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In this paper we construct a simulation of a Turing machine by cellular automata based on the 

equivalence between programmable machines and Turing machines. For this class of cellular 

automata we prove that the associated limit language is regular. We also introduce algebraic 

characteristics which reduce the study of the complexity of the limit language to the analysis of 

a class of one-symbol languages. 

1. Introduction 

Let (S, r,f; F) be a linear cellular automaton (CA): S is the finite alphabet (or state 

set), Y is the neighborhood radius, f: S 2r+ ‘-+S is the local rule and F: S”+S” is the 

global transition function associated with ,f; i.e. (F(c))~ =f(Ci -r, . . . , ci, . . . , Ci +,) for all 

ieZ and CES’. 

To study some aspects of the asymptotic dynamics of CAs, Wolfram [18] intro- 

duced the notion of limit set associated with a CA, A(F)=ntao F’(S”), which 

represents the configurations with infinite preimages. Let us define the language 

associated with the limit set, dp(n(F)), as the collection of all finite blocks contained 

in the configurations of A(F). It is well known that, for finite time, i.e. 

n;=O F’(S”)= Fq(S’), th e associated language 2’(Fq(S”)) is regular [16]. Wolfram 
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[lS] set the problem whether for any CA, the limit language 9(11(F)) is regular. This 

question was answered by Hurd in [8], where some examples are given of CAs which 

limit sets have nonregular context-free or non-context-free context-sensitive, or non- 

recursive enumerable limit languages. Another result was furnished by Cullik [3], who 

showed that the limit language of some CA that simulates the dynamics of any CA is 

nonrecursive enumerable. 

For the most complex limit languages obtained by previous authors, they had to 

simulate universal Turing machines by CAs. Based on this result, one could think that 

the computational complexity is always translated to the limit language. In this paper, 

we prove that it is not true, i.e. there exist CAs that simulate any Turing machine (TM) 

whose limit languages are regulars. 

In Section 2, we propose a morphism between programmable machines (PM) and 

CAs. By using the Minsky’s equivalence between TM and PM, we construct a CA that 

simulates any Turing machine. This simulation is used to prove the results on the limit 

language in Section 3. 

In Section 3, we study the limit language complexity associated with the CA 

developed in Section 2. Here, we introduce the concept of perturbation for a PM, that 

is a modification of the original PM keeping the finite-time behaviour, but introduc- 

ing inverse dynamics for some instructions in the PM program. Using perturbed PM, 

we prove that it is possible to simulate a universal TM by a CA whose limit language 

is regular. From this result we can see that there is no direct relation between 

computational complexity of a CA and the limit language complexity. 

In Section 4, we study the limit language for nonperturbed PM. We prove that the 

CA which simulates a universal Turing machine has nonrecursive enumerable limit 

language. For more general PM we establish that the regularity of the limit language 

depends on the finiteness of some algebraic characteristic of the PM. This finiteness is 

reached by the perturbed PM. Also, we prove that CAs simulating a finite automaton 

have a finite characteristic, thus a regular limit language. 

Finally, in Section 5, by considering general perturbed PM, we recover the same 

classes of limit languages as exhibited in [S]. Moreover, we introduce a finite 

algorithm to study the limit language complexity for the CAs associated with this class 

of programmable machines, which depends only on the associated connection graph. 

2. Universal cellular automaton 

We will give a simulation of a Turing machine by a cellular automaton. This 

construction will allow us to study the limit complexity in Section 3. For the 

construction, we use the classical equivalence between Turing machines and pro- 

grammable machines established in [ 151. 

Throughout this paper we define a Turing machine, MT, as the octuple MT= (Q, A, 

a, j?, y, qs, qh, b). Q is a finite set of inner states, qs, q,,EQ are an initial and a final state, 

respectively. The set A = I u W is a finite alphabet, where we distinguish the input 
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alphabet I and the work alphabet W, bE W is the empty letter. Finally, r, 0, y are the 

transition functions associated with internal states, symbols and head translations, 

respectively: 

a:(Q\{q,t))xA-t~(Q)> 

P:(Q\{q& x A-tWW, 

>~:(Q\{q,,})xA+I-1, 11. 

A programmable machine, M,, is the triple M, = (3’,9’, 9). Here 9 = { Ri , . . . , RN} 

is a finite collection of registers storing nonnegative integers, the set 4= {II, . . . , Is} 

corresponds to the permissible instructions over the registers and 9 =(pl , p2, . . . , pko) = 

(Ij,, . , Ijku) is a program with k0 instructions belonging to the set 3. 

The dynamics of a programmable machine consist in updating the registers Rj, 

j= 1, . . . , N, according to the program from an initial condition at the registers. 

The set of permissible instructions can be summarized as follows: 

Rf : Add one in the register Rj, and go to the next instruction. 

R,:(n) : Subtract one in the register Rj if it is not empty, and go to the next 

instruction. If Rj is empty, go to the nth instruction of 9. 

Go(n) : Go to the nth instruction of 9. 

H : Halt instruction. 

We identify a programmable machine, M,, with its connection graph G(M,)= 

(,+‘(M,), t”(M,)). The set of nodes is ,4’(M,)= {nl, . . . , nk,,j, where ni=(i, pi) for 

i= 1, . . . , ko. An edge (ni, nj)EB(M,) if the instruction j is attained in one step from 

instruction i. 

Often, the nodes Iii = (i, pi) are referred to indistinctly by i, which codes the instruc- 

tion number, or by pi, referring to the type of instruction. 

We support our simulation in the following equivalence theorem between Turing 

machines and programmable machines. 

Theorem 2.1 (Minsky, [15]). (1) Given a Turing machine MT, there exists a pro- 

grammable machine M, which simulates it with two registers Z= {A, Bj. 

(2) For any programmable machine M,, there exists a Turing machine MT which 

simulates it. 

It is important to point out that the equivalence is established by using simple 

connections of a finite number of two kinds of blocks: the increment block, IB, and the 

decrement block, DB, as is shown in Fig. 1. This remark will be cross-shaped to study 

the complexity of the limit set. 

2.1. Cod$cution cf a programmable machine by a cellular automaton 

From Theorem 2.1, we see that a programmable machine with two registers is 

enough to simulate a universal Turing machine. This result leads us to construct a CA 

which simulates any programmable machine with two registers. 
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B+ 
Go 

GO 

r-A-1 A+-l 

1 A-6. 

t 

c B- 
A+ 
Go 

IB DB 

Fig. 1. Classical blocks of instructions which compose the equivalent programmable machine given in 

Theorem 2.1. In block IB the size of the blocks of states E+ vary from 2 to 7. Similarly, in block DB the size 

of the blocks of states A- and A+ are the same and vary from 2 to 7. 

Let M, be a programmable machine with two registers. From an initial condition at 

the registers A and B, the programmable machine runs accordingly with the program 

9. At each step, only one instruction of 9 will be active which updates the corres- 

ponding register. In order to achieve this process, the corresponding register has to be 

reported, and once the operation is done, the central unit of the program has to 

change to the next instruction, and so on. 

In our simulation, the cellular space is divided into three sectors: (a) register A, (b) 

register B, (c) central unit of instructions (CUI). The communications are carried by 

states, called vehicles. 

The states of the simulation are the following: 

Ql=iO) : quiescent state 

Qz=CF/i,Fe) : delimiters for the registers 

Q3={A+, A-, B+, B-, G} : states associated with each type of instruction 

(A+, A-(n), Bf, B-(n), Go(n), respectively) 

Q4={r,l3 : states associated with the end of the execution of 

each instruction (Y with register A and 1 with 

register B) 

Q~={~,,...,q,) : states associated with the nodes of the program 

9 of M,. 

Then, S= us= t Qj and 1 S I= k. + 10, where k. is the size of P. 

For the simulation, the cellular space distribution is shown in Fig. 3. There, the 

contents 1 A 1 and I B 1 of the registers, are coded by a sequence of zeros of size I A I and 

IBI, between the corresponding markers and the central unit. The markers FA and FB 
are repeated infinitely to the left and right of the coded contents IAl and IBI. 

All the states in Q3uQ4 act like vehicles. We will call right vehicles the states 

B+, B-, G, r and left vehicles the states A’, A-, 1. A right vehicle will be denoted by 
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P Registers 

i;,-/A 
Active + ij -A 

Instruction : 
$72 

B 

Fig. 2. The active node nj=(i,, A+) sends a vehicle A+ to the corresponding register. When the instruction 

has been carried out, it sends, to the central unit, a new vehicle r to make active the next instruction. The 

case nj=(ij, A-(m)) is analogous except when register A is empty. In this case the instruction M is 
immediately activated. 

F,F,O ... OinjdO ... OF,F,.. 

Register A Central unit Register i3 

Fig. 3. Cellular space distribution; ie{r, A+, A-, 0}, dE{l, B+, B-, G, 0) 

R and a left one by L. This name is according to the type of action that they realize (see 

Table 1). 

Definition 2.2. (1) A configuration CES” is a “simulating configuration” (SC) if 

(a) it takes the form of Fig. 2, and 

(b) the central unit is Vinj V,,, where Vi =0 or the vehicle associated with nj=(j, pj) 

ifpjisA+ orA_, and V, is analogously defined as Vi, but in register B. If pj = G then 

Vd=G. 

(2) A configuration cOeSZ is an “initial SC” (KC) if 

(a) c0 is a SC and 

(b) the central unit is Vin, Vd. 

From an ISC, cO, the automaton develops a sequence (c,),~ I of SCs such that if c, 

and ct+l have central units (Vi, nj,, V,) and (Vi, nj,+,, Vd), respectively, then 

(1) if nj, =(j,, A +), the vehicle A+ runs up to FA, erasing it, and generating a return 

vehicle, the state r, which runs up to the central unit activating the next central unit 

(vi3njt+,, Vd) OfC,+1, 

(2) if nj~ =(jt, A-(n)) it is analogous to (l), but adding one delimiter FA, if the 

subtraction can be done. If not, the next state is automatically activated; 

(3) if nj, = (jt, G), this vehicles runs up to delimiter FB and returns the state 1 without 

change at the register. 

The cases of B+ and B- are analogous to (1) and (2), respectively. 

Recall that the sequence (c,),, 1 does not appear in real time except when the central 

unit changes. In fact, time depends on the size of the registers. 

This CA is characterized by its local rule, f; given in Table 1, which has a neighbor- 

hood radius r = 3. The choice of r = 3 is made in order to solve the case of an empty 

register with an instruction A-. The table is divided according to the different kinds of 
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Table 1. Local rule for the CA constructed Section 2. “.” represents an arbitrary state in S, R represents 

a right vehicle and L a left vehicle 

(1) Vehicles R(x#L,y#L) 
L(x#R,y#R) 

(2) Vehicles and markers BC Fs Fs 
x is+ F, 

(in A is analogous) R B+ F, 
x r F, 
R r FB 

I 

0 (x#R) 
R 
0 (x#R) 
R 

0 B- FB F, 
0 B- F, 

x 0 E- F, 
R 0 B- FB 

FB 
FL3 
1 (x#R) 
0 

G F, FB 
x G F, 
R G FB 

FL3 
1 (x#R) 
0 

(3) Special rules for markers x F, 
F, x 

0 FB FB Y 
I’ F,, F, 0 

x FA 
F, x 

0 (.Y #F,) 

0 (xZFB) 
F, (YZFA) 
F.4 (Y f FE) 
0 (xfF..t) 
0 @#FB) 

(4) Interactions with 

instructions ni n, if nj=(j, H) 

I ni y 

0 nj 1 
Valid for instructions 

associated with register B 0 n, I 

0 nj I 

flj (Xy#Ol) 

nj+, if n,f(j, Gob)) 
nk if n,=(j, Go(nk)) 
0 ifn,+, associated with B 

A+ V Am if nj+l associated with A 
0 ifn,+, associated with A 

B+, B- V G if n,,, associated with B 

n,=(.L B-h)) 0 njB-F, .O if n, associated with A 
E+, B- V G if n, associated with B 

n, Em F, n, 
0 n, B- F, 0 if nk associated with B 

A+ V A- if n, associated with B 

(5) Other cases 0 

interactions between the states. For simplicity, we just describe the rules for one 

register. For the other register, the rules are analogous. Observe that the rules are not 

disjoint from one item to another; however, the rules will be understood according to 

their actions. The transitions that can be done with more than one rule take the rule 



Limit set of uniwrsal cellular automata 59 

t Register A cur Register B 

1 .)’ F, F, 0 0 0 A- ,I, 0 F, F, F, F, FB FB ... 
2 .. F,A F,A 0 0 A- 0 11, 0 F, F, F, F, F, FB ... 
3 F, F,d 0 A- 0 0 nI 0 F, F, F, F, FB FB ... 
4 . F,, F, A- 0 0 0 n, 0 F‘B F, F, F, Es FB ... 
5 ..’ F, F,d F, r 0 0 n, 0 F, F, F, F, FB FB ... 
6 F, F, F‘a 0 r 0 n, 0 F, F, F, F, F, FB ... 
7 F, F, F, 0 0 r n, 0 F, F8 F, F, F, F, 
8 ... F, F/, F, 0 0 0 n 2 B+ F, F, F, F, Fs Fs ... 
9 ... F, F,A F, 0 0 0 n2 0 I F, F, F, FB FB ... 

10 F,d F, F, 0 0 0 n2 I 0 0 F, F, F‘s Fs ... 
11 F, F, F, 0 0 0 n3 B+ 0 F, F, F, Fs F8 ... 
12 . Pa F, F,, 0 0 0 n3 0 B+ FB F, FB F, FB ... 
13 ... F, F, F, 0 0 0 )I2 0 0 I F, Fe Fs Fs ... 
14 . . F, F,d F, 0 0 0 11~ 0 I 0 F, Fs FB FB ... 
15 F, F, F, 0 0 0 11~ I 0 o F, FB FB Fs ... 
16 F,A F, F, 0 0 0 n4 G 0 0 F, F, F, F, 
17 ... F., F, F, 0 0 0 n4 0 G 0 F, FB Fs FB ... 
18 F,, F., F, 0 0 0 n4 0 0 G F, F, F, F, ... 
19 F‘ F‘, F, 0 0 0 n4 0 0 I F, FB f’s FB ... 
20 . . F, F, F, 0 0 0 n4 0 I 0 F, F, FB FB ... 
21 ... F, F, F, 0 0 0 n4 I 0 0 F, FB FB FB ... 
to .” F, f, F.4 0 0 A- n1 0 0 0 F, FB FB FB ... 

3t, ... F,, F, F., F, F.4 A- n, 0 0 0 0 0 0 0 F,FB 

3t,+j,j>l ..’ F, F,, F, F, F, 0 H 0 0 0 0 0 0 0 FsFB 

Fixed point 

Fig. 4. The dynamics of the PM of Example 2.4, beginning with contents 1 A/ = 3 and IBI =0 at instruction 

n,. When the contents at the registers are IA 1 =O, I Bl= 6, the halt state is reached in 66 iterations. 

that is made explicit for the case. An example of the automaton dynamics is given in 

Fig. 4. 

It is important to note that the simulation depends on the number of instructions k0 

of the programmable machine. The set of states S has cardinality 1st = k, + 10. 

However, this point is not relevant to calculate the limit set of this automaton. 

Now, we will make explicit the sense of our simulation. For this purpose we 

introduce the following definition. 

Definition 2.3. Let M,= ({A, Bj, 9) be a programmable machine and F(M,) be the 

CA defined by Table 1. Let c0 be an ISC for M, and (cot3 1 be the SC generated by 

F(M,) from the initial configuration co. On the other hand, let (A,),20, (BJtao be the 

sequences of integers in the registers A and B generated by M, from the initial values 

A,, Bo. 
Denote by cp and cf the contents of the registers A and B in the SC, {crjr>- 1. We say 

that F(M,) simulates M, if 

&=A0 and ct=Bo G- c;‘=A, and cfB=B1, Q’t31. 
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Let us consider a Turing machine MT and the programmable machine M,, 

associated with MT, by Theorem 2.1. For M,, we can determine a CA, F(M,)=F, 

which simulates it, in the sense of Definition 2.2. Then, we say that F simulates MT, in 

the same sense. Observe that the programmable machine considered in this simula- 

tion is a simple connection of blocks DB and IB (see Fig. 1). 

We will say that a CA, F, is universal if it simulates a universal Turing machine. 

Since a programmable machine may simulate a universal Turing machine, previous 

cellular automaton is computational universal. 

Example 2.4. Let M,=({A, B}, {A+, A-(n), B+, B-(n), Go(n)}, 9’), with P=((A-(5), 

B+, B+, Go(l), H). This programmable machine multiplies by two the content of 

register A, and stores the result in register B. The simulated CA is given in Fig. 4. 

3. Limit complexity for the universal CA 

Let MT be a Turing machine and F a one-dimensional CA simulating MT via its 

associated programmable machine. For F, define the associated limit language as 

_Y’F = _Y(/1 (F)) = 9 (fl ia o F’(S’)), which represents all the finite blocks that appear in 

configurations of the limit set A(F). 

In this section, we characterize the limit languages for some kind of simulations, F, 

based on the scheme given in Section 2. We prove that the limit languages, =9’~, are 

regulars for any Turing machine MT. In this case, $ is a regular codification of MT. 

First, let us introduce some definitions. 

Definition 3.1. Let M, = (93,X, 2) 

9?.={R1,..., RN}. Consider the set 

jc(l, . ..) k,} and some k~{l,...,N}). 

be a programmable machine, with 

@={ni~J+‘(M,)Ini=(i, Rk(j)) for some 

(1) For each ni~P define the associated “subblock” or “external loop” as the 

following pair of instructions: 

nil =(j’, R;(i)), 

ttiz=(i2t Go(i’)), 

where the sets {i’ 1 ,i~.~) and { i2 1 qc@} are disjoints, ordered from k0 + 1 to the finish 

and such that i2 = i’ + 1. 

(2) The perturbed programmable machine, Mb, associated with M, is 

Mb=(.%?, 9, P’), where 9’ is the program constructed with 9 and the subblocks 

associated with @. 

Example 3.2. Consider the programmable machine M, defined through the graph: 

I J 
~-(4)+B++yl)+H 
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We can extend this concept for a Turing machine, taking the perturbed programm- 

able machine associated with it, by Theorem 2.1. 

Definition 3.3. Take the Turing machine M,. Let M, be the programmable machine 

associated with it (by Theorem 2.1) and Mb its perturbation. Consider the cellular 

automata F, F defined in Fig. 2.4 that simulate them. Then 

(1) F will be called the normal simulator of M-r (NS), 

(2) F will be called the perturbated simulator of MT (PS). 

This concept allows us to study the inverse dynamics associated with the CA and 

regularize the limit languange. 

Theorem 3.4. Let F be the associated PS of’s Turing machine M,. Then 9~ is regular. 

A detailed proof of this theorem is difficult; so, we divide it in two parts. The 

complexity of the limit language depends strongly on the type of interactions between 

states belonging to the same configuration. The states of each configuration can be the 

markers FA or Fs, vehicles, states associated with the instructions and the quiescent 

state 0. So, we must take into account the relations between such states and partition 

the set of configurations according to the type of interactions that they can support. 

In the first part of the theorem, we consider the set of configurations that have 

interactions between at most two types of states in a background of zeros. So, we 

consider interactions of a state with itself, interactions between markers and vehicles, 

between markers and instructions and between vehicles and instructions. We prove 

that the associated components of the limit language for this class of configur- 

ations are regular (Proposition 3.9). These configurations are called nondynamical 

configurations. 

In the second part of the theorem, we study the limit set components associated 

with configurations which have interactions between markers, instructions and ve- 

hicles in a background of zeros. These kinds of configurations introduce the problem 

of the inverse dynamics of the simulated programmable machine. These configura- 

tions are called dynamical configurations. In this case, we also prove that the 

components in the limit language are regular (Proposition 3.13). In Proposition 3.13 

the perturbed cellular automaton F” associated with F is cross-shaped. 

To prove the first part, we need several lemmas, with easy proofs, that charac- 

terize l? 

First, let us show that all right vehicles must appear at the left side of a left vehicle in 

the limit set 
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Lemma 3.5. Let LE{A +, A-, 13 and RE{B+, B-, G, t-1; then 

{LO*R} n5!~=@ 

Proof. It follows directly from the definition of the local rules. 0 

Now, we prove some technical results which allow us to describe the configurations 

of the limit language containing markers. 

Lemma 3.6. I~XE(Q~UQ~UQ~UQ~)*, then 

6) 

(ii) 

(iii) 

(iv) 

(v) 

(vi) 

(vii) 

(viii) 

(ix) 

6) 

{F,XF,jnY~=t?J. 
tfx~{B+, B-, G, r> uQs and YES*, then 

{FsYX}nS?f=O. 

[fXe{A+, A-, I}uQ5 and YES*, then 

{XYF,jns?f=0. 

If x@QluQ3uQ4uQ5)* and YdQ1uQ3uQ4uQ5h then 
{F,YXFB}ns!~=O, 
{FAYXFA}n2J~=0. 

If XE{B+, BP, G}, then 

(F,O*X}nS?~=fj. 

IfXe{A+, A-}, then 

(XO*FgjnYp=@. 

If RE{B+, B-, G, r) und LE{A+, A-, l}, then 

{F,O*rO*R)nYF=@, 

{LO*IO*Fs}n9~=qJ. 

J~XE{A+, A-, I, B+, B-, G, r} then: 

{FA(X V 0)*X(X V O)*F,)n9F=0. 

Proof. We just prove (i) and (ii); the other cases are analogous. 

(i) From rules (2) and (3) in Table 1, it follows directly to get that the markers FB 

generate their sequence moving to the right in the preimages, and the markers FA 

generate a similar sequence to the left. But the words F,XF, and FBFA do not have 

preimages by F”; then these kinds of words do not belong to the limit language: 

FB FA FB FA 

FBl Ji^ ““I Jr’ 
FBXFA FBFA 

(ii) As in the previous proof, every marker Fs must have another marker FB at the 

right in the preimage. If XEQ~, the reverse dynamics form a vertical block of 
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instructions in the preimage. This and the first point show (ii): 

FB Y x 

: sQ5 

FB 4Q5 

If X is a right vehicle, it follows directly from (i), Lemma 3.1 and the first part that we 

just have to analyse the case of the word FBO*R. But the markers FB do not produce 

any right vehicle; then this word is not in the limit language: 

F, 0 0 OOOR 

FB R 

Fs 0 R 

FB 0 

Now, in the next lemma we establish the relations between states nk~Qs and 

vehicles. For this purpose, we partition Q5 as follows: 

where 

I,’ ={nk=(k, pk)cQ51pk=e+}, e= A, B, 

1; =fn,=(k PdEQ51pk=em(n), ~EQ,}, e=A, B, 

~,=In~=(k,Go(j))~Q~Ij~{l,...,k~}j, 

ZH=jnk=(k, H)EQ~). 

We associate with each nkgQ5 the left vehicle (LV) and right vehicle (RV) by 

VL(n,)=LV associated with nk= 

(B’ n&Is+, 

VR(n,) = RV associated with nk = 
B- nkgI;, 

G nkEIG, 

0 -. 

It follows directly that VL(nk)=O or VR(nk)=O. 

Lemma 3.7. Let nkEQ5 and RE{B+, B-, G, r>, LE{A+, A-, I>; then: 

(i) {nkO*r} nIpe=@, 

(ii) {IO*nkj nYF=@ 

(iii) (LO* VL(nk)O*nkO* VR(n,)) nYf=@ 

(iv) { VL(nk)O*nkO* VR(nk)O*R} nYp=@. 
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Proof. We just prove (iii). Without loss of generality, suppose nk=(k, B+). Then 

VL(nJ=O, VR(nk)=B+. Assume that there exists nj~Qs such that (nj, ~JE~(M,). 

From rules (4) in Table 1, the states of instructions form a vertical block in the 

preimages, and the active instruction is deactivated only when the instruction has 

a state I at the right, if the instruction is associated with register B, or a state r at the 

left in the other cases. The situation is the following: 

L o* 0 nk II+ 

i nj j 

There are two cases: 

(1) If i=r, j=O, we conclude the proof by Lemma 3.5. 

(2) If i = 0, j = 1, we conclude the proof because nj is associated with B. 0 

From previous lemmas, the general structure of the limit words is the following: 

(R v O)*w,F;w&w3(L v o)*, 

where wi, w2, WOES* are determined by the existence of markers and states of 

instruction in the limit word. 

Definition 3.8. Let M, be a Turing machine and G(M,) the graph of its associated 

programmable machine. Consider a node ni=(i, pi)E,~“(M,). 

(1) The set of infinite preimages associated with ni is defined as follows: 

d(ni)=(aE({ni} x(~(Mp))“) I(aj+l> aj)Eb(“p) for j> 1 

and (~1, n&~(M,)}. 

(2) The set of predecessors associated with ni is defined as 

dl(ni)=(njEAr(Mp) I (nj, ni)E&(Mp)}. 

Now, we can prove the first part of Theorem 3.4. 

Proposition 3.9. Let MT be a Turing machine and F” the PS which simulates it. Then, the 
limit language component associated with nondynamical configurations is regular. 

Proof. We have to go over all the words that belong to configurations which have 

infinite preimages by l? In this proposition, we just consider words containing at most 

two types of states interacting in a background of zeros. We will describe, with the 

usual notation of regular languages, each component of the limit language. Denote by 

n(F), these components and, in the case il(~)i is partitioned, we denote its compon- 

ents by /i(F”)i,j. 

Recall that RE{B+, B-, G, r} and LE{A+, A-, 11. 
(1) Vehicles interaction. From Lemma 3.5 and rules (1) in Table 1, the only 

associated component in the limit language is 

/l(F), = {(R V O)*(L V O)*}, 

which is a regular language. 
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(2) Interaction between vehicles and markers. From previous lemmas, the general 

structures of this type of words 

{%F.‘rF%~z(L v o,*j, 

{(R v o)*fi8,FBF;%}, 

{M.‘J‘J;!4’ZFB*FBW& 

From Lemma 3.6(viii), (iii) and 

are 

(3.1) 

(3.2) 

(3.3) 

rules (2) in Table 1, in (3.1) w1 =((R V O)*O) V 5 and 

w2 =O*(r V E,), where 5 is the empty word. Analogously for (3.2). In (3.3), Lemma 3.6(x) 

(iii) imply that w1 =((R V O)*O) V 5, w2 =O*, wj = (O(L V 0)*) V 5. So, the associated 

components of the limit language are 

A(F),, = { (((R V O)*O) V ~)F,J1;0*(r V 5)(L V O)*), 

/1(&z = {(R V O)*(I V UO*F$F,((O(L V O)*) V E)}, 

/I@),,= {(((R V O)*O) V E,)F,F;O*F,F,*((O(L V 0)*) V k)}. 

Then, il(F)z=u:=r n(F’),i. 1s a finite union of regular components. Note that in this 

case a simple interaction of markers was considered. 

(3) Interaction between instructions and vehicles. We study the components of the 

limit language that contain only the vehicles R or L, and nodes nkEQs. We divide the 

study according to the number of states nkEQ5 that are present. 

(3.1) One instruction. From Lemmas 3.5 and 3.6, the structure of the words with 

one instruction is the following: 

(R V 0)*w,nkw2(L V O)“, wQs, wl, WE{& R, L)*. 

Since nkEQs are fixed in the absence of vehicles, a first component is 

A(%i(nk)={(R V O)*nG V O)*}, n(F)), = u 4&l(%). 
W‘EQ5 

When nk~Qs and C&l(nk)#@, Lemma 3.7 gives the following limit component: 

n(%(n,J={(R V O)*(VL(nJ V C)O*n&*(I’R(n.J V ML V O)*} 

and 

(3.2) Two instructions. Let nk, nlEQs. By previous lemmas, the general structure of 

the limit words is the following: 

(R V O)*w,nkw2n,w3(L V O)*, 

where w1 has at most a vehicle VL(nk), w2 has at most two vehicles, VR(n,) and VL(nl), 

and w3 have at most a vehicle VR(nl). 
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As in (3.1), a direct component is the following: 

#)3&k, nJ={(R V O)* 48*4(L v o)*}, M)33 = u 43(&k 4). 
(nk,nhQ: 

In order to add vehicles in the words, we must require .&i (nk) # 8 or &’ I (al) ~8, but 

this is not enough. It is necessary to define some compatible conditions over the pairs 

(nk, nl)~Q:. We say that (nk, nl) is compatible with class c(i) for i= 1, 2, 3 if it satisfies 

the corresponding property defined below: 

c(1): JsJ~(Iz,J~(IA+ u1,)#8 and &,(n,)n(1,f WI, uIG)#O, 

c(2): &1(YlJn(l,+ ur,)#8, 

c(3): d,(nJn(l,+ ul; ul,)#0. 

These conditions ensure that the change of instruction in the preimage is done from 

the outside of the interval of cells between nk and nl. Then, the limit components which 

are added in each case are: 

If (n,, n&c(l) then 

4&&r,, nl)={(R V O)*(VL(n,) V S)o*~o*U’~(n,) V 5) 

o*( VL(rr[) v k)O*n[O*( P(nJ v E)(L v o)*}, 

NO,,= u N%,(% 4): 
(nkSnl)Ec(l) 

if (nk, n,)~c(2) then 

n(&(n,, nJ= ((R V O)*(VL(n,) V S)O*n,O*(VR(n,) V 5)O*W V O)*>, 

4%= u N&(% nJ: 
(nk,nl)Ec(2) 

if (nk, n,)~c(3) then 

/1(&&k, nl)= {(R V O)*nkO*(VL(nJ V 5)0*nAl*(VR(nJ V k)(L V O)*}, 

m36= tJ 4~),&h 4). 
(nr.nr)Gc(3) 

(3.3) A jinite number of instructions. Let (nk, nk,, , nkp, nl) be a finite family of 

instructions in Qs. As in (3.2) the unique components of the limit set are related to the 

class of compatibilities of the pair (nk, nl), and the general case without vehicles is 

A(F),,={(R VO)*(n V O)*(L V O)*}, n=nl V n2 V ... V nko, 

niEQs, i= 1, .., , ko. 

If (n,, n[)Ec(l) then 

A(F”h(nk, nl)= {(R V O)*(VL(nk) V S)O*n,O*(v”(nd V 5)(n V 0)* 

(VL(nl) V &JO*n,O*(V”h) V 5)(L V O)*>, 

m38= iJ ~(~)38h, 4 

(nr,nl)Ec(l) 
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If (nk, ni)~c(2) then 

~(~)39(&, nJ= {(R v o)*(vL(n,) v S)o*%o*(v”(n,) v 5) 

(n v O)*nl(L v o)*), 

M),,= u MM%, Q). 
(nr.n,)Ec(2) 

If (n,, n,)~c(3) then 

A(F) 3, io(n,, nl)= {(R V O)*n,(n V o)*(VL(n,) V 5)0*niO* 

(VR(n,) v 5)(L v o,*>, 

A(F) 3.10= u 403. Id%, h). 

(w.n1)tc(3) 

Then A,(P) = Ufz 1 n,j(F1) produces a regular component because it is a finite 

union of regular components. Note that the case where the interaction occurs between 

instructions is covered by this point. 

(4) Interaction between markers and instructions. It is not difficult to see that the 

only component associated in this case is 

A,(F)= jO*F:(n V O)*Fs*O*), 

where n=nl V n2 V ... V nko, nicQs, i= 1, . . . , kO. 
In (l)-(4) above, we have studied all possible nondynamical interactions between 

states of l? The complete component that results is A’ = uF= 1 Ai( which is a finite 

union of regular components. Then, A’ is regular, and the result is proved. q 

Note that the result established in Proposition 3.9 does not depend on the perturba- 

tion introduced in A4,. 

Now the problem of regularity has been reduced to the study of the components of 

the limit language associated with the dynamical configurations. To begin the study of 

this kind of configurations, it is useful to introduce the following definitions over the 

graph associated with a programmable machine. 

Definition 3.10. Let A4, be a programmable machine and G(M,)=(yll/-(Mp), b(M,)) 

be its graph. 

(1) We say that the edge (Hi, nj)EJ(M,) is of type 1 if 

Pi=Go(n) + j=n, 

Pi + Go(n) =+ j=i+ 1. 

(2) We say that the edge (ni, nj)EB(M,) is of type 2 if 

ni=(i, R;(j)) for some kg{ 1, . . . , N}. 

In general, we make explicit the register where the jump occurs; in this case we say that 

(ni, nj) is of type 2 in R,. 
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This definition makes explicit the differences between the type of actions of the 

nodes. For instance, in the case n, =(l, A-(3)), n2 =(2, A+) and n3 =(3, Go(l)), the 

connections (nI, nz), (n3, nI) and (IQ, n3) are of type 1 and (n,, n3) is of type 2. 

Definition 3.11. Let M, be a programmable machine and G(M,) be its graph. 

Consider the s-tuple of nodes %?=(q,, nil, . . . , ni,). 

(1) % is a path iff (ni,, nie+,)EB(Mp), k= 1, . . . . s-l. 

(2) %? is a circuit iff %? is a path and (ni,, ni,)&‘(M,). 

(3) 9? is a path of type 1 iff (n,,, Izi~+ ,) is of type 1, k= 1, . . , s- 1. 

(4) ~isapathoftype2iff3k~{l,...,s-l}suchthat(ni~,ni,+,)isoftype2. 

In this case, we say that V is of type 2 in (Rj)j,,, J c { 1, . . . , N}, referring to the 

registers where the jumps are produced. 

When the PM evolves from initial conditions in the registers, over a path $7, it is not 

obvious if the run can be made; so, for each path, there are some minimal conditions 

over the registers that need to be satisfied to permit the evolution. For instance, for the 

path V=((l, A+), (2, A-(5)), (5, A+)) it is clear that there is no way to make the jump 

n2+5, independently of the content of the registers. 

Definition 3.12. Let M, be a programmable machine and G(M,) its graph. Consider 

the path %‘=(ni,, . . . , ni,). 

(1) We say that % is legal iff 3(aj)j”,, c N such that if lRjl =aj then %? can be 

traversed from this condition. 

(2) Let V? be a legal path. The base of %’ is defined as 

M(g) = (MI (@I . . . > MN(V)> 

where Mk(%) = min {USE N 1 uk = &, (a”i)l”, 1 makes V legal}. 

(3) Let %? be a legal path. The variation index associated with V is defined as 

a(g) = (OI(@), . . ., IN, 

where 

CT~(%?)= C sigk(ni,, F??), k= 1, , N, 
j= 1 

1 

+ 1 if pi,=Rk+, 

Sig,(ni,, W)= -1 if Pi,=R[(n), n#nij+,, 

0 otherwise. 

With this notation, the minimal result in the registers associated with a run over the 

path %7 is 

m(~)=M(%‘)+a(%Y), 

where “+” is the sum in RN. 
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For instance, take %? = (( 1, A+), (2, B- (1)) (3, A+), (4, Go(l))), for initial contents 

1 A0 1 and 1 II,, 1, respectively, at the registers. At the end of the travel along the path, the 

resulting contents will be IA1=IA,l+2 and IBI=IB,I-1; then 

o(V)=(2, -1x 

M(V=(O, f), 

m(W) = (2,O). 

Now, let us show the following proposition. 

Proposition 3.13. Let M, be a Turing machine and F” the PS associated with it. Then, the 

limit component associated with dynamical configurations is regular. 

Proof. We have to prove that the set of words in the limit language that consider 

interactions between all types of states (i.e. markers, vehicles and instructions) con- 

stitutes a regular language. 

First of all, we study the contents at each register that allow an infinite inverse path 

from an instruction nkE(Q5 \IH) in the program 9 of the programmable machine. Let 

us describe these contents in the following form: 

F.4 LA(%) nk LB(nk) FL,> 

where LA(&) and L,(nk) are words in the one-symbol alphabet (0). 

We divide the study according to the connection type of the elements in .d(nk), for 

all !lkE(Q5\ZH) (observe that IQ51 < + ~8). 

(1) Connections oftype I. Let nk@Qs \I,,). It is easy to prove that one and only one 

of the following conditions holds: 

(i) nk belongs to a unique circuit of type 1. 

(ii) nk belongs to a unique path (which is not a circuit) of type 1, called transient. 

To have an infinite preimage aE&(nk) of type 1, nk must satisfy (i). The circuit 

%? associated with nk must have a negative variation, o(g), in order to make possible 

the inversion. 

With these conditions, an element aE.ti(nk) of type 1 is valid for the inversion iff nk 

belongs to a type-l circuit V and a(%) But, for our simulation, we consider the 

PM constructed by IB and DB blocks, which have circuits with c(G?)$O, and nodes 

corresponding to the external loops of perturbations. which are associated with 

circuits with index a(%?)=( - 1,0) or (0, - 1). In the last case, it is easy to see that the 

structure of contents at the registers is 

FA o* nk o* FB. (3.4) 

(2) Connections oftype 2. Consider the instruction nkE(Q5\ZH) and ac&‘(n,) be of 

type 2, i.e. there exists at least one type-2 connection in a. Let ai = ( ji, A - (ji _ r)) (or 

(ji, B-(ji_ r)) be the first node in a with connection of type 2 and ji_ 1 the instruction 

associated with Ui- 1. To make the transition (ai, ai+ 1 , ) either register A (or B) must be 
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empty at ai. With this condition, the future is determined in either register A (or B), 

but not both. This problem is solved using the perturbed nodes associated with ai. 

Consider the node Ui, and let us denote it by g; if it is associated with A, and by 

gb in the other case, when it is used like a jump. An element in &(ai) is the following 

perturbation circuit or external loop when Ui =ga (the case Ui=g, is symmetric): 

(Ui, iii= A~ (ai), Go(ii,), a’i, GO(a”i), .) 

% 

Since o(V)<O, it is clear that %? is a valid circuit of type 1 for the inversion. 

Moreover, it allows infinite preimages for content zero in A and for arbitrary size in B, 

at Ui (or the symmetric one if Ui=gb). 

Then, the preimages of type 2 for all the nodes are determined, starting from the 

conditional jumps ga and g; . The contents look like 

FA s; 0* Fs and FA 0* g; Fs. (3.5) 

In the sequel we just consider the case g;; the other case is symmetric. We will study 

the evolution of type 1 from expression (3.5). It is clear, from the structure of the blocks 

DB and IB, that expression (3.5) evolves to a circuit V of type 1, such that (see Fig. 5) 

a,(%‘)30 and o,(%)dO. (3.6) 

Let n be an instruction in the circuit % such that 

then 

Ui=g,+(PZi,, nil, ...) flip, 11, ilipt2, ...) yli,)‘V, 

Ui = g, +tni,,... 3 fli,)+(% nip+2> ... > IliT ni,3 ... 9 ni,); 

T %?’ 

GA(T)309 a,(%?‘)>,0 and ~~(%?‘)<0. (3.7) 

Now we study the contents of the registers A and B, that permit the inverse 

evolution through circuit %?’ and transient T from instruction II. 

It is clear that, when we travel T, the contents reached at instruction II must satisfy 

the equations 

IAI=m,(r)> IBl3%(T). (3.8) 

F, a, 0* Fs 

FA 6, 0* Fs 

F, Go(&) 0* Fs 

Fl4 0 cii 0* FB 

FA 0 Go(&) 0* Fs 

F* 0 0 d, 0* Fs 

Fig. 5. The preimages associated with the perturbation node &. 
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From equations (3.8) for each travel of the circuit %‘, the new content in register A at 

instruction n is 

lA/=mA(z)+ko,(%‘), 

where k represents the kth iteration of %“. 

In register B, to obtain an inverse dynamics from the kth iteration of V at 

instruction n, we have to verify the condition IBI >m,(W). For this condition, it is 

necessary, at the beginning of the travel after the transient r, to have 

IB1amB(W)-kg,(W) (3.9) 

and in the jump instruction ui it is verified that 

IB13ms(~‘)-kaB(4’)-a,(r). (3.10) 

On the other hand, the content of B which allows the travel of 7 is M,(7); then 

ms(%“)- koB(W) - gB(7) 3 MB(~). (3.11) 

So, it is necessary that 

k>%w-,nBw) 
’ loll 

(3.12) 

Hence, there must exist koeFV, such that for any k 3 k. equation (3.11) holds. 

For k < k,, we consider the contentsf(k), at the kth travel of W in n, that satisfies the 

following equality: 

f(k) - koB(W) - gB(7) = M,(r). (3.13) 

Then the contents generated, starting from equation (3.5) are 

FA(OIT(‘~‘))I\lOnl.,(T)nO1(k)O* if kA < kO, (3.14) 

F‘4(0 1 0,(x’) ~,Oll,,(‘)nO”1,(‘)0* if kA >,/.rr, 

Since k, is independent of the content of B, for kA2 k,, the general structure of 

contents that have inverse dynamics can be written as follows: 

FA(OTA)*OK~nOKB(OTB)*F B (3.15) 

It is important to note that there is a finite number of such structures associated 

with each n@Q,\I,) and that the cases k,<k, are considered with TA =0 and Ts= 1. 

Finally, by inspection of equation (3.4), we can conclude that expression (3.15) is the 

general structure of contents at each ME(Q~\I~). 

Now we have to construct the associated limit components. 

From previous lemmas and the proof of Proposition 3.9, it is enough to study the 

following types of words: 

(4 V (R V O)*O)F,F~wlnwz(L V O)*, (3.16) 

(R v O)*w,nwzF,F,*(O(L v o)* v <), (3.17) 

(5 V (R V O)*O)FAF~Mi,nw,FBFT;(O(L V 0)* V t), (3.18) 

where ~EQ~ and WiEjL, 0, R}*, i= 1, 2. 
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Fig. 6. Procedure of the proof of Proposition 3.13. We show the contents allowed at instruction ~E(Q~ \I,,), 

in differents steps from a y;, and the preimages introduced with the loop. 

When we consider the existence of vehicles, it is necessary to study the allowed 

contents in each register, that permit the inverse evolution of the programmable 

machine from the instruction n. 

In the case of expression (3.16) (or (3.17)), it follows directly that the structure of 

contents in register A is the following one: 

FA(OT’nJ)*Ok(n)ri, 

where k(n) and T(n) are constants that depend on the instruction n. 

The case of expression (3.18) corresponds to the preceding study. Note that these 

structures constitute regular languages (see expression (3.15)). 

To finish, we have to transfer this regular structure to the limit language, by adding 

the corresponding vehicles. We sketch the procedure in an example. 

Let nk=(k, A +) and let ~~(oT”)*OK’nkOKn(OTB)*~~ be a structure of contents asso- 

ciated with the instruction nkEQ5. Define the blocks 

Bf=(oj-lA+oK.~pj) vj=i,...,~~+i, 

B;=(Oj-‘A+OT~-j) V’j=l,..., T,. 

By using these blocks, the components of the limit language are described by the 

following expression: 

Similar blocks can be defined for the return states r and 1. 

This procedure is repeated a finite number of times for each ?ZkEQs. Then, the 

component associated with dynamical configurations, A2, is a regular language. 

Proof of Theorem 3.4. In Propositions 3.9 and 3.13 we construct all the components 

of the limit language. Both are regulars, then, the limit language 6p~=Al VA* is 

regular. q 
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Corollary 3.14. Let U be a universal Turing machine. Then, there exists a linear cellular 
automaton F” which simulates it such that its limit language S?iap is regular. 

This result implies that the computational complexity of a CA is not necessarily 

supported by the limit language complexity. 

Finally, it is important to remark that Proposition 3.9 is true for the normal and 

perturbed simulator. Moreover, the study made in Proposition 3.13 shows that the 

limit language complexity depends only on the structure of contents at the registers 

that permit inverse dynamics in the programmable machine at each n,EQs. Then, for 

more general structures of programmable machines (not not only those composed by 

blocks IB and DB), we just have to study the connection graph of the programmable 

machine. 

4. Non-perturbed programmable machine 

From the proof of Theorem 3.4, it is clear that the limit language is regular when for 

each instruction g; and g; the following conditions over the contents of the registers 

are satisfied: 

For a finite number of couples (K, T)EN~, 

F,g, OK(o*)*Fs have infinite preimages, 

FAOK(OT)*g, FB have infinite preimages. 

(4.1) 

(4.2) 

An equivalent condition is that the languages L, and LB, representing the allowed 

contents in the registers at each jump instruction g; and g;, be regulars or, equiva- 

lently, context-free [lo]. The perturbation introduced in Section 3 is an example 

where conditions (4.1) and (4.2) hold. There, K =0 and T= 1. 

In the case of programmable machines developed in Theorem 2.1, it is not difficult 

to see that for each ga and gh there exist programmable machines which have an 

uncountable family of languages of the type OK(OT)* that satisfy conditions (4.1) and 

(4.2). It is clear that the regularity depends on the finiteness of this family. In general, 

this finiteness is not obvious. 

It is important to point out that the limit language complexity is the same as the 

complexities of languages L, and LB at registers A and B, associated with the 

inversion from instruction y; and g; . 

Proposition 4.1. Let F be the cellular automaton developed in Section 2. If 6pF is regular, 
or context-free, or context-sensitive, or recursively enumerable, then L, and LB belong to 
the same class of language as _YpF. 

Proof. Follows directly from the fact that this class of languages is closed under inter- 

section with a regular language. Consider the regular language W= {FAO*Og; B-F,}; 
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then, _YFnR= {F,L,OgbB-F,}. The complexity of this language depends only on 

LA. Similarly, we prove the property for a g; 0 

The proof of the converse of Proposition 4.1 is straightforward when LA and LB are 

regular or context-free languages. We just use the block system developed in Section 3. 

Corollary 4.2. Let F be the cellular automaton developed in Section 2; then 

,4pF is regular i,fsVga, gb the languages LA and LB are regulars. 

Now we give an example where this class is reached for a nonperturbed PM. 

Proposition 4.3. Let MT be a deterministicjnite automaton with a two-symbol alphabet 

and F the normal simulator associated with it. Then YF is regular. 

Proof. For this particular class of Turing machines, it is not difficult to see that the 

blocks associated with each q,~Q in the corresponding programmable machine are 

reduced to the blocks in Fig. 7. 

We just have to study the connections (g;, gb) and (g;, g;), in the sense of 

conditions (4.1) and (4.2). The preimages associated 

following: 

(OZ)j v (02)j0 
Ok 

(02)j v (02)j0 

Ok 

_ 
ga 

gh 
_ 

Ya 

Yb 

(1) 

0 j 

Ok 

0 j 

0 j 

(02)k v (02)ko 
or 

0 j 

with these instructions are the 

(2) 

From (1) and (2), it is clear that the contents allowed in each g; , g; are 

olg,o* and o*g; IO. 

The languages LA and LB are the same for all the preimages. Then _YF is 

regular. 0 

In the case of a normal simulator for a universal Turing machine, we can use a result 

of undecidability to prove that the limit language is not recursively enumerable. In 

[S], it was proved that for some kind of simulations of Turing machines, YT, it is 

Fig. 7. Transition block B(q,) associated with the state qi in a finite automaton. All blocks B(qi) are 
identical for any q,EQ. 



undecidable whether (4, s)E(Q x S), a lecture-state pair is in the limit language of YIT. 

Equivalently, we can prove that it is, in general, undecidable whether the programm- 

able machine has inverse dynamics from an instruction nk and contents IA 1 and IL? in 

the registers. 

Theorem 4.4. Let U be a universal Turing machine and Fv the normal simulator 

associated with it; then .iur, is not recursively enumerable. 

Proof. Direct from previous observation. 0 

The preceding examples show that the nonperturbed simulation preserves, in some 

sense, the computational complexity of the CA and, on the other hand, supports the 

regularity for simple Turing machines. More complex examples may be conjectured 

from characterizations of context-sensitive and recursively enumerable languages 

with one-symbol alphabet. 

5. Limit complexity for an arbitrary PM 

In previous sections we have just considered programmable machines which appear 

in the simulation of a Turing machine, in Theorem 2.1. All of them are interconnec- 

tions of blocks IB and DB. Now we will consider any programmable machine with 

two registers. 

The first result appears by combining Theorems 2.1 and 3.4. 

Theorem 5.1. Let M, be a programmable machine. Then, there exists a CA, F, which 

simulates M, such that its limit language 9r is regular. 

Proof. By Theorem 2.1, there exists a Turing machine MT which simulates M, (in 

some sense, that we will not specify), and for MT there exists a programmable machine 

tip, constructed with blocks IB and DB, which simulate it. Then, by Theorem 3.4, if 

we take the PS, F, associated with Gp, we get that _FF is regular. The theorem is 

proved. 0 

On the other hand, if we consider the direct simulation of any programmable 

machine with two registers, there exist examples where the contents at the registers 

that allow the inversion are synchronized, i.e. they produce context-free limit 

languages. 

Theorem 5.2. Let M, he a programmable machine with two registers and F be the 

associated PS. Then _YF is at least a context-free language. Moreover, there exist 

programmable machines with nonregular context-jree limit languages. 
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Proof. From the discussion of the previous sections, we just have to study the circuits 

of type 1 reached after a jump condition g; or g;. 

It is not difficult to see that the only case that breaks the regularity occurs when, 

after a g, or a g; , there exist circuits of type 1, %?, such that a,(%?)>0 and aB(%?)>O. 

In all these cases, the allowed contents generated at any nk@Qs\lH) that belong to 

such circuits are the following: 

FA (0 a,(X))iof11.~(T)~~-j tn,(rJ(OaBIK))iO*Fg, j>O, 

FAO*(O ~a(V,))iO)n.~(r)nkOl,ls(r)(Orr,(K))iFs, i30. 

Here 5 is the transient of type 1, that joins the states g; or g; with the circuit %‘. 

The language generated by this structure is context-free. It is similar to languages of 

type L={a”P, m3n). 

Let us show an example where this class is reached. It is defined by the following 

program. 

1. B-(7) 

2. B-(4) 

3. Go(l) 

4. B+ 

5. A+ 

6. GO(~) 

7. H 

From n2 = (2, B- (4)), the program reaches the circuit 

gb=n2 + B+-tA’+Go, 
? I 

v 

with a(%‘)>O. 0 

This example allows one to recover one of the complexities attained in [S], for 

a general class of cellular automata. 

To summarize, the limit-language complexity depends only on the variations of the 

circuits of type 1 associated with each program. This gives an algorithm allowing one 

to identify the limit complexity for any programmable machine with two registers. 

Then there exists a finite algorithm to identify the limit complexity of YF, where F is 

the associated PS. 

In a similar way, we can obtain more complex limit languages by simulating any 

programmable machine with three registers and by using programs with circuits V of 

type 1 such that a(VZ)>O. 

Example 5.3. Let M, be a programmable machine with three registers, defined by the 

program: 

1. A-(5) 

2. B-(4) 
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3. Go(l) 

4. H 

5. A+ 

6. B+ 

7. c+ 

8. GO(~) 

It is clear that the contents reached from A-(l) are dependent and constitute 

languages which are equivalent to L = {ajbjb*cjc*,j3 I>. This last language is con- 

text-sensitive non-context-free. 

This example allows one to recover all the classes given in [S]. 

6. Conclusion 

The perturbation introduced in Section 3 shows that the CA can be modified in 

order to obtain a recursive limit language. Also, the perturbation preserves the direct 

dynamics of the CA over the simulating configurations. Therefore, the limit language 

can be regular, independently of the computational complexity. 

We have shown that the study of limit languages complexity can be made through 

an analysis of some particular class of one-symbol languages. These languages appear 

naturally in the inversion condition at jump instructions. Their characterization could 

give some insight into the problem of founding new classes of limit languages. 
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