- 

fore, ~j#O”. 

Hence, there must be an M such that cpj(x) =0 for any x<m, e(j) c O”, and 

max(e( j))<m. But by the definition of y, we also get max(e(i))<m. Hence, for 

6 = {(x, 0) 1 x d m} we have exi z 6 c qi and exj c 6 c ~j. Consequently, psca, = Cpi and 

cpscs,=~j. But this is a contradiction, since qni#qj. 0 

Hence, with respect to finite gex-inference nonstandard numberings can be more 

powerful than Giidel numberings. Moreover, this effect can be realized even on “easy” 

function classes, namely enumerable ones. 

Corollary 3.7. There is a class CJgNUM such that 

(1) for any (PEG, U#GEX-FIN,, 

(2) ,for some $EP’, UEGEX-FIN,. 

Proof. Let U be the class from the proof of Theorem 3.6. Then (1) follows from the 

proof of Theorem 3.6 and (2) follows from Corollary 3.2. 0 

Theorem 3.6 and Corollary 3.7 clearly contrast Lemma 1.5, which characterizes the 

power of Giidel numberings for aex-inference. For gex-inference a weakened version 

of Lemma 1.5 holds stating that any two Giidel numberings are equally powerful. 

Lemma 3.8. For any cp, (P’E G, GEX-FIN, = GEX-FIN,, 
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Proof. Let cp, $eG and UEGEX-FIN, by TEP. Then it suffices to show that 

UEGEX-FIN,, . 

Therefore, let c, C’ER be such that, for any i, (pi= Cp:ci, and cp:= (PC’(i). For any i, 
define ex; = Ed,, . Then ex’ is an effective U-subnumbering of cp’. 

For any SEE, define 

S(6) = c(T(6)). 

Then, obviously, UEGEX-FIN,! by S. 0 

In our approach, for any function Icli~ U, the good examples for finitely identifying 

pi can be computed effectively from i (by ex~P’ and ZIP). The question naturally 

arises whether it is possible to enlarge the capabilities of finite gex-inference by 

weakening the way to get the good examples. It turns out that the answer to this 

question is negative. We have defined finite gex-inference where the good examples are 

only computable in the limit, or they do simply exist but nothing is required 

concerning the way to compute them. Then we were able to prove that these weaker 

versions of good examples do not increase the power of finite gex-inference defined 

above. For the exact definitions and the proofs using similar ideas as in the present 

paper the reader is referred to [l 11. 

4. Limit gex-inference 

Our final result shows that limit gex-inference is also more powerful than limit 

aex-inference by two orders of magnitude. More exactly, the whole class R of all 

recursive functions is limit inferable from good examples. 

In order to prove this result let us define a “2-dimensional” inference type as follows. 

Definition 4.1. Let U c R and cp~G. UE~LIM iff there is a strategy TEP’ such that, 

for any fg U and for almost all II, there is je N such that Cpj =f and, for almost all k, 

T(f”, k)=j. 

Now we define a strengthened version of this type. 

Definition 4.2. Let U c R and cp~G. UES 2LIM iff there is a strategy TER’ such that 

(1) Ue2LIM by T, 
(2) for any,feU and any n, kEN, if (PT(Sm,k,=f, then, for any m > n, there is jg N such 

that cpj=f and, for almost all I, T(f”, l)=j. 

Clearly, the definitions of 2LIM and S2LIM are independent from the particular 

choice of cp~G. 

Now we prove that ReS2LIM and S2LIM =GEX-LIM. Consequently, REGEX- 

LIM. 
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Proposition 4.3. RESZLIM. 

Proof. Let cpeG. For any,fER and any n, kEN, let J,,,, denote the set of allj,<k such 

that ‘pj = n f is discovered within k steps. Now let i = min J, “, k if J, ,,, k # 8. Let YE P2 be 

such that, for any,feR and any n, k, XEN, 

I 

cPitx) if there is no j<i such that (pj=nf 

‘Ps(f”,k,(X)’ is discovered within x steps, 

undefined otherwise. 

Let ZEN be such that cp._ is the empty function. Then define a strategy S as follows: 

SW> k) = 
s(.f”, k) if J,n,kf@, 
Z otherwise. 

Now 1etfE R. Let m be the minimal number such that qrn =f: Let xf be the minimal 

number such that, for any i < m, SDi # X,f: Now let nE N. Then it is easy to see that there 

are two cases: 

If n<xf, then, for any k, (PS(S”,k)#f 
If n>x,, then, for almost all k, cp,,f,,k,=f: 
Hence, RES~LIM by S. 0 

Proposition 4.4. S2LIM = GEX-LIM. 

Proof. S2LIM z GEX-LIM. 

Let UES~LIM by T. Let 

{(j, n, k) ( vi(X) is defined f or all x<n and T(q$, k- l)#T(cpj”, k)=j) 

be enumerated by ecR without repetition. 

For any i, XEN, where e(i)=( j, n, k), define 

It/i(x)= 

i 

;f;ifined ft;e;;is;r *(cP;~ k+x)=j, 

Furthermore, define 

exi={(x, $i(x))Ix<n}. 

Then ex is an effective U-subnumbering of $. 

In order to show that UEGEX-LIM,, let a strategy S be defined as follows for any 

C?EE and mcN: 

S(6, m)= “Let n =max(init(b)). Let kdm be maximal such that 

T(init(6), k - 1) # T(init(@, k). Let j= T(init(S), k). 
If qj # n 6, then S(6, m) is undefined. 

If qj= n 6, then search for the number i such that 

e(i)=(j, n, k) and define S(6, m)= i.” 
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Now 1etfE U. Let IEN be such that I/J[ =$ Let GEE be such that exl E Scf: We will 

show that there is an i such that $i =f and, for almost all m, $s(d, m) = i. 
Note that condition (2) of the definition of S2LIM guarantees that on init(8) the 

strategy T converges to some q-number off; formally, there is aj such that qj=fand, 

for almost all k, T(init(G), k)=j. Let k be maximal such that T(init(@, k- 1) # 

T(init(6), k). Let n=max(init(d)) and i be such that e(i)=(j, II, k). Clearly, ~i=f and 

S(6, m)=i for almost all m. Hence, UEGEX-LIM, by S. 

GEX-LIM z S2LIM follows immediately from Proposition 4.3. 0 

Corollary 4.5. 2LIM = GEX-LIM. 

Proof. Immediately from Propositions 4.3 and 4.4, and S2LIM E 2LIM. 0 

Now we get the result announced above. 

Theorem 4.6. REGEX-LIM. 

Proof. Immediately from Propositions 4.3 and 4.4. 0 

5. Conclusions 

We have shown that gex-inference is considerably more powerful than the usual 

approach of aex-inference. The class R of all recursive functions is even gex-identifi- 

able in the limit. In all cases the sets of good examples were effectively computable. In 

spite of these affirmative results several problems remain open. We want to point out 

some of them. 

First we conjecture that the class R does not remain gex-identifiable in the limit if 

the number of mind changes will be bounded. More exactly, for U c R and mEN, let 

UEGEX-LIM, iff there is a numbering Ic/, an effective U-subnumbering ex of $, and 

a strategy SET” such that 

(1) UEGEX-LIM, by S, 

(2) for any iEN and any GEE, if lieu and exic6cf; then card{nlS(& n)# 

S(&n+l)}dm. 

Then we suggest the following hierarchy result: 

For any m, GEX-LIM, c GEX-LIM,, I. 

Clearly, this would imply that, for any m, R$GEX-LIM,. 

One way to prove the hierarchy above could consist in defining S2LIM, as 

a version of SZLIM with bounded mind changes, then proving that, for any m, 
GEX-LIM, = S2LIM,, and, finally, establishing that, for any m, S2LIM, c 

S2LIM,+ 1. It is open whether this technique will work. The reader is referred to [S] 

for other mind change hierarchies. 
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Furthermore, it appears that the main reason why good examples are good is 

because of the strategy’s ability to distinguish a function to be identified from all 

different previous ones in the underlying numbering. This leads naturally to identifica- 

tion strategies which work enumeratively. Are there other such reasons for goodness 

or not? Can they lead to “constructive” gex-identification strategies? Is it, therefore, 

reasonable to deal with classes of objects to be identified which possess more 

“structure” such as formal languages, finite automata, Boolean functions? The first of 

our results in this direction lead to the conjecture that the answer to these questions 

will be affirmative (cf. [15]). 

Finally, we have seen that nonstandard numberings can be more powerful for 

gex-inference than Giidel numberings. Is this also true for limit gex-inference? Or, is 

there cp~G such that REGEX-LIM a? Up to now we know only that, for any (PEG, 

RELIMGEX-LIM, (cf. [ 111). In any case: Let there be a non-Giidel numbering which 

is powerful for gex-inference. To what extent one can modify this numbering without 

decreasing its power for gex-inference, but to come as close as possible to the 

“programming convenience” of Giidel numberings? 
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