
Theoretical Computer Science 110 (1993) 53378

Elsevier

53

On the limit set of some universal
cellular automata*

Eric Goles, Alejandro Maass and Servet Martinez
Universidud de Chile, Faculrad de Ciencias Fisicas Matenktica.s, Departamento de Ingenieria

Matemirtica. Casilla 170-3 correo 3, Santiago. Chile

Communicated by D. Perrin

Received February 199 I
Revised September 1991

Gales, E., A. Maass and S. Martinez, On the limit set of some universal cellular automata,

Theoretical Computer Science 110 (1993) 53-78.

In this paper we construct a simulation of a Turing machine by cellular automata based on the

equivalence between programmable machines and Turing machines. For this class of cellular

automata we prove that the associated limit language is regular. We also introduce algebraic

characteristics which reduce the study of the complexity of the limit language to the analysis of

a class of one-symbol languages.

1. Introduction

Let (S, r,f; F) be a linear cellular automaton (CA): S is the finite alphabet (or state

set), Y is the neighborhood radius, f: S 2r+ ‘-+S is the local rule and F: S”+S” is the

global transition function associated with ,f; i.e. (F(c))~ =f(Ci -r, . . . , ci, . . . , Ci +,) for all

ieZ and CES’.

To study some aspects of the asymptotic dynamics of CAs, Wolfram [18] intro-

duced the notion of limit set associated with a CA, A(F)=ntao F’(S”), which

represents the configurations with infinite preimages. Let us define the language

associated with the limit set, dp(n(F)), as the collection of all finite blocks contained

in the configurations of A(F). It is well known that, for finite time, i.e.

n;=O F’(S”)= Fq(S’), th e associated language 2’(Fq(S”)) is regular [16]. Wolfram

Correspondence to: E. Gales, Universidad de Chile, Facultad de Ciencias Fisicas y Matematicas, Depar-

tamento de Ingenieria Matematica, Casilla 170-3 correo 3, Santiago, Chile.
*This work has been done under grants FONDECYT 1211-91, 0040-90, 1208-91.

0304-3975/93/$06.00 G 1993-Elsevier Science Publishers B.V. All rights reserved

54 E. G&s, A. Maass, S. Martinez

[lS] set the problem whether for any CA, the limit language 9(11(F)) is regular. This

question was answered by Hurd in [8], where some examples are given of CAs which

limit sets have nonregular context-free or non-context-free context-sensitive, or non-

recursive enumerable limit languages. Another result was furnished by Cullik [3], who

showed that the limit language of some CA that simulates the dynamics of any CA is

nonrecursive enumerable.

For the most complex limit languages obtained by previous authors, they had to

simulate universal Turing machines by CAs. Based on this result, one could think that

the computational complexity is always translated to the limit language. In this paper,

we prove that it is not true, i.e. there exist CAs that simulate any Turing machine (TM)

whose limit languages are regulars.

In Section 2, we propose a morphism between programmable machines (PM) and

CAs. By using the Minsky’s equivalence between TM and PM, we construct a CA that

simulates any Turing machine. This simulation is used to prove the results on the limit

language in Section 3.

In Section 3, we study the limit language complexity associated with the CA

developed in Section 2. Here, we introduce the concept of perturbation for a PM, that

is a modification of the original PM keeping the finite-time behaviour, but introduc-

ing inverse dynamics for some instructions in the PM program. Using perturbed PM,

we prove that it is possible to simulate a universal TM by a CA whose limit language

is regular. From this result we can see that there is no direct relation between

computational complexity of a CA and the limit language complexity.

In Section 4, we study the limit language for nonperturbed PM. We prove that the

CA which simulates a universal Turing machine has nonrecursive enumerable limit

language. For more general PM we establish that the regularity of the limit language

depends on the finiteness of some algebraic characteristic of the PM. This finiteness is

reached by the perturbed PM. Also, we prove that CAs simulating a finite automaton

have a finite characteristic, thus a regular limit language.

Finally, in Section 5, by considering general perturbed PM, we recover the same

classes of limit languages as exhibited in [S]. Moreover, we introduce a finite

algorithm to study the limit language complexity for the CAs associated with this class

of programmable machines, which depends only on the associated connection graph.

2. Universal cellular automaton

We will give a simulation of a Turing machine by a cellular automaton. This

construction will allow us to study the limit complexity in Section 3. For the

construction, we use the classical equivalence between Turing machines and pro-

grammable machines established in [151.

Throughout this paper we define a Turing machine, MT, as the octuple MT= (Q, A,

a, j?, y, qs, qh, b). Q is a finite set of inner states, qs, q,,EQ are an initial and a final state,

respectively. The set A = I u W is a finite alphabet, where we distinguish the input

Limit set oJ unicersal cellulur automata 55

alphabet I and the work alphabet W, bE W is the empty letter. Finally, r, 0, y are the

transition functions associated with internal states, symbols and head translations,

respectively:

a:(Q\{q,t))xA-t~(Q)>

P:(Q\{q& x A-tWW,

>~:(Q\{q,,})xA+I-1, 11.

A programmable machine, M,, is the triple M, = (3’,9’, 9). Here 9 = { Ri , . . . , RN}

is a finite collection of registers storing nonnegative integers, the set 4= {II, . . . , Is}

corresponds to the permissible instructions over the registers and 9 =(pl , p2, . . . , pko) =

(Ij,, . , Ijku) is a program with k0 instructions belonging to the set 3.

The dynamics of a programmable machine consist in updating the registers Rj,

j= 1, . . . , N, according to the program from an initial condition at the registers.

The set of permissible instructions can be summarized as follows:

Rf : Add one in the register Rj, and go to the next instruction.

R,:(n) : Subtract one in the register Rj if it is not empty, and go to the next

instruction. If Rj is empty, go to the nth instruction of 9.

Go(n) : Go to the nth instruction of 9.

H : Halt instruction.

We identify a programmable machine, M,, with its connection graph G(M,)=

(,+‘(M,), t”(M,)). The set of nodes is ,4’(M,)= {nl, . . . , nk,,j, where ni=(i, pi) for

i= 1, . . . , ko. An edge (ni, nj)EB(M,) if the instruction j is attained in one step from

instruction i.

Often, the nodes Iii = (i, pi) are referred to indistinctly by i, which codes the instruc-

tion number, or by pi, referring to the type of instruction.

We support our simulation in the following equivalence theorem between Turing

machines and programmable machines.

Theorem 2.1 (Minsky, [15]). (1) Given a Turing machine MT, there exists a pro-

grammable machine M, which simulates it with two registers Z= {A, Bj.

(2) For any programmable machine M,, there exists a Turing machine MT which

simulates it.

It is important to point out that the equivalence is established by using simple

connections of a finite number of two kinds of blocks: the increment block, IB, and the

decrement block, DB, as is shown in Fig. 1. This remark will be cross-shaped to study

the complexity of the limit set.

2.1. Cod$cution cf a programmable machine by a cellular automaton

From Theorem 2.1, we see that a programmable machine with two registers is

enough to simulate a universal Turing machine. This result leads us to construct a CA

which simulates any programmable machine with two registers.

56 E. Go/es, A. Maass, S. Martinez

B+
Go

GO

r-A-1 A+-l

1 A-6.

t

c B-
A+
Go

IB DB

Fig. 1. Classical blocks of instructions which compose the equivalent programmable machine given in

Theorem 2.1. In block IB the size of the blocks of states E+ vary from 2 to 7. Similarly, in block DB the size

of the blocks of states A- and A+ are the same and vary from 2 to 7.

Let M, be a programmable machine with two registers. From an initial condition at

the registers A and B, the programmable machine runs accordingly with the program

9. At each step, only one instruction of 9 will be active which updates the corres-

ponding register. In order to achieve this process, the corresponding register has to be

reported, and once the operation is done, the central unit of the program has to

change to the next instruction, and so on.

In our simulation, the cellular space is divided into three sectors: (a) register A, (b)

register B, (c) central unit of instructions (CUI). The communications are carried by

states, called vehicles.

The states of the simulation are the following:

Ql=iO) : quiescent state

Qz=CF/i,Fe) : delimiters for the registers

Q3={A+, A-, B+, B-, G} : states associated with each type of instruction

(A+, A-(n), Bf, B-(n), Go(n), respectively)

Q4={r,l3 : states associated with the end of the execution of

each instruction (Y with register A and 1 with

register B)

Q~={~,,...,q,) : states associated with the nodes of the program

9 of M,.

Then, S= us= t Qj and 1 S I= k. + 10, where k. is the size of P.

For the simulation, the cellular space distribution is shown in Fig. 3. There, the

contents 1 A 1 and I B 1 of the registers, are coded by a sequence of zeros of size I A I and

IBI, between the corresponding markers and the central unit. The markers FA and FB
are repeated infinitely to the left and right of the coded contents IAl and IBI.

All the states in Q3uQ4 act like vehicles. We will call right vehicles the states

B+, B-, G, r and left vehicles the states A’, A-, 1. A right vehicle will be denoted by

Limit set of universal cellular automata 57

P Registers

i;,-/A
Active + ij -A

Instruction :
$72

B

Fig. 2. The active node nj=(i,, A+) sends a vehicle A+ to the corresponding register. When the instruction

has been carried out, it sends, to the central unit, a new vehicle r to make active the next instruction. The

case nj=(ij, A-(m)) is analogous except when register A is empty. In this case the instruction M is
immediately activated.

F,F,O ... OinjdO ... OF,F,..

Register A Central unit Register i3

Fig. 3. Cellular space distribution; ie{r, A+, A-, 0}, dE{l, B+, B-, G, 0)

R and a left one by L. This name is according to the type of action that they realize (see

Table 1).

Definition 2.2. (1) A configuration CES” is a “simulating configuration” (SC) if

(a) it takes the form of Fig. 2, and

(b) the central unit is Vinj V,,, where Vi =0 or the vehicle associated with nj=(j, pj)

ifpjisA+ orA_, and V, is analogously defined as Vi, but in register B. If pj = G then

Vd=G.

(2) A configuration cOeSZ is an “initial SC” (KC) if

(a) c0 is a SC and

(b) the central unit is Vin, Vd.

From an ISC, cO, the automaton develops a sequence (c,),~ I of SCs such that if c,

and ct+l have central units (Vi, nj,, V,) and (Vi, nj,+,, Vd), respectively, then

(1) if nj, =(j,, A +), the vehicle A+ runs up to FA, erasing it, and generating a return

vehicle, the state r, which runs up to the central unit activating the next central unit

(vi3njt+,, Vd) OfC,+1,

(2) if nj~ =(jt, A-(n)) it is analogous to (l), but adding one delimiter FA, if the

subtraction can be done. If not, the next state is automatically activated;

(3) if nj, = (jt, G), this vehicles runs up to delimiter FB and returns the state 1 without

change at the register.

The cases of B+ and B- are analogous to (1) and (2), respectively.

Recall that the sequence (c,),, 1 does not appear in real time except when the central

unit changes. In fact, time depends on the size of the registers.

This CA is characterized by its local rule, f; given in Table 1, which has a neighbor-

hood radius r = 3. The choice of r = 3 is made in order to solve the case of an empty

register with an instruction A-. The table is divided according to the different kinds of

58 E. Gales, A. Maass, S. Martinez

Table 1. Local rule for the CA constructed Section 2. “.” represents an arbitrary state in S, R represents

a right vehicle and L a left vehicle

(1) Vehicles R(x#L,y#L)
L(x#R,y#R)

(2) Vehicles and markers BC Fs Fs
x is+ F,

(in A is analogous) R B+ F,
x r F,
R r FB

I

0 (x#R)
R
0 (x#R)
R

0 B- FB F,
0 B- F,

x 0 E- F,
R 0 B- FB

FB
FL3
1 (x#R)
0

G F, FB
x G F,
R G FB

FL3
1 (x#R)
0

(3) Special rules for markers x F,
F, x

0 FB FB Y
I’ F,, F, 0

x FA
F, x

0 (.Y #F,)

0 (xZFB)
F, (YZFA)
F.4 (Y f FE)
0 (xfF..t)
0 @#FB)

(4) Interactions with

instructions ni n, if nj=(j, H)

I ni y

0 nj 1
Valid for instructions

associated with register B 0 n, I

0 nj I

flj (Xy#Ol)

nj+, if n,f(j, Gob))
nk if n,=(j, Go(nk))
0 ifn,+, associated with B

A+ V Am if nj+l associated with A
0 ifn,+, associated with A

B+, B- V G if n,,, associated with B

n,=(.L B-h)) 0 njB-F, .O if n, associated with A
E+, B- V G if n, associated with B

n, Em F, n,
0 n, B- F, 0 if nk associated with B

A+ V A- if n, associated with B

(5) Other cases 0

interactions between the states. For simplicity, we just describe the rules for one

register. For the other register, the rules are analogous. Observe that the rules are not

disjoint from one item to another; however, the rules will be understood according to

their actions. The transitions that can be done with more than one rule take the rule

Limit set of uniwrsal cellular automata 59

t Register A cur Register B

1 .)’ F, F, 0 0 0 A- ,I, 0 F, F, F, F, FB FB ...
2 .. F,A F,A 0 0 A- 0 11, 0 F, F, F, F, F, FB ...
3 F, F,d 0 A- 0 0 nI 0 F, F, F, F, FB FB ...
4 . F,, F, A- 0 0 0 n, 0 F‘B F, F, F, Es FB ...
5 ..’ F, F,d F, r 0 0 n, 0 F, F, F, F, FB FB ...
6 F, F, F‘a 0 r 0 n, 0 F, F, F, F, F, FB ...
7 F, F, F, 0 0 r n, 0 F, F8 F, F, F, F,
8 ... F, F/, F, 0 0 0 n 2 B+ F, F, F, F, Fs Fs ...
9 ... F, F,A F, 0 0 0 n2 0 I F, F, F, FB FB ...

10 F,d F, F, 0 0 0 n2 I 0 0 F, F, F‘s Fs ...
11 F, F, F, 0 0 0 n3 B+ 0 F, F, F, Fs F8 ...
12 . Pa F, F,, 0 0 0 n3 0 B+ FB F, FB F, FB ...
13 ... F, F, F, 0 0 0)I2 0 0 I F, Fe Fs Fs ...
14 . . F, F,d F, 0 0 0 11~ 0 I 0 F, Fs FB FB ...
15 F, F, F, 0 0 0 11~ I 0 o F, FB FB Fs ...
16 F,A F, F, 0 0 0 n4 G 0 0 F, F, F, F,
17 ... F., F, F, 0 0 0 n4 0 G 0 F, FB Fs FB ...
18 F,, F., F, 0 0 0 n4 0 0 G F, F, F, F, ...
19 F‘ F‘, F, 0 0 0 n4 0 0 I F, FB f’s FB ...
20 . . F, F, F, 0 0 0 n4 0 I 0 F, F, FB FB ...
21 ... F, F, F, 0 0 0 n4 I 0 0 F, FB FB FB ...
to .” F, f, F.4 0 0 A- n1 0 0 0 F, FB FB FB ...

3t, ... F,, F, F., F, F.4 A- n, 0 0 0 0 0 0 0 F,FB

3t,+j,j>l ..’ F, F,, F, F, F, 0 H 0 0 0 0 0 0 0 FsFB

Fixed point

Fig. 4. The dynamics of the PM of Example 2.4, beginning with contents 1 A/ = 3 and IBI =0 at instruction

n,. When the contents at the registers are IA 1 =O, I Bl= 6, the halt state is reached in 66 iterations.

that is made explicit for the case. An example of the automaton dynamics is given in

Fig. 4.

It is important to note that the simulation depends on the number of instructions k0

of the programmable machine. The set of states S has cardinality 1st = k, + 10.

However, this point is not relevant to calculate the limit set of this automaton.

Now, we will make explicit the sense of our simulation. For this purpose we

introduce the following definition.

Definition 2.3. Let M,= ({A, Bj, 9) be a programmable machine and F(M,) be the

CA defined by Table 1. Let c0 be an ISC for M, and (cot3 1 be the SC generated by

F(M,) from the initial configuration co. On the other hand, let (A,),20, (BJtao be the

sequences of integers in the registers A and B generated by M, from the initial values

A,, Bo.
Denote by cp and cf the contents of the registers A and B in the SC, {crjr>- 1. We say

that F(M,) simulates M, if

&=A0 and ct=Bo G- c;‘=A, and cfB=B1, Q’t31.

60 E. Go/es, A. Maass, S. Martinez

Let us consider a Turing machine MT and the programmable machine M,,

associated with MT, by Theorem 2.1. For M,, we can determine a CA, F(M,)=F,

which simulates it, in the sense of Definition 2.2. Then, we say that F simulates MT, in

the same sense. Observe that the programmable machine considered in this simula-

tion is a simple connection of blocks DB and IB (see Fig. 1).

We will say that a CA, F, is universal if it simulates a universal Turing machine.

Since a programmable machine may simulate a universal Turing machine, previous

cellular automaton is computational universal.

Example 2.4. Let M,=({A, B}, {A+, A-(n), B+, B-(n), Go(n)}, 9’), with P=((A-(5),

B+, B+, Go(l), H). This programmable machine multiplies by two the content of

register A, and stores the result in register B. The simulated CA is given in Fig. 4.

3. Limit complexity for the universal CA

Let MT be a Turing machine and F a one-dimensional CA simulating MT via its

associated programmable machine. For F, define the associated limit language as

_Y’F = _Y(/1 (F)) = 9 (fl ia o F’(S’)), which represents all the finite blocks that appear in

configurations of the limit set A(F).

In this section, we characterize the limit languages for some kind of simulations, F,

based on the scheme given in Section 2. We prove that the limit languages, =9’~, are

regulars for any Turing machine MT. In this case, $ is a regular codification of MT.

First, let us introduce some definitions.

Definition 3.1. Let M, = (93,X, 2)

9?.={R1,..., RN}. Consider the set

jc(l, . ..) k,} and some k~{l,...,N}).

be a programmable machine, with

@={ni~J+‘(M,)Ini=(i, Rk(j)) for some

(1) For each ni~P define the associated “subblock” or “external loop” as the

following pair of instructions:

nil =(j’, R;(i)),

ttiz=(i2t Go(i’)),

where the sets {i’ 1 ,i~.~) and { i2 1 qc@} are disjoints, ordered from k0 + 1 to the finish

and such that i2 = i’ + 1.

(2) The perturbed programmable machine, Mb, associated with M, is

Mb=(.%?, 9, P’), where 9’ is the program constructed with 9 and the subblocks

associated with @.

Example 3.2. Consider the programmable machine M, defined through the graph:

I J
~-(4)+B++yl)+H

Limit set of uniwrsal cellular automata

Then Mb is given by

61

We can extend this concept for a Turing machine, taking the perturbed programm-

able machine associated with it, by Theorem 2.1.

Definition 3.3. Take the Turing machine M,. Let M, be the programmable machine

associated with it (by Theorem 2.1) and Mb its perturbation. Consider the cellular

automata F, F defined in Fig. 2.4 that simulate them. Then

(1) F will be called the normal simulator of M-r (NS),

(2) F will be called the perturbated simulator of MT (PS).

This concept allows us to study the inverse dynamics associated with the CA and

regularize the limit languange.

Theorem 3.4. Let F be the associated PS of’s Turing machine M,. Then 9~ is regular.

A detailed proof of this theorem is difficult; so, we divide it in two parts. The

complexity of the limit language depends strongly on the type of interactions between

states belonging to the same configuration. The states of each configuration can be the

markers FA or Fs, vehicles, states associated with the instructions and the quiescent

state 0. So, we must take into account the relations between such states and partition

the set of configurations according to the type of interactions that they can support.

In the first part of the theorem, we consider the set of configurations that have

interactions between at most two types of states in a background of zeros. So, we

consider interactions of a state with itself, interactions between markers and vehicles,

between markers and instructions and between vehicles and instructions. We prove

that the associated components of the limit language for this class of configur-

ations are regular (Proposition 3.9). These configurations are called nondynamical

configurations.

In the second part of the theorem, we study the limit set components associated

with configurations which have interactions between markers, instructions and ve-

hicles in a background of zeros. These kinds of configurations introduce the problem

of the inverse dynamics of the simulated programmable machine. These configura-

tions are called dynamical configurations. In this case, we also prove that the

components in the limit language are regular (Proposition 3.13). In Proposition 3.13

the perturbed cellular automaton F” associated with F is cross-shaped.

To prove the first part, we need several lemmas, with easy proofs, that charac-

terize l?

First, let us show that all right vehicles must appear at the left side of a left vehicle in

the limit set

62 E. Go/es, A. Maass, S. Martiflez

Lemma 3.5. Let LE{A +, A-, 13 and RE{B+, B-, G, t-1; then

{LO*R} n5!~=@

Proof. It follows directly from the definition of the local rules. 0

Now, we prove some technical results which allow us to describe the configurations

of the limit language containing markers.

Lemma 3.6. I~XE(Q~UQ~UQ~UQ~)*, then

6)

(ii)

(iii)

(iv)

(v)

(vi)

(vii)

(viii)

(ix)

6)

{F,XF,jnY~=t?J.
tfx~{B+, B-, G, r> uQs and YES*, then

{FsYX}nS?f=O.

[fXe{A+, A-, I}uQ5 and YES*, then

{XYF,jns?f=0.

If x@QluQ3uQ4uQ5)* and YdQ1uQ3uQ4uQ5h then
{F,YXFB}ns!~=O,
{FAYXFA}n2J~=0.

If XE{B+, BP, G}, then

(F,O*X}nS?~=fj.

IfXe{A+, A-}, then

(XO*FgjnYp=@.

If RE{B+, B-, G, r) und LE{A+, A-, l}, then

{F,O*rO*R)nYF=@,

{LO*IO*Fs}n9~=qJ.

J~XE{A+, A-, I, B+, B-, G, r} then:

{FA(X V 0)*X(X V O)*F,)n9F=0.

Proof. We just prove (i) and (ii); the other cases are analogous.

(i) From rules (2) and (3) in Table 1, it follows directly to get that the markers FB

generate their sequence moving to the right in the preimages, and the markers FA

generate a similar sequence to the left. But the words F,XF, and FBFA do not have

preimages by F”; then these kinds of words do not belong to the limit language:

FB FA FB FA

FBl Ji^ ““I Jr’
FBXFA FBFA

(ii) As in the previous proof, every marker Fs must have another marker FB at the

right in the preimage. If XEQ~, the reverse dynamics form a vertical block of

63

instructions in the preimage. This and the first point show (ii):

FB Y x

: sQ5

FB 4Q5

If X is a right vehicle, it follows directly from (i), Lemma 3.1 and the first part that we

just have to analyse the case of the word FBO*R. But the markers FB do not produce

any right vehicle; then this word is not in the limit language:

F, 0 0 OOOR

FB R

Fs 0 R

FB 0

Now, in the next lemma we establish the relations between states nk~Qs and

vehicles. For this purpose, we partition Q5 as follows:

where

I,’ ={nk=(k, pk)cQ51pk=e+}, e= A, B,

1; =fn,=(k PdEQ51pk=em(n), ~EQ,}, e=A, B,

~,=In~=(k,Go(j))~Q~Ij~{l,...,k~}j,

ZH=jnk=(k, H)EQ~).

We associate with each nkgQ5 the left vehicle (LV) and right vehicle (RV) by

VL(n,)=LV associated with nk=

(B’ n&Is+,

VR(n,) = RV associated with nk =
B- nkgI;,

G nkEIG,

0 -.

It follows directly that VL(nk)=O or VR(nk)=O.

Lemma 3.7. Let nkEQ5 and RE{B+, B-, G, r>, LE{A+, A-, I>; then:

(i) {nkO*r} nIpe=@,

(ii) {IO*nkj nYF=@

(iii) (LO* VL(nk)O*nkO* VR(n,)) nYf=@

(iv) { VL(nk)O*nkO* VR(nk)O*R} nYp=@.

64 E. Gales, A. Maass, S. Martinez

Proof. We just prove (iii). Without loss of generality, suppose nk=(k, B+). Then

VL(nJ=O, VR(nk)=B+. Assume that there exists nj~Qs such that (nj, ~JE~(M,).

From rules (4) in Table 1, the states of instructions form a vertical block in the

preimages, and the active instruction is deactivated only when the instruction has

a state I at the right, if the instruction is associated with register B, or a state r at the

left in the other cases. The situation is the following:

L o* 0 nk II+

i nj j

There are two cases:

(1) If i=r, j=O, we conclude the proof by Lemma 3.5.

(2) If i = 0, j = 1, we conclude the proof because nj is associated with B. 0

From previous lemmas, the general structure of the limit words is the following:

(R v O)*w,F;w&w3(L v o)*,

where wi, w2, WOES* are determined by the existence of markers and states of

instruction in the limit word.

Definition 3.8. Let M, be a Turing machine and G(M,) the graph of its associated

programmable machine. Consider a node ni=(i, pi)E,~“(M,).

(1) The set of infinite preimages associated with ni is defined as follows:

d(ni)=(aE({ni} x(~(Mp))“) I(aj+l> aj)Eb(“p) for j> 1

and (~1, n&~(M,)}.

(2) The set of predecessors associated with ni is defined as

dl(ni)=(njEAr(Mp) I (nj, ni)E&(Mp)}.

Now, we can prove the first part of Theorem 3.4.

Proposition 3.9. Let MT be a Turing machine and F” the PS which simulates it. Then, the
limit language component associated with nondynamical configurations is regular.

Proof. We have to go over all the words that belong to configurations which have

infinite preimages by l? In this proposition, we just consider words containing at most

two types of states interacting in a background of zeros. We will describe, with the

usual notation of regular languages, each component of the limit language. Denote by

n(F), these components and, in the case il(~)i is partitioned, we denote its compon-

ents by /i(F”)i,j.

Recall that RE{B+, B-, G, r} and LE{A+, A-, 11.
(1) Vehicles interaction. From Lemma 3.5 and rules (1) in Table 1, the only

associated component in the limit language is

/l(F), = {(R V O)*(L V O)*},

which is a regular language.

Limit srt qf uniw3d cellular automata 65

(2) Interaction between vehicles and markers. From previous lemmas, the general

structures of this type of words

{%F.‘rF%~z(L v o,*j,

{(R v o)*fi8,FBF;%},

{M.‘J‘J;!4’ZFB*FBW&

From Lemma 3.6(viii), (iii) and

are

(3.1)

(3.2)

(3.3)

rules (2) in Table 1, in (3.1) w1 =((R V O)*O) V 5 and

w2 =O*(r V E,), where 5 is the empty word. Analogously for (3.2). In (3.3), Lemma 3.6(x)

(iii) imply that w1 =((R V O)*O) V 5, w2 =O*, wj = (O(L V 0)*) V 5. So, the associated

components of the limit language are

A(F),, = { (((R V O)*O) V ~)F,J1;0*(r V 5)(L V O)*),

/1(&z = {(R V O)*(I V UO*F$F,((O(L V O)*) V E)},

/I@),,= {(((R V O)*O) V E,)F,F;O*F,F,*((O(L V 0)*) V k)}.

Then, il(F)z=u:=r n(F’),i. 1s a finite union of regular components. Note that in this

case a simple interaction of markers was considered.

(3) Interaction between instructions and vehicles. We study the components of the

limit language that contain only the vehicles R or L, and nodes nkEQs. We divide the

study according to the number of states nkEQ5 that are present.

(3.1) One instruction. From Lemmas 3.5 and 3.6, the structure of the words with

one instruction is the following:

(R V 0)*w,nkw2(L V O)“, wQs, wl, WE{& R, L)*.

Since nkEQs are fixed in the absence of vehicles, a first component is

A(%i(nk)={(R V O)*nG V O)*}, n(F)), = u 4&l(%).
W‘EQ5

When nk~Qs and C&l(nk)#@, Lemma 3.7 gives the following limit component:

n(%(n,J={(R V O)*(VL(nJ V C)O*n&*(I’R(n.J V ML V O)*}

and

(3.2) Two instructions. Let nk, nlEQs. By previous lemmas, the general structure of

the limit words is the following:

(R V O)*w,nkw2n,w3(L V O)*,

where w1 has at most a vehicle VL(nk), w2 has at most two vehicles, VR(n,) and VL(nl),

and w3 have at most a vehicle VR(nl).

66 E. G&s, A. Maass, S. Martinez

As in (3.1), a direct component is the following:

#)3&k, nJ={(R V O)* 48*4(L v o)*}, M)33 = u 43(&k 4).
(nk,nhQ:

In order to add vehicles in the words, we must require .&i (nk) # 8 or &’ I (al) ~8, but

this is not enough. It is necessary to define some compatible conditions over the pairs

(nk, nl)~Q:. We say that (nk, nl) is compatible with class c(i) for i= 1, 2, 3 if it satisfies

the corresponding property defined below:

c(1): JsJ~(Iz,J~(IA+ u1,)#8 and &,(n,)n(1,f WI, uIG)#O,

c(2): &1(YlJn(l,+ ur,)#8,

c(3): d,(nJn(l,+ ul; ul,)#0.

These conditions ensure that the change of instruction in the preimage is done from

the outside of the interval of cells between nk and nl. Then, the limit components which

are added in each case are:

If (n,, n&c(l) then

4&&r,, nl)={(R V O)*(VL(n,) V S)o*~o*U’~(n,) V 5)

o*(VL(rr[) v k)O*n[O*(P(nJ v E)(L v o)*},

NO,,= u N%,(% 4):
(nkSnl)Ec(l)

if (nk, n,)~c(2) then

n(&(n,, nJ= ((R V O)*(VL(n,) V S)O*n,O*(VR(n,) V 5)O*W V O)*>,

4%= u N&(% nJ:
(nk,nl)Ec(2)

if (nk, n,)~c(3) then

/1(&&k, nl)= {(R V O)*nkO*(VL(nJ V 5)0*nAl*(VR(nJ V k)(L V O)*},

m36= tJ 4~),&h 4).
(nr.nr)Gc(3)

(3.3) A jinite number of instructions. Let (nk, nk,, , nkp, nl) be a finite family of

instructions in Qs. As in (3.2) the unique components of the limit set are related to the

class of compatibilities of the pair (nk, nl), and the general case without vehicles is

A(F),,={(R VO)*(n V O)*(L V O)*}, n=nl V n2 V ... V nko,

niEQs, i= 1, .., , ko.

If (n,, n[)Ec(l) then

A(F”h(nk, nl)= {(R V O)*(VL(nk) V S)O*n,O*(v”(nd V 5)(n V 0)*

(VL(nl) V &JO*n,O*(V”h) V 5)(L V O)*>,

m38= iJ ~(~)38h, 4

(nr,nl)Ec(l)

Limif set 0f‘unii:ersal cellular automata 67

If (nk, ni)~c(2) then

~(~)39(&, nJ= {(R v o)*(vL(n,) v S)o*%o*(v”(n,) v 5)

(n v O)*nl(L v o)*),

M),,= u MM%, Q).
(nr.n,)Ec(2)

If (n,, n,)~c(3) then

A(F) 3, io(n,, nl)= {(R V O)*n,(n V o)*(VL(n,) V 5)0*niO*

(VR(n,) v 5)(L v o,*>,

A(F) 3.10= u 403. Id%, h).

(w.n1)tc(3)

Then A,(P) = Ufz 1 n,j(F1) produces a regular component because it is a finite

union of regular components. Note that the case where the interaction occurs between

instructions is covered by this point.

(4) Interaction between markers and instructions. It is not difficult to see that the

only component associated in this case is

A,(F)= jO*F:(n V O)*Fs*O*),

where n=nl V n2 V ... V nko, nicQs, i= 1, . . . , kO.
In (l)-(4) above, we have studied all possible nondynamical interactions between

states of l? The complete component that results is A’ = uF= 1 Ai(which is a finite

union of regular components. Then, A’ is regular, and the result is proved. q

Note that the result established in Proposition 3.9 does not depend on the perturba-

tion introduced in A4,.

Now the problem of regularity has been reduced to the study of the components of

the limit language associated with the dynamical configurations. To begin the study of

this kind of configurations, it is useful to introduce the following definitions over the

graph associated with a programmable machine.

Definition 3.10. Let A4, be a programmable machine and G(M,)=(yll/-(Mp), b(M,))

be its graph.

(1) We say that the edge (Hi, nj)EJ(M,) is of type 1 if

Pi=Go(n) + j=n,

Pi + Go(n) =+ j=i+ 1.

(2) We say that the edge (ni, nj)EB(M,) is of type 2 if

ni=(i, R;(j)) for some kg{ 1, . . . , N}.

In general, we make explicit the register where the jump occurs; in this case we say that

(ni, nj) is of type 2 in R,.

68 E. Gales, A. Maass, S. Martinez

This definition makes explicit the differences between the type of actions of the

nodes. For instance, in the case n, =(l, A-(3)), n2 =(2, A+) and n3 =(3, Go(l)), the

connections (nI, nz), (n3, nI) and (IQ, n3) are of type 1 and (n,, n3) is of type 2.

Definition 3.11. Let M, be a programmable machine and G(M,) be its graph.

Consider the s-tuple of nodes %?=(q,, nil, . . . , ni,).

(1) % is a path iff (ni,, nie+,)EB(Mp), k= 1, s-l.

(2) %? is a circuit iff %? is a path and (ni,, ni,)&‘(M,).

(3) 9? is a path of type 1 iff (n,,, Izi~+ ,) is of type 1, k= 1, . . , s- 1.

(4) ~isapathoftype2iff3k~{l,...,s-l}suchthat(ni~,ni,+,)isoftype2.

In this case, we say that V is of type 2 in (Rj)j,,, J c { 1, . . . , N}, referring to the

registers where the jumps are produced.

When the PM evolves from initial conditions in the registers, over a path $7, it is not

obvious if the run can be made; so, for each path, there are some minimal conditions

over the registers that need to be satisfied to permit the evolution. For instance, for the

path V=((l, A+), (2, A-(5)), (5, A+)) it is clear that there is no way to make the jump

n2+5, independently of the content of the registers.

Definition 3.12. Let M, be a programmable machine and G(M,) its graph. Consider

the path %‘=(ni,, . . . , ni,).

(1) We say that % is legal iff 3(aj)j”,, c N such that if lRjl =aj then %? can be

traversed from this condition.

(2) Let V? be a legal path. The base of %’ is defined as

M(g) = (MI (@I . . . > MN(V)>

where Mk(%) = min {USE N 1 uk = &, (a”i)l”, 1 makes V legal}.

(3) Let %? be a legal path. The variation index associated with V is defined as

a(g) = (OI(@), . . ., IN,

where

CT~(%?)= C sigk(ni,, F??), k= 1, , N,
j= 1

1

+ 1 if pi,=Rk+,

Sig,(ni,, W)= -1 if Pi,=R[(n), n#nij+,,

0 otherwise.

With this notation, the minimal result in the registers associated with a run over the

path %7 is

m(~)=M(%‘)+a(%Y),

where “+” is the sum in RN.

Limit set of uni~~ersal cellular automata 69

For instance, take %? = ((1, A+), (2, B- (1)) (3, A+), (4, Go(l))), for initial contents

1 A0 1 and 1 II,, 1, respectively, at the registers. At the end of the travel along the path, the

resulting contents will be IA1=IA,l+2 and IBI=IB,I-1; then

o(V)=(2, -1x

M(V=(O, f),

m(W) = (2,O).

Now, let us show the following proposition.

Proposition 3.13. Let M, be a Turing machine and F” the PS associated with it. Then, the

limit component associated with dynamical configurations is regular.

Proof. We have to prove that the set of words in the limit language that consider

interactions between all types of states (i.e. markers, vehicles and instructions) con-

stitutes a regular language.

First of all, we study the contents at each register that allow an infinite inverse path

from an instruction nkE(Q5 \IH) in the program 9 of the programmable machine. Let

us describe these contents in the following form:

F.4 LA(%) nk LB(nk) FL,>

where LA(&) and L,(nk) are words in the one-symbol alphabet (0).

We divide the study according to the connection type of the elements in .d(nk), for

all !lkE(Q5\ZH) (observe that IQ51 < + ~8).

(1) Connections oftype I. Let nk@Qs \I,,). It is easy to prove that one and only one

of the following conditions holds:

(i) nk belongs to a unique circuit of type 1.

(ii) nk belongs to a unique path (which is not a circuit) of type 1, called transient.

To have an infinite preimage aE&(nk) of type 1, nk must satisfy (i). The circuit

%? associated with nk must have a negative variation, o(g), in order to make possible

the inversion.

With these conditions, an element aE.ti(nk) of type 1 is valid for the inversion iff nk

belongs to a type-l circuit V and a(%) But, for our simulation, we consider the

PM constructed by IB and DB blocks, which have circuits with c(G?)$O, and nodes

corresponding to the external loops of perturbations. which are associated with

circuits with index a(%?)=(- 1,0) or (0, - 1). In the last case, it is easy to see that the

structure of contents at the registers is

FA o* nk o* FB. (3.4)

(2) Connections oftype 2. Consider the instruction nkE(Q5\ZH) and ac&‘(n,) be of

type 2, i.e. there exists at least one type-2 connection in a. Let ai = (ji, A - (ji _ r)) (or

(ji, B-(ji_ r)) be the first node in a with connection of type 2 and ji_ 1 the instruction

associated with Ui- 1. To make the transition (ai, ai+ 1 ,) either register A (or B) must be

70 E. Gales, A. Maass, S. Martinez

empty at ai. With this condition, the future is determined in either register A (or B),

but not both. This problem is solved using the perturbed nodes associated with ai.

Consider the node Ui, and let us denote it by g; if it is associated with A, and by

gb in the other case, when it is used like a jump. An element in &(ai) is the following

perturbation circuit or external loop when Ui =ga (the case Ui=g, is symmetric):

(Ui, iii= A~ (ai), Go(ii,), a’i, GO(a”i), .)

%

Since o(V)<O, it is clear that %? is a valid circuit of type 1 for the inversion.

Moreover, it allows infinite preimages for content zero in A and for arbitrary size in B,

at Ui (or the symmetric one if Ui=gb).

Then, the preimages of type 2 for all the nodes are determined, starting from the

conditional jumps ga and g; . The contents look like

FA s; 0* Fs and FA 0* g; Fs. (3.5)

In the sequel we just consider the case g;; the other case is symmetric. We will study

the evolution of type 1 from expression (3.5). It is clear, from the structure of the blocks

DB and IB, that expression (3.5) evolves to a circuit V of type 1, such that (see Fig. 5)

a,(%‘)30 and o,(%)dO. (3.6)

Let n be an instruction in the circuit % such that

then

Ui=g,+(PZi,, nil, ...) flip, 11, ilipt2, ...) yli,)‘V,

Ui = g, +tni,,... 3 fli,)+(% nip+2> ... > IliT ni,3 ... 9 ni,);

T %?’

GA(T)309 a,(%?‘)>,0 and ~~(%?‘)<0. (3.7)

Now we study the contents of the registers A and B, that permit the inverse

evolution through circuit %?’ and transient T from instruction II.

It is clear that, when we travel T, the contents reached at instruction II must satisfy

the equations

IAI=m,(r)> IBl3%(T). (3.8)

F, a, 0* Fs

FA 6, 0* Fs

F, Go(&) 0* Fs

Fl4 0 cii 0* FB

FA 0 Go(&) 0* Fs

F* 0 0 d, 0* Fs

Fig. 5. The preimages associated with the perturbation node &.

Limit set of uniwrsal cellular automata 71

From equations (3.8) for each travel of the circuit %‘, the new content in register A at

instruction n is

lA/=mA(z)+ko,(%‘),

where k represents the kth iteration of %“.

In register B, to obtain an inverse dynamics from the kth iteration of V at

instruction n, we have to verify the condition IBI >m,(W). For this condition, it is

necessary, at the beginning of the travel after the transient r, to have

IB1amB(W)-kg,(W) (3.9)

and in the jump instruction ui it is verified that

IB13ms(~‘)-kaB(4’)-a,(r). (3.10)

On the other hand, the content of B which allows the travel of 7 is M,(7); then

ms(%“)- koB(W) - gB(7) 3 MB(~). (3.11)

So, it is necessary that

k>%w-,nBw)
’ loll

(3.12)

Hence, there must exist koeFV, such that for any k 3 k. equation (3.11) holds.

For k < k,, we consider the contentsf(k), at the kth travel of W in n, that satisfies the

following equality:

f(k) - koB(W) - gB(7) = M,(r). (3.13)

Then the contents generated, starting from equation (3.5) are

FA(OIT(‘~‘))I\lOnl.,(T)nO1(k)O* if kA < kO, (3.14)

F‘4(0 1 0,(x’) ~,Oll,,(‘)nO”1,(‘)0* if kA >,/.rr,

Since k, is independent of the content of B, for kA2 k,, the general structure of

contents that have inverse dynamics can be written as follows:

FA(OTA)*OK~nOKB(OTB)*F B (3.15)

It is important to note that there is a finite number of such structures associated

with each n@Q,\I,) and that the cases k,<k, are considered with TA =0 and Ts= 1.

Finally, by inspection of equation (3.4), we can conclude that expression (3.15) is the

general structure of contents at each ME(Q~\I~).

Now we have to construct the associated limit components.

From previous lemmas and the proof of Proposition 3.9, it is enough to study the

following types of words:

(4 V (R V O)*O)F,F~wlnwz(L V O)*, (3.16)

(R v O)*w,nwzF,F,*(O(L v o)* v <), (3.17)

(5 V (R V O)*O)FAF~Mi,nw,FBFT;(O(L V 0)* V t), (3.18)

where ~EQ~ and WiEjL, 0, R}*, i= 1, 2.

E. Go/es, A. Maass, S. Martinez

Fig. 6. Procedure of the proof of Proposition 3.13. We show the contents allowed at instruction ~E(Q~ \I,,),

in differents steps from a y;, and the preimages introduced with the loop.

When we consider the existence of vehicles, it is necessary to study the allowed

contents in each register, that permit the inverse evolution of the programmable

machine from the instruction n.

In the case of expression (3.16) (or (3.17)), it follows directly that the structure of

contents in register A is the following one:

FA(OT’nJ)*Ok(n)ri,

where k(n) and T(n) are constants that depend on the instruction n.

The case of expression (3.18) corresponds to the preceding study. Note that these

structures constitute regular languages (see expression (3.15)).

To finish, we have to transfer this regular structure to the limit language, by adding

the corresponding vehicles. We sketch the procedure in an example.

Let nk=(k, A +) and let ~~(oT”)*OK’nkOKn(OTB)*~~ be a structure of contents asso-

ciated with the instruction nkEQ5. Define the blocks

Bf=(oj-lA+oK.~pj) vj=i,...,~~+i,

B;=(Oj-‘A+OT~-j) V’j=l,..., T,.

By using these blocks, the components of the limit language are described by the

following expression:

Similar blocks can be defined for the return states r and 1.

This procedure is repeated a finite number of times for each ?ZkEQs. Then, the

component associated with dynamical configurations, A2, is a regular language.

Proof of Theorem 3.4. In Propositions 3.9 and 3.13 we construct all the components

of the limit language. Both are regulars, then, the limit language 6p~=Al VA* is

regular. q

Limit set of unicersal cellular automata 73

Corollary 3.14. Let U be a universal Turing machine. Then, there exists a linear cellular
automaton F” which simulates it such that its limit language S?iap is regular.

This result implies that the computational complexity of a CA is not necessarily

supported by the limit language complexity.

Finally, it is important to remark that Proposition 3.9 is true for the normal and

perturbed simulator. Moreover, the study made in Proposition 3.13 shows that the

limit language complexity depends only on the structure of contents at the registers

that permit inverse dynamics in the programmable machine at each n,EQs. Then, for

more general structures of programmable machines (not not only those composed by

blocks IB and DB), we just have to study the connection graph of the programmable

machine.

4. Non-perturbed programmable machine

From the proof of Theorem 3.4, it is clear that the limit language is regular when for

each instruction g; and g; the following conditions over the contents of the registers

are satisfied:

For a finite number of couples (K, T)EN~,

F,g, OK(o*)*Fs have infinite preimages,

FAOK(OT)*g, FB have infinite preimages.

(4.1)

(4.2)

An equivalent condition is that the languages L, and LB, representing the allowed

contents in the registers at each jump instruction g; and g;, be regulars or, equiva-

lently, context-free [lo]. The perturbation introduced in Section 3 is an example

where conditions (4.1) and (4.2) hold. There, K =0 and T= 1.

In the case of programmable machines developed in Theorem 2.1, it is not difficult

to see that for each ga and gh there exist programmable machines which have an

uncountable family of languages of the type OK(OT)* that satisfy conditions (4.1) and

(4.2). It is clear that the regularity depends on the finiteness of this family. In general,

this finiteness is not obvious.

It is important to point out that the limit language complexity is the same as the

complexities of languages L, and LB at registers A and B, associated with the

inversion from instruction y; and g; .

Proposition 4.1. Let F be the cellular automaton developed in Section 2. If 6pF is regular,
or context-free, or context-sensitive, or recursively enumerable, then L, and LB belong to
the same class of language as _YpF.

Proof. Follows directly from the fact that this class of languages is closed under inter-

section with a regular language. Consider the regular language W= {FAO*Og; B-F,};

14 E. Gales, A. Maass, S. Martinez

then, _YFnR= {F,L,OgbB-F,}. The complexity of this language depends only on

LA. Similarly, we prove the property for a g; 0

The proof of the converse of Proposition 4.1 is straightforward when LA and LB are

regular or context-free languages. We just use the block system developed in Section 3.

Corollary 4.2. Let F be the cellular automaton developed in Section 2; then

,4pF is regular i,fsVga, gb the languages LA and LB are regulars.

Now we give an example where this class is reached for a nonperturbed PM.

Proposition 4.3. Let MT be a deterministicjnite automaton with a two-symbol alphabet

and F the normal simulator associated with it. Then YF is regular.

Proof. For this particular class of Turing machines, it is not difficult to see that the

blocks associated with each q,~Q in the corresponding programmable machine are

reduced to the blocks in Fig. 7.

We just have to study the connections (g;, gb) and (g;, g;), in the sense of

conditions (4.1) and (4.2). The preimages associated

following:

(OZ)j v (02)j0
Ok

(02)j v (02)j0

Ok

_
ga

gh
_

Ya

Yb

(1)

0 j

Ok

0 j

0 j

(02)k v (02)ko
or

0 j

with these instructions are the

(2)

From (1) and (2), it is clear that the contents allowed in each g; , g; are

olg,o* and o*g; IO.

The languages LA and LB are the same for all the preimages. Then _YF is

regular. 0

In the case of a normal simulator for a universal Turing machine, we can use a result

of undecidability to prove that the limit language is not recursively enumerable. In

[S], it was proved that for some kind of simulations of Turing machines, YT, it is

Fig. 7. Transition block B(q,) associated with the state qi in a finite automaton. All blocks B(qi) are
identical for any q,EQ.

undecidable whether (4, s)E(Q x S), a lecture-state pair is in the limit language of YIT.

Equivalently, we can prove that it is, in general, undecidable whether the programm-

able machine has inverse dynamics from an instruction nk and contents IA 1 and IL? in

the registers.

Theorem 4.4. Let U be a universal Turing machine and Fv the normal simulator

associated with it; then .iur, is not recursively enumerable.

Proof. Direct from previous observation. 0

The preceding examples show that the nonperturbed simulation preserves, in some

sense, the computational complexity of the CA and, on the other hand, supports the

regularity for simple Turing machines. More complex examples may be conjectured

from characterizations of context-sensitive and recursively enumerable languages

with one-symbol alphabet.

5. Limit complexity for an arbitrary PM

In previous sections we have just considered programmable machines which appear

in the simulation of a Turing machine, in Theorem 2.1. All of them are interconnec-

tions of blocks IB and DB. Now we will consider any programmable machine with

two registers.

The first result appears by combining Theorems 2.1 and 3.4.

Theorem 5.1. Let M, be a programmable machine. Then, there exists a CA, F, which

simulates M, such that its limit language 9r is regular.

Proof. By Theorem 2.1, there exists a Turing machine MT which simulates M, (in

some sense, that we will not specify), and for MT there exists a programmable machine

tip, constructed with blocks IB and DB, which simulate it. Then, by Theorem 3.4, if

we take the PS, F, associated with Gp, we get that _FF is regular. The theorem is

proved. 0

On the other hand, if we consider the direct simulation of any programmable

machine with two registers, there exist examples where the contents at the registers

that allow the inversion are synchronized, i.e. they produce context-free limit

languages.

Theorem 5.2. Let M, he a programmable machine with two registers and F be the

associated PS. Then _YF is at least a context-free language. Moreover, there exist

programmable machines with nonregular context-jree limit languages.

76 E. G&s, A. Maass, S. Martinez

Proof. From the discussion of the previous sections, we just have to study the circuits

of type 1 reached after a jump condition g; or g;.

It is not difficult to see that the only case that breaks the regularity occurs when,

after a g, or a g; , there exist circuits of type 1, %?, such that a,(%?)>0 and aB(%?)>O.

In all these cases, the allowed contents generated at any nk@Qs\lH) that belong to

such circuits are the following:

FA (0 a,(X))iof11.~(T)~~-j tn,(rJ(OaBIK))iO*Fg, j>O,

FAO*(O ~a(V,))iO)n.~(r)nkOl,ls(r)(Orr,(K))iFs, i30.

Here 5 is the transient of type 1, that joins the states g; or g; with the circuit %‘.

The language generated by this structure is context-free. It is similar to languages of

type L={a”P, m3n).

Let us show an example where this class is reached. It is defined by the following

program.

1. B-(7)

2. B-(4)

3. Go(l)

4. B+

5. A+

6. GO(~)

7. H

From n2 = (2, B- (4)), the program reaches the circuit

gb=n2 + B+-tA’+Go,
? I

v

with a(%‘)>O. 0

This example allows one to recover one of the complexities attained in [S], for

a general class of cellular automata.

To summarize, the limit-language complexity depends only on the variations of the

circuits of type 1 associated with each program. This gives an algorithm allowing one

to identify the limit complexity for any programmable machine with two registers.

Then there exists a finite algorithm to identify the limit complexity of YF, where F is

the associated PS.

In a similar way, we can obtain more complex limit languages by simulating any

programmable machine with three registers and by using programs with circuits V of

type 1 such that a(VZ)>O.

Example 5.3. Let M, be a programmable machine with three registers, defined by the

program:

1. A-(5)

2. B-(4)

Limi[set of unitlersal cellular automata

3. Go(l)

4. H

5. A+

6. B+

7. c+

8. GO(~)

It is clear that the contents reached from A-(l) are dependent and constitute

languages which are equivalent to L = {ajbjb*cjc*,j3 I>. This last language is con-

text-sensitive non-context-free.

This example allows one to recover all the classes given in [S].

6. Conclusion

The perturbation introduced in Section 3 shows that the CA can be modified in

order to obtain a recursive limit language. Also, the perturbation preserves the direct

dynamics of the CA over the simulating configurations. Therefore, the limit language

can be regular, independently of the computational complexity.

We have shown that the study of limit languages complexity can be made through

an analysis of some particular class of one-symbol languages. These languages appear

naturally in the inversion condition at jump instructions. Their characterization could

give some insight into the problem of founding new classes of limit languages.

Acknowledgment

We thank Professors F. Blanchard and J. Mazoyer for helpful discussions.

References

[l] N. Chomsky, On certain formal properties of grammars, fnjivm. and Control 2 (1959)137-167.

[2] N. Chomsky and G.A. Miller, Finite state languages, Inform. and Control 1 (1958) 91-l 12.

[3] K. Culik II, J. Pachl and S. Yu, On the limit sets of cellular automata, SIAM J. Comput. 18 (1989)
831-842.

[4] K. Culik II and S. Yu, Undecidability of C.A. classification schemes, Complex Systems 2 (1988)
177-190.

[S] S. Eilenberg, Automata, Languages and Machines, Vol. A (Academic Press, New York, 1974).

[6] J.E. Hopcroft and J.A. Ullman. Formal Languages and their Relation to Automata (Addison-Wesley,

Reading, MA, 1969).

[7] J.E. Hopcroft and J.A. Ullman, Inrroduction lo Automata Theory Lanyuuyes and Computation

(Addison-Wesley, Reading, MA, 1979).
[S] L. Hurd, Formal language characterizations of cellular automaton limit sets, Complex Systems

1 (1987) 69-80.

[9] L. Hurd, The application of formal language theory to the dynamical behaviour of cellular automata,

Ph.D. Thesis, Princeton University, 1988.

78 E. Go/es, A. Maass, S. Martinez

[IO] H.R. Lewis and C.H. Papadimitriou, E/emrnts of the Theory of Computation (Prentice-Hall, Engle-

wood ClilTs, NJ, 1981).

[I l] K. Lindgren and M. Nordahl, Complexity measures and cellular automata, Complex Systems 2 (1988)

409-440.

[I23 A. Maass, Complejidad Limite para una miquina de Turing. Memoria de Ingeniero Civil

Matemitico, Depto. Ing. Mat., U. de Chile, 1990.

[I31 A. Maass, Universal cellular automaton simulating any programmable machine, Rerista de

Matemicticas Aplicadas 12 (1991) 107-126.

1141 J. Mazoyer, A six-state minimal time solution to the firing squad synchronization problem, Theorrr.

Comput. Sci. 50 (1987) 183-238.

1151 M. Minsky, Computation: Finite and Infinite Machines (Prentice-Hall, Englewood Cliffs, NJ, 1967).

[I61 B. Weiss, Subshifts of finite type and sofic systems, Monarsh. Math. 77 (1973) 462474.

1171 S. Wolfram, Twenty problems in the theory of cellular automata, Phys. Scripra 9 (1984) 170&172.

[IS] S. Wolfram, Computation theory of cellular automata, Comm. Mark Phq’s. 96 (1984) 15-57.

