
ELSEVIER Theoretical Computer Science 182 (1997) 145-l 57

Theoretical
Computer Science

Bounded capacity priority queues

M.D. Atkinson*, D. Tulley

School of Mathematical and Computational Sciences, North Haugh, St. Andrew& Fife KY16 9SS, UK

Received October 1994; revised May 1996

Communicated by MS. Paterson

Abstract

A k-bounded priority queue transforms an input sequence CT into an output sequence z which
is a re-ordering of the sequence c while never storing more than k elements during the trans-
formation. We consider the set of all such related pairs (a, 7) in both the case that cs is a binary
sequence and the case that o is a permutation of 1,2,. , n. We derive properties of this relation
and use it to describe systems of priority queues in series. In the binary case we give an efficient
algorithm for computing the number of outputs achievable from a given input and the number
of inputs which can give rise to a given output. Finally, we give a one-to-one correspondence
between related binary input-output pairs and ordered forests of restricted height.

1. Introduction

Abstract data types are an important design tool in modern software systems. Al-

though there is an infinity of possible data types only a small number of them occur

repeatedly in algorithm design (stacks, arrays, queues, dictionaries, etc.), suggesting

that some data types are “more fundamental” than others. Many of these tindamental

data types are container data types: they are holders for collections of data items and

support an Insert operation and a Delete operation (often restricted in some way).

In practice, a container data type is used as follows. It is initialised as empty. Then it

is subjected to a sequence of Insert and Delete operations and, normally, on termination

it will be empty. The insertions and deletions may be interleaved (in any way, except

that a Delete operation is not permitted if the data type is empty). The result of this is

that some input sequence of data items has been transformed into an output sequence

(generated, one item at a time, by Delete operations). In effect, a container data type

is just a mechanism for transforming an input sequence into an output sequence. Its

functional behaviour is essentially characterised by the relationship between the input

sequences and the output sequences. An understanding of this relationship allows us to

* Corresponding author. E-mail: mda@dcs.st-and.ac.uk.

0304-3975/97/$17.00 @ 1997 -EElsevier Science B.V. All rights reserved

PI2 SO304-3975(96)00149-l

146 M.D. Atkinson, D. TulleylTheoretical Computer Science 182 (1997) 145-157

judge the capabilities of a data type and to assess its potential applications. In general,
if (r is an input sequence that gives rise to an output sequence r then we shall say that
the pair (a,r) is allowable. If a pair is allowable then there is at least one sequence
of Insert and Delete operations which transform c into z. Any such sequence is called
a computation. Numerical invariants of the allowability relation allow us to measure
the transformational capability of the data type.

Natural questions to ask about the allowability relation of a container data type
include: how many allowable pairs of each length are there, is there a useful char-
acterisation of them, how can one test whether a pair is allowable, how could one
calculate the number of allowable pairs with a given first component, does the relation
have any interesting symmetries ? In the case of a queue (where the Delete oper-
ation always removes the element which has been in the queue the longest) the
allowability relation consists only of pairs ((T, a) since the input sequence is merely
copied to the output without re-ordering. Hence, for queues, all the questions above are
trivial.

In the case of stacks (where the Delete operation always removes the element which
was placed in the stack most recently) the allowability relation is more complicated but
answers to all the questions above are known [8,2.2.1]. For example, there are c,, (the
nth Catalan number) allowable pairs whose first component is some fixed permutation
of n elements; hence the number of allowable pairs of permutations of length n is n!c,.

For priority queues (where the Delete operation always removes the smallest item)
many combinatorial results are known [5,2, 1,7]. For example, the number of allowable
pairs of permutations (a, r) of length n is (n + 1)n-l.

For dictionaries (which have an unrestricted Delete operation) the output can be any
permutation of the input. This is therefore the opposite extreme to that of queues but
the main questions are just as trivial.

In all these cases it is assumed that there is no restriction on how many items the
container data type can hold. Of course, this is an unrealistic assumption since, in
practice, there is only a finite amount of memory available and therefore there is an
implicit restriction on the number of items that can be placed into the data type at any
one time. This paper addresses the bounded case: we shall suppose that the container
data type can hold no more than k data items simultaneously.

In the case of queues the allowability relation is unchanged. However, for stacks
the allowability relation depends on k. In the case that the input sequence consists of
distinct elements the possible outputs are well understood since it is not difficult to
show that they are in one-to-one correspondence with ordered trees of height at most
k + 1. The results of [6] then allow very detailed information about the bounded stack
allowability relation to be derived. When the input sequence to a stack is allowed to
contain repetitions even the unbounded case remains unsolved.

The case of bounded dictionaries was solved as a special case of the more general
problem considered in [4].

Our main focus is on priority queues of bounded size. If a priority queue is not
permitted to have more than k elements in it we shall call it a k-bounded priority

M.D. Atkinson, D. TulleyITheoretical Computer Science 182 (1997) 145-157 147

queue. We shall say that a pair (cr,r) that is allowable under the stricter discipline of

a k-bounded priority queue is k-allowable.
To study the relation of k-allowability we shall use the following notation. We let

Sk(r) = {C 1 (c., z) is k-allowable}, the set of inputs that, using a k-bounded priority

queue, can result in the output r. We also define Tk(o) = {r 1 (a,~) is k-allowable}

which is the set of possible outputs that can be generated by a k-bounded priority

queue given the input sequence cr. Finally, we let sk(r) = I&(r)] and tk(b) = Irk(c)].

Guided by work on the unbounded case we divide our results into two sections.

In the next section we assume that the items to be placed in the priority queue are

all distinct (the permutation case) and we shall often take these to be the integers

1,2,. . . , n in some order. We consider especially the case that k = 2. This case is the

first non-trivial one and is interesting in that the transitive closure of the 2-allowability

relation contains every k-allowability relation for priority queues [2, Theorem 3.51.

By using generating function techniques we are able to derive a recurrence for the

number of 2-allowable pairs of length n and a rate of growth result for this number.

We also show how to compute tz(cr) and SZ(~) efficiently. Finally, we consider systems

of priority queues formed by serial composition and union.

In Section 3 we turn to the opposite extreme: where 0, 1 are the only possible

priorities (the binary case). Here our results are more extensive. We give a necessary

and sufficient condition for a pair of binary sequences to be k-allowable and use it in

deriving algorithms to calculate Q(Z) and &(a) by way of partially ordered sets. We

then use the condition again to describe the effect of several priority queues combined

in series. Finally, we give a correspondence between k-allowable pairs and forests of

height at most k + 1 and this enables us to enumerate the binary k-allowable pairs of

each length. Although several of the results in Section 2 have counterparts in Section 3

the techniques are usually very different.

2. Priority queues with permutation inputs

2.1. The 2-allowability relation

Lemma 2.1. If a and z are permutations of 1,2,. . . ,n then (0,~) is 2-allowable if
and only if there exist decompositions of o and z into substrings such that

0 = an&,

z = 6plE,

where each of (a, 6) and (y, E) are also 2-allowable.

Proof. Suppose first that there is a sequence of Insert and Delete-Minimum operations

that, using a 2-bounded priority queue, transforms (T into r. At the point that the symbol

n is inserted in the priority queue all the symbols of o which precede n (a segment

a say) will have been inserted and all except possibly one will have been output; the

remaining symbol of a, if any, will then be output immediately since it is smaller than

148 M.D. Atkinson, D. Tulley I Theoretical Computer Science 182 (1997) 145-157

n and no Insert operation is possible if the priority queue contains two items. Thus r
will have an initial segment 6 with (a,6) 2-allowable.

After 6 has been generated the priority queue will contain only the symbol n. Since
the priority queue is 2-bounded there must then be a number (possibly zero) of Insert,
Delete-Minimum pairs of operations followed by a Delete-Minimum which copies a
segment /I of o into the output r and then outputs n. The priority queue will now be
empty and the remaining segment y of g will be transformed into a final segment E of
r so that (~,a) will be 2-allowable. This proves one implication. The other is similar
and rather easier. 0

An immediate consequence is

Corollary 2.1. If (0,~) is a 2-allowable pair of permutations then the pair (rR, oR)

is also 2-allowable (where aR denotes the reverse of a sequence a).

Corollary 2.2. If 0,~ are permutations of 1,2,. . . ,n, where

0 = cm&,

4 = flf2.. * fr,

then

Tz(N~$) = T2(aF2(n4), (1)

T2W) = {n)T2(6) U {.fi)E(nh 9 ..fr), (2)

where juxtaposition XY of sets denotes the set of concatenations xy,x E X, y E Y.

Proof. (1) Using the juxtaposition notation and Lemma 2.1 we have

(2) Tz(n@) consists of those outputs arising from inserting and immediately deleting
n from the priority queue together with those that are obtained by inserting n, insert-
ing fi , and then deleting fi . The first of these sets is {n} r,(4) and the second is

{fi)T2(nf2 . . . h). q

Taking set cardinalities we now obtain

Corollary 2.3.

t2(an6) = t2t~>tzW),

r-1

tz(n+) = t2(4) + tz(nf2 . f . fr) = t2(n) + C tz(h+i . . * fr).
i=O

This corollary gives a recursive method for computing tz(rr>. If applied directly the
execution time of the resulting method would be exponential in n. However by using

M.D. Atkinson, D. Tulleyl Theoretical Computer Science 182 (1997) 145-157 149

the same dynamic programming technique used in [2] for the unbounded case the

calculation can be carried out in O(n4) steps and since Q(Z) = t2(rR) by Corollary 2.1

we obtain

Corollary 2.4. Zf c-r, z are permutations of length n then both tz(rs) and Q(T) can be

computed in time 0(n4).

The total number of %-allowable pairs of permutations of length n is, of course,

-%I = c t2(a>, (3)

where the summation is over all n! permutations of 1,2,. . . , n. Although it seems to

be difficult to find a closed form for xn we can at least determine the exponential

generating function U(t) = Cx,t”/(n!) of the sequence (x,).

Theorem 2.1.

U(t) =
1

I +log(1 -t)’

Proof. Let (c., r) be a 2-allowable pair of permutations of length n with 0 = sls2 . . .s,.

Suppose st appears as the ith symbol of z. Then, since the priority queue has capacity 2,

fJ = SlS2 . . . SicI,

T = S2S3 . . . SiSl/?,

where all of Q,S~ , . . . , si are smaller than $1 and (CI, /?) is a 2-allowable pair of permu-

tations on a set A of size n - i. The set A may be chosen in (,“i) ways and, once

chosen, there are X,-i choices for (cc,/3) and (i - l)! choices for ~1~2.. .si. Since (cr,r)

determines the value of i uniquely we have

x, = k(i - I)! n
(1

&z-i,
i=l n-i

which may be rewritten as

Expressing this in terms of

U(t) = 1 + U(t)
(

t +

= 1 - U(t) log(I

giving the result. 0

U(t) we obtain

;+;+...

- t),

We are indebted to M.S. Paterson for the above proof which is substantially shorter

than our original argument.

150 M.D. Atkinson, D. Tulleyl Theoretical Computer Science 182 (1997) 145-157

Corollary 2.5.

x, =cfn! (57)

Proof. The only singularity of the analytic function U(t) is where 1 + log(1 - t) =
0, which is when t = (e - 1)/e. Hence the radius of convergence of C x,t”/n! is
(e - 1)/e. Since the series converges absolutely within the circle of convergence we
have x,/n! = O((e/(e - 1))“) giving the result. q

2.2. Serial composition of bounded priority queues

We defme the allowability relation AR of a priority queue Pk to be Ak = {(a, r) 1 (b,z)

is k-allowable}. Then the allowability relation of systems of priority queues formed by
serial composition can be represented by the composition of the relations for each of
the queues within the system. One of the simplest non-trivial cases would be a priority
queue of size 2 followed by a priority queue of size 3 which we shall denote PzP, and
which has allowability relation A2A3. We shall assume that the priority queues always
have capacity greater than 1 since priority queues of size 1 cannot permute the input
and are therefore of little interest to us.

Lemma 2.2.

i < j+AiCAj,

k < I+AfcAf,

Ar+s- 1 c AA.

(4)

(5)

(6)

Proof. The inclusions of (4) and (5) are straightforward. They are strict inclusions
since it is easily verified that

((j,j- l,...,l), (1,2,...,j)) EAj\Ai

and

((I,1 - l,..., l), (1,&Z-I ,..., 2))~Af\Af.

To prove the inclusion of (6) we show that every computation with Pr+$_-l can be
simulated by P,P,. Consider an arbitrary allowable pair of Pr+s_-l and the computation
which transforms the input into the output. Whenever this computation inserts an ele-
ment into the priority queue we shall insert an element into P,. This is always possible
although we may first have to move an element from P, to P,. The total capacity of
the priority queue P,+_-1 is r + s - 1 and so there is always at least one free loca-
tion in P,P,, and by only moving elements into P, when there is no free location in
P, we can guarantee that there is always a free location in P,. When an element is
removed from P,+,_, we know that the same element is in P,P, somewhere and there

M.D. Atkinson, D. Tulleyl Theoretical Computer Science 182 (1997) 145-157 151

is no smaller element in the system. If the element is in P, we can simply delete it

and continue with the simulation. If it is in P, we can move it into the free location

in P, and then delete it. So we see that PrPS can simulate Pr+s-l. Finally, assuming

Y,S > 1, the pair ((3,2,1), (1,3,2)) is an allowable pair of P,P, but not of Pris-l and

so containment is strict. q

Lemma 2.3. Ai,/&, . . .A, = Aj,Aj, . . .Aj,ifandonlyifk=landia=j,fora=
1,2 ,..,, k.

Proof. Suppose Ai,Ai, * * . Ai, = Aj,Ajz . . .A,,. Then I<k otherwise ((I,Z - l,..., I),

(1, I, I - 1, . . . ,2)) would be an allowable pair of the right-hand system but not the left.

Similarly k < 1; thus k = 1.

If, for some a with 1 <a d k, we have i, # j, then we may suppose that ia > ja and

puts=k-l+i,,p=k-a-l.Thenitisreadilycheckedthat((s,s-l,...,l),(l,s,

s-l ,..., s-p,s-p-r+l,s-p-r+2 ,..., s-p-l,s-p-r,s-p-r-l,..., 2))
is an allowable pair of the left-hand system but not of the right. The other implication

is trivial and the proof is complete. 0

3. Priority queues with binary inputs

3.1. The number of inputs and outputs

We begin, as in Section 2, by giving some criteria for a pair of sequences to be

k-allowable.

Lemma 3.1. Let IJ and z be binary sequences expressed as

@ = lSOO1~’ . . . 1”

and

z = l’OOl[’ . . . 1’r

Then (a, z) is k-allowable if and only if for j = 0, 1, . . . , r

O<hsi-ti<k-1
i=O

with equality on the left when j = r.

Proof. For convenient reference in the proof and subsequently we call this set of

inequalities the bounded partial sum criterion.
We begin by showing the necessity of the bounded partial sum criterion. Consider a

computation which transforms a into r with a priority queue of capacity k. Let j be any

integer in 0,l , . . . , r and let p = ~~=, ti. At the point that the pth 1 is output exactly

jO’s have been output and the priority queue cannot contain the symbol 0. Thus, the

152 M.D. Atkinson, D. Tulleyl Theoretical Computer Science 182 (1997) 145-157

(j + 1)th 0 of r has not yet been input and so at most C/=, S; l’s have been input.

But, since at least p l’s must have been input, c&-, 8; 3 xii=, r;. TO confirm the other

inequality consider the state of the computation just before the (j + 1)th 0 is output.

At this point at least j + 1 O’s have previously been inserted into the priority queue

and so at least C/=, s; l’s have been inserted. Moreover, exactly c/=, t; of these l’s

have been output so there remain at least C:=, S; - c!=, t; l’s in the priority queue,

together with at least one 0; thus 1 + C;=, s; - C!=, t; <k.

To prove the sufficiency of the bounded partial sum criterion we construct a compu-

tation that, when the condition holds, transforms CJ into z. The computation begins by

inserting SO l’s and deleting to of them. This is clearly possible within a priority queue

of capacity k since 0 <SO - to <k - 1. The computation then proceeds in r stages, the

jth of which has the form:

(a) insert 0 and delete 0,

(b) insert and delete l’s, alternating as far as possible, until S; further I’s have been

input and ti have been output.

An inductive argument establishes that the priority queue contains c&i S; - t; 1 ‘S

just before the jth stage begins (1 <j Gr). It is clear that, since I/=, s; - t; 20,
there remain always sufficient l’s in the priority queue to carry out the jth stage.

Moreover, in carrying it out, the capacity of the priority queue is only required to be

max{ 1 + C:<o’ s; - t,, C:=, si - ti} ,< k. 0

Corollary 3.1. Let o and z be binary sequences of length II and let a = (al, a2,. . . , a,)

and b = (bl,bz,..., b,) denote, respectively, the positions within o and z where each

of the O’s occur. Then (a,r) is k-allowable if and only if

O<a;-b;<k- 1 for each i= I,2 ,..., r.

Proof. The given conditions are a re-statement of the bounded partial sum criterion

since a; = i + E;lA s; and b; = i + xil: t;. 0

Corollary 3.2. If (a, z) is a k-allowable pair of binary sequences then (zR, aR) is also
k-a Ilo wable.

Proof. Using the notation of the previous corollary the positions of the zeros in rR

and aR are given by the vectors (a{,ai,...,a:) and (bi,bi,...,b:) where ai = n+l-b;
and bj = n + 1 - a;. Since af - bi = a; - b; the result follows. 0

The characterisation of binary k-allowable pairs given in Corollary 3.1 leads to

a useful description of Sk(r) for any given binary sequence z. Every vector b =

(bl,..., b,) with 1 < b; < b;+l < n defines a binary sequence of length n whose O’s

occur at positions bl, . . . , b, and, correspondingly, every sequence defines such a vector.

Therefore, if b corresponds to a binary sequence z, Sk(Z) can be described as the set

M.D. Atkinson, D. Tulleyl Theoretical Computer Science 182 (1997) 145-157 153

of vectors a such that

1 d Ui < a;+1 d ?I

and

h<ai<bi+k-1.

For each such vector a it is convenient to define a” = a”,, . . . , (2, where a”< = ai - i + 1;

then the above conditions become

(7)

and

bi - i < ii 6 bi + k - i. (8)

To count the vectors a” satisfying the conditions we use the language of partially ordered

sets (posets). Let P be any poset of width 2 having a bottom and top element. We

may take P to be the disjoint union of two chains X = XI,. . . ,xp and Y = yl,. . . , y,

where yi and yq are the bottom and top elements of P. In addition to the constraints

defining the chains X, Y all the other constraints can be derived as consequences of

covering relations of the form y,(i) < Xi < yd(i). Every linear extension of P can be

described by stipulating, for each xi, the least element ye(i) of Y which succeeds xi in

the linear extension. Clearly,

Ide(l)d de(p)dq (9)

and

c(i) < e(i)<d(i).

Moreover, any sequence e(1), . . . , e(p) satisfying these conditions defines a linear

extension of P. If we now let a”i correspond to e(i), bi - i correspond to c(i), bi + k - i

correspond to d(i) and q = n - Y then the conditions in (7) and the conditions in (9)

are equivalent. Therefore, the vectors a” satisfjling (7) are in one-to-one correspondence

with the linear extensions of a certain poset of width 2. In particular, Q(Z) is equal

to the number of linear extensions of this poset. In [3] an algorithm is presented for

calculating the number of such linear extensions in 0(n2) time. In conjunction with

Corollary 3.2 we therefore have the following:

Lemma 3.2. For a binary bounded priority queue Q(T) and tk(o) can be calculated

in 0(n2) time.

3.2. Serial composition of bounded priority queues

Let Bk denote the relation of k-allowability on binary sequences (that is, Bk is the

set of all k-allowable pairs of binary sequences). Then, as we saw in Section 2, BkBj

154 M.D. Atkinson, D. Tulleyl Theoretical Computer Science I82 (1997) 145-157

(composition of relations) is the set of allowable pairs for the data type formed by
connecting a k-bounded priority queue pk with a j-bounded priority queue Pj in series
(so that the output of Pk is the input of 4) However, compositions of allowability
relations are simpler than in the permutation case for we have:

LeImIa 3.3. BkBj = Bk+j- 1.

Proof. Suppose that (0,~) E BkBj. Then, by definition, there exists a binary sequence
p such that (a,~) f Bk and (p, r) E Bje Let a and b be the vectors defined in Corollary
3.1 which give the positions of the O’s in IJ and z and let c be the corresponding
vector for p. Then, by Corollary 3.1, we have, for each i = 1,2,. . . , r,

O<ai-ciQk_1 (IO)

and

O<C~ - bidj - 1. (11)

Hence, by addition,

O<ai-bi<(k+j- l)- 1 (12)

and, by Corollary 3.1 again, (a, z) E Bk+j_l.

Conversely, if (a, r) E Bk+j_l there are two vectors a and b of 0 positions such that
(12) holds. We now define a vector c by the rule

ci = max{ai - (k - 1), bi}

and it is easily verified that (10) and (11) hold. Moreover, since each of a and b

have strictly increasing components the same is true of c. Thus c defines a binary
vector of length n with r O’s at positions cl, ~2,. . . , cr. Conditions (10) and (11) and
Corollary 3.1 show that (a, p) E Bk and (p, r) E Bj from which we can conclude that

(e,r) E BkBj- O

By repeated application of Lemma 3.3 we have:

Theorem 3.1.

&, & . . .Bk, =B, where m=&ki-(t- 1).
i=l

3.3. Allowable pairs and ordered forests

Our next aim is to prove the following:

Theorem 3.2. If k> 1, there is a one-to-one correspondence between the set of
k-allowable pairs of binar.y sequences of length n and the set of ordered forests
of height at most k i- 1 on n + 1 nodes.

M.D. Atkinson, D. Tulleyl Theoretical Computer Science 182 (1997) 145-157 155

The theorem is proved by studying in greater detail the process by which an in-

put sequence G is transformed into an output sequence r. In general there is more

than one such transformation and the central idea of the proof is to identify a canon-

ical such transformation. However, in order to do this we need to introduce, in addi-

tion to the operations Insert and Delete-Minimum, an operation that we call Transfer.

A Transfer operation can only be used when the priority queue is empty and the

next input is a 1; it moves this next symbol directly from the input to the output.

Clearly, permitting Transfer operations does not affect the definition of k-allowability

(at least, if k > 1) since a Transfer operation can be simulated by an Insert and Delete-

Minimum.

Not every sequence of Insert, Delete-Minimum and Transfer operations makes sense.

As always, it is necessary that the ith Delete-Minimum operation is preceded by at

least i Insert operations and there must be, in all, equal numbers of Delete-Minimum

operations and Insert operations. In addition a Transfer operation is only permitted

if there are equal numbers of Insert and Delete-Minimum operations preceding it.

A sequence of Insert, Delete-Minimum and Transfer operations which satisfies these

two conditions will be called an extended computation. An extended computation

containing a total of n Insert and Transfer operations is said to have size n (on the

grounds that it would be applied to an input sequence of length n).

An extended computation is said to be standardfor ((T, z) if it transforms (T into r and

never performs an Insert operation when it is possible to generate a further symbol

of z (by either a Delete-Minimum or Transfer operation). To clarify this definition

consider how cr = 100 might be transformed into r = 001. An extended computation

necessarily begins by inserting 1 and then inserting 0 into the priority queue. It could

continue either with another Insert and then 3 Delete-Minimum operations or it could

have a Delete-Minimum, an Insert and then 2 Delete-Minimum operations. Only the

latter would be standard for (100,001) since it generates the output symbols as soon

as possible.

Notice that if an extended computation is standard for the pair (G, z) and is applied

to a then there is never more than one 0 in the priority queue at a time and as soon as a

0 is inserted it must be removed. This is because once a 0 is inserted it is necessarily

the next symbol to be output and therefore, by the definition of standard, must be

output immediately.

For ease of exposition we shall express the fact that an extended computation C is

standard for the pair (a,r) by writing C - (a,z). Then we have:

Lemma 3.4. - defines a one-to-one correspondence between the set of allowable pairs
of binary sequences and the set of extended computations.

Proof. First of all we show that for every binary allowable pair (a,r) there exists a

unique extended computation C with (a, r) N C.

Since (a, z) is allowable there exists some sequence D of Insert and Delete-Minimum

operations that transforms a into r. D itself may not be standard for (a,r) because at

156 M.D. Atkinson, D. Tulleyl Theoretical Computer Science 182 (1997) 14.5-157

some point elements are inserted into the priority queue even though further elements
of r could have been generated by Delete-Minimum or Transfer operations instead.
However we can change D into an extended computation, C, that is standard for
(a, r) by systematically deferring Insert operations until Delete-Minimum operations
have generated whatever further elements of r are possible and by replacing every
Insert, Delete-Minimum pair of operations which inserts and deletes a 1 from an empty
priority queue by a Transfer operation. Since each operation performed by an extended
computation that is standard for (0,~) is determined entirely by the next output symbol
to be generated and the contents of the priority queue, C is the unique extended
computation with (a, z) - C.

Conversely, for every extended computation C = Xi& . . . there is a unique allowable
pair (0, r) with (0, r) - C. The existence and uniqueness of (a, r) follows from (i) to
(v) below which are easy consequences of the definition of - and allow (a, r) to be
constructed from C.

Let i, d, t denote Insert, Delete-Mininum, Transfer. Let Xj be an arbitrary operation
of C and let there be r - 1 operations of the form i or t preceding Xj in C and s - 1
operations of the form d or t preceding Xi.

(i) IfXj=t then a,=l,r,=l (and r=s).
(ii) IfXj=d andXj_l=d then r,=l.

(iii) If Xj = d and Xj_i = i then rs = 0.
(iv) If Xj = i and X,+i = d then or = 0.
(v) IfXj=i andXj+i=i then or=l. 0

Proof of Theorem 3.2. According to Lemma 3.4, for every allowable pair (a, r)
there is an extended computation C which may be written as C&, t . . . C, where
each Xj is a computation consisting of Insert operations and Delete-Minimum opera-
tions only, and t denotes Transfer operations. There is a well-known correspondence
between computations Xj and rooted trees (in which Insert corresponds to travers-
ing one branch down the tree and Delete-Minimum corresponds to traversing one
branch up the tree, see [9]). Thus C corresponds to an ordered forest of r + 1 such

trees.
In this correspondence it is easily seen that, for k 2 1, a pair (a, r) which

is k-allowable corresponds to a forest of height k + 1. This completes the
proof. 0

Finally, we note that ordered forests of height k + 1 on n + 1 nodes are in one-to-one
correspondence with ordered trees of height k + 2 on n + 2 nodes and so we can appeal
to the theory developed in [6]. There a generating function for the number of trees
with n nodes and height h or less is given in several different forms and from this the
following closed form for the number of such trees An,k is derived:

An,/, = 4” sin2(jn(h + l))cos2”-2(jn(h + l)), n>2.

M.D. Atkinson, D. Tulleyl Theoretical Computer Science I82 (1997) 145-157 157

Using Theorem 3.2 we can conclude that the number of k-allowable pairs of binary

sequences of length n is ki,,+z,k+z.

References

[l] M.D. Atkinson, Transforming binary sequences with priority queues, Order 10 (1993) 31-36.

[2] M.D. Atkinson and R. Beals, Priority queues and permutations, SIAM J. Comput. 23 (1994)
1225-1230.

[3] M.D. Atkinson and H.W. Chang, Computing the number of mergings with constraints, Inform. Process.
Lett. 24 (1987) 289-292.

[4] M.D. Atkinson, M.J. Livesey and D. Tulley, Permutations generated by token passing in graphs, Theoret.
Comput. Sci., to appear.

[5] M.D. Atkinson and M. Thiyagarajah, The permutational power of a priority queue, BIT 33

(1993) 2-6.

[6] N.G. de Bruijn, D.E. Knuth and SO. Rice, The average height of planted plane trees, in: R.C. Read,

ed., Graph Theory and Computing (Academic Press, New York, 1972) 15-22.

[7] M. Golin and S. Z&s, Labelled trees and pairs of input-output permutations in priority queues, in:

Proc. 20th Internat. Conf on Graph-Theoretic Concepts in Computer Science (WG), Munich, Germany

(June 1994).

[8] D.E. Knuth, Fundamental Algorithms, The Art of Computer Programming (Addison-Wesley, Reading,

MA, 1973).

[9] J.H. van Lint and R.M. Wilson, A Course in Combinatorics (Cambridge University Press, Cambridge,

1992).

