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A multiset is a set containing repeated elements. We define the unique multiset determined by 

a function based on an idea formulated by Dedekind in 1888. The class of all functions which 

determine the same multisct is called a function shell. The formal theory of multisets is revised to 

allow for infinite repetitions of elements. The revised theory of multisets is then interpreted as 

a theory of function shells. With this interpretation. a new algebra of functions is defined, and 

interesting properties of function shells are investigated. 

1. Introduction 

A multiset is a set containing repeated elements. We define the unique multiset 

determined by a function based on an idea formulated by Dedekind in 1888. The class 

of all functions which determine the same multiset is called a function shell. The 

formal theory of multisets is revised to allow for infinite repetitions of elements. The 

revised theory of multisets is then interpreted as a theory of function shells. With this 

interpretation, a new algebra of functions is defined, and interesting properties of 

function shells are investigated. 
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2. Dedekind multisets 

In 1888, Richard Dedekind published his well-known paper “Was sind und was 

sollen die Zahlen?” [4, pp. 33553913 ~ in English translation “The nature and 

meaning of numbers” [3, pp. 3 l-l 15). In his final remark (paragraph 172), Dedekind 

introduces the notion of a multiset - a set in which elements may belong more than 

once. His purpose is to show that the word “number” can be used in different senses. 

He considers the following situation (we use Dedekind’s notation): let Y be a function 

from the set C (with IZ elements) onto the set Y(C) (with m elements). If Y is not 

injective, then m<n. Dedekind argues that there is a sense in which one can say that 

the “number” of elements in Y(C) is IZ. For example, if x is an element of C and k is the 

number of elements of C with the same image Y(x), then Y(x) as an element of Y(z) 

can be regarded as representative of k elements “... which at least from their 

derivation may be considered as different from one another .” and, therefore, Y(x) 

can be counted as a k-fold element of Y(C). Dedekind remarks, “In this way we reach 

the notion, very useful in many cases, of systems in which every element is endowed 

with a certain frequency-number which indicates how often it is to be reckoned as 

element of the system.” He concludes “. . . we would say that it is the number of the 

elements of Y(C) counted in this sense, while the number m . . . [is the number of] 

. . actually different elements of this system . ..“. 

In summary, Dedekind’s idea is that an element in the range of a function can be 

thought of as a k-fold element of the range, where k is the number of elements in the 

domain that are mapped to that element. In other words, the frequency-number of an 

image is the number of its preimages. 

After a brief introduction to multiset theory, we investigate Dedekind’s concept of 

multiset in more detail in Section 4. 

3. Multiset theory 

We summarize below only those parts of multiset theory that we need in Section 

4 of this paper. For further details, the interested reader is referred to [2]. 

A multiset is a collection of objects (called elements) in which elements may 

occur more than once. The number of times an element occurs in a multiset is 

called its multiplicity in the multiset. A set is a multiset in which every element 

has multiplicity one. The root of a multiset is the set containing the distinct 

elements of the multiset. The root set of a multiset A4 is denoted by M*. A 

multiset is simple if its root set is a singleton set. The empty multiset (or set) is 

denoted by 8. A multiset M is an msubset of a multiset N, denoted by M c N, 
if whenever x is an element of M with multiplicity c(, then x is an element of 

N with some multiplicity p>c(. If x is an element of M with multiplicity CL, 

we write x ea M. Therefore, M c N stands for Vx VC.X(XE’ M + 3 /3(x 8 N A /?>a)). 
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A multiset M is regular if all elements belong to M with the same multiplicity, 

that is. 

For any multiset M, we write GEM to stand for 3 a(x>O A xPM). The elements of 

the union of M and N, denoted MuN, are all elements that belong to either M or N. 

The multiplicity of an element in MuN is the maximum of its multiplicities in M and 

N, where nonmembership is taken to mean multiplicity zero. The elements of the 

intersection of M and N, denoted by MnN, are all elements that belong to both 

M and N. The multiplicity of an element in MnN is the minimum of its multiplicities in 

both M and N. 

The cardinality of a multiset is intended to measure the total number of elements 

(counting both distinct elements and repeated elements) in the multiset. The cardinal- 

ity of a multiset is, therefore, the sum of the multiplicities of its elements. We denote 

the cardinality of a classical set X by /X 1 and the cardinality of a multiset M by C(M). 

If X is a set, then 1 X / = C(X). 

A first-order formal theory of multisets (for multisets in which the multiplicities of 

elements are classical cardinal numbers) is developed in Section 5. 

We denote the set containing elements x, y, z, . by {x, y, z, } and we denote the 

multiset containing element x with multiplicity c(, element JJ with multiplicity 0, 

element z with multiplicity y, . by [x, y, z, . .]l,,~,y. ,. . 

A multiset M is called finite if C(M) <% 1 b and injnite if C(M) 2 I I b. One can show 

that if M c N, then C(M)< C(N). Since M* c M, C(M*)< C(M) for all multisets M. 

It follows, therefore, that if M is finite, then M* is finite. However, the converse is false. 

Since the multiplicity of an element may be any cardinal number, it is quite possible 

that M* is finite but M itself is infinite. For example, if M = [xl;,. where I. a--1>, then 

M* = {x) is finite, but M is infinite since C(M) = 3.. Therefore, for infinite multisets 

M for which M * is finite, we say that M contains a finite number of distincf elements 

and an infinite number of repeated elements. For infinite multisets M for which M* is 

also infinite, we say that M contains infinitely many distinct elements. However, any 

such distinct element x in M may repeat finitely or infinitely many times in M (de- 

pending upon whether its multiplicity E. in M is j.<_V,, or i-2 L 1 b, respectively). 

In classical mathematics, one represents multisets as sequences (n-tuples, vectors), 

families or functions. All these representations are equivalent to Dedekind’s notion of 

a multiset. Consider the representation of a multiset as a sequence in which the 

multiplicity of elements equals the number of times the element occurs in the 

sequence. A sequence is just a function from the set N to the set of distinct elements 

which occur in the sequence. For any element in the range of this function, its 

multiplicity (in the multiset being represented) is exactly the cardinality of its inverse 

image set (the number of numbers in FV that are mapped to it). Therefore, the notion of 

multiplicity in sequences is exactly Dedekind’s “frequency-number” in the range of 

a function. 
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The problem with representing multisets as sequences is that an order is implied 

between the elements where none is intended: the multisets [x, y,x, x, y, z] and 

[y, x, x, x, y, z] are equal, but (x, y, x, x, y,z) and (y, x, x, x, y, z) are different se- 

quences. Thus, one finds multisets defined as “unordered sequences” (see, for example, 

[S]). What exactly is an “unordered sequence” ? Letfbe a sequence from N c fV to the 

set S. For any permutation rc of N, define the sequence rcf: N+S by ~f(n)=f(n(n)) for 

all HEN. The “unordered sequence”fis the set {~fl rr is a permutation of N } of all such 

sequences of: To abstract away the order of the elements, one must take all per- 

mutations of the domain ofJ: 

One may also represent a multiset as afamily of sets like 9={Fi}iEI, where the 

indices i range over some index set I, and where Fi=Fj, if i#j, represents a repeated 

element. But this is just a generalization of the idea of a sequence. The family F is 

a function from the index set I to the set of distinct 9i’s; that is, 9:Z-+{F-i 1 iel), 

where F(i) = 9-i for all ill. The multiplicity of some Fi is exactly the cardinality of its 

inverse image set 9 - ‘(9-i); that is, the number of distinct indices mapped to it. Again, 

this is exactly Dedekind’s “frequency-number”. If I= N, then 9 is a sequence. 

One often represents multisets as numeric-valued functions (sometimes, cardinal- 

valued functions). For example, the functionf: S--+ N is interpreted as a multiset where 

the multiplicity of the element XES is the numberf(x) Thus,fis a set of ordered 

pairs (x,n), where n represents the multiplicity of x. Dedekind multisets are (as we 

shall see) just cardinal-valued functions which associate with each element (in the 

range of the defining function) a cardinal number (the cardinality of its inverse image 

set under the defining function). 

The identification of sets with their characteristic functions (as in P(X) and 2x) 

suggests the representation of multisets as “generalized characteristic functions” 

which take other values in addition to 0 and 1. But again, this is exactly the 

numeric-valued function representation of a multiset. 

When one first encounters Dedekind’s concept of multiset (in which there are said 

to be as many images as preimages), one feels that it is slightly perverse or unnatural. 

In fact, as we have just shown, Dedekind’s approach is equivalent to the most 

common formalizations of multisets in classical mathematics. 

4. Function shells 

Dedekind considered only functions between finite sets. In this case, every inverse 

image set is a finite set and every element of a multiset has finite multiplicity. We 

consider the general case in which the cardinality of an inverse image set (or the 

multiplicity of an element in a multiset) can be any cardinal number. Most examples, 

however, will involve finite multiplicities only. We now recast Dedekind’s idea in 

a more general setting. 

Letf: X+ Y be an arbitrary but fixed function with domain X and co-domain Y. 

We denote the domain offby domf: We denote the range offbyf(X)& Y. For each 
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y~j”(X), the inverse image set is ,fP1 (y)= {XEX If(x) = y}. We define the Dedekind 

multiset determined byf; denoted by M,, as follows: 

(i) MT =f(X)c Y, and 

(ii) for all yams*, ~E’M~ iff If-‘(y)l=r. 

In other words, the elements of Mf are exactly the elements of f(X), and the 

multiplicity of an element y in M, is the unique cardinal number If-‘(y)I. In 

Dedekind’s words, “the frequency-number” of an image element y inf(X) equals the 

number of its preimages in X. Since the inverse image se&f- l(y) partition the domain 

X,CBE/(X) 1.r’(y)I=l I X , where C denotes the cardinal sum. The total number of 

preimages equals the cardinality of the domain X. Since the cardinality of a multiset is 

the sum of the multiplicities of its elements, 

For example, let N, N + and Q, respectively, be the set of natural numbers, the set of 

positive natural numbers and the set of nonnegative rational numbers. Define a func- 

tionf: N x N’-+Q by 

where m#O and [n/kn] is the equivalence class of all nonnegative rationals equal to 

n/m. So, for example, .f’-‘([1/2])=((1,2),(2,4),(3,6) ,... 1. Let qo,ql,q2 ,... be 

some countable enumeration of the nonnegative rationals Q (the set of equivalence 

classes - if i #j, then qi # qj). The Dedekind multiset M, determined byfis the regular 

multiset 

M.r=Cqo>q,,q,, ~~~lj..~..; 3 i-=-G. 

In other words, the root set Mf=Q=range(f’) and, for each qEQ, If‘-‘(q)(=c 4s. 

The multiset Mf contains a countably infinite number of distinct elements qo,ql, 

q2, .“> each with multiplicity I 1;. Therefore, C(Mf)=~~‘b+~n’b+_~b+...= 

_$,*.$“o=,$. 

Clearly, di:erent functions may determine the same multiset. Let f‘: X+ Y and 

g: 2-t Y be two Y-valued functions. (We say “Y-valued” in exactly the same sense as 

we say integer-valued, rational-valued, real-valued, complex-valued, . By “Y- 

valued” we simply meanf(X) c Y and g(Z) E Y.) A necessary and sufficient condition 

that fand g determine the same multiset is given by the following theorem. 

Theorem. M, = M, $f 

(i) f(X)=g(Z) and 

(ii) I.~~‘~~~~I=IY~‘~Y~I.~~~ every Y inf(X)=sV). 

This is exactly the definition of equality of multisets: multisets are equal iff they 

contain exactly the same elements with exactly the same multiplicities. Therefore, (i) 

and (ii) are equivalent to 

Vy Vx(y E’ M, - y E’ M,). 
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There are many examples of functions that are very different, but that, nevertheless, 

determine the same multiset. Let pi be the ith prime (so pi is 2, p2 is 3, p3 is 5, . .) and 

letP={p,,p,,p,,...j.Foreachp~P,letu,={x~@~xP=1andx#1},whichcontains 

p- 1 elements. We define a function f with domain Puu,,,.u, and range P by 

x Hf(X) = 
i 

p if XEU~, 

x if XEP. 

Clearly, for each PEP, If- ‘(p)l =p. Define a function g : N -+P as follows: the first 

p1 natural numbers are mapped to pl, the next p2 natural numbers are mapped 

to p2, .,. Clearly, for each PEP, Ig-l(p)I=p. Therefore, the two functions 

f:PuU psP u,+p and g : N-+P determine the same multiset, namely, 

[Z&5, . ..12.3,5,..: 

The Mobius function and the character modulo three function determine the same 

multiset. Both the functions have domain N and range {- l,O, l}. The Mobius 

function f is defined as follows: 

i 

1 if n= 1, 

n-f(n)= (- l)k if n is the product of k distinct primes, 

0 if some pf divides n. 

For example, f(55)=f(5.11)=(-l)*=l, f(42)=f(2.3.7)=(-1)3=-1 and 

f(120)=f(23.3.5)=0since22divides 120.Foreachy~{-l,O,l},If-‘(y)l=N,.The 

character modulo three function g is defined as follows: 

nwg(n)= 1 

i 0 -1 if if 

if n = 1 (mod 3), 

n n=2(mod3). 3 0 (mod 3) 

Clearly, for each YE{- l,O, l}, Ig-l(y)/ =N,,. Therefore,fand g determine the same 

multiset [- l,O, l]A,>.,i, where A= No. 

Many examples of real- or complex-valued functions can be constructed with 

similar properties. The number of such examples is limited only by ingenuity. 

The actual domains of functions that determine the same multiset are unimportant. 

If one function maps CI elements to y, then the other function must also map CI elements 

to y. The nature of these x elements is irrelevant. We want to define a “function shell” 

to be a collection of functions such that every function in the collection determines the 

same multiset. A “function shell” is a class (and not a set) if we define it to be the class 

of all functions which determine a single multiset. A “function shell”, therefore, 

represents a domain-independent function in which the nature of domain elements is 

ignored, but in which the “shell” (the skeleton, the form) of the function is preserved; 

that is, the cardinal number partition of the domain (induced by the inverse image 

sets) is preserved. One removes the meat and is left with the shell. 
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Let A& be an arbitrary but fixed multiset. We could define the “function shell” which 

determines A’ to be the class of functions {jl M,= A}. However, a large class of 

functions is rather unwieldy. Luckily, there is a much simpler approach to “function 

shells”. We note that the “function shell” above is completely characterized by the 

root set A!‘* (the common range of the functions) together with the unique cardinal 

number associated with each element in A’ *. The multiset JZ itself completely 

characterizes the “function shell”, and .&’ can be thought of as a cardinal-valued 

function with domain A’*. We, therefore, define “function shells” classically to be 

certain cardinal-valued functions. 

Let F be an arbitrary but fixed cardinal-valued function such that dom F is a set. In 

general, we use F, G, H, . . to denote cardinal-valued functions whose domains are 

sets. The function F “represents” thefunction shell FF which consists of all functions 

f such that 

(i) the range off equals the set dom F, and 

(ii) for every element xgdom F (= range off),fmaps F(x) preimages (in domf) to x, 

that is, If ‘(x)1 = F(x). 
This is equivalent to defining an equivalence relation - on functions such thatf-g 

iff M,= M,. The function shells are then the equivalence classes generated by -. 

The function F also “represents” the multiset AF, which is defined as follows: 

(i) the root set A’; = dom F, and 

(ii) for every element xsdom F, 

XE~A@‘~ iff r= F(x). 

Clearly, the multiset _A!‘~ is the multiset determined by 9,; that is, A%‘~= M, for every 

functionfeRF. The multiset ~2’~ and the class FF are completely determined by the 

function F. We identify the function F, the function shell gF and the multiset ~2’~. We 

can represent this single concept by Fig. 1. Since the multiset ~4!~ is a nonclassical 

entity and since the function shell FF is a rather large class of functions, we will most 

often work with the cardinal-valued function F (simply a set of ordered pairs). F is the 

classical anchor for both the exotic AfF and the unwieldy FF. 

Consider the multiset [a, b, c]~, 1, 3. We can think of this multiset in a variety of 

ways: 

(i) It is simply a collection of three distinct elements, a, b and c, in which a repeats 

five times, b “repeats” once and c repeats three times, and it has cardinality 5 + 1 + 3 = 9. 

cardinal numbers the set dom F 

Fig. 1. 
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(ii) It is the unique multiset JZ~ defined by the cardinal-valued function 

F={(a,5),(b, l),(c,3)} with domF={a,b,c}. 

(iii) It represents the large class FF of functions, all of which have range (a, b, c} and 

map five domain elements to a, one domain element to b, and three domain elements 

to c. 

A candidate for the “canonical representative” of functions in FF is the function 

f: 9+{u, b, c} defined by 

where domf={O,1,2,...,7,8}=9EO~ and (domf/=C(Ms)=9. 

The above example suggests a general definition for the “canonical representative” 

of the functionsfin the function shell FF. Using the axiom of choice, the set dom F 

(the common range of the functionsfin FF) can be well-ordered. In other words, there 

exists an ordinal PEOn such that dom F z p. We label the elements yedom F such that 

dom F = { y, 1 CXE~}. The canonical representutivef^of the functionsfin F-F will be such 

that domfEOn and f maps the first F(yo) ordinal numbers to y,, the next F(yl) 

ordinal numbers to yl, . . . . the next F(y,) ordinal numbers to y,, . . . Therefore, 

domf= j.EOn, where i. = 1 nE/l F(y,), where 1 denotes the ordinal sum of the F(y,)‘s. 

As defined above, f^: l.+dom F is in PF. 

The reader is warned not to confuse the notation for the multisets M, and JzY~. The 

multiset M, is defined for arbitrary functionsf, whereas the multiset JY~ is defined 

only for cardinal-valued functions F such that dom F is a set. The multiset M, is the 

Dedekind multiset determined by the functionf(that is, Mf = range(f) and YE’ M, iff 

If - ’ (y)l = a), whereas the multiset J?‘~ is the multiset defined by the cardinal-number 

function F (that is, _&: = dom F and y E’ &‘F iff F(y) = LX). For example, if f is the 

Mobius function defined earlier, then M,= [- l,O, lli, j,,l, where A=,$>. If, on the 

other hand, F is the cardinal-valued function F : {- 1, 0, 1 } + { Jr0 >, then AF = M,. In 

general, iffEflF, then Mf=hlF. However, the function F (simply by virtue of being 

a function) also determines the Dedekind multiset MI: = [d1,b]3. 

Although the function F is straightforward enough, the interesting results will arise 

when we think in terms of the multiset Jz’~, or the functions in FF. 

We now ask two questions: 

(1) What are the properties of functions in a given function shell? 

(2) What different types of multisets arise from different types of function shells? 

We take the first question first. Let FF be an arbitrary but fixed function shell. 

There are many different functions in the class 9-F. They are all different and yet they 

are all “alike”. The functionfEY”, defined above can be taken as representative of all 

the functions in 9-F. They all have the same range (the set dom F). Their domains are 

totally arbitrary except that the cardinality of the domains is equal to the cardinal 

number C(&Z’~), which equals the cardinal sum xYtdomF F(y). In the case of f? 
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Idomf^l = I)b( ,< i.. Therefore, every function ,f in 3-F has the same cardinality since 

/,fl= Idomfl. Moreover, for every yedom F, every function in 3-F maps exactly F(y) 

preimages to y. Although the domains are arbitrary (of a fixed cardinality), the 

partitions of the domains induced by the inverse image sets are “isomorphic” in the 

sense that between any two such domains there exists a partition-preserving bijection 

that is the disjoint union of component bijections. For example, let f: X+ Y and 

y: Z+ Y be two functions in .FbF. For each yedom F =f(X)=g(Z) c Y, there is 

a bijection H,:f-‘(y)-+y-‘(~‘)since If-‘(y)I=lg-‘(y)I. Then H=UyGdomFHyis the 

required bijection from X to Z (Fig. 2). H is a “partition-preserving” bijection in the 

sense that if x is mapped to y by,/; then H(x)= H,(x) is also mapped to y by g. In other 

words, x~f-r(y) iff H(x)EgP’(~j), or simplyf=go H. 
Letfbe any function in P-F, We think offas a set of ordered pairs (x,y). Let 7~ be 

any permutation of dom,f: Define the function r,f‘by (n(x),y)E7rfiff (x,y)~J: The 

functionsfand Tcfhave the same domain and the same range. For any element y in the 

common range, If-‘(y)1 = 1(7r,f)-‘(y)l smce the number of ordered pairs with y as the 

second component is unaffected by the permutation 7~. Therefore, if&FF and rt is 

a permutation of dom,f; then TC~E~~. The function shell PF is, therefore, closed with 

respect to permutations of domains. In other words, permutations of domains of 

functions do not alter the “shell properties” of functions. 

We now consider the second question. We first consider different types of multisets 

_flF and the function shells 9-F which give rise to them. We also look at various types 

of function shells 9F and determine their corresponding multisets -HF. If JZF is the 

empty multiset 8, then dom F=@ and PF= (0). If &ffF is a singleton set {x), then 

F : (x} + ( 1 > is the cardinal-valued function { (x, 1) ). The functions f: dom f+ {x} are 

all of the form {(z,x) ), where z is arbitrary (domf={z}). Therefore, if UdF is 

a singleton (x}, then F is a singleton ((x, 1)) and allfin 9F are singletons { (z,x)} 

with arbitrary singleton domains {z}, and the singleton range (x}. If C&‘F is a simple 

multiset of the form [x]~, then F is the singleton function {(x,3.)}. All functions in 

9F have range (x} and arbitrary domains of cardinality i.. Therefore, SF is exactly the 

class of all constant functions (single-valued) with range {x$ and with domains of 

cardinality i.. The canonical representative of functions in 9F is the function?: E.+{x} 

since 1 i 1 = A. 

Fig. 2. 
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If J?‘~ is a set, then F is a constant (1 }-valued function with dom F = J%?‘: = J%!~ and 

every function f in FF is an injection (that is, every inverse image set is a singleton) 

with range .,&‘z = J?‘~. In this case, 1 domfl = ldom FI = C(J%‘~). In general, functions in 

9F are injections iff JZ’~ is a set. By contraposition, functions in 9F are many-one 

(noninjective) iff J%‘~ is a nonset (that is, contains a repeated element). 

If C(J?‘,*) 3 No (that is, if J?~ contains infinitely many distinct elements), then Jz’~ is 

called a near set if all but a finite number of distinct elements have multiplicity 1. If 

JY~ is a near set, then F has an infinite domain and a finite range (which includes 1) 

and every function in FF has range J&‘: and all but a finite number of its inverse image 

sets are singletons. 

IfdF is a finite multiset, then F is a finite set of ordered pairs (since dom F is a finite 

set) and all functionsjEFF are finite sets of ordered pairs since Idomfl = C(J%!~) < No. 

If J?~ is regular with all elements having multiplicity /1, then the function F is 

a constant {L}-valued function with dom F =A’~. In this case, for every function 

f~9~, every inverse image set is exactly the same size; that is, If-‘(x)1 =If-‘(y)l=L 

for every x and y in dom F. In other words, the partition of the arbitrary domains is 

uniform (every disjoint subset has cardinality A). 

Finally, if Jz’~ is an infinite multiset, then dom F may be finite or infinite. If dom F is 

finite, then F itself is finite and the finite range of F must contain at least one cardinal 

number i >-1/i. In this case, every f~9~ has the finite-range dom F =Afj$ and an 

infinite domain since at least one inverse image set must be infinite. If, on the other 

hand, dom F is infinite, then F is infinite and its range may be finite or infinite and may 

or may not contain an infinite cardinal number. In this case, the functions&YF have 

the infinite range dom F = ~2’~ and infinite domains (since ldomfl b / dom FI) which 

may or may not contain an infinite inverse image subset. 

We may also ask: Given a particular type of class PF, what do the corresponding 

F and J+!‘~ look like? Suppose, for example, that the partition of the arbitrary domains 

of functionsfEPF is such that for every new+ (where w+ = w - {0} is the set of positioe 
natural numbers), there exists one and only one inverse image set of cardinality n. This 

is a generalization of a previous example for which the above condition holds for all 

prime numbers. In this case, the common range of the functionsf must be countable 

and the arbitrary domains will also be countable. A canonical representative for such 

functions f~9~ is the function f^: ~c)’ +u)+ defined by f^ takes 1 to 1, 1 takes the 

^ next 2 elements to 2 , . . . . f takes the next n elements to n, . . . Therefore, 

~={(1,1),(2,2),(3,2),(4,3),(5,3),(6,3) ,... }. Hence, for all nEw+, If-‘(n)l=n. 

The corresponding multiset J?“~ is [ 1,2,3, . . .] 1,2,3, and the function F: o++o+ is 

the identity map. 

An alternative approach to such characterizations could proceed via the function 

F. For example, if F =@ then MF=@ and F-F= (8). If the range of F is a singleton 

(F is a constant cardinal-valued function), then J@‘~ is a regular multiset and the 

domains of functions fin FF are uniformly partitioned by the inverse image sets. 

If, in particular, the range of F is {l}, then MF is a set and all functions fin FF are 

injections. 
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5. Cardinal-valued multisets: the formal theory MSTC 

The theory MST developed in [Z] is a first-order two-sorted theory for multisets in 

which elements possess a unique finite multiplicity, a positive natural number. The 

theory MST contains an exact copy of ZFC and is shown to be relatively consistent (a 

model of MST is constructed in ZFC). We now give :i brief description of a procedure 

to change the theory MST into a new theory, MSTC, which is intended to formalize 

multisets in which elements possess a unique (finite or infinite) cardinal number 

multiplicity. The theory MSTC will be interpreted as a formal theory of function shells 

in Section 6. 

A rather lengthy discussion of the advantages and disadvantages of formalizing 

multisets with infinite multiplicities is given in [l, Chapter VI]. It is not our intention 

to get bogged down in formal details here. We avoid the formal difficulties where 

possible, while at the same time preserving as much of MST within MSTC as is 

reasonable and practical. 

In [j-7,9], multisets are defined as classical cardinal-valued functions in ZFC. 

Hickman, in particular, has laid down a great deal of the conceptual groundwork for 

the definitions and the algebra of cardinal-valued multisets. In the development of the 

formal theory MSTC, we have attempted, wherever possible, to remain faithful to the 

naive (nonaxiomatic) concepts defined in [j-7,9]. 

The multiset variable symbols x, y, z, . . of MST (which denote multisets and 

elements of multisets) remain unchanged in MSTC. However, the numeric 

variable symbols of MST (whch denote multiplicities of elements in multisets) 

must be changed in MSTC. We replace the numeric variable symbols 

k, 1, m, n, . . . of MST (intended to range over positive integers) by the numeric 

variable symbols CI, fl, 7, . . . (intended to range over cardinal numbers). We do 

not concern ourselves with the specific collection of axioms that are necessary 

to characterize the arithmetic of cardinal numbers needed in MSTC. We simply 

assume that the numeric variable symbols c(, /J, y, . of MSTC denote classical 

cardinal numbers in ZFC. Since we are not concerned with specific cardinal 

arithmetic axioms, we do not specify all nonlogical symbols of the language 

L of MSTC, since these do depend upon the specific axioms chosen. However, 

L will most certainly contain the ternary predicated symbol E (where the 

intended interpretation of the atomic formula XE~J: is “x is an element of y with 

multiplicity a”), the unary function symbols ^ (where 3i is the hereditary set of MSTC 

that corresponds to the cardinal number a) and 1 (where Cx is the cardinal sum of 

“cardinals” oi in x), the binary function symbols + and * (binary cardinal addition and 

multiplication) and the numeric constant symbol 0 (which denotes the cardinal 

number zero). 

In addition to expressions of the form XE”~, the only other atomic formulae of 

L are expressions of the forms x = y and E = p. The wffs of L are defined in the usual 

way from the atomic formulae using the logical connectives of the first-order predicate 

calculus. With respect to quantifiers, since L is a two-sorted language, if @ is a wff of 



L and x and c( are arbitrary (multiset and numeric) variable symbols, then 3x@, Vx@, 

3x0 and VU@ are wffs of L. 

With this minimal amount of formal preparation, we are now in a position to 

rewrite and revise the axioms and definitions of MST to obtain the theory MSTC. The 

exact multiplicity axiom I, the axiom of extensionality II, the empty multiset axiom III 

and the elementary multisets axioms IV require only a rewrite using the new variable 

symbols c(, fl, y, . . . We repeat them here for the convenience of the reader: 

(I) vxvyv’av~((xEay A x@y) + a=fi). 

(II) Vxvy(vzv’a(zEnX 0 z@y) + x=y). 

(III) IyVxV’a-XE’~. Denote y by 0. 

(IV(i)) VxV’a3y(x@y A Vz(z~yoz=x)), where z~y stands for 3/?(/?#0 A zany). 

Denote y by [x& and [xl1 by {x}. 

(IV(ii)) VxVy(x#y + VccVp3z(x~~z A y@z A VZ’(Z’EZ 0 (z’=x V z’=y)))). 

Denote z by Cx, YL.~ and Cx, ~1 1, 1 by {x, yj. Axioms V (the powerset axiom) and VI 

(the axiom of foundation) remain unchanged (although the definitions in Axiom 

V must be rewritten): 

(V) Vx3y (Set(y) A Vz(z~y o z G x)), where Set(y) stands for y=@ V VzVct(z~~y 

+ CI= l), z E x stands for Vz’V’x(z’ E” z + 3 fi(cr<fl A z’@ x)) and z <fl stands for 

3y(p=~+y). Denote y by P(x). 

(VI) Vy(y#@ + 3x(x~y A VZ(ZEX + zgy))). Since the least upper bound of 

cardinal numbers is a cardinal number, the union axiom of MST is simplified in 

MSTC: 

(VII) Vx3z’VzVcx(z~~z’ o [3y(z~y A y~x) A VyV’B((z@y A y~x) + b<cx) 

A Vd(VyV’p((z~~y A yex) -+ /?G a’) -+ a<~‘))]). Denote z’ by u x. Let xuy stand 

for l,_j {x, y} if xfy, and u {x} otherwise. 

(VIII) The additive union axiom (the additive union of x is denoted by ti x) is, in 

fact, proveable in MST. It is not necessary, therefore, to include it as an axiom of 

MSTC (it can be shown to be proveable in MSTC from the other axioms of MSTC). 

The multiset ti x is described below. The separation and replacement schemes must be 

rewritten using the new variable symbols c(, p, y, . . . The separation scheme of MSTC 

reads as follows: for every wff @(x, a) of L with free variables including x and a but 

excluding z and a’, the universal closure of 

(IX,) Vx Va V’x’((@(x, c() A 4(x, a’)) + cc=a’)-+Vy3zvxv’x(xE”z 0 ([x],cy 

A @(x, cc))) is an axiom of MSTC. We say that “the msubset z c y is defined by 

separation on y using the wff @(x,c()“. The replacement scheme of MSTC reads as 

follows: for every wff @(x, y) of L with free variables including x and y but excluding y’ 

and z’, the universal closure of 

(X,) vxvyvy’((@(x,y) A @(x,y’)) + y=y’)+vz3z’vyv’cc(yEnZ’ 0 [3x(xEaZ 

A @(x,y)) A VxVfi((x~~z A @(.qy)) + a</i’)]) is an axiom of MSTC. We say that 

“the multiset z’ is defined by replacement on z using the wff @(x,y)“. Axiom XI (the 

axiom of infinity) is exactly the same as in MST, whereas axiom XII (the choice 

multiset axiom) requires a rewrite: 

(XI) 3y(@~y A VX(XEL’ -+ xu(x}~y) 
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(XII) VyCCyf0 A V’x(.u~Y + x#0) A VxVz((xEy A zEy A xfz) + xnz=B)]-+ 

3y’(vxvcc(xE~y -+ 3x’(x’E”y’ A X’EX A VX”((X”EX A X”EY’) + xU=x’))) A Vx’Va 

(x’ E’ y’ -+ 3x(x 8 y A x’Ex)))], where x n z stands for n {x, z}. The unary operation 

n is defined below. Any multiset y’ that satisfies XII is called a choice multiset for y. 

By using separation on the multiset u x we can define a unique msubset fl x G u x 

such that 

vzvx(zEm nx * [VY(YEX -+ z~y) A VyV/3((z@y A YEX) + a<B) 

A 3 y(z ~~41 A y~x)]) holds. 

Let xny stand for n {X,JJ) if xfy, and n {x} otherwise. 

For every multiset x: there exists a unique multiset & x, called the additive union 

of x, such that n x z U _ _ Y c 6 Y _ and Vz (z~tix o ZEU x) hold. For every 

ZE(b x)* =( u x)*, z Ed ti x o 2 = C c(. /I’, where the (possibly infinite) cardinal sum 1 is 

taken over all multisets y such that z E” y A y @ x holds (2 is a sum of products of 

cardinal numbers). Let x ti y stand for ti {x, y} if x# y, and ti [xl2 otherwise. 

Since the multisets u x and &x are defined differently in MSTC, the algebra of 

multisets in MSTC will differ slightly from that in MST. These differences, however, 

do not affect the axioms, definitions and theorems of MSTC used in Section 6. The 

vast majority of theorems which are proveable in MST are also proveable (when 

rewritten) in MSTC. 

In MST, in order to determine the cardinality of a multiset y, it is necessary (for each 

element x~y) to convert the n copies of x in y (where XE”~ holds) into II distinct 

ordered pairs in the hereditary set H(y) ~ a multiset z is a hereditary set if every 

element of TC( {z}) IS a set. The hereditary sets of MST (and of MSTC) are the exact 

analogs of classical sets. The cardinality of y, denoted by C(y), is then defined to be the 

cardinality of H(y) which is defined classically [the least ordinal equinumerous to 

H(y)]. The motivation for this definition is that the multiplicity of each element 

should contribute to the cardinality of the multiset as a whole. In MSTC, we simply 

define the cardinality of a multiset to be the cardinal sum of the multiplicities of its 

elements; that is, C(y)=p, where b=E{&Ix~y* A XE”~}. 

In MST, Cantor’s theorem (Vy y-c P(y)) fails (as it does also in MSTC) but 

Vy(C(y)< C(P(y)) is proveable in MST. The limiting cases in MST are simple 

multisets of the form [x&, where C([x],,)=G and C(P( [xl,,))= C((0, {x}, [x]~, 

. ..) [xl,,})= n T 1. In MSTC, however, this fails. For example, let y= [x]~, where 

i-=-fib. We have that 

In MSTC, a multiset p is$finite (or injinite) if its cardinality C(y) is finite (or infinite). 

The theorem of MST “If y* is finite, then y is finite” and its contraposition “If y is 

infinite, then y* is infinite” are not theorems of MSTC. Consider again y= [x]~, where 

I,=,+;. The root set y*=(x) is finite, but y itself is infinite. The reason is clear: in 
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MST, an element can contribute at most a finite multiplicity to the cardinality, 

whereas in MSTC, an element may contribute any cardinal number to the cardinality. 

If Vx V’a(x @ y --f a < _+rO) holds, then y is said to have at mostjfinite repetitions (y itself 

may be finite or infinite). Otherwise, y is said to have in&rite repetitions (and y itself is 

infinite). If y is infinite but y* is finite, then y has infinite repetitions. If y* is finite, then 

y is said to contain jinitely many distinct elements. If y* is infinite, then y is said to 

contain injnitely many distinct elements. A multiset is finite 8 it has at most finite 

repetitions and finitely many distinct elements. Contrapositively, a multiset is infinite 

iff it has infinite repetitions or infinitely many distinct elements. 

Our purpose has been to provide enough of an outline of the theory MSTC so that 

we may meaningfully interpret it in Section 6. A detailed investigation of the proper- 

ties of multisets in MSTC (and how they compare to those in MST) will be under- 

taken elsewhere. Clearly, MSTC can be shown to contain an exact copy ZFC’ of ZFC 

and a model of MSTC can be constructed in ZFC (a hierarchy of positive cardinal- 

valued functions) using methods similar to those described in [Z] for MST. We, 

therefore, assume (without proof) that MSTC contains a copy of ZFC and is relatively 

consistent. 

6. Interpreting MSTC as a theory of function shells 

The obvious model of MSTC is a hierarchy of positive cardinal-valued functions of 

ZFC similar to the model of MST defined in Section III of [2]. The numeric variable 

symbols x, /I, y, . . . would range over the class of positive cardinal numbers, denoted by 

Card+. The multiset variable symbols x, y, z, . . . would range over the class 1F (a 

hierarchy of Card+-valued functions) defined as follows: 

F a+ i = {F:dom F+Card+ 1 dom F c F,}, 

[F,= u 1F, if 1. is a limit ordinal, and 
a<i 

The range of each function FE[F is some subset of Card+ and the elements of dom F 
are other functions in [F of lesser rank than F. 

The proof that (Card+, [F) is a model of MSTC proceeds exactly as in Section III of 

[2]. We do not repeat it here. With this model, we interpret the atomic formula x Ed y 

of L as “y(x) = X” in the model (or, equivalently, “(x, a)~y”). However, we want to 

interpret multisets of MSTC, not as certain positive cardinal-valued functions F of 

ZFC, but rather as the corresponding function shells 9F (the function shell 9-F char- 

acterized by F that determines the multiset &LJY~). Therefore, the atomic formula x P y 
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of L is interpreted as “x is the image of CI domain elements under every function in 9,,, 

the function shell characterized by y”. Under such an interpretation, the axioms, 

definitions and theorems of MSTC will define properties of function shells, and 

properties of functions that are the elements of function shells. 

The interpretation of axiom I of MSTC is simply that the cardinality of inverse 

image sets is well-defined. If x has c( preimages in FY and x has B preimages in FY, 

then u = /I. The interpretation of axiom II states that “if, for every image z and every a, 

z is the image of c( elements in Fx iff z is the image of Y elements in gY, then P-l and 

YY are the same function shell”. This is exactly the equality of function shells 9F = ,9-G 

iff F=G. (Equality of two classes of functions in terms of the equality of two 

functions.) 

We note that if F and G in [F are the interpretations of multisets x and y in MSTC, 

then x = y iff F = G [that is, dom F = dom G and VxEdom F, F(x) = G(x)] iff &F = &Yc 

(they contain exactly the same elements with exactly the same multiplicities) iff 

FF=FG (equality of classes in ZFC-~EP~ ifffET_,). 

The interpretation of axiom III of MSTC asserts the existence of the empty 

cardinal-valued function Fc[F, since dom F =@ c [F,. In this case, YF= (0) is a set 

containing the single empty function 8 with empty range equal to dom F. 
Axioms IV(i) and IV(ii) assert the existence of Card+-valued functions F = ((x, cc)} 

and G={(x,sch(~,8>1, respectively, where x # y. The functions F and G determine 

the multisets c~HF = [x& and -f/G = [x, y]a.B. The function shell PF contains all con- 

stant x-valued functions with domains of cardinality a (for example, a-+(x) is in PF). 

The function shell 3-, contains all two-valued functions y (with range {x,y}) with 

)domg~=cc+~suchthat~g~‘(x)J=aand~y~1(y)~=~(forexample,~:~~(x,y},where 

;’ is the ordinal sum of SI and p, is in 9,). 

At this stage, it is clear that elementary properties of multisets in MSTC are 

modelled by certain properties of function shells in ZFC. Continuing this process for 

axioms VXII is exactly the proof that the L-structure (Card+, F) is a model of 

MSTC (that is, one proves that the interpretation of each axiom of MSTC holds in 

(Card+, [F)). Instead, we proceed directly to the interpretation of interesting defini- 

tions and theorems of MSTC. 

Let F and G in iF be the interpretation of multisets x and y, respectively, in MSTC. 

The binary union xuy is such that i~‘xuy iff (ZE~X A z$y) V (ze’y A z&x) 

V (z @ x A z ~‘y A r =max(& y)) holds. Clearly, the function H in 1F that is the 

interpretation of the multiset x u y is such that dom H = dom F u dom G (where u here 

denotes binary union of sets in ZFC). If J is some function in dom H (the interpreta- 

tion of some ZEXU y), then 

if JEdom F A J$domG, 

if JEdom G A J$domF, 

max(F(J),G(J)) if JEdom F A JEdomG. 

We can identify x uy with the multiset ,&‘~u I ~2’~ = L&H (where u here denotes binary 
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union of multisets). What exactly is the relationship of the function shell YH to 

the function shells 9-F and Pc? If f~5~ and gEFG and kgFH, then range(k)= 

range(f) u range(g) (where u here is binary union of sets in ZFC). In words, the range 

of any function in FH is the union of the range of any function in FF and the range of 

any function in Pc. Every function k : dom k+range(k) in FH is such that, for every 

ZE range(k), 

i 

If -‘(z)I if zErange(f) A z#range(g), 

Ik-‘(z)l= lK1(z)l if z&range(f) A zErange(g), 

max(If-‘(z)I,Ig-l(z)l) if zErange(,f)nrange(g). 

The cardinality ldom kl of the domains of functions k in FH is such that 

What does such a “union” of function shells mean for the functions that are 

elements of the shells? Let f and g be real-valued functions such that 

range(f)nrange(g)= [0, l] c R. Let M, and M, be the Dedekind multisets deter- 

mined by f and g. Then (Msn M,)* = [0, 11. Let k be any real-valued function such 

that 

(i) range(k)=(range(f)urange(g)) c R 

and 

(ii) for all images zerange(k), 

1 

I.f -‘Ml if zErange(f)-range(g), 

Ih-‘(z)l= Ig-l(z)l if zErange(g)-range(f), 

max(lf-‘(z)l,Ig~l(z)l) if =CO, 11. 

For any real-valued function k satisfying (i) and (ii), the Dedekind multiset 

M,, = M,u M,. Such a “union” of real-valued functions is independent of their 

domains, but depends only on their ranges and the cardinalities of their inverse image 

sets. We note that joiningfand g together in this way does not necessarily alter the 

values off and g, but only the numbers of preimages. 

Let us consider an even simpler case. Let f and g be specific two-valued real 

functions (with ranges {x, y} c R and { y,z> s R, respectively). Let k with range 

{x, y, z> s R be a “union” offand g in the above sense. A conceptual representation of 

this situation is shown in Fig. 3. Given the funcions f and g, how does one construct 

such a real-valued function k? For simplicity, let us assume that dom fndom g = 8 

and If -l(y)1 2 lg-'(y)l. Then define the function k as follows: 

range(k) = range(f)u range(g) = {x, y, z}, 

domk=f -'(x)uf-'(y)ug-l(z) 

domf 
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If ‘(x)1 

f: l----i If'Cv)l 
+ Ix,y) =rangeCf) 

Idomfl 

-3 IYJ 1 = range (g) 

ldomgl 

h: + Ix,Y,z) =range (h) 

Idomhl 

Fig. 3. 

and, for all z’Edom h, define 

h(z’) = 
f(z’) if z’Edomf; 

g(z’) if z’~g~‘(z). 

In such a construction, we take the largest domain (the largest inverse image set for 

each common image). 

For the “additive union” h off and g with domfndom y =8, one would simply 

define 

range(h) = range( ,f) u range(g), 

dom h = domJ‘u dom g 

and, for all z’Edomh, define 

h(z’) = 
f(z’) if z’Edomf; 

g(z’) if z’gdomg. 

So. we have 

h-‘(y)=f-‘(y)ug-l(y) 
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and 

Therefore, the multiplicity of y in Mh is the sum of its multiplicities in M, and M,. 
It is important to emphasize both the size and the complexity of these interpreta- 

tions of multisets as function shells. Not only is each multiset x of MSTC interpreted 

as a Card’-valued function F of ZFC (which, in turn, represents a large class 9F of 

ZFC functions), but every element of x is interpreted as a Card+-valued function (an 

element of dom F) which also represents a large class of ZFC functions. Each FF is 

a large class of functions such that each element of dom F is also a large class of 

functions. The images themselves represent function shells. In other words, a multiset 

represents a large class of functions with a common range, and each image point in the 

common range also represents a large class of functions. 

How is the msubset relation c_ interpreted for function shells? Equivalently, how is 

the relationship JY~ E ~22’~ interpreted for 9F and .9’IG? Clearly, JY~ G AG means that 

dom F g dom G and for all xEdom F, F(x)< G(x). Let fand g be arbitrary but fixed 

functions in 9F and FG, respectively. Hence, range(f) c range(g) and for all images 

xErange(f), If-‘(x)1 <lg-‘(x)1. In words, the common range of functions in 9F is 

a subset of the common range of functions in FG and, further, for any image common 

to both, the number of domain elements with that image in FF is less than or equal to 

the number of domain elements with that image in Y-C. 

Let us consider a simple example where f: domf+{x, y} is in 9r and 

g:domg+{x,y,z} is in 9-G. A conceptual representation of this situation is shown 

in Fig. 4. Then JZF c Jlc (or, equivalently, M, G MS) if If - ‘(x)1 d jg- ‘(x)1 and 

If-‘(y)1 <lg-l(y)l. The cardinality Ig-‘(z)l =y’ is irrelevant since z is not a common 

image. In multiset symbols, [x, y&D E [x, y, z],,,~,, y, iff c( d CI’ and fl d B’. 

I I 

ldom f I 

ldomgl 

Fig. 4. 



In general, the “union” of FF and PF-c is a “new” function shell sH. If, however, 

YF is a “subset” of 9-G, then their “union” is FG. 

Set (A$‘~) means that either F = 0 (that is, dom F =0) or Vxgdom F, F(x) = 1. In other 

words, every inverse image set is a singleton (every fin PF is an injection). 

If PF is a “subset” of gbG and P-c is a “subset” of FF, then PF and FG are the same 

function shell. The “root” of FF is the function shell of all injections with common 

range equal to dom F. The “root” of 3F determines the root set .A’~. 

What is the “powerset” of ,FF? Since Vx Set(P(x)) in MSTC, the “powerset” 

function PF is a (I}-valued function with 

domPF={GIG5F} 

= (G / dom G s dom F A Vxgdom G G(x) < F(x)}. 

Therefore, the “powerset” of .YP is the class of all injections with range equal to 

dom PF. 
The “intersection” of the two function shells PF and Y-c is the class of all functions 

with range dom F ndom G and such that, for every zEdom F ndom G, z has exactly 

min(F(z), G(z)) preimages. We call this class of functions 9,,. Therefore, kcFH implies 

range(k)=dom F ndom G and VzErange(k), 1 km1 (z)l= min(F(z), G(z)). 

The copy ZFC’ of ZFC in MSTC is interpreted as a class hierarchy of function 

shells, each of which is a class of all injections with a common range such that each 

common image (element of the common range) is itslef a class of all injections with 

a common range. Therefore, ZFC can be thought of as a formal theory of function 

shells of injechwzs of the form 

. . / 
k 

where every element of X is also a function shell 

The theorem of MSTC that states 

of injections of the same form. 

VlxVy(xny=0 + xeJ,y=xuy) 

becomes the fact that if Ld’FnJflG =0 (that is, dom F ndom G=@), then the “union” 

and the “additive union” of PF and 9-G are the same function shell. This is true 

anyway for infinite inverse image sets because A + K = max(%, K) for 2, K> NO. 

Certain operations on functions are only defined for compatible functions; for 

example,fa g requires that range(g) g domf: But combiningfand g (that is, combining 

the function shells 9F containing f and R-G containing g) in (Card+, [F) requires no 

compatibility conditions onfand g at all. 

It is important to note that it is the “injective” function shells 9F that give rise to 

multisets UHF that are “sets”. Injections are the “sets” of functions; that is, the function 
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fdetermines the multiset M,, whereas an injectionfdetermines the set M,= MT. The 

degree of “many-one character” off (its distance from “injectiveness” measured by 

comparing ldomfl to Irange(f gives a measure of the degree of multiplicity in the 

multiset M, (its distance from “setness”). The greater the “compression” off (the ratio 

Idomfl/lrange(f)l> l), the greater the degree of multiplicity of elements in M,. 

Every functionf can be decomposed into an injection g and a maximal many-one 

function h (that is, [h-‘(z)1 =If-‘(z)l> 1 for all zErange(h) s range(f)) such that 

g of; h sf, dom g n dom h = 8, range(g) n range(h) = 8 and f= g u h. For the corres- 

ponding Dedekind multisets, the multiset M, decomposes into the subset M,= M,* 

and the whole msubset M,, (M is a whole msubset of N if Vx VCA(X P M + x E’ N) holds) 

such that M,nM,=@ and Mf=M,uM,,=M,6M,,. If JIF=MS, AfG=Mg and 

J?‘~= M,,, then HEFT, g~Yc and hEFH. If this is the case, then the function shell 

PF can be decomposed into the “subset” function shell FG (of all injections with 

range dom G = M,*) and the “disjoint subset” function shell FH (of all maximal 

many-one functions with range dom H = Mt) and the “union” (or, the “additive 

union”) of F;c and FH equals the function shell FF. 

Section 6 may be summarized as follows: properties of multisets in MSTC become 

certain properties of cardinal-valued functions in the model (Card+, F) of MSTC. 

These, in turn, determine the properties of the corresponding function shells. When 

the consequences of these properties are applied to the elements of function shells, 

a new algebra of functions is defined. 
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