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Abstract 

Suppose x is an n-bit integer. By a comparison question we mean a question of the form 

“does x satisfy either condition a <x< b or c<x<d?“. We describe strategies to find x using 

the smallest possible number q(n) of comparison questions, and allowing up to two of the 
answers to be erroneous. As proved in this self-contained paper, with the exception of n = 2, 
q(n) is the smallest number q satisfying Berlekamp’s inequality 

This result would disappear if we only allowed questions of the form “does x satisfy the con- 
dition a <x <b?“. Since no strategy can find the unknown x E (0, 1, . . ,2” - 1) with less than 
q(n) questions, our result provides extremely simple optimal searching strategies for Ulam’s 
game with two lies - the game of Twenty Questions where up to two of the answers may be 

erroneous. 

1. Introduction 

Ulam’s game [7, p. 2811 with I lies has two players, called Questioner and Respon- 

der. The players first fix a search space S, = { 0, 1, . . . ,2” - 1) . The Responder thinks of 

a “target” number x E S, and the Questioner attempts to find x by asking the smallest 

possible number of questions. Each question can only be answered “yes” or “no”, and 

the Responder is permitted to lie - or to be inaccurate in his answers - up to I times. 

There are several papers in the literature dealing with Ulam’s game (see, for instance, 

[2,4-6] and references therein). 
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Although answers are propositions, they do not obey the rules of classical logic: for, 
two opposite answers to the same repeated question need not lead to contradiction, and 
two equal answers may be more informative than a single answer: indeed, as explained 
in [4], Ulam’s game with I lies provides a natural interpretation of the (I + 2)-valued 
calculus of Lukasiewicz. 

An equivalent description of Ulam game arises if we assume that the Responder does 
not know when he is lying, but, as a result of distortion, the bit b E {yes, no} = { 1, 0) 
coding his answer may occasionally be received as 1 - 6. In this way, Ulam game 
becomes a chapter of the theory of communication with feedback, originating with 
Berlekamp [I]. If all questions are asked at the very beginning of the game, indepen- 
dently of the answers, then we have a nonadaptive variant of Ulam’s game. In this case, 
finding an optimal searching strategy amounts to finding an optimal Z-error-correcting 
code - a very difficult task already for small 122 [3]. Passing to the adaptive case, 
where the tth question is asked keeping into account the information given by the 
previous t - 1 answers, if questions are allowed to range over arbitrary subsets of S,, 
optimal searching strategies are rather easily described, for all 1 - at least for suffi- 
ciently large TZ. It turns out that the number of questions needed by such strategies 
is, up to finitely many exceptions, the smallest positive integer satisfying Berlekamp’s 

inequality (see [2,6]). 
Since, however, questions in these strategies are quite complicated, it is of interest to 

investigate optimal strategies involving the simplest possible questions. In this paper we 
shall concentrate on comparison questions of the form “does x satisfy either condition 
a <XT <b or c <x <d?” We shall prove that, despite such limitations in the expressive 
power of the Questioner, there exist optimal searching strategies having precisely the 
same number of comparison questions as in the general, unrestricted, case. 

Our main theorem is as follows: For all n # 2, if up to two errors are allowed in 

the answers, an unknown n-bit number can always be found by asking q(n) com- 
parison questions, with q(n) the smallest integer q satisfying Berlekamp’s inequality 

2Q2”(($ + q + 1). 

This strengthens the main result of [2], and reduces to a minimum the time and space 
resources needed to implement optimal searching strategies in Ulam’s game with two 

errors. 

2. Questions, answers, states, strategies 

Unless otherwise specified, throughout this paper we shall deal with Ulam’s game 
with I= 2 errors/lies. We fix an integer n > I, and we let the search space 8, be defined 

by S,,={O,..., 2” - 1). By a question we mean a subset of S,,: thus for instance, the 

question “is the unknown number x odd. 7” is identified with the set of odd numbers 
in S,. For any question Q c S,, the opposite question TQ is defined by 7Q = S,,\Q, the 
complement of Q in S,,. Suppose t questions Qi, . . . , Qt have been asked, and answers 

bt,..., bl have been obtained, where bi E {yes, no}. 
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If there were no errors in the answers, the Questioner could partition S,, into two sets: 

the set H of numbers satisfying all answers, and the set S,,\H of numbers falsifying 

at least one answer - whence they can no longer be admissible candidates for x. 

The characteristic function (T of H fully represents the state of knowledge of the 

Questioner, by assigning the truth-value 1 to all numbers in H, and 0 to the others; for 

each i = 1 , . . . , t, let oi = characteristic function of Qi iff bi = Yes, and Gi = characteristic 

function of -Qi iff bi = no. Then, naturally, CJ is the Boolean conjunction of the states 

of knowledge ci separately arising from the answers. 

In our present case when 1= 2, a number y E S,, might happen to falsify one or two 

answers, while still being an admissible candidate. To record this state of affairs, the 

Questioner can assign to each y E S, the number j of answers falsified by Y; any j 2 3 

may be safely collapsed to 3. Equivalently, and more conveniently for our purposes, 

y can be assigned the truth-value 

o(y)= l-i, O,f,$l . 
‘1 I 

In this way we have a natural generalization of the O-lie setting, as follows: 

Definition 2.1. For any question Q, the positive answer to Q is the function nQ : S + 

{f, l}, given by 

1 
nQ(y) = 

iff y E Q, 

$ iff Y$Q. 

In the first case we say that y satisfies the answer to Q, while in the second case 

y falsijes the answer. 

The negative answer vQ to Q is identified with the positive answer to the opposite 

question lQ, in symbols, vp = nsn\Q. 

Definition 2.2. A state (of knowledge) is a function r~ : S, -+ (0, i, f, l}. Let bl, . . . , bt 

be the list of the answers to questions Qi, . . . , Qt, where bi E {yeqno}. Then the state 
determined by Qi, . . , Qt and bl , . . , b, is the function cs : S, + (0, i, 3, 1) where for 

each YES,,, 

1 iff y satisfies all the answers, 

z 

O(Y) = 
3 iff y falsifies precisely one answer, 

; iff y falsifies precisely two answers, 

0 iff y falsifies at least three answers. 

The support C of c is the set of all y ES,, such that o(y) > 0. A state is jnal iff its 

support has at most one element. The initial state u, is the constant function 1 over S,,. 
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For any x and y in the real unit interval [0, 11, the Lukusiewicz conjunction @ of n 
and y is defined by 

x0 y=max(O,x+y- 1). 

Given states /I and y, by pointwise application of Lukasiewicz conjunction we obtain 
the state S = /? 0 y, where 6(y) = /3(y) 0 y(y) for all y E S,. 

The following result, which is an immediate consequence of the definitions, es- 
sentially states that Boolean conjunction stands to the game of Twenty Questions as 
Lukasiewicz conjunction stands to Ulam’s game. 

Lemma 2.3. Adopt the above notation. Let of be the state determined by questions 

Ql,..., Qt and answers bl, . . . , b,. Let fit E { J’CQ,, VQ, } be dejned by /I& = nQr or Bt = VQ, 

according as b, = yes or bt = no, respectively. Then at = /?I @ . . . o pt. 

Following tradition, for any set X, we let #X denote the number of elements of X. 
The set of all subsets of X is denoted by powerset( 

For each q= 1,2,3,... we denote by rq the complete binary tree of depth q. Further, 
,Vr and 9q will, respectively, denote the set of nodes and the set of leaves of rq. Thus, 
#Tq = 24 and #Mq = 24 - 1. Suppose the function Y : Nq + powerset assigns to 
each node N E Nq a question Y(N) = QN C S,. We then say that !P is a strategy with 

q questions. 
Let N, and N,, be the two children nodes of N. Let A,, and A,, be the edges 

joining N with Ns, and Nse, respectively. We now label A, with the positive answer 
zQN to QN, and we label A,, with the negative answer vQN. For each leaf L E Pq, let 
Al,... , A, be the path of edges leading from the top node to L. Let /?I,. . . , /Jq be the 
corresponding sequence of answers along these edges, as given by Lemma 2.3. Let 
/3(L) = b1 0 . . - 0 fiq be their Lukasiewicz conjunction. 

We then say that strategy Y is winning iff for each leaf L E _.9& B(L) is a final state. 
More generally, given a state a, if each conjunction a 0 B(L) is a final state we say 
that Y is a winning strategy with q questions for state a. 

We shall need Berlekamp’s lower bound for the number q of questions of any 
winning strategy for a state a; following tradition, for any function f :X -+ Y and 
element y E Y we let f-‘(y) = {x EX ) f(x) = y}. 

Definition 2.4. (i) Let d be a state. Let 0 6 a, b, c be integers such that #a-‘( 1) = a, 
#a-‘($)= b, #a-‘(i) =c. Then the triplet (a, b,c) is called the type of a. By abuse 
of notation we shall freely write 

#a = (a, b, c). 

(ii) Let a be a state with #a = (a, b, c). Let q > 0. Then the Berlekamp weight of a 
before q questions is given by 

~q(o)=a((~)+q+1)+b(q+1)+c=$z(q2+q+2)+b(q+1)+c. (1) 
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(iii) The character c/r(o) of a state (T is the smallest integer t 20 such that wt(a) <2’. 

Note that a state c/r(o) = 0 iff CJ is a final state. 

We refer to the basic reference [l] for the proof of the following: 

Lemma 2.5. (i) Given a state o and a question Q, let oYes = o 0 nQ and o,, = o 0 VQ. 

Then for any integer q> 1 we have the following conservation law: 

w,-l($?.~) + w-l(Gm) = w&c). (2) 

(ii) (Berlekamp’s lower bound) Suppose the state o has a winning strategy with 

q questions. Then 

q ach(o). 

3. Comparison questions and well-shaped states 

By an interval in S,, we either mean the empty set 0, or a set of the form [a,b] = 

{x~S,,(a<x<b}, for suitable integers a<bES,. 

Definition 3.1. A comparison question is a subset Q of S,, of the form Q = I U J for 

two intervals I and J in S,. 

To better deal with comparison questions, it is convenient to visualize the search 

space S,, as a necklace. To this purpose, by an arc in S,, we either mean an interval 

or its complement in S,,. The immediate successor relation + on S,, is defined by 

O+l-K2+... 4 2” - 1 4 0. For each a E S, we let a’ denote the immediate successor 

of a. For any two elements a, b E S,, we define the arc (a, b) in S,, as follows: starting 

from a we take immediate successors a’, a”, a”‘, . . . until b is reached. We naturally 

say that (a, b) is the arc obtained by scanning S,, with positive orientation from a 

to b. In case a = b we stipulate that (a, b) = {a}, thus obtaining a singleton arc. In 

case a< b, the arc (a, b) coincides with the interval [a, b]. In case a > b, (a, b) is the 

disjoint union of the two intervals [a, 2” - l] and [0, b]. Every nonempty arc in S,, has 

the form (a, b) for suitably chosen a, b E S,. 
For any X 2 S,,, an interval in X is a subset of X of the form I n X, for some 

interval I in S,. An arc in X is a subset of X of the form A n X, for some arc A 

in S,,. Two arcs in X are said to be adjacent in X iff they are disjoint and their union 

is an arc in X. 

Definition 3.2. Let CJ be a state with support Z. Then cr is well-shaped iff it satisfies 

the following conditions: 

o-‘(l) is an arc H in C; 

CJ-‘( $) is the disjoint union of three arcs A,B, C in C, with both B and C adjacent 

to H in C: 
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a-* (4) is the disjoint union of two 
to A in C. 

arcs P and R in C, both of them being adjacent 

A typical well-shaped state has the form 

C 

‘z 
+ 0 

Starting from H, and scanning S, with positive orientation, without loss of generality 
we can list the above six arcs in C using the following self-explanatory notation: 

(4) 

Theorem 3.3. Let o be a well-shaped state such that #a-‘(i/3) is even, for each 

i = 1,2,3. Then there exists a comparison question Q such that both states ayes = D @ 

nQ and o& = o 0 VQ are well-shaped and have the same type. 

Proof. Using the above notation (4), let us write ~JJz. = H’C2~3R’/3A2/3P’~3B2’3, for 
suitable arcs H, A, B, C, P, R in C. To avoid trivialities we assume that both H and A 

are nonempty, whence we can write A = (al, a2) I? C, and H = (hl, h2) n C, for suitable 
elements al, ~2, hl, hz E C. It follows that there is an element h* E H such that, letting 
H* = (hl,h*) nZ;, 

#H* = +#H. 

We can safely assume #P g#R whence, to avoid trivialities, P # 0. Then we can 
write P = (~1, pi) fl C for some ~1, p2 E Z. There is an element p* E P such that, 
letting P* = (pl, p*) n 2, 

#p*=;#a-’ 3 . 0 
Case 1: #Ba#C. 

Skipping all inessentials, let us further assume B # 0, whence B = (bl, b2) n C, for 
some bl, bz E C. Note that bz E B and hl E H are adjacent elements (= adjacent single- 
ton arcs) in Z. The same is true for a2 and pl. 

Subcase 1.1: #A > #B + #C. 

Then there is an element a* E A such that, letting A* = (a*, ~2) n C, 

#A* = ;#o-’ 2 0 3 . 
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Let V be the union of the two disjoint arcs in S, given by (a*, p*) and (ht,h*). 
Depending on whether 0 $! V or 0 E I’, either V or its complement S,,\ V is a comparison 

question. 
Assume first V to be a comparison question. Then define Q = V and let C+ and 

C- be the supports of the states oj,e,, = IS 0 nQ and ano = cr 0 VQ obtainable from rr as 

a consequence of the two possible answers to Q. Then we have 

aYeS(r+ _~*l(H\H*)2/3C1/3(A\A;c)1/3A*2/3p*li3~1/3 

and 

G,iz_ =H*2’3(H\H*)1C2/3R1!3(A\A*)2~3A*”3(P\p*)’t382i3, 

and both states are well-shaped and have the same type. 

In case &\((a*,~*) U (h,h*)) is a comparison question, letting Q = Sn\( (a*, p*) U 

(h,, h*)), one proceeds in a similar way with the roles of aYeS and &0 reversed. 
Subcase 1.2: #A <#B + #C. 

Then, by our standing hypothesis of Case 1, there exists an element b* E B such 
that, letting B* = (b*, b2) n C, 

#A + #B* = ;#a-’ 
2 

0 
T 

Let U = (at, p*) U (b*, h”). Then either U or its complement &\U is a comparison 
question. In the first case, let us define Q = U. Then letting C+ and Z- be the supports 
of oYe3 = oanQ and &=g@vQ,we have 

OYyeSlr+ = H*‘(H\H* )2i3Cli3A2/3P*1’3(B\B* )1/3B*2J3 

and 

whence both states qa and on0 are well-shaped and have the same type. 
If, on the other hand, S,,\U is a comparison question, let Q = S,,\U. Then the desired 

conclusion follows by reversing the roles of aYa and Go. 
Case 2: #B <#C 

This case is handled as Case 1, by reversing the orientation of S,. 0 

4. Critical indexes 

By Definition 2.4, the character and the weight of any state 0 only depend on the 
type (a, b, c) of 6. Accordingly, by abuse of notation we shall write 

&(a, b, c) and ~,(a, b, c) 

to denote the character, resp., the weight before q questions, of any state of type 

(a,b,c). 
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We are interested in the values of ch( 1, n, (i) ) f or n > 3. A direct computation yields 

&(1,3,3)=ch(1,4,6)=6, c/2(1,5,10)= ... =ch(1,8,28)=7, ch(l,9,36)= . ..= 

ch(l,14,91)=8. 

Definition 4.1. Let ~24 be an arbitrary integer, The first critical index n, is the 

largest integer n 2 0 such that ch( 1, n, (9) ) = x. Thus, 

ch(Ln,, (n2*))= x and ch(l,n,; 1, rxl ‘>) >x. (5) 

The second critical index px is defined by 

P~~2~-~(X~+X+2)-n~(~+1)=2*-w,(l,n,,O). (6) 

The two functions x c--) n, and x +-+ px are well defined for all 12 4. For instance 

we have 

n4= 1, ng =2, n6=4, n7=8, ng= 14, n9 =22, nlo=34 ,... (7) 

Pzt=O, Ps=4, P6=14, P7=35, Ps=93, p9=246, P,a=594 ,... (8) 

As usual, for every real number p we denote by LPJ the largest integer k < p. 

Lemma 4.2. Let x 25 be an arbitrary integer. 
(i) If x is odd then nx = 2(X+‘)12 - x - 1. 

(ii) If x is even then, letting n* = [2(X+‘)/‘] - x - 1, we either have n, = n*, or 
n,=n* -t 1. 

Proof. (i) Let m = 2 W1Y2 - x - 1. We shall prove the following two identities: 

ch( Lm, (3>= x and ch(l,m+ 1, (“: ‘))=y + 1. 

The first identity is equivalent to the following two inequalities: 

and 

,_,(l,m, (;)) -2x-1,0. 

The second identity is equivalent to the following two inequalities: 

2x+’ - %+m+l,(I;l))~o 

(9) 

(LO) 

(11) 

(12) 

and 

(13) 
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A tedious but straightforward simplification of the left-hand sides of the above four 
inequalities yields the following equivalent reformulation of (lo)-( 13): 

- 1 +2(x-1)/2 >O (14) 

2 + 2X-’ - 3(2(X-‘)‘*) > 0, (15) 

- 2 + 2% - 3(2(x-i)/2) > 0 2 (16) 

1 + 2(x-‘)‘2 >o. (17) 

A direct inspection now establishes these four inequalities, for all odd integers x b 5. 
Thus (9) holds true, and the proof of (i) is complete. 

(ii) We first observe that inequalities (14)-(17) also hold for all even integers ~26. 
Thus, if in formula ( 1 ), we extend to arbitrary real numbers a, b, c B 0 the domain 
of definition of the function ~,(a, b,c) = a(q’ + q + 2)/2 + b(q + 1) + c, and use 
the monotonicity properties of this function over the extended domain, then the same 
computations yielding (9), are now to the effect that 

<x for all integers k<2(X+1)/2 -x - 1, 

and 

ch l,h, 
h ( 0) 2 

>/x + 1 for all integers h B 2(x+1)‘2 - x. (19) 

Since x - 1 is odd, by (i) and by definition of first critical index we can write 

ch(l,n,_, + 1, (+;+ ‘))=x, 

and since n* 3 n,_1 + 1, by monotonicity we get from (18) 

ch(l,n*, (n2*))=l, 

In a similar way, from (5), (19), and (i) we obtain 

(20) 

(21) 

Arguing now by cases, if ch(l,n* + 1, (“*cl) )=x+ 1, then by (20), n, = n*. Otherwise, 

if ch(l,n* + 1, (“*cl ))=x, then by (21), n,=n* + 1. This completes the proof 
of (ii). Cl 

Corollary 4.3. For all integers ~26 we have 

nx+l <vi, <n,+l, 
2 

wX(l~ny~pX)=2X, 

(22) 

(23) 
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"X 
Px2 2 3 0 (24) 

px an,+1 - n,, 

Px d Px+l* 

(25) 

(26) 

Proof. Eq. (22) is proved by direct inspection, using (7) and Lemma 4.2. Eqs. (23) 
and (24) are immediate consequences of definitions (1) and (6). To prove Eq. (25) 
by (7) together with (22) and (24) we have 

To prove Eq. (26), first of all, by (8) we have the inequalities p6 < p7 <pg. Using 
now Eqs. (22) and (24), after a routine computation we get 

Px+l - Px = 2% - wx+l(l,nx+l,O) +wx(l,n,,O) 

2 2% - ~,+l(l,n,+1,0) + w,(l,n,+t/2,0) 

= 2% - ~x+r(0,nx+1/2,0) - wx+i(l,nx+t/2,0) +w,(l,n,+t/2,0) 

= 2x - x - 1 - i(x + 3)nx+l. 

Further, by Lemma 4.2 we have 

n,+l < [2(X+2)12J - x - 1 <2(X+2)/2 - x - 1, 

whence a fortiori, 

Px+l - Px > 2x - x - 1 - 3(x + 3)n,+l 

>2x-x- 1 - i(x+3)(2 (x+2)/2 - x - 1) 221 - (x + 3)2X? 

Since the inequality 2X 2 (x + 3)2 Xl2 holds for all ~2 8, the proof is complete. 0 

Definition 4.4. Let 0 <b, c. A state of type (0, b, c) is said to be simple iff c > b - 1. 

Definition 4.5. Let 0 <i,j, k be integers. A question Q is said to be [i,j, k]-like for a 
state C-J iff #(Qna-l(l))=& #(Qncr-‘(2/3))=j, and #(Qn(r-‘(1/3))=k. 

Theorem 4.6. Let x >6 be an integer, and o be a well-shaped state of type (1, n,+r, 
px+l ). Then there is a comparison question Q such that the two states ayeS = o 0 nQ 

and a,,, = o 0 vQ satisfy the following conditions: 
(i) both oYeS and an0 are well-shaped and have the same character x; 

(ii) one of +, and so is of type (1, n,, px), and the other is simple and of type 

((41 + nx+l - nx7 px+l - px + n,+l>. 

Proof. Let C be the support of a. Following (4) we can write 

a)z =H’@@A2/3pr/3B2/3 , 
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for suitable arcs H,A,B, C, P, R in Z. To avoid trivialities, let us further assume that 

none of these arcs is empty, whence for suitable elements al, a2, bl, b2, cl, ~2, ~1, ~2, 

rl,q EZ we can write 

A=(al,a2)nL B= hb2) W c = (cl, c2) n c, 

p=(Pl,PZ)n& R= hr2) f-a 

with #H= l,#A+#B+#C=n,+l, #P + #R = px+l . It is no loss of generality to assume 

#C > #B. (27) 

Case 1: nx > min(##A + #B, #A + #C, #B + #C). 

Then, by (27) there are only two cases to consider: 

Subcase 1.1: nx > #A + #B. 

Since by Corollary 4.3, Eq. (22) nx <a,+~, there must be an element c* E C such 

that, letting C* = (ct, c*) n C, 

#A+#B+#C*=n,. 

By (25) and (26), there exist elements p* E P and r* E R such that, letting P* = 

(pI,p*)nE and R*=(r*,r2)nZ, 

#P* + #R* = px - nx+l + nx. 

Defining now W = (bl, c*) U (r*, p*), by direct verification we see that (r*, p*) > A 

and (bl,c*) > B U H. Since W is the union of two arcs in S,,, either W or S,,\ W is 

a comparison question. In the first case we take & = W, and let Z+ and C- be the 

supports of r$$ = 0 0 nQ and on0 = G 0 VQ. By direct inspection, Q is [ 1, nx, px - nx+l + 

n,]-like for o. Further, 

a&+ = H1C*213 (C\C* )113R* li3~2/3p* l13@3 

and 

a,,,lr- zH~~~C*“~ (C\C*)2’3(R\R*)1’3A1’3(P\P*)1’3B1’3, 

whence both states a,,es and a,,, are well-shaped. By (23) we can write 

~~(l,n,,p,)=2~ and ~~+1(l,n,+l,p~+l)=2~‘*, 

and by Definition 4.1, ch( 1, n,, px) = x. From Lemma 2.5(i) it follows that wX(anO) = 2% 

and ch( anno) = x. Further, 

#ano = (0, 1 + nx+l - n,, px+l + n, - (px - (nx+l - nx))) 

= (0, 1 + n,+l - n,, px+l - px + n,+l>, 

whence by (26), a,,, is a simple state, and both conditions (i) and (ii) are satisfied. In 

case &\ W is a comparison question, taking Q = &\ W we obtain the desired conclusion 

by reversing the roles of ayeS and a,,,. 
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Subcase 1.2: nx a#C + #B. 

Then by (22) there is an element at EA such that, letting At = (al, a+) n Z, we have 

#At +#B+#C = n,. Moreover, in the light of (25) and (26), there are elements p+ E P 
and r+ E R such that, upon defining 

Pt = (pt, ~2) n C and Rt = (rl,r+) f’ C, 

we have #Pt + #R+ = px - nx+l + n,. 

Let V=(p+,r+)U(al,a+). Note that (p +,r+) 3BlJHUC. Then either V or &\V is a _ 
comparison question, In the first case, define Q = V and let .P and Z- be the supports 

of uym = cr 0 EQ and o,, = c 0 VQ. Again note that Q is [l,n,, px - nx+l + n,]-like 

for cr. We have 

and 

o,,]x_ ~H2~3C1~3(R\R+)1i3A+1i3(A\At)2i3(P\P+)1’3B1’3, 

whence both ayeS and IS,,, satisfy conditions (i) and (ii). In case &\ V is a comparison 

question, one gets a similar conclusion by defining Q = S,,\ V and reversing the roles 

of a,, and ayes. 

Case 2: n, <min(#A + #B, #A + #C, #B + #C). 
Then by (27) and (22) we can write #B<nx+l/2 <n,. Furthermore, from (25) we 

get 

06p, -nx+l +n,Q#P+#R=p,+l. 

We can now choose elements ps E P and rz E R in such a way that, upon defining 

P$ = C fl (pi, ~2) and RS = C n (rS, rz), 

we have #Pt + #R% = px - n,+l + nx. Further, by our standing hypothesis in the present 

case, there is an element a% E A such that, letting 

A$ = C n (al,a%), 

we have nx =#A% + #B. We now define Z = (r%,at) U (p%,h), where h is the only 

element of H. Note that (p%, h) > B. Again, either Z or &\Z is a comparison question. 

In the first case, we take Q = Z and let E’+ and C- be the supports of ayeS = o 0 nQ 

and cnO = (T 0 vQ. Note that Q is [l,n,, px - n,+l + n,]-like for 0. Further, 

and 

whence both a,,- and o,,, satisfy conditions (i) and (ii). In the other case, taking 

Q = $\Z, we get a similar conclusion by reversing the roles of a, and oyes. q 
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5. Amenable states 

Definition 5.1. A state G is said to be amenable iff there is a winning strategy for r~ 

with c/z(o) many comparison questions. 

Proposition 5.2. Every well-shaped simple state o is amenable. 

Proof. By induction on x = ch(o). The cases x = 0 or I= 1 are trivial. For the induc- 

tion step, assume 2 <x. Let C be the support of o. Since by hypothesis r~ is well-shaped 

and simple, we can write (4) in the following simplified form: 

cIz =R’isA2isp’isB2is. 

Skipping all trivialities, and assuming that none of these arcs in C is empty, let us 

display R, A, P, B as follows: 

for suitable elements al, a2, bl, b2, ~1, ~2, 1-1, r2 E C. Let us agree to say that a question 

W is appropriate for (T iff both ayeS = c 0 rcw and o,, = CJ 0 VW are simple states of 

character < x. 

Claim. There exists a comparison question W appropriate for C, having the additional 
property that both aYes and a,,, are well-shaped. 

As a matter of fact, by [5, Lemma 31, the set of appropriate questions for g is 

nonempty. Choose an arbitrary question W that is appropriate for (T. Then W will be 

[O,j, k]-like for cr, for suitable integers j, k with 

O<j<#A+#B and O<kd#R+#P. 

Any question W’ which is [0, j, k]-like for cr will automatically be appropriate for a; 

furthermore, #o& = #ayes and #a;, = #o,,,, whence in particular, both & and r& will 

be simple states of character <x. Let us display CT as follows: 

A B 

R P 

We can choose elements r* E R, a* E A, p* E P, and b* E B such that 

#(((r*,r2) U (p*,Pz))nC)=k and #((@,,a*) U (br,b*))nz)=j. 

By the above discussion, the question W” = (r*,a*) U (p*, b*) is still [0, j, k]-like 

for 0. Since W” is the union of two arcs in S,, then either W” or its complement 

S,,\W” is a comparison question such that the two resulting states CJQ~~ and utO are 

well-shaped. We can safely identify W and W”. Our claim is settled. 
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Recalling now that the character of the well-shaped simple states a& and rr& is 

<x, and applying the induction hypothesis, we obtain the desired conclusion. q 

Proposition 5.3. Every well-shaped state G of type (1,4,14) is amenable. 

Proof. Let C be the support of cr. Following (4) we can write CJ Iz. =H1C2/3R1i3A2/3 

P1’3B2’3. Skipping all inessentials, let us assume that none of these arcs in C is empty. 

It is no loss of generality to assume #P > #R, whence #P 3 7. Assume question W to be 

[I, 1,7]-like for cr. We can safely assume that the seven elements of Wf~o-‘( l/3) form 

an arc U G P in C and U is adjacent to B in Z. Picking now the first element z E B, 

and letting T = {z} U U U H, it follows that there are two arcs Al, A2 in S,, such that 

T = (Al uA2)nZ. Thus either Al uA~ or its complement in S,, is a comparison question 

Q, and can be safely identified with W. By construction, Q is still [I, 1,7]-like for o and 

has the additional property that the two states (~1 and ri obtainable from Q are well- 

shaped, and have character equal to 5. Without loss of generality, #al = (1, 1, lo), and 

#ri = (0,4,8). By Proposition 5.2, ri is amenable. Choose now a [l, 0,4]-like question 

Qi for (~1. Again, by suitably rearranging Qi, we can safely assume that either Qi or 

$\Qi is a comparison question yielding from (ri two well-shaped states a2 and ~2, both 

of character equal to 4; further, #62 = (1, 0,5) and #z2 = (0,2,6). Another application 

of Proposition 5.2 shows that r2 is amenable. Whenever a question Q2 is [l, 0, l]-like 

for 1s2, then Q2 is automatically a comparison question; the two resulting states 03 

and ~3 are well-shaped, have character 3, and type (1, 0,l) and (0, 1,4) respectively; in 

addition, z3 is amenable. To conclude the proof, choosing for cr3 a [ 1, 0, O]-like question 

Qs, it follows that Q3 is a comparison question, giving two well-shaped states a4 and 

~4, of type (1, 0,O) and (0, 1, I), respectively. The former state is final, the latter has 

character 2 and is amenable, by Proposition 5.2. 0 

Proposition 5.4. Let x be an integer 36. Let o be a well-shaped state of type 
(l,n,, px). Then rs is amenable. 

Proof. The case x = 6 is taken care of by Proposition 5.3. In case x>6, Theorem 

4.6 yields a comparison question Q, and two well-shaped states oi = cr 0 nQx and 

r1 = cr 0 vQx, both of character x - 1, with the additional property that 61 is of type 

(1, +I, ~~-1) and zi is simple. By Proposition 5.2, zi is amenable. Proceeding by 

induction we have a sequence of comparison questions, 

Q,, Qx-1, * *. 9 Qx-i,. . . 

for each i = 0,1,2 ,..., together with a sequence of well-shaped states 

Dl,CJ2,...,aj,... and ri,rz )...) rj y... 

(j> 1) with #oj =(l,n,-j, px-j), ch(aj) =ch(rj)=x - j, each rj being simple and 

amenable. Iterated applications of Theorem 4.6 finally yield a well-shaped state V* of 

type (1,4,14), and character equal to 6. By Proposition 5.3, cr* is amenable. 0 
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6. Main result and ha1 remarks 

Theorem 6.1. Let n > 1 be an integer d$erent from 2. Then an unknown n-bit number 

x E S, = (0, 1,. . .) 2” - 1) can always be found with q(n) many comparison questions, 
allowing up to two lies in the answers, where q(n) is the smallest integer q>O satis- 

fying Berlekamp’s inequality 

2%32”($) .,+1). 

There cannot exist any winning strategy with less than q(n) questions. 

Proof. The last statement follows from Berlekamp’s inequality (3) in Lemma 2,5(ii). 
There remains to be proved that for each 2 # n 3 1, the initial state a, over S, is 
amenable. The case n = 1 is trivial, since in S1 = (0, 1) every state is well-shaped, 
ch(al) = 5, and every question is a comparison question. A proof that a2 is not amenable 
easily follows from [2, p. 751. Now assume n 23. Let 5 >9 be the character of the 
initial state a,. Theorem 3.3 yields a comparison question Q, and two well-shaped 
states /?o = a,, 0 vp and 81 = an 0 KQ having the same type (2”-l,2”-l,O), and the 
same character E: - 1. Another application of the theorem yields two comparison ques- 
tions and four well-shaped states &,, ~OI, /Ilo, and flll, of type (2n-2,2n-1,2n-2) and 
character 5 - 2. Repeated use of Theorem 3.3 yields a strategy with n comparison 
questions such that each leaf L determines a well-shaped state /?L of the same type 
( 1, n, (“2) ) and character x = 5 -n. We shall prove that /?L is amenable. First of all, since 

ch(1,3,(;))=ch(1,4,(;))=6, we can restrict to the case n 2 4. More generally, since 
by Definition 4.1, n Gn,, it is sufficient to prove the amenability of every well-shaped 
state of type ( l,nx, (n;)), f or each x 3 6. Since by (24), px L (“2~)) it suffices to prove 
the amenability of every well-shaped state of type (1, n,, px), for x 26. This is done 
in Proposition 5.4. 0 

Final Remarks. (1) An interval question has the form “does x satisfy the condition 
a<x<b?“. Starting from a, with n 24 and mimicking the above proof, we easily 
get a strategy with 3 interval questions and 8 well-shaped states of the same form 
H’C213P’13B2i3, where #H = 2n-3, #C = 2”-‘, #P = 3 x 2n-3, #B = 2n-3. For any such 
state (T with support C there is no interval question Q such that o,,~ = G @ rQ and 
o,,, = (T 0 vQ have the same type. For otherwise, assuming without loss of generality 
that Q fl Z coincides with the second half of H and contains an initial segment C* of 
C, then C* must have 3 x 2”-4 elements. Since Q is an arc in S,, Q is disjoint from 
P, whence #I,$( 4) # #o;‘( f ), and the counterpart of Theorem 3.3 fails for interval 
questions. 

(2) Since comparison questions are expressible by the endpoints of two intervals, 
using Lemma 2.3 and Theorem 6.1 we can substantially simplify the description of 
states and the computation of optimal comparison strategies in Ulam’s game with two 
errors. 
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(3) Already in the case with no lies, if all questions are asked at the beginning 
of the game, independently of the answers, then the number of comparison questions 
needed to find the unknown number x E S,, grows exponentially with n. Theorem 6.1 
points out the role of interactiveness in reducing to Berlekamp’s theoretical minimum 
the number of comparison questions in the game with two errors. 

(4) What are the analogues of well-shaped states, comparison questions, and shape- 
preserving optimal strategies in Ulam’s game with I>3 errors? 
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