
Theoretical Computer Science 407 (2008) 349–358

Contents lists available at ScienceDirect

Theoretical Computer Science

journal homepage: www.elsevier.com/locate/tcs

Algorithms for finding the weight-constrained k longest paths in a tree
and the length-constrained kmaximum-sum segments of a sequence
Hsiao-Fei Liu a, Kun-Mao Chao a,b,c,∗
a Department of Computer Science and Information Engineering, National Taiwan University, Taipei 106, Taiwan
b Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
c Graduate Institute of Networking and Multimedia, National Taiwan University, Taipei 106, Taiwan

a r t i c l e i n f o

Article history:
Received 24 April 2007
Received in revised form 23 June 2008
Accepted 27 June 2008
Communicated by G. Ausiello

Keywords:
Maximum-sum segment
Sequence analysis

a b s t r a c t

In this work, we obtain the following new results:

– Given a tree T = (V , E) with a length function ` : E → R and a weight function
w : E → R, a positive integer k, and an interval [L,U], the Weight-Constrained k
Longest Paths problem is to find the k longest paths among all paths in T with weights
in the interval [L,U]. We show that theWeight-Constrained k Longest Paths problem
has a lower boundΩ(V log V + k) in the algebraic computation tree model and give an
O(V log V + k)-time algorithm for it.

– Given a sequence A = (a1, a2, . . . , an) of numbers and an interval [L,U], we define the
sum and length of a segment A[i, j] to be ai+ai+1+· · ·+aj and j−i+1, respectively. The
Length-Constrained k Maximum-Sum Segments problem is to find the k maximum-
sum segments among all segments of Awith lengths in the interval [L,U].We show that
the Length-Constrained kMaximum-Sum Segments problem can be solved inO(n+k)
time.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

Optimization is one of the most basic types of algorithmic problems. In an optimization problem, the goal is to find the
best feasible solution. However, it is often not satisfactory in practice to only find the best feasible solution, and we may
be required to enumerate, for example, all the top ten or top twenty feasible solutions. We call a problem of such kind,
where the goal is to find the top k best feasible solution for a given k, an enumeration problem. In this paper, we study some
enumeration problems on trees and sequences.
We start by considering problems on trees. Let T = (V , E) be a tree with a length function ` : E → R and a weight

function w : E → R. Define the length and weight of a path P = (v1, v2, . . . , vn) in T to be
∑
1≤i≤n−1 `(vivi+1) and∑

1≤i≤n−1w(vivi+1), respectively. Given T , the Tree Longest Path problem (also known as the Tree Diameter problem) is
to find the longest path in T . The Tree Longest Path problem is a fundamental problem in dealing with trees and solvable
in O(V) time [36]. In what follows, we introduce two generalizations of the Tree Longest Path problem, which are closely
related to our study in this paper.
One is the Tree k Longest Paths problem. Given T and a positive integer k, the Tree k Longest Paths problem is to find

the k longest paths from all paths in T . Megiddo et al. [32] proposed anO(V log2 V)-time algorithm for finding the kth longest
path. Later, Frederickson and Johnson [20] improved the time complexity to O(V log V). After finding the kth longest path,

∗ Corresponding address: Department of Computer Science and Information Engineering, National TaiwanUniversity, No. 1, Sec. 4, Roosevelt Road, Taipei
106, Taiwan. Tel.: +886 2 33664888; fax: +886 2 23628167.
E-mail address: kmchao@csie.ntu.edu.tw (K.-M. Chao).

0304-3975/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2008.06.052

http://www.elsevier.com/locate/tcs
http://www.elsevier.com/locate/tcs
mailto:kmchao@csie.ntu.edu.tw
http://dx.doi.org/10.1016/j.tcs.2008.06.052

350 H.-F. Liu, K.-M. Chao / Theoretical Computer Science 407 (2008) 349–358

the k longest paths can be constructedwith additional O(k) time from the computed information. Hence, the Tree k Longest
Paths problem is solvable in O(V log V + k) time.
The other is the Weight-Constrained Longest Path problem. Given T and interval [L,U], the Weight-Constrained

Longest Paths problem is to find the longest path among all paths in T with weights in the interval [L,U]. The Weight-
Constrained Longest Path problem was formulated by Wu et al. [35] and motivated as follows. Given a tree network with
length and weight on each edge, we want to maintain the network by choosing a path and renewing the old and shabby
edges of this path. The length and weight on an edge measure the traffic load and update cost of this edge, respectively.
Since we also have budget constraints which limit the weight of the path to be updated, the goal is to find the longest path
subject to the weight constraints. Wu et al. [35] proposed an O(V log2 V)-time algorithm for the case where the edge weight
lower bound is ineffective, i.e. L = −∞. Kim [27] gave an O(V log V)-time algorithm to cope with the case where the tree
has a constant degree and a uniform edge weight and the edge weight lower bound is ineffective.
In this paper, we study theWeight-Constrained k Longest Paths problem,which is a combination of the Tree k Longest

Paths problem and theWeight-Constrained Longest Path problem. Given T , a positive integer k, and interval [L,U], the
Weight-Constrained k Longest Paths problem is to find the k longest paths of T among all paths in T with weights in the
interval [L,U]. We give an O(V log V + k)-time algorithm for theWeight-Constrained k Longest Paths problem and prove
that it has a lower bound ofΩ(V log V + k) in the algebraic computation tree model.
Next, we consider problems on sequences. Let A = (a1, a2, . . . , an) be a sequence of numbers. Define the sum and length

of a segment A[i, j] to be ai + ai+1 + · · · + aj and j− i+ 1, respectively. TheMaximum-Sum Segment problem, given A, is to
find a segment of A thatmaximizes the sum. TheMaximum-Sum Segment problemwas first presented by Grenader [22] and
finds applications to pattern recognition [22,33], biological sequence analysis [1], and data mining [21]. TheMaximum-Sum
Segment problem is linear-time solvable using Kadane’s algorithm [7]. A variety of generalizations of the Maximum-Sum
Segment problem have been proposed to fulfill more requirements. In the following, let us introduce two of them, which
are closely related to our study in this paper.
One is the kMaximum-Sum Segments problem. Given A and a positive integer k, the kMaximum-Sum Segments problem

is to locate the k segments whose sums are the k largest among all possible sums. The kMaximum-Sum Segments problem
was first presented byBae and Takaoka [2]. Since then, this problemhas drawna lot of attention [3,6,9,12,30,31], and recently
an optimal O(n+ k)-time algorithm was given by Brodal and Jørgensen [9].
The other is the Length-ConstrainedMaximum-Sum Segment problem. Given A and two integers L,U with 1 ≤ L ≤ U ≤

n, the Length-ConstrainedMaximum-Sum Segment problem is to find the maximum-sum segment among all segments of
Awith lengths in the interval [L,U] and is solvable in O(n) time [16,30]. The Length-Constrained Maximum-Sum Segment
problem was formulated by Huang [25] and motivated by its application to finding GC-rich segments of a DNA sequence.
A DNA sequence is composed of four letters A, C, G, and T. Given a DNA sequence, biologists often need to identify the GC-
rich segments satisfying some length constraints. By giving each of letters C and G a reward of 1 − p and each of letters A
and T a penalty of −p, where p is a positive constant ratio, the problem is reformulated as finding the length-constrained
maximum-sum segment.
In this paper, we study the Length-Constrained k Maximum-Sum Segments problem, which is a combination of the

k Maximum-Sum Segments problem and the Length-Constrained Maximum-Sum Segment problem. Given A, a positive
integer k and two integers L, U with 1 ≤ L ≤ U ≤ n, the Length-Constrained k Maximum-Sum Segments problem is
to find the k maximum-sum segments among all segments of A with lengths in the interval [L,U]. Note that the Length-
Constrained k Maximum-Sum Segments problem can also be considered as a specialization of theWeight-Constrained
k Longest Paths problem if we treat the given sequence as a chain of edges whose lengths are given by the numbers in
the sequence and weights are all equal to one. After giving an O(V log V + k)-time algorithm to deal with the Weight-
Constrained k Longest Paths problem, we give an O(n + k)-time algorithm for the Length-Constrained k Maximum-
Sum Segments problem (or equivalently, an O(V + k)-time algorithm for a specialization of the Weight-Constrained k
Longest Paths problem where the input tree is a chain of edges with a uniform weight). It should be noted that our basic
approach for solving the Length-Constrained kMaximum-SumSegmentsproblemwas discovered independently by Brodal
and Jørgensen [9] in solving the kMaximum-Sum Segments problem. Both of us construct inO(n) time a heap that implicitly
stores all feasible solutions and then run Frederickson’s [17] heap selection algorithm on this heap to find the k best feasible
solutions in O(k) time.
As a byproduct, we show that our algorithms can be used as a basis for delivering more efficient algorithms for some

related enumeration problems such as finding the weight-constrained k largest elements of X + Y , finding the sum-
constrained k longest segments, finding k length-constrained segments satisfying a density lower bound, and finding area-
constrained kmaximum-sum subarrays.

2. O(V logV + k)-time algorithm for the weight-constrained k longest paths problem

In this section, we prove that theWeight-Constrained k Longest Paths problem can be solved in O(V log V + k) time.

2.1. Preliminaries

To achieve the time bound ofO(V log V+k), wemake use of Frederickson and Johnson’s [20] representation of intervertex

H.-F. Liu, K.-M. Chao / Theoretical Computer Science 407 (2008) 349–358 351

Fig. 1. A tree T associated with an edge length function ` and an edge weight functionw.

distances of a tree, range maxima query (RMQ) [5,18,24], and Frederickson’s [17] algorithm for finding the maximum k
elements in a heap-ordered tree. In the following, we briefly review these data structures and algorithms.

Definition 1. Let T = (V , E) be a tree. A node v ∈ V is said to be the centroid of T if and only if after removing v from T ,
each resulting connected component contains at most |V |/2 nodes.

Definition 2. Let T = (V , E) be a tree. A triplet (c, T1 = (V1, E1), T2 = (V2, E2)) is called a centroid decomposition of T
if it satisfies the following properties: (1) c is a centroid of T ; (2) T1 and T2 are two subtrees of T such that V1 ∩ V2 = c ,
|V |+2
3 ≤ |V1| ≤

2|V |+1
3 , and E1 ∪ E2 = E.

Notation 1. Let T = (V , E) be a tree with a length function ` : E → R and a weight function w : E → R. We slightly
overload the notation by letting `(u, v) andw(u, v) also denote the length and weight of the path from u to v if there is no
edge from u to v.

Definition 3. Let T = (V , E) be a tree with a length function ` : E → R and a weight functionw : E → R. A rooted ordered
binary tree T ′ = (V ′, E ′, r) in which each node contains fields cent , list1 and list2 is called a centroid decomposition tree of T
rooted at r if it satisfies the following recursive properties: (1) If |V | = 1, then |V ′| = 1, r.cent is the only vertex in V , and
r.list1 = r.list2 = NIL; (2) if |V | = 2, then |V ′| = 1, r.cent is one of the vertex in V , r.list1 = ((v, `(r.cent, v), w(r.cent, v)),
and r.list2 = ((r.cent, 0, 0)), where v ∈ V\{r.cent}; (3) if |V | > 2, then ∃ centroid decomposition (c, T1 = (V1, E1), T2 =
(V2, E2)) of T such that the left subtree and right subtree of r are centroid decomposition trees of T1 and T2, respectively,
r.cent = c , and r.listj, j ∈ {1, 2}, is a list of triplets ((vi, `(c, vi), w(c, vi)) : vi ∈ Vj − {c}) sorted onw(c, vi).

As an illustration, a tree T and its centroid decomposition tree T ′ are shown in Figs. 1 and 2, respectively.

Theorem 1 (Frederickson and Johnson [20]). Given a tree T (V , E) with a length function ` : E → R and a weight function
w : E → R, we can construct a centroid decomposition tree of T in O(V log V) time.

Now we describe the Range Maxima Query (RMQ) problem. In the RMQ problem, a list A = (a1, a2, . . . , an) of n real
numbers is given to be preprocessed such that any range maxima query can be answered quickly. A range maxima query
specifies an interval [i, j] and the goal is to find the index kwith i ≤ k ≤ j such that ak achieves maximum.
We first describe a simple algorithm for solving the RMQ problem in O(n log n) preprocessing time and O(1) time per

query. For each 1 ≤ i ≤ n and each 1 ≤ j ≤ blog nc, we pre-computeM[i][j] = argmaxk=i,...,i+2j−1{ak}, i.e. the index of the
maximum element in A[i, i+ 2j − 1]. This can be done in O(n log n) time by using dynamic programming because

M[i][j] =
{
M[i][j− 1] if A[M[i][j− 1]] ≥ A[M[i+ 2j−1 − 1][j− 1]];
M[i+ 2j−1 − 1][j− 1] otherwise.

Given a query interval [i, j], let k = blog(j− i)c. Because both [i, i+ 2k − 1] and [j− 2k + 1, j] are subintervals of [i, j] and
[i, i+ 2k− 1] ∪ [j− 2k+ 1, j] = [i, j], the index of the maximum element in A[i, j] is argmaxk∈{M[i][i+2k−1],M[j−2k+1][j]}{A[k]}.
We now sketch an algorithm for solving the RMQ problem in O(n) preprocessing time and O(1) time per query. This

algorithm was given by Bender and Farach-Coltongiven [5], and they showed that the RMQ problem is linearly equivalent
to the RMQ ± 1 problemwhich is the same as the RMQ problem except that the adjacent elements of the input list differ by
exactly one. Thus, in the followingwe focus on the RMQ± 1 problem. Let A = (a1, a2, . . . , an) be an instance to the RMQ± 1
problem.1 The algorithm starts by dividing the list A into 2n/ log n shorter sublists A[1, log n2], A[

log n
2 + 1, log n], . . . , A[n−

1 For simplicity, we assume n is a power of two.

352 H.-F. Liu, K.-M. Chao / Theoretical Computer Science 407 (2008) 349–358

Fig. 2. A centroid decomposition tree T ′ of the tree in Fig. 1.

log n
2 +1, n], each of length

log n
2 . Each sublist A[

(i−1) log n
2 +1, i log n2] is represented by themaximum element ri in it. They then

run the simple RMQ algorithm described in the beginning on these O(n/ log n) representatives in O(n
log n log(

n
log n)) = O(n)

preprocessing time. By the property that adjacent elements in the list A differs by exactly one, they use a table-lookup
technique to pre-compute the indices of the maximum elements in all sublists of Awith lengths≤ 2n

log n in O(n) time. Given

a query interval [i, j], let i′ = d 2ilog ne and j
′
= b

2j
log nc. Let rk be the maximum of {ri′+1ri′+2, . . . , rj′−1}, ai∗ be the maximum

element in A[i, i
′ log n
2], and aj∗ be the maximum element in A[

j′ log n
2 , j]. Because we have run the simple RMQ algorithm

on (r1, r2, . . . , r 2n
log n
), k can be found in constant time given [i′ + 1, j′ − 1]. Because both A[i, i

′ log n
2] and A[

j′ log n
2 , j] have

lengths ≤ 2n
log n , we can also find ai∗ and aj∗ in constant time. Note that the maximum of {rk, ai∗, aj∗} is also the maximum

element in A[i, j]. Thus, if ai∗ is the maximum of {rk, ai∗, aj∗}, then we can directly return i∗. Similarly, if aj∗ is the maximum
of {rk, ai∗, aj∗}, then return j∗. Otherwise, if rk is the the maximum of {rk, ai∗, aj∗}, then find and return the index of the
maximum element in A[(k−1) log n2 + 1, k log n2], which can be done in constant time because A[

(k−1) log n
2 + 1, k log n2] has length

equal to 2n
log n .

Theorem 2 (RMQ [5,18,24]). The RMQ problem can be solved in O(n) preprocessing time and O(1) time per query.
For our purposes, a D-heap is a rooted degree-D tree in which each node contains a field value, satisfying the restriction

that the value of any node is larger than or equal to the values of its children. Note that we do not require the tree to
be balanced. Frederickson [17] proposed an algorithm for finding the k largest elements in a D-heap in O(k) time. When
Frederickson’s algorithm traverses the heap to find the k largest nodes, it does not access a node unless it has ever accessed
the node’s parent. This property makes it possible to run the Frederickson’s algorithm without first explicitly building the
entire heap in the memory as long as we have a way to obtain the information of a node given the information of its parent.
We sketch an O(k log log k)-time algorithm [17] for enumerating the k largest value nodes in a heap as follows. For

simplicity, we assume all nodes in the heap have different values. A node is said to be of rank i if it is the ith largest node.
The algorithm runs by first finding a node u in the heap in O(k log log k) time such that the rank of u is between k and ck for
some constant c . Then the algorithm identifies all nodes in the heap not smaller than u in O(ck) = O(k) time and returns the
k largest nodes among them. To find u, we form at most 2dk/blog kce + 1 groups of nodes, called clans. Each clan is of size
at most blog kc and represented by the smallest node in it; representatives are managed in an auxiliary heap. We form the
first clan C1 in O(log k log log k) time by grouping the largest blog kc nodes in the original heap and initialize the auxiliary
heap with the representative of C1. Set the offspring os(C1) of C1 to the set of nodes in the original heap which are children
of C1 but not in C1, and set the poor relations pr(C1) of C1 to the empty set. Then for i from 1 to blog kc, do the following.
Extract the largest element in the auxiliary heap and let Cj be the clan represented by the element extracted. If os(Cj) is not
empty, then form a new clan Ci+1 in O(log k log log k) time by grouping the blog kc largest nodes from the subheaps rooted

H.-F. Liu, K.-M. Chao / Theoretical Computer Science 407 (2008) 349–358 353

at os(Cj) in the original heap. Insert the representative of Ci+1 into the auxiliary heap. Set os(Ci+1) to the group of nodes in
the original heap which are children of Ci+1 but not in Ci+1, and set pr(Ci+1) to the group of nodes which are members of
os(Cj) but not included in Ci+1. If pr(Cj) is not empty, then form a new clan Ci+2 in O(log k log log k) time by grouping the
dk/blog kce largest nodes from the subheaps rooted at pr(Cj) in the original heap. Insert the representative of Ci+2 into the
auxiliary heap. Set os(Ci+1) to the group of nodes in the original heap which are children of Ci+2 but not in Ci+2, and set
pr(Ci+2) to the group of nodes which are members of pr(Cj) but not included in Ci+2. When the loop terminates, set u to the
last element extracted from the auxiliary heap. Since at most 2dk/blog kce+1 clans are formed and each clan can be formed
in O(log k log log k) time, the total time is O(k log log k).
By applying the above approach recursively, plus some speed-up techniques, Frederickson [17] obtained an O(k)-time

algorithm.
Theorem 3 (Frederickson [17]). For any constant D, we can find the k largest value nodes in any D-heap, in O(k) time.

2.2. Finding the weight-constrained k longest paths

For simplicity, we only consider paths with at least two distinct vertices, and we do not distinguish between the path
from u to v and the path from v to u, i.e., the path from u to v and the path from v to u are considered the same. Thus each
path is uniquely determined by the unordered pair of its end vertices. We define the length and weight of an unordered pair
{u, v} to be the length andweight of the path from u to v, respectively. We say an unordered pair {u, v} of vertices is feasible
if and only if its weight is in the interval [L,U]. Our task is to find the k longest feasible unordered pairs of vertices in T .
Before moving on to the details of the algorithm, let us pause here to sketch our main idea. First, we divide T into two

subtrees T1 and T2 of roughly the same size and find all the feasible unordered pairs {u, v} satisfying u ∈ V (T1) and v ∈ V (T2).
Next, we recursively compute all feasible unordered pairs of vertices in T1 and all feasible unordered pairs of vertices in T2,
respectively. After finishing this recursive process, we have all feasible unordered pairs of vertices in T . We then build a heap
consisting of all these unordered pairs and find the k longest unordered pairs in this heap by applying the Frederickson’s
algorithm [17]. The major difficulty is that the number of feasible unordered pairs of vertices in T may be much larger than
|V | log |V | + k. Thus, we have to represent the set of all feasible unordered pairs of vertices in T in a succinct way such that
we are still able to build an implicit representation of the heap stated above and run the Frederickson’s algorithm [17] on
this implicitly-represented heap without loss of efficiency.
We now describe our algorithm in detail. First, we construct a centroid decomposition tree T ′ = (V ′, E ′, r) of T in

O(V log V) time by Theorem 1. For each v ∈ V ′ and i ∈ {1, 2}, let (vi,j, `(v.cent, vi,j), w(v.cent, vi,j)) be the jth element
of v.listi if it exists. Note that since

∑
v∈V ′(|v.list1|+|v.list2|+1) = O(V log V), we can find `(v.cent, vi,j) andw(v.cent, vi,j)

for all v ∈ V ′, i ∈ {1, 2} and 1 ≤ j ≤ |v.listi| in total O(V log V) time. By the next lemma, in total O(V log V) time, for all
v ∈ V ′ and 1 ≤ i ≤ |v.list1|, we can find an interval [pvi , q

v
i] such that

1. w(v.cent, v1,i)+ w(v.cent, v2,j) = w(v1,i, v2,j) ∈ [L,U] for all j ∈ [pvi , q
v
i];

2. w(v1,i, v2,j) 6∈ [L,U] for all j 6∈ [pvi , q
v
i].

It follows that the set of all feasible unordered pairs of vertices in T is equal to the set
⋃
v∈V ′

⋃|v.list1|
i=1 {{v1,i, v2,j} : j ∈ [p

v
i , q

v
i]}.

Lemma 1. Let T ′ = (V ′, E ′, r) be a centroid decomposition tree of T = (V , E). In total O(V log V) time, for all v ∈ V ′
and 1 ≤ i ≤ |v.list1|, we can find an interval [pvi , q

v
i] such that (1) w(v1,i, v2,j) ∈ [L,U] for all j ∈ [p

v
i , q

v
i] and (2)

w(v1,i, v2,j) 6∈ [L,U] for all j 6∈ [pvi , q
v
i].

Proof. Since
∑

v∈V ′(|v.list1| + |v.list2| + 1) = O(V log V), we only have to show that for each v ∈ V
′, we can compute

[pvi , q
v
i] for all 1 ≤ i ≤ |v.list1| in total O(|v.list1| + |v.list2| + 1) time. Given v ∈ V

′, we claim the following procedure
computes [pvi , q

v
i] for all 1 ≤ i ≤ |v.list1| in total O(|v.list1| + |v.list2| + 1) time.

1. Let n′ = |v.list1| andm′ = |v.list2|.
2. If n′ = 0 orm′ = 0 then stop.
3. Set p and q tom′.
4. For i← 1 to n′ do
(a) While(w(v1,i, v2,p−1) ≥ L and p− 1 ≥ 1) do p← p− 1.
(b) While(w(v1,i, v2,q) > U and q ≥ p) do q← q− 1.
(c) pvi ← p and qvi ← q.

It is not hard to see the running time of this procedure is O(|v.list1| + |v.list2| + 1) since both the values of p and q are
nonincreasing. To verify the correctness, it suffices to note that since the list v.listi, i ∈ {1, 2}, is sorted onw(v.cent, vi,j), the
sequence (pv1, . . . , p

v
|v.list1|

) and the sequence (qv1, . . . , q
v
|v.list1|

)must be nonincreasing. �

Next, for each v ∈ V ′, we preprocess v.list2 so that given any interval [i, j], we can find the index k, denoted
RMQ(v.list2, i, j), in [i, j] such that `(v.cent, v2,k) achieves maximum in O(1) time. By Theorem 2, this preprocessing can
be done in O(

∑
v∈V ′ |v.list2|) = O(V log V) time.

Before moving on to the next point, we would like to define some data structures. For each v ∈ V ′ and 1 ≤ i ≤ |v.list1|,
define H(v1,i) to be a rooted ordered binary tree which consists of nodes with fields pair , value, and interval and satisfies the
following properties.

354 H.-F. Liu, K.-M. Chao / Theoretical Computer Science 407 (2008) 349–358

1. There are total |v.list1| nodes in H(v1,i) and the interval of the root of H(v1,i) is [pvi , q
v
i].

2. For each node u of H(v1,i), if p < k then u’s left child has interval [p, k− 1], and if k < q then u’s right child has interval
[k+ 1, q], where [p, q] = u.interval and k = RMQ(v.list2, p, q).

3. For each node u of H(v1,i), if u.interval = [p, q] then u.pair = {v1,i, v2,k} and u.value = `(v1,i, v2,k), where k =
RMQ(v.list2, p, q).

Let us now return to describe our algorithm. Denote by V (H(v1,i)) the set of nodes in H(v1,i). It should be noticed that
the set of all feasible unordered pairs of vertices in T is equal to the set⋃

v∈V ′

|v.list1|⋃
i=1

{{v1,i, v2,j} : j ∈ [pvi , q
v
i]} =

⋃
v∈V ′

|v.list1|⋃
i=1

{u.pair : u ∈ V (H(vi))}.

Therefore, the remaining work is to find the k largest value nodes in
⋃
v∈V ′

⋃|v.list1|
i=1 V (H(v1,i)). Clearly, we can not afford to

construct H(v1,i) explicitly for each v1,i. But notice that given any node u of H(v1,i), we can always construct u’s children
in O(1) time since we have done the RMQ preprocessing on the list v.list2. Thus we shall only construct the root of H(v1,i)
in the first instance and expand the tree as needed. Since we have known pvi and q

v
i for each v ∈ V

′ and 1 ≤ i ≤ |v.list1|
and done the RMQ preprocessing on the list v.list2 for each v ∈ V ′, we can construct, in total O(V log V) time, the root of
H(v1,i) for all v1,i. Then we place these roots into a balanced 2-heap of size up to O(V log V) by the heapify operation [14]
in linear time, i.e., in O(V log V) time. Note that each H(v1,i) is a 2-heap, so we have conceptually built a 4-heap for the set⋃
v∈V ′

⋃|v.list1|
i=1 V (H(v1,i)). Now by Theorem 3, we can apply Frederickson’s algorithm [17] to find the k largest value nodes

in that 4-heap in O(k) time. Of course, except the roots of all H(v1,i), all the nodes in that 4-heap are not physically created
until they are needed in running Frederickson’s [17] algorithm. We summarize the results of this section by the following
theorem.

Theorem 4. Let T = (V , E) be a tree with a length function ` : E → R and a weight function w : E → R. Given T , a
positive integer k and an interval [L,U], we can find the k longest paths among all paths in T with weights in the interval [L,U]
in O(V log V + k) time.

3. Ω(V logV + k) lower bound for the weight-constrained k longest paths problem

We prove that theWeight-Constrained Longest Path problem has anΩ(V log V) bound in the algebraic computation
tree model. It follows that theWeight-Constrained k Longest Paths problem has an Ω(V log V + k) lower bound in the
algebraic computation tree model since extraΩ(k) time is necessary for outputting the answer.

Definition 4 (Set Intersection Problem). Given two sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn}, the Set Intersection problem
asks whether there exist indices i and j such that xi = yj.

Lemma 2 (Ben-Or [8]). The Set Intersection problem has anΩ(n log n) lower bound in the algebraic computation tree model.

Theorem 5. The Weight-Constrained Longest Path problem has an Ω(V log V) lower bound in the algebraic computation
tree model.

Proof. We reduce the Set Intersection problem to the Weight-Constrained Longest Path problem. Given two sets
{x1, x2, . . . , xn} and {y1, y2, . . . , yn}, we construct, in O(n) time, a problem instance of theWeight-Constrained Longest
Path problem as follows. We first construct a tree T = (V , E), where V = {x′1, . . . , x

′
n} ∪ {y

′

1, . . . , y
′
n} ∪ {c1, c2} and

E = {x′1c1, . . . , x′nc1}∪{y
′

1c2, . . . , y′nc2}∪{c1c2}. Define the length function ` : E → R by letting `(e) = 1 for all e ∈ E. Define
theweight functionw : E → R by lettingw(x′ic1) = xi andw(y

′

ic2) = −yi for all i = 1, . . . , n, andw(c1c2) = 0. Set both the
weight lower bound L and the weight upper bound U of paths to 0. It can be verified that the longest path in T with weight
= 0 has length 3 if and only if there exist indices i and j such that xi = yj. Since in this reduction we have |V | = 2n+ 2 and
the Set Intersection problem has anΩ(n log n) in the algebraic computation tree model by Lemma 2, we conclude that the
Weight-Constrained Longest Path problem has anΩ(V log V) lower bound in the algebraic computation tree model. �

Corollary 1. The Weight-Constrained k Longest Paths problem has an Ω(V log V + k) lower bound in the algebraic
computation tree model.

4. O(n + k)-time algorithm for the length-constrained k maximum-sum segments problem

Given a sequenceA = (a1, a2, . . . , an)of numbers,wedefine the sumand length of a segmentA[i, j] to be ai+ai+1+· · ·+aj
and j − i + 1, respectively. The Length-Constrained k Maximum-Sum Segments problem is to find the k maximum-sum
segments among all segments with lengths in a specified interval [L,U]. In the following, we show how to solve the Length-
Constrained kMaximum-Sum Segments problem in O(n+ k) time.

H.-F. Liu, K.-M. Chao / Theoretical Computer Science 407 (2008) 349–358 355

4.1. Preliminaries

Let P denote the prefix-sum array of the input sequence A, i.e., P[0] = 0 and P[i] = a1 + a2 + · · · + ai for i = 1, . . . , n.
P can be computed in linear time by set P[0] to 0 and P[i] to P[i − 1] + ai for i = 1, 2, . . . , n. Let S[i, j] denote the sum of
A[i, j]. Since S[i, j] = P[j] − P[i− 1], the sum of any segment can be computed in constant time after the prefix-sum array
is constructed.
Now we describe the Range Maximum-Sum Segment Query (RMSQ) problem. In the RMSQ problem, a sequence

A = (a1, a2, . . . , an) of n numbers is given to be preprocessed such that any range maximum-sum segment query can
be answered quickly. A range maximum-sum segment query specifies two intervals [i, j] and [k, l], and the goal is to find a
pair of indices (x, y)with i 6 x 6 j and k 6 y 6 ` that maximizes S[x, y].
Chen and Chao [10] have showed that RMSQ is linearly equivalent to RMQ. For ease of explanation, in the following

description of the algorithm we use RMSQ instead of RMQ.

Theorem 6 (Chen and Chao [10]). The RMSQ problem can be solved in O(n) preprocessing time and O(1) time per query.

4.2. Finding the length-constrained k maximum-sum segments

The algorithm is similar to the one in Section 2.2, but this time we can achieve linear running time. First we preprocess
the input sequence A so that given any two intervals [i, j] and [k, l], we can find the pair (x, y), denoted RMSQ(i, j, k, l), with
i 6 x 6 j and k 6 y 6 ` that maximizes S[x, y]. By Theorem 6, this preprocessing can be done in O(n) time. In the following,
we say a segment A[i, j] is feasible if and only if L ≤ j − i + 1 ≤ U . Set pi = max{i − U + 1, 1} and qi = i − L + 1 for all
i = 1, . . . , n. For simplicity, we assume pi ≤ qi for all i = 1, . . . , n. Then

⋃n
i=1{A[h, i] : h ∈ [pi, qi]} is the set of all feasible

segments. Our task is to find the kmaximum-sum segments in this set.
Before moving on to the algorithm, let us define some data structures. For each index i, defineH(i) to be a rooted ordered

binary tree which consists of nodes with fields pair , value, and interval and satisfies the following properties.

1. There are total qi − pi + 1 nodes in H(i) and the interval of the root of H(i) is [pi, qi].
2. For each node u of H(i), if p < k then u’s left child has interval [p, k − 1], and if k < q then u’s right child has interval
[k+ 1, q], where [p, q] = u.interval and (k, i) = RMSQ(p, q, i, i).

3. For each node u of H(i), if u.interval = [p, q] then u.pair = (k, i) and u.value = S[k, i], where (k, i) = RMSQ(p, q, i, i).

We now describe our algorithm. Let V (H(i)) denote the set of nodes in H(i). It is clear that the k largest value nodes in⋃n
i=1 V (H(i)) correspond to the kmaximum-sum feasible segments. Thus the remaining work is to find the k largest value

nodes in
⋃n
i=1 V (H(i)). Notice that given any node u ofH(i), we can always construct u’s children in O(1) time since we have

done the RMSQ preprocessing on A[1..n]. Thus we only construct the root of H(i) in the first instance and expand the tree as
needed. Since we have known pi and qi for each index i and done the RMSQ preprocessing on A[1..n], we can construct, in
total O(n) time, the root of H(i) for each index i. Then we place these roots into a balanced 2-heap by the heapify operation
[14] in O(n) time. Note that each H(i) is a 2-heap, so we have conceptually built a 4-heap for the set

⋃n
i=1 V (H(i)). Now

by Theorem 3, we can apply Frederickson’s algorithm [17] to find the k largest value nodes in that 4-heap in O(k) time. As
before, except the roots of all H(i), all the nodes in that 4-heap are not physically created until they are needed in running
Frederickson’s [17] algorithm. The following theorem summarizes the results of this section.

Theorem 7. Given a sequence A = (a1, . . . , an) of numbers, a positive integer k, and an interval [L,U], we can find, in O(n+ k)
time, the k maximum-sum segments of A with lengths in [L,U].

Definition 5. Let A = ((a1, `1), . . . , (an, `n)) be a sequence of pairs of numbers, where `i > 0 for all i = 1, . . . , n. We
define the sum, length, and density of a segment A[i, j] to be

∑
i≤h≤j ah,

∑
i≤h≤j `h, and

∑
i≤h≤j ah∑
i≤h≤j `h

, respectively.

We prove the following stronger theorem by slightly modifying the above algorithm.

Theorem 8. Given a sequence of pairs of numbers A = ((a1, `1), . . . , (an, `n)), where `i > 0 for i = 1, . . . , n, a positive integer
k, and an interval [L,U], we can find, in O(n+ k) time, the k maximum-sum segments of A with lengths in [L,U].

Proof. We show how to modify the above algorithm to achieve this theorem. In fact, we only need to change the settings
of pi’s and qi’s. The remaining parts are the same. For all i = 1, . . . , n, we redefine pi to be the minimum index 1 ≤ h ≤ i
such that $[h, i] ≤ U and qi to be the maximum index 1 ≤ h′ ≤ i such that $[h′, i] ≥ L. For simplicity, we assume pi and
qi exist for all i = 1, . . . , n. Since `i is positive for all i = 1, . . . , n, the sequences (p1, . . . , pn) and (q1, . . . , qn) must be
nondecreasing. Thus we can compute pi and qi for all i = 1, . . . , n by the following procedure in O(n) time.

1. Set p = 1 and q = 1.
2. For i← 1 to n do
(a) While($[p, i] > U and p ≤ i) do p← p+ 1.
(b) While($[q+ 1, i] ≥ L and q+ 1 ≤ i) do q← q+ 1.
(c) pi ← p and qi ← q.

3. Output (p1, . . . , pn) and (q1, . . . , qn). �

356 H.-F. Liu, K.-M. Chao / Theoretical Computer Science 407 (2008) 349–358

5. Applications

In this section, we give some applications of our algorithms.

5.1. Finding the weight-constrained k largest elements of X + Y

Let X and Y be two sets associated with value functions VX : X → R and VY : Y → R, respectively. The Cartesian
sum X + Y is the set {(x, y) : (x, y) ∈ X × Y } associated with a value function V : X × Y → R defined by letting
V (x, y) = VX (x) + VY (y) for all (x, y) ∈ X × Y . For convenience, we just use x + y to denote VX (x) + VY (y), and we call a
set associated with a value function a valued set. Frederickson and Johnson [19] gave an optimal algorithm for finding the
kth largest element in X + Y in O(m + p log(k/p)) time, where m = |X | ≤ |Y | = n and p = min{k,m}. Recently Bae and
Takaoka proposed an efficient O(n+ k log k)-time algorithm [4] for finding the k largest elements of X + Y . In the following,
we first show how to find the k largest elements of X + Y in O(n+ k) time by using Eppstein’s algorithm [15], and then we
show how to cope with the weight-constrained case in O(n log n+ k) time by using our algorithm.
Lemma 3 (Eppstein [15]). Given a directed acyclic graph G = (V , E) with a length function ` : E → R and two distinguished
vertices s and t, we can find, in O(V + E + k) time, an implicit representation of the k longest paths connecting s and t in G. And
by using the implicit representation, we can list the edges of any path P in the set of the k longest paths in time proportional to the
number of edges in P.
Theorem 9. Given two valued sets X = {x1, . . . , xn} and Y = {y1, . . . , yn}, we can find the k largest elements of X + Y in
O(n+ k) time.
Proof. We describe an O(n + k) algorithm for finding the k largest elements of X + Y as follows. We first construct, in
O(n) time, a directed acyclic graph G = (V , E) where V = {s, t, c} ∪ {x′1, . . . , x

′
n} ∪ {y

′

1, . . . , y
′
n} and E = {

−→
sx′1, . . . ,

−→
sx′n} ∪

{
−→
x′1c, . . . ,

−→
x′nc} ∪ {

−→
cy′1, . . . ,

−→
cy′n} ∪ {

−→
y′1t, . . . ,

−→
y′nt}. Define ` : E → R by letting `(

−→
sx′i) = 0, `(

−→
x′ic) = xi, `(

−→
cy′i) = yi, and

`(
−→
x′it) = 0 for all i = 1, . . . , n. It can be verified that (xi, yj) is the kth largest element of X + Y if and only if (s, x

′

i, c, y
′

j, t) is
the kth longest path connecting s and t in G. Thus, by Lemma 3, we can first find the k longest paths connecting s and t in G
in O(V + E + k) = O(n+ k) time and then find the corresponding k largest elements of X + Y in O(k) time. �
Now we show how to cope with the weight-constrained case. Let X and Y be two valued sets associated with weight

functionsWX : X → R andWY : Y → R, respectively. Then for each (x, y) ∈ X + Y , we define the weight of (x, y) to be
WX (x)+WY (y).
Theorem 10. Let X = {x1, . . . , xn} and Y = {y1, . . . , yn} be two valued sets associated with weight functions WX : X → R
and WY : Y → R, respectively. Given a positive integer k and an interval [L,U], we can find, in O(n log n+ k) time, the k largest
elements of X + Y with weights in the interval [L,U].
Proof. We construct, in O(n) time, a tree T = (V , E) where V = {x′1, . . . , x

′
n} ∪ {y

′

1, . . . , y
′
n} ∪ {c} and

E = {x′1c, . . . , x′nc} ∪ {y
′

1c, . . . , y′nc}. Let δ be a large enough positive number, say, greater than max{|U|, |L|} +
max{max1≤i≤n |WX (xi)|,max1≤i≤n |WY (yi)|}. Define the weight function w : E → R by letting w(x′ic) = WX (xi) + δ and
w(y′ic) = WY (yi)−δ for all i = 1, . . . , n. Define the length function ` : E → R by letting `(x′ic) = VX (xi) and `(y

′

ic) = VY (yi)
for all i = 1, . . . , n.
Let P be a path of T . Consider the following cases. First, if P has both of its end vertices in {x′1, . . . , x

′
n}, i.e., P = (x

′

i, c, x
′

j)
for some i and j, then we have w(P) = WX (xi) +WX (xj) + 2δ > U . Second, if P has one end vertex in {x′1, . . . , x

′
n} and the

other end vertex being c , i.e., P = (x′i, c) for some i, then we also havew(P) = WX (xi)+ δ > U . Similarly, if P has both of its
end vertices in {y′1, . . . , y

′
n} or P has one end vertex in {y

′

1, . . . , y
′
n} and the other end vertex being c , thenwe havew(P) < L.

Finally, if P has one end vertex in {x′1, . . . , x
′
n} and the other in {y

′

1, . . . , y
′
n}, i.e., P = (x

′

i, c, y
′

j) for some i and j, then we have
w(P) = WX (xi)+WY (yj) and v(P) = VX (xi)+ VY (yj).
From the above discussion, we conclude that (xi, yj) is the kth largest element of X + Y with weight in [L,U] if and only

if (x′i, c, y
′

j) is the kth longest path of T with weight in [L,U]. Thus, by Theorem 4, we can first find the k longest paths of T
with weights in [L,U] in O(V log V + k) = O(n log n+ k) time and then find the corresponding k largest elements of X + Y
with weights in [L,U] in O(k) time. �

5.2. Finding the sum-constrained k longest segments

In biological sequence analysis, several researchers have devoted to the problem of finding the longest segment whose
sum is not less than a specified lower bound L [1,11,34]. Allison [1] gave an algorithm which runs in linear time if the input
sequence is a 0–1 sequence and L is a rational number. For real number sequences and real number lower bound, Wang and
Xu [34] provided the first linear time algorithm, and Chen and Chao [11] gave an alternative linear time algorithm which
runs in an online manner. We consider a more general problem in which both the lower bound L and the upper bound U of
the sums of the segments are given and we want to find the k longest segments whose sums satisfy both the lower bound
condition and the upper bound condition.

H.-F. Liu, K.-M. Chao / Theoretical Computer Science 407 (2008) 349–358 357

Theorem 11. Given a sequence A = (a1, a2, . . . , an) of real numbers and an interval [L,U], we can find, in O(n log n+ k) time,
the k longest segments whose sums are in the interval [L,U].

Proof. Directly from Theorem 4. �

5.3. Finding k length-constrained maximum-density segments satisfying a density lower bound

Given a sequence of pairs of numbers A = ((a1, `1), . . . , (an, `n)), where `i > 0 for all i = 1, . . . , n, a positive
integer k, an interval [L,U], and a number δ, let kout = min{k, nδ}, where nδ is the total number of segments of A with
lengths in [L,U] and densities ≥ δ. We show how to find kout segments of A with lengths in [L,U] and densities ≥ δ in
O(n + kout) time. A segment A[i, j] is called a feasible segment if and only if the length of A[i, j] is in [L,U]. Let δmax be the
density of the feasible segment which has the maximum density among all feasible segments. The Length-Constrained
Maximum-Density Segment problem is to find a feasible segment with density equal to δmax. The Length-Constrained
Maximum-Density Segment problem is well studied in [13,23,25,26,28,29] and can be solved in linear time by [13,23]. Let
nδmax be the total number of feasible segments with density equal to δmax. If we are not satisfied by finding only one feasible
segments with density equal to δmax, then by first computing δmax by O(n)-time algorithms in [13,23] and setting δ to δmax,
our algorithm can list kout = min{k, nδmax} feasible segments with density equal to δmax in O(n+ kout) time.

Theorem 12. Given a sequence of pairs of numbers A = ((a1, `1), . . . , (an, `n)), where `i > 0 for all i = 1, . . . , n, a positive
integer k, an interval [L,U], and a number δ, let kout = min{k, nδ}, where nδ is the total number of segments of A with lengths in
[L,U] and densities≥ δ. Then we can find, in O(n+ kout) time, kout segments of A with lengths in [L,U] and densities≥ δ.

Proof. Inwhat follows, a segment is called a feasible segment if and only if its length is in [L,U]. LetA′ = ((a1−`1δ, `1), (a2−
`2δ, `2), . . . , (an − `nδ, `n)). Since A[i, j] has density

ai+···+aj
`i+···+`j

≥ δ if and only if A′[i, j] has sum
∑
i≤h≤j(ah − `hδ) ≥ 0, it

suffices to show how to find kout feasible segments of A′ with sums ≥ 0 in O(n+ kout) time. As in the proof of Theorems 7
and 8, we first implicitly construct a heap for all feasible segments of A′ in O(n) time. Let 2t−1 ≤ k < 2t . We then execute the
following procedure to find kout feasible segments of A′ with sums≥ 0 in O(kout + 1) time, so the total time is O(n+ kout).

1. For i← 0 to t do
(a) S ← the 2i maximum-sum feasible segments of A′.
(b) If some segment in S has sum less than 0, then stop the loop.

2. If S contains more than k segments with sums≥ 0, then return k of them; otherwise, return all segments in S with sums
≥ 0.

We now prove that the procedure runs in O(kout + 1) time. By Theorem 3, the ith iteration of the loop in Step 1 can be
done in O(2i) time. If nδ = 0, then it is clear that this procedure returns in constant time; otherwise, there are two cases to
consider.
Case 1: nδ ≥ k. In this case, the loop continues until the tth iteration, so the total time spent on Step 1 is O(1+ 2+ 4+

· · · + 2t) = O(2t+1) = O(k) = O(min{k, nδ}) = O(kout). After the loop stops, the size of S is at most 2t , so Step 2 can also be
done in O(2t) = O(k) = O(min{k, nδ}) = O(kout) time.
Case 2: nδ < k. Let 2t̂−1 ≤ nδ < 2t̂ . In this case, the loop continues until the t̂th iteration, so the total time spent on

Step 1 is O(1 + 2 + 4 + · · · + 2t̂) = O(2t̂+1) = O(nδ) = O(min{k, nδ}) = O(kout). After the loop stops, the size of S is at
most 2t̂ , so Step 2 can also be done in O(2t̂) = O(nδ) = O(min{k, nδ}) = O(kout) time. �

5.4. Finding the area-constrained k maximum-sum subarrays

Given an n × n array A[1..n][1..n], define the sum and area of a subarray A[k..l][i..j] to be
∑l
p=k

∑j
q=i A[p][q] and

(l − k + 1)(j − i + 1), respectively. The k Maximum-Sum Subarrays problem is well studied in [2–4,6,9,12,30,31] and
can be solved in O(n3 + k) time by Brodal and Jørgensen [9] and O(n3 ·

√
log log n
log n + k log n) time by Bae and Takaoka [4].

We will now prove that the Area-Constrained kMaximum-Sum Subarrays problem can be solved in O(n3 + k) time by
applying Theorem 8.

Theorem 13. Given an n × n array A[1..n][1..n] and an interval [L,U], we can find, in O(n3 + k) time, the k maximum-sum
subarrays with areas in [L,U].

Proof. First we have to construct strips Si,j = ((
∑
i≤h≤j A[h][1], j−i+1), (

∑
i≤h≤j A[h][2], j−i+1), . . . , (

∑
i≤h≤j A[h][n], j−

i+1)) for all 1 ≤ i ≤ j ≤ n inO(n3) time. Thenwe construct a sequence S by concatenating these stripswith pairs (0,U+1).
Noting that pairs (0,U + 1) play the role of a stopper, it is not hard to see that each segment of S with length in [L,U]
corresponds to a subarray of A with area in [L,U], and vice versa. Thus we can first apply Theorem 8 to find k maximum-
sum segments of S with lengths in [L,U] in O(n3 + k) time and then output their corresponding subarrays of A. �

358 H.-F. Liu, K.-M. Chao / Theoretical Computer Science 407 (2008) 349–358

6. Concluding remarks

In this work, we have shown how to efficiently enumerate all the weight-constrained k longest paths in a tree and all
the length-constrained kmaximum-sum segments of a sequence. In the future, it will be interesting to consider problems
like selecting the weight-constrained kth longest path in a tree and the length-constrained kth largest sum segment of a
sequence.

Acknowledgments

We thank the anonymous referees for their thoughtful reading of the manuscript and many helpful suggestions. We
thank Gerth S. Brodal, Kuan-Yu Chen, Allan G. Jørgensen, and Hung-Lung Wang for helpful comments.

References

[1] Lloyd Allison, Longest biased interval and longest non-negative sum interval, Bioinformatics 19 (10) (2003) 1294–1295.
[2] Sung Eun Bae, Tadao Takaoka, Algorithms for the problem of k maximum sums and a VLSI algorithm for the k maximum subarrays problem, in:
Proceedings of the 7th International Symposium on Parallel Architectures, Algorithms and Networks, 2004, pp. 247–253.

[3] Sung Eun Bae, Tadao Takaoka, Improved algorithms for the k-maximum subarray problem for small k, in: Proceedings of the 11th Annual International
Computing and Combinatorics Conference, 2005, pp. 621–631.

[4] Sung Eun Bae, Tadao Takaoka, A sub-cubic time algorithm for the k-maximum subarray problem, in: Proceedings of the 18th Annual International
Symposium on Algorithms and Computation, 2007, pp. 751–762.

[5] Michale A. Bender,Martin Farach-Colton, The LCA problem revisited, in: Proceedings of the 4th Latin American Symposiumon Theoretical Informatics,
2000, pp. 88–94.

[6] Fredrik Bengtsson, JingsenChen, Efficient algorithms for kmaximumsums, in: Proceedings of the 15thAnnual International SymposiumonAlgorithms
and Computation, 2004, pp. 137–148.

[7] Jon Bentley, Programming pearls: Algorithm design techniques, Communications of the ACM (1984) 865–871.
[8] Michael Ben-Or, Lower bounds for algebraic computation trees, in: Proceedings of the 15th Annual ACM Symposium on Theory of Computing, 1983,
pp. 80–86.

[9] Gerth S. Brodal, Allan G. Jørgensen, A linear time algorithm for the k maximal sums problem, in: Proceedings of the 32nd International Symposium
on Mathematical Foundations of Computer Science, 2007, pp. 442–453.

[10] Kuan-Yu Chen, Kun-Mao Chao, On the range maximum-sum segment query problem, Discrete Applied Mathematics 155 (16) (2007) 2043–2052.
[11] Kuan-Yu Chen, Kun-Mao Chao, Optimal algorithms for locating the longest and shortest segments satisfying a sum or an average constraint,

Information Processing Letters 96 (6) (2005) 197–201.
[12] Chih-Huai Cheng, Kuan-Yu Chen, Wen-Chin Tien, Kun-Mao Chao, Improved algorithms for the k maximum-sums problems, Theoretical Computer

Science 362 (13) (2006) 162–170.
[13] Kai-Min Chung, Hsueh-I Lu, An optimal algorithm for the maximum-density segment problem, SIAM Journal on Computing 34 (2) (2004) 373–387.
[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, Introduction to Algorithms, second ed., The MIT Press, 2001.
[15] David Eppstein, Finding the k shortest paths, SIAM Journal on Computing 28 (2) (1998) 652–673.
[16] Tsai-Hung Fan, Shufen Lee, Hsueh-I Lu, Tsung-Shan Tsou, Tsai-Cheng Wang, Adam Yao, An optimal algorithm for maximum-sum segment and its

application in bioinformatics extended abstract, in: Proceeding of the 8th International Conference on Implementation and Application of Automata,
2003, pp. 251–257.

[17] Greg N. Frederickson, An optimal algorithm for selection in a min-heap, Information and Computation 104 (2) (1993) 197–214.
[18] Johannes Fischer, Volker Heun, Theoretical and practical improvements on the RMQ-problem, with applications to LCA and LCE, in: Proceedings of

the 17th Annual Symposium on Combinatorial Pattern Matching, 2006, pp. 36–48.
[19] Greg N. Frederickson, Donald B. Johnson, The complexity of selection and ranking in X + Y and matrices with sorted rows and columns, Journal of

Computer and System Science 24 (2) (1982) 197–208.
[20] Greg N. Frederickson, Donald B. Johnson, Finding kth paths and p-centers by generating and searching good data structures, Journal of Algorithms 4

(1) (1983) 61–80.
[21] Takeshi Fukuda, Yasuhiko Morimoto, Shinichi Morishita, Takeshi Tokuyama, Data mining with optimized two-dimensional association rules, ACM

Transactions on Database Systems 26 (2) (2001) 179–213.
[22] Ulf Grenander, Pattern Analysis, Springer-Verlag, New York, 1978.
[23] Michael Goldwasser, Ming-Yang Kao, Hsueh-I Lu, Linear-time algorithms for computing maximum-density sequence segments with bioinformatics

applications, Journal of Computer and System Sciences 70 (2) (2005) 128–144.
[24] Dov Harel, Robert E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM Journal on Computing 13 (2) (1984) 338–355.
[25] Xiaoqiu Huang, An algorithm for identifying regions of a DNA sequence that satisfy a content requirement, Computer Applications in the Biosciences

10 (1994) 219–225.
[26] Sung Kwon Kim, Linear-time algorithm for finding amaximum-density segment of a sequence, Information Processing Letters 86 (6) (2003) 339–342.
[27] Sung Kwon Kim, Finding a longest nonnegative path in a constant degree tree, Information Processing Letters 93 (6) (2003) 275–279.
[28] Yaw-Ling Lin, Xiaoqiu Huang, Tao Jiang, Kun-Mao Chao, MAVG: Locating non-overlapping maximum average segments in a given sequence,

Bioinformatics 19 (1) (2003) 151–152.
[29] Yaw-Ling Lin, Tao Jiang, Kun-Mao Chao, Efficient algorithms for locating the length-constrained heaviest segments with applications to biomolecular

sequence analysis, Journal of Computer and System Sciences 65 (3) (2002) 570–586.
[30] Tien-Ching Lin, D.T. Lee, Randomized algorithm for the sum selection problem, in: Proceedings of the 16th Annual International Symposium on

Algorithms and Computation, 2005, pp. 515–523.
[31] Tien-Ching Lin, D.T. Lee, Efficient algorithm for the sum selection problem and k maximum sums problem, in: Proceedings of the 17th Annual

International Symposium on Algorithms and Computation, 2006, pp. 460–473.
[32] Nimrod Megiddo, Arie Tamir, Eitan Zemel, Ramaswamy Chandrasekaran, An O(n log2 n) algorithm for the kth longest path in a tree with applications

to location problems, SIAM Journal on Computing 10 (2) (1981) 328–337.
[33] Kalyan Perumalla, NarsinghDeo, Parallel algorithms formaximumsubsequence andmaximumsubarray, Parallel Processing Letters 5 (1995) 367–373.
[34] Lusheng Wang, Ying Xu, SEGID: Identifying interesting segments in (multiple) sequence alignments, Bioinformatics 19 (2) (2003) 297–298.
[35] Bang YeWu, Kun-Mao Chao, Chuan Yi Tang, An efficient algorithm for the length-constrained heaviest path problem on a tree, Information Processing

Letters 69 (2) (1999) 63–67.
[36] Bang Ye Wu, Kun-Mao Chao, Spanning Trees and Optimization Problems, first ed., Chapman & Hall/CRC, 2004.

	Algorithms for finding the weight-constrained k longest paths in a tree and the length-constrained k maximum-sum segments of a sequence
	Introduction
	O(V logV +k)-time algorithm for the weight-constrained k longest paths problem
	Preliminaries
	Finding the weight-constrained k longest paths

	(VlogV+k) lower bound for the weight-constrained k longest paths problem
	O(n+k)-time algorithm for the length-constrained k maximum-sum segments problem
	Preliminaries
	Finding the length-constrained k maximum-sum segments

	Applications
	Finding the weight-constrained k largest elements of X+Y
	Finding the sum-constrained k longest segments
	Finding k length-constrained maximum-density segments satisfying a density lower bound
	Finding the area-constrained k maximum-sum subarrays

	Concluding remarks
	Acknowledgments
	References

