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Abstract 

Zwick, U. and MS. Paterson, The memory game, Theoretical Computer Science 110 (1993) 

I69- 196. 

The memory game, or concentration, as it is sometimes called, is a popular card game played by 

children and adults around the world. Good memory is one of the qualities required in order to 

succeed in it. This, however, is not enough. When it is assumed that the players have perfect memory, 

the memory game can be seen as a game of strategy. The game is analysed under this assumption 

and the optimal strategy is found. It is simple and perhaps unexpected. 

In contrast to the simplicity of the optimal strategy, the analysis leading to its optimality proof is 

rather involved. It supplies an interesting example of concrete mathematics of the sort used in the 

analysis of algorithms. It is doubtful whether this analysis could have been carried out without resort 

to experimentation and a substantial use of automated symbolic computations. 

1. The game 

A pack containing n pairs of identical cards is shuffled and the cards are spread face 

down on a table. Each player in turn flips two cards, one after the other. If the two 
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cards flipped are identical (i.e., they form a pair), they are removed from the table into 

the possession of the player who flipped them and he/she gets another turn. If the two 

cards are not identical then they are flipped back and the turn passes to the next 

player. The game continues until all the cards are removed from the table (or until all 

the players agree to end the game) and the winner is the player possessing the largest 

number of pairs. The gain (or loss, if negative) of a player at any stage is defined to be 

the number of pairs he/she holds minus the average number of pairs held by the 

opponents. 

Any number of players can play the game but the most interesting situation occurs 

when there are only two of them. We will, therefore, consider this case here. 

The invention of the memory game is sometimes attributed to Christopher Louis 

Pelman and the game is often called Pelmanism (refer to this entry in [4]). 

A light-hearted report on some of the results obtained in this paper has recently 

appeared in [S]. 

2. Moves, positions and strategies 

Each player tries to remember the position and the identity of all the cards already 

inspected. To focus our attention on the strategic questions involved, we will assume 

that the players have already reached a high level of proficiency and are able to absorb 

all this information (in other words, they have perfect memories). 

A turn in the game is composed of two plies. The observation that triggered this 

work is that at each ply the player can either inspect a new card (in which case we 

assume that the outcome is uniformly distributed over all the as-yet-unflipped cards), 

or an old card whose identity is already known to both players. Inspecting an old card 

in the first ply, or a nonmatching old card in the second ply, are in a sense idle plies. 

Idle plies are not always possible. In the beginning of the game, for example, the first 

player has to flip two new cards. 

There are at most three reasonable moves from each position.’ The first is to pick 

no new cards at all. Such a move will be called a O-move and it is possible only if there 

are at least two inspected cards on the table. The two other moves, termed l-move and 

2-moue, both begin by flipping a new card. If the new card matches a previously 

inspected card then in both cases the matching card is flipped, a pair is formed and the 

player gets another turn. If, however, the first card flipped does not match a previously 

inspected card then an idle ply is used in a l-move while a new card is inspected in 

a 2-move. It can easily be seen that making an idle ply first and then flipping a new 

card is always inferior to the other moves. 

While playing the game the players can have two different objectives. They could 

try to maximise the probability of winning the game or, alternatively, they could try to 

maximise their expected gain. The two objectives lead to somewhat different optimal 

1 See, however, the note at the end of the paper 
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strategies. We will investigate here the strategy that maximises the expected gain. The 

optimal strategy for the other case could presumably be obtained using similar 

methods and a more involved analysis. 

If a O-move maximises the expected gain for the next player then, after this O-move 

is played, the situation remains exactly the same and the second player would also like 

to play a O-move. Since this can go on forever, we stop the game in such a case. 

A position in the game is characterised by the number n of pairs still on the table 

and the number k of cards on the table which have already been inspected. We can 

assume that all the inspected cards are different. In the case where the last player 

played a 2-move and the second card flipped matches not the first card flipped but one 

of the previously inspected cards, the resulting pair would be immediately removed by 

the other player, and we may account for this as part of the present turn. 

A stvabegy is a rule which determines which one of the three plausible moves should 

be used in each position (n, k), where 06 kdn are integers. An optimal strategy is 

a strategy which maximises the expected gain assuming that both players play 

optimally. The ualue of a position is the expected future gain of the player who is first 

to play from that position assuming that both players use an optimal strategy. We 

shall see in the next section that the position values and an optimal strategy can be 

defined mutually recursively. It is easy to see that if a player is playing according to an 

optimal strategy then the expected gain from some position is at least the value of that 

position, no matter what strategy the opponent may choose. 

3. The optimal strategy 

We define recursively the values en,k of the different positions. The only initial 

condition that we need is that e 0,0 =O, that is, that no one gains from a null game. 

Assume that we have already defined enC,k. for n’<n and en,k, for k’> k. We will first 

define e,‘,k and en’.k which will be the expected gain from position (n, k) when 

beginning with a l- or a 2-move respectively, and subsequently playing using an 

optimal strategy. Referring to Fig. 1, it is relatively easy to verify that 

n,k+l> 

We will explain the first relation as an example. When flipping the first card, there are 

k inspected cards on the table, all of them different, and 2n - k uninspected cards. In 

a l-move an uninspected card is flipped. With probability k/(2n - k), it will be a card 
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Fig. 1. Possible outcomes of moves from position (n. k). 

which matches one of the previously inspected cards, in which case the player will gain 

a pair and will be entitled to play again from position (n- 1, k- 1). With the 

complementary probability 2( n - k)/(2n - k), the first card flipped will not match any 

previously inspected card, an idle ply will follow and the opponent will play from 

position (n, k + 1). Since the gain of one player is the other’s loss, the expected gain of 

a player from a position (n, k + 1) when the opponent is about to play is -en,k+ 1. This 

accounts for the two terms appearing in the first relation. The second relation is 

obtained in a similar way. (A reference to Fig. 1 may again be useful). 

The value en,k of the position (n, k) with n > 0 is now defined as 

e 2 
n,O=en,Ol 

e n,l =max{e,l,1,e,Z,1), 

en,k =max{O, e,‘,k, ei,k} for 2<k<n. 

These definitions are explained by the following observations. A 2-move is the only 

legal move from position (n, 0). A l-move and a 2-move are the only two moves 

allowed from position (n, 1). In positions of the form (n, k) where k>2, a O-move 

could be used. If c,‘&, e,“,k ~0 then it is advantageous to use a O-move and the game 

will stop with value 0. 

We say that an i-move is optimal from position (n, k) if en& = et,k (where ei,k = 0). It 

is possible that more than one move will be optimal from a certain position. 

Using these recursive definitions, we can compute the values and find the optimal 

moves. Table 1 gives the values of positions with n ~7, while Table 2 gives the 

optimal moves for n < 15. For (n, k) =(4,3), it turns out that both the O-move and the 

2-move are optimal but only the 2-move is listed in the table. Similarly, for any n, 
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Table 1 

The expected values of the simplest positions 

n=O 

n=l 

n=2 

n=3 

n=4 

n=5 

n=6 

n=7 

k=O k=l k=2 k=3 k=4 k=5 k=6 k=l 

0 

1 1 

-: s 2 

4 4 f 3 

-& A & 0 4 

-sf -315 $ % 0 5 

ii& i& 12i * 5: 0 6 

fi i% &A # h % 0 7 

Table 2 

The optimal moves for n< 15 

n=l 21 

n=2 221 

n=3 2121 

n=4 22121 

n=5 212101 

n=6 2112101 

n=7 21212101 

n=8 221212101 

n=9 2121212101 

n=lO 22121212101 

n=ll 212121210101 

n= 12 2212121210101 

n=13 21212121210101 

n=14 221212121210101 

n=15 2121212121210101 

’ en,n =e,2,, = n; so, both the l-move and the 2-move are optimal in this case. In fact, 

they are identical in this case since the first card flipped will always match a previously 

inspected card. 

The pattern emerging from Table 2 is clear. A 2-move should be used when k=O, 
since this is the only allowed move. A l-move should be used whenever k > 0 and n + k 

is even. Either a 2-move or a O-move should be used when n+ k is odd ((n, k) =(6, 1) 

being the only exception). Inspecting a few more rows in the table immediately 

suggests that a O-move should be used when, in addition to the requirement that rr + k 
is odd, we also have k32(n+ 1)/3. 

We, thus, claim the following. 
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Theorem 3.1. 

and n+k odd 1 , 
en,k= ei,k if [kal and n+k even] or [(n, k)=(6, l)], 

2 
en,k otherwise. 

Another interesting issue is the behaviour of the values e,,k themselves. The following 

approximation gives their asymptotical behaviour. 

Theorem 3.2. 

if n + k even, 

e n,k = 

2n+l 
ifn+k odd and kd- 

3 ' 

2(n + 1) 
if n+k odd and kBp 

3 

Ifwelet~=k/nthenweseethat,for~<l,e,,,=e,’,,-~/2(l-i)ifn+kiseven,and 

e n,k=e,2,k~[(2-3A)(2-,l)/16(1-E.)3].l/n if n+k is odd and kd(2n+1)/3. Sim- 

ilarly, we can get that ei,k = -[~/2(1-1,)]~(4-12%+7%2)/(2-;1)2 if n+k is even 

and that e,‘,k = -[(4-81_+5L2)/16(1-E,)3]~l/n if n+k is odd and k6(2n+1)/3. 

A graph of e,,k =e,‘,k and ei,k for even values of n + k is given in Fig. 2. It can be 

seen that, unless 1* is very small, e,‘,k is both positive and markedly superior to e&. 

Similarly, a graph contrasting en,k =e,‘,k with e,‘,k for odd values of n + k is presented 

in Fig. 3. Again, there is a sharp difference between these two options. 

l-- 

1 x 
en,k = 

0 .8-- 2(1- A) 

0 _ 6.. 

Fig. 2. The behaviour of e.,, = e:,,, and ei,k for n + k even. 
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2 
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en,k = . -1.- 16(1 - A)” n 
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= - 
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Fig. 3. The behaviour of en,k =ef,k and ej,, for n+k odd. 

We need better approximations, however, to show that e,,k = ei,k when n + k is even 

and k=o(n), and that e,,k=ei,k when n + k is odd and k = (2n/3) - o( n). These are 

obtained in the next section. 

Another interesting question is the sign of the values of the different positions. By 

definition e ,,k > 0 whenever k 2 2, but what happens when k = 1 or k = O? In particular, 

when is it advantageous to take the first turn? It turns out that e,, I >O for n36, that 

e,, 0 > 0 when n > 7 and n is odd, and that e,, e < 0 when n > 8 and n is even. Thus, it is 

advantageous to take the first move in the game if and only if n is either 1,6 or an odd 

number greater or equal to 7. 

Finally, what is the expected gain or loss from a game played with II pairs of cards? 

It turns out that, for large n, the gain or loss is roughly 1/4n. More precisely, we have 

the following result. 

Theorem 3.3. 

( &+O($) iSn odd, 

en’oj_-&j+O($) if n even. 

The proofs of the theorems stated in this section are given in the next section. 

4. Analysis 

Our strategy for proving the results claimed in the previous section is the following. 

We first investigate the expected gains from each position when the two players play 
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according to the alleged optimal strategy. Once we have tight estimations of these 

values, it will be easy to prove, by induction, that these values do in fact correspond to 

the optimal strategy. 

4.1. Preliminary manipulations 

Let e&k be the expected values of the different positions when both players play 

according to the conjectured optimal strategy. As a “warm-up”, we prove the follow- 

ing lemma. 

Lemma 4.1. (i) e,,o = e,, 1 for odd n > 1 and (ii) e,, o =-e,, 1 for euen n # 6. 

Proof. For odd n, we have e,,o = ei, o and e,, I = e,‘, 1. Using the definitions of ei,k and 

e.‘,k from Section 3, we see that both ez,o and e,‘, 1 expand to the same expression 

e,Zo=e,ll= 
2(n- 1) 

, &(l+e,-1,0)--e 2n-1 “3” 

This proves the first part of the lemma. For even n 26, we have e,,. =ei,o and 

e,, 1 = ei, 1 and, therefore, 

en,0 +e,,l = 

[ 

2(n- 1) 
&tl+en-l,O)--e 

2n-1 “‘2 1 
+ j&Cl+e.-l,O)-~ 

[ 

2(n- 1) 2(n-2) 

2n-1 .2n_2 en,2 1 
2(n- 1) 

=j-&(l+e.-l.O)----e 

2(n-2) 

2n-1 n’2 -2n_1en.3. 

For even n32, we have enj2 =e,‘,2 and, thus, 

en,0 +e,, 1 =A (l+e,-l,o)- 

2(n- 1) 
2n_1 &tl+en-i,l) 

[ 

2(n-2) 1 2(n-2) 
-2n_2en,3 -2n_1en.3 

=A Ce,- l,O-en-l,ll=O~ 

where the last equality follows from the first part of the lemma. 0 

As an easy corollary, we get the following result. 

Lemma 4.2. e,!, o = e,‘, o for even n # 6. 
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’ Proof. By definition we have e “, 0 - - e,,o and ef,o = -e,, 1 and, thus, the result follows 

from the second part of the previous lemma. 0 

Note that l-moves are currently not allowed from positions of the form (n, 0). The 

previous lemma says, however, that it would not matter if we were to allow them from 

these positions with even n 26. Furthermore, the l-moves would be co-optimal in 

these positions and we could, therefore, use the relation e,,. = eA,o as the defining 

relation for even n # 6. This removes the anomaly of the column k = 0 seen in Table 1. 

The two remaining exceptions are e6,0 =eg,, and e6,1 =e& 1. 

Since the parity of n+ k plays a major role in the following analysis, it will be 

convenient to denote en,k by a,,k when n + k is even, and by bn,k when n + k is odd. It is 

also convenient to write the recurrence relations defining an,k and bn,k with the help of 

an auxiliary sequence c,,k as follows: 

an,k=Pn,k(l+an-l,k-l)-qn,kbn,k+~, 

bn,k=[Pn,k(l+b.-l.k-l)-qn,kCn,k+ll xln,k? 

C,,k=Ph,k(l+a,-,,k-,)+q,,kbn,k+l, 

where 

k k-2 2(n-k) 
P&k =2n_k 3 Pb,k =2n_k 9 qn,k = 

2n-k 

and 

In,k= ! 1 ifk<y, 

0 otherwise. 

These relations hold for any (n, k) with the exception of (6,O) and (6, 1). The only 

initial condition required is that a o, ,, = 0. 

Note that c,,k+l corresponds to the expected loss from position (n, k) if one new 

card had already been flipped and did not match any of the previously inspected 

cards. 

4.2. Operator notation 

The following analysis is facilitated by introducing operator notation. Define an 

operator Qi by 
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where 
I 

a~,k=~~,ka~-l,k-l-9q,,kb~,k+l, 

b~,k=Pn,kb,-~,k-~-qn,kC,,kil, 

C,,k=P~,ka,-l,k-l+qn,kbn,k+l, 

and an operator Z by 

where 

i 

b 
2n+l 

*,k if k<------ 

bh,k= 
3 ’ 

0 otherwise. 

We again assume that @ has the anomalous behaviour 

1 
ad,o=G.i =E(l+b5,e)-sa,,,. 

If we let e =(a, b, c) T and h =(P, p, p’) T then it is easy to see that e satisfies the 

following equation: 

e=Z(@e+h). (1) 

Our task is to solve this operator equation. 

4.3. Bootstrapping 

We start by trying to solve the equation obtained by ignoring the presence of the 

operator Z in Eq. (I), i.e., 

e=@e+h. (2) 

The solution of this equation will not only give us some useful information about 

the solution of Eq. (l), it also has some interest in its own right. It corresponds to 

the analysis of the variant of the game in which l-moves and 2-moves are the only 

moves allowed. 

Solving Eq. (2) amounts to inverting the operator (Z-Q), which does not seem to 

be an easy task. We approach this by approximating @ by an operator 6 for which 

inverting (I - 6) is much easier. Using a method that bears some resemblance to the 

“bootstrapping” method described in [2,3], we define a sequence of refining terms 

EO, E’, . . . . whose sum E” + E1 + ... converges, we hope, to the required solution. 

This sequence is obtained in the following way: 

E’=(Z-6)-l h’, i>O, 

h’+‘=(@-@E’, i>O, 
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where h”=h. Let e”=e, and e’=e’-’ -E’-’ for i>l be the error of the ith 

approximation. It is easy to verify that 

e’=@e’+h’, i>,O. 

We define 6 as follows: 

Thus, 

and 

where 

a~,k=Pn,kan,k-qn,kbn,k, 

b~.k=Pn,kbn.k-qn.kCn,k, 

Cb,k=Pn,kan,k+qn,kbn,k, 

or, equivalently, 

1-P 4 0 

0 1-P 4 

-p -4 1 

where 

l+q -1 q 

-P 1 -4 

P 4-P 4 

The terms E’ obtained in this way become horrendously complicated even for very 

small values of i and it seems almost impossible to handle them manually. We used 

Mathematics to do these computations. 

We now note that, for k<An, for some 2.~ 1, we have ho = O(1) and, thus, it can 

easily be seen that E” = 0( 1). The operator @ - 6 has the characteristics of a discrete 
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difference operator. Since each component of E” = (A ‘, B”, C ‘) T is a rational func- 

tion in n and k and, thus, continuous, in the sense that A:_ l,k_ 1 - A $ = 0( n - ’ ) and 

so on, it is easy to see that h ’ = 0 (n - ’ ). By induction, we can prove in this way that as 

long as A= k/n is bounded away from 1, we have E’ = O(n-‘). Therefore, each 

additional term E i that we compute allows us to obtain an additional term in the 

asymptotic expansions of a, b and c. These computations can again be done using 

Mathematics and the expansions obtained are 

;1 A2+4A--4 1 2A3-4A2+5A-2 1 
a 

“‘k-2(1-i)+ 16(1-A)” ‘;+ 16(1 -%)5 ‘n’ 

13A4-62E.3 +112E,*-64A+8 1 
+ ._ 

64(1-L)’ 
n3 + ... 2 

b _(2-31,)(2-A) 1+423-1412+11~-2 1 
n.k - 

16(1 -)J3 ‘n 16(1 -L)5 ‘n’ 

9A4-12A3-60/?2+8011-24 1 
+ 64(1 -2)’ ‘n”+ “’ 

The expansion of c,,k is easily obtained from these two. 

We claim that, by truncating these expansions after the O(n -‘) terms, we get an 

approximation to the solution e =( a, b, c) T of (2) with errors of O(n -(i+l) ). In 

particular, if we let 

i A2+4A-4 1 2A3-4;b2+5A-2 1 

A”gk-2(l A)+ 16(1-A)j ‘;+ 16(1 -A)5 ‘7’ 

B _(2-3A)(2-1,) 1+423-14i2+11d-2 1 
n,k- 

16(1 -A)3 ‘n 16(1 -A)5 ‘n” 

I 

A 

%k =m- 
3A2-1611+ 12 1 14-41;1+36A2-8A3 1 

16(1 -;1)3 ‘;+ 16(1 -A)5 ‘n” 
(3) 

where as usual A = k/n, we claim that, for any A < c < 1, where c is a constant, we have 

a,,k=A.,k+O(n-3), b,,k=B,,k+O(np3) and c.,k=C,,,k+O(n-3). 

Furthermore, we prove in this section that these expansions are also valid for the 

solution e = (a, b, c) T of (l), corresponding to the full version of the game, provided 

that I is less than and bounded away from 213. We thus see that in this region there is 

hardly any difference between the two variants of the game. 

4.4. Boundary layer influence 

In this section we return to the study of Eq. (1) that corresponds to the full version 

of the game. 
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Let @* be the operator defined as follows: 

where 

1 
2n-2 

Pn,ka,-,,,-,-qq,,kb,,k+l if k<T, 

an,k= ’ I hkan-l,k-1 

2n+l 
Pn,kbn-1,k-l-qn,kCn,k+l if kGy9 

bb,k= 
0 if k>2n’2 

‘3’ 
2n-2 

P~,ka,-l,k_l+qn,kbn,k+1 if kG3> 

2n-1 
if k3---- 

3 . 

It is easy to verify that Z@ * = @ * and that if e = Ze then @e = @*e. If we let h’ = Zh, 

we, therefore, get that Eq. (1) is equivalent to 

e=@*e+k’. (4) 

Examining this equation, we see that the values of a,,, k for k d (2n + 3)/3, the values of 

bn,k for kd(2n+ 1)/3, and the VaheS of c,,k for k < (2n + 4)/3 do not depend on values 

outside these regions. We denote this “closed” region by Q and consider the behaviour 

of e on it first. 

The values of a,, k for (2n- 1)/3<k<(2n+3)/3, of b,,, for (2n-4)/3<k<(2n+ 1)/3 

and of c ,,k for (2n - 1)/3 d k d (2n + 4)/3 are the values in 52 affected most directly by 

the vanishing of the bn,k terms for k >(2n + 2)/3. We call the narrow region of 

Q containing these values the boundary layer of Q and denote it by X?. It is convenient 

to think of the differences between the actual values an,k, bn,k and c,,~ in Q and those 

predicted by the asymptotic expansion of the previous subsection as being caused by 

this boundary layer. The shapes of the region 52 and the boundary layer aQ are 

depicted in Fig. 4. 

Note that on Q- aQ the operators @ and @* agree, while on X2 the operator 

@* has missing *qn,kbn,k+l terms. Since in the boundary layer bn,k+l =O(n-‘) (or, 

more precisely, B,,k+r =o(n+)), we expect the boundary layer to have only an 
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4m-3 4m-2 417-l 4m 4m+l 4m+2 4m+3 4m+4 4m+5 4m+6 

6m-4 

6m-3 

61n - 2 

6m+2 
I 

6m+4 

I 

6m+5 I 

Fig. 4. The region Q and the boudary layer aL? 

O(n -2) influence on values close to the boundary layer. We shall further see that this 

influence fades very quickly as we move away from the boundary area. 

We will now try to find an approximation & with O(n -3) error for the solu- 

tion of (4), valid for the whole of R. This approximation will enable us to establish 

in Section 4.7 the validity of the alleged optimal strategy. As implied by the 

previous paragraph, this approximation must include not only the first terms 

obtained by the bootstrapping process but also terms corresponding to the 

boundary layer influence. 

If e=@*e+h’ and s=e-d=O(n-3) in 52, then we must also have 

~=(Z-~*)(e-b)=h’-(I-~*)&=O(n-3)in~.Notethat&satisfiestheequation 

E = @*E + %‘. In the next subsection we will see that, under certain conditions, the last 

implication can be reversed. More precisely, if 2 = 0( it -3) and if it satisfies a certain 

additional condition then E = e - 6 = 0( n - 3 ). 
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Let us first look at H=(R,S, T)T=h’-(Z-@*)E, where E=(A,B, C)‘, with 

A, B, C defined in (3). Easy manipulations show that Rn,k, Sn,k, Tn,k =O(ne3) in 

Q-&Q (this is ensured by the bootstrapping process) but that in aQ 

R 
9(2n-3k- 1) 1 

n.k = 
8 ‘PI’ 

--+O(n_3) 

and 

T _ _9(2n-3k-1) 1 
n.k - 

8 ‘$ 
p+O(n-3). 

The quantity 2n - 3k measures the horizontal distance of position (n, k) from the 

boundary layer K? This suggests that one could try to work with an approximation 

&‘=(,G@‘, B, %‘)T of the form 

%,,k = c,,k +y, (5) 

where the An,k, Bn,kr Cn,k are again those of (3), and, thus, represent the global 

behaviour in Q, while the sequences {z~}, (/I!] and {yl} represent the effect of the 

boundary layer X? We expect the sequences {cI~}, {fil} and {rl} to be quickly, in fact 

exponentially, diminishing, so that their contribution far from the boundary layer will 

indeed be negligible. 

The sequences {x1}, {fiI} and {;I~} should be chosen in a way that ensures that 

X=O(n -3) in the whole of Q. To that end, as we shall see shortly in the proof of 

Theorem 4.3, the sequences {ccl}, {PI) and {y,} should satisfy the following linear 

recurrence relations: 

1 9(1-f) =O 
a, -- c([+ 1 -~ 

2 8 ’ 
-36161, 

1 1 
vp+1 +-ai-3=0, 

2 
1 <l, 

/+I+, +;Yl-3=0> -lbl, (6) 

Y++l -;s,-3 =Q 1 <I, 

together with the additional requirement that CI~, PI, y[-+O as l-co. 
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The values of c(~ and fil are easily computed using generating function techniques. 

The first values are CI _3 2: -6.83199877, CI _2 2: -4.66399755, CI _i = -2.57799510 

and b_1 2: -2.08745613, /?,, = -1.96591166, /I1 = - 1.76382209. In general, 

a~=C~=,UiB;‘,BI=C~=1Uie;’ andy,=C~=,w,e-‘,whereui,ui,wiaresomefixed 

complex numbers and 0i, . , e6 are the six complex roots of the equation 

X8 -x7 +4x2 -4x + 1 =O, with modulus greater than 1. The values of the roots 

8i and of the coefficients Ui and Ui are given in Table 3. 

Assuming that & does indeed approximate e to within an 0(ne3) error, we 

get (for fixed values of I) the following behaviour of an,k and bn,k near the 

boundary layer: 

In particular, 

b 
0.162544 2.534088 

n,(2nf 1)/3 = n2 > b,,2n,3= n2 > 

b 
4.986178 

n,t2n- 1)/3 = 
n2 ’ 

Having chosen the sequences LX~, b1 and yI in this way, we can indeed prove that 

X=0(?? -3) in the whole of 52. Furthermore, we show that X satisfies an additional 

“continuity” condition that, together with the condition X’= O(n -3), will allow us to 

infer in the next subsection that e=0(K3). 

Theorem 4.3. 

where qifi = qn,kqn,k+l for all positions in Cl with na 1000. 

Proof. We first clarify the statement of the theorem. If X = (2, Y, Y) T then we claim 

that IS?,,kl, ILY,,~\, l.YR,k/ d 100/n3 for n> 1000 and kd(2n+3)/3, kd(2n+ 1)/3, 

Table 3 
The values of the roots Bi and the coefficients ui and ui 

Q ,,,z-1.108812f0.625391i u1.2= 0.02 1830 T 0.04847Oi “1.2= 0.060084 + 0.035674i 

0 3.4= 1.121061 kO.562315i u~,~%- 1.027472TO.0663188i ~~,~z-O.227399* 1.791415i 

0 ,,,e-0.018515f 1.2396181 US.6 - --0.122426+0.028318i v,,,z-0.015567kO.142098i 

8, z 0.539036 u, = 0.000000 0, = 0.000000 
0s h 0.473498 us = 0.000000 cg = 0.000000 
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kd@+W, respectively, and that Ign,k -qhf!%,k+2 I, ly,,,k -qj,f:yn,k+2 I, 
l~n,k -qC2’F kf2 I<(1 -q’2’)100/n 

k d (2n - :;3, Respectively. 
n.k 

3 for n3 1000 and kg(2n-3)/3, k<(2n--5)/3, 

The rigorous proof of these inequalities is rather lengthy and technical. Here we 

shall only “demonstrate” the validity of two of them (those involving L?J?,,~) using 

high-level asymptotic analysis. 

Assume first that k d (2n - 2)/3 (the case (2n - 1)/3 <k < (2n + 3)/3 will be dealt with 

separately). Using the definition of (I - @* ), we get that 

~)n.k=-.~n,k+Pn,k(l+~n-l,k-1)-qn,k~!n,k+1 

= -A..k+p,,k(l+A,-,,k-,)-q,,kBn,k+l}=Rn,k 

ff2n-3k a2n-3k+l 82n-3k-3 
-- 

n2 
+tPn.k’ cn_l12 --4n,k’ n2 

=p k 

“5 

The term Rn,k is a rational expression in n and k and automatic manipulations show 

that 

R __ 8-26A2+11/23 
n,k - 

.i+o L 
16(2-i.)(l-1,)5 n3 ( 1 n4 ’ 

The coefficient of l/n 3 above attains its maximum absolute value in the range [0,2/3] 

at 2~0.57, where it evaluates to approximately -4.73. We thus see that this term does 

not give us any cause for concern. 

If we let 1= 2n - 3k, we get 

Pn,k =’ 

n2 
*- 

n2 
--al+Pn,k tn_,j2 ‘11+1 -qn,k’ljl-3 1 

1 1 1 
=- 

n2 --crl+-@l+l 2 --Pi-, 2 1 
c 

Y 
I 

0 

[( 
-++I -(q,,,k+-31. 

The first expression in the last line disappears as it is one of the defining relations of 

the sequences {al>, {PI:, (~~1. W e may assume now that l=o(n) since, otherwise, 

a,+ 1 and fli_ j are exponentially small and we have nothing to worry about. We can, 

therefore, use the relations 

, 
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together with the fact that 

n2 -=1+;+0 J$ ) 
(n- 1)2 ( ) 

to get that 

P n,k = 

The coefficient of l/n3 here is maximised when 1= 5, where we get 

pn,c2n-41,3 N -2.801~1~. Hence, for large enough n, and k<(2n-2)/3 we even expect to 

have I.!%)n,k 1 d 10/n3. 

Assume now that (2n - I)/3 d k d (2n + 3)/3. Proceeding in a similar way, we get that 

XZn-3k UZn-3k+l 

n2 +Pn.k’ tn_j)2 +9(2n-3k- l) 
8n2 

=Ph,k ’ 

Again, if 1=2n-3k then 

Rb,k - 
- 135+ 1981-36l’ 1 

16 ‘2 

and the maximum of this expression in the range - 3 d 1 d 1 is attained when / = - 3 

and %(2n+3)/2 - -65.8125/n3. As for PL,k, we get 

Pb,k =; 

[ 

n2 9(2n-3k- 1) ._ 
-@I+Pn,k tn_1J2 ‘al+1 + 8 1 

1 
=-[-.,+;Nl+l+yq 

n2 

The maximum absolute value is again attained when I= - 3, where 

pb,c2n+3J,2 N -9.91/n3. So, for large enough n, and any k<(2n+3)/2, we expect to 

have Ig,,k ) <80/n 3. The slackness that we have introduced by requiring only that 

igR,,k ( < loo/n3 allows us to prove this inequality for every n 3 1000. 
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Turning our attention to the second inequality involving Bn,k, we note that, for 

k<(2n- 8)/3, we have 

2 n,k -4;f:%,,+z =Rn.k -4:f:R.,k+z +Pn,k -q:f:&,k+Z 

l-df: l-9$ 1 -q;:: 

A simple manipulation yields 

R n.h 
(2) R -q,,k n,h+Z =R 

1-4:;: 
+ q’n2: ---(R.,k-R.,k+z). n.k 1 -q;f; 

Note now that R,., - Rn.k+2 =0(ne4) or, more precisely, 

-88+ 152L+64;b2 -126j.3 +333v4 1 
R n,h -R n,k+Z = 16(2-3.)‘(1 -i)‘j 

.p+o 5. 
( > 

The coefficient of l/n4 here is, of course, twice the derivative of the coefficient of 

l/n3 in the corresponding expansion of Rn,k. It can be easily checked that 

n k+2(<3/n4 for say ;,<l/lO. Now q’,fi/(l-qLf:)<2n for every k>,O and, 

EZeYnYore, q, ,/( (‘I 

The term (p,Ik 

1 -qb’l) = 0( 1) whenever i is bounded away from 0. 

-qb~~,)‘.,k+2)/(1 -qkf:) attains a maximum of about -2.33/n3 for 

I= 12 and, thus, we can again obtain the desired inequality. 

Combining these facts, we get the desired bound for k<(2n- 8)/3. The case 

(2n - 7)/3 <k < (2n - 3)/3 should again be treated separately. We omit the details. 

The inequalities involving ,yn,k and Tn,k can be “verified” in a similar manner. 0 

4.5. Bounding the errors 

We saw in the previous subsection that E, the error of our estimation, satisfies the 

equation E = @*E + H, where X satisfies the conditions of Theorem 4.3. We now 

show that this implies E=0(nm3). 

Theorem 4.4. Ife=@*e+h, where e=(a, b, c)~, h=(r,s, t)T and 

for all positions in Q with n an,, 2 1000, and 

for al/positions in Q with n=nO, n,, + 1, then the same bounds on a,,k, b,,k and c,,k hold 

for all positions in .Q with n >no. 

Proof. What conditions should two constants A and B satisfy if we are to succeed in 

proving, by induction, that ) an,k 1 <A/ n3 and that ) bn,k ) < B/n3? Assuming the basis 

of the induction to be already established, we check what conditions on A and 

B enable us to derive the induction step. 
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Using the induction hypothesis and the conditions on hn,k, we can bound a,,k as 

follows: 

la&k 1 <P&k . ian-l,k-l 1 +4&k’ lb&k+1 1 + irn,kl 

+&]““+[f++[$]“H 
If A > B + 2H then the last expression is less than A/n 3 for any sufficiently large n and 

k6(2n+3)/2. This is because in Sz we have pn,k <3+0(l). 

In particular, if we choose A = 15H, B= lOH, we must verify that 

for any n 3 1000 and O< kd0.67n. This inequality involves only quantities like 

P,,~ and qn,k that were explicitly defined. Expanding these definitions, we find that the 

claim to be verified is equivalent to the claim that 

-2(4+31)(1-3n+3n2)+(8-91.)n3 30 

for any n 3 1000 and 0 d E, = k/n 6 0.67. This inequality is easily verified. 

The choice that A > B has so far been to our advantage. It will, however, make our 

lives much more difficult in the sequel. 

By expanding the recursive definitions of a,,&, bn,k and c&k in the way depicted in 

Fig. 5, we get that 

b.,k=[Pn,kl.b.~l,k-1 +[4::1+n,k+4 

-[qn.k(qn,k+lPn,k+2-P~.k+lqn-l,k)l'bn-l.k+l 

-[%,kP:f:+l ]‘a,-2,k-1 +[4b3:Pb,k+31’an-1,k+2 

-~~n.k~j1~~+l~~rn-l.k+~Sn,k-~~bf:~~Sn,k+2~ 

-[~n,kl'(~n,k+l-[~:~:+l1%,k+d~ 

where, as before, qb2: = qn,kqn,k+1,qj13:=qjll2:q,,k+2,q~~=q~3:q",k+3 andP$ =Pn.kPn-1-k-l. 

We assume here that k <(2n - 11)/3 so that all the terms given are indeed present. The 

case (2n- lo)/3 < k<(2n + 1)/3 must be dealt with separately and the details are 

omitted. 

Fig. 5. Expanding the definition of b.,t 
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The important point to note here is the fact that b,- I,k+ 1 contributes to bn,k along 

two different paths, once with a positive sign and once with a negative sign. Since 

q++ 1pn,k+2 ZP;,~+ 1 qn_ l,k, these two contributions almost cancel each other out. 

Thus, when we add up (the absolute values of) the coefficients of all the u~,,~, and 

b n’, k’ appearing in this expansion for bn,k, we get a qUantity o,,& which for 0~ 1. is 

significantly less than 1. In fact, it is easy to check that b,,k -a(A) =(8 -202 + 

22)“’ - 9A3)/(2 - I.) 3. The function o(i) attains the value i at A= 3, the minimal value 

of 19/27( N 0.704) at i = f and the maximal value of 1 at A= 1. We see therefore that 

a choice A, B$ H should enable us to prove the induction step when 1” is bounded 

away from 0 and n is large enough. We might expect trouble when 3.~0, but this is 

exactly the place where the additional condition of Theorem 4.3 comes to our rescue. 

We have gone far enough in the expansion shown in Fig. 5 to obtain a configuration 

in which the driving terms tend to cancel each other in pairs. 

Relying on the induction hypothesis and the conditions on hn.k, we get that 

qn.k(qn,k+lPn,k+2-P~.k+lqn-l,k) / q:ff xB 

n3 1 
where qn,k+1pn,k+2-p~,k+Iqn~1,k=6(n-k-1)/(2n-k-1)(2n-k-2) iS indeed 

positive for all relevant values of n and k. 
We want to find values for A and B for which the last expression is less than or equal 

to B/n3 for all large enough n and k in the appropriate range. Since we are not inter- 

ested in finding the optimal constants A and B, we just point out that again the choice 

A = 15H and B = 1 OH suffices, i.e., the bound in the last inequality is less than B/n 3 for 

any n 3 1000 and k <0.67n. Expanding again the definitions of p,,k, qn,k and of p!,fj, 

4 
(2) 
n.k, 671;:3 q:!J, we get that the condition that we have to verify is that the expression 

48(272-4226+ 1413.‘) 

+8(-9904+ 185581.-9863A2+ 1551A3)n 

+4(51824- 1153261+819913~2-22071~3+ 1692A4)n2 

+2(-147888+3911461.-350617~2+1309591.3-18428/14+564i,5)n3 

+(247232-782580~“+861216/,2-415735i3+84636a4-5076j”5)n4 

+(-122384+473052i.-630812~2+377241i~3-1008141.4+9306~5)n5 

+(34392- 1707683.+275520J.2- 198141i.3+650801.4-7857/15)n6 

+(-4808+34920i-69032/12+583613.3-22308~4+3159~5)n7 

+ (2 - I.) (112 - 1756). + 36521.2 - 2590L3 + 567A4) n* 

+ A(2 - A) (80 - 22Oi + 1 78L2 - 39i.3) n9 
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is nonnegative for n> 1000 and 06AGO.67. To show that this is plausible, we 

note that the function 1.(2-1.)(80-2201.+ 178Eb2 -39L3), which is the coefficient 

of n9 in the above expression, is positive for O~Ad0.67. For values of Iti close 

to 0 we also have to consider the coefficient of n8, which is approximately 224 when 

AzO. With slightly more technical work, the positivity of this expression can be 

established rigorously. 

Finally, for c,,k, we get 

ic,,,ki <Ph,ki%-l,k-I 1 +qn,kibn,k+l I < 
tl%,k + l”qn,k)H 6 12.5H. 

n3 
q 

n3 

Theorem 4.5. Zf e = (a, b, c) T is the solution of Eq. (1) (or (4)) and 8 = (d, g’, W) ’ is 

dejined by (3), (5) and (6) then 

1500 
l%k -.d,,k 167 

for 1000 and 

2n+3 

n> Obkb- 2 ’ 

ibn,k 
1000 

-@n,k I G- 

2n+l 

n3 
for n31OOO and Odkb-, 

2 

IC,,!i 
1500 

-g&k I d7 
2n+4 

for n>lOOO and O<kd- 
2 . 

Proof. It can be verified directly that these inequalities hold for n= 1000, 1001 and 

all admissible values of k. The theorem then follows by combining Theorems 4.3 

and 4.4. q 

4.6. Beyond the boundary layer 

We have to consider the values of fl,,,k only for k 3 (2n + 4)/3. The values of bn,k for 

k 2 (2n + 2)/3 are identically zero, by definition, and the values of c&k for k 3 (2n + 5)/3 

are of no interest since they are never used. For a&k in this region, we have the simple 

relation 

2n-1 
&,k=Pn,ktl +a,- l,k- 1) for ka- 

3 

By induction, we can prove that, for k3(2n- 1)/3, we have 

k k! [4(n-k)-2]! 

an’k=2(n-k)+1-(2n ‘[2(n-k-l)]! 

(7) 

Notethatthevaluea3(n_k)_2,2,n~k~1) lies in 52, just outside the boundary layer as it 

is of the form anS,(2nC _2113. 
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Using Stirling’s formula, we get, for k =%n with 5~1~~ 1, that 

191 

k! _. [4(n-k)-2]! ~ i 

(2n-k)! [2(n-k- l)]! J 
__ .e-L(iM 
2-i ” 

where 

L(j_) =ln 
(2 _ j)‘2 -A) 

1 J,“[8(1 _i)]*(r-i) 

It can be checked that L(2/3) =L(l) =0 while L(J.) >0 for E,~(2/3, 1). Thus, for any 

k with R = k/n bounded away from both 213 and 1, we get that a,,,!+ z k/[2(n- k) + 11 
with an exponentially small error! The most accurate approximation is obtained for 

k=%n where II= 1 -l/&=0.875965, for which L(%) ~0.249353. 

For G,~-~, equation (7) becomes 

n-l (n-l)! [2(21-l)]! 2(1-l) 
a ___ _-. 

“.“-l=2/+1 (n+l)! [2(/-l)]! . 2[+1 -a31-2**(l-l) ( > 

We can thus get explicit formulae for un.n _ [, where 1 is a constant. All we have to know 

for this purpose is the single value of a31- *, 2C1_ r). In particular, we get 

a n.n = n, 

n-2 48 
a n,n-2 =- - 

5 (n+2)(n+ l)n(n- 1) ’ 

n-4 2983680 
u n,n-4 

=_ - 
9 (n+4)(n+3).....(n-3)’ 

and, in general, 

n-l 
a -- + O(n-*‘). 

n-n-l -21+ 1 

Hence, the diagonals in the e,,k table behave essentially as linear progressions. 

4.7. Verijjing the optimal strategy 

For n < 1000, the validity of the optimal strategy can be verified directly. 

We now prove the validity of the optimal strategy for n> 1000 by induction. 

Suppose that we have already verified the claimed optimal strategy for all positions 

(n’, k’), with either n’ < n or n’ = n and k’ > k. This means that, so far, the values of the 

positions agree with those obtained from Eq. (1) and, thus, all the estimations of the 

previous subsections are valid. If n+ k is even and k#O, n, we use these estimates to 

show that e,‘,k >O, ez,k (if k=O or n, we already know that e,‘,k =ef,k). If n+k is odd 

and k<(2n+ 1)/3, we use these estimates to show that e,‘,k ~0, ef,k, and if n+ k is odd 

and k>(2n+ 1)/3, we use them to show that ei,k, e,‘,k ~0. This will prove, by induc- 

tion, the validity of the optimal strategy for every position. 
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As can be seen from Figs. 2 and 3, the only inequalities for which we really need the 

0( l/n’) terms in our approximations are those that claim that es,k =bn,k >O when 

n+ k is odd and kd(2n+ 1)/3, and that e,“,k < 0 when n + k is odd and k 3 (2n + 2)/3. 

Even here, the 0( l/n’) terms are needed only when /1z$. 

5. Variants of the game 

As the reader has probably realised by now, there is no point in flipping back the 

cards after inspection if both players will remember them anyway. This convention 

also allows the game to be played as a game of strategy by players with imperfect 

memories. A O-move now simply corresponds to a decision to end the game, while 

a l-move will mean literally the inspection of one new card, without the useless ritual 

of inspecting an old one too. With these new conventions, it seems natural to allow 

O-moves and l-moves from all positions (even those of the form (n, 0) and (n, 1)) and 

we shall do so throughout this section. 

What is the effect of allowing 0- and l-moves from positions of the form (n, 0) and 

O-moves from positions of the form (n, l)? Since the value of every position in the new 

game is, by definition, nonnegative, some changes are bound to occur but, as we shall 

soon see, the overall effect is minimal. The values of the simplest positions under the new 

rules are given in Table 4. These new values will, of course, influence the values of al- 

most all other positions, but it turns out that the changes are exponentially diminishing 

in n for every k=h with %<c< 1. The new optimal moves from positions (n, k) with 

k < n d 15 are given in Table 5. There are again some exceptions when n < 5 but, apart 

from that, the only difference between Table 5 and Table 2, corresponding to the 

original version of the game, is that a O-move is now used from positions (n, 0) with n 

even. This was to be expected as the values of these positions were hitherto negative. 

The analysis of this version of the game is almost identical to the one carried out in 

the previous section. The only difference is that a second boundary layer now exists 

when I. ~0, caused by the O-moves used from positions (n, 0) with n even. 

Table 4 

The expected values of the simplest positions when 0- and l-moves are allowed everywhere 

k=O k=l k=2 k=3 k=4 k=5 k=6 k=l 

n=l 1 1 
n=2 0 : 2 

n=3 0 0 : 3 

n=4 0 : : 0 4 

n=5 0 0 : 4 0 5 

n=6 0 di * h E 0 6 

n=l &?S &A 7% AS & +% 0 7 
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Table 5 
The optimal moves for n < 15 when 0- and l-moves are allowed 

everywhere 

n=l 21 

n=2 021 
n=3 002 1 
n=4 02101 

n=5 002101 

n=6 0212101 

n=l 21212101 

n=8 021212101 

n=9 2121212101 

n=lO 02121212101 

n=ll 212121210101 

n= 12 0212121210101 

n=l3 21212121210101 

n=14 021212121210101 

n=l5 2121212121210101 

We now turn to the study of variants of the game obtained by restricting the set of 

allowed moves. We have already encountered an example of this kind in Section 4.3, 

where we have assumed that l-moves and 2-moves are the only moves allowed. We 

consider two other restricted versions. 

5.1. Version 1 

In this section we investigate the version of the game in which l-moves are the only 

moves allowed. While there is no question of finding the optimal strategy in this case, 

the analysis of the expected gains from the different positions turns out to be 

interesting. 

If we denote again by en.k the expected gain from position (n, k), we get immediately 

the following recurrence relation: 

en,k=Pn,k(l+en-l.k-l)-qn,ken.k+l, (8) 

where the only initial condition required is e,,. =O. 

It turns out that, in this version, each diagonal en,n_r for a fixed Y forms an 

arithmetical progression, 

e n,n-r =ay,n+p,. (9) 

By substituting this relation into (8), we can prove (9) by induction and get the 

following recurrence relations for Y > 1: 
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where a0 = 1, /IO =O. By expanding the definition of a,., we get 

c(, =(_ 1)’ 2.4...2r 1 1.3 1.3.5 

3.5...(2r+ 1) 
l-2 +2-m+“’ 

+(-1)’ 
1 .3...(2r-1) 1 2.4...2r ’ 

Recalling the Wallis product 

rt 2.2.4.4.6.6... 
2 =1.3.3.5.5.7../ 

we have 

The terms inside the square bracket have decreasing absolute values and alternating 

signs. By Leibnitz’s theorem, the limit of the sum of this series exists as Y+ co, and can 

be shown to be $12. 

We conclude that 

7c 0 
1/2(-l)r 

u,- - 
8 J’ 

Similarly, we can expand the definition of /I, and get that 

/II=+.(C(I-l)-+.(rX_-l -l)++.(C(I_2-l) 

-...+f.(-l)‘(cco-l), 

or, equivalently, 

Since CC, -(n/8) ‘j2( - l)lv P1’2, we immediately get that 

fir- ; 0 1’2( - 1,rJ;. 

Hence, if n-k-+ co then 

e n,k=C(n-kn+bn-k 

and, in particular, 

The behaviour of the en,k as well as the method used to find it are, therefore, quite 

different in this case. 
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5.2. Version 2 

In this section we check what happens if 2-moves are the only moves allowed. The 

analysis in this case can serve as an introductory example to the use of the bootstrap- 

ping method of Section 4.3. We omit the details but point out that, in contrast to what 

we have seen so far, the parity of n + k does not play a major role, unless ;1= k/n z 1. 

The asymptotic expansion for en,k obtained by bootstrapping is 

2 2 16-64jV+64i2 - 19j.3 1 

e”*k=4(2-j_)(1-i.) + 16(2-/I)’ (1 -i)’ ‘n 

64- 144i.+216E.2 - 1981.3 +69Eb4 1 
+ 

64(2-i)3(1-3.)3 ‘7 -I-‘.. 

and is again valid whenever I. is bounded away from 1. 

6. More possibilities 

How should one play against players who only use l-moves? The optimal strategy 

against such players is to play l-moves from positions (n, k) with n + k even, and 

O-moves from positions (n, k) with n + k odd. The expected gains are then the absolute 

values of the corresponding expected gains when both players are always using 

l-moves. This is just version 1 of the game analysed in the previous section. 

How should one play against players who only use 2-moves? The optimal strategy 

here is to play l-moves from “almost” all the positions. The exact details here are more 

complicated and not entirely known to us. 

What happens if the objective of the players is to maximise their probability of 

winning? A position is now characterised by a triplet (n, k, I), where 1 is the lead of the 

player to play next. The lead is the difference between the number of pairs held by the 

two players. When a player is in the lead, or at least even (i.e., />O), her optimal moves 

are almost identical to those of the gain-maximising strategy. If a player is trailing 

behind, then she has no other choice but to take her chances and play 2-moves 

whenever O-moves are suggested by the gain-optimising strategy. Obtaining an exact 

formulation of the optimal strategy here is an interesting problem. 

What happens if more players join the game? The right move to make depends in 

this case mainly on (n-k) mod p, where p is the number of players. The optimal move 

from position (n, k) in the three-player game, for example, is a O-move if n-k = 2 and 

k 3 3, a l-move if n-k = 0 and k 2 1, and a 2-move otherwise. All these congruences 

are, of course, modulo 3. 
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We assumed in this paper that the players have perfect memories. What happens if 

the players have imperfect memories? 

7. Concluding remarks 

The optimal strategy for playing the memory game turns out to be very simple. The 

analysis and proof presented here were however extremely involved. Is there an easier 

way of proving the results stated in Section 3? 

While the results of this work are mainly of recreational value, we hope that the 

methods used here will prove useful elsewhere. We would like to stress again the 

indispensable role played in this work by experimentation and by automated sym- 

bolic computations. 
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Note added in proof. After completing this work, we heard that Sabih H. Gerez and 

Frits Gobel [l] had previously considered the analysis of the memory game. They had 

empirically found the optimal strategy of Section 3 and explained parts of it theo- 

retically. They also considered the version of the game in which O-moves are not 

allowed. They discovered that in this version a surprising move optimises the expected 

profit from positions of the form (n, n- 1) where n38. In this move, a new card is 

flipped in the first ply. If this does not match any known card, a second new card is 

flipped. But if the first card flipped does match a known card then an old card not 

matching the first card is chosen in the second ply. This sacrifice deliberately leaves 

a matching pair on the table! The next player would collect this pair but then be in 

a similarly awkward position in which the sacrifice move is again optimal. With this 

new move e,, n _ 1 z - 312 + 5/2n. 
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