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Abstract 

In this paper we study the preemptive assignment of a single server to two queues. Customers 
arrive at both queues according to Poisson processes, and all service times are exponential, but 
with rates depending on the queues. The costs to be minimized consist of both holding costs 
and switching costs. The limiting behavior of the switching curve is studied, resulting in a good 

threshold policy. Numerical results are included to illustrate the complexity of the optimal policy 
and to compare the optimal policy with the threshold policy. 

1. Introduction 

Our model consists of two queues with Poisson arrivals (with rate li at queue i) and 

exponential service times (with rate /~i at queue i). There are holding costs (ci at queue 

i) for each time unit a customer spends in a queue. There is a single server, which 

has to divide its time between the queues. When the server moves from one queue to 

the other, switching costs are incurred (equal to sij if the server moves from queue i 

to queue j). The objective of this paper is to study the optimal preemptive dynamic 

assignment of the server to the queues, with respect to the long run discounted or 

average costs. We characterize the optimal policy in as much detail as possible, and 

we compare the optimal policy with several heuristics. 

A special case of this model, with ~1 = ~2 and cl = c2 (and with switching times 

instead of switching costs), has been studied in [6,8]. In both papers it is shown that 

the optimal policy serves each queue exhaustively. (In [8] a more general model is 

considered, allowing for more than two queues and different information structures.) In 

[6] it is conjectured that it is optimal for the server to switch from an empty queue to 
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the other if the number of customers in the other queue exceeds a certain level. Such 

a policy is called a threshold policy. 

Another special case, the one with ~12 = ~21 = 0, has been studied extensively. For 

this model the PC-rule is known to be optimal (e.g. [3]). The pc-rule serves, amongst 

the non-empty queues, a customer in the queue with highest pici. 

In this paper we study the general case with arbitrary parameters. 

Before going into the technical details of the paper, let us first do a numerical exper- 

iment, to obtain some insight in the model. This we do using dynamic programming 

(dp). Using standard arguments (on which we elaborate in Section 2), we can refor- 

mulate our continuous time problem into a discrete time problem, and derive its dp 

equation. 

Using a computer program, we computed the actions minimizing the a-discounted 

costs, (for a state space truncated at a sufficiently high level) for 11 = 12 = 1, ~1 = 

~2 = 6, cl = 2, c2 = 1, ~12 = szl = 20, and a = 0.95. The results can be found in 

Table 1. We denote the state of the system with (x, y), with x = (x1,x2) the numbers 

of customers in the queues, and y E { 1,2} the position of the server. A “-” at position 

x = (x1,x2) denotes that if the server is in state (x, 1 ), then it is optimal to switch from 

queue 1 to queue 2. A “+” denotes that it is optimal to switch to queue 1 in state (x,2). 

A “.” denotes that the server stays at the present queue. In Table 1 the state space is 

truncated at xl, x2 < 15, but the computations were done for higher truncation levels. 

Several interesting conclusions can be drawn from Table 1. In the first place, as the 

policy in the table does not have a simple form, it seems unlikely that the optimal 

policy can be described easily. 

Switching from queue 1 to queue 2 occurs only if x1 = 0, i.e., queue 1 is served 

exhaustively. This we can prove (see Section 2), for all cases with ~1~13~2~2. Thus 

Table I 
The optimal switching policy for A1 = 12 = 1, ~1 = ~2 = 6, cl = 2, ~2 = 1, ~12 = ~21 = 20, 

tl = 0.95 

- ".+++ +++++++++ 

- . ..++++++++++++ 
- . + + + + + + + + + + + + 
- .++ t + + + + + + + + + 
- . ..+ + + + t + + + + + + + 

- ".+++ ++++t++++ 
- + + + +++++++++ 
- .++ + + + + + + + + + + 

- ,..++++++++++++ 

- . ..++++++++++++ 

- . . ..++++++++tt+ 

- . ...+++++++++++ 

- . . . ..++++t+++++ 

..,,.++++++++++ 

“““+++++++++ 
0 .+t++++++++++++ 
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the queue that would get higher priority under the pc-rule in the case without switching 

costs, is served exhaustively. We also show in Section 2 that if xi = 0, then queue 2 

is served exhaustively. This is also in compliance with the PC-rule. 

From Table 1 it is clear that it is not optimal always to serve queue 2 exhaustively; 

if there are sufficient customers in queue 1, it pays to switch to queue 1. Note that 

serving queue 1 reduces the holding costs at a faster rate than by serving queue 2. 

(This is the intuitive explanation of the optimality of the pc-rule.) However, to reduce 

costs at a faster rate we have to invest in the form of switching costs. This investment 

is only worthwhile if there are enough customers in queue 1 to serve. This suggests a 

threshold level for XI, at which to switch to queue 1. In our example, this threshold 

clearly depends on x2, but becomes constant for x2 > 5 (and remains the same for 

values of x2 well beyond 15). The intuition behind this is that if there are only a 

few customers in queue 2, it is better to serve these first before switching to queue 1, 

thereby avoiding having to switch back to queue 2 after serving queue 1 exhaustively. 

This complex behavior lends itself hardly for analysis, but for the discounted costs 

criterion, and for x2 big enough, we can prove that the optimal policy does not de- 

pend on x2. This is done in Section 3, and we show how the optimal policy for x2 

large can be computed. In Section 4 we compare numerically the optimal policy and 

several threshold policies, one of which is based on the limiting policy obtained in 

Section 3. 

Independently, both Reiman and Wein [9] and Duenyas and Van Oyen [5] studied 

similar models. In [9] a heavy traffic approximation of the model is optimized, resulting 

in a threshold policy much like the one we obtain. This is done both for the model 

with switching costs and for the model with switching times. For general service times 

it is shown in [5] that the optimal policy serves the high priority queue exhaustively. 

Threshold policies are proposed and numerical results are derived, also for systems 

with more than two queues. Finally, in [2] the threshold policy for the two-dimensional 

model is further analyzed, both using analytical methods and the recently developed 

power series algorithm. 

2. Exhaustive policies 

In this Section we formally derive the discrete time dp equation, and prove some 

properties of this model, which partially describes the optimal policy. 

In [ 121 it is shown that each continuous time Markov decision process with uniformly 

bounded transition rates is equivalent to a discrete time Markov decision chain, for the 

discounted cost criterion. In our model, the sum of the transition rates is bounded by 

11 = 3,i + 12 + ~1 in each state (with p = maxi gi). By adding fictitious transitions 

from a state to itself, we can assume that the sum of the rates in each state is equal 

to y. Let the costs at t in the continuous time model be discounted with a factor fi’. 

Then, according to [12], the optimal policy in the continuous time model is the same 

as the optimal policy in the discrete time model with the transition rates divided by y 
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as transition probabilities, and with discount factor DL = y/(log(/3-‘ ) + y). In each state, 
the transition probabilities sum to one due to the fictitious transitions. The minimal 
discounted costs in both models are equal up to a multiplicative factor y. A similar 
result holds for the average cost case. 

In our model we do not allow for idleness of the server at the current queue, if there 
are customers available at that queue. If ci > 0, it can indeed be shown that idleness 
is suboptimal, in the same way as Liu et al. [8] show it for their model. Note however, 
that the optimal policy need not be work conserving: in the example of the previous 

Section the server remains in state ((0, 1 ), 1) at the empty queue 1, while there is a 
customer waiting in queue 2. 

Assume, without restricting generality, that Ai + 12 + p = 1. Recall that x = (x1,x2) 
denote the queue lengths, and that y is the queue presently being served. The dp 
equation of the discrete time model is then as follows (with ei = (1,0) and e2 = (0,l)): 

V”(x, y) = min { P”(x, y),s, + B”(x,z)}, z = 3 - y, (2.1) 

P”+‘(x,y) =x~cr + x2c2 + a;l~V"(x+el,y)+ d2Vn(x + e2,y) 

+wLyfT(x - q)+,r> + 4~ - CL~)~~(X,Y), (2.2) 

with V”(x, y) = 0. Here 9” serves as an intermediate variable, making the notation 
easier. If CI < 1 then Y”(x, y) converges to the minimal discounted costs Y”(x, y) for 
all x and y, and the actions minimizing P(x, y) converge to the minimizing actions 
in (x, y) (by results on negative dynamic programming, see [lo]). In case LX = 1 and 
if ii/pi + 121~2 < 1, then an optimal average cost policy exists (e.g., by showing 
that for every work conserving policy the average costs are finite, and then verifying 
conditions (C) in [4]). Using results from [ 1 l] it can be shown that the results we are 
about to prove not only hold for the limiting discounted case, but they carry over to 

the average cost case as well. 
In the remainder of this paper we study the discrete time model, whose dp equation 

is given by (2.1) and (2.2). Assume that C(~CI >~2c2>0, and that ~12, ~21 20. To 
show that queue 1 should always be served exhaustively, we need a technical lemma. 
Define & = p - ,Q, and note that K < 1 is equivalent to taking hlr + & + p < 1 
and M: = 1. Therefore we will suppress CI in the notation, and drop the condition that 

;11+12+p= 1. 

Lemma 2.1. For n = 0, 1,. . ., we have 

plv”(x - el, 1) + jil V”(X, I)<p12 + p2Vn(x - e2,2) + P2Vn(x,2), x > 0, (2.3) 

and 

Y”(-& _V) Q V”(X + ei, y). (2.4) 

Proof. It is easily seen that 

V”(x, y)<s, + l?W), z # Y. (2.5) 



G. Koolel Theoretical Computer Science 182 (1997) 203-216 207 

We use induction to n. Instead of proving (2.3) and (2.4) inductively, we will show 

that 

and (2.4) propagate. 

Note that (2.3) follows from (2.6), because V(X, l)<si2 + V”(x,2) for all x. We 

start with (2.6). For n = 0 the inequality holds. Assume it holds up to n. Consider 

n+ 1. 

We have to distinguish between all combinations of actions in (x - ~2) and (x, 2). 

The optimal actions in these states are denoted with al and ~2, respectively. If al = 

~22 = 1, it suffices to show 

plqn+‘(x - e,,2) + & pn+‘(x,2)6w2i + ,uz?+‘(x - e2,l) + ,G2pflc1(x, 1). (2.7) 

Now we have 

1-1, V”(x - el + ei,2) + fi, V”(X + ei,2) d p2Vn(X - e2 + G,2) + &Vn(X + e,,2) 

6 P2($21 + V”(X - e2 + ei, 1)) 

+c12(S21 + v”(X + ei, 1 I>, 

the first inequality by induction, the second by (2.5). 

By (2.5) it also follows that 

p,p2Vn(x - el - e2,2) + ji1p2Vn(x - e2,2) + P1i4Vn(X - el,2) + PlP2v”(X72) 

+&ii2 V”(x, 1). 

If we multiply the first inequality by li, sum it for i = 1 and 2, add the second 

inequality to it, add 0 <p( 1 - Ai - ;12 - ,U)SZ~ and xlcl +x2c2 - plcl <xlcl +x2c2 - p2c2, 

then we find (2.7). 

For ai = ~72 = 2, we show 

This inequality follows easily by induction and ~1~1 3~2~2. Note that if x2 = 1 (2.4) 

is used. 

If ai = 1 and u2 = 2, it is sufficient to show 

pL1 V+‘(x - ei,2) + 0, Cin+‘(x,2)6p2.s2i + p2Y+‘(x - e2,l) + b2Vt1(x,2). 

(2.8) 
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We have 

pl V”(x - el + ei, 2) + jT1 V”(x + ei, 2) Gp7. V”(x - e2 + ei,2) + ii* V”(x + ei, 2) 

<p2(S21 + V"(X - e2 + ei,l))+ /i2V"(X + ei, 2), 

pLIp2V"(X - el - e2,2)+P1p2V(X -e2,2) 

Gpp2S21+p1p2V7~-e1 -e2,1)+iil~2VYX-e2,1), 

and 

The last two inequalities give the terms concerning departures, and (2.8) is derived as 

in the previous cases. 

Finally, if al = 2 and a2 = 1, we can derive 

pi V”(x - el + ei, 2) + ii1 v”(X + ei,2) 

d/QV”(X - e2 + ei,2) + &(SZI + V”(X + ei, I)), 

p1,u2Vn(X - el - e2,2) + Plp2Vn(X - e2,2) 

<p;V"((X--2 -e2)+,2)+p2112Vn(X-e2,2), 

in which Eq. (2.4) is used if x2 = 1, and 

,L@~V(X - e1,2)+P1P2Vn(X,2) G M2S21 +P2p1WX - el,l)+fi2&VX, 1). 

This solves the last case. 

Eq. (2.4) follows easily, by showing 8”(x,y)< P”(x + ei,v) for all X, y and i. 0 

Now we can show that queue 1 should always be served exhaustively. 

Theorem 2.2. For n = 0, 1,. . ., we have 

P”(x, l)dS12 + P”(X,2) $x1 > 0, (2.9) 

showing that queue 1 should be served exhaustively. 

Proof. Again by induction. Using (2.5), it is easily seen that 

Li V"(X + ei, l),< AiS12 + AiV"(X + ei, 2). 

By (2.3) (or (2.4), if x2 = 0) we have 

~lV"(x-el,1)+~,~"(X,1),<~12+~12V"((X-e2)+,2)+li~~"(X,2). 

Summing the inequalities (and using that ~12 20) gives (2.9) for n + 1. As 

lim,,, P”(x, y) = P”(x, JJ), (2.9) holds also for Pa. Thus, if x1 > 0, the action 
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minimizing Vn(x, l), is staying at queue 1. This shows that the optimal discounted 

policy serves queue 1 exhaustively. Cl 

Theorem 2.3. For n = 0, 1,. . ., we have 

F(X,2)dS2, + P”(x, 1) ifx, = 0, 

showing that queue 2 should be served as long as queue 1 is empty. 

Proof. The proof is similar to that of Theorem 2.2. It is easily seen that 

&Vn(X + ej,2)GA&, + &V”(X +ei, l), 

(2.10) 

PzVY(X - e2)+,2> + P2Vn(x,2)<p21 + pV”(n, l), 

holds by (2.4) and (2.5). cl 

If ~12 = ~21 = 0 it follows from Theorems 2.2 and 2.3 that the PC-rule is optimal. 

Indeed, because in this case Vn(x, y) = min{ P”(x, 1 ), ?‘(x,2)}, it follows from Theo- 

rem 2.2 that queue 1 should always be served if XI > 0; by Theorem 2.3 we know 

that if x1 = 0 and x2 > 0 queue 2 should be served. A simpler iterative proof of the 

optimality of the pc-rule can be found in [7]. 

I tried to generalize the results of this Section to more than two queues using similar 

arguments, but failed. 

Remark 1. We assumed the arrivals to be Poisson, but without losing the results of 

this Section, we can allow them to be more general, for example a Markov arrival 

process (MAP). Note however that in this case the optimal policy will also depend on 

the state of the arrival process. In [7] the MAP is used for a related control model. 

Remark 2. In the literature on polling models it is customary to study the expected 

(weighted) waiting time of an arbitrary customer, instead of holding costs. The problem 

of finding the optimal policy for this criterion is equivalent to finding the policy that 

minimizes the expected (weighted) sojourn time, as each customer’s expected service 

time is fixed. By Little’s theorem, for each stationary policy Ci J.itiEWi is equal to 

C, c^i[ELi, where & is a weighting factor, and Li is the stationary queue length at queue 

i. But this is equivalent to the average cost case studied in this Section, with ci = c^i. 

Thus the results proved in this Section hold also if the objective is to minimize the 

sum of expected waiting times and switching costs. 

3. Asymptotic analysis 

In this Section we will study the actions minimizing V"(x, y) for x2 large. To do 

this, we consider the optimal actions in V”(x, y) for n <x2, and n large (and thus also 
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x2 large). These results are used to derive s-optimal policies for the discounted cost 

criterion. Throughout this Section we assume again that Ri + Lz + p = 1, and thus that 

a < 1. 

Lemma 3.1. Ifxz an, then V”(x+ez, y) = V”(x, y)+[(l -a”)/( 1 -a)] 19. Furthermore, 
the optimal actions in V”(x, y) and V”(x + e2, y) are equal. 

Proof. We use induction to n. The equality holds trivially for n = 0. Assume that 

Vn(x + e2, y) - V”(x, y) = [( 1 - a”)/( 1 - CC)] c2 for all x with x2 an. Then the actions 

minimizing Vn(x, y) and V”(x+ez, y) are equal. (Note that adding a constant to Vn(x, y) 

does not change the optimal action, giving the second part of the theorem.) Now look 

at P+l(x’ + e2, y) - Vn+l( x’, y), with xi 3 n + 1. For all states x that can be reached 

from XI in one step, we have x2 bn. Therefore, 

1 - a” 1 - c1”+i 
Vn+‘(x’ + e2, y) - P+l(x’, y) = c2 + aGc2 = ~ 1-a Q. 0 

Thus, if x2 an, the optimal policy does not depend on x2. To study the limiting 

behavior as both n and x2 go to 00, we consider a model with states (xi, y), where 

xi is the number of customers in the single queue of the system, and y E { 1,2} the 

position of the server: the server is at the queue only if y = 1. The dp equation 

is 

W”(xi, y) = min { IV(xi,y),~~ + IV(xi,z)}, z = 3 - y, 

@“+‘(xl, 1) =xici + ali W”(x* + 1,1) + 4 
( 

cc2 + IV(Xl,l)) 

+w W”((Xl - I)+, 1) + cr(p - jQ)W”(Xl, I), 

~,n+*(X1,2)=xlcl +allW”(xl + 1,2)+a12(5c2+ W”(x,,2)) 

1 - a,” 
--01P2~c2 + apW”(x1,2), 

with W”(x, y) = 0. This dp equation can be interpreted as originating from the original 

model but with an infinite number of class 2 customers. Indeed, if y = 2 the costs 

are reduced with a factor CX~Z[( 1 - a”)/( 1 - a)] ~2. This is equal to the probability of 

a class 2 departure, times the expected costs incurred for a class two customer who 

stays in the system for the remaining n periods. 

Note that the dp equation has a somewhat unusual form, as the costs depend on n. 
However, the discounted costs are equal to those for the model with a” replaced by 0 

(which can by proved by considering the optimal@ equation). To distinguish between 

both models, we will refer to the original model as the V-model, and to the model 

with value function W” as the W-model. 
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Lemma 3.2. If x2 an, then V”(x, y) = Wn(xl, y) + x2[( 1 - a”)/( 1 - a)] c2. 

Proof. The proof is similar to that of lemma 3.1. Assume that V”(x, y) - W”(xl, Y) = 

x2[( 1 - a”)/( 1 - a)] c2 for all x with x2 > n. For x’ with xi 2 n + 1, it is straightforward 

to show, using Lemma 3.1, that 

1 - a” 1 - a”+l 
Vn+‘(x’, y) - Wn+l(x{, y) = x&7 + KQIQ = x2----- 1-a c2’ q 

Now we can compute W” and the optimal actions in each state. Based on this optimal 
policy for the W-model we define a policy RT for the original V-model, which takes as 
action in (x, y) the optimal action for the W-model, in state (xl, y). Note that under RT, 

the original model and the optimal policy for the W-model treat the class 1 customers 
exactly the same. Obvious improvements can be made to RT, like not switching from 
queue 1 to queue 2 if x = (0,O). 

Theorem 3.3. For all E > 0 and XI, there is a N such that 1 V&(x, y) - V@(x, y)j < E 
if x2>N. 

Proof. Using the triangle inequality, we have 

IV&(X’Y) - V%,Y)l < (VYX,Y) - VYX,Y)l + IW"(Xl,Y) - WYXl,Y)l 

l-82 
+Iv%,Y) - WY~l,Y) -XZCZl-_a 

+ix2c2= - x2c2 & I 

+IGJXTY) - WX,,Y) - x2c2& 

For each of the terms on the r.h.s. we show that it goes to 0, as x2 tends to co. 
Let us start with V”(x, y) - P(x, y). Discounting can be interpreted as taking the 

total costs over a geometrically distributed horizon. Thus Va(x, y) can be seen as 
the minimal costs for a control problem with horizon X, where X is geometrically 
distributed with parameter a. Similarly, P(x, y) can be seen as a problem with horizon 
min{X, n}. Note that the policies used to calculate V” differ from the optimal discounted 
policy; a different horizon gives different optimal policies. As the direct costs for V” 
are positive, it is easily seen that V”(x, y) < V”(x, y). Now we bound the costs for the 
case that X > n, which occurs with probability a”. At time n there are xi + x2 + n 
customers in the system or less (the number XI + x2 + n corresponds to all events 
being arrivals). If these customers are not served, their costs after n are bounded by 
a”(x1 +x2 + n)max{ci,c2}/(1 - a). The costs of a customer arriving at time k can be 
bounded by ak max{ct,cz}/(l - a). Summing this for k = n to 00 gives a bound for 
customers arriving after n, which is equal to a” max{ct,c2}/(1 - a)2. The switching 
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costs can be bounded by max{siz,szi}/(l - a). Together, this gives 

< \ vn(x 
3 

vj + En@1 +x2 +n + (1 - a)-‘)max{cbc2} + max{si2,s2i} 
1-a 

2 

from which we conclude that P(,x, y) - P(x, y) --) 0, as x2 -+ 00. 

In a similar way, we can find bounds for W”. The negative costs after n are bounded 
by a”,~&( 1 - M)~. Therefore, 

On the other hand, 

w+i y)<W~(xl,y)+~~(~~ +n+(l --CI)-1)max(cl,c2)+max(s12,~21) 
, . 

1-M 
3 

giving that W’(x1, y) - Wx*(xl, y) --f 0, as x2 + 00. 
By Lemma 3.2 we know that P(x) y) = Wx2(xl, y)+x2c2[( 1 - c?*)/( 1 - cr)], making 

the third term 0. 
Obviously, x2c~[(l - cc”‘)/(l - a)] - x2c2[I/(1 - a)] -+ 0, as x2 --) 00. 
To prove that the last term tends to 0, we do not consider V” or W”, with a possibly 

different policy for each IZ, but we restrict ourselves to the policy RT. If we add a term 
x2c2 to the direct costs in W”, resulting in Wt”, the term becomes ( V&(x, y)- i?‘(xl, y)l. 

Now, if RT is employed at all times, then the direct costs in both systems are equal, 
until x2 = 0. Note that the switching costs and the holding costs in queue 1 are always 
equal. Therefore, using similar arguments as above, we have 

This gives the bound on the fifth term. 0 

The next step in finding good and simple policies is characterizing the policy RT. 

As for the V-model, it can be shown that for the W-model the queue should be served 
exhaustively, thus service is never interrupted. Then we have exactly the model of Bell 
[I], with holding costs ci and operating costs &/( 1 - CI). It is shown in [l] that a 
threshold policy is optimal. Note that the computation of RT takes little time compared 
to the overall optimal policy, due to the reduction in size of the state space. In the 
next Section we report on the numerical results. 

4. Numerical results 

First we computed the optimal W-policy for several instances. Table 2 shows the 
optimal policy, for the same parameters as used in Table 1. 

We see that the server switches from serving queue 2 to queue 1 as soon as xi 
reaches the threshold level (in this case 4), in line with the results in Bell [l]. 



G. Koolel Theoretical Computer Science 182 (1997) 203-216 213 

Table 2 

The optimal W-policy for I! = A2 = 1, ~1 = ~2 = 6, cl = 2, cz = 1, SQ = ~21 = 20, a = 0.95 

_ . + + + + + + + + + + + + 
x1 = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

Table 3 

The policy RT for 11 = A2 = 1, ~1 = ~2 = 6, cl = 2, c2 = 1, ~12 = ~21 = 20, a = 0.95 

x2 = 8 -..,++++++++++++ 

7 -,..++++t+++++++ 

6 --++++++++++++ 

5 -.-.++++++++++++ 

4 -...t+++++++++++ 

3 -...++++++++++++ 
2 + + + + + + + + + + + + 
1 -... + + + + + + + + + + + + 
0 + + + + + + + + + + + + + + + 

xl=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

From this we construct the policy RT for the V-model, by taking in ((xr,xz),y) 
the action which is optimal in (XI, y) for the W-model. We make an exception for 
the states with xz = 0; there we assume the policy to be work conserving, that is, it 
switches to queue 1 only if there are customers at queue 1, and in state ((O,O), 1) the 
server does not switch to queue 2 (which is obviously suboptimal). Thus RT becomes 
as depicted in Table 3. 

We compared the optimal policy and RT as derived from the W-model, for various 
problem instances. We also included two other simple policies in our computations. 
These are the policy which serves not only queue 1, but also queue 2 exhaustively, 
which can be seen as RT with threshold level cc (and therefore denoted with R, ), 

and the list policy which gives priority to queue 1, which is RT with threshold level 
1 (denoted with RI). Note that RI coincides with the pc-rule. 

Our first observation is that the performance of the policies depends on the initial 
states. This is illustrated in Table 4, where we list the discounted costs for various 
starting states. The computations for the optimal policy R* were done by calculating 
(2.1) and (2.2), for n large enough. Also the computations for RT, RI and R, were 
done with the dp equation, by inserting the policy in (2.1) instead of taking the mini- 
mizing actions. To make computations possible we had to truncate the state space. We 
increased the truncation levels until the outcomes did not change anymore, from which 
we concluded that these numbers hold also for the model without truncation. 

First we observe that the values for RT, RI and R, do not depend on y, if x = 
(0,O). This can be explained by the fact that the server serves the first customer that 
arrives. As AI = 12, this occurs at each queue with the same probability. Because also 
~12 = ~21, we find Vi((O,O), 1) = Vi((O,O),2), for R = RT, RI and R,. Furthermore, it 
is observed that the difference between entries in different columns is often equal to 20, 
the switching costs. The differences can easily be explained by looking at the structure 
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Table 4 

Values for different policies and initial states (x’, y’), for 21 = ,I2 = 1, ~1 = ~2 = 6, cl = 2, c2 = 1, 

s12 = s21 = 20, a = 0.95 

(X’,Y’) (W)J) (WU) ((10,W) ((10,0),2) (mw,1) wQ2) WJW) (w410)2) 

R* 40.76 45.01 176.8 196.8 139.6 119.6 332.8 352.8 
RT 56.95 56.95 184.1 204.1 146.3 126.3 335.4 355.4 
RI 63.60 63.60 189.4 209.4 177.1 157.1 350.4 370.4 
RCCI 56.95 56.95 184.1 204.1 146.4 126.4 335.6 420.6 

Table 5 

Values for different policies and discount factors, for 11 = A2 = 1, p1 = ~2 = 6, cl = 2, c2 = 1, 

$12 = ~21 = 20, and initial state ((5,5),2) 

a 0.5 0.75 0.8 0.85 0.9 0.95 0.98 1 

R* 29.27 56.55 69.39 87.16 114.8 164.6 267.0 2.722 
RT 29.47 57.36 69.87 88.41 118.4 170.7 283.9 3.093 
T co co cm 8 5 4 3 3 
RI 48.04 71.69 82.37 98.49 125.7 185.9 313.9 3.470 
RCC 29.47 57.36 69.87 88.39 118.6 180.9 302.1 3.088 

of the policies involved. Of course R* performs best, but note that RT performs better 

than the other two. 

Let us see what the influence of c1 on the results is. For a ranging from 0.5 up to 

1 (representing average costs) we computed the values in state ((5,5),2). Note that 

for c1 = 1, W” is not defined. We derived RT in this case directly from R*. Note that 

taking u close to 1, reduces the dependence on the starting state. Furthermore, CI = 0.95 

corresponds to a reasonable interest rate of M 0.05. No low values of CI are considered, 

as a discount rate of /I = 0.1 in the continuous time model gives in the discrete time 

model a = y/(log(p-‘) + y) M 0.78. The results can be found in Table 5. In the table 

one can also find the values of T, the threshold level on which RT is based. Note that, 

in case a = 1, V”+‘(X, y) - V”(X, y) converges to the minimal average costs. 

It is interesting to note that, as long as OL < 0.75, the optimal policy does not switch to 

the other queue. The optimal policy for the W-model has threshold level 00 here. For 

c1 = 0.8 R* switches to queue 1 in states ((xi, 0), 2) if xi >/ 5. Note that for the average 

cost case R m performs better than RT. As the traffic is low, this can be explained by 

the fact that R, approximates the “nose” of the optimal policy better than RT does. 

(We call the roughly triangular subset of the state space where R* deviates from RT, 

which is best illustrated in Table 1, the nose of the optimal policy.) 

Finally, we change the parameters of the system, keeping the discount rate and the 

initial state constant. First, let us change 22. We expect the nose to be larger if 12 is 

small, to avoid having to return to queue 2 after serving queue 1 exhaustively. Such a 

large nose is best approximated by R,. Indeed, we see in Table 6 that for & = 0.1, 

R, is slightly better than RT. However, for 12 large, we see that RT outperforms 

R,. For 22 = 5, the system is unstable. As we are considering discounted costs, this 
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Table 6 

Values for different policies and different values of AZ, for 11 = 1, 
p1 = p2 = 6, cl = 2, c2 = 1, s12 = 821 = 20, a = 0.95, and initial state 

((5>5)>2) 

12 0.1 0.5 1 2 4 5 

R* 133.9 150.3 164.6 190.9 248.7 278.1 

RT 138.1 155.5 170.7 195.6 249.7 278.6 

T 4 4 4 4 4 3 

RI 152.9 170.4 185.9 211.6 265.9 293.7 

R, 137.0 160.9 180.9 212.6 280.2 315.4 

Table 7 

Values for different policies and different values of ~1, for II = 12 = 1, 

~1 = ~2 = 6, c2 = 1, ~12 = ~21 = 20, a = 0.95, and initial state 

((5,5),2) 

Cl 1 2 3 S 10 

R* 114.1 164.6 192.7 246.4 375.0 

RT 122.7 170.7 198.3 251.9 381.1 

T CQ 4 3 2 1 

RI 161.5 185.9 210.3 259.1 381.1 

RCO 122.7 180.9 239.1 355.4 646.4 

Table 8 

Values for different policies and different values of s, for 11 = 22 = 1, 

~1 = p2 = 6, C, = 2, c2 = 1, $12 = ~21 = s, rl = 0.95, and initial state 

((%5),2) 

s 0 5 10 20 100 

R* 110.5 127.5 141.0 164.6 236.2 

RT 110.5 127.6 142.2 170.7 327.1 

T 1 2 3 4 12 

RI 110.5 129.4 148.2 185.9 487.3 

RX 144.3 153.5 162.6 180.9 327.1 

does not cause problems. We also see that for larger values of Al, RT behaves better 

compared to R*. This can be explained by the fact that under high loads x2 is relatively 

big. It is for these states that RT approximates R’ best. 

We now vary the value of cl, ranging from 1 to 10. The results can be found in 

Table 7. For cl = 1, we know by Theorem 2.2 that both queue 1 and queue 2 should 

be served exhaustively. Therefore the values for RT and R, are equal, and lower than 

the value for RI. The policy R, behaves poorer and poorer if we increase cl, and the 

optimal threshold value becomes 1, making RT and RI equal. 

Finally, we change the switching costs ~12 and ~21. The results can be found in 

Table 8. In case s = ~12 = ~21 = 0, then RI is optimal. This is indeed what we expect, 

because in this case the pc-rule, which is equal to RI, is optimal. As the switching 

costs increase, RI gets worse and R, better. 
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